

 ecto_pgmq

 v1.0.0

 Table of contents

 	EctoPGMQ

 	Contributing

 	Change Log

 	
 Modules

 	Core

 	EctoPGMQ

 	EctoPGMQ.Migrations

 	EctoPGMQ.Notifications

 	EctoPGMQ.PGMQ

 	EctoPGMQ.Producer

 	Schemas

 	EctoPGMQ.Message

 	EctoPGMQ.Metrics

 	EctoPGMQ.Queue

 	EctoPGMQ.Throttle

EctoPGMQ

An opinionated PGMQ client for Elixir that builds on top of Ecto and the
Ecto.Adapters.Postgres adapter.
PGMQ Installation
Because PGMQ is entirely made up of SQL objects, there are two available
installation methods:
	Extension Installation - This method installs PGMQ as a traditional
Postgres extension. This is the preferred installation method but it
requires access to the Postgres server file system and, therefore, may not
always be feasible.

	SQL Installation - This method installs PGMQ by manually creating all of
the necessary SQL objects and works entirely within the database.

EctoPGMQ.Migrations contains helper functions for managing both installation
methods.
For more information about managing the PGMQ extension, see the PGMQ
Installation and
Updating
guides.
Partitioning
PGMQ supports partitioning both queues and archives.
The pg_partman extension must be
available in order to use partitioning.
For more information about partitioning, see the
PGMQ docs.
Polling
PGMQ supports Postgres server-side polling during read operations. Reading
with a poll can be used to reduce network round trips if there is a good
chance that demand can be satisfied in a short time BUT doing so utilizes
a connection for the duration of the read operation. As such, polling should
be avoided in situations where the DB connection pool is a bottleneck.
FIFO Message Groups
While PGMQ queues are FIFO data structures, the order of message processing
can be non-deterministic when there are multiple consumers. This is usually
fine but there is sometimes a need to consume messages strictly in order
within a group. In order to support this, PGMQ exposes a number of functions
that read messages while guaranteeing FIFO ordering for messages with the same
x-pgmq-group header.
There are two slightly different methodologies for reading messages while
respecting FIFO message groups: round-robin reading and throughput-optimized
reading.
Round-Robin Reading
This method will fairly interleave messages from all available groups.
iex> specs = [{%{}, "A"}, {%{}, "A"}, {%{}, "B"}, {%{}, "B"}, {%{}, "C"}]
iex> [id_1, id_2, id_3, id_4, id_5] = send_messages(Repo, "my_queue", specs)
iex> messages = read_messages(Repo, "my_queue", 300, 5, message_grouping: :round_robin)
iex> Enum.map(messages, & &1.id) == [id_1, id_3, id_5, id_2, id_4]
true
Throughput-Optimized Reading
This method will prioritize messages from the same group. As the name implies,
this method will often be more efficient than round-robin reading.
iex> specs = [{%{}, "A"}, {%{}, "A"}, {%{}, "B"}, {%{}, "B"}, {%{}, "C"}]
iex> message_ids = send_messages(Repo, "my_queue", specs)
iex> messages = read_messages(Repo, "my_queue", 300, 5, message_grouping: :throughput_optimized)
iex> Enum.map(messages, & &1.id) == message_ids
true
Warning
If message groups are long-lived and high-volume, this method of reading can
effectively starve later groups. For more information, see
Performance Considerations.
Performance Considerations
In general, FIFO message groups are more performant when the following
conditions are met:
	There are many low-volume groups

	Messages are removed from the queue relatively quickly

	The queue is optimized for FIFO message group reads (see
EctoPGMQ.create_queue/4 and EctoPGMQ.update_queue/4).

Further Information
For more information about FIFO message groups, see the
PGMQ docs.

 Summary

 Types

 delay()

 A delay before a message becomes visible.

 message_update_attributes()

 Message update attributes.

 notification_throttle()

 The minimum time between notifications.

 partition_config()

 A queue partition configuration.

 poll_config()

 A message polling configuration.

 queue_create_attributes()

 Queue creation attributes.

 queue_update_attributes()

 Queue update attributes.

 read_messages_opts()

 Options for reading messages.

 visibility_timeout()

 The time from now that a message is invisible.

 Message API

 archive_messages(repo, queue, message_ids, opts \\ [])

 Archives the given messages from the given queue.

 delete_messages(repo, queue, message_ids, opts \\ [])

 Deletes the given messages from the given queue.

 read_messages(repo, queue, visibility_timeout, quantity, opts \\ [])

 Reads messages from the given queue.

 send_messages(repo, queue, messages, opts \\ [])

 Sends messages to the given queue.

 update_messages(repo, queue, message_ids, map, opts \\ [])

 Updates the given messages in the given queue.

 Queue API

 all_queues(repo, opts \\ [])

 Lists all queues.

 create_queue(repo, queue, attributes \\ %{}, opts \\ [])

 Creates a queue with the given name.

 drop_queue(repo, queue, opts \\ [])

 Drops the given queue.

 get_queue(repo, queue, opts \\ [])

 Gets the given queue.

 purge_queue(repo, queue, opts \\ [])

 Purges the given queue.

 update_queue(repo, queue, attributes, opts \\ [])

 Updates the given queue.

 Types

 delay()

 @type delay() :: Duration.t() | EctoPGMQ.PGMQ.delay()

A delay before a message becomes visible.
This can take any of the following forms:
	A Duration.t/0 denoting the time to wait before a message becomes
visible.

	An integer/0 denoting the time (in seconds) to wait before a message
becomes visible.

	A DateTime.t/0 denoting when a message should become visible.

For more information about this type, see EctoPGMQ.PGMQ.delay/0.

 message_update_attributes()

 @type message_update_attributes() :: %{visibility_timeout: visibility_timeout()}

Message update attributes.
The following attributes are supported:
	:visibility_timeout - A required visibility_timeout/0 for the
messages.

 notification_throttle()

 @type notification_throttle() :: Duration.t() | EctoPGMQ.PGMQ.throttle_interval()

The minimum time between notifications.
This can take either of the following forms:
	A Duration.t/0 denoting the minimum time between notifications.

	A non_neg_integer/0 denoting the minimum time (in milliseconds)
between notifications.

For more information about notifications, see EctoPGMQ.Notifications.
For more information about this type, see
EctoPGMQ.PGMQ.throttle_interval/0.

 partition_config()

 @type partition_config() ::
 {EctoPGMQ.PGMQ.partition_interval(), EctoPGMQ.PGMQ.retention_interval()}

A queue partition configuration.
A partition configuration is a tuple containing two elements: the partition
interval and the retention interval.
Both elements can take either of the following forms:
	A Duration.t/0 denoting a time-based interval.

	A pos_integer/0 denoting a message-based interval.

For more information about partitioning, see Partitioning.
For more information about this type, see
EctoPGMQ.PGMQ.partition_interval/0 and
EctoPGMQ.PGMQ.retention_interval/0.

 poll_config()

 @type poll_config() ::
 {Duration.t() | EctoPGMQ.PGMQ.poll_interval(),
 Duration.t() | EctoPGMQ.PGMQ.poll_timeout()}

A message polling configuration.
A polling configuration is a tuple containing two elements: the poll interval
and the poll timeout.
Both elements can take either of the following forms:
	A Duration.t/0 denoting a length of time.

	A pos_integer/0 denoting a length of time. The unit for the poll
interval is milliseconds and the unit for the timeout is seconds.

For more information about polling, see Polling.
For more information about this type, see EctoPGMQ.PGMQ.poll_interval/0
and EctoPGMQ.PGMQ.poll_timeout/0.

 queue_create_attributes()

 @type queue_create_attributes() :: %{
 optional(:message_groups?) => boolean(),
 optional(:notifications) => notification_throttle() | nil,
 optional(:partitions) => partition_config() | nil,
 optional(:unlogged?) => boolean()
}

Queue creation attributes.
The following attributes are supported:
	:message_groups? - An optional boolean/0 denoting whether or not the
queue should be optimized for FIFO message group reads. Defaults to
false. For more information about FIFO message groups, see
FIFO Message Groups.

	:notifications - An optional notification_throttle/0 for the queue
or nil to leave notifications disabled. Defaults to nil. For more
information about notifications, see EctoPGMQ.Notifications.

	:partitions - An optional partition_config/0 for the queue or
nil to disable partitioning. This option is ignored for unlogged queues.
Defaults to nil. For more information about partitioning, see
Partitioning.

	:unlogged? - An optional boolean/0 denoting whether or not the queue
should be unlogged. Defaults to false.

 queue_update_attributes()

 @type queue_update_attributes() :: %{
 optional(:message_groups?) => true,
 optional(:notifications) => notification_throttle() | nil
}

Queue update attributes.
The following attributes are supported:
	:message_groups? - true to optimize the queue for FIFO message group
reads. Note that true is the only valid value because this operation
cannot be undone. For more information about FIFO message groups, see
FIFO Message Groups.

	:notifications - An optional notification_throttle/0 for the queue or
nil to disable notifications. For more information about notifications,
see EctoPGMQ.Notifications.

 read_messages_opts()

 @type read_messages_opts() :: [
 {:delete?, boolean()}
 | {:polling, poll_config() | nil}
 | {:message_grouping, :round_robin | :throughput_optimized | nil}
 | EctoPGMQ.PGMQ.query_opt()
]

Options for reading messages.
In addition to the standard query options,
messages can be read with the following options:
	:delete? - An optional boolean/0 denoting whether or not to delete
messages immediately after reading them. Defaults to false. For more
information, see EctoPGMQ.PGMQ.pop/4.

	:message_grouping - An optional value specifying how to handle message
groups when reading messages. Possible values are :round_robin,
:throughput_optimized, or nil to ignore message groups when reading.
This option is ignored when deleting on read. Defaults to nil. For more
information about FIFO message groups, see
FIFO Message Groups.

	:polling - An optional poll_config/0 for the read operation or nil
to disable polling. This option is ignored when deleting on read. Defaults
to nil. For more information about polling, see Polling.

 visibility_timeout()

 @type visibility_timeout() :: Duration.t() | EctoPGMQ.PGMQ.visibility_timeout()

The time from now that a message is invisible.
This can take either of the following forms:
	A Duration.t/0 denoting how long a message is invisible.

	An integer/0 denoting how long (in seconds) a message is invisible.

For more information about this type, see
EctoPGMQ.PGMQ.visibility_timeout/0.

 Message API

 archive_messages(repo, queue, message_ids, opts \\ [])

 @spec archive_messages(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 [EctoPGMQ.Message.id()],
 [
 EctoPGMQ.PGMQ.query_opt()
]
) :: :ok

Archives the given messages from the given queue.
Options
This function supports the standard
query options.
Examples
iex> message_ids = send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> archive_messages(Repo, "my_queue", message_ids)
:ok

 delete_messages(repo, queue, message_ids, opts \\ [])

 @spec delete_messages(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.Message.id()], [
 EctoPGMQ.PGMQ.query_opt()
]) :: :ok

Deletes the given messages from the given queue.
Options
This function supports the standard
query options.
Examples
iex> message_ids = send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> delete_messages(Repo, "my_queue", message_ids)
:ok

 read_messages(repo, queue, visibility_timeout, quantity, opts \\ [])

 @spec read_messages(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 EctoPGMQ.PGMQ.quantity(),
 [
 {:delete?, boolean()}
 | {:polling, poll_config() | nil}
 | {:message_grouping, :round_robin | :throughput_optimized | nil}
 | EctoPGMQ.PGMQ.query_opt()
]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue.
Options
See read_messages_opts/0 for information about the options supported by
this function.
Examples
iex> send_messages(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_messages(Repo, "my_queue", 5, 2)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 send_messages(repo, queue, messages, opts \\ [])

 @spec send_messages(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 [EctoPGMQ.Message.specification()],
 [
 {:delay, delay()} | EctoPGMQ.PGMQ.query_opt()
]
) :: [EctoPGMQ.Message.id()]

Sends messages to the given queue.
Options
In addition to the standard query options,
this function also supports the following options:
	:delay - An optional delay/0 for the messages. Defaults to 0.

Examples
iex> delay = Duration.new!(hour: 1)
iex> message_ids = send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}], delay: delay)
iex> Enum.all?(message_ids, &is_integer/1)
true

 update_messages(repo, queue, message_ids, map, opts \\ [])

 @spec update_messages(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 [EctoPGMQ.Message.id()],
 message_update_attributes(),
 [EctoPGMQ.PGMQ.query_opt()]
) :: :ok

Updates the given messages in the given queue.
Options
This function supports the standard
query options.
Examples
iex> visibility_timeout = Duration.new!(minute: 5)
iex> message_ids = send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> update_messages(Repo, "my_queue", message_ids, %{visibility_timeout: visibility_timeout})
:ok

 Queue API

 all_queues(repo, opts \\ [])

 @spec all_queues(Ecto.Repo.t(), [EctoPGMQ.PGMQ.query_opt()]) :: [EctoPGMQ.Queue.t()]

Lists all queues.
Options
This function supports the standard
query options.
Examples
iex> queues = all_queues(Repo)
iex> Enum.all?(queues, &is_struct(&1, EctoPGMQ.Queue))
true

 create_queue(repo, queue, attributes \\ %{}, opts \\ [])

 @spec create_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), queue_create_attributes(), [
 EctoPGMQ.PGMQ.query_opt()
]) :: EctoPGMQ.Queue.t()

Creates a queue with the given name.
To create a queue in an Ecto.Migration, see
EctoPGMQ.Migrations.create_queue/2.
Options
This function supports the standard
query options.
Examples
iex> queue = create_queue(Repo, "my_unpartitioned_queue", %{notifications: 1_000})
iex> match?(%EctoPGMQ.Queue{notifications: %EctoPGMQ.Throttle{}}, queue)
true

iex> queue = create_queue(Repo, "my_partitioned_queue", %{partitions: {10_000, 100_000}})
iex> match?(%EctoPGMQ.Queue{is_partitioned: true}, queue)
true

iex> partitions = {Duration.new!(hour: 1), Duration.new!(day: 1)}
iex> queue = create_queue(Repo, "my_partitioned_queue", %{partitions: partitions})
iex> match?(%EctoPGMQ.Queue{is_partitioned: true}, queue)
true

iex> queue = create_queue(Repo, "my_unlogged_queue", %{unlogged?: true})
iex> match?(%EctoPGMQ.Queue{is_unlogged: true}, queue)
true

 drop_queue(repo, queue, opts \\ [])

 @spec drop_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.PGMQ.query_opt()]) ::
 :ok

Drops the given queue.
To drop a queue in an Ecto.Migration, see
EctoPGMQ.Migrations.drop_queue/2.
Options
This function supports the standard
query options.
Examples
iex> drop_queue(Repo, "my_queue")
:ok

 get_queue(repo, queue, opts \\ [])

 @spec get_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.PGMQ.query_opt()]) ::
 EctoPGMQ.Queue.t() | nil

Gets the given queue.
Options
This function supports the standard
query options.
Examples
iex> queue = get_queue(Repo, "my_queue")
iex> match?(%EctoPGMQ.Queue{}, queue)
true

iex> get_queue(Repo, "my_non_existent_queue")
nil

 purge_queue(repo, queue, opts \\ [])

 @spec purge_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.PGMQ.query_opt()]) ::
 EctoPGMQ.PGMQ.purged_messages()

Purges the given queue.
Options
This function supports the standard
query options.
Examples
iex> send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> purge_queue(Repo, "my_queue")
2

 update_queue(repo, queue, attributes, opts \\ [])

 @spec update_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), queue_create_attributes(), [
 EctoPGMQ.PGMQ.query_opt()
]) :: EctoPGMQ.Queue.t()

Updates the given queue.
Warning
Because the underlying tables are owned by PGMQ, this function avoids row
locks so as not to disturb any internal PGMQ processes. As a result, if
multiple processes attempt to update a queue simultaneously, they may get
unexpected results.
To update a queue in an Ecto.Migration, see
EctoPGMQ.Migrations.update_queue/2.
Options
This function supports the standard
query options.
Examples
iex> throttle = Duration.new!(second: 5)
iex> queue = update_queue(Repo, "my_queue", %{notifications: throttle})
iex> match?(%EctoPGMQ.Queue{notifications: %EctoPGMQ.Throttle{}}, queue)
true

EctoPGMQ.Migrations

The entrypoint for managing PGMQ-related Ecto.Migration implementations.

 Summary

 EctoPGMQ API

 create_queue(queue, attributes \\ %{}, opts \\ [])

 Creates a queue with the given name in an Ecto.Migration.

 drop_queue(queue, opts \\ [])

 Drops the given queue in an Ecto.Migration.

 update_queue(queue, attributes, opts \\ [])

 Updates the given queue in an Ecto.Migration.

 Extension Installation API

 create_extension()

 Creates the PGMQ extension in an Ecto.Migration.

 drop_extension()

 Drops the PGMQ extension in an Ecto.Migration.

 update_extension()

 Updates the PGMQ extension to the default version in an Ecto.Migration.

 update_extension(version)

 Updates the PGMQ extension in an Ecto.Migration.

 SQL Installation API

 drop_schema()

 Drops the PGMQ schema in an Ecto.Migration.

 import_schema(path)

 Imports a PGMQ schema file in an Ecto.Migration.

 EctoPGMQ API

 create_queue(queue, attributes \\ %{}, opts \\ [])

 @spec create_queue(EctoPGMQ.Queue.name(), EctoPGMQ.queue_create_attributes(), [
 EctoPGMQ.PGMQ.query_opt()
]) :: :ok

Creates a queue with the given name in an Ecto.Migration.
For more information, see EctoPGMQ.create_queue/3.
Examples
create_queue("my_queue")

 drop_queue(queue, opts \\ [])

 @spec drop_queue(
 EctoPGMQ.Queue.name(),
 keyword()
) :: :ok

Drops the given queue in an Ecto.Migration.
For more information, see EctoPGMQ.drop_queue/3.
Examples
drop_queue("my_queue")

 update_queue(queue, attributes, opts \\ [])

 @spec update_queue(EctoPGMQ.Queue.name(), EctoPGMQ.queue_update_attributes(), [
 EctoPGMQ.PGMQ.query_opt()
]) :: :ok

Updates the given queue in an Ecto.Migration.
For more information, see EctoPGMQ.update_queue/4.
Examples
update_queue("my_queue", %{notifications: 1_000})

 Extension Installation API

 create_extension()

 @spec create_extension() :: :ok

Creates the PGMQ extension in an Ecto.Migration.
For more information, see PGMQ Installation.
Examples
create_extension()

 drop_extension()

 @spec drop_extension() :: :ok

Drops the PGMQ extension in an Ecto.Migration.
For more information, see PGMQ Installation.
Examples
drop_extension()

 update_extension()

Updates the PGMQ extension to the default version in an Ecto.Migration.
For more information, see PGMQ Installation.
Examples
update_extension()

 update_extension(version)

 @spec update_extension(Version.version()) :: :ok

Updates the PGMQ extension in an Ecto.Migration.
For more information, see PGMQ Installation.
Examples
update_extension("1.9.0")

update_extension(Version.parse!("1.9.0"))

 SQL Installation API

 drop_schema()

 @spec drop_schema() :: :ok

Drops the PGMQ schema in an Ecto.Migration.
Warning
This function should NOT be used if PGMQ is installed as an extension.
For more information, see PGMQ Installation.
Examples
drop_schema()

 import_schema(path)

 @spec import_schema(Path.t()) :: :ok

Imports a PGMQ schema file in an Ecto.Migration.
Warning
This function leverages the same adapter callback as
mix ecto.load and
therefore, requires that the psql shell utility is available.
For more information, see PGMQ Installation.
Examples
path =
 :my_app
 |> :code.priv_dir()
 |> Path.join("repo/extensions/pgmq--1.9.0.sql")

import_schema(path)

EctoPGMQ.Notifications

The entrypoint for managing PGMQ notification subscriptions.
For general information about notification subscriptions, see
Postgrex.Notifications.
When to Use Notifications
In general, notifications are most useful for queues with sporadic message
bursts. If a queue is expected to be empty for long periods of time,
subscribing to notifications can reduce polling overhead for consumers. If a
queue has a fairly steady flow of messages, then notifications may not be as
useful.
Enabling Notifications
In order to receive insert notifications for a queue, they must be explicitly
enabled. This can be done during queue creation with
EctoPGMQ.create_queue/4. Alternatively, notifications can be enabled for an
existing queue with EctoPGMQ.update_queue/4 or
EctoPGMQ.PGMQ.enable_notify_insert/4.
Throttling
PGMQ supports per-queue notification throttling with millisecond granularity
(see EctoPGMQ.PGMQ.throttle_interval/0) in order to avoid flooding
notification subscribers during periods of high insert volume.
For more information about configuring notification throttling, see
EctoPGMQ.update_queue/4.
For more information about per-queue notification throttling metrics, see
EctoPGMQ.Throttle.
Disabling Notifications
Notifications can be disabled for an existing queue with
EctoPGMQ.update_queue/4 or EctoPGMQ.PGMQ.disable_notify_insert/3

 Summary

 Types

 channel()

 A notification channel name.

 listener()

 A listener process.

 subscription()

 A subscription reference.

 Functions

 start_link(opts)

 Starts a PGMQ notification listener linked to the current process.

 subscribe(listener, queue, opts \\ [])

 Subscribes the current process to notifications for the given queue.

 unsubscribe(listener, subscription, opts \\ [])

 Unsubscribes the current process from notifications associated with the given
listener reference.

 Types

 channel()

 @type channel() :: String.t()

A notification channel name.

 listener()

 @type listener() :: GenServer.server()

A listener process.

 subscription()

 @type subscription() :: reference()

A subscription reference.

 Functions

 start_link(opts)

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, Postgrex.Error.t() | term()}

Starts a PGMQ notification listener linked to the current process.
Warning
Each notification listener uses its own Postgres connection outside of any
Ecto.Repo connection pools. Therefore, in most cases, it's preferable to
start a single listener that subscribes to multiple channels instead of
starting a single listener per channel.
For information about supported options, see
Postgrex.Notifications.start_link/1.
Examples
start_link([name: MyApp.Notifications | Repo.config()])

 subscribe(listener, queue, opts \\ [])

 @spec subscribe(listener(), EctoPGMQ.Queue.name(), keyword()) ::
 {:ok | :eventually, subscription(), channel()}

Subscribes the current process to notifications for the given queue.
Notifications will manifest as messages with the following shape where
listener_pid is the pid/0 of the listener/0:
{:notification, listener_pid, subscription, channel, ""}
For information about supported options, see
Postgrex.Notifications.listen/3.
Examples
subscribe(MyApp.Notifications, "my_queue")

 unsubscribe(listener, subscription, opts \\ [])

 @spec unsubscribe(listener(), subscription(), keyword()) :: :ok | :error

Unsubscribes the current process from notifications associated with the given
listener reference.
For information about supported options, see
Postgrex.Notifications.unlisten/3.
Examples
unsubscribe(MyApp.Notifications, my_subscription)

EctoPGMQ.PGMQ

An SDK that fully covers the
PGMQ API-space.
Instead of implementing a corresponding function for every alias and
parameterization supported by PGMQ, this module relies on client-side defaults
to implement a single function for each distinct piece of PGMQ functionality.
Query Options
All of the functions in this module support a common set of query options.
For a detailed description of these options, see query_opt/0.

 Summary

 Types

 conditional()

 Filter conditions to be applied when reading messages from a queue.

 delay()

 A delay before a message becomes visible.

 leading_partitions()

 The number of partitions to create preemptively.

 partition_interval()

 The interval at which new partitions should be created.

 poll_interval()

 The time (in milliseconds) to wait between polls.

 poll_timeout()

 The maximum time (in seconds) to poll for messages.

 purged_messages()

 The number of purged messages.

 quantity()

 The maximum number of messages to read.

 query_opt()

 A query configuration option.

 retention_interval()

 The interval at which old partitions should be dropped.

 throttle_interval()

 The minimum time (in milliseconds) between notifications.

 visibility_timeout()

 The time from now (in seconds) that a message is invisible.

 Functions

 archive(repo, queue, message_ids, opts \\ [])

 Archives the given messages in the given queue.

 convert_archive_partitioned(repo, queue, partition_interval \\ 10000, retention_interval \\ 100_000, leading_partitions \\ 10, opts \\ [])

 Converts the archive for the given queue into a partitioned table.

 create_fifo_index(repo, queue, opts \\ [])

 Creates an index to optimize FIFO message group read performance for the given
queue.

 create_non_partitioned(repo, queue, opts \\ [])

 Creates an unpartitioned queue with the given name.

 create_partitioned(repo, queue, partition_interval \\ 10000, retention_interval \\ 100_000, opts \\ [])

 Creates a partitioned queue with the given name.

 create_unlogged(repo, queue, opts \\ [])

 Creates an unlogged queue with the given name.

 delete(repo, queue, message_ids, opts \\ [])

 Deletes the given messages from the given queue.

 disable_notify_insert(repo, queue, opts \\ [])

 Disables insert notifications for the given queue.

 drop_queue(repo, queue, opts \\ [])

 Drops the given queue.

 enable_notify_insert(repo, queue, throttle_interval \\ 250, opts \\ [])

 Enables insert notifications for the given queue.

 list_queues(repo, opts \\ [])

 Lists all queues.

 metrics_all(repo, opts \\ [])

 Returns metrics for all queues.

 pop(repo, queue, quantity, opts \\ [])

 Simultaneously fetches and deletes messages from the given queue.

 purge_queue(repo, queue, opts \\ [])

 Purges all messages from the given queue and returns the number of messages
that were deleted.

 read(repo, queue, visibility_timeout, quantity, conditional \\ %{}, opts \\ [])

 Reads messages from the given queue.

 read_grouped(repo, queue, visibility_timeout, quantity, opts \\ [])

 Reads messages from the given queue while respecting FIFO message groups and
optimizing throughput.

 read_grouped_rr(repo, queue, visibility_timeout, quantity, opts \\ [])

 Reads messages from the given queue while respecting and round-robin
interleaving FIFO message groups.

 read_grouped_rr_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, opts \\ [])

 Reads messages from the given queue with a Postgres server-side poll while
respecting and round-robin interleaving FIFO message groups.

 read_grouped_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, opts \\ [])

 Reads messages from the given queue with a Postgres server-side poll while
respecting FIFO message groups and optimizing throughput.

 read_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, conditional \\ %{}, opts \\ [])

 Reads messages from the given queue with a Postgres server-side poll.

 send_batch(repo, queue, payloads, headers \\ nil, delay \\ 0, opts \\ [])

 Sends the given messages to the given queue.

 set_vt(repo, queue, message_ids, visibility_timeout, opts \\ [])

 Sets the visibility timeout of the given messages in the given queue.

 Types

 conditional()

 @type conditional() :: %{optional(String.t()) => term()}

Filter conditions to be applied when reading messages from a queue.
Note that the filter conditions are applied to the message body, not the
headers.
Warning
As stated in the
PGMQ docs,
conditional message reading is an experimental feature and the API might be
subject to change in future releases.

 delay()

 @type delay() :: non_neg_integer() | DateTime.t()

A delay before a message becomes visible.
This can take either of the following forms:
	An integer/0 denoting the time (in seconds) to wait before a message
becomes visible.

	A DateTime.t/0 denoting when a message should become visible.

 leading_partitions()

 @type leading_partitions() :: non_neg_integer()

The number of partitions to create preemptively.

 partition_interval()

 @type partition_interval() :: pos_integer() | Duration.t()

The interval at which new partitions should be created.
This can take either of the following forms:
	A pos_integer/0 denoting how many messages per partition.

	A Duration.t/0 denoting a time range per partition.

 poll_interval()

 @type poll_interval() :: pos_integer()

The time (in milliseconds) to wait between polls.

 poll_timeout()

 @type poll_timeout() :: pos_integer()

The maximum time (in seconds) to poll for messages.

 purged_messages()

 @type purged_messages() :: non_neg_integer()

The number of purged messages.

 quantity()

 @type quantity() :: pos_integer()

The maximum number of messages to read.

 query_opt()

 @type query_opt() :: {:log, boolean()} | {:timeout, timeout()}

A query configuration option.
The following query configuration options are supported:
	:log - A boolean/0 denoting whether or to log the query. Defaults to
true.

	:timeout - A timeout/0 for the query (in milliseconds). Defaults to
15_000.

 retention_interval()

 @type retention_interval() :: pos_integer() | Duration.t()

The interval at which old partitions should be dropped.
This can take either of the following forms:
	A pos_integer/0 denoting how many messages to retain in total.

	A Duration.t/0 denoting a total time range to retain.

 throttle_interval()

 @type throttle_interval() :: non_neg_integer()

The minimum time (in milliseconds) between notifications.
A throttle interval of 0 effectively disables notification throttling.
For more information about notification throttling, see
Throttling.

 visibility_timeout()

 @type visibility_timeout() :: integer()

The time from now (in seconds) that a message is invisible.

 Functions

 archive(repo, queue, message_ids, opts \\ [])

 @spec archive(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.Message.id()], [
 query_opt()
]) :: :ok

Archives the given messages in the given queue.
For more information about this function, see the
PGMQ docs.
Examples
iex> message_ids = send_batch(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> archive(Repo, "my_queue", message_ids)
:ok

 convert_archive_partitioned(repo, queue, partition_interval \\ 10000, retention_interval \\ 100_000, leading_partitions \\ 10, opts \\ [])

 @spec convert_archive_partitioned(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 partition_interval(),
 retention_interval(),
 leading_partitions(),
 [query_opt()]
) :: :ok

Converts the archive for the given queue into a partitioned table.
Warning
This function postfixes the old archive table name with _old and leaves
its contents untouched. Additional cleanup (table deletion, message
movement, etc.) is left to the user.
For more information about partitioning, see
Partitioning.
For more information about this function, see the
PGMQ docs.
Examples
iex> convert_archive_partitioned(Repo, "my_queue", 10_000, 100_000, 10)
:ok

iex> partition = Duration.new!(hour: 1)
iex> retention = Duration.new!(day: 1)
iex> convert_archive_partitioned(Repo, "my_queue", partition, retention, 10)
:ok

 create_fifo_index(repo, queue, opts \\ [])

 @spec create_fifo_index(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) :: :ok

Creates an index to optimize FIFO message group read performance for the given
queue.
For more information about FIFO message groups, see
FIFO Message Groups.
For more information about this function, see the
PGMQ docs.
Examples
iex> create_fifo_index(Repo, "my_queue")
:ok

 create_non_partitioned(repo, queue, opts \\ [])

 @spec create_non_partitioned(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) ::
 :ok

Creates an unpartitioned queue with the given name.
For more information about this function, see the
PGMQ docs.
Examples
iex> create_non_partitioned(Repo, "my_unpartitioned_queue")
:ok

 create_partitioned(repo, queue, partition_interval \\ 10000, retention_interval \\ 100_000, opts \\ [])

 @spec create_partitioned(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 partition_interval(),
 retention_interval(),
 [query_opt()]
) :: :ok

Creates a partitioned queue with the given name.
For more information about partitioning, see
Partitioning.
For more information about this function, see the
PGMQ docs.
Examples
iex> create_partitioned(Repo, "my_partitioned_queue", 10_000, 100_000)
:ok

iex> partition = Duration.new!(hour: 1)
iex> retention = Duration.new!(day: 1)
iex> create_partitioned(Repo, "my_partitioned_queue", partition, retention)
:ok

 create_unlogged(repo, queue, opts \\ [])

 @spec create_unlogged(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) :: :ok

Creates an unlogged queue with the given name.
For more information about this function, see the
PGMQ docs.
Warning
Unlogged tables benefit from faster write operations but they risk data loss
if the Postgres server restarts. Use with caution.
Examples
iex> create_unlogged(Repo, "my_unlogged_queue")
:ok

 delete(repo, queue, message_ids, opts \\ [])

 @spec delete(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [EctoPGMQ.Message.id()], [
 query_opt()
]) :: :ok

Deletes the given messages from the given queue.
For more information about this function, see the
PGMQ docs.
Examples
iex> message_ids = send_batch(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> delete(Repo, "my_queue", message_ids)
:ok

 disable_notify_insert(repo, queue, opts \\ [])

 @spec disable_notify_insert(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) ::
 :ok

Disables insert notifications for the given queue.
For more information about notifications, see EctoPGMQ.Notifications.
For more information about this function, see the
PGMQ docs.
Examples
iex> disable_notify_insert(Repo, "my_queue")
:ok

 drop_queue(repo, queue, opts \\ [])

 @spec drop_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) :: :ok

Drops the given queue.
For more information about this function, see the
PGMQ docs.
Examples
iex> drop_queue(Repo, "my_queue")
:ok

 enable_notify_insert(repo, queue, throttle_interval \\ 250, opts \\ [])

 @spec enable_notify_insert(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 throttle_interval(),
 [query_opt()]
) ::
 :ok

Enables insert notifications for the given queue.
For more information about notifications, see EctoPGMQ.Notifications.
For more information about this function, see the
PGMQ docs.
Examples
iex> enable_notify_insert(Repo, "my_queue", 1_000)
:ok

 list_queues(repo, opts \\ [])

 @spec list_queues(Ecto.Repo.t(), [query_opt()]) :: [EctoPGMQ.Queue.t()]

Lists all queues.
Because this function naively wraps the corresponding PGMQ function, the
:metrics and :notifications fields in the returned EctoPGMQ.Queue structs
will not be populated.
For more information about this function, see the
PGMQ docs.
Examples
iex> queues = list_queues(Repo)
iex> Enum.all?(queues, &is_struct(&1, EctoPGMQ.Queue))
true

 metrics_all(repo, opts \\ [])

 @spec metrics_all(Ecto.Repo.t(), [query_opt()]) :: [EctoPGMQ.Metrics.t()]

Returns metrics for all queues.
For more information about this function, see the
PGMQ docs.
Examples
iex> metrics = metrics_all(Repo)
iex> Enum.all?(metrics, &is_struct(&1, EctoPGMQ.Metrics))
true

 pop(repo, queue, quantity, opts \\ [])

 @spec pop(Ecto.Repo.t(), EctoPGMQ.Queue.name(), quantity(), [query_opt()]) :: [
 EctoPGMQ.Message.t()
]

Simultaneously fetches and deletes messages from the given queue.
This function does NOT increment the read count of the fetched messages.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = pop(Repo, "my_queue", 1)
iex> match?(%EctoPGMQ.Message{reads: 0}, message)
true

 purge_queue(repo, queue, opts \\ [])

 @spec purge_queue(Ecto.Repo.t(), EctoPGMQ.Queue.name(), [query_opt()]) ::
 purged_messages()

Purges all messages from the given queue and returns the number of messages
that were deleted.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> purge_queue(Repo, "my_queue")
2

 read(repo, queue, visibility_timeout, quantity, conditional \\ %{}, opts \\ [])

 @spec read(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 conditional(),
 [
 query_opt()
]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read(Repo, "my_queue", 5, 1)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 read_grouped(repo, queue, visibility_timeout, quantity, opts \\ [])

 @spec read_grouped(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 [query_opt()]
) ::
 [EctoPGMQ.Message.t()]

Reads messages from the given queue while respecting FIFO message groups and
optimizing throughput.
For more information about FIFO message groups, see
FIFO Message Groups.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_grouped(Repo, "my_queue", 5, 1)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 read_grouped_rr(repo, queue, visibility_timeout, quantity, opts \\ [])

 @spec read_grouped_rr(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 [
 query_opt()
]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue while respecting and round-robin
interleaving FIFO message groups.
For more information about FIFO message groups, see
FIFO Message Groups.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_grouped_rr(Repo, "my_queue", 5, 1)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 read_grouped_rr_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, opts \\ [])

 @spec read_grouped_rr_with_poll(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 poll_timeout(),
 poll_interval(),
 [query_opt()]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue with a Postgres server-side poll while
respecting and round-robin interleaving FIFO message groups.
For more information about FIFO message groups, see
FIFO Message Groups.
For more information about polling, see Polling.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_grouped_rr_with_poll(Repo, "my_queue", 5, 1, 5, 500)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 read_grouped_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, opts \\ [])

 @spec read_grouped_with_poll(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 poll_timeout(),
 poll_interval(),
 [query_opt()]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue with a Postgres server-side poll while
respecting FIFO message groups and optimizing throughput.
For more information about FIFO message groups, see
FIFO Message Groups.
For more information about polling, see Polling.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_grouped_with_poll(Repo, "my_queue", 5, 1, 5, 500)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 read_with_poll(repo, queue, visibility_timeout, quantity, poll_timeout \\ 5, poll_interval \\ 100, conditional \\ %{}, opts \\ [])

 @spec read_with_poll(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 visibility_timeout(),
 quantity(),
 poll_timeout(),
 poll_interval(),
 conditional(),
 [query_opt()]
) :: [EctoPGMQ.Message.t()]

Reads messages from the given queue with a Postgres server-side poll.
For more information about polling, see Polling.
For more information about this function, see the
PGMQ docs.
Examples
iex> send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [message] = read_with_poll(Repo, "my_queue", 5, 1, 5, 500)
iex> match?(%EctoPGMQ.Message{reads: 1}, message)
true

 send_batch(repo, queue, payloads, headers \\ nil, delay \\ 0, opts \\ [])

 @spec send_batch(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 [EctoPGMQ.Message.payload()],
 [EctoPGMQ.Message.headers() | nil] | nil,
 delay(),
 [query_opt()]
) :: [EctoPGMQ.Message.id()]

Sends the given messages to the given queue.
The headers arg defaults to nil, which is a shorthand for NULL headers
for all messages. If a list is given for the headers arg, the length of the
list must match the length of the given list of messages.
For more information about this function, see the
PGMQ docs.
Examples
iex> message_ids = send_batch(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> Enum.all?(message_ids, &is_integer/1)
true

iex> delay = DateTime.utc_now()
iex> message_ids = send_batch(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}], nil, delay)
iex> Enum.all?(message_ids, &is_integer/1)
true

 set_vt(repo, queue, message_ids, visibility_timeout, opts \\ [])

 @spec set_vt(
 Ecto.Repo.t(),
 EctoPGMQ.Queue.name(),
 [EctoPGMQ.Message.id()],
 visibility_timeout(),
 [
 query_opt()
]
) :: [EctoPGMQ.Message.t()]

Sets the visibility timeout of the given messages in the given queue.
For more information about this function, see the
PGMQ docs.
Examples
iex> message_ids = send_batch(Repo, "my_queue", [%{"foo" => 1}])
iex> [read_message] = read(Repo, "my_queue", 5, 1)
iex> [updated_message] = set_vt(Repo, "my_queue", message_ids, 10)
iex> DateTime.diff(updated_message.visible_at, read_message.visible_at) > 0
true

EctoPGMQ.Producer

A Broadway.Producer implementation for PGMQ queues.
This module requires the optional Broadway dependency.
This module can be used in a Broadway pipeline like any other producer:
Broadway.start_link(MyBroadway,
 producer: [
 # Second tuple element contains producer options
 module: {EctoPGMQ.Producer, [repo: Repo, queue: "my_queue", ...]},
 ...
],
 ...
)
Notifications and Producer Polling
EctoPGMQ.Producer supports poll-based, notification-based, and hybrid
queue consumption.
Poll-Based Consumption
When using poll-based consumption, a producer will attempt to read messages
whenever demand is received. If demand cannot be met, the producer will poll
for messages until it can. The polling interval is determined by the
:read_interval option. Sample producer options for poll-based consumption
can be seen below:
[listener: nil, read_interval: 5_000, ...]
Info
This is the default approach to consumption.
Notification-Based Consumption
When using notification-based consumption, a producer will listen for
notifications and only attempt to read messages if it has reason to believe
that the queue is not empty. Depending on the characteristics of the queue,
this approach to consumption may be less taxing on the repo connection pool
than poll-based consumption. For more information about notifications and
when, to use them see EctoPGMQ.Notifications. Sample producer options for
notification-based consumption can be seen below:
[listener: MyListener, read_interval: :infinity, ...]
Warning
A purely notification-based consumer will be subject to race conditions
when connecting/reconnecting to the DB. In practice, this means that there
is a risk of messages being available in the queue but not being read
until more messages arrive and trigger another notification. For this
reason, Hybrid Consumption is preferred over
Notification-Based consumption.
Hybrid Consumption
Like with notification-based consumption, a producer using hybrid
consumption will listen for notifications BUT it will also poll for
messages to make notification race conditions less problematic. The
:read_interval option then effectively becomes the maximum amount of time
a visible message can wait in the queue if a notification is missed. Sample
producer options for hybrid consumption can be seen below:
[listener: MyListener, read_interval: 300_000, ...]
Tip
This is the preferred approach to consumption when leveraging
notifications.
Acknowledgements
EctoPGMQ.Producer supports a number of different acknowledgement actions
(see ack_action/0). Default acknowledgement actions can be set for both
successful and failed messages. Additionally, EctoPGMQ.Producer supports
configuring individual message acknowledgements by calling
Broadway.Message.configure_ack/2 with the following options:
	:ack_action - A required ack_action/0 denoting how to acknowledge
the message.

When used together, default acknowledgement actions and individual message
acknowledgement configuration can be used to implement more complex message
handling. For example, an EctoPGMQ.Producer can use :delete as the
default success acknowledgement, :nothing as the default failure
acknowledgement, and a code snippet like the one below to implement a
maximum number of attempts for each message:
alias Broadway.Message

@max_attempts 3

@impl Broadway
def handle_message(_, message, _) do
 case do_process_pgmq_message(message.data) do
 :ok -> message
 {:error, reason} -> Message.failed(message, reason)
 end
end

@impl Broadway
def handle_failed(messages, _) do
 Enum.map(messages, fn
 %{data: %{reads: r}} = msg when r < @max_attempts -> msg
 msg -> Message.configure_ack(msg, ack_action: :archive)
 end)
end
Warning
All acknowledgement configuration is effectively ignored when deleting
messages on read.
Options
An EctoPGMQ.Producer can be started with the following options:
	:dynamic_repo - An optional atom/0 name or pid/0 of a dynamic
repo to use for all DB operations. For more information about dynamic
repos, see
Dynamic repositories.

	:listener - An optional listener specification that can take any of
the following forms:
	An opts keyword/0 to be passed to
EctoPGMQ.Notifications.start_link/1 to start a listener under
Broadway's supervision tree. The keyword/0 MUST contain a
:name key.

	An existing EctoPGMQ.Notifications.listener/0. This is useful
for sharing a single listener (and, by proxy, a single Postgres
connection) between multiple producers.

	nil to not subscribe to notifications.

Defaults to nil. For more information about configuring notifications
for a producer, see
Notifications and Producer Polling.
For more information about notifications in general, see
EctoPGMQ.Notifications.

	:on_failure - An optional ack_action/0 denoting the default
acknowledgement for failed messages. Defaults to :archive. For more
information about acknowledgements, see
Acknowledgements.

	:on_success - An optional ack_action/0 denoting the default
acknowledgement for successful messages. Defaults to :delete. For
more information about acknowledgements, see
Acknowledgements.

	:queue - A required EctoPGMQ.Queue.name/0 to read messages from.

	:read_interval - An optional Duration.t/0 or timeout/0
denoting how long to wait between polls when there is outstanding demand
(:infinity to disable polling). Defaults to 5_000. For more
information about configuring polling for a producer, see
Notifications and Producer Polling.

	:read_opts - An optional EctoPGMQ.read_messages_opts/0 to be used
when reading messages. Defaults to [].

	:repo - A required Ecto.Repo.t/0 to be used for all DB operations.

	:visibility_timeout - A required EctoPGMQ.visibility_timeout/0 for
read operations.

 Summary

 Types

 ack_action()

 An acknowledgement action for PGMQ messages.

 Types

 ack_action()

 @type ack_action() ::
 :delete
 | :archive
 | :nothing
 | {:update_visibility_timeout, EctoPGMQ.visibility_timeout()}

An acknowledgement action for PGMQ messages.
This can take any of the following forms:
	:delete to delete messages from the queue.

	:archive to move messages from the queue to the archive.

	:nothing to retry messages once the visibility timeout expires

	{:update_visibility_timeout, EctoPGMQ.visibility_timeout()} to
retry messages when the updated EctoPGMQ.visibility_timeout/0
expires.

EctoPGMQ.Message

Schema for PGMQ messages.

 Summary

 Types

 group()

 A PGMQ message group.

 headers()

 PGMQ message headers.

 id()

 A PGMQ message ID.

 payload()

 A PGMQ message payload.

 specification()

 A PGMQ message specification.

 t()

 A PGMQ message.

 Functions

 archive_query(queue)

 Returns a query for the messages in the archive for the given queue.

 queue_query(queue, opts \\ [])

 Returns a query for the messages in the given queue.

 Types

 group()

 @type group() :: String.t()

A PGMQ message group.
For more information about FIFO message groups, see
FIFO Message Groups.

 headers()

 @type headers() :: %{optional(String.Chars.t()) => term()}

PGMQ message headers.

 id()

 @type id() :: pos_integer()

A PGMQ message ID.

 payload()

 @type payload() :: %{optional(String.Chars.t()) => term()}

A PGMQ message payload.

 specification()

 @type specification() ::
 payload()
 | {payload(), group() | nil}
 | {payload(), group() | nil, headers() | nil}

A PGMQ message specification.
Warning
If the group is not nil, it will override any group that may already be
specified in the headers.

 t()

 @type t() :: %EctoPGMQ.Message{
 archived_at: DateTime.t() | nil,
 enqueued_at: DateTime.t(),
 group: group() | nil,
 headers: headers() | nil,
 id: id(),
 payload: payload(),
 reads: non_neg_integer(),
 visible_at: DateTime.t()
}

A PGMQ message.

 Functions

 archive_query(queue)

 @spec archive_query(EctoPGMQ.Queue.name()) :: Ecto.Query.t()

Returns a query for the messages in the archive for the given queue.
Examples
iex> message_ids = EctoPGMQ.send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> EctoPGMQ.archive_messages(Repo, "my_queue", message_ids)
iex> messages = Repo.all(archive_query("my_queue"))
iex> Enum.all?(messages, &is_struct(&1, EctoPGMQ.Message))
true

 queue_query(queue, opts \\ [])

 @spec queue_query(
 EctoPGMQ.Queue.name(),
 keyword()
) :: Ecto.Query.t()

Returns a query for the messages in the given queue.
Options
	:archived_at? - An optional boolean/0 denoting whether or not to
select a NULL :archived_at column. This can be used to make the query
structure match that of archive_query/1. Defaults to false.

Examples
iex> EctoPGMQ.send_messages(Repo, "my_queue", [%{"foo" => 1}, %{"bar" => 2}])
iex> messages = Repo.all(queue_query("my_queue"))
iex> Enum.all?(messages, &is_struct(&1, EctoPGMQ.Message))
true

EctoPGMQ.Metrics

Schema for PGMQ queue metrics.

 Summary

 Types

 t()

 PGMQ queue metrics.

 Functions

 query()

 Returns a query for queue metrics.

 Types

 t()

 @type t() :: %EctoPGMQ.Metrics{
 lifetime_messages: non_neg_integer(),
 newest_message_age: Duration.t() | nil,
 oldest_message_age: Duration.t() | nil,
 queue: EctoPGMQ.Queue.name(),
 requested_at: DateTime.t(),
 total_messages: non_neg_integer(),
 visible_messages: non_neg_integer()
}

PGMQ queue metrics.

 Functions

 query()

 @spec query() :: Ecto.Query.t()

Returns a query for queue metrics.
Metrics are fetched transparently when querying queues via
EctoPGMQ.Queue.query/0.
Warning
This query only supports read operations.
Examples
iex> metrics = Repo.all(query())
iex> Enum.all?(metrics, &is_struct(&1, EctoPGMQ.Metrics))
true

EctoPGMQ.Queue

Schema for PGMQ queues.

 Summary

 Types

 name()

 A PGMQ queue name.

 t()

 A PGMQ queue.

 Functions

 query()

 Returns a query for all queues.

 Types

 name()

 @type name() :: String.t()

A PGMQ queue name.

 t()

 @type t() :: %EctoPGMQ.Queue{
 created_at: DateTime.t(),
 is_partitioned: boolean(),
 is_unlogged: boolean(),
 metrics: EctoPGMQ.Metrics.t() | nil,
 name: name(),
 notifications: EctoPGMQ.Throttle.t() | nil
}

A PGMQ queue.

 Functions

 query()

 @spec query() :: Ecto.Query.t()

Returns a query for all queues.
The returned query joins and populates queue metrics and queue notification
throttles.
Examples
iex> queues = Repo.all(query())
iex> Enum.all?(queues, &is_struct(&1, EctoPGMQ.Queue))
true

EctoPGMQ.Throttle

Schema for PGMQ queue notification throttles.
This schema can be queried directly but throttles are fetched transparently
when querying queues via EctoPGMQ.Queue.query/0.
Examples
iex> throttles = Repo.all(EctoPGMQ.Throttle)
iex> Enum.all?(throttles, &is_struct(&1, EctoPGMQ.Throttle))
true

 Summary

 Types

 t()

 A PGMQ queue notification throttle.

 Types

 t()

 @type t() :: %EctoPGMQ.Throttle{
 __meta__: term(),
 last_notified_at: DateTime.t() | nil,
 queue: EctoPGMQ.Queue.name(),
 throttle: Duration.t()
}

A PGMQ queue notification throttle.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

