

 egit

 v0.1.8

 Table of contents

 	Overview

 	License

 	Modules

 	git

egit - Erlang interface to Git

[image: build]
This project is an Erlang NIF wrapper to libgit2 library. It allows to
execute commands to access and manage a git repository without depending
on the external git tool and internally doesn't involve any parsing of
text output produced by the git executable.
Though it appears to be stable, the project is currently in the alpha stage and more functionality is being added.
Source code: https://github.com/saleyn/egit
Documentation: https://hexdocs.pm/egit
Currently supported functionality
	Init a repository (including creation of bare repositories)
	Clone a repository
	Open a repository at given local path
	Fetch from remote
	Pull from remote
	Push to remote
	Add files to repository
	Commit
	Checkout
	Get status
	Cat-file
	Rev-parse
	Rev-list
	Branch list/create/rename/delete
	Configuration get/set at various levels (e.g. system/global/local/app/default)
	List files in index
	List/add/delete/rename/set-url on a remote
	List/create/delete tags
	Reset

Installation
	Make sure you have libgit2 installed.
	On Ubuntu run: sudo apt-get install libgit2-dev
	On Arch Linux run: sudo pacman -S libgit2
	On Mac OS run: brew install libgit2

	If you are building locally from source, clone egit
and run:
$ make

	For Erlang projects add the dependency in rebar.config:
{deps,
 [% ...
 {egit, "~> 0.1"}
]}.

	For Elixir projects add the dependency in mix.exs:
def deps do
 [
 {:egit, "~> 0.1"}
]
end

Usage
To clone a repository, give it a URL and a local path:
1> Repo = git:clone("http://github.com/saleyn/egit.git", "/tmp").
#Ref<...>
To open a local repository, give it a path:
1> Repo = git:open(<<"/tmp/egit">>).
#Ref<...>
All functions accept either charlists or binaries as arguments, so
they work conveniently in Erlang and Elixir.
The cloned/opened repository resource is owned by the current process,
and will be automatically garbage collected when the owner process
exits.
After obtaining a repository reference, you can call functions in the
git module as illustrated below. For complete reference of supported
functions see the documentation.
Erlang Example
2> git:branch_create(R, "tmp", [{target, <<"1b74c46">>}]).
ok
3> git:checkout(R, "tmp").
ok
4> file:write_file("/tmp/egit/temp.txt", <<"This is a test">>).
ok
5> git:add(R, ".").
#{mode => added,files => [<<"temp.txt">>]}
6> git:commit(R, "Add test files").
ok
7> git:cat_file(R, <<"tmp">>, [{abbrev, 5}]).
#{type => commit,
 author =>
 {<<"Serge Aleynikov">>,<<"test@gmail.com">>,1686195121, -14400},
 oid => <<"b85d0">>,
 parents => [<<"1fd4b">>]}
8> git:cat_file(R, "b85d0", [{abbrev, 5}]).
#{type => tree,
 commits =>
 [{<<".github">>,<<"tree">>,<<"1e41f">>,16384},
 {<<".gitignore">>,<<"blob">>,<<"b893a">>,33188},
 {<<".gitmodules">>,<<"blob">>,<<"2550a">>,33188},
 {<<".vscode">>,<<"tree">>,<<"c7b1b">>,16384},
 {<<"LICENSE">>,<<"blob">>,<<"d6456">>,33188},
 {<<"Makefile">>,<<"blob">>,<<"2d635">>,33188},
 {<<"README.md">>,<<"blob">>,<<"7b3d0">>,33188},
 {<<"c_src">>,<<"tree">>,<<"147f3">>,16384},
 {<<"rebar.config">>,<<"blob">>,<<"1f68a">>,33188},
 {<<"rebar.lock">>,<<"blob">>,<<"57afc">>,33188},
 {<<"src">>,<<"tree">>,<<"1bccb">>,16384}]}
8> git:cat_file(R, "b893a", [{abbrev, 5}]).
#{type => blob,
 blob => <<"*.swp\n*.dump\n/c_src/*.o\n/c_src/fmt\n/priv/*.so\n/_build\n/doc\n">>}
Elixir example
iex(1)> repo = :git.init("/tmp/egit_repo")
#Reference<0.739271388.2889220102.160795>
iex(2)> :git.remote_add(repo, "origin", "git@github.com:saleyn/test_repo.git")
:ok
iex(3)> :git.list_remotes(repo)
[{"origin", "git@github.com:saleyn/test_repo.git", [:push, :fetch]}]
iex(4)> ok = File.write!("/tmp/egit_repo/README.md", <<"This is a test\n">>)
:ok
iex(5)> :git.add(repo, "README.md")
%{mode: :added, files: ["README.md"]}
iex(6)> :git.status(repo)
[%{index: [{:new, "README.md"}]}]
iex(7)> :git.commit(repo, "Initial commit")
{:ok, "dc89c6b26b22f41d34300654f8d36252925d5d67"}
Patching
If you find some functionality lacking, feel free to add missing functions
and submit a PR. The implementation recommendation would be to use one of
the examples
provided with libgit2 as a guide, add the functionality as lg2_*()
function in c_src/git_*.hpp, modify git.cpp to call that function
accordingly, write unit tests in git.erl and sumbmit a pull request.
Author
Serge Aleynikov saleyn@gmail.com
License
Apache 2.0

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

git

 Anchor for this section

 Summary

 Types

 add_opt/0

 add_opts/0

 add_result/0

 branch_create_opts/0

 Branch creation options	overwrite
	Force to overwrite the existing branch
	{target, Commit}
	Use the target commit (default <<"HEAD">>)

 cat_file_opt/0

 cat_file_opts/0

 cfg_source/0

 Configuration source. If the value is an atom, then:	default
	Find default configuration file for this app
	system
	System-wide configuration file - /etc/gitconfig on Linux systems
	xdg
	XDG compatible configuration file, typically ~/.config/git/config
	global
	User-specific global configuration file, typically ~/.gitconfig
	local
	Repository specific configuration file; $WORK_DIR/.git/config on non-bare repos
	app
	Application specific configuration file; freely defined by applications
	highest
	The most specific config file available for the app

 checkout_opt/0

 checkout_opts/0

 checkout_stats/0

 commit_opt/0

 commit_opts/0

 list_branch_opt/0

 List branch option.	local
	Return only local branches
	remote
	Return only remote branches
	all
	Return all branches (default)
	fullname
	Return full branch names
	{limit, Limit}
	Return up to this number of branches

 list_branch_opts/0

 list_index_entry/0

 list_index_opt/0

 List index option.	{abbrev, NumChars}
	NumChars truncates the commit hash (must be less then 40).
	{fields, ListOfFields}
	Field list to return. If not specified, the option will default to [path].

 list_index_opts/0

 repository/0

 rev_list_opt/0

 rev_list_opts/0

 rev_parse_opt/0

 rev_parse_opts/0

 status_opt/0

 Status function options	{untracked, Untracked}
Untracked can be one of:		none - don't include untracked files
	normal - include untracked files
	recursive - include untracked files and recurse into untracked directories

	{paths, Paths}
	Path is an array of path patterns to match
	branch
	Include branch name
	ignored
	Include ignored files
	ignore_submodules
	Indicates that submodules should be skipped
	submodules
	Include submodules (overrides ignore_submodules)

 status_opts/0

 tag_opt/0

 Tag creation options	{message, Msg}
	Message associated with the tag's commit
	{pattern, Pat}
	Pattern to search matching tags
	{target, SHA}
	Target commit SHA to be associated with the tag
	{lines, Num}
	Number of lines in the commit to store

 tag_opts/0

 Functions

 add(Repo, PathSpec)

 Add files matching PathSpecs to indexSee also: add/3.

 add(Repo, PathSpecs, Opts)

 Add files matching PathSpecs to index with options

 add_all(Repo)

 Add all pending changes

 branch_create(Repo, Name)

 Create a branchSee also: git:branch_create/3.

 branch_create(Repo, Name, Opts)

 Create a branch Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:branch_create(R, "tmp").
 ok

 branch_delete(Repo, Name)

 Delete a branch

 branch_rename(Repo, OldName, NewName)

 Rename a branchSee also: branch_rename/4.

 branch_rename(Repo, OldName, NewName, Opts)

 Rename a branch

 cat_file(Repo, Rev)

 Provide content or type and size information for repository objects.

 cat_file(Repo, Rev, Opts)

 Provide content or type and size information for repository objects. Example: 1> R = git:open(".").
 2> git:cat_file(R, "main", [{abbrev, 5}]).
 #{type => commit,
 author => {<<"John Doh">>,<<"test@gmail.com">>,1686195121, -14400},
 oid => <<"b85d0">>,
 parents => [<<"1fd4b">>]}
 7> git:cat_file(R, "b85d0", [{abbrev, 5}]).
 #{type => tree,
 commits =>
 [{<<".github">>,<<"tree">>,<<"1e41f">>,16384},
 {<<".gitignore">>,<<"blob">>,<<"b893a">>,33188},
 {<<".gitmodules">>,<<"blob">>,<<"2550a">>,33188},
 {<<".vscode">>,<<"tree">>,<<"c7b1b">>,16384},
 {<<"LICENSE">>,<<"blob">>,<<"d6456">>,33188},
 {<<"Makefile">>,<<"blob">>,<<"2d635">>,33188},
 {<<"README.md">>,<<"blob">>,<<"7b3d0">>,33188},
 {<<"c_src">>,<<"tree">>,<<"147f3">>,16384},
 {<<"rebar.config">>,<<"blob">>,<<"1f68a">>,33188},
 {<<"rebar.lock">>,<<"blob">>,<<"57afc">>,33188},
 {<<"src">>,<<"tree">>,<<"1bccb">>,16384}]}
 8> git:cat_file(R, "b893a", [{abbrev, 5}]).
 #{type => blob,
 blob => <<"*.swp\n*.dump\n/c_src/*.o\n/c_src/fmt\n/priv/*.so\n/_build\n/doc\n">>}

 checkout(Repo, Rev)

 Same as checkout(Repo, Revision, []).

 checkout(Repo, Revision, Opts)

 Provide content or type and size information for repository objects. If Opts contains verbose (and optionally perf), then the return is a map with checkout stats.

 clone(URL, Path)

 Clone a remote repository to the local path

 commit(Repo, Comment)

 Commit changes to a repository

 commit_lookup(Repo, OID, Opts)

 Lookup commit details identified by OID

 config_get(Src, Key)

 Get git configuration value Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:config_get(R, "user.name").
 {ok,<<"John Doh">>}

 config_set(Src, Key, Val)

 Set git configuration value Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:config_set(R, "user.name", "Test User").
 ok

 fetch(Repo)

 Fetch from origin

 fetch(Repo, Remote)

 Fetch from given remote (e.g. <<"origin">>)

 init(Path)

 Init a repository.See also: init/2.

 init(Path, Opts)

 Init a repository. If Opts list contains bare, a Git repository without a working directory is created at the pointed path. Otherwise, the provided path will be considered as the working directory into which the .git directory will be created.

 list_branches(Repo)

 List branchesSee also: list_branches/2.

 list_branches(Repo, Opts)

 List branches

 list_index(Repo)

 List indexSee also: list_index/2.

 list_index(Repo, Opts)

 List index.

 list_remotes(Repo)

 List remotes

 list_tags(Repo)

 List all tags

 list_tags(Repo, Pattern)

 List all tags

 open(Path)

 Open a local git repository

 pull(Repo)

 Pull from origin

 pull(Repo, Remote)

 Pull from given remote (e.g. <<"origin">>)

 push(Repo)

 Push changes to remote ("origin")

 push(Repo, Remote)

 Push to given remote

 push(Repo, Remote, Refs)

 Push refs to given remote

 remote_add(Repo, Name, URL)

 Add a remote

 remote_delete(Repo, Name)

 Delete a remote

 remote_rename(Repo, OldName, NewName)

 Rename a remote

 remote_set_url(Repo, Name, URL)

 Delete a remote

 remote_set_url(Repo, Name, URL, Opts)

 Add a remote. If Opts contains push, then the repository is pushed ot the remote URL.

 reset(Repo, Type)

 rev_list(Repo, Specs, Opts)

 Return the list of OIDs for the given specs.

 rev_parse(Repo, Spec)

 Same as rev_parse(Repo, Spec, []).

 rev_parse(Repo, Spec, Opts)

 Reverse parse a reference. See https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions for the formats of a Spec.

 status(Repo)

 Get repository status

 status(Repo, Opts)

 Get repository status

 tag_create(Repo, Tag)

 Create a tag

 tag_create(Repo, Tag, Msg)

 Create a tag

 tag_create(Repo, Tag, Msg, Opts)

 Create a tag

 tag_delete(Repo, Tag)

 Delete a tag

 Anchor for this section

Types

 Link to this type

 add_opt/0

 View Source

 -type add_opt() :: verbose | dry_run | update | force.

 Link to this type

 add_opts/0

 View Source

 -type add_opts() :: [add_opt()].

 Link to this type

 add_result/0

 View Source

 -type add_result() :: nil | #{mode => dry_run | added, files => [binary()]} | {error, term()}.

 Link to this type

 branch_create_opts/0

 View Source

 -type branch_create_opts() :: [overwrite | {target, binary()}].

Branch creation options	overwrite
	Force to overwrite the existing branch
	{target, Commit}
	Use the target commit (default <<"HEAD">>)

 Link to this type

 cat_file_opt/0

 View Source

 -type cat_file_opt() :: type | size | {abbrev, pos_integer()}.

 Link to this type

 cat_file_opts/0

 View Source

 -type cat_file_opts() :: [cat_file_opt()].

 Link to this type

 cfg_source/0

 View Source

 -type cfg_source() :: repository() | default | system | xdg | global | local | app | highest.

Configuration source. If the value is an atom, then:	default
	Find default configuration file for this app
	system
	System-wide configuration file - /etc/gitconfig on Linux systems
	xdg
	XDG compatible configuration file, typically ~/.config/git/config
	global
	User-specific global configuration file, typically ~/.gitconfig
	local
	Repository specific configuration file; $WORK_DIR/.git/config on non-bare repos
	app
	Application specific configuration file; freely defined by applications
	highest
	The most specific config file available for the app

 Link to this type

 checkout_opt/0

 View Source

 -type checkout_opt() :: force | verbose | perf.

 Link to this type

 checkout_opts/0

 View Source

 -type checkout_opts() :: [checkout_opt()].

 Link to this type

 checkout_stats/0

 View Source

 -type checkout_stats() ::
 #{chmod_calls => integer(),
 mkdir_calls => integer(),
 stat_calls => integer(),
 total_steps => integer()}.

 Link to this type

 commit_opt/0

 View Source

 -type commit_opt() ::
 encoding | message | summary | time | time_offset | committer | author | header | tree_id.

 Link to this type

 commit_opts/0

 View Source

 -type commit_opts() :: [commit_opt()].

 Link to this type

 list_branch_opt/0

 View Source

 -type list_branch_opt() :: local | remote | all | fullname | {limit, pos_integer()}.

List branch option.	local
	Return only local branches
	remote
	Return only remote branches
	all
	Return all branches (default)
	fullname
	Return full branch names
	{limit, Limit}
	Return up to this number of branches

 Link to this type

 list_branch_opts/0

 View Source

 -type list_branch_opts() :: [list_branch_opt()].

 Link to this type

 list_index_entry/0

 View Source

 -type list_index_entry() ::
 #{path => binary(),
 stage => [normal | ancestor | ours | theirs],
 conflict => boolean(),
 oid => binary(),
 mode => pos_integer(),
 size => non_neg_integer(),
 ctime => pos_integer(),
 mtime => pos_integer()}.

 Link to this type

 list_index_opt/0

 View Source

 -type list_index_opt() ::
 {abbrev, pos_integer()} |
 {fields, all | [path | stage | conflict | oid | mode | size | ctime | mtime]}.

List index option.	{abbrev, NumChars}
	NumChars truncates the commit hash (must be less then 40).
	{fields, ListOfFields}
	Field list to return. If not specified, the option will default to [path].

 Link to this type

 list_index_opts/0

 View Source

 -type list_index_opts() :: [list_index_opt()].

 Link to this type

 repository/0

 View Source

 -type repository() :: reference().

 Link to this type

 rev_list_opt/0

 View Source

 -type rev_list_opt() ::
 [topo_order | date_order | reverse | {limit, pos_integer()} | {abbrev, pos_integer()}].

 Link to this type

 rev_list_opts/0

 View Source

 -type rev_list_opts() :: [rev_list_opt()].

 Link to this type

 rev_parse_opt/0

 View Source

 -type rev_parse_opt() :: {abbrev, pos_integer()}.

 Link to this type

 rev_parse_opts/0

 View Source

 -type rev_parse_opts() :: [rev_parse_opt()].

 Link to this type

 status_opt/0

 View Source

 -type status_opt() ::
 {untracked, none | normal | recursive} |
 {paths, [binary()]} |
 branch | ignored | submodules | ignore_submodules.

Status function options	{untracked, Untracked}
Untracked can be one of:		none - don't include untracked files
	normal - include untracked files
	recursive - include untracked files and recurse into untracked directories

	{paths, Paths}
	Path is an array of path patterns to match
	branch
	Include branch name
	ignored
	Include ignored files
	ignore_submodules
	Indicates that submodules should be skipped
	submodules
	Include submodules (overrides ignore_submodules)

 Link to this type

 status_opts/0

 View Source

 -type status_opts() :: [status_opt()].

 Link to this type

 tag_opt/0

 View Source

 -type tag_opt() :: [{message, binary()} | {pattern, binary()} | {target, binary()} | {lines, integer()}].

Tag creation options	{message, Msg}
	Message associated with the tag's commit
	{pattern, Pat}
	Pattern to search matching tags
	{target, SHA}
	Target commit SHA to be associated with the tag
	{lines, Num}
	Number of lines in the commit to store

 Link to this type

 tag_opts/0

 View Source

 -type tag_opts() :: [tag_opt()].

 Anchor for this section

Functions

 Link to this function

 add(Repo, PathSpec)

 View Source

 -spec add(repository(), binary() | string() | [binary() | string()]) -> add_result().

Add files matching PathSpecs to indexSee also: add/3.

 Link to this function

 add(Repo, PathSpecs, Opts)

 View Source

 -spec add(repository(), [binary() | string()], add_opts()) -> add_result().

Add files matching PathSpecs to index with options

 Link to this function

 add_all(Repo)

 View Source

 -spec add_all(repository()) -> add_result().

Add all pending changes

 Link to this function

 branch_create(Repo, Name)

 View Source

Create a branchSee also: git:branch_create/3.

 Link to this function

 branch_create(Repo, Name, Opts)

 View Source

 -spec branch_create(repository(), binary() | string(), branch_create_opts()) -> ok | {error, binary()}.

Create a branch Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:branch_create(R, "tmp").
 ok

 Link to this function

 branch_delete(Repo, Name)

 View Source

 -spec branch_delete(repository(), binary() | string()) -> ok | {error, binary()}.

Delete a branch

 Link to this function

 branch_rename(Repo, OldName, NewName)

 View Source

Rename a branchSee also: branch_rename/4.

 Link to this function

 branch_rename(Repo, OldName, NewName, Opts)

 View Source

 -spec branch_rename(repository(), binary() | string(), binary() | string(), [overwrite]) ->
 ok | {error, binary()}.

Rename a branch

 Link to this function

 cat_file(Repo, Rev)

 View Source

 -spec cat_file(repository(), binary() | string()) -> {ok, term()} | {error, term()}.

Provide content or type and size information for repository objects.

 Link to this function

 cat_file(Repo, Rev, Opts)

 View Source

 -spec cat_file(repository(), binary() | string(), cat_file_opts()) -> {ok, term()} | {error, term()}.

Provide content or type and size information for repository objects. Example: 1> R = git:open(".").
 2> git:cat_file(R, "main", [{abbrev, 5}]).
 #{type => commit,
 author => {<<"John Doh">>,<<"test@gmail.com">>,1686195121, -14400},
 oid => <<"b85d0">>,
 parents => [<<"1fd4b">>]}
 7> git:cat_file(R, "b85d0", [{abbrev, 5}]).
 #{type => tree,
 commits =>
 [{<<".github">>,<<"tree">>,<<"1e41f">>,16384},
 {<<".gitignore">>,<<"blob">>,<<"b893a">>,33188},
 {<<".gitmodules">>,<<"blob">>,<<"2550a">>,33188},
 {<<".vscode">>,<<"tree">>,<<"c7b1b">>,16384},
 {<<"LICENSE">>,<<"blob">>,<<"d6456">>,33188},
 {<<"Makefile">>,<<"blob">>,<<"2d635">>,33188},
 {<<"README.md">>,<<"blob">>,<<"7b3d0">>,33188},
 {<<"c_src">>,<<"tree">>,<<"147f3">>,16384},
 {<<"rebar.config">>,<<"blob">>,<<"1f68a">>,33188},
 {<<"rebar.lock">>,<<"blob">>,<<"57afc">>,33188},
 {<<"src">>,<<"tree">>,<<"1bccb">>,16384}]}
 8> git:cat_file(R, "b893a", [{abbrev, 5}]).
 #{type => blob,
 blob => <<"*.swp\n*.dump\n/c_src/*.o\n/c_src/fmt\n/priv/*.so\n/_build\n/doc\n">>}

 Link to this function

 checkout(Repo, Rev)

 View Source

 -spec checkout(repository(), binary() | string()) -> ok | {error, term()}.

Same as checkout(Repo, Revision, []).

 Link to this function

 checkout(Repo, Revision, Opts)

 View Source

 -spec checkout(repository(), binary(), checkout_opts()) -> ok | checkout_stats() | {error, term()}.

Provide content or type and size information for repository objects. If Opts contains verbose (and optionally perf), then the return is a map with checkout stats.

 Link to this function

 clone(URL, Path)

 View Source

 -spec clone(binary() | string(), binary() | string()) -> repository().

Clone a remote repository to the local path

 Link to this function

 commit(Repo, Comment)

 View Source

 -spec commit(repository(), binary() | string()) -> {ok, OID :: binary()} | {error, binary() | atom()}.

Commit changes to a repository

 Link to this function

 commit_lookup(Repo, OID, Opts)

 View Source

 -spec commit_lookup(repository(), binary() | string(), [commit_opt()]) -> #{commit_opt() => term()}.

Lookup commit details identified by OID

 Link to this function

 config_get(Src, Key)

 View Source

 -spec config_get(cfg_source(), binary() | string()) -> {ok, binary()} | {error, binary() | atom()}.

Get git configuration value Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:config_get(R, "user.name").
 {ok,<<"John Doh">>}

 Link to this function

 config_set(Src, Key, Val)

 View Source

 -spec config_set(cfg_source(), binary() | string(), binary() | string()) ->
 ok | {error, binary() | atom()}.

Set git configuration value Example: 1> R = git:clone(<<"https://github.com/saleyn/egit.git">>, "/tmp/egit").
 #Ref<0.170091758.2335834136.12133>
 2> git:config_set(R, "user.name", "Test User").
 ok

 Link to this function

 fetch(Repo)

 View Source

 -spec fetch(repository()) -> ok | {error, binary()}.

Fetch from origin

 Link to this function

 fetch(Repo, Remote)

 View Source

 -spec fetch(repository(), binary() | string()) -> ok | {error, binary()}.

Fetch from given remote (e.g. <<"origin">>)

 Link to this function

 init(Path)

 View Source

 -spec init(binary() | string()) -> repository().

Init a repository.See also: init/2.

 Link to this function

 init(Path, Opts)

 View Source

 -spec init(binary() | string(), [bare]) -> repository().

Init a repository. If Opts list contains bare, a Git repository without a working directory is created at the pointed path. Otherwise, the provided path will be considered as the working directory into which the .git directory will be created.

 Link to this function

 list_branches(Repo)

 View Source

List branchesSee also: list_branches/2.

 Link to this function

 list_branches(Repo, Opts)

 View Source

 -spec list_branches(repository(), list_branch_opts()) -> [{local | remote, binary()}].

List branches

 Link to this function

 list_index(Repo)

 View Source

List indexSee also: list_index/2.

 Link to this function

 list_index(Repo, Opts)

 View Source

 -spec list_index(repository(), list_index_opts()) -> [list_index_entry()].

List index.

 Link to this function

 list_remotes(Repo)

 View Source

 -spec list_remotes(repository()) -> [{binary(), binary()}].

List remotes

 Link to this function

 list_tags(Repo)

 View Source

 -spec list_tags(repository()) -> [binary() | {binary(), binary()}] | {error, binary() | atom()}.

List all tags

 Link to this function

 list_tags(Repo, Pattern)

 View Source

 -spec list_tags(repository(), string() | binary()) ->
 [binary() | {binary(), binary()}] | {error, binary() | atom()}.

List all tags

 Link to this function

 open(Path)

 View Source

 -spec open(binary() | string()) -> repository().

Open a local git repository

 Link to this function

 pull(Repo)

 View Source

 -spec pull(repository()) -> ok | {error, binary()}.

Pull from origin

 Link to this function

 pull(Repo, Remote)

 View Source

 -spec pull(repository(), binary() | string()) -> ok | {error, binary()}.

Pull from given remote (e.g. <<"origin">>)

 Link to this function

 push(Repo)

 View Source

 -spec push(repository()) -> ok | {error, binary()}.

Push changes to remote ("origin")

 Link to this function

 push(Repo, Remote)

 View Source

 -spec push(repository(), binary() | string()) -> ok | {error, binary()}.

Push to given remote

 Link to this function

 push(Repo, Remote, Refs)

 View Source

 -spec push(repository(), binary() | string(), [binary() | string()]) -> ok | {error, binary()}.

Push refs to given remote

 Link to this function

 remote_add(Repo, Name, URL)

 View Source

 -spec remote_add(repository(), binary() | string(), binary() | string()) -> ok | {error, binary()}.

Add a remote

 Link to this function

 remote_delete(Repo, Name)

 View Source

 -spec remote_delete(repository(), binary() | string()) -> ok | {error, binary()}.

Delete a remote

 Link to this function

 remote_rename(Repo, OldName, NewName)

 View Source

 -spec remote_rename(repository(), binary() | string(), binary() | string()) -> ok | {error, binary()}.

Rename a remote

 Link to this function

 remote_set_url(Repo, Name, URL)

 View Source

 -spec remote_set_url(repository(), binary() | string(), binary() | string()) -> ok | {error, binary()}.

Delete a remote

 Link to this function

 remote_set_url(Repo, Name, URL, Opts)

 View Source

Add a remote. If Opts contains push, then the repository is pushed ot the remote URL.

 Link to this function

 reset(Repo, Type)

 View Source

 -spec reset(repository(), soft | mixed | hard) -> ok | {error, term()}.

 Link to this function

 rev_list(Repo, Specs, Opts)

 View Source

 -spec rev_list(repository(), ['not' | 'Elixir.Not' | string() | binary()] | binary(), rev_list_opts()) ->
 #{commit_opt() => term()}.

Return the list of OIDs for the given specs.
Opts is a list of:	topo_order | date_order | reverse
	Control sorting order
	{limit, Limit}
	Limit is an integer that limits the number of refs returned
	{abbrev, NumChars}
	NumChars truncates the commit hash (must be less then 40)

Example: 9> git:rev_list(R, ["HEAD"], [{limit, 4}, {abbrev, 7}]).
 [<<"f791f01">>,<<"1b74c46">>,<<"c40374d">>,<<"12968bd">>]

 Link to this function

 rev_parse(Repo, Spec)

 View Source

 -spec rev_parse(repository(), binary() | string()) ->
 {ok, binary()} | map() | {error, binary() | atom()}.

Same as rev_parse(Repo, Spec, []).

 Link to this function

 rev_parse(Repo, Spec, Opts)

 View Source

 -spec rev_parse(repository(), binary() | string(), rev_parse_opts()) ->
 {ok, binary()} | map() | {error, binary() | atom()}.

Reverse parse a reference. See https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions for the formats of a Spec.
Opts is a list of:	{abbrev, NumChars}
	NumChars truncates the commit hash (must be less then 40)

When a reference refers to a single object, an ok tuple with a binary string of the commit hash is returned. When it refers to a range (e.g. HEAD..HEAD~2`), a map is returned with `from and to keys. When using a Symmetric Difference Notation ... (i.e. HEAD...HEAD~4), a map with three keys from, to, and merge_base is returned.
Examples: 2> git:rev_parse(R,<<"HEAD~4">>, [{abbrev, 7}]).
 {ok,<<"6d6f662">>}
 3> git:rev_parse(R,<<"HEAD..HEAD~4">>, [{abbrev, 7}]).
 git:rev_parse(R,<<"HEAD..HEAD~4">>, [{abbrev, 7}]).
 #{from => <<"f791f01">>,to => <<"6d6f662">>}
 4> git:rev_parse(R,<<"HEAD...HEAD~4">>).
 git:rev_parse(R,<<"HEAD...HEAD~4">>, [{abbrev, 7}]).
 #{from => <<"f791f01">>,merge_base => <<"6d6f662">>, to => <<"6d6f662">>}

 Link to this function

 status(Repo)

 View Source

 -spec status(repository()) -> map() | {error, term()}.

Get repository status

 Link to this function

 status(Repo, Opts)

 View Source

 -spec status(repository(), status_opts()) -> map() | {error, term()}.

Get repository status

 Link to this function

 tag_create(Repo, Tag)

 View Source

 -spec tag_create(repository(), string() | binary()) -> ok | {error, binary() | atom()}.

Create a tag

 Link to this function

 tag_create(Repo, Tag, Msg)

 View Source

 -spec tag_create(repository(), string() | binary(), nil | string() | binary()) ->
 ok | {error, binary() | atom()}.

Create a tag

 Link to this function

 tag_create(Repo, Tag, Msg, Opts)

 View Source

 -spec tag_create(repository(), string() | binary(), nil | string() | binary(), tag_opts()) ->
 ok | {error, binary() | atom()}.

Create a tag

 Link to this function

 tag_delete(Repo, Tag)

 View Source

 -spec tag_delete(repository(), string() | binary()) -> ok | {error, binary() | atom()}.

Delete a tag

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

