

 EctoCommand

 v0.2.7

 Table of contents

 	EctoCommand

 	
 Modules

 	EctoCommand

 	EctoCommand.Middleware

 	EctoCommand.Middleware.Pipeline

EctoCommand

EctoCommand is a toolkit for mapping, validating, and executing commands received from any source.
It provides a simple and flexible way to define and execute commands in Elixir. With support for validation, middleware, and automatic OpenAPI documentation generation, it's a valuable tool for building scalable and maintainable Elixir applications. We hope you find it useful!

 Installation

To install EctoCommand, add it as a dependency to your project by adding ecto_command to your list of dependencies in mix.exs:
def deps do
 [
 {:ecto_command, "~> 0.1.0"}
]
end

 Why Ecto?

"Ecto is also commonly used to map data from any source into Elixir structs, whether they are backed by a database or not."
Based on this definition of the Ecto library, EctoCommand utilizes the "embedded_schema" functionality to map input data into an Elixir data structure to be used as a "command".
This means that EctoCommand is not tied to your persistence layer.
As a result, you can easily convert data received from any source into a valid command struct, which can be executed easily. Additionally, you can also add functionality through middlewares to the execution pipeline.
Here is an example of a command definition:
defmodule SampleCommand do
 use EctoCommand

 command do
 param :id, :string
 param :name, :string, required: true, length: [min: 2, max: 255]
 param :email, :string, required: true, format: ~r/@/, length: [min: 6]
 param :count, :integer, required: true, number: [greater_than_or_equal_to: 18, less_than: 100]
 param :password, :string, required: true, length: [greater_than_or_equal_to: 8, less_than: 100], trim: true

 internal :hashed_password, :string
 end

 def execute(%SampleCommand{} = command) do
 #
 :ok
 end

 def fill(:hashed_password, _changeset, %{"password" => password}, _metadata) do
 :crypto.hash(:sha256, password) |> Base.encode64()
 end
end

:ok = SampleCommand.execute(%{id: "aa-bb-cc", name: "foobar", email: "foo@bar.com", count: 22, password: "mysecret"})

 Usage

 Defining a Command

To define a new command, create a module that includes the EctoCommand behaviour and implements the execute/1 function.
The execute/1 function takes the command structure as an argument.
The command macro is used to define the parameters included in the command.
The param macro is used to define which parameters are accepted by the command, and the internal macro is used to define which parameters are internally set.
defmodule MyApp.Commands.CreatePost do
 use EctoCommand

 alias MyApp.PostRepository

 command do
 param :title, :string, required: true, length: [min: 3, max: 255]
 param :body, :string, required: true, length: [min: 3]

 internal :slug, :string
 internal :author, :string
 end

 def execute(%__MODULE__{} = command) do
 PostRepository.insert(%{
 title: command.title,
 body: command.body,
 slug: command.slug
 })
 end

 def fill(:slug, _changeset, %{"title" => title}, _metadata) do
 Slug.slufigy(title)
 end

 def fill(:author, _changeset, _params, %{"triggered_by" => triggered_by}) do
 triggered_by
 end

 def fill(:author, changeset, _params, _metadata) do
 Ecto.Changeset.add_error(changeset, :triggered_by, "triggered_by metadata info is missing")
 end
end

 Executing a Command

In order to execute the command, you need to call the execute/2 function providing a raw parameter data map and, optionally, some metadata.
params = %{title: "New amazing post", body: "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut eget ante odio."}
metadata = %{triggered_by: "writer"}

:ok = MyApp.Commands.CreatePost.execute(params, metadata)
This data is validated, and if it passes all validation rules, a new command structure is created and passed as an argument to the execute/1 function defined inside your command module.

 Handling Errors

If a required parameter is missing or has an invalid value, the EctoCommand.execute/2 function will return an error tuple with an invalid Ecto.Changeset structure. You can then use the changeset to return errors to the client or perform other actions.
{:error, %Ecto.Changeset{valid?: false}} = MyApp.Commands.CreatePost.execute.execute(%{})
Returning an invalid Ecto.Changeset is particularly useful when working with Phoenix forms.

 Main goals and functionality of EctoCommand

EctoCommand aims to provide the following functionality:
	An easy way to define the fields in a command (param macro).
	A simple and compact way of specifying how these fields should be validated (param macro options)
	Defining the fields that need to be part of the command but can't be set from the outside (internal macro)
	Validation of the params received from the outside
	Easy hooking of middleware to add functionality (like audit)
	Automatic generation of OpenApi documentation

 Params definition

To define the params that a command should accept, use the param macro.
The param macro is based on the field macro of Ecto.Schema and defines a field in the schema with a given name and type. You can pass all the options supported by the field macro. Afterwards, each defined param is cast with the "external" data received.

 Validations and constraints definition

In addition to those options, the param macro accepts a set of other options that indicate how external data for that field should be validated.
These options are applied to the intermediate Changeset created in order to validate data.
These options are mapped into validate_* methods of the Ecto.Changeset.
For example, if you want a command to have a "name" field that is required and has a length between 2 and 255 chars, you can write:
param :name, :string, required: true, length: [min: 2, max: 255]
This means that the command will have a name field, which will be cast to a string type. These functions will be called during the changeset validation:
changeset
|> validate_required([:name])
|> validate_length(:name, min: 2, max: 255)
for validators that accept both data and options, you could pass just data like:
param :email, :string, format: ~r/@/
or data and options in this way:
param :email, :string, format: {~r/@/, message: "my custom error message"}

 Internal fields

Sometimes, you might need to define internal fields, like hashed_password or triggered_by, which are not supposed to be set externally. To define such fields, you can use the internal macro.
 command do
 param :password, :string, required: true, length: [greater_than_or_equal_to: 8, less_than: 100], trim: true
 internal :hased_password, :string
 internal :triggered_by, :string
 end

 def fill(:hased_password, _changeset, %{"password" => password}, _metadata) do
 :crypto.hash(:sha256, password) |> Base.encode64()
 end

 def fill(:triggered_by, _changeset, _params, %{"triggered_by": triggered_by}) do
 triggered_by
 end

 def fill(:triggered_by, changeset, _params, _metadata) do
 Ecto.Changeset.add_error(changeset, :triggered_by, "triggered_by metadata info is missing")
 end
These fields will be ignored during the "cast process". Instead, you need to define a public fill/4 function to populate them. The fill/4 function takes four arguments: the name of the field, the current temporary changeset, the parameters received from external sources, and additional metadata. You can choose to return the value that will populate the field or the updated changeset. Both options are acceptable, but returning the changeset is particularly useful if you want to add errors to it.

 Subparams

Your API can accept structured data by utilizing "subparams" within the request.
To enable the submission of complex information in a hierarchical format, you can utilize the embeds_one/3 macro. This macro allows you to define a field that is composed of other fields, which are subsequently validated.
The arguments for the macro are: the name of the main parameter, the name of the embedded module (which can either exist or be created), and optionally, the parameters of the new embedded module.
In the following example, we demonstrate how you can provide a name, surname, and an address field, which is composed of street, city, and zip_code.
defmodule SampleCommand do
 use EctoCommand

 command do
 param :name, :string
 param :surname, :string

 embeds_one :address, Address do
 param :street, :string, required: true
 param :city, :string, required: true, length: [min: 10]
 param :zip, :string, required: true
 end
 end
end
In the above example, a new SampleCommand.Address module will be created.
Alternatively, you can achieve the same behavior by writing:
defmodule SampleCommand.Address do
 use EctoCommand

 command do
 param :street, :string, required: true
 param :city, :string, required: true, length: [min: 10]
 param :zip, :string, required: true
 end
end

defmodule SampleCommand do
 use EctoCommand

 command do
 param :name, :string
 param :surname, :string

 embeds_one :address, Address
 end
end
In the second example, an existing module is embedded, providing the same functionality. Feel free to choose the approach that best suits your needs.

 Validations

All parameters are validated in order to instantiate the command structure.
When you use EctoCommand inside your module, three methods are added:
	changeset/2
	new/2
	execute/2

All three methods take parameter data and metadata as arguments.
The changeset/2 function performs validation and other operations, and returns a valid or invalid Ecto.Changeset.
The new/2 function internally calls the changeset/2 function and returns either the valid command structure or the invalid Ecto.Changeset.
The execute/2 function internally calls the new/2 function and then calls the execute/1 function (which should be defined inside the command module), or returns the invalid Ecto.Changeset.

 Using Middlewares in EctoCommand

EctoCommand supports middlewares, which allow you to modify the behavior of a command before and/or after its execution.
A middleware is a module that implements the EctoCommand.Middleware behavior. Here's how you can use middlewares in your EctoCommand project:
defmodule MyApp.MyMiddleware do
 @behaviour EctoCommand.Middleware

 @impl true
 def before_execution(pipeline, _opts) do
 pipeline
 |> Pipeline.assign(:some_data, :some_value)
 |> Pipeline.update!(:command, fn command -> %{command | name: "updated-name"} end)
 end

 @impl true
 def after_execution(pipeline, _opts) do
 Logger.debug("Command executed successfully", command: pipeline.command, result: Pipeline.response(pipeline))
 pipeline
 end

 @impl true
 def after_failure(pipeline, _opts) do
 Logger.error("Command execution fails", command: pipeline.command, error: Pipeline.response(pipeline))
 pipeline
 end

 @impl true
 def invalid(pipeline, _opts) do
 Logger.error("invalid params received", params: pipeline.params, error: Pipeline.response(pipeline))
 pipeline
 end
end
Each method takes two arguments: an EctoCommand.Pipeline structure and the options you set for that middleware.
The method should return an EctoCommand.Pipeline structure.
	before_execution/2 is executed before command execution, and only if the command is valid. In this function, if you'd like, you might update the command that will be executed.
	after_execution/2 is executed following a sucessful command execution. In this function, if you'd like, you could alter the returned value.
	after_failure/2 is executed after a failed command execution. In this function you could, if you wish, also update the returned value.
	invalid/2 is executed when data used to build the command is invalid.

 Configuring Middlewares

There are two ways to specify which middleware should be executed:
	Global configuration:

You can set up a list of middleware to be executed for every command by adding the following to your application's configuration:
config :ecto_command, :middlewares,
 {MyApp.MyFirstMiddleware, a_middleware_option: :foo},
 {MyApp.MySecondMiddleware, a_middleware_option: :bar}
	Command-level configuration:

You can also specify middleware to be executed for a specific command by adding the use directive in the command module:
defmodule MyApp.MyCommand do
 use EctoCommand
 use MyApp.MyFirstMiddleware, a_middleware_option: :foo
 use MyApp.MySecondMiddleware, a_middleware_option: :bar

end
In this case, the specified middleware is executed only for that particular command.

 Automated generation of OpenAPI documentation

EctoCommand has a built-in feature that automatically generates OpenAPI documentation based on the parameters and validation rules defined in your command modules.
This can save you a significant amount of time and effort in writing and maintaining documentation, particularly if you have a large number of commands.
To generate the OpenAPI schema, you can use the EctoCommand.OpenApi module:
use EctoCommand.OpenApi
By default, the schema's title is the fully qualified domain name (FQDN) of the module, and the default type is :object.
However, you can override the defaults by passing options to the use module:
use EctoCommand.OpenApi, title: "CustomTitle", type: :object
Then in your controller you can simply pass your command module to the request body specs:

defmodule MyAppWeb.PostController do
 use MyAppWeb, :controller
 use OpenApiSpex.ControllerSpecs

 alias MyApp.Commands.CreatePost

 operation :create_post,
 summary: "Create a Post",
 request_body: {"Post params", "application/json", CreatePost},
 responses: [
 ok: {"Post response", "application/json", []},
 bad_request: {"Post response", "application/json", []}
]
 def create_post(conn, params) do
 ...
 end
For more information on serving the Swagger UI, please refer to the readme of the open-api-spex library.

 Contributing

Contributions are always welcome! Please feel free to submit a pull request or create an issue if you find a bug or have a feature request.

 License

This library is licensed under the MIT license. See LICENSE for more details.

EctoCommand

The EctoCommand module provides a DSL for defining command schemas.
It is used by use EctoCommand in your command modules.

 Example

defmodule MyApp.Commands.CreatePost do
 use EctoCommand
 alias MyApp.PostRepository

 command do
 param :title, :string, required: true, length: [min: 3, max: 255]
 param :body, :string, required: true, length: [min: 3]

 internal :slug, :string
 internal :author, :string
 end

 def execute(%__MODULE__{} = command) do
 ...
 :ok
 end

 def fill(:slug, _changeset, %{"title" => title}, _metadata) do
 Slug.slufigy(title)
 end

 def fill(:author, _changeset, _params, %{"triggered_by" => triggered_by}) do
 triggered_by
 end

 def fill(:author, changeset, _params, _metadata) do
 Ecto.Changeset.add_error(changeset, :triggered_by, "triggered_by metadata info is missing")
 end
end

 Summary

 Functions

 cast_embedded_fields(changeset, embedded_fields)

 command(list)

 The command/1 macro defines a command schema with the given block.

 embeds_one(name, schema, list)

 internal(name, type \\ :string, opts \\ [])

 Defines a command internal field.

 param(name, type, opts \\ [])

 Defines a command parameter field.

 validate_with(function, opts \\ [])

 Functions

 cast_embedded_fields(changeset, embedded_fields)

 command(list)

 (macro)

The command/1 macro defines a command schema with the given block.

 Examples

 command do
 param :name, :string
 param :age, :integer
 end

 embeds_one(name, schema, list)

 (macro)

 internal(name, type \\ :string, opts \\ [])

 (macro)

Defines a command internal field.
These fields will be ignored during the "cast process".
Instead, you need to define a public fill/4 function to populate them. The fill/4 function takes four arguments: the name of the field, the current temporary changeset, the parameters received from external sources, and additional metadata. You can choose to return the value that will populate the field or the updated changeset. Both options are acceptable, but returning the changeset is particularly useful if you want to add errors to it.

 Examples

 internal :slug, :string
 internal :author, :string

 param(name, type, opts \\ [])

 (macro)

Defines a command parameter field.
The param macro is based on the field macro of Ecto.Schema and defines a field in the schema with a given name and type. You can pass all the options supported by the field macro. Afterwards, each defined param is cast with the "external" data received.
In addition to those options, the param macro accepts a set of other options that indicate how external data for that field should be validated.
These options are applied to the intermediate Changeset created in order to validate data.
These options are mapped into validate_* methods of the Ecto.Changeset.

 Examples

param :title, :string, required: true, length: [min: 3, max: 255]
param :body, :string, required: true, length: [min: 3]

 validate_with(function, opts \\ [])

 (macro)

EctoCommand.Middleware behaviour

Middleware provides an extension point to add functions that you want to be
called for every command execution
Implement the EctoCommand.Middleware behaviour in your module and define the
before_execution/2, after_execution/2, after_failure/2 and invalid/2 callback functions.

 Example middleware

defmodule SampleMiddleware do
 @behaviour EctoCommand.Middleware

 @impl true
 def before_execution(pipeline, _opts) do
 pipeline
 |> Pipeline.assign(:some_data, :some_value)
 |> Pipeline.update!(:command, fn command -> %{command | name: "updated-name"} end)
 end

 @impl true
 def after_execution(pipeline, _opts) do
 Logger.debug("Command executed successfully", command: pipeline.command, result: Pipeline.response(pipeline))

 pipeline
 end

 @impl true
 def after_failure(pipeline, _opts) do
 Logger.error("Command execution fails", command: pipeline.command, error: Pipeline.response(pipeline))

 pipeline
 end

 @impl true
 def invalid(pipeline, _opts) do
 Logger.error("invalid params received", params: pipeline.params, error: Pipeline.response(pipeline))

 pipeline
 end
end

 Summary

 Types

 pipeline()

 Callbacks

 after_execution(pipeline, opts)

 Is executed following a sucessful command execution. In this function, if you'd like, you could alter the returned value.

 after_failure(pipeline, opts)

 Is executed after a failed command execution. In this function you could, if you wish, also update the returned value.

 before_execution(pipeline, opts)

 Is executed before command execution, and only if the command is valid. In this function, if you'd like, you might update the command that will be executed.

 invalid(pipeline, opts)

 Is executed when the command's inputs are invalid.

 Types

 pipeline()

 @type pipeline() :: %EctoCommand.Middleware.Pipeline{
 assigns: term(),
 command: term(),
 error: term(),
 halted: term(),
 handler: term(),
 metadata: term(),
 middlewares: term(),
 params: term(),
 response: term()
}

 Callbacks

 after_execution(pipeline, opts)

 @callback after_execution(pipeline :: pipeline(), opts :: Keyword.t()) :: pipeline()

Is executed following a sucessful command execution. In this function, if you'd like, you could alter the returned value.

 Example

@impl true
def after_execution(pipeline, _opts) do
 Logger.debug("Command executed successfully", command: pipeline.command, result: Pipeline.response(pipeline))

 pipeline
end

 after_failure(pipeline, opts)

 @callback after_failure(pipeline :: pipeline(), opts :: Keyword.t()) :: pipeline()

Is executed after a failed command execution. In this function you could, if you wish, also update the returned value.

 Example

@impl true
def after_failure(pipeline, _opts) do
 Logger.error("Command execution fails", command: pipeline.command, error: Pipeline.response(pipeline))

 pipeline
end

 before_execution(pipeline, opts)

 @callback before_execution(pipeline :: pipeline(), opts :: Keyword.t()) :: pipeline()

Is executed before command execution, and only if the command is valid. In this function, if you'd like, you might update the command that will be executed.

 Example

@impl true
def before_execution(pipeline, _opts) do
 pipeline
 |> Pipeline.assign(:some_data, :some_value)
 |> Pipeline.update!(:command, fn command -> %{command | name: "updated-name"} end)
end

 invalid(pipeline, opts)

 @callback invalid(pipeline :: pipeline(), opts :: Keyword.t()) :: pipeline()

Is executed when the command's inputs are invalid.

 Example

@impl true
def invalid(pipeline, _opts) do
 Logger.error("invalid params received", params: pipeline.params, error: Pipeline.response(pipeline))

 pipeline
end

EctoCommand.Middleware.Pipeline

Pipeline is a struct used as an argument in the callback functions of modules
implementing the EctoCommand.Middleware behaviour.
This struct must be returned by each function to be used in the next
middleware based on the configured middleware chain.

 Pipeline fields

	assigns - shared user data as a map.

	command_uuid - UUID assigned to the command being executed.

	command - command struct being executed.

	params - raw params received to instantiate the command

	metadata - additional metadata, they could be used to fill internal command fields

	halted - flag indicating whether the pipeline was halted.

	handler - handler module where the "execute/1" function resides

	middlewares - the list of middlewares to be executed

	response - sets the response to send back to the caller.

	error - sets the error to send back to the caller.

 Summary

 Types

 t()

 Functions

 assign(pipeline, key, value)

 Puts the key with value equal to value into assigns map.

 chain(pipeline, stage, middleware)

 Executes the middleware chain.

 error(pipeline, error)

 Sets the error

 execute(pipeline)

 Executes the function 'execute/1' in the handler module, pass the command to it.
Halt the pipeline if command or handler are not set

 halt(pipeline)

 Halts the pipeline by preventing further middleware downstream from being invoked.

 halt(pipeline, response)

 Halts the pipeline by preventing further middleware downstream from being invoked.

 halted?(pipeline)

 Has the pipeline been halted?

 respond(pipeline, response)

 Sets the response to be returned to the dispatch caller

 response(pipeline)

 Extract the response from the pipeline, return the error if it is set
return the stored response otherwise
return nil if no response is set

 set(pipeline, key, value)

 Set the key with value

 update!(pipeline, key, function)

 Update the key with function function that receive the key value.

 Types

 t()

 @type t() :: %EctoCommand.Middleware.Pipeline{
 assigns: map(),
 command: struct() | nil,
 error: any() | nil,
 halted: boolean(),
 handler: atom(),
 metadata: map(),
 middlewares: [tuple()],
 params: map(),
 response: any() | nil
}

 Functions

 assign(pipeline, key, value)

Puts the key with value equal to value into assigns map.

 Examples

iex> pipeline = assign(%Pipeline{}, :foo, :bar)
iex> pipeline.assigns
%{foo: :bar}

 chain(pipeline, stage, middleware)

Executes the middleware chain.

 error(pipeline, error)

Sets the error

 Examples

iex> pipeline = %Pipeline{}
iex> pipeline = Pipeline.error(pipeline, "an_error")
iex> Pipeline.response(pipeline)
{:error, "an_error"}

 execute(pipeline)

Executes the function 'execute/1' in the handler module, pass the command to it.
Halt the pipeline if command or handler are not set

 Examples

iex> %Pipeline{halted: true} = Pipeline.execute(%Pipeline{halted: true})
iex> %Pipeline{response: {:error, "command was not initialized"}} = Pipeline.execute(%Pipeline{handler: Pipeline})
iex> %Pipeline{response: {:error, "handler was not set"}} = Pipeline.execute(%Pipeline{command: %{}})
iex> %Pipeline{response: {:ok, :result}} = Pipeline.execute(%Pipeline{handler: SampleCommand, command: %SampleCommand{}})

 halt(pipeline)

Halts the pipeline by preventing further middleware downstream from being invoked.
Prevents execution of the command if halt occurs in a before_execution callback.

 Examples

iex> pipeline = %Pipeline{}
iex> pipeline = halt(pipeline)
iex> halted?(pipeline)
true

 halt(pipeline, response)

Halts the pipeline by preventing further middleware downstream from being invoked.
Prevents execution of the command if halt occurs in a before_execution callback.
Similar to halt/1 but allows a response to be returned to the caller.

 Examples

iex> pipeline = %Pipeline{}
iex> pipeline = halt(pipeline, {:error, "halted"})
iex> response(pipeline)
{:error, "halted"}
iex> halted?(pipeline)
true

 halted?(pipeline)

Has the pipeline been halted?

 Examples

iex> true = halted?(%Pipeline{halted: true})
iex> false = halted?(%Pipeline{halted: false})

 respond(pipeline, response)

Sets the response to be returned to the dispatch caller

 Examples

iex> pipeline = %Pipeline{}
iex> pipeline = Pipeline.respond(pipeline, {:error, "halted"})
iex> Pipeline.response(pipeline)
{:error, "halted"}

 response(pipeline)

Extract the response from the pipeline, return the error if it is set
return the stored response otherwise
return nil if no response is set

 Examples

iex> pipeline = %Pipeline{}
iex> pipeline = Pipeline.error(pipeline, "halted")
iex> Pipeline.response(pipeline)
{:error, "halted"}

 set(pipeline, key, value)

Set the key with value

 Examples

iex> pipeline = set(%Pipeline{}, :command, :my_command)
iex> pipeline.command
:my_command

 update!(pipeline, key, function)

Update the key with function function that receive the key value.

 Examples

iex> pipeline = %Pipeline{command: %{name: "original"}}
iex> pipeline = update!(pipeline, :command, fn command -> %{command | name: "updated"} end)
iex> pipeline.command
%{name: "updated"}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

