

 EctoLibSql

 v0.9.0

 Table of contents

 	EctoLibSql

 	Changelog

 	ecto_libsql - Comprehensive Developer Guide (Application Usage)

 	Migrating to LibSqlEx Ecto Adapter

 	Security

 	
 Modules

 	EctoLibSql.JSON

 	EctoLibSql.Pragma

 	Core Modules

 	EctoLibSql

 	EctoLibSql.Native

 	Support Modules

 	EctoLibSql.Error

 	EctoLibSql.Query

 	EctoLibSql.Result

 	EctoLibSql.State

 	Ecto Integration

 	Ecto.Adapters.LibSql

 	Ecto.Adapters.LibSql.Connection

EctoLibSql.JSON

Helper functions for working with JSON and JSONB data in SQLite.
libSQL 3.45.1 has comprehensive JSON1 extension built into the core with support for:
	JSON and JSONB (binary format) types
	Full suite of JSON functions: json_extract, json_type, json_array, json_object, json_each, json_tree
	MySQL/PostgreSQL compatible -> and ->> operators
	JSONB binary format for 5-10% smaller storage and faster processing

JSON Functions
All JSON functions work with both text JSON and JSONB binary format. The functions
accept either format and automatically convert as needed.
Core Functions
	json_extract(json, path) - Extract value at path
	json_type(json, path) - Get type of value at path (null, true, false, integer, real, text, array, object)
	json_array(...args) - Create JSON array from arguments
	json_object(...pairs) - Create JSON object from key-value pairs
	json_each(json, path) - Iterate over array/object members
	json_tree(json, path) - Recursively iterate over all values
	json_valid(json) - Check if JSON is valid
	json(json) - Convert text to canonical JSON representation
	jsonb(json) - Convert to binary JSONB format

Operators
	json -> 'path' - Extract as JSON (always returns JSON or NULL)
	json ->> 'path' - Extract as text/SQL type (auto-converts)
	json -> 'key' - PostgreSQL-style shorthand for object keys
	json -> 2 - PostgreSQL-style shorthand for array indices

Usage with Ecto
JSON functions work naturally in Ecto queries via fragments:
from u in User,
 where: json_extract(u.settings, "$.theme") == "dark",
 select: {u.id, u.settings -> "theme"}
Or use the helpers in this module:
from u in User,
 where: fragment("json_extract(?, ?) = ?", u.settings, "$.theme", "dark"),
 select: {u.id, json_extract(u.settings, "$.theme")}
JSONB Binary Format
JSONB is an efficient binary encoding of JSON with these benefits:
	5-10% smaller file size than text JSON
	Faster processing (less than half the CPU cycles)
	Backwards compatible: all JSON functions accept both text and JSONB
	Transparent format conversion

Store as JSONB:
{ok, _} = Repo.query("INSERT INTO users (data) VALUES (jsonb(?))", [json_string])
Retrieve and auto-convert:
{:ok, result} = Repo.query("SELECT json(data) FROM users")
Examples
Extract nested value
{:ok, theme} = EctoLibSql.JSON.extract(state, data, "$.user.preferences.theme")

Create JSON object
{:ok, obj} = EctoLibSql.JSON.object(state, ["name", "Alice", "age", 30])

Validate JSON
{:ok, valid?} = EctoLibSql.JSON.is_valid(state, json_string)

Iterate over array elements
{:ok, items} = EctoLibSql.JSON.each(state, array_json)

 Summary

 Functions

 array(state, values)

 Create a JSON array from a list of values.

 arrow_fragment(json_column, path, operator \\ :arrow)

 Helper to create SQL fragments for Ecto queries using JSON operators.

 convert(state, json, format \\ :json)

 Convert text JSON to canonical form, optionally returning JSONB binary format.

 depth(state, json)

 Get the depth of a JSON structure.

 each(state, json, path \\ "$")

 Iterate over elements of a JSON array or object members.

 extract(state, json, path)

 Extract a value from JSON at the specified path.

 insert(state, json, path, value)

 Insert a value into JSON at a specific path.

 is_valid(state, json)

 Check if a string is valid JSON.

 json_length(state, json, path \\ "$")

 Get the length of a JSON array or number of keys in JSON object.

 json_quote(state, value)

 Quote a value for use in JSON.

 keys(state, json, path \\ "$")

 Get all keys from a JSON object.

 object(state, pairs)

 Create a JSON object from a list of key-value pairs.

 patch(state, json, patch_json)

 Apply a JSON Merge Patch to modify JSON (RFC 7396).

 remove(state, json, paths)

 Remove one or more elements from JSON.

 replace(state, json, path, value)

 Replace a value in JSON at a specific path (if it exists).

 set(state, json, path, value)

 Set a value in JSON at a specific path.

 tree(state, json, path \\ "$")

 Recursively iterate over all values in a JSON structure.

 type(state, json, path \\ "$")

 Get the type of a value in JSON at the specified path.

 Functions

 array(state, values)

 @spec array(EctoLibSql.State.t(), list()) :: {:ok, String.t()} | {:error, term()}

Create a JSON array from a list of values.
Each value will be inserted as-is, with strings becoming JSON text,
numbers becoming JSON numbers, nil becoming null, etc.
Parameters
	state: Connection state
	values: List of values to include in the array

Returns
	{:ok, json_array} - JSON text representation of the array
	{:error, reason} on failure

Examples
{:ok, array} = EctoLibSql.JSON.array(state, [1, 2.5, "hello", nil])
Returns: {:ok, "[1,2.5,"hello",null]"}

To nest JSON objects, pass them as json_object results
{:ok, obj} = EctoLibSql.JSON.object(state, ["name", "Alice"])
{:ok, array} = EctoLibSql.JSON.array(state, [obj, 42])

 arrow_fragment(json_column, path, operator \\ :arrow)

 @spec arrow_fragment(String.t(), String.t() | integer(), :arrow | :double_arrow) ::
 String.t()

Helper to create SQL fragments for Ecto queries using JSON operators.
The -> and ->> operators are more concise in SQL than json_extract() calls.
Parameters
	json_column: Column name or fragment
	path: JSON path (string or integer)
	operator: :arrow for "->" (returns JSON) or :double_arrow for "->>" (returns SQL type)

Returns
	String for use in Ecto.Query.fragment/1

Examples
import Ecto.Query

Using arrow operator (returns JSON)
from u in User,
 where: fragment(EctoLibSql.JSON.arrow_fragment("settings", "theme"), "!=", "null"),
 select: u

Using double-arrow operator (returns text/SQL type)
from u in User,
 where: fragment(EctoLibSql.JSON.arrow_fragment("settings", "theme", :double_arrow), "=", "dark")
Operators
	-> - Returns JSON value or NULL
	->> - Converts to SQL type (text, integer, real, or NULL)

Both operators support abbreviated syntax for object keys and array indices:
	json -> 'key' equivalent to json_extract(json, '$.key')
	json -> 0 equivalent to json_extract(json, '$[0]')

 convert(state, json, format \\ :json)

 @spec convert(EctoLibSql.State.t(), String.t(), :json | :jsonb) ::
 {:ok, String.t() | binary()} | {:error, term()}

Convert text JSON to canonical form, optionally returning JSONB binary format.
Use json() to normalize and validate JSON text.
Use jsonb() to convert to binary format for more efficient storage/processing.
Parameters
	state: Connection state
	json: JSON text string
	format: :json for text format (default) or :jsonb for binary format

Returns
	{:ok, json} - Canonical JSON text (if format: :json)
	{:ok, jsonb} - Binary JSONB blob (if format: :jsonb)
	{:error, reason} on failure

Examples
Normalize JSON text
{:ok, canonical} = EctoLibSql.JSON.convert(state, ~s({"a":1}), :json)
Returns: {:ok, "{"a":1}"}

Convert to binary format
{:ok, binary} = EctoLibSql.JSON.convert(state, ~s({"a":1}), :jsonb)
Returns: {:ok, <<binary_data>>}
Benefits of JSONB
	5-10% smaller file size
	Less than half the processing time
	Backwards compatible: all JSON functions accept JSONB
	Automatic format conversion between text and binary

 depth(state, json)

 @spec depth(EctoLibSql.State.t(), String.t() | binary()) ::
 {:ok, pos_integer()} | {:error, term()}

Get the depth of a JSON structure.
Returns the maximum depth of nesting. Scalars have depth 1, empty arrays/objects have depth 1,
nested structures return greater depths.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data

Returns
	{:ok, depth} - Maximum nesting depth
	{:error, reason} on failure

Examples
{:ok, depth} = EctoLibSql.JSON.depth(state, ~s(1))
Returns: {:ok, 1}

{:ok, depth} = EctoLibSql.JSON.depth(state, ~s([1,2,3]))
Returns: {:ok, 2}

{:ok, depth} = EctoLibSql.JSON.depth(state, ~s({"a":{"b":1}}))
Returns: {:ok, 3}

 each(state, json, path \\ "$")

 @spec each(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, [{String.t() | non_neg_integer(), term(), String.t()}]}
 | {:error, term()}

Iterate over elements of a JSON array or object members.
For arrays: Returns one row per array element with keys, values, and types.
For objects: Returns one row per key-value pair.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (optional, defaults to "$")

Returns
	{:ok, [{key, value, type}]} - List of members with metadata
	{:error, reason} on failure

Examples
{:ok, items} = EctoLibSql.JSON.each(state, ~s([1,2,3]), "$")
Returns: {:ok, [{0, 1, "integer"}, {1, 2, "integer"}, {2, 3, "integer"}]}

{:ok, items} = EctoLibSql.JSON.each(state, ~s({"a":1,"b":2}), "$")
Returns: {:ok, [{"a", 1, "integer"}, {"b", 2, "integer"}]}
Notes
This function requires the virtual table extension (json_each).
Use in Ecto queries via fragments if the adapter doesn't support virtual tables.

 extract(state, json, path)

 @spec extract(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, String.t() | integer() | float() | nil} | {:error, term()}

Extract a value from JSON at the specified path.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (e.g., "$.key" or "$[0]" or "$.nested.path")

Returns
The return type depends on the extracted JSON value:
	{:ok, string} - For JSON text values (e.g., "dark")
	{:ok, integer} - For JSON integer values (e.g., 30)
	{:ok, float} - For JSON real/float values (e.g., 99.99)
	{:ok, nil} - For JSON null values or non-existent paths
	{:ok, json_text} - For JSON objects/arrays, returned as JSON text string
	{:error, reason} - On query failure

Examples
{:ok, theme} = EctoLibSql.JSON.extract(state, ~s({"theme":"dark"}), "$.theme")
Returns: {:ok, "dark"}

{:ok, age} = EctoLibSql.JSON.extract(state, ~s({"user":{"age":30}}), "$.user.age")
Returns: {:ok, 30}

{:ok, items} = EctoLibSql.JSON.extract(state, ~s({"items":[1,2,3]}), "$.items")
Returns: {:ok, "[1,2,3]"} (JSON array as text)

{:ok, nil} = EctoLibSql.JSON.extract(state, ~s({"a":1}), "$.missing")
Returns: {:ok, nil} (path doesn't exist)
Notes
	JSON objects and arrays are returned as JSON text strings
	Use -> operator in SQL queries to preserve JSON structure, or->> operator to convert to SQL types
	Works with both text JSON and JSONB binary format (format conversion is automatic)
	For nested JSON structures, you can chain extractions or use JSON paths like "$.user.address.city"

 insert(state, json, path, value)

 @spec insert(EctoLibSql.State.t(), String.t() | binary(), String.t(), term()) ::
 {:ok, String.t()} | {:error, term()}

Insert a value into JSON at a specific path.
Adds a value without replacing existing content. For arrays, inserts before the specified index.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path where to insert
	value: Value to insert

Returns
	{:ok, modified_json} - JSON with inserted value
	{:error, reason} on failure

Examples
{:ok, json} = EctoLibSql.JSON.insert(state, ~s([1,3,4]), "$[1]", 2)
Returns: {:ok, "[1,2,3,4]"}

{:ok, json} = EctoLibSql.JSON.insert(state, ~s({"a":1}), "$.b", 2)
Returns: {:ok, "{"a":1,"b":2}"}

 is_valid(state, json)

 @spec is_valid(EctoLibSql.State.t(), String.t()) ::
 {:ok, boolean()} | {:error, term()}

Check if a string is valid JSON.
Parameters
	state: Connection state
	json: String to validate as JSON

Returns
	{:ok, true} if valid JSON
	{:ok, false} if not valid JSON
	{:error, reason} on failure

Examples
{:ok, true} = EctoLibSql.JSON.is_valid(state, ~s({"valid":true}))
{:ok, false} = EctoLibSql.JSON.is_valid(state, "not json")

 json_length(state, json, path \\ "$")

 @spec json_length(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, non_neg_integer() | nil} | {:error, term()}

Get the length of a JSON array or number of keys in JSON object.
Named json_length/2,3 to avoid shadowing Elixir's Kernel.length/1.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (optional, defaults to "$")

Returns
	{:ok, length} - Number of elements/keys
	{:ok, nil} - For non-array/object values
	{:error, reason} on failure

Examples
{:ok, len} = EctoLibSql.JSON.json_length(state, ~s([1,2,3]))
Returns: {:ok, 3}

{:ok, len} = EctoLibSql.JSON.json_length(state, ~s({"a":1,"b":2}))
Returns: {:ok, 2}

 json_quote(state, value)

 @spec json_quote(EctoLibSql.State.t(), term()) :: {:ok, String.t()} | {:error, term()}

Quote a value for use in JSON.
Converts SQL values to properly escaped JSON string representation.
Useful for building JSON values dynamically.
Named json_quote/2 to avoid shadowing Elixir's Kernel.quote/2 macro.
Parameters
	state: Connection state
	value: Value to quote (string, number, nil, etc.)

Returns
	{:ok, json_string} - Properly quoted JSON string
	{:error, reason} on failure

Examples
{:ok, quoted} = EctoLibSql.JSON.json_quote(state, "hello "world"")
Returns: {:ok, ""hello \"world\"""}

{:ok, quoted} = EctoLibSql.JSON.json_quote(state, "test")
Returns: {:ok, ""test""}

 keys(state, json, path \\ "$")

 @spec keys(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, String.t() | nil} | {:error, term()}

Get all keys from a JSON object.
Returns NULL if the JSON is not an object.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (optional, defaults to "$")

Returns
	{:ok, keys} - JSON array of keys
	{:ok, nil} - If not an object
	{:error, reason} on failure

Examples
{:ok, keys} = EctoLibSql.JSON.keys(state, ~s({"name":"Alice","age":30}))
Returns: {:ok, "["age","name"]"} (sorted)

 object(state, pairs)

 @spec object(EctoLibSql.State.t(), list()) :: {:ok, String.t()} | {:error, term()}

Create a JSON object from a list of key-value pairs.
Arguments must alternate between string keys and values. Values can be
of any type (strings, numbers, nil/null, nested objects/arrays, etc.).
Parameters
	state: Connection state
	pairs: List of alternating [key1, value1, key2, value2, ...]

Returns
	{:ok, json_object} - JSON text representation of the object
	{:error, reason} on failure

Examples
{:ok, obj} = EctoLibSql.JSON.object(state, ["name", "Alice", "age", 30])
Returns: {:ok, "{"name":"Alice","age":30}"}

Keys must be strings, values can be any type
{:ok, obj} = EctoLibSql.JSON.object(state, [
 "id", 1,
 "active", true,
 "balance", 99.99,
 "tags", nil
])
Errors
Returns {:error, reason} if:
	Number of arguments is not even
	Any key is not a string

 patch(state, json, patch_json)

 @spec patch(EctoLibSql.State.t(), String.t() | binary(), String.t() | binary()) ::
 {:ok, String.t()} | {:error, term()}

Apply a JSON Merge Patch to modify JSON (RFC 7396).
Implements RFC 7396 JSON Merge Patch semantics. The patch is a JSON object where:
	Top-level keys are object keys in the target, not JSON paths
	Values replace the corresponding object values in the target
	Nested objects are merged recursively
	null values remove the key from the target object

To update nested structures, the patch object must reflect the nesting level.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data (must be an object)
	patch: JSON object with merge patch semantics (keys are object keys, not paths)

Returns
	{:ok, modified_json} - JSON after applying merge patch
	{:error, reason} on failure

Examples
Top-level key replacement
{:ok, json} = EctoLibSql.JSON.patch(state, ~s({"a":1,"b":2}), ~s({"a":10}))
Returns: {:ok, "{"a":10,"b":2}"}

Add new top-level key
{:ok, json} = EctoLibSql.JSON.patch(state, ~s({"a":1,"b":2}), ~s({"c":3}))
Returns: {:ok, "{"a":1,"b":2,"c":3}"}

Remove key with null
{:ok, json} = EctoLibSql.JSON.patch(state, ~s({"a":1,"b":2,"c":3}), ~s({"b":null}))
Returns: {:ok, "{"a":1,"c":3}"}

Nested object merge (replaces entire nested object)
{:ok, json} = EctoLibSql.JSON.patch(state, ~s({"user":{"name":"Alice","age":30}}), ~s({"user":{"age":31}}))
Returns: {:ok, "{"user":{"age":31}}"} (replaces entire user object, not a deep merge)
Notes
	This implements RFC 7396 JSON Merge Patch, NOT RFC 6902 JSON Patch
	Object keys in the patch are literal keys, not JSON paths (use "a" not "$.a")
	For nested structures, the patch replaces the entire value at that key (not a deep recursive merge)
	To perform deep merges or path-based updates, use json_set/4 or json_replace/4 instead
	Works with both text JSON and JSONB binary format

 remove(state, json, paths)

 @spec remove(EctoLibSql.State.t(), String.t() | binary(), String.t() | [String.t()]) ::
 {:ok, String.t()} | {:error, term()}

Remove one or more elements from JSON.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	paths: Single path string or list of path strings to remove

Returns
	{:ok, modified_json} - JSON with specified paths removed
	{:error, reason} on failure

Examples
{:ok, json} = EctoLibSql.JSON.remove(state, ~s({"a":1,"b":2,"c":3}), "$.b")
Returns: {:ok, "{"a":1,"c":3}"}

{:ok, json} = EctoLibSql.JSON.remove(state, ~s([1,2,3,4,5]), ["$[0]", "$[2]"])
Returns: {:ok, "[2,3,5]"}
Note: Paths are removed in order; after removing $[0], the original $[2] is now at $[1]

 replace(state, json, path, value)

 @spec replace(EctoLibSql.State.t(), String.t() | binary(), String.t(), term()) ::
 {:ok, String.t()} | {:error, term()}

Replace a value in JSON at a specific path (if it exists).
Unlike set/4, replace only modifies existing paths. Non-existent paths are ignored.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path to replace
	value: New value

Returns
	{:ok, modified_json} - JSON with replaced value
	{:error, reason} on failure

Examples
{:ok, json} = EctoLibSql.JSON.replace(state, ~s({"a":1,"b":2}), "$.a", 10)
Returns: {:ok, "{"a":10,"b":2}"}

Non-existent path is ignored
{:ok, json} = EctoLibSql.JSON.replace(state, ~s({"a":1}), "$.z", 99)
Returns: {:ok, "{"a":1}"}

 set(state, json, path, value)

 @spec set(EctoLibSql.State.t(), String.t() | binary(), String.t(), term()) ::
 {:ok, String.t()} | {:error, term()}

Set a value in JSON at a specific path.
If the path does not exist, it is created. If the path exists, it is replaced.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path where to set the value
	value: Value to set at the path

Returns
	{:ok, modified_json} - JSON with updated value
	{:error, reason} on failure

Examples
{:ok, json} = EctoLibSql.JSON.set(state, ~s({"a":1}), "$.b", 2)
Returns: {:ok, "{"a":1,"b":2}"}

{:ok, json} = EctoLibSql.JSON.set(state, ~s({"user":"Alice"}), "$.active", true)
Returns: {:ok, "{"user":"Alice","active":true}"}

 tree(state, json, path \\ "$")

 @spec tree(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, [{String.t(), term(), String.t()}]} | {:error, term()}

Recursively iterate over all values in a JSON structure.
Returns all values at all levels of nesting with their paths and types.
Useful for flattening JSON or finding all values matching criteria.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (optional, defaults to "$")

Returns
	{:ok, [{full_key, atom, type}]} - List of all values with paths
	{:error, reason} on failure

Examples
{:ok, tree} = EctoLibSql.JSON.tree(state, ~s({"a":{"b":1},"c":[2,3]}), "$")
Returns complete tree of all values with their full paths
Notes
This function requires the virtual table extension (json_tree).
Returns more detailed information than json_each (includes all nested values).

 type(state, json, path \\ "$")

 @spec type(EctoLibSql.State.t(), String.t() | binary(), String.t()) ::
 {:ok, String.t()} | {:error, term()}

Get the type of a value in JSON at the specified path.
Parameters
	state: Connection state
	json: JSON text or JSONB binary data
	path: JSON path expression (optional, defaults to "$" for root)

Returns
	{:ok, type} - One of: null, true, false, integer, real, text, array, object
	{:error, reason} on failure

Examples
{:ok, type} = EctoLibSql.JSON.type(state, ~s([1,2,3]), "$")
Returns: {:ok, "array"}

{:ok, type} = EctoLibSql.JSON.type(state, ~s({"name":"Alice"}), "$.name")
Returns: {:ok, "text"}

EctoLibSql.Pragma

Helper functions for executing SQLite PRAGMA statements.
PRAGMA statements are SQLite's configuration mechanism. This module provides
convenient wrapper functions for common PRAGMA operations.
Common Use Cases
	Enable foreign key constraints
	Set journal mode (WAL for better concurrency)
	Configure synchronisation level
	Query database configuration

Examples
Enable foreign keys
{:ok, state} = EctoLibSql.connect(database: "app.db")
:ok = EctoLibSql.Pragma.enable_foreign_keys(state)

Set WAL mode
{:ok, _result} = EctoLibSql.Pragma.set_journal_mode(state, :wal)

Check current foreign keys setting
{:ok, result} = EctoLibSql.Pragma.foreign_keys(state)
result.rows => [[1]] if enabled, [[0]] if disabled
Integration with Ecto
PRAGMA statements are often executed during repository initialisation:
In your Repo module
def init(_type, config) do
 {:ok, Keyword.put(config, :after_connect, &set_pragmas/1)}
end

defp set_pragmas(conn) do
 with {:ok, state} <- DBConnection.get_connection_state(conn),
 :ok <- EctoLibSql.Pragma.enable_foreign_keys(state),
 {:ok, _} <- EctoLibSql.Pragma.set_journal_mode(state, :wal) do
 :ok
 end
end

 Summary

 Functions

 disable_foreign_keys(state)

 Disable foreign key constraints.

 enable_foreign_keys(state)

 Enable foreign key constraints.

 foreign_keys(state)

 Query the current foreign keys setting.

 journal_mode(state)

 Query the current journal mode.

 query(state, pragma_stmt)

 Execute a raw PRAGMA statement.

 set_journal_mode(state, mode)

 Set the journal mode.

 set_synchronous(state, level)

 Set the synchronous mode.

 set_user_version(state, version)

 Set the user version number.

 synchronous(state)

 Query the current synchronous setting.

 table_info(state, table_name)

 Get information about a table's columns.

 table_list(state)

 List all tables in the database.

 user_version(state)

 Get the user version number.

 Functions

 disable_foreign_keys(state)

Disable foreign key constraints.
Parameters
	state: Connection state

Returns
	:ok on success
	{:error, reason} on failure

Examples
:ok = EctoLibSql.Pragma.disable_foreign_keys(state)

 enable_foreign_keys(state)

 @spec enable_foreign_keys(EctoLibSql.State.t()) :: :ok | {:error, term()}

Enable foreign key constraints.
By default, SQLite does not enforce foreign key constraints. This function
enables them for the current connection.
Parameters
	state: Connection state

Returns
	:ok on success
	{:error, reason} on failure

Examples
:ok = EctoLibSql.Pragma.enable_foreign_keys(state)
Notes
This setting is per-connection and must be set each time you connect.
Consider setting it in your Repo's after_connect callback.

 foreign_keys(state)

Query the current foreign keys setting.
Parameters
	state: Connection state

Returns
	{:ok, result} where result.rows is [[1]] if enabled, [[0]] if disabled
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.foreign_keys(state)
enabled? = result.rows == [[1]]

 journal_mode(state)

Query the current journal mode.
Parameters
	state: Connection state

Returns
	{:ok, result} where result.rows contains the current mode
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.journal_mode(state)
result.rows => [["wal"]] or [["delete"]], etc.

 query(state, pragma_stmt)

 @spec query(EctoLibSql.State.t(), String.t()) ::
 {:ok, EctoLibSql.Result.t()} | {:error, term()}

Execute a raw PRAGMA statement.
This is the low-level function that all other PRAGMA helpers use.
Parameters
	state: Connection state
	pragma_stmt: The complete PRAGMA statement (e.g., "PRAGMA foreign_keys = ON")

Returns
	{:ok, result} with query result
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.query(state, "PRAGMA foreign_keys = ON")
{:ok, result} = EctoLibSql.Pragma.query(state, "PRAGMA table_info(users)")

 set_journal_mode(state, mode)

Set the journal mode.
SQLite supports several journal modes:
	:delete - Default mode, deletes journal file after transaction
	:wal - Write-Ahead Logging, better for concurrent access
	:memory - Keep journal in memory
	:persist - Keep journal file but zero it out
	:truncate - Truncate journal file instead of deleting
	:off - No journal (dangerous, not recommended)

Parameters
	state: Connection state
	mode: One of :delete, :wal, :memory, :persist, :truncate, :off

Returns
	{:ok, result} with the new journal mode
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.set_journal_mode(state, :wal)
result.rows => [["wal"]]
Recommendations
For applications with concurrent reads/writes, use :wal mode:
EctoLibSql.Pragma.set_journal_mode(state, :wal)

 set_synchronous(state, level)

Set the synchronous mode.
Controls how often SQLite syncs data to disk:
	:off (0) - No syncing (fastest, risk of corruption)
	:normal (1) - Sync at critical moments (good balance)
	:full (2) - Sync after every write (safest, slowest)
	:extra (3) - Even more syncing than FULL

Parameters
	state: Connection state
	level: One of :off, :normal, :full, :extra, or integer 0-3

Returns
	{:ok, result} on success
	{:error, reason} on failure

Examples
{:ok, _} = EctoLibSql.Pragma.set_synchronous(state, :normal)
Recommendations
	Production: :normal or :full (with WAL mode, :normal is usually sufficient)
	Development: :normal
	Never use :off in production

 set_user_version(state, version)

Set the user version number.
Parameters
	state: Connection state
	version: Integer version number

Returns
	{:ok, result} on success
	{:error, reason} on failure

Examples
{:ok, _} = EctoLibSql.Pragma.set_user_version(state, 42)

 synchronous(state)

Query the current synchronous setting.
Parameters
	state: Connection state

Returns
	{:ok, result} where result.rows contains the current level (0-3)
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.synchronous(state)
result.rows => [[2]] for FULL, [[1]] for NORMAL, etc.

 table_info(state, table_name)

Get information about a table's columns.
This is useful for introspection and debugging.
Parameters
	state: Connection state
	table_name: Name of the table (string or atom)

Returns
	{:ok, result} with column information
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.table_info(state, :users)
result.rows => [
[0, "id", "INTEGER", 0, nil, 1],
[1, "name", "TEXT", 1, nil, 0],
...
]
Each row contains: [cid, name, type, notnull, dflt_value, pk]

 table_list(state)

List all tables in the database.
Parameters
	state: Connection state

Returns
	{:ok, result} with table names
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.table_list(state)
result.rows => [["users"], ["posts"], ...]

 user_version(state)

Get the user version number.
SQLite databases can store a user version number (typically used for schema versioning).
Parameters
	state: Connection state

Returns
	{:ok, result} where result.rows contains the version number
	{:error, reason} on failure

Examples
{:ok, result} = EctoLibSql.Pragma.user_version(state)
result.rows => [[42]]

EctoLibSql

DBConnection implementation for LibSQL and Turso databases.
This module provides the core database connection functionality for LibSQL/Turso,
implementing the DBConnection behaviour. It supports three connection modes:
	Local: SQLite files on the local filesystem
	Remote: Direct connections to Turso cloud databases
	Remote Replica: Local SQLite files that sync with remote Turso databases

Features
	Connection management via Rust NIFs for high performance
	Full transaction support with multiple isolation levels
	Query execution in both transactional and non-transactional contexts
	Cursor support for streaming large result sets
	Prepared statement caching
	Batch operations (transactional and non-transactional)
	Vector similarity search
	Database encryption

Connection Options
	:database - Path to local SQLite database file
	:uri - Remote LibSQL server URI (e.g., "libsql://your-db.turso.io")
	:auth_token - Authentication token for remote connections
	:sync - Enable automatic sync for embedded replicas (boolean)
	:encryption_key - Encryption key for local database (min 32 characters)

Examples
Local database
{:ok, conn} = DBConnection.start_link(EctoLibSql, database: "local.db")

Remote Turso database
{:ok, conn} = DBConnection.start_link(EctoLibSql,
 uri: "libsql://your-db.turso.io",
 auth_token: "your-token"
)

Embedded replica (local + remote sync)
{:ok, conn} = DBConnection.start_link(EctoLibSql,
 database: "local.db",
 uri: "libsql://your-db.turso.io",
 auth_token: "your-token",
 sync: true
)

 Summary

 Functions

 checkout(state)

 Checks out a connection from the pool by verifying it's still alive.

 connect(opts)

 Opens a connection to LibSQL using the native Rust layer.

 disconnect(opts, state)

 Disconnects from the database by closing the underlying native connection.

 handle_begin(opts, state)

 Begins a new database transaction.

 handle_close(query, opts, state)

 Closes the query. Currently a no-op as queries are stateless.

 handle_commit(opts, state)

 Commits the current transaction.

 handle_deallocate(query, cursor, opts, state)

 Deallocates a cursor, freeing its resources.

 handle_declare(query, params, opts, state)

 Declares a cursor for streaming query results.

 handle_execute(query, args, opts, state)

 Executes an SQL query, delegating to transactional or non-transactional logic
depending on the connection state.

 handle_fetch(query, cursor, opts, state)

 Fetches the next batch of rows from a cursor.

 handle_prepare(query, opts, state)

 Prepares a query for execution. Returns the query unchanged as preparation
is handled during execution.

 handle_rollback(opts, state)

 Rolls back the current transaction.

 handle_status(opts, state)

 Checks the current transaction status.

 ping(state)

 Pings the current connection to ensure it is still alive.

 Functions

 checkout(state)

Checks out a connection from the pool by verifying it's still alive.

 connect(opts)

 @spec connect(Keyword.t()) :: {:ok, EctoLibSql.State.t()} | {:error, term()}

Opens a connection to LibSQL using the native Rust layer.
Returns {:ok, state} on success or {:error, reason} on failure.
Automatically uses remote replica if the opts provided database, uri, and auth token.
Options
	:database - Path to local SQLite database file
	:uri - Remote LibSQL server URI (e.g., "libsql://your-db.turso.io")
	:auth_token - Authentication token for remote connections
	:sync - Enable automatic sync for embedded replicas (boolean)
	:encryption_key - Encryption key for local database (min 32 characters)
	:busy_timeout - Busy timeout in milliseconds (default: 5000) Controls how long SQLite waits for locks before returning SQLITE_BUSY.
 Set to 0 to disable (not recommended for production).

 disconnect(opts, state)

 @spec disconnect(term(), EctoLibSql.State.t()) ::
 :ok | {:error, term(), EctoLibSql.State.t()}

Disconnects from the database by closing the underlying native connection.
Removes the connection from the Rust connection registry and cleans up any resources.

 handle_begin(opts, state)

Begins a new database transaction.
The transaction behaviour (deferred/immediate/exclusive) can be controlled
via options passed to the Native module.

 handle_close(query, opts, state)

Closes the query. Currently a no-op as queries are stateless.

 handle_commit(opts, state)

Commits the current transaction.
The state must contain a valid transaction ID. For embedded replicas with
auto-sync enabled, this will also trigger a sync to the remote database.

 handle_deallocate(query, cursor, opts, state)

Deallocates a cursor, freeing its resources.

 handle_declare(query, params, opts, state)

Declares a cursor for streaming query results.
Cursors allow you to iterate through large result sets in chunks, which is
more memory-efficient than loading all rows at once.

 handle_execute(query, args, opts, state)

 @spec handle_execute(
 EctoLibSql.Query.t() | String.t(),
 list(),
 Keyword.t(),
 EctoLibSql.State.t()
) ::
 {:ok, EctoLibSql.Query.t(), EctoLibSql.Result.t(), EctoLibSql.State.t()}
 | {:error, EctoLibSql.Error.t(), EctoLibSql.State.t()}

Executes an SQL query, delegating to transactional or non-transactional logic
depending on the connection state.

 handle_fetch(query, cursor, opts, state)

Fetches the next batch of rows from a cursor.
Cursors are used for streaming large result sets without loading everything
into memory at once. Automatically deallocates the cursor when no more rows
are available.

 handle_prepare(query, opts, state)

Prepares a query for execution. Returns the query unchanged as preparation
is handled during execution.

 handle_rollback(opts, state)

Rolls back the current transaction.
Discards all changes made within the transaction and returns the connection
to autocommit mode.

 handle_status(opts, state)

Checks the current transaction status.

 ping(state)

 @spec ping(EctoLibSql.State.t()) ::
 {:ok, EctoLibSql.State.t()}
 | {:disconnect, :ping_failed, EctoLibSql.State.t()}

Pings the current connection to ensure it is still alive.

EctoLibSql.Native

Rust NIF (Native Implemented Functions) bridge for LibSQL operations.
This module provides the low-level interface to the Rust-based LibSQL client,
exposing both raw NIF functions and high-level Elixir helper functions.
NIF Functions
The NIF functions are implemented in Rust (native/ecto_libsql/src/lib.rs) and
provide direct access to LibSQL operations:
	Connection management: connect/2, ping/1, close/2
	Query execution: query_args/5, execute_with_transaction/3
	Transaction control: begin_transaction_with_behavior/2, commit_or_rollback_transaction/5
	Prepared statements: prepare_statement/2, query_prepared/5, execute_prepared/6
	Batch operations: execute_batch/4, execute_transactional_batch/4
	Metadata: last_insert_rowid/1, changes/1, total_changes/1, is_autocommit/1
	Cursors: declare_cursor/3, fetch_cursor/2
	Sync: do_sync/2

Helper Functions
High-level Elixir wrappers that provide ergonomic interfaces:
	query/3, execute_non_trx/3, execute_with_trx/3 - Query execution
	begin/2, commit/1, rollback/1 - Transaction management
	prepare/2, execute_stmt/4, query_stmt/3, close_stmt/1 - Prepared statements
	batch/2, batch_transactional/2 - Batch operations
	get_last_insert_rowid/1, get_changes/1, get_total_changes/1, get_is_autocommit/1 - Metadata
	vector/1, vector_type/2, vector_distance_cos/2 - Vector search helpers
	sync/1 - Manual replica sync

Thread Safety
The Rust implementation uses thread-safe registries (using Mutex<HashMap>)
to manage connections, transactions, statements, and cursors. Each is
identified by a UUID for safe concurrent access.

 Summary

 Functions

 add_authorizer(state, pid \\ self())

 Install an authorizer hook for row-level security.

 add_update_hook(state, pid \\ self())

 Install an update hook for monitoring database changes (CDC).

 batch(state, statements)

 Execute a batch of SQL statements. Each statement is executed independently.
Returns a list of results for each statement.

 batch_transactional(state, statements)

 Execute a batch of SQL statements in a transaction. All statements are executed
atomically - if any statement fails, all changes are rolled back.

 begin(state, opts \\ [])

 Begin a new transaction with optional behaviour control.

 busy_timeout(state, timeout_ms \\ 5000)

 Set the busy timeout for the connection.

 clear_param_cache()

 Clear the parameter name cache.

 close_stmt(stmt_id)

 Close a prepared statement and free its resources.

 commit(state)

 Commit the current transaction.

 create_savepoint(state, name)

 Create a savepoint within a transaction.

 detect_command(query)

 Detects the SQL command type from a query string.

 enable_extensions(state, enabled)

 Enable or disable loading of SQLite extensions.

 execute_batch_sql(state, sql)

 Execute multiple SQL statements from a semicolon-separated string.

 execute_stmt(state, stmt_id, sql, args)

 Execute a prepared statement with arguments.

 execute_transactional_batch_sql(state, sql)

 Execute multiple SQL statements atomically in a transaction.

 flush_and_get_frame(conn_id)

 Flush the replicator, pushing pending writes to the remote database.

 freeze_replica(state)

 Freeze a remote replica, converting it to a standalone local database.

 get_changes(state)

 Get the number of rows modified by the last INSERT, UPDATE or DELETE statement.

 get_frame_number_for_replica(conn_id)

 Get the current replication frame number from a remote replica.

 get_is_autocommit(state)

 Check if the connection is in autocommit mode (not in a transaction).

 get_last_insert_rowid(state)

 Get the rowid of the last inserted row.

 get_max_write_frame(conn_id)

 Get the highest frame number from write operations on this database.

 get_stmt_columns(state, stmt_id)

 Get column metadata for a prepared statement.

 get_total_changes(state)

 Get the total number of rows modified, inserted or deleted since the database connection was opened.

 interrupt(state)

 Interrupt any ongoing operation on this connection.

 load_ext(state, path, entry_point \\ nil)

 Load a SQLite extension from a dynamic library file.

 max_write_replication_index(conn_id)

 Get the highest frame number from write operations (for read-your-writes consistency).

 normalise_arguments(conn_id, statement, args)

 Normalise query arguments to a positional parameter list.

 param_cache_size()

 Get the current size of the parameter name cache.

 prepare(state, sql)

 Prepare a SQL statement for later execution. Returns a statement ID that can be reused.

 query_stmt(state, stmt_id, args)

 Query using a prepared statement (for SELECT queries).
Returns the result set.

 release_savepoint_by_name(state, name)

 Release (commit) a savepoint, making its changes permanent within the transaction.

 remove_update_hook(state)

 Remove the update hook from a connection.

 reset(state)

 Reset the connection to a clean state.

 reset_stmt(state, stmt_id)

 Reset a prepared statement to its initial state for reuse.

 rollback(state)

 Roll back the current transaction.

 rollback_to_savepoint_by_name(state, name)

 Rollback to a savepoint, undoing all changes made after the savepoint was created.

 stmt_column_count(state, stmt_id)

 Get the number of columns in a prepared statement's result set.

 stmt_column_name(state, stmt_id, idx)

 Get the name of a column in a prepared statement by its index.

 stmt_parameter_count(state, stmt_id)

 Get the number of parameters in a prepared statement.

 stmt_parameter_name(state, stmt_id, idx)

 Get the name of a parameter in a prepared statement by its index.

 sync(state)

 Manually trigger a sync for embedded replicas.

 sync_until_frame(conn_id, target_frame)

 Sync a remote replica until a specific frame number is reached.

 vector(values)

 Create a vector from a list of numbers for use in vector columns.

 vector_distance_cos(column, vector)

 Generate SQL for cosine distance vector similarity search.

 vector_type(dimensions, type \\ :f32)

 Helper to create a vector column definition for CREATE TABLE.

 Functions

 add_authorizer(state, pid \\ self())

Install an authorizer hook for row-level security.
NOT SUPPORTED - Authorizer hooks require synchronous bidirectional communication
between Rust and Elixir, which is not feasible with Rustler's threading model.
Why Not Supported
SQLite's authorizer callback is called synchronously during query compilation and expects
an immediate response (Allow/Deny/Ignore). This would require:
	Sending a message from Rust to Elixir
	Blocking the Rust thread waiting for a response
	Receiving the response from Elixir

This pattern is not safe with Rustler because:
	The callback runs on a SQLite thread (potentially holding locks)
	Blocking on Erlang scheduler threads can cause deadlocks
	No safe way to do synchronous Rust→Elixir→Rust calls

Alternatives
For row-level security and access control, consider:
	Application-level authorization - Check permissions in Elixir before queries:
 defmodule MyApp.Auth do
 def can_access?(user, table, action) do
 # Check user permissions
 end
 end
 def get_user(id, current_user) do
 if MyApp.Auth.can_access?(current_user, "users", :read) do
 Repo.get(User, id)
 else
 {:error, :unauthorized}
 end
 end

	Database views - Create views with WHERE clauses for different user levels:
 CREATE VIEW user_visible_posts AS
 SELECT * FROM posts WHERE user_id = current_user_id();

	Query rewriting - Modify queries in Elixir to include authorization constraints:
 defmodule MyApp.Repo do
 def all(queryable, current_user) do
 queryable
 |> apply_tenant_filter(current_user)
 |> Ecto.Repo.all()
 end
 end

	Connection-level restrictions - Use different database connections with different privileges

Returns
	:unsupported - Always returns unsupported

 add_update_hook(state, pid \\ self())

Install an update hook for monitoring database changes (CDC).
NOT SUPPORTED - Update hooks require sending messages from managed BEAM threads,
which is not allowed by Rustler's threading model.
Why Not Supported
SQLite's update hook callback is called synchronously during INSERT/UPDATE/DELETE operations,
and runs on the same thread executing the SQL statement. In our NIF implementation:
	SQL execution happens on Erlang scheduler threads (managed by BEAM)
	Rustler's OwnedEnv::send_and_clear() can ONLY be called from unmanaged threads
	Calling send_and_clear() from a managed thread causes a panic

This is a fundamental limitation of mixing NIF callbacks with Erlang's threading model.
Alternatives
For change data capture and real-time updates, consider:
	Application-level events - Emit events from your Ecto repos:
 defmodule MyApp.Repo do
 def insert(changeset, opts \ []) do
 case Ecto.Repo.insert(__MODULE__, changeset, opts) do
 {:ok, record} = result ->
 Phoenix.PubSub.broadcast(MyApp.PubSub, "db_changes", {:insert, record})
 result
 error -> error
 end
 end
 end

	Database triggers - Use SQLite triggers to log changes to a separate table:
 CREATE TRIGGER users_audit_insert AFTER INSERT ON users
 BEGIN
 INSERT INTO audit_log (action, table_name, row_id, timestamp)
 VALUES ('insert', 'users', NEW.id, datetime('now'));
 END;

	Polling-based CDC - Periodically query for changes using timestamps or version columns

	Phoenix.Tracker - Track state changes at the application level

Returns
	:unsupported - Always returns unsupported

 batch(state, statements)

 @spec batch(EctoLibSql.State.t(), [{String.t(), list()}]) ::
 {:ok, [EctoLibSql.Result.t()]} | {:error, term()}

Execute a batch of SQL statements. Each statement is executed independently.
Returns a list of results for each statement.
Parameters
	state: The connection state
	statements: A list of tuples {sql, args} where sql is the SQL string
and args is a list of parameters

Example
statements = [
 {"INSERT INTO users (name) VALUES (?)", ["Alice"]},
 {"INSERT INTO users (name) VALUES (?)", ["Bob"]},
 {"SELECT * FROM users", []}
]
{:ok, results} = EctoLibSql.Native.batch(state, statements)

 batch_transactional(state, statements)

 @spec batch_transactional(EctoLibSql.State.t(), [{String.t(), list()}]) ::
 {:ok, [EctoLibSql.Result.t()]} | {:error, term()}

Execute a batch of SQL statements in a transaction. All statements are executed
atomically - if any statement fails, all changes are rolled back.
Parameters
	state: The connection state
	statements: A list of tuples {sql, args} where sql is the SQL string
and args is a list of parameters

Example
statements = [
 {"INSERT INTO users (name) VALUES (?)", ["Alice"]},
 {"INSERT INTO users (name) VALUES (?)", ["Bob"]},
 {"UPDATE users SET active = 1", []}
]
{:ok, results} = EctoLibSql.Native.batch_transactional(state, statements)

 begin(state, opts \\ [])

 @spec begin(EctoLibSql.State.t(), Keyword.t()) ::
 {:ok, EctoLibSql.State.t()} | {:error, term()}

Begin a new transaction with optional behaviour control.
Parameters
	state: The connection state
	opts: Options keyword list	:behavior - Transaction behaviour (:deferred, :immediate, or :exclusive), defaults to :deferred

Transaction Behaviours
	:deferred - Default. Locks are acquired on first write operation
	:immediate - Acquires write lock immediately when transaction begins
	:exclusive - Acquires exclusive lock immediately, blocking all other connections

Example
{:ok, new_state} = EctoLibSql.Native.begin(state, behavior: :immediate)

 busy_timeout(state, timeout_ms \\ 5000)

Set the busy timeout for the connection.
This controls how long SQLite waits when a table is locked before returning
a SQLITE_BUSY error. By default, SQLite returns immediately when encountering
a lock. Setting a timeout allows for better concurrency handling.
Parameters
	state: The connection state
	timeout_ms: Timeout in milliseconds (default: 5000)

Example
Set 5 second timeout (recommended default)
:ok = EctoLibSql.Native.busy_timeout(state, 5000)

Set 10 second timeout for write-heavy workloads
:ok = EctoLibSql.Native.busy_timeout(state, 10_000)
Notes
	A value of 0 disables the busy handler (immediate SQLITE_BUSY on contention)
	Recommended production default is 5000ms (5 seconds)
	For write-heavy workloads, consider 10000ms or higher

 clear_param_cache()

 @spec clear_param_cache() :: :ok

Clear the parameter name cache.
The cache stores SQL statements and their parameter name mappings to avoid
repeated introspection overhead. Each entry contains the full SQL string,
parameter names list, and access timestamp.
Use this function to:
	Reclaim memory in applications with many dynamic queries
	Reset cache state during testing
	Force re-introspection after schema changes

The cache will be automatically rebuilt as queries are executed.
Use param_cache_size/0 to monitor cache utilisation before clearing.

 close_stmt(stmt_id)

Close a prepared statement and free its resources.
Parameters
	stmt_id: The statement ID to close

Example
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ?")
... use statement ...
:ok = EctoLibSql.Native.close_stmt(stmt_id)

 commit(state)

 @spec commit(EctoLibSql.State.t()) :: {:ok, String.t()} | {:error, term()}

Commit the current transaction.
For embedded replicas with auto-sync enabled, this also triggers a sync.
Parameters
	state: The connection state with an active transaction

Example
{:ok, _} = EctoLibSql.Native.commit(state)

 create_savepoint(state, name)

Create a savepoint within a transaction.
Savepoints allow partial rollback without aborting the entire transaction.
They enable nested transaction-like behaviour.
Parameters
	state: The connection state with an active transaction
	name: The savepoint name (must be unique within the transaction)

Example
{:ok, trx_state} = EctoLibSql.Native.begin(state)
:ok = EctoLibSql.Native.create_savepoint(trx_state, "sp1")

Do some work...
{:ok, _query, _result, trx_state} = EctoLibSql.Native.execute_with_trx(trx_state, "INSERT INTO users VALUES (?)", ["Alice"])

Create nested savepoint
:ok = EctoLibSql.Native.create_savepoint(trx_state, "sp2")
Notes
	Savepoints must be created within an active transaction
	Savepoint names must be valid SQL identifiers
	You can create nested savepoints

 detect_command(query)

 @spec detect_command(String.t()) :: EctoLibSql.Result.command_type()

Detects the SQL command type from a query string.
Returns an atom representing the command type, or :unknown for
unrecognised commands.
Examples
iex> EctoLibSql.Native.detect_command("SELECT * FROM users")
:select

iex> EctoLibSql.Native.detect_command("INSERT INTO users VALUES (1)")
:insert

 enable_extensions(state, enabled)

Enable or disable loading of SQLite extensions.
By default, extension loading is disabled for security reasons.
You must explicitly enable it before calling load_ext/3.
Parameters
	state: The connection state
	enabled: Whether to enable (true) or disable (false) extension loading

Returns
	:ok - Extension loading enabled/disabled successfully
	{:error, reason} - Operation failed

Example
Enable extension loading
:ok = EctoLibSql.Native.enable_extensions(state, true)

Load an extension
:ok = EctoLibSql.Native.load_ext(state, "/path/to/extension.so")

Disable extension loading (recommended after loading)
:ok = EctoLibSql.Native.enable_extensions(state, false)
Security Warning
⚠️ Only enable extension loading if you trust the extensions being loaded.
Malicious extensions can compromise database security and execute arbitrary code.

 execute_batch_sql(state, sql)

Execute multiple SQL statements from a semicolon-separated string.
Uses LibSQL's native batch execution for optimal performance. This is more
efficient than executing statements one-by-one as it reduces round-trips
and allows LibSQL to optimize the execution.
Each statement is executed independently. If one fails, others may still
complete.
Parameters
	state: The connection state
	sql: Semicolon-separated SQL statements

Example
sql = """
CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT);
INSERT INTO users (name) VALUES ('Alice');
INSERT INTO users (name) VALUES ('Bob');
SELECT * FROM users;
"""

{:ok, results} = EctoLibSql.Native.execute_batch_sql(state, sql)
Returns
A list of results, one for each statement. Each result is either:
	A map with columns/rows for SELECT statements
	nil for statements that don't return data

 execute_stmt(state, stmt_id, sql, args)

Execute a prepared statement with arguments.
Automatically routes to query_stmt if the statement returns rows (e.g., SELECT, EXPLAIN, RETURNING),
or to execute_prepared if it doesn't (e.g., INSERT/UPDATE/DELETE without RETURNING).
Parameters
	state: The connection state
	stmt_id: The statement ID from prepare/2
	sql: The original SQL (for sync detection and statement type detection)
	args: List of positional parameters OR map with atom keys for named parameters

Examples
INSERT without RETURNING
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "INSERT INTO users (name) VALUES (?)")
{:ok, num_rows} = EctoLibSql.Native.execute_stmt(state, stmt_id, sql, ["Alice"])

SELECT query
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ?")
{:ok, result} = EctoLibSql.Native.execute_stmt(state, stmt_id, sql, [1])

EXPLAIN query
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "EXPLAIN QUERY PLAN SELECT * FROM users")
{:ok, result} = EctoLibSql.Native.execute_stmt(state, stmt_id, sql, [])

INSERT with RETURNING
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "INSERT INTO users (name) VALUES (?) RETURNING *")
{:ok, result} = EctoLibSql.Native.execute_stmt(state, stmt_id, sql, ["Alice"])

 execute_transactional_batch_sql(state, sql)

Execute multiple SQL statements atomically in a transaction.
Uses LibSQL's native transactional batch execution. All statements execute
within a single transaction - if any statement fails, all changes are
rolled back.
Parameters
	state: The connection state
	sql: Semicolon-separated SQL statements

Example
sql = """
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
INSERT INTO transfers (from_id, to_id, amount) VALUES (1, 2, 100);
"""

{:ok, results} = EctoLibSql.Native.execute_transactional_batch_sql(state, sql)
Notes
	All statements succeed or all are rolled back
	More efficient than manual transaction with multiple queries
	Ideal for migrations, data loading, and multi-statement operations

 flush_and_get_frame(conn_id)

Flush the replicator, pushing pending writes to the remote database.
This forces the local replica to synchronize with the remote database,
sending any pending local changes.
Parameters
	conn_id: The connection ID

Returns
	{:ok, new_frame} - Flush succeeded, returns new frame number
	{:error, reason} - If flush failed

Example
{:ok, frame} = EctoLibSql.Native.flush_and_get_frame(replica_conn_id)
Logger.info("Flushed to frame: " <> to_string(frame))
Notes
	This is useful before taking snapshots or backups
	Returns the frame number after the flush (0 if not a replica)
	For local or remote primary connections, returns 0

 freeze_replica(state)

Freeze a remote replica, converting it to a standalone local database.
⚠️ NOT SUPPORTED - This function is currently not implemented.
Freeze is intended to convert a remote replica to a standalone local database
for disaster recovery. However, this operation requires deep refactoring of the
connection pool architecture and remains unimplemented. Instead, you can:
	Option 1: Backup the replica database file and use it independently
	Option 2: Replicate all data to a new local database
	Option 3: Keep the replica and manage failover at the application level

Always returns {:error, :unsupported}.
Parameters
	state: The connection state

Returns
	{:error, :unsupported} - Always (not implemented)

Example
case EctoLibSql.Native.freeze_replica(replica_state) do
 {:ok, _frozen_state} ->
 # This will never succeed
 :unreachable

 {:error, :unsupported} ->
 Logger.error("Freeze is not supported. Use manual backup strategy instead.")
 {:error, :unsupported}
end
Implementation Status
	Blocker: Requires taking ownership of the Database instance, which is
held in Arc<Mutex<LibSQLConn>> within connection pool state
	Work Required: Refactoring connection pool architecture to support
consuming connections
	Timeline: Uncertain - marked for future refactoring

See CLAUDE.md for technical details on why this is not currently supported.

 get_changes(state)

Get the number of rows modified by the last INSERT, UPDATE or DELETE statement.
Parameters
	state: The connection state

Example
{:ok, _result, state} = EctoLibSql.Native.execute_non_trx(query, state, [])
num_changes = EctoLibSql.Native.get_changes(state)

 get_frame_number_for_replica(conn_id)

Get the current replication frame number from a remote replica.
This returns the current frame number at the local replica, useful for monitoring
replication progress. The frame number increases with each replication event.
Parameters
	conn_id: The connection ID (usually state.conn_id)

Returns
	{:ok, frame_no} - The current frame number (0 if not a replica)
	{:error, reason} - If the connection is invalid

Example
{:ok, frame_no} = EctoLibSql.Native.get_frame_number_for_replica(state.conn_id)
Logger.info("Current replication frame: " <> to_string(frame_no))
Notes
	Returns 0 if the database is not a remote replica
	For local databases, this is not applicable
	Useful for implementing replication lag monitoring

 get_is_autocommit(state)

Check if the connection is in autocommit mode (not in a transaction).
Parameters
	state: The connection state

Example
autocommit? = EctoLibSql.Native.get_is_autocommit(state)

 get_last_insert_rowid(state)

Get the rowid of the last inserted row.
Parameters
	state: The connection state

Example
{:ok, _result, state} = EctoLibSql.Native.execute_non_trx(query, state, ["Alice"])
rowid = EctoLibSql.Native.get_last_insert_rowid(state)

 get_max_write_frame(conn_id)

Get the highest frame number from write operations on this database.
This is useful for read-your-writes consistency across replicas. After
performing writes on one connection (typically a primary or another replica),
you can use this function to get the maximum write frame, then use
sync_until_frame/2 on other replicas to ensure they've synced up to at
least that frame before reading.
Parameters
	conn_id: The connection ID

Returns
	{:ok, frame_no} - The highest frame number from write operations (0 if no writes tracked)
	{:error, reason} - If the connection is invalid

Example
On primary/writer connection, after writes
{:ok, max_write_frame} = EctoLibSql.Native.get_max_write_frame(primary_conn_id)

On replica connection, ensure it's synced to at least that frame
:ok = EctoLibSql.Native.sync_until_frame(replica_conn_id, max_write_frame)

Now safe to read from replica - guaranteed to see writes from primary
Notes
	Returns 0 if the database doesn't track write replication index
	Different from get_frame_number_for_replica/1 which returns current replication position
	This tracks the highest frame number from YOUR write operations
	Essential for read-your-writes consistency in multi-replica setups

 get_stmt_columns(state, stmt_id)

Get column metadata for a prepared statement.
Returns information about all columns that will be returned when the
statement is executed. This includes column names, origin names, and declared types.
Parameters
	state: The connection state with the prepared statement
	stmt_id: The prepared statement ID

Returns
	{:ok, columns} - List of tuples with {name, origin_name, decl_type}
	{:error, reason} - Failed to get metadata

Example
{:ok, stmt_id} = EctoLibSql.prepare(state, "SELECT id, name, age FROM users")
{:ok, columns} = EctoLibSql.Native.get_stmt_columns(state, stmt_id)
Returns:
[
{"id", "id", "INTEGER"},
{"name", "name", "TEXT"},
{"age", "age", "INTEGER"}
]
Use Cases
	Type introspection: Understand column types for dynamic queries
	Schema discovery: Explore database structure without separate queries
	Better error messages: Show column names and types in error output
	Type casting hints: Help Ecto determine appropriate type conversions

 get_total_changes(state)

Get the total number of rows modified, inserted or deleted since the database connection was opened.
Parameters
	state: The connection state

Example
total = EctoLibSql.Native.get_total_changes(state)

 interrupt(state)

Interrupt any ongoing operation on this connection.
Causes the current database operation to abort and return at the earliest
opportunity. Useful for:
	Cancelling long-running queries
	Implementing query timeouts
	Graceful shutdown

Parameters
	state: The connection state

Example
From another process, cancel a long query
:ok = EctoLibSql.Native.interrupt(state)
Notes
	This is safe to call from any thread/process
	The interrupted operation will return an error

 load_ext(state, path, entry_point \\ nil)

Load a SQLite extension from a dynamic library file.
Extensions must be enabled first via enable_extensions/2.
Parameters
	state: The connection state
	path: Path to the extension dynamic library (.so, .dylib, or .dll)
	entry_point: Optional entry point function name (defaults to extension-specific default)

Returns
	:ok - Extension loaded successfully
	{:error, reason} - Extension loading failed

Example
Enable extension loading first
:ok = EctoLibSql.Native.enable_extensions(state, true)

Load an extension
:ok = EctoLibSql.Native.load_ext(state, "/usr/lib/sqlite3/pcre.so")

Load with custom entry point
:ok = EctoLibSql.Native.load_ext(state, "/path/to/extension.so", "sqlite3_extension_init")

Disable extension loading after
:ok = EctoLibSql.Native.enable_extensions(state, false)
Common Extensions
	FTS5 (full-text search) - Usually built-in, provides advanced full-text search
	JSON1 (JSON functions) - Usually built-in, provides JSON manipulation functions
	R-Tree (spatial indexing) - Spatial data structures for geographic data
	PCRE (regular expressions) - Perl-compatible regular expressions
	Custom user-defined functions

Security Warning
⚠️ Only load extensions from trusted sources. Extensions run with full database
access and can execute arbitrary code.
Notes
	Extension loading must be enabled first via enable_extensions/2
	Extensions are loaded per-connection, not globally
	Some extensions may already be built into libsql (FTS5, JSON1)
	Extension files must match your platform (.so on Linux, .dylib on macOS, .dll on Windows)

 max_write_replication_index(conn_id)

Get the highest frame number from write operations (for read-your-writes consistency).
This is a low-level NIF function that returns the maximum replication frame
number from write operations on this database connection. It's primarily used
internally by get_max_write_frame/1.
For most use cases, use get_max_write_frame/1 instead, which provides better
error handling and documentation.
Parameters
	conn_id: The connection ID (string)

Returns
	Integer frame number (0 if no writes tracked)
	{:error, reason} if the connection is invalid

Notes
	This is a raw NIF function - prefer get_max_write_frame/1 for normal usage
	Returns 0 for local databases (not applicable)
	Frame number increases with each write operation
	Essential for implementing read-your-writes consistency in multi-replica setups

 normalise_arguments(conn_id, statement, args)

 @spec normalise_arguments(String.t(), String.t(), list() | map()) ::
 list() | {:error, term()}

Normalise query arguments to a positional parameter list.
Arguments
	conn_id - The connection identifier
	statement - The SQL statement (used for named parameter introspection)
	args - The arguments to normalise; must be a list or map

Returns
	list - Positional parameter list on success
	{:error, reason} - Error tuple if args is invalid or map conversion fails

Accepted Types
	List: Returned as-is (positional parameters)
	Map: Converted to positional list using statement parameter introspection

Any other type returns {:error, "arguments must be a list or map"}.

 param_cache_size()

 @spec param_cache_size() :: non_neg_integer()

Get the current size of the parameter name cache.
Returns the number of cached SQL statement parameter mappings.
The cache has a maximum size of 1000 entries.
Useful for monitoring cache utilisation in applications with dynamic queries.
If the cache frequently hits the maximum, consider whether query patterns
could be optimised to reduce unique SQL variations.

 prepare(state, sql)

Prepare a SQL statement for later execution. Returns a statement ID that can be reused.
Parameters
	state: The connection state
	sql: The SQL query to prepare

Example
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ?")
{:ok, result} = EctoLibSql.Native.query_stmt(state, stmt_id, [42])

 query_stmt(state, stmt_id, args)

Query using a prepared statement (for SELECT queries).
Returns the result set.
Parameters
	state: The connection state
	stmt_id: The statement ID from prepare/2
	args: List of positional parameters OR map with atom keys for named parameters

Examples
Positional parameters
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ?")
{:ok, result} = EctoLibSql.Native.query_stmt(state, stmt_id, [42])

Named parameters with atom keys
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = :id")
{:ok, result} = EctoLibSql.Native.query_stmt(state, stmt_id, %{id: 42})

 release_savepoint_by_name(state, name)

Release (commit) a savepoint, making its changes permanent within the transaction.
Parameters
	state: The connection state with an active transaction
	name: The savepoint name to release

Example
{:ok, trx_state} = EctoLibSql.Native.begin(state)
:ok = EctoLibSql.Native.create_savepoint(trx_state, "sp1")
... do work ...
:ok = EctoLibSql.Native.release_savepoint_by_name(trx_state, "sp1")

 remove_update_hook(state)

Remove the update hook from a connection.
NOT SUPPORTED - Update hooks are not currently implemented.
Returns
	:unsupported - Always returns unsupported

 reset(state)

Reset the connection to a clean state.
This clears any cached state and resets the connection. Useful for:
	Connection pooling (ensuring clean state when returning to pool)
	Recovering from errors
	Clearing any uncommitted transaction state

Parameters
	state: The connection state

Example
:ok = EctoLibSql.Native.reset(state)

 reset_stmt(state, stmt_id)

Reset a prepared statement to its initial state for reuse.
After executing a statement, you should reset it before binding new parameters
and executing again. This allows efficient statement reuse without re-preparing
the same SQL string repeatedly.
Performance Note: Resetting and reusing statements is 10-15x faster than
re-preparing the same SQL string. Always reset statements when executing the
same query multiple times with different parameters.
Parameters
	state: The connection state with the prepared statement
	stmt_id: The prepared statement ID

Returns
	:ok - Statement reset successfully
	{:error, reason} - Reset failed

Example
{:ok, stmt_id} = EctoLibSql.prepare(state, "INSERT INTO logs (msg) VALUES (?)")

for msg <- messages do
 EctoLibSql.execute_stmt(state, stmt_id, [msg])
 EctoLibSql.Native.reset_stmt(state, stmt_id) # Reset for next iteration
end

EctoLibSql.close_stmt(state, stmt_id)

 rollback(state)

 @spec rollback(EctoLibSql.State.t()) :: {:ok, String.t()} | {:error, term()}

Roll back the current transaction.
Parameters
	state: The connection state with an active transaction

Example
{:ok, _} = EctoLibSql.Native.rollback(state)

 rollback_to_savepoint_by_name(state, name)

Rollback to a savepoint, undoing all changes made after the savepoint was created.
The savepoint remains active after rollback and can be released or rolled back to again.
The transaction itself remains active.
Parameters
	state: The connection state with an active transaction
	name: The savepoint name to rollback to

Example
{:ok, trx_state} = EctoLibSql.Native.begin(state)
{:ok, _query, _result, trx_state} = EctoLibSql.Native.execute_with_trx(trx_state, "INSERT INTO users VALUES (?)", ["Alice"])

:ok = EctoLibSql.Native.create_savepoint(trx_state, "sp1")
{:ok, _query, _result, trx_state} = EctoLibSql.Native.execute_with_trx(trx_state, "INSERT INTO users VALUES (?)", ["Bob"])

Rollback Bob insert, keep Alice
:ok = EctoLibSql.Native.rollback_to_savepoint_by_name(trx_state, "sp1")

Transaction still active, can continue or commit
:ok = EctoLibSql.Native.commit(trx_state)

 stmt_column_count(state, stmt_id)

Get the number of columns in a prepared statement's result set.
Returns the column count for statements that return rows (SELECT).
Returns 0 for statements that don't return rows (INSERT, UPDATE, DELETE).
Parameters
	state: The connection state
	stmt_id: The statement ID returned from prepare/2

Example
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT id, name, email FROM users")
{:ok, count} = EctoLibSql.Native.stmt_column_count(state, stmt_id)
count = 3

 stmt_column_name(state, stmt_id, idx)

Get the name of a column in a prepared statement by its index.
Index is 0-based. Returns an error if the index is out of bounds.
Parameters
	state: The connection state
	stmt_id: The statement ID returned from prepare/2
	idx: Column index (0-based)

Example
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT id, name FROM users")
{:ok, name} = EctoLibSql.Native.stmt_column_name(state, stmt_id, 0)
name = "id"
{:ok, name} = EctoLibSql.Native.stmt_column_name(state, stmt_id, 1)
name = "name"

 stmt_parameter_count(state, stmt_id)

Get the number of parameters in a prepared statement.
Parameters are the placeholders (?) in the SQL statement.
Parameters
	state: The connection state
	stmt_id: The statement ID returned from prepare/2

Example
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ? AND name = ?")
{:ok, count} = EctoLibSql.Native.stmt_parameter_count(state, stmt_id)
count = 2

 stmt_parameter_name(state, stmt_id, idx)

Get the name of a parameter in a prepared statement by its index.
Returns the parameter name for named parameters (:name, @name, $name),
or nil for positional parameters (?).
Parameters
	state: The connection state
	stmt_id: The statement ID returned from prepare/2
	idx: Parameter index (1-based, following SQLite convention)

Returns
	{:ok, name} - Parameter has a name (e.g., :id returns "id")
	{:ok, nil} - Parameter is positional (?)
	{:error, reason} - Error occurred

Example
Named parameters
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = :id AND name = :name")
{:ok, param1} = EctoLibSql.Native.stmt_parameter_name(state, stmt_id, 1)
param1 = "id"
{:ok, param2} = EctoLibSql.Native.stmt_parameter_name(state, stmt_id, 2)
param2 = "name"

Positional parameters
{:ok, stmt_id} = EctoLibSql.Native.prepare(state, "SELECT * FROM users WHERE id = ?")
{:ok, param1} = EctoLibSql.Native.stmt_parameter_name(state, stmt_id, 1)
param1 = nil
Notes
	Parameter indices are 1-based (first parameter is index 1)
	Named parameters start with :, @, or $ in SQL but the prefix is stripped in the returned name
	Returns nil for positional ? placeholders

 sync(state)

 @spec sync(EctoLibSql.State.t()) :: {:ok, String.t()} | {:error, term()}

Manually trigger a sync for embedded replicas.
For connections in :remote_replica mode, this function forces a
synchronisation with the remote Turso database, pulling down any changes
from the remote and pushing local changes up.
When to Use
In most cases, you don't need to call this manually - automatic sync happens
when you connect with sync: true. However, manual sync is useful for:
	Critical reads after remote writes: When you need to immediately read
data that was just written to the remote database
	Before shutdown: Ensuring all local changes are synced before closing
the connection
	After batch operations: Forcing sync after bulk inserts/updates to
ensure data is persisted remotely
	Coordinating between replicas: When multiple replicas need to see
consistent data immediately

Parameters
	state: The connection state (must be in :remote_replica mode)

Returns
	{:ok, "success sync"} on successful sync
	{:error, reason} if sync fails

Examples
Force sync after critical write
{:ok, state} = EctoLibSql.connect(database: "local.db", uri: turso_uri, auth_token: token, sync: true)
{:ok, _, _, state} = EctoLibSql.handle_execute("INSERT INTO users ...", [], [], state)
{:ok, "success sync"} = EctoLibSql.Native.sync(state)

Ensure sync before shutdown
{:ok, _} = EctoLibSql.Native.sync(state)
:ok = EctoLibSql.disconnect([], state)
Notes
	Sync is only applicable for :remote_replica mode connections
	For :local mode, this is a no-op
	For :remote mode, data is already on the remote server
	Sync happens synchronously and may take time depending on data size

 sync_until_frame(conn_id, target_frame)

Sync a remote replica until a specific frame number is reached.
Waits for the replica to catch up to the specified frame number,
which is useful after bulk writes to the primary database.
Parameters
	conn_id: The connection ID
	target_frame: The target frame number to sync until

Returns
	:ok - Successfully synced to the target frame
	{:error, reason} - If sync failed or connection is invalid

Example
After bulk insert on primary, wait for replica to catch up
primary_frame = get_primary_frame_number()
:ok = EctoLibSql.Native.sync_until_frame(replica_conn_id, primary_frame)
Replica is now up-to-date
Notes
	This blocks until the frame is reached (with internal timeout)
	Only works for remote replica connections
	Returns error if called on local or remote primary connections

 vector(values)

Create a vector from a list of numbers for use in vector columns.
Parameters
	values: List of numbers (integers or floats)

Example
Create a 3-dimensional vector
vec = EctoLibSql.Native.vector([1.0, 2.0, 3.0])
Use in query: "INSERT INTO items (embedding) VALUES (?)"

 vector_distance_cos(column, vector)

Generate SQL for cosine distance vector similarity search.
Parameters
	column: Name of the vector column
	vector: The query vector (list of numbers or vector string)

Example
distance_sql = EctoLibSql.Native.vector_distance_cos("embedding", [1.0, 2.0, 3.0])
Returns: "vector_distance_cos(embedding, '[1.0,2.0,3.0]')"
Use in: "SELECT * FROM items ORDER BY #{distance_sql} LIMIT 10"

 vector_type(dimensions, type \\ :f32)

Helper to create a vector column definition for CREATE TABLE.
Parameters
	dimensions: Number of dimensions
	type: :f32 (float32) or :f64 (float64), defaults to :f32

Example
column_def = EctoLibSql.Native.vector_type(3) # "F32_BLOB(3)"
Use in: "CREATE TABLE items (embedding #{column_def})"

EctoLibSql.Error exception

Exception raised when a LibSQL database operation fails.
This exception contains detailed error information from the underlying
LibSQL/SQLite database, including constraint violation details.
Fields
	:message - Human-readable error message
	:sqlite - Map containing SQLite-specific error details (:code, :message)

 Summary

 Types

 t()

 Functions

 constraint_name(error)

 Extracts the constraint field name from an error message.

 constraint_violation?(error)

 Checks if the error is a constraint violation.

 Types

 t()

 @type t() :: %EctoLibSql.Error{
 __exception__: true,
 message: String.t(),
 sqlite: %{code: atom(), message: String.t()}
}

 Functions

 constraint_name(error)

Extracts the constraint field name from an error message.
Returns the field name if a constraint violation pattern is found,
nil otherwise.
Examples
iex> error = %EctoLibSql.Error{message: "constraint failed: users.email"}
iex> EctoLibSql.Error.constraint_name(error)
"email"

 constraint_violation?(error)

Checks if the error is a constraint violation.
Returns true if the error message indicates a constraint failure,
false otherwise.
Examples
iex> error = %EctoLibSql.Error{message: "constraint failed: users.email"}
iex> EctoLibSql.Error.constraint_violation?(error)
true

EctoLibSql.Query

Represents a database query in the EctoLibSql adapter.
This struct holds the SQL statement and metadata about the query,
implementing the DBConnection.Query protocol for compatibility
with the DBConnection framework.
Fields
	:statement - The SQL query string
	:name - Optional name for the query
	:prepared - Whether the query is prepared
	:param_types - Expected parameter types
	:type - Query type (default: :binary)

Examples
%EctoLibSql.Query{statement: "SELECT * FROM users WHERE id = ?"}

 Summary

 Types

 t()

 Query struct for EctoLibSql.

 Types

 t()

 @type t() :: %EctoLibSql.Query{
 name: String.t() | nil,
 param_types: [atom()] | nil,
 prepared: boolean() | nil,
 statement: String.t() | nil,
 type: :binary | :text
}

Query struct for EctoLibSql.

EctoLibSql.Result

Represents the result of a database query or command.
This struct contains all information returned from a successful database
operation, including column names, result rows, and metadata about the
operation performed.
Fields
	:command - The type of SQL command (:select, :insert, :update, :delete, :create, :begin, :commit, :rollback, :pragma, :batch, :unknown, :other, or nil)
	:columns - List of column names (for SELECT queries), or nil for write operations
	:rows - List of rows, where each row is a list of values, or nil for write operations
	:num_rows - Number of rows affected or returned

Examples
SELECT result
%EctoLibSql.Result{
 command: :select,
 columns: ["id", "name"],
 rows: [[1, "Alice"], [2, "Bob"]],
 num_rows: 2
}

INSERT/UPDATE/DELETE result (without RETURNING)
%EctoLibSql.Result{
 command: :insert,
 columns: nil,
 rows: nil,
 num_rows: 1
}

 Summary

 Types

 command_type()

 The type of SQL command that was executed.

 t()

 Result struct containing query results.

 Functions

 new(options)

 Creates a new Result struct from a keyword list of options.

 Types

 command_type()

 @type command_type() ::
 :select
 | :insert
 | :update
 | :delete
 | :batch
 | :create
 | :begin
 | :commit
 | :rollback
 | :pragma
 | :unknown
 | :other
 | nil

The type of SQL command that was executed.

 t()

 @type t() :: %EctoLibSql.Result{
 columns: [String.t()] | nil,
 command: command_type(),
 num_rows: non_neg_integer(),
 rows: [[term()]] | nil
}

Result struct containing query results.

 Functions

 new(options)

 @spec new(Keyword.t()) :: t()

Creates a new Result struct from a keyword list of options.
Options
	:command - The command type (default: :other)
	:columns - List of column names (default: nil)
	:rows - List of rows (default: nil)
	:num_rows - Number of rows (default: 0)

Examples
iex> EctoLibSql.Result.new(command: :select, columns: ["id"], rows: [[1]], num_rows: 1)
%EctoLibSql.Result{command: :select, columns: ["id"], rows: [[1]], num_rows: 1}

EctoLibSql.State

Maintains the connection state for a LibSQL database connection.
This struct tracks the current connection state including the connection ID,
active transaction ID (if any), connection mode, and sync settings.
Fields
	:conn_id - Unique identifier for the connection (required)
	:trx_id - Transaction ID if a transaction is active, nil otherwise
	:mode - Connection mode (:local, :remote, or :remote_replica)
	:sync - Sync mode for replicas (:enable_sync or :disable_sync)

Connection Modes
	:local - Local SQLite file
	:remote - Direct connection to remote Turso database
	:remote_replica - Local SQLite file with remote sync enabled

 Summary

 Types

 mode()

 Connection mode for LibSQL database connections.

 sync_mode()

 Sync mode for replica connections.

 t()

 Connection state struct.

 Functions

 detect_mode(opts)

 Detects the connection mode based on provided options.

 detect_sync(opts)

 Detects the sync mode based on provided options.

 Types

 mode()

 @type mode() :: :local | :remote | :remote_replica | :unknown

Connection mode for LibSQL database connections.

 sync_mode()

 @type sync_mode() :: :enable_sync | :disable_sync

Sync mode for replica connections.

 t()

 @type t() :: %EctoLibSql.State{
 conn_id: String.t(),
 mode: mode() | nil,
 sync: sync_mode() | nil,
 trx_id: String.t() | nil
}

Connection state struct.

 Functions

 detect_mode(opts)

 @spec detect_mode(Keyword.t()) :: mode()

Detects the connection mode based on provided options.
Examples
iex> EctoLibSql.State.detect_mode(database: "local.db")
:local

iex> EctoLibSql.State.detect_mode(uri: "libsql://...", auth_token: "...")
:remote

iex> EctoLibSql.State.detect_mode(database: "local.db", uri: "libsql://...", auth_token: "...", sync: true)
:remote_replica

 detect_sync(opts)

 @spec detect_sync(Keyword.t()) :: sync_mode()

Detects the sync mode based on provided options.
Returns :enable_sync if sync is explicitly set to true,
:disable_sync otherwise.
Examples
iex> EctoLibSql.State.detect_sync(sync: true)
:enable_sync

iex> EctoLibSql.State.detect_sync(sync: false)
:disable_sync

iex> EctoLibSql.State.detect_sync([])
:disable_sync

Ecto.Adapters.LibSql

Ecto adapter for LibSQL and Turso databases.
This adapter provides full Ecto support for LibSQL databases, including
local SQLite files, remote Turso cloud databases, and embedded replicas
that sync between local and remote.
Connection Modes
The adapter automatically detects the connection mode based on configuration:
	Local: Only :database specified - uses local SQLite file
	Remote: :uri and :auth_token specified - connects directly to Turso
	Remote Replica: All of :database, :uri, :auth_token, and :sync specified -
maintains local copy with automatic sync to remote

Configuration Examples
Local Database
config :my_app, MyApp.Repo,
 adapter: Ecto.Adapters.LibSql,
 database: "my_app.db"
Remote Turso Database
config :my_app, MyApp.Repo,
 adapter: Ecto.Adapters.LibSql,
 uri: "libsql://your-database.turso.io",
 auth_token: "your-auth-token"
Embedded Replica (Local + Remote Sync)
config :my_app, MyApp.Repo,
 adapter: Ecto.Adapters.LibSql,
 database: "replica.db",
 uri: "libsql://your-database.turso.io",
 auth_token: "your-auth-token",
 sync: true
With Encryption
config :my_app, MyApp.Repo,
 adapter: Ecto.Adapters.LibSql,
 database: "encrypted.db",
 encryption_key: "your-secret-key-must-be-at-least-32-characters"
Configuration Options
	:database - Path to local SQLite database file
	:uri - Remote LibSQL server URI (e.g., "libsql://your-db.turso.io")
	:auth_token - Authentication token for remote connections
	:sync - Enable automatic sync for embedded replicas (boolean, default: true when in replica mode)
	:encryption_key - Encryption key for local database (minimum 32 characters)

Features
	Full Ecto query support (schemas, changesets, associations, etc.)
	Migration support with DDL transactions
	SQLite-compatible data types with Ecto type conversions
	Constraint violation detection and error handling
	Storage management (mix ecto.create, mix ecto.drop, etc.)
	Structure dump/load support

Limitations
	No advisory locking for migrations (SQLite uses database-level locking)
	Repo.stream/2 is not yet implemented (use DBConnection cursor interface instead)
	Some advanced PostgreSQL/MySQL features may not be available
	Vector search requires LibSQL-specific syntax

Ecto.Adapters.LibSql.Connection

Implementation of Ecto.Adapters.SQL.Connection for LibSQL.
This module handles SQL query generation and DDL operations for LibSQL/SQLite.
It implements the Ecto.Adapters.SQL.Connection behaviour, translating Ecto's
query structures into SQLite-compatible SQL.
Key Responsibilities
	Query generation (all/1, update_all/1, delete_all/1)
	Insert/update/delete operations with RETURNING support
	DDL generation (CREATE TABLE, ALTER TABLE, CREATE INDEX, etc.)
	Constraint name extraction for error handling
	Type mapping between Ecto and SQLite

SQLite Compatibility
This module ensures generated SQL is compatible with SQLite/LibSQL syntax,
including handling of AUTOINCREMENT, ON CONFLICT clauses, and type affinities.

 Summary

 Functions

 to_constraints(map, opts)

 Parse a SQLite error message and map it to a list of Ecto constraint tuples.

 Functions

 to_constraints(map, opts)

 @spec to_constraints(%{message: String.t()}, Keyword.t()) :: Keyword.t()

Parse a SQLite error message and map it to a list of Ecto constraint tuples.
Accepts an exception-like map containing a SQLite error :message and returns recognised constraint information such as unique, foreign_key or check constraints; returns an empty list when no known constraint pattern is found.
Parameters
	error: Map containing a :message string produced by SQLite.
	_opts: Options (unused).

Returns
	A keyword list of constraint tuples, for example [unique: "table_column_index"], [foreign_key: :unknown], [check: "constraint_name"], or [] when no constraint is recognised.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

