

 electric

 v1.3.3

 Table of contents

 	Electric

 	
 Modules

 	Electric

 	Electric.AdmissionControl

 	Electric.Application

 	Electric.AsyncDeleter

 	Electric.ConcurrentStream

 	Electric.Config

 	Electric.Connection.Manager

 	Electric.Connection.Manager.ConnectionBackoff

 	Electric.Connection.Manager.ConnectionResolver

 	Electric.Connection.Manager.Pool

 	Electric.Connection.Manager.State

 	Electric.Connection.Manager.Supervisor

 	Electric.Connection.Restarter

 	Electric.Connection.Supervisor

 	Electric.CoreSupervisor

 	Electric.LogItems

 	Electric.LsnTracker

 	Electric.MonitoredCoreSupervisor

 	Electric.PersistentKV

 	Electric.PersistentKV.Filesystem

 	Electric.PersistentKV.Memory

 	Electric.PersistentKV.Mock

 	Electric.PersistentKV.Serialized

 	Electric.Plug.DeleteShapePlug

 	Electric.Plug.HealthCheckPlug

 	Electric.Plug.LabelProcessPlug

 	Electric.Plug.OptionsShapePlug

 	Electric.Plug.Router

 	Electric.Plug.ServeShapePlug

 	Electric.Plug.TraceContextPlug

 	Electric.Plug.UtilityRouter

 	Electric.Plug.Utils

 	Electric.Plug.Utils.CORSHeaderPlug

 	Electric.Plug.Utils.PassAssignToOptsPlug

 	Electric.Postgres

 	Electric.Postgres.Configuration

 	Electric.Postgres.Identifiers

 	Electric.Postgres.Identifiers.StringSplitter

 	Electric.Postgres.Inspector

 	Electric.Postgres.Inspector.EtsInspector

 	Electric.Postgres.LockBreakerConnection

 	Electric.Postgres.LogicalReplication.Messages

 	Electric.Postgres.LogicalReplication.Messages.Begin

 	Electric.Postgres.LogicalReplication.Messages.Commit

 	Electric.Postgres.LogicalReplication.Messages.Delete

 	Electric.Postgres.LogicalReplication.Messages.Insert

 	Electric.Postgres.LogicalReplication.Messages.Message

 	Electric.Postgres.LogicalReplication.Messages.Origin

 	Electric.Postgres.LogicalReplication.Messages.Relation

 	Electric.Postgres.LogicalReplication.Messages.Relation.Column

 	Electric.Postgres.LogicalReplication.Messages.Truncate

 	Electric.Postgres.LogicalReplication.Messages.Type

 	Electric.Postgres.LogicalReplication.Messages.Unsupported

 	Electric.Postgres.LogicalReplication.Messages.Update

 	Electric.Postgres.Lsn

 	Electric.Postgres.ReplicationClient

 	Electric.Postgres.ReplicationClient.ConnectionSetup

 	Electric.Postgres.ReplicationClient.MessageConverter

 	Electric.Postgres.ReplicationClient.State

 	Electric.Postgres.SnapshotQuery

 	Electric.Postgres.Xid

 	Electric.ProcessRegistry

 	Electric.Replication.Changes

 	Electric.Replication.Changes.Column

 	Electric.Replication.Changes.Commit

 	Electric.Replication.Changes.DeletedRecord

 	Electric.Replication.Changes.NewRecord

 	Electric.Replication.Changes.Relation

 	Electric.Replication.Changes.Transaction

 	Electric.Replication.Changes.TransactionFragment

 	Electric.Replication.Changes.TruncatedRelation

 	Electric.Replication.Changes.UpdatedRecord

 	Electric.Replication.Eval

 	Electric.Replication.Eval.Env

 	Electric.Replication.Eval.Env.BasicTypes

 	Electric.Replication.Eval.Env.ExplicitCasts

 	Electric.Replication.Eval.Env.ImplicitCasts

 	Electric.Replication.Eval.Env.KnownFunctions

 	Electric.Replication.Eval.Expr

 	Electric.Replication.Eval.KnownDefinition

 	Electric.Replication.Eval.Lookups

 	Electric.Replication.Eval.Parser

 	Electric.Replication.Eval.Parser.Array

 	Electric.Replication.Eval.Parser.Const

 	Electric.Replication.Eval.Parser.Func

 	Electric.Replication.Eval.Parser.Ref

 	Electric.Replication.Eval.Parser.RowExpr

 	Electric.Replication.Eval.Parser.UnknownConst

 	Electric.Replication.Eval.Runner

 	Electric.Replication.Eval.Walker

 	Electric.Replication.LogOffset

 	Electric.Replication.PersistentReplicationState

 	Electric.Replication.PostgresInterop.Casting

 	Electric.Replication.PublicationManager

 	Electric.Replication.PublicationManager.Configurator

 	Electric.Replication.PublicationManager.RelationTracker

 	Electric.Replication.PublicationManager.Supervisor

 	Electric.Replication.SchemaReconciler

 	Electric.Replication.ShapeLogCollector

 	Electric.Replication.ShapeLogCollector.FlushTracker

 	Electric.Replication.ShapeLogCollector.RequestBatcher

 	Electric.Replication.ShapeLogCollector.Supervisor

 	Electric.Replication.TransactionBuilder

 	Electric.Schema

 	Electric.ShapeCache

 	Electric.ShapeCache.CrashingFileStorage

 	Electric.ShapeCache.ExpiryManager

 	Electric.ShapeCache.InMemoryStorage

 	Electric.ShapeCache.LogChunker

 	Electric.ShapeCache.PureFileStorage

 	Electric.ShapeCache.PureFileStorage.FileInfo

 	Electric.ShapeCache.PureFileStorage.KeyIndex

 	Electric.ShapeCache.PureFileStorage.SharedRecords

 	Electric.ShapeCache.ShapeCleaner

 	Electric.ShapeCache.ShapeCleaner.CleanupTaskSupervisor

 	Electric.ShapeCache.ShapeStatus

 	Electric.ShapeCache.ShapeStatus.ShapeDb.Migrator

 	Electric.ShapeCache.ShapeStatus.ShapeDb.Query

 	Electric.ShapeCache.ShapeStatus.ShapeDb.Supervisor

 	Electric.ShapeCache.ShapeStatusOwner

 	Electric.Shapes

 	Electric.Shapes.Api

 	Electric.Shapes.Api.Encoder

 	Electric.Shapes.Api.Encoder.JSON

 	Electric.Shapes.Api.Encoder.SSE

 	Electric.Shapes.Api.Encoder.Term

 	Electric.Shapes.Api.Error

 	Electric.Shapes.Api.Options

 	Electric.Shapes.Api.Params

 	Electric.Shapes.Api.Params.ColumnList

 	Electric.Shapes.Api.Params.JsonOrMapStringParams

 	Electric.Shapes.Api.Params.SubsetParams

 	Electric.Shapes.Api.Request

 	Electric.Shapes.Api.Response

 	Electric.Shapes.Api.SseState

 	Electric.Shapes.Consumer

 	Electric.Shapes.Consumer.ChangeHandling

 	Electric.Shapes.Consumer.Materializer

 	Electric.Shapes.Consumer.MoveIns

 	Electric.Shapes.Consumer.Snapshotter

 	Electric.Shapes.ConsumerRegistry

 	Electric.Shapes.DependencyLayers

 	Electric.Shapes.DynamicConsumerSupervisor

 	Electric.Shapes.EventRouter

 	Electric.Shapes.Filter

 	Electric.Shapes.Filter.Index

 	Electric.Shapes.Filter.Indexes.EqualityIndex

 	Electric.Shapes.Filter.Indexes.InclusionIndex

 	Electric.Shapes.Filter.WhereCondition

 	Electric.Shapes.PartialModes

 	Electric.Shapes.Partitions

 	Electric.Shapes.Querying

 	Electric.Shapes.Shape

 	Electric.Shapes.Shape.Comparable

 	Electric.Shapes.Shape.Subset

 	Electric.Shapes.Shape.Validators

 	Electric.Shapes.Supervisor

 	Electric.Shapes.WhereClause

 	Electric.StackConfig

 	Electric.StackSupervisor

 	Electric.StackSupervisor.Telemetry

 	Electric.Telemetry

 	Electric.Telemetry.IntervalTimer

 	Electric.Telemetry.OpenTelemetry

 	Electric.Telemetry.OpenTelemetry.Config

 	Electric.Telemetry.Sampler

 	Electric.Telemetry.Sentry

 	Electric.Timeline

 	Electric.Utils

 	Electric.Walkable

 	PgInterop.Array

 	PgInterop.Interval

 	PgInterop.Interval.ISO8601AlternativeParser

 	PgInterop.Interval.ISO8601Parser

 	PgInterop.Interval.Iso8601Formatter

 	PgInterop.Interval.PostgresAndSQLParser

 	PgInterop.Postgrex.Extensions.PgLsn

 	PgInterop.Postgrex.Extensions.PgSnapshot

 	PgInterop.Sublink

 	Exceptions

 	Electric.DbConfigurationError

 	Electric.DbConnectionError

 	Electric.ShapeCache.ShapeStatus.ShapeDb.Error

 	Electric.ShapeCache.Storage.Error

 	Electric.Shapes.Querying.QueryError

 	Electric.SnapshotError

 Electric

Electric Sync is a lightweight data synchronization service designed to sync small subsets of your Postgres data into various environments and applications, such as web and mobile apps, development environments, edge services, and local AI systems.
Key Use Cases:
	Web & Mobile Apps: Replaces traditional data fetching by syncing necessary data directly into your apps.
	Development Environments: Synchronizes data into embedded databases like PGlite, facilitating local testing.
	Edge Workers & Services: Maintains low-latency data caches for edge services.
	Local AI Systems: Syncs data into AI systems utilizing pgvector for efficient, local data handling.

How it Works:
Electric Sync is powered by an Elixir-based application that connects to your Postgres database via a DATABASE_URL. It consumes the logical replication stream and exposes an HTTP API for replicating data subsets, or "Shapes," to local environments.
For a quick setup and examples, refer to the Quickstart guide.
Running as a Standalone HTTP Endpoint
Run Postgres:
docker compose -f dev/docker-compose.yml create
docker compose -f dev/docker-compose.yml start

Source the .env.dev somehow, e.g.:
set -a; source .env.dev; set +a

Run the Elixir app:
mix deps.get
iex -S mix

Embedding into another Elixir Application
Include :electric into your dependencies:
mix.exs
defp deps do
 [
 {:electric, ">= 1.0.0-beta.18"}
]
end
Add the Postgres db connection configuration to your application's config.
Electric accepts the same configuration format as
Ecto (and
Postgrex) so you can
reuse that configuration if you want:
config/*.exs
database_config = [
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"
]

config :my_app, Repo, database_config

config :electric, replication_connection_opts: database_config
Or if you're getting your db connection from an environment variable, then you
can use
Electric.Config.parse_postgresql_uri!/1:
config/*.exs
{:ok, database_config} =
 System.fetch_env!("DATABASE_URL")
 |> Electric.Config.parse_postgresql_uri()

config :electric, replication_connection_opts: database_config
The Electric app will startup along with the rest of your Elixir app.
Beyond the required database connection configuration there are a lot of other
optional configuration parameters. See the Electric docs for more
information.

Electric

Configuration options
When embedding Electric, the following options are available:
config :electric,
 connection_opts: nil
 # Database
 provided_database_id: "single_stack",
 db_pool_size: 20,
 replication_stream_id: "default",
 replication_slot_temporary?: false,
 max_txn_size: 262144000,
 # HTTP API
 service_port: 3000,
 allow_shape_deletion?: false,
 cache_max_age: 60,
 cache_stale_age: 300,
 chunk_bytes_threshold: 10485760,
 listen_on_ipv6?: false,
 # Storage
 storage_dir: "./persistent",
 storage: {Electric.ShapeCache.PureFileStorage, [storage_dir: "./persistent/shapes"]},
 persistent_kv: {Electric.PersistentKV.Filesystem, :new!, [root: "./persistent/state"]},
 # Telemetry
 instance_id: nil,
 telemetry_statsd_host: nil,
 prometheus_port: nil,
 call_home_telemetry?: false,
 telemetry_url: %URI{scheme: "https", userinfo: nil, host: "checkpoint.electric-sql.com", port: 443, path: nil, query: nil, fragment: nil},
Only the connection_opts are required.
Database
	replication_connection_opts - Required	:hostname (String.t/0) - Required. Server hostname

	:port (integer/0) - Required. Server port

	:database (String.t/0) - Required. Database

	:username (String.t/0) - Required. Username

	:password - Required. User password

	:sslmode - Connection SSL configuration. See https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS The default value is :prefer.

	:ipv6 (boolean/0) - Whether to use IPv6 for database connections The default value is false.

	:cacertfile (String.t/0) - The path to a file containing trusted certificate(s) that will be used to verify the certificate obtained from the database server during the TLS handshake

.
	query_connection_opts - Optional separate connection string that can use a pooler for non-replication queries (default: nil)	:hostname (String.t/0) - Required. Server hostname

	:port (integer/0) - Required. Server port

	:database (String.t/0) - Required. Database

	:username (String.t/0) - Required. Username

	:password - Required. User password

	:sslmode - Connection SSL configuration. See https://www.postgresql.org/docs/current/libpq-ssl.html#LIBPQ-SSL-SSLMODE-STATEMENTS The default value is :prefer.

	:ipv6 (boolean/0) - Whether to use IPv6 for database connections The default value is false.

	:cacertfile (String.t/0) - The path to a file containing trusted certificate(s) that will be used to verify the certificate obtained from the database server during the TLS handshake

.
	db_pool_size - How many connections Electric opens as a pool for handling shape queries (default: 20)
	replication_stream_id - Suffix for the logical replication publication and slot name (default: "default")

HTTP API
	service_port (integer/0) - Port that the HTTP API is exposed on (default: 3000)
	allow_shape_deletion? (boolean/0) - Whether to allow deletion of Shapes via the HTTP API (default: false)
	cache_max_age (integer/0) - Default max-age for the cache headers of the HTTP API in seconds (default: 60s)
	cache_stale_age (integer/0) - Default stale-age for the cache headers of the HTTP API in seconds (default: 300s)
	chunk_bytes_threshold (integer/0) - Limit the maximum size in bytes of a shape log response,
to ensure they are cached by upstream caches. (default: 10485760 (10MiB)).
	listen_on_ipv6? (boolean/0) - Whether the HTTP API should listen on IPv6 as well as IPv4 (default: false)

Storage
	storage_dir (String.t/0) - Path to root folder for storing data on the filesystem (default: "./persistent")
	storage (t:Electric.ShapeCache.Storage.storage/0) - Where to store shape logs. Must be a 2-tuple of {module(), term()} where module points to an implementation of the
Electric.ShapeCache.Storage behaviour. (default: {Electric.ShapeCache.PureFileStorage, [storage_dir: "./persistent/shapes"]})
	persistent_kv (Electric.PersistentKV.t/0) - A mfa that when called constructs an implementation of
the Electric.PersistentKV behaviour, used to store system state (default: {Electric.PersistentKV.Filesystem, :new!, [root: "./persistent/state"]})

Telemetry
	instance_id (binary/0) - A unique identifier for the Electric instance. Set this to
enable tracking of instance usage metrics across restarts, otherwise will be
randomly generated at boot (default: a randomly generated UUID).
	telemetry_statsd_host (String.t/0) - If set, send telemetry data to the given StatsD reporting endpoint (default: nil)
	prometheus_port (integer/0) - If set, expose a prometheus reporter for telemetry data on the specified port (default: nil)
	call_home_telemetry? (boolean/0) - Allow anonymous usage
data
about the instance being sent to a central checkpoint service (default: true for production)
	telemetry_url (URI.t/0) - Where to send the usage data (default: %URI{scheme: "https", userinfo: nil, host: "checkpoint.electric-sql.com", port: 443, path: nil, query: nil, fragment: nil})

Deprecated
	provided_database_id (binary/0) - The provided database id is relevant if you had
used v0.8 and want to keep the storage instead of having hanging files. We
use a provided value as stack id, but nothing else.

 Summary

 Types

 oid_relation()

 pg_connection_opts()

 relation()

 relation_id()

 shape_handle()

 stack_id()

 Functions

 stack_events_registry()

 telemetry_enabled?()

 version()

 Types

 oid_relation()

 @type oid_relation() :: {oid :: relation_id(), relation :: relation()}

 pg_connection_opts()

 @type pg_connection_opts() :: [
 hostname: binary(),
 port: integer(),
 database: binary(),
 username: binary(),
 password: binary() | (-> term()),
 sslmode: :disable | :allow | :prefer | :require,
 ipv6: boolean(),
 cacertfile: binary()
]

 relation()

 @type relation() :: {schema :: String.t(), table :: String.t()}

 relation_id()

 @type relation_id() :: non_neg_integer()

 shape_handle()

 @type shape_handle() :: binary()

 stack_id()

 @type stack_id() :: binary()

 Functions

 stack_events_registry()

 telemetry_enabled?()

 version()

Electric.AdmissionControl

Simple admission control using ETS-based counters to limit concurrent requests per stack.
This module prevents server overload by:
	Limiting the number of concurrent requests per type of request (initial or existing) within a stack
	Failing fast with 503 + Retry-After when at capacity
	Using cheap ETS operations for minimal overhead

Usage
Try to acquire a permit for a stack
case Electric.AdmissionControl.try_acquire(stack_id, :initial, max_concurrent: 1000) do
 :ok ->
 # Request is allowed, process it
 # Don't forget to call release/1 when done!

 {:error, :overloaded} ->
 # Too many concurrent requests, return 503
end

Always release the permit when done
Electric.AdmissionControl.release(stack_id, :initial)
Configuration
The max_concurrent limit can be configured in your config files:
config :electric, :max_concurrent_requests, %{initial: 300, existing: 1000}

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_current(stack_id, opts \\ [])

 Get the current number of in-flight requests for a stack.

 release(stack_id, kind, opts \\ [])

 Release a permit for the given stack_id.

 start_link(opts)

 Start the admission control GenServer.

 try_acquire(stack_id, kind, opts \\ [])

 Try to acquire a permit for the given stack_id.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_current(stack_id, opts \\ [])

Get the current number of in-flight requests for a stack.
Returns a map with :initial and :existing counts.
Useful for monitoring and debugging.
Options
	:table_name - ETS table name (default: :electric_admission_control)

Examples
iex> Electric.AdmissionControl.get_current("stack-123")
%{initial: 5, existing: 10}

 release(stack_id, kind, opts \\ [])

Release a permit for the given stack_id.
Always call this after processing a request, even if it errors.
Consider using a try/after or Plug's register_before_send/2 callback.
Options
	:table_name - ETS table name (default: :electric_admission_control)

Examples
iex> Electric.AdmissionControl.release("stack-123", :initial)
:ok

 start_link(opts)

Start the admission control GenServer.
Options
	:table_name - Custom ETS table name (default: :electric_admission_control)
	:name - GenServer name (default: __MODULE__)

 try_acquire(stack_id, kind, opts \\ [])

Try to acquire a permit for the given stack_id.
Returns :ok if permit granted, {:error, :overloaded} if at capacity.
Options
	:max_concurrent - Maximum concurrent requests allowed (default: 1000)
	:table_name - ETS table name (default: :electric_admission_control)

Examples
iex> Electric.AdmissionControl.try_acquire("stack-123", :initial, max_concurrent: 1000)
:ok

iex> Electric.AdmissionControl.try_acquire("stack-123", :initial, max_concurrent: 1)
{:error, :overloaded}

Electric.Application

 Summary

 Functions

 api(opts \\ [])

 Returns a configured Electric.Shapes.Api instance

 children_application()

 children_library()

 Functions

 api(opts \\ [])

Returns a configured Electric.Shapes.Api instance

 children_application()

 children_library()

Electric.AsyncDeleter

A service that batches file/directory deletions by first moving them into a
per-stack trash directory and then, after a configurable interval, removing
the trash directory contents in one rm -rf operation.
This reduces filesystem churn when many deletes happen in quick succession
(e.g. cache eviction) and avoids blocking callers: delete/1 returns after a
quick File.rename/2 into the trash directory.
Configuration:
	:cleanup_interval_ms - interval in milliseconds after the
 first queued delete before the batch is removed. Defaults to 10000 ms.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 delete(stack_id, path)

 Deletes the given directory by first renaming it into the stack's trash directory
then asynchronously removing the trash entry using rm -rf.

 name(stack_id)

 start_link(opts)

 trash_dir(storage_dir, stack_id)

 trash_dir!(stack_id)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 delete(stack_id, path)

 @spec delete(Electric.stack_id(), Path.t()) :: :ok | {:error, term()}

Deletes the given directory by first renaming it into the stack's trash directory
then asynchronously removing the trash entry using rm -rf.

 name(stack_id)

 start_link(opts)

 trash_dir(storage_dir, stack_id)

 trash_dir!(stack_id)

Electric.ConcurrentStream

 Summary

 Functions

 stream_to_end(opts)

 Allows concurrent reading while writing of a stream.
There can be mutiple reading processes however there must be only one writing process.

 Functions

 stream_to_end(opts)

Allows concurrent reading while writing of a stream.
There can be mutiple reading processes however there must be only one writing process.
The writing process must append an end marker to the end of the stream when it has finished
to signal to the reading processes that the stream has ended.
If a read process runs out of data to read before the end marker has been written
it waits the poll_time_in_ms for more data to be written, then resumes the stream
with the stream_fun.

Electric.Config

 Summary

 Types

 instance_id()

 Functions

 default(key)

 fetch_env!(key)

 get_env(key)

 get_env_lazy(key, fun)

 installation_id!(kv)

 min_replication_idle_timeout()

 The minimum allowed time before Electric can close database connections due to the
replication stream inactivity.

 min_replication_idle_timeout_in_seconds()

 parse_feature_flags(str)

 parse_human_readable_time(str)

 parse_human_readable_time!(str)

 parse_log_level(str)

 parse_log_level!(str)

 parse_postgresql_uri(uri_str)

 Parse a PostgreSQL URI into a keyword list.

 parse_postgresql_uri!(uri_str)

 parse_spawn_opts!(str)

 Parse spawn_opts from environment variable to keyword list suitable for passing to GenServer.start_link/2

 parse_telemetry_url(str)

 parse_telemetry_url!(str)

 persist_installation_id(persistent_kv, instance_id)

 persistent_kv()

 validate_security_config!(secret, insecure)

 Types

 instance_id()

 @type instance_id() :: String.t()

 Functions

 default(key)

 fetch_env!(key)

 @spec fetch_env!(Application.key()) :: Application.value()

 get_env(key)

 @spec get_env(Application.key()) :: Application.value()

 get_env_lazy(key, fun)

 installation_id!(kv)

 @spec installation_id!(term()) :: binary() | no_return()

 min_replication_idle_timeout()

 @spec min_replication_idle_timeout() :: pos_integer()

The minimum allowed time before Electric can close database connections due to the
replication stream inactivity.
This is to prevent churn where connection and replication supervisors would restart too frequently.
The scale-to-zero feature of managed providers like Neon takes on the order of minutes before
deciding that an idle database can be scaled down.

 min_replication_idle_timeout_in_seconds()

 parse_feature_flags(str)

 parse_human_readable_time(str)

 @spec parse_human_readable_time(binary() | nil) ::
 {:ok, pos_integer()} | {:error, binary()}

 parse_human_readable_time!(str)

 parse_log_level(str)

 @spec parse_log_level(binary()) :: {:ok, Logger.level()} | {:error, binary()}

 parse_log_level!(str)

 parse_postgresql_uri(uri_str)

 @spec parse_postgresql_uri(binary()) :: {:ok, keyword()} | {:error, binary()}

Parse a PostgreSQL URI into a keyword list.
Examples
iex> parse_postgresql_uri("postgresql://postgres:password@example.com/app-db") |> deobfuscate()
{:ok, [
 hostname: "example.com",
 port: 5432,
 database: "app-db",
 username: "postgres",
 password: "password",
]}

iex> parse_postgresql_uri("postgresql://electric@192.168.111.33:81/__shadow")
{:ok, [
 hostname: "192.168.111.33",
 port: 81,
 database: "__shadow",
 username: "electric"
]}

iex> parse_postgresql_uri("postgresql://pg@[2001:db8::1234]:4321")
{:ok, [
 hostname: "2001:db8::1234",
 port: 4321,
 database: "pg",
 username: "pg"
]}

iex> parse_postgresql_uri("postgresql://user@localhost:5433/")
{:ok, [
 hostname: "localhost",
 port: 5433,
 database: "user",
 username: "user"
]}

iex> parse_postgresql_uri("postgresql://user%2Btesting%40gmail.com:weird%2Fpassword@localhost:5433/my%2Bdb%2Bname") |> deobfuscate()
{:ok, [
 hostname: "localhost",
 port: 5433,
 database: "my+db+name",
 username: "user+testing@gmail.com",
 password: "weird/password"
]}

iex> parse_postgresql_uri("postgres://super_user@localhost:7801/postgres?sslmode=disable")
{:ok, [
 hostname: "localhost",
 port: 7801,
 database: "postgres",
 username: "super_user",
 sslmode: :disable
]}

iex> parse_postgresql_uri("postgres://super_user@localhost:7801/postgres?sslmode=require")
{:ok, [
 hostname: "localhost",
 port: 7801,
 database: "postgres",
 username: "super_user",
 sslmode: :require
]}

iex> parse_postgresql_uri("postgres://super_user@localhost:7801/postgres?sslmode=yesplease")
{:error, "invalid \"sslmode\" value: \"yesplease\""}

iex> parse_postgresql_uri("postgrex://localhost")
{:error, "invalid URL scheme: \"postgrex\""}

iex> parse_postgresql_uri("postgresql://localhost")
{:error, "invalid or missing username"}

iex> parse_postgresql_uri("postgresql://:@localhost")
{:error, "invalid or missing username"}

iex> parse_postgresql_uri("postgresql://:password@localhost")
{:error, "invalid or missing username"}

iex> parse_postgresql_uri("postgresql://user:password")
{:error, "invalid or missing username"}

iex> parse_postgresql_uri("postgresql://user:password@")
{:error, "missing host"}

iex> parse_postgresql_uri("postgresql://user@localhost:5433/mydb?opts=-c%20synchronous_commit%3Doff&foo=bar")
{:error, "unsupported query options: \"foo\", \"opts\""}

iex> parse_postgresql_uri("postgresql://electric@localhost/db?replication=database")
{:error, "unsupported \"replication\" query option. Electric opens both a replication connection and regular connections to Postgres as needed"}

iex> parse_postgresql_uri("postgresql://electric@localhost/db?replication=off")
{:error, "unsupported \"replication\" query option. Electric opens both a replication connection and regular connections to Postgres as needed"}

 parse_postgresql_uri!(uri_str)

 parse_spawn_opts!(str)

Parse spawn_opts from environment variable to keyword list suitable for passing to GenServer.start_link/2
Examples
iex> parse_spawn_opts!(~S({"shape_log_collector":{"min_heap_size":234,"min_bin_vheap_size":123,"message_queue_data":"on_heap","priority":"high","fullsweep_after":104}}))
%{shape_log_collector: [fullsweep_after: 104, message_queue_data: :on_heap, min_bin_vheap_size: 123, min_heap_size: 234, priority: :high]}

iex> parse_spawn_opts!(~S({"shape_log_collector":{"monkey":123,"message_queue_data":"on_fire","min_bin_vheap_size":-1,"priority":"high"}}))
%{shape_log_collector: [priority: :high]}

iex> parse_spawn_opts!("")
%{}

iex> parse_spawn_opts!("{}")
%{}

 parse_telemetry_url(str)

 @spec parse_telemetry_url(binary()) :: {:ok, binary()} | {:error, binary()}

 parse_telemetry_url!(str)

 persist_installation_id(persistent_kv, instance_id)

 @spec persist_installation_id(term(), binary()) :: instance_id()

 persistent_kv()

 validate_security_config!(secret, insecure)

Electric.Connection.Manager

Custom initialisation and reconnection logic for database connections.
This module is esentially a supervisor for database connections, implemented as a GenServer.
Unlike an OTP process supervisor, it includes additional functionality:
	adjusting connection options based on the response from the database
	monitoring connections and initiating a reconnection procedure
	custom reconnection logic with exponential backoff
	starting the shape consumer supervisor tree once a database connection pool
has been initialized

Your OTP application should start a singleton connection manager under its main supervision tree:
children = [
 ...,metadata
 {Electric.Connection.Manager,
 stack_id: ...,
 connection_opts: [...],
 replication_opts: [...],
 pool_opts: [...],
 timeline_opts: [...],
 shape_cache_opts: [...]}
]

Supervisor.start_link(children, strategy: :one_for_one)

 Summary

 Types

 option()

 options()

 status()

 Functions

 admin_pool(stack_id)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 connection_pool_ready(manager, role, pid)

 connection_resolver_ready(stack_id)

 drop_replication_slot_on_stop(manager)

 name(stack_ref)

 pg_info_obtained(manager, pg_info)

 pg_system_identified(manager, system_info)

 ping(manager, timeout \\ 1000)

 pool_name(opts)

 pool_name(stack_id, role)

 pool_sizes(total_pool_size)

 replication_client_created_new_slot(manager)

 replication_client_lock_acquired(manager)

 replication_client_lock_acquisition_failed(manager, error)

 replication_client_ready_to_stream(manager)

 replication_client_started(manager)

 replication_client_streamed_first_message(manager)

 snapshot_pool(stack_id)

 start_link(opts)

 Types

 option()

 @type option() ::
 {:stack_id, atom() | String.t()}
 | {:connection_opts, Keyword.t()}
 | {:replication_opts, Keyword.t()}
 | {:pool_opts, Keyword.t()}
 | {:timeline_opts, Keyword.t()}
 | {:shape_cache_opts, Keyword.t()}

 options()

 @type options() :: [option()]

 status()

 @type status() :: :waiting | :starting | :active

 Functions

 admin_pool(stack_id)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 connection_pool_ready(manager, role, pid)

 connection_resolver_ready(stack_id)

 drop_replication_slot_on_stop(manager)

 name(stack_ref)

 pg_info_obtained(manager, pg_info)

 pg_system_identified(manager, system_info)

 ping(manager, timeout \\ 1000)

 pool_name(opts)

 pool_name(stack_id, role)

 pool_sizes(total_pool_size)

 replication_client_created_new_slot(manager)

 replication_client_lock_acquired(manager)

 replication_client_lock_acquisition_failed(manager, error)

 replication_client_ready_to_stream(manager)

 replication_client_started(manager)

 replication_client_streamed_first_message(manager)

 snapshot_pool(stack_id)

 start_link(opts)

 @spec start_link(options()) :: GenServer.on_start()

Electric.Connection.Manager.ConnectionBackoff

 Summary

 Types

 connection_backoff()

 Functions

 fail(map)

 init(start, max)

 succeed(conn_backoff)

 total_retry_time(map)

 Types

 connection_backoff()

 @type connection_backoff() :: %{
 backoff: :backoff.backoff(),
 retries_started_at: nil | integer()
}

 Functions

 fail(map)

 @spec fail(connection_backoff()) :: {pos_integer(), connection_backoff()}

 init(start, max)

 @spec init(pos_integer(), :infinity | pos_integer()) :: connection_backoff()

 succeed(conn_backoff)

 @spec succeed(connection_backoff()) :: {pos_integer(), connection_backoff()}

 total_retry_time(map)

 @spec total_retry_time(connection_backoff()) :: pos_integer()

Electric.Connection.Manager.ConnectionResolver

 Summary

 Functions

 name(stack_ref)

 start_link(opts)

 validate(stack_id, db_connection)

 Functions

 name(stack_ref)

 start_link(opts)

 validate(stack_id, db_connection)

Electric.Connection.Manager.Pool

A connection pool for managing multiple connections to a PostgreSQL database.

 Summary

 Types

 connection_status()

 pool_status()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 configure_pool_conn(opts, supervisor_pid, stack_id)

 name(opts)

 name(stack_id, role)

 start_link(opts)

 Types

 connection_status()

 @type connection_status() :: :starting | :connected | :disconnected

 pool_status()

 @type pool_status() :: :starting | :ready | :repopulating

 t()

 @type t() :: %Electric.Connection.Manager.Pool{
 connection_manager: GenServer.server(),
 connection_pids: %{required(pid()) => connection_status()},
 host: term(),
 last_connection_error: Electric.DbConnectionError.t() | nil,
 pool_mod: term(),
 pool_pid: pid(),
 pool_ref: reference(),
 pool_size: non_neg_integer(),
 role: :admin | :snapshot,
 stack_id: Electric.stack_id(),
 status: pool_status()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 configure_pool_conn(opts, supervisor_pid, stack_id)

 name(opts)

 name(stack_id, role)

 start_link(opts)

Electric.Connection.Manager.State

 Summary

 Types

 phase()

 step()

 Types

 phase()

 @type phase() :: :connection_setup | :running

 step()

 @type step() ::
 {:start_replication_client, nil}
 | {:start_replication_client, :acquiring_lock}
 | {:start_replication_client, :connecting}
 | {:start_replication_client, :configuring_connection}
 | {:start_connection_pool, nil}
 | {:start_connection_pool, :connecting}
 | :start_shapes_supervisor
 | {:start_replication_client, :start_streaming}
 | :waiting_for_streaming_confirmation
 | :streaming

Electric.Connection.Manager.Supervisor

Intermediate supervisor that supervises the Connection.Manager and ConnectionResolver processes.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for Supervisor.init/1.

 name(stack_ref)

 restart(opts)

 start_link(opts)

 stop_connection_manager(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for Supervisor.init/1.

 name(stack_ref)

 restart(opts)

 start_link(opts)

 stop_connection_manager(opts)

Electric.Connection.Restarter

Gen server responsible for shutting down and restarting the connection subsystem.
It makes sure to update StatusMonitor with the current subsystem state to maintain correct
behaviour of other components of the system that depend on the database availability, such
as:
	HTTP API server processing shape requests
	publication manager
	schema reconciler

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for GenServer.init/1.

 name(stack_ref)

 restart_connection_subsystem(stack_id)

 Restart the connection subsystem.

 restore_connection_subsystem(stack_id)

 Restore the connection subsystem after it had been stopped by stop_connection_subsystem/1.

 start_link(opts)

 stop_connection_subsystem(stack_id)

 Stop the connection subsystem, closing all database connections.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for GenServer.init/1.

 name(stack_ref)

 restart_connection_subsystem(stack_id)

Restart the connection subsystem.

 restore_connection_subsystem(stack_id)

Restore the connection subsystem after it had been stopped by stop_connection_subsystem/1.
Implementation notes
To restore the subsystem, the Shapes.Supervisor is stopped first before getting
restarted by the Connection.Manager later. The Connection.Manager itself is started
via a Supervisor.restart_child() call.

 start_link(opts)

 stop_connection_subsystem(stack_id)

Stop the connection subsystem, closing all database connections.
This lets the database server scale its compute to zero if it supports this feature and has
no other sessions.
Inside Electric, the shape subsystem keeps running.
Implementation notes
Currently, this function stops only the Connection.Manager process which shuts down all types
of database connections linked to it. When a new shape request arrives, it will immediately
stop the Shapes.Supervisor and restart the Connection.Manager, which then in turn starts
a fresh Shapes.Supervisor again.

Electric.Connection.Supervisor

The main connection supervisor that looks after Connection.Manager.
It starts Connection.Manager.Supervisor which then directly supervises
Connection.Manager and ConnectionResolver processes.
Connection.Manager acts a bit like a supervisor for database connection processes:
	it opens database connections in the right order
	restarts them during initialization if they fail for recoverable reasons
	restarts the replication client at any point if it crashes due to a non-fatal error
	coordinates with CoreSupervisor to start the Shapes.Supervisor at the right point
in time, passing it the right set of options that have been informed by connection
manager's own initialization sequence up to that point

If a database connection shuts down due to a non-recoverable error, the connection manager
process will ask this supervisor to shut down, which in the single-tenant mode results in the
whole OTP application shutting down.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for Supervisor.init/1.

 name(stack_ref)

 shutdown(stack_id, reason)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for Supervisor.init/1.

 name(stack_ref)

 shutdown(stack_id, reason)

 start_link(opts)

Electric.CoreSupervisor

A supervisor that starts the core components of the Electric system.
This is divided into two subsystems:
	The connection subsystem (processes that may exit on a connection failure), started with Connection.Supervisor
	The shape subsystem (processes that are resilient to connection failures), started with Shapes.Supervisor

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_ref)

 start_link(opts)

 start_shapes_supervisor(opts)

 This function is supposed to be called from Connection.Manager at the right point in its
initialization sequence.

 stop_shapes_supervisor(opts)

 Stops the Shapes.Supervisor if it's currently running.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_ref)

 start_link(opts)

 start_shapes_supervisor(opts)

This function is supposed to be called from Connection.Manager at the right point in its
initialization sequence.

 stop_shapes_supervisor(opts)

Stops the Shapes.Supervisor if it's currently running.
This is useful when you need to reset storage before starting a new supervisor.
Returns :ok if the supervisor was stopped or wasn't running.

Electric.LogItems

Defines the structure and how to create the items in the log that the electric client reads.
The log_item() data structure is a map for ease of consumption in the Elixir code,
however when JSON encoded (not done in this module) it's the format that the electric
client accepts.

 Summary

 Types

 log_item()

 Functions

 expected_offset_after_split(arg1)

 from_change(change, txids, pk_cols, replica)

 keep_generic_headers(item)

 merge_updates(u1, u2)

 Types

 log_item()

 @type log_item() ::
 {Electric.Replication.LogOffset.t(),
 %{key: String.t(), value: map(), headers: map()}}

 Functions

 expected_offset_after_split(arg1)

 from_change(change, txids, pk_cols, replica)

 @spec from_change(
 Electric.Replication.Changes.data_change(),
 txids :: nil | non_neg_integer() | [non_neg_integer(), ...],
 pk_cols :: [String.t()],
 replica :: Electric.Shapes.Shape.replica()
) :: [log_item(), ...]

 keep_generic_headers(item)

 merge_updates(u1, u2)

Electric.LsnTracker

 Summary

 Types

 stack_ref()

 Functions

 get_last_processed_lsn(stack_id)

 initialize(stack_ref)

 initialize_last_processed_lsn(stack_ref, lsn)

 set_last_processed_lsn(stack_ref, lsn)

 stack_ref(stack_id)

 Returns the ETS table name used to store LSN info for the given stack ID.

 Types

 stack_ref()

 @type stack_ref() :: Electric.stack_id() | atom()

 Functions

 get_last_processed_lsn(stack_id)

 @spec get_last_processed_lsn(Electric.stack_id()) :: Electric.Postgres.Lsn.t()

 initialize(stack_ref)

 @spec initialize(stack_ref()) :: :ok

 initialize_last_processed_lsn(stack_ref, lsn)

 @spec initialize_last_processed_lsn(stack_ref(), Electric.Postgres.Lsn.t()) :: :ok

 set_last_processed_lsn(stack_ref, lsn)

 @spec set_last_processed_lsn(
 stack_ref(),
 Electric.Postgres.Lsn.t() | non_neg_integer()
) :: :ok

 stack_ref(stack_id)

 @spec stack_ref(Electric.stack_id()) :: atom()

Returns the ETS table name used to store LSN info for the given stack ID.

Electric.MonitoredCoreSupervisor

A supervisor that starts and monitors the core components of the Electric system.
It needs to be a separate supervisor from the CoreSupervisor because of the way
the StatusMonitor works (see the rest_for_one comments below).

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

Electric.PersistentKV protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 get(kv, key)

 set(kv, key, value)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 get(kv, key)

 set(kv, key, value)

Electric.PersistentKV.Filesystem

 Summary

 Functions

 new!(opts)

 Functions

 new!(opts)

Electric.PersistentKV.Memory

 Summary

 Types

 seed_data()

 t()

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 contents(s)

 new!(data \\ [])

 start_link(data \\ [])

 Types

 seed_data()

 @type seed_data() :: [{binary(), term()}] | %{required(binary()) => term()}

 t()

 @type t() :: %Electric.PersistentKV.Memory{parent: pid(), pid: pid()}

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 contents(s)

 new!(data \\ [])

 @spec new!(seed_data()) :: t()

 start_link(data \\ [])

Electric.PersistentKV.Mock

 Summary

 Types

 t()

 Functions

 new()

 Types

 t()

 @type t() :: %Electric.PersistentKV.Mock{}

 Functions

 new()

 @spec new() :: t()

Electric.PersistentKV.Serialized

An implementation of PersistentKV that writes values serialised as JSON to the kv backend.

 Summary

 Functions

 new!(opts)

 Functions

 new!(opts)

Electric.Plug.DeleteShapePlug

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.HealthCheckPlug

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.LabelProcessPlug

A plug that assists debugging by labelling processes that handle requests with
details about the request.
The plug should be places right after the match plug in the router:
 plug :match
 plug Electric.Plug.LabelProcessPlug

 Summary

 Functions

 call(conn, opts)

 init(opts)

 process_label(conn)

 Returns a description of the HTTP request to be used as the lable for the request process.

 Functions

 call(conn, opts)

 init(opts)

 process_label(conn)

Returns a description of the HTTP request to be used as the lable for the request process.
Examples
iex> process_label(%{
...> method: "GET",
...> request_path: "/v1/shape",
...> query_string: "table=users&offset=-1",
...> assigns: %{plug_request_id: "F-jPUudNHxbD8lIAABQG"}
...> })
"Request F-jPUudNHxbD8lIAABQG - GET /v1/shape?table=users&offset=-1"

iex> process_label(%{
...> method: "GET",
...> request_path: "/v1/shape",
...> query_string: "table=users",
...> assigns: %{plug_request_id: "F-jPUudNHxbD8lIAABQG"}
...> })
"Request F-jPUudNHxbD8lIAABQG - GET /v1/shape?table=users"

Electric.Plug.OptionsShapePlug

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.Router

 Summary

 Functions

 add_stack_id_to_metadata(conn, _)

 authenticate(conn, opts)

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 put_cors_headers(conn, opts)

 server_header(conn, version)

 Functions

 add_stack_id_to_metadata(conn, _)

 authenticate(conn, opts)

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

 put_cors_headers(conn, opts)

 server_header(conn, version)

Electric.Plug.ServeShapePlug

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.TraceContextPlug

A plug that extracts trace context from incoming HTTP headers and sets it as the parent span.

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.UtilityRouter

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.Utils

Utility functions for Electric endpoints, e.g. for parsing and validating
path and query parameters.

 Summary

 Functions

 common_open_telemetry_attrs(conn)

 get_next_interval_timestamp(long_poll_timeout_ms, prev_interval \\ nil)

 Calculate the next interval that should be used for long polling based on the
current time and previous interval used.

 parse_columns_param(columns)

 Parse columns parameter from a string consisting of a comma separated list
of potentially quoted column names into a sorted list of strings.

 Functions

 common_open_telemetry_attrs(conn)

 get_next_interval_timestamp(long_poll_timeout_ms, prev_interval \\ nil)

 @spec get_next_interval_timestamp(integer(), binary() | nil) :: integer()

Calculate the next interval that should be used for long polling based on the
current time and previous interval used.
Timestamp returned is in seconds and uses a custom epoch of 9th of October 2024, UTC.

 parse_columns_param(columns)

 @spec parse_columns_param(binary()) :: {:ok, [String.t(), ...]} | {:error, term()}

Parse columns parameter from a string consisting of a comma separated list
of potentially quoted column names into a sorted list of strings.
Examples
iex> Electric.Plug.Utils.parse_columns_param("")
{:error, "Invalid zero-length delimited identifier"}
iex> Electric.Plug.Utils.parse_columns_param("foo,")
{:error, "Invalid zero-length delimited identifier"}
iex> Electric.Plug.Utils.parse_columns_param("id")
{:ok, ["id"]}
iex> Electric.Plug.Utils.parse_columns_param("id,name")
{:ok, ["id", "name"]}
iex> Electric.Plug.Utils.parse_columns_param(~S|"PoT@To",PoTaTo|)
{:ok, ["PoT@To", "potato"]}
iex> Electric.Plug.Utils.parse_columns_param(~S|"PoTaTo,sunday",foo|)
{:ok, ["PoTaTo,sunday", "foo"]}
iex> Electric.Plug.Utils.parse_columns_param(~S|"fo""o",bar|)
{:ok, [~S|fo"o|, "bar"]}
iex> Electric.Plug.Utils.parse_columns_param(~S|"id,"name"|)
{:error, ~S|Invalid unquoted identifier contains special characters: "id|}

Electric.Plug.Utils.CORSHeaderPlug

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Electric.Plug.Utils.PassAssignToOptsPlug

 Summary

 Functions

 call(conn, arg)

 Callback implementation for Plug.call/2.

 init(list)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, arg)

Callback implementation for Plug.call/2.

 init(list)

Callback implementation for Plug.init/1.

Electric.Postgres

 Summary

 Functions

 display_settings()

 Configuration settings that affect formatting of values of certain types.

 supported_types()

 All types currently supported by Electric

 supported_types_only_in_functions()

 All types currently supported by Electric only in functions

 Functions

 display_settings()

 @spec display_settings() :: [String.t()]

Configuration settings that affect formatting of values of certain types.
These settings should be set for the current session before executing any queries or
statements to safe-guard against non-standard configuration being used in the Postgres
database cluster or even the specific database Electric is configured to connect to.
The settings Electric is sensitive to are:
	bytea_output - determines how Postgres encodes bytea values. It can use either Hex- or
 Escape-based encoding.

	DateStyle - determines how Postgres interprets date values.

	TimeZone - affects the time zone offset Postgres uses for timestamptz and timetz values.

	extra_float_digits - determines whether floating-point values are rounded or are encoded precisely.

	IntervalStyle - determines how Postgres interprets and formats interval values.

 supported_types()

All types currently supported by Electric
Tests
iex> :bool in supported_types()
true

 supported_types_only_in_functions()

All types currently supported by Electric only in functions
Tests
iex> :interval in supported_types_only_in_functions()
true

Electric.Postgres.Configuration

Module for functions that configure Postgres in some way using
a provided connection.

 Summary

 Types

 publication_status()

 relation_actions()

 relation_filters()

 Functions

 add_table_to_publication(conn, publication_name, oid_relation, timeout \\ 5000)

 check_publication_status!(conn, publication_name)

 Check whether the publication with the given name exists, and return its status.

 configure_table_for_replication(conn, publication_name, oid_relation, timeout \\ 5000)

 determine_publication_relation_actions!(conn, publication_name, expected_rels)

 drop_table_from_publication(conn, publication_name, oid_relation, timeout \\ 5000)

 get_publication_tables!(conn, publication)

 run_handling_db_connection_errors(fun)

 set_table_replica_identity_full(conn, oid_relation, timeout \\ 5000)

 Types

 publication_status()

 @type publication_status() :: %{
 can_alter_publication?: boolean(),
 publishes_all_operations?: boolean(),
 publishes_generated_columns?: boolean()
}

 relation_actions()

 @type relation_actions() :: %{
 to_preserve: relation_filters(),
 to_add: relation_filters(),
 to_drop: relation_filters(),
 to_configure_replica_identity: relation_filters(),
 to_invalidate: relation_filters()
}

 relation_filters()

 @type relation_filters() ::
 Electric.Replication.PublicationManager.RelationTracker.relation_filters()

 Functions

 add_table_to_publication(conn, publication_name, oid_relation, timeout \\ 5000)

 @spec add_table_to_publication(
 Postgrex.conn(),
 String.t(),
 Electric.oid_relation(),
 timeout()
) ::
 :ok | {:error, term()}

 check_publication_status!(conn, publication_name)

 @spec check_publication_status!(Postgrex.conn(), String.t()) ::
 publication_status() | :not_found

Check whether the publication with the given name exists, and return its status.
The status includes whether the publication is owned, whether it publishes all operations,
and whether it publishes generated columns (if supported by the Postgres version).

 configure_table_for_replication(conn, publication_name, oid_relation, timeout \\ 5000)

 @spec configure_table_for_replication(
 Postgrex.conn(),
 String.t(),
 Electric.oid_relation(),
 timeout()
) :: :ok | {:error, term()}

 determine_publication_relation_actions!(conn, publication_name, expected_rels)

 @spec determine_publication_relation_actions!(
 Postgrex.conn(),
 String.t(),
 relation_filters()
) ::
 relation_actions()

 drop_table_from_publication(conn, publication_name, oid_relation, timeout \\ 5000)

 @spec drop_table_from_publication(
 Postgrex.conn(),
 String.t(),
 Electric.oid_relation(),
 timeout()
) :: :ok | {:error, term()}

 get_publication_tables!(conn, publication)

 @spec get_publication_tables!(Postgrex.conn(), String.t()) :: [
 relation_with_replica()
]

 run_handling_db_connection_errors(fun)

 set_table_replica_identity_full(conn, oid_relation, timeout \\ 5000)

 @spec set_table_replica_identity_full(
 Postgrex.conn(),
 Electric.oid_relation(),
 timeout()
) ::
 :ok | {:error, term()}

Electric.Postgres.Identifiers

 Summary

 Functions

 downcase(ident, single_byte_encoding \\ false)

 Downcase the identifier using PostgreSQL's algorithm for downcasing.

 parse(ident, single_byte_encoding \\ false)

 Parse a PostgreSQL identifier, removing quotes if present and escaping internal ones
and downcasing the identifier otherwise.

 parse_relation(ident)

 Parse a PostgreSQL relation identifier

 parse_unquoted_identifier(ident, single_byte_encoding \\ false)

 Parse an unquoted PostgreSQL identifier, downcasing characters and failing if any
special characters are present

 Functions

 downcase(ident, single_byte_encoding \\ false)

Downcase the identifier using PostgreSQL's algorithm for downcasing.
Setting single_byte_encoding to true will downcase the identifier
using single byte encoding
See:
https://github.com/postgres/postgres/blob/259a0a99fe3d45dcf624788c1724d9989f3382dc/src/backend/parser/scansup.c#L46-L80
Examples
iex> Electric.Postgres.Identifiers.downcase("FooBar")
"foobar"

 parse(ident, single_byte_encoding \\ false)

 @spec parse(binary(), boolean()) :: {:ok, binary()} | {:error, term()}

Parse a PostgreSQL identifier, removing quotes if present and escaping internal ones
and downcasing the identifier otherwise.
Postgres identifiers are limited to 63 characters - Postgres will truncate them,
but we'll fail if the identifier is too long to avoid api injection issues.
Examples
iex> Electric.Postgres.Identifiers.parse("FooBar")
{:ok, "foobar"}

iex> Electric.Postgres.Identifiers.parse(~S|"FooBar"|)
{:ok, "FooBar"}

iex> Electric.Postgres.Identifiers.parse(~S|Foo"Bar"|)
{:error, ~S|Invalid unquoted identifier contains special characters: Foo"Bar"|}

iex> Electric.Postgres.Identifiers.parse(~S| |)
{:error, ~S|Invalid unquoted identifier contains special characters: |}

iex> Electric.Postgres.Identifiers.parse("foob@r")
{:error, ~S|Invalid unquoted identifier contains special characters: foob@r|}

iex> Electric.Postgres.Identifiers.parse(~S|"Foo"Bar"|)
{:error, ~S|Invalid identifier with unescaped quote: Foo"Bar|}

iex> Electric.Postgres.Identifiers.parse(~S|""|)
{:error, "Invalid zero-length delimited identifier"}

iex> Electric.Postgres.Identifiers.parse("")
{:error, "Invalid zero-length delimited identifier"}

iex> Electric.Postgres.Identifiers.parse(for(_ <- 1..64, into: "", do: "a"))
{:error, "Identifier is too long (max length is 63)"}

iex> Electric.Postgres.Identifiers.parse(~S|" "|)
{:ok, " "}

iex> Electric.Postgres.Identifiers.parse(~S|"Foo""Bar"|)
{:ok, ~S|Foo"Bar|}

 parse_relation(ident)

 @spec parse_relation(binary()) :: {:ok, Electric.relation()} | {:error, term()}

Parse a PostgreSQL relation identifier
Examples
iex> Electric.Postgres.Identifiers.parse_relation("foo")
{:ok, {"public", "foo"}}

iex> Electric.Postgres.Identifiers.parse_relation("foo.bar")
{:ok, {"foo", "bar"}}

iex> Electric.Postgres.Identifiers.parse_relation(~S|"foo"."bar"|)
{:ok, {"foo", "bar"}}

iex> Electric.Postgres.Identifiers.parse_relation(~S|"foo.woah"."bar"|)
{:ok, {"foo.woah", "bar"}}

iex> Electric.Postgres.Identifiers.parse_relation(~S|"foo".bar|)
{:ok, {"foo", "bar"}}

iex> Electric.Postgres.Identifiers.parse_relation(~S|"foo"."bar|)
{:error, ~S|Invalid unquoted identifier contains special characters: "bar|}

iex> Electric.Postgres.Identifiers.parse_relation("foo.bar.baz")
{:error, "Invalid relation identifier, too many delimiters: foo.bar.baz"}

 parse_unquoted_identifier(ident, single_byte_encoding \\ false)

 @spec parse_unquoted_identifier(binary(), boolean()) ::
 {:ok, binary()} | {:error, term()}

Parse an unquoted PostgreSQL identifier, downcasing characters and failing if any
special characters are present
Examples
iex> Electric.Postgres.Identifiers.parse_unquoted_identifier("FooBar")
{:ok, "foobar"}

iex> Electric.Postgres.Identifiers.parse_unquoted_identifier("foob@r")
{:error, ~S|Invalid unquoted identifier contains special characters: foob@r|}

Electric.Postgres.Identifiers.StringSplitter

Utility module for splitting strings on a schema delimiter

 Summary

 Functions

 split_outside_quotes(string)

 Split a string on a schema delimiter, only if the delimiter is not
inside quotes, returning a list of strings

 Functions

 split_outside_quotes(string)

 @spec split_outside_quotes(binary()) :: [binary(), ...]

Split a string on a schema delimiter, only if the delimiter is not
inside quotes, returning a list of strings

Electric.Postgres.Inspector behaviour

 Summary

 Types

 column_info()

 inspector()

 relation()

 relation_id()

 relation_info()

 relation_kind()

 supported_features()

 type_kind()

 Callbacks

 clean(relation_id, opts)

 list_relations_with_stale_cache(opts)

 load_column_info(relation_id, opts)

 load_relation_info(relation_id, opts)

 load_relation_oid(relation, opts)

 load_supported_features(opts)

 Functions

 clean(relation_id, arg)

 Clean up all information about a given relation using a provided inspector.

 columns_to_expr(columns)

 Convert a column list into something that can be used by
Electric.Replication.Eval.Parser.parse_and_validate_expression/2

 for_stack(stack_id)

 get_pk_cols(columns)

 Get columns that should be considered a PK for table. If the table
has no PK, then we're considering all columns as identifying.

 list_relations_with_stale_cache(arg)

 List relations that have stale cache. Doesn't clean the cache immediately,
that's left to the caller. Inspectors without cache will return an :error.

 load_column_info(relation_id, arg)

 Load column information about a given table using a provided inspector.

 load_relation_info(relation_id, arg)

 Load additional information about a given relation.

 load_relation_oid(relation, arg)

 Expects the table name provided by the user and validates that the table exists,
returning the OID.

 load_supported_features(arg)

 Load the supported features on the target database using a provided inspector.

 Types

 column_info()

 @type column_info() :: %{
 name: String.t(),
 type: String.t(),
 type_mod: integer() | nil,
 type_kind: type_kind(),
 formatted_type: String.t(),
 pk_position: non_neg_integer() | nil,
 type_id: {typid :: non_neg_integer(), typmod :: integer()},
 array_dimensions: non_neg_integer(),
 not_null: boolean(),
 array_type: String.t()
}

 inspector()

 @type inspector() :: {module(), opts :: term()}

 relation()

 @type relation() :: Electric.relation()

 relation_id()

 @type relation_id() :: Electric.relation_id()

 relation_info()

 @type relation_info() :: %{
 relation_id: relation_id(),
 relation: relation(),
 kind: relation_kind(),
 parent: nil | relation(),
 children: nil | [relation(), ...]
}

 relation_kind()

 @type relation_kind() :: :ordinary_table | :partitioned_table

 supported_features()

 @type supported_features() :: %{supports_generated_column_replication: boolean()}

 type_kind()

 @type type_kind() ::
 :base | :composite | :domain | :enum | :pseudo | :range | :multirange

 Callbacks

 clean(relation_id, opts)

 @callback clean(relation_id(), opts :: term()) :: :ok

 list_relations_with_stale_cache(opts)

 @callback list_relations_with_stale_cache(opts :: term()) ::
 {:ok, [Electric.oid_relation()]} | :error

 load_column_info(relation_id, opts)

 @callback load_column_info(relation_id(), opts :: term()) ::
 {:ok, [column_info()]}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

 load_relation_info(relation_id, opts)

 @callback load_relation_info(relation_id(), opts :: term()) ::
 {:ok, relation_info()}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

 load_relation_oid(relation, opts)

 @callback load_relation_oid(relation(), opts :: term()) ::
 {:ok, Electric.oid_relation()}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

 load_supported_features(opts)

 @callback load_supported_features(opts :: term()) ::
 {:ok, supported_features()} | {:error, String.t() | :connection_not_available}

 Functions

 clean(relation_id, arg)

 @spec clean(relation_id(), inspector()) :: :ok

Clean up all information about a given relation using a provided inspector.

 columns_to_expr(columns)

 @spec columns_to_expr([column_info(), ...]) ::
 Electric.Replication.Eval.Parser.refs_map()

Convert a column list into something that can be used by
Electric.Replication.Eval.Parser.parse_and_validate_expression/2

 for_stack(stack_id)

 get_pk_cols(columns)

 @spec get_pk_cols([column_info(), ...]) :: [String.t(), ...]

Get columns that should be considered a PK for table. If the table
has no PK, then we're considering all columns as identifying.

 list_relations_with_stale_cache(arg)

 @spec list_relations_with_stale_cache(inspector()) ::
 {:ok, [Electric.oid_relation()]} | :error

List relations that have stale cache. Doesn't clean the cache immediately,
that's left to the caller. Inspectors without cache will return an :error.

 load_column_info(relation_id, arg)

 @spec load_column_info(relation_id(), inspector()) ::
 {:ok, [column_info()]}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

Load column information about a given table using a provided inspector.

 load_relation_info(relation_id, arg)

 @spec load_relation_info(relation_id(), inspector()) ::
 {:ok, relation_info()}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

Load additional information about a given relation.
Additional information includes the relation kind, parent/child relationships,
and other metadata.

 load_relation_oid(relation, arg)

 @spec load_relation_oid(relation(), inspector()) ::
 {:ok, Electric.oid_relation()}
 | :table_not_found
 | {:error, String.t() | :connection_not_available}

Expects the table name provided by the user and validates that the table exists,
returning the OID.
Table name is expected to have been normalized beforehand

 load_supported_features(arg)

 @spec load_supported_features(inspector()) ::
 {:ok, supported_features()} | {:error, String.t() | :connection_not_available}

Load the supported features on the target database using a provided inspector.

Electric.Postgres.Inspector.EtsInspector

This serves as a write-through cache for caching the namespace and tablename as they occur in PG.
Note that if users create shapes for the same table but spelled differently,
e.g. ~s|public.users|, ~s|users|, ~s|Users|, and ~s|USERS|
then there will be 4 entries in the cache each of which maps to {~s|public|, ~s|users|}.
If they create a shape for a different table ~s|"Users"|, then there will be another entry
in ETS for ~s|"Users"| that maps to {~s|public|, ~s|"Users"|}.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_ref)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_ref)

 start_link(opts)

Electric.Postgres.LockBreakerConnection

A Postgres connection that is used to break an abandoned lock.
Electric takes out a session-level advisory lock on a separate connection to better manage the
ownership of the replication slot. Unfortunately, we have seen instances (especially on Neon),
where the Electric disconnects, but the lock is not auto-released.
For these cases, this breaker exists - it'll connect to the database, and check that for
a given lock name, if that lock is taken, there also exists an active replication slot with the
same name. If not, it'll terminate the backend that is holding the lock, under the assumption
that it's one of the abandoned locks.

 Summary

 Types

 option()

 options()

 Functions

 start(opts)

 stop_backends_and_close(server, lock_name, lock_connection_pg_backend_pid \\ nil)

 Types

 option()

 @type option() :: {:connection_opts, Keyword.t()} | {:stack_id, String.t()}

 options()

 @type options() :: [option()]

 Functions

 start(opts)

 @spec start(options()) :: {:ok, pid()} | {:error, Postgrex.Error.t() | term()}

 stop_backends_and_close(server, lock_name, lock_connection_pg_backend_pid \\ nil)

Electric.Postgres.LogicalReplication.Messages

 Summary

 Types

 message()

 relation_id()

 Types

 message()

 @type message() ::
 Electric.Postgres.LogicalReplication.Messages.Begin.t()
 | Electric.Postgres.LogicalReplication.Messages.Commit.t()
 | Electric.Postgres.LogicalReplication.Messages.Message.t()
 | Electric.Postgres.LogicalReplication.Messages.Origin.t()
 | Electric.Postgres.LogicalReplication.Messages.Relation.t()
 | Electric.Postgres.LogicalReplication.Messages.Insert.t()
 | Electric.Postgres.LogicalReplication.Messages.Update.t()
 | Electric.Postgres.LogicalReplication.Messages.Delete.t()
 | Electric.Postgres.LogicalReplication.Messages.Truncate.t()
 | Electric.Postgres.LogicalReplication.Messages.Type.t()
 | Electric.Postgres.LogicalReplication.Messages.Unsupported.t()

 relation_id()

 @type relation_id() :: non_neg_integer()

Electric.Postgres.LogicalReplication.Messages.Begin

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Begin{
 commit_timestamp: DateTime.t(),
 final_lsn: Electric.Postgres.Lsn.t(),
 xid: Electric.Postgres.Lsn.int32()
}

Electric.Postgres.LogicalReplication.Messages.Commit

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Commit{
 commit_timestamp: DateTime.t(),
 end_lsn: Electric.Postgres.Lsn.t(),
 flags: list(),
 lsn: Electric.Postgres.Lsn.t()
}

Electric.Postgres.LogicalReplication.Messages.Delete

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Delete{
 bytes: non_neg_integer(),
 changed_key_tuple_data: nil | {String.t(), nil | String.t()},
 old_tuple_data: nil | tuple(),
 relation_id: Electric.Postgres.LogicalReplication.Messages.relation_id()
}

Electric.Postgres.LogicalReplication.Messages.Insert

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Insert{
 bytes: non_neg_integer(),
 relation_id: Electric.Postgres.LogicalReplication.Messages.relation_id(),
 tuple_data: tuple()
}

Electric.Postgres.LogicalReplication.Messages.Message

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Message{
 content: binary(),
 lsn: Electric.Postgres.Lsn.t(),
 prefix: String.t(),
 transactional?: boolean()
}

Electric.Postgres.LogicalReplication.Messages.Origin

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Origin{
 name: String.t(),
 origin_commit_lsn: Electric.Postgres.Lsn.t()
}

Electric.Postgres.LogicalReplication.Messages.Relation

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Relation{
 columns: [Electric.Postgres.LogicalReplication.Messages.Relation.Column.t()],
 id: Electric.Postgres.LogicalReplication.Messages.relation_id(),
 name: String.t(),
 namespace: String.t(),
 replica_identity: :default | :nothing | :all_columns | :index
}

Electric.Postgres.LogicalReplication.Messages.Relation.Column

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Relation.Column{
 flags: [:key],
 name: String.t(),
 type_modifier: integer(),
 type_oid: pos_integer()
}

Electric.Postgres.LogicalReplication.Messages.Truncate

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Truncate{
 number_of_relations: non_neg_integer(),
 options: [atom()],
 truncated_relations: [
 Electric.Postgres.LogicalReplication.Messages.relation_id()
]
}

Electric.Postgres.LogicalReplication.Messages.Type

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Type{
 id: non_neg_integer(),
 name: String.t(),
 namespace: String.t()
}

Electric.Postgres.LogicalReplication.Messages.Unsupported

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Unsupported{
 data: binary()
}

Electric.Postgres.LogicalReplication.Messages.Update

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Postgres.LogicalReplication.Messages.Update{
 bytes: non_neg_integer(),
 changed_key_tuple_data: nil | {String.t(), nil | String.t()},
 old_tuple_data: tuple(),
 relation_id: Electric.Postgres.LogicalReplication.Messages.relation_id(),
 tuple_data: tuple()
}

Electric.Postgres.Lsn

Encoding, decoding and helper functions for the pg_lsn type.

 Summary

 Types

 int32()

 t()

 Functions

 compare(lsn1, lsn2)

 Compare two Lsns and determine if one is less or greater or both are equal.

 decode_bin(arg)

 Decode a binary representation of the LSN into a struct. Reverses encode_bin/1

 encode_bin(lsn)

 from_integer(int)

 Convert the non-negative byte offset into Lsn.

 from_string(str)

 Parse the given string as a pg_lsn value.

 increment(lsn, incr)

 Add the given byte offset to the Lsn value.

 is_larger(lsn1, lsn2)

 Determine if the first Lsn is larger than the second.

 max(lsns)

 Returns the highest Lsn from the given list of Lsns.

 to_integer(lsn)

 Convert the Lsn into an equivalent byte offset.

 to_iolist(lsn)

 Format Lsn to its text representation in an iolist.

 Types

 int32()

 @type int32() :: 0..4_294_967_295

 t()

 @type t() :: %Electric.Postgres.Lsn{offset: int32(), segment: int32()}

 Functions

 compare(lsn1, lsn2)

 @spec compare(t(), t()) :: :eq | :gt | :lt

Compare two Lsns and determine if one is less or greater or both are equal.
Examples
iex> compare(from_integer(0), from_integer(1))
:lt
iex> compare(from_string("1/0"), from_string("2/0"))
:lt

iex> compare(from_integer(99), from_integer(98))
:gt
iex> compare(from_string("2/0"), from_string("1/0"))
:gt

iex> compare(from_integer(127_000_256), from_string("0/791DEC0"))
:eq

 decode_bin(arg)

 @spec decode_bin(binary()) :: t()

Decode a binary representation of the LSN into a struct. Reverses encode_bin/1
Examples
iex> decode_bin(encode_bin(%Elixir.Electric.Postgres.Lsn{}))
%Elixir.Electric.Postgres.Lsn{}

 encode_bin(lsn)

 @spec encode_bin(t()) :: binary()

 from_integer(int)

 @spec from_integer(non_neg_integer()) :: t()

Convert the non-negative byte offset into Lsn.
Examples
iex> from_integer(0)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0}

iex> from_integer(1_000_000)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 1_000_000}

iex> from_integer(0xFFFFFFFF)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 4294967295}

iex> from_integer(0xFFFFFFFFF)
%Elixir.Electric.Postgres.Lsn{segment: 15, offset: 4294967295}

iex> from_integer(-1)
** (FunctionClauseError) no function clause matching in Electric.Postgres.Lsn.from_integer/1

 from_string(str)

 @spec from_string(String.t()) :: t()

Parse the given string as a pg_lsn value.
Examples
iex> from_string("0/0")
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0}

iex> from_string("7F/400")
%Elixir.Electric.Postgres.Lsn{segment: 127, offset: 1024}

 increment(lsn, incr)

 @spec increment(t(), integer()) :: t()

Add the given byte offset to the Lsn value.
The result is capped at the bottom to not go below #Lsn<0/0>.
Examples
iex> increment(from_integer(0), 8_000_000)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 8_000_000}

iex> increment(from_integer(4_000_000_000), 1_000_000_000)
%Elixir.Electric.Postgres.Lsn{segment: 1, offset: 705_032_704}

iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 1, offset: 705_032_704})
5_000_000_000

iex> increment(from_integer(4_000_000_000), 10_000_000_000)
%Elixir.Electric.Postgres.Lsn{segment: 3, offset: 1_115_098_112}

iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 3, offset: 1_115_098_112})
14_000_000_000

iex> increment(from_integer(14_000_000_000), -8_000_000_000)
%Elixir.Electric.Postgres.Lsn{segment: 1, offset: 1_705_032_704}

iex> increment(from_integer(100), -99)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 1}

iex> increment(from_integer(100), -100)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0}

iex> increment(from_integer(100), -101)
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0}

 is_larger(lsn1, lsn2)

 (macro)

Determine if the first Lsn is larger than the second.
Examples
 iex> lsn1 = %Lsn{segment: 2, offset: 10}
 iex> lsn2 = %Lsn{segment: 1, offset: 50}
 iex> is_larger(lsn1, lsn2)
 true
 iex> lsn1 = %Lsn{segment: 3, offset: 5}
 iex> lsn2 = %Lsn{segment: 3, offset: 4}
 iex> is_larger(lsn1, lsn2)
 true
 iex> lsn1 = Lsn.from_string("166A/91FDFDE8")
 iex> lsn2 = Lsn.from_string("1667/FFFFFCC8")
 iex> is_larger(lsn1, lsn2)
 true
 iex> lsn1 = Lsn.from_string("FFFFFFFB/91FDFDE8")
 iex> lsn2 = Lsn.from_string("FFFFFFFA/FFFFFCC8")
 iex> is_larger(lsn1, lsn2)
 true
 iex> lsn1 = %{segment: 2, offset: 100}
 iex> lsn2 = %{segment: 2, offset: 200}
 iex> is_larger(lsn1, lsn2)
 false
 iex> lsn1 = %{segment: 1, offset: 30}
 iex> lsn2 = %{segment: 1, offset: 30}
 iex> is_larger(lsn1, lsn2)
 false

 max(lsns)

 @spec max(Enumerable.t(t())) :: t()

Returns the highest Lsn from the given list of Lsns.
When the list is empty, it returns #Lsn<0/0>.
Examples
iex> max([%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 1}, %Elixir.Electric.Postgres.Lsn{segment: 0, offset: 2}])
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 2}

iex> max([%Elixir.Electric.Postgres.Lsn{segment: 1, offset: 1}, %Elixir.Electric.Postgres.Lsn{segment: 0, offset: 2}])
%Elixir.Electric.Postgres.Lsn{segment: 1, offset: 1}

iex> max([])
%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0}

 to_integer(lsn)

 @spec to_integer(t()) :: non_neg_integer()

Convert the Lsn into an equivalent byte offset.
Examples
iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 0})
0

iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 1_000_000})
1_000_000

iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 0, offset: 4294967295})
0xFFFFFFFF

iex> to_integer(%Elixir.Electric.Postgres.Lsn{segment: 15, offset: 4294967295})
0xFFFFFFFFF

 to_iolist(lsn)

 @spec to_iolist(t()) :: iolist()

Format Lsn to its text representation in an iolist.
Examples
iex> to_iolist(%Elixir.Electric.Postgres.Lsn{})
["0", ?/, "0"]

iex> to_iolist(%Elixir.Electric.Postgres.Lsn{segment: 127, offset: 1024})
["7F", ?/, "400"]

Electric.Postgres.ReplicationClient

A client module for Postgres logical replication.

 Summary

 Types

 step()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_id)

 start_link(opts)

 start_streaming(client)

 stop(client, reason)

 Types

 step()

 @type step() ::
 :disconnected
 | :connected
 | :identify_system
 | :query_pg_info
 | :acquire_lock
 | :create_publication
 | :check_if_publication_exists
 | :drop_slot
 | :create_slot
 | :query_slot_flushed_lsn
 | :set_display_setting
 | :ready_to_stream
 | :start_streaming
 | :streaming

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_id)

 start_link(opts)

 @spec start_link(Keyword.t()) :: :gen_statem.start_ret()

 start_streaming(client)

 stop(client, reason)

Electric.Postgres.ReplicationClient.ConnectionSetup

This module encapsulates the initial setup of a replication connection opened by
Electric.Postgres.ReplicationClient.
A state machine is implemented to run a series of SQL queries prior to switching the
connection into the logical streaming mode. This helps keep the main ReplicationClient
module focused on the handling of logical messages.

 Summary

 Types

 callback_return()

 extra_info()

 query_result()

 state()

 step()

 Functions

 identify_system_result(list, state)

 process_query_result(result, state)

 start(state)

 start_streaming(state)

 Types

 callback_return()

 @type callback_return() ::
 {:noreply, state()}
 | {:query, iodata(), state()}
 | {:stream, iodata(), Postgrex.ReplicationConnection.stream_opts(), state()}

 extra_info()

 @type extra_info() :: term()

 query_result()

 @type query_result() :: [Postgrex.Result.t()] | Postgrex.Error.t()

 state()

 @type state() :: Electric.Postgres.ReplicationClient.State.t()

 step()

 @type step() :: Electric.Postgres.ReplicationClient.step()

 Functions

 identify_system_result(list, state)

 process_query_result(result, state)

 @spec process_query_result(query_result(), state()) ::
 {step(), step(), extra_info(), callback_return()}

 start(state)

 @spec start(state()) :: callback_return()

 start_streaming(state)

 @spec start_streaming(state()) :: callback_return()

Electric.Postgres.ReplicationClient.MessageConverter

Conversion of incoming Postgres logical replication messages
to internal event representation.
It is stateful, consuming the replication messages in sequential order
to keep track of the relation and transaction information needed
to form the operations.
It also enforces a maximum transaction size if configured to do so,
and batches operations up to a maximum batch size before returning
a TransactionFragment.

 Summary

 Types

 t()

 Functions

 convert(msg, state)

 Convert incoming logical replication messages to internal change representation.

 in_transaction?(converter)

 new(opts \\ [])

 Types

 t()

 @type t() :: %Electric.Postgres.ReplicationClient.MessageConverter{
 current_xid: Electric.Replication.Changes.xid() | nil,
 last_log_offset: Electric.Replication.LogOffset.t() | nil,
 max_batch_size: non_neg_integer(),
 max_tx_size: non_neg_integer() | nil,
 relations: %{
 optional(Electric.Postgres.LogicalReplication.Messages.relation_id()) =>
 Electric.Postgres.LogicalReplication.Messages.Relation.t()
 },
 tx_change_count: non_neg_integer(),
 tx_op_index: non_neg_integer() | nil,
 tx_size: non_neg_integer(),
 txn_fragment: Electric.Replication.Changes.TransactionFragment.t() | nil
}

 Functions

 convert(msg, state)

 @spec convert(Electric.Postgres.LogicalReplication.Messages.message(), t()) ::
 {:ok,
 Electric.Replication.Changes.TransactionFragment.t()
 | Electric.Replication.Changes.Relation.t(), t()}
 | {:buffering, t()}
 | {:error, {:replica_not_full, String.t()}}
 | {:error, {:exceeded_max_tx_size, String.t()}}

Convert incoming logical replication messages to internal change representation.
Returns:
	{:ok, %TransactionFragment{}, state} when a batch is ready (on commit or max_batch_size reached)
	{:ok, %Relation{}, state} when a Relation is encountered (returned immediately)
	{:buffering, state} if no flush occurred
	{:error, reason} on error

 in_transaction?(converter)

 (macro)

 new(opts \\ [])

Electric.Postgres.ReplicationClient.State

 Summary

 Types

 t()

 Functions

 new(opts)

 Types

 t()

 @type t() :: %Electric.Postgres.ReplicationClient.State{
 connection_manager: pid(),
 display_settings: [String.t()],
 flush_up_to_date?: boolean(),
 flushed_wal: non_neg_integer(),
 handle_event: {module(), atom(), [term()]},
 last_seen_txn_lsn: Electric.Postgres.Lsn.t(),
 last_seen_txn_timestamp: integer(),
 lock_acquired?: term(),
 message_converter: Electric.Postgres.ReplicationClient.MessageConverter.t(),
 pg_version: non_neg_integer(),
 publication_name: String.t(),
 publication_owner?: boolean(),
 received_wal: non_neg_integer(),
 recreate_slot?: boolean(),
 replication_idle_timeout: non_neg_integer(),
 slot_name: String.t(),
 slot_temporary?: boolean(),
 stack_id: String.t(),
 start_streaming?: boolean(),
 step: Electric.Postgres.ReplicationClient.step(),
 try_creating_publication?: boolean()
}

 Functions

 new(opts)

 @spec new(Access.t()) :: t()

Electric.Postgres.SnapshotQuery

 Summary

 Types

 pg_snapshot()

 Functions

 execute_for_shape(pool, shape_handle, shape, opts)

 Execute a snapshot query for a shape in a isolated readonly transaction.

 Types

 pg_snapshot()

 @type pg_snapshot() ::
 {xmin :: pos_integer(), xmax :: pos_integer(), xip_list :: [pos_integer()]}

 Functions

 execute_for_shape(pool, shape_handle, shape, opts)

 @spec execute_for_shape(
 Postgrex.conn(),
 Electric.Shapes.Shape.handle(),
 Electric.Shapes.Shape.t(),
 [
 option
]
) :: {:ok, result} | {:error, any()}
when result: term(),
 option:
 {:snapshot_info_fn,
 (Electric.Shapes.Shape.handle(), pg_snapshot, pos_integer() -> any())}
 | {:query_fn, (Postgrex.conn(), pg_snapshot, pos_integer() -> result)}
 | {:stack_id, Electric.stack_id()},
 pg_snapshot:
 {xmin :: pos_integer(), xmax :: pos_integer(),
 xip_list :: [pos_integer()]}

Execute a snapshot query for a shape in a isolated readonly transaction.
This function operates on two callbacks: snapshot_info_fn and query_fn.
snapshot_info_fn is called with the shape handle, the pg_snapshot, and the lsn as soon
as the snapshot information for the started transaction is available.
query_fn is called with the connection, the pg_snapshot, and the lsn and
is expected to do all the work querying and dealing with the results.
The query function is executed within a transaction, so it shouldn't return
a stream (as it will fail to be read after the transaction is committed), but
rather should execute all desired side-effects or materialize the results.
Query will be executed within a REPEATABLE READ READ ONLY transaction, with
correct display settings set.
Options:
	:query_fn - the function to execute the query.
	:snapshot_info_fn - the function to call with the snapshot information.
	:stack_id - the stack id for this shape.

Electric.Postgres.Xid

 Summary

 Types

 anyxid()

 cmp_result()

 pg_snapshot()

 Functions

 after_snapshot?(xid, arg2)

 Check if a transaction is after the end of a snapshot - if it's xid is over xmax

 compare(xid8_l, xid8_r)

 In Postgres, any 32-bit xid has ~2 billion values preceding it and ~2 billion values following it.
Regular autovacuuming maintains this invariant. When we see a difference between two
xids that is larger than 2^31, we know there's been at least one transaction ID wraparound.
Given the invariant mentioned earlier, we assume there's been only one wraparound and so the xid
whose value is larger precedes the other one (or, equivalently, the smaller xid belongs to a
more recent transaction).

 compare_snapshots(arg1, arg2)

 Compare two snapshots.
Returns :lt if snapshot1 < snapshot2, :eq if equal, :gt if snapshot1 > snapshot2.

 is_eq(xid_l, xid_r)

 Guard function to check if xid_l == xid_r using the same wraparound logic as compare/2.

 is_lt(xid_l, xid_r)

 Guard function to check if xid_l < xid_r using the same wraparound logic as compare/2.

 Types

 anyxid()

 @type anyxid() :: pos_integer()

 cmp_result()

 @type cmp_result() :: :lt | :eq | :gt

 pg_snapshot()

 @type pg_snapshot() :: {anyxid(), anyxid(), [anyxid()]}

 Functions

 after_snapshot?(xid, arg2)

 @spec after_snapshot?(anyxid(), pg_snapshot()) :: boolean()

Check if a transaction is after the end of a snapshot - if it's xid is over xmax

 compare(xid8_l, xid8_r)

 @spec compare(anyxid(), anyxid()) :: cmp_result()

In Postgres, any 32-bit xid has ~2 billion values preceding it and ~2 billion values following it.
Regular autovacuuming maintains this invariant. When we see a difference between two
xids that is larger than 2^31, we know there's been at least one transaction ID wraparound.
Given the invariant mentioned earlier, we assume there's been only one wraparound and so the xid
whose value is larger precedes the other one (or, equivalently, the smaller xid belongs to a
more recent transaction).
For 64-bit xids (Postgres type xid8), the regular integer comparison is used because those
xids include the epoch number that tracks the number of xid wraparounds that have happened.
If any one or both arguments are 32-bit xids, the comparison is performed modulo-2^32, the same way it's done in Postgres:
https://github.com/postgres/postgres/blob/302cf15759233e654512979286ce1a5c3b36625f/src/backend/access/transam/transam.c#L276-L293
Tests
iex> compare(3, 3)
:eq
iex> compare(2, 1)
:gt
iex> compare(2, 2)
:eq
iex> compare(2, 3)
:lt
iex> compare(4294967295, 4294967295)
:eq
iex> compare(1, 2147483648)
:lt
iex> compare(1, 2147483649)
:lt
iex> compare(1, 2147483650)
:gt
iex> compare(1, 4294967295)
:gt
iex> compare(4294967295, 1)
:lt
iex> compare(2147483648, 1)
:gt
iex> compare(2147483649, 1)
:lt
iex> compare(2147483648, 4294967295)
:lt
iex> compare(2147483647, 4294967295)
:lt
iex> compare(2147483646, 4294967295)
:gt
Any of the two arguments can be 64-bit, the order doesn't matter:
iex> compare(1, 70866960384)
:lt
iex> compare(1, 70866960385)
:lt
iex> compare(1, 70866960386)
:gt
iex> compare(70866960384, 1)
:gt
iex> compare(70866960385, 1)
:lt
When both numbers are 64-bit, regular comparison rules apply:
iex> compare(70866960386, 70866960385)
:gt
iex> compare(70866960384, 73014444034)
:lt

 compare_snapshots(arg1, arg2)

 @spec compare_snapshots(pg_snapshot(), pg_snapshot()) :: :lt | :eq | :gt

Compare two snapshots.
Returns :lt if snapshot1 < snapshot2, :eq if equal, :gt if snapshot1 > snapshot2.
Comparison rules:
	snapshot1 < snapshot2 if xmax1 < xmax2 OR (xmax1 == xmax2 AND xmin1 < xmin2)
	snapshots are equal if both xmin and xmax are equal

Examples
iex> compare_snapshots({100, 200, []}, {150, 300, []})
:lt

iex> compare_snapshots({100, 300, []}, {150, 200, []})
:gt

iex> compare_snapshots({100, 300, []}, {150, 300, []})
:lt

iex> compare_snapshots({150, 300, []}, {100, 300, []})
:gt

iex> compare_snapshots({100, 300, [150]}, {100, 300, [200]})
:eq

iex> compare_snapshots({100, 300, []}, {100, 300, [150, 200, 250]})
:eq

 is_eq(xid_l, xid_r)

 (macro)

Guard function to check if xid_l == xid_r using the same wraparound logic as compare/2.
This can be used in guard clauses. For equality, two XIDs are equal if their difference
is zero modulo 2^32.
Examples
iex> is_eq(3, 3)
true

iex> is_eq(2, 1)
false

iex> is_eq(2, 2)
true

iex> is_eq(2, 3)
false

iex> is_eq(4294967295, 4294967295)
true

iex> is_eq(1, 2147483648)
false

iex> is_eq(4294967295, 1)
false

Any of the two arguments can be 64-bit, the order doesn't matter:

iex> is_eq(1, 70866960384)
false

iex> is_eq(70866960384, 1)
false

When both numbers are 64-bit, regular comparison rules apply:

iex> is_eq(70866960384, 70866960384)
true

iex> is_eq(70866960386, 70866960385)
false

 is_lt(xid_l, xid_r)

 (macro)

Guard function to check if xid_l < xid_r using the same wraparound logic as compare/2.
This can be used in guard clauses. Since guards don't allow bit-casting, we manually
handle the modulo-2^32 arithmetic:
	For 64-bit XIDs (both > 32-bit max), use regular comparison
	For 32-bit XIDs, we compute the unsigned 32-bit difference and check if it's > 2^31

Examples
iex> is_lt(3, 3)
false

iex> is_lt(2, 1)
false

iex> is_lt(2, 2)
false

iex> is_lt(2, 3)
true

iex> is_lt(4294967295, 4294967295)
false

iex> is_lt(1, 2147483648)
true

iex> is_lt(1, 2147483649)
true

iex> is_lt(1, 2147483650)
false

iex> is_lt(1, 4294967295)
false

iex> is_lt(4294967295, 1)
true

iex> is_lt(2147483648, 1)
false

iex> is_lt(2147483649, 1)
true

iex> is_lt(2147483648, 4294967295)
true

iex> is_lt(2147483647, 4294967295)
true

iex> is_lt(2147483646, 4294967295)
false

Any of the two arguments can be 64-bit, the order doesn't matter:

iex> is_lt(1, 70866960384)
true

iex> is_lt(1, 70866960385)
true

iex> is_lt(1, 70866960386)
false

iex> is_lt(70866960384, 1)
false

iex> is_lt(70866960385, 1)
true

When both numbers are 64-bit, regular comparison rules apply:

iex> is_lt(70866960386, 70866960385)
false

iex> is_lt(70866960384, 73014444034)
true

Electric.ProcessRegistry

 Summary

 Functions

 alive?(stack_id, key, sub_key \\ nil)

 child_spec(options)

 name(opts_or_stack_id, key, sub_key \\ nil)

 registry_name(stack_id)

 start_link(opts)

 Functions

 alive?(stack_id, key, sub_key \\ nil)

 child_spec(options)

 @spec child_spec([Registry.start_option()]) :: Supervisor.child_spec()

 name(opts_or_stack_id, key, sub_key \\ nil)

 registry_name(stack_id)

 start_link(opts)

Electric.Replication.Changes

This module contains structs that are intermediate representation of Postgres and Satellite transactions.
Some of the core assumptions in this module:
	We require PK always to be present for all tables
	For now PK modification is not supported
	PG replication protocol is expected to always send the whole row
when dealing with UPDATE changes, and optionally old row if REPLICA
identity is set to FULL.

 Summary

 Types

 change()

 data_change()

 db_identifier()

 pk()

 record()

 relation_id()

 relation_name()

 tag()

 Tag has the form of origin@timestamp, where origin is a unique source id
(UUID for Satellite clients) and timestamp is millisecond-precision UTC unix timestamp

 xid()

 Functions

 build_key(rel, record, pk_cols)

 Build a unique key for a given record based on its relation and PK.

 convert_update(change, list)

 Convert an UpdatedRecord into the corresponding NewRecord or DeletedRecord
based on the provided to option.

 fill_key(tr, pk)

 filter_columns(change, columns_to_keep)

 Filter the columns of a change to include only those provided in columns_to_keep.

 Types

 change()

 @type change() :: data_change() | Electric.Replication.Changes.TruncatedRelation.t()

 data_change()

 @type data_change() ::
 Electric.Replication.Changes.NewRecord.t()
 | Electric.Replication.Changes.UpdatedRecord.t()
 | Electric.Replication.Changes.DeletedRecord.t()

 db_identifier()

 @type db_identifier() :: String.t()

 pk()

 @type pk() :: [String.t(), ...]

 record()

 @type record() :: %{
 required(column_name :: db_identifier()) => column_data :: binary()
}

 relation_id()

 @type relation_id() :: non_neg_integer()

 relation_name()

 @type relation_name() :: {schema :: db_identifier(), table :: db_identifier()}

 tag()

 @type tag() :: String.t()

Tag has the form of origin@timestamp, where origin is a unique source id
(UUID for Satellite clients) and timestamp is millisecond-precision UTC unix timestamp

 xid()

 @type xid() :: Electric.Postgres.Xid.anyxid()

 Functions

 build_key(rel, record, pk_cols)

Build a unique key for a given record based on its relation and PK.
Uses the / symbol as a PK separator, so any /s in the PK will
be escaped to avoid collisions.
Examples
Build key respects PK column order:
iex> build_key({"hello", "world"}, %{"c" => "d", "a" => "b"}, ["a", "c"])
~S|"hello"."world"/"b"/"d"|

iex> build_key({"hello", "world"}, %{"a" => "b", "c" => "d"}, ["c", "a"])
~S|"hello"."world"/"d"/"b"|
Build key has / symbol in the PK escaped by repetition:
iex> build_key({"hello", "world"}, %{"a" => "test/test", "c" => "test"}, ["a", "c"])
~S|"hello"."world"/"test//test"/"test"|

iex> build_key({"hello", "world"}, %{"a" => "test", "c" => "test/test"}, ["a", "c"])
~S|"hello"."world"/"test"/"test//test"|
If a table has no PK, all columns are used, sorted by the column name:
iex> build_key({"hello", "world"}, %{"c" => "d", "a" => "b"}, [])
~S|"hello"."world"/"b"/"d"|

iex> build_key({"hello", "world"}, %{"a" => "1", "b" => nil, "c" => "2"}, [])
~S|"hello"."world"/"1"/_/"2"|
All pk sections are wrapped in quotes to allow for empty strings without generating a // pair.
iex> build_key({"hello", "world"}, %{"a" => "1", "b" => "", "c" => "2"}, [])
~S|"hello"."world"/"1"/""/"2"|
Dots and slashes in relation names are escaped by repetition:
iex> build_key({"a\".\"b", "c"}, %{"a" => ""}, [])
~S|"a".."b"."c"/""|

iex> build_key({"a", "b\".\"c"}, %{"a" => ""}, [])
~S|"a"."b".."c"/""|

iex> build_key({"a", "b"}, %{"a" => "", "b" => ""}, [])
~S|"a"."b"/""/""|

iex> build_key({"a", "b\"/\""}, %{"a" => ""}, [])
~S|"a"."b"//""/""|

 convert_update(change, list)

Convert an UpdatedRecord into the corresponding NewRecord or DeletedRecord
based on the provided to option.
Examples
iex> convert_update(%UpdatedRecord{record: %{id: 1}}, to: :new_record)
%NewRecord{record: %{id: 1}}

iex> convert_update(%UpdatedRecord{record: %{id: 2}, old_record: %{id: 1}}, to: :deleted_record)
%DeletedRecord{old_record: %{id: 1}}

iex> convert_update(%UpdatedRecord{record: %{id: 1}}, to: :updated_record)
%UpdatedRecord{record: %{id: 1}}

 fill_key(tr, pk)

 filter_columns(change, columns_to_keep)

 @spec filter_columns(change(), [String.t()]) :: change()

Filter the columns of a change to include only those provided in columns_to_keep.
Examples
iex> filter_columns(%NewRecord{record: %{"a" => "b", "c" => "d"}}, ["a"])
%NewRecord{record: %{"a" => "b"}}

iex> filter_columns(UpdatedRecord.new(
...> record: %{"a" => "b", "c" => "d"},
...> old_record: %{"a" => "d", "c" => "f"}
...>), ["a"])
UpdatedRecord.new(record: %{"a" => "b"}, old_record: %{"a" => "d"})

iex> filter_columns(%DeletedRecord{old_record: %{"a" => "b", "c" => "d"}}, ["c"])
%DeletedRecord{old_record: %{"c" => "d"}}

Electric.Replication.Changes.Column

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.Column{
 name: Electric.Replication.Changes.db_identifier(),
 type_oid: pos_integer()
}

Electric.Replication.Changes.Commit

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.Commit{
 commit_timestamp: DateTime.t() | nil,
 transaction_size: non_neg_integer(),
 txn_change_count: non_neg_integer()
}

Electric.Replication.Changes.DeletedRecord

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.DeletedRecord{
 key: String.t() | nil,
 last?: boolean(),
 log_offset: Electric.Replication.LogOffset.t(),
 move_tags: [Electric.Replication.Changes.tag()],
 old_record: Electric.Replication.Changes.record(),
 relation: Electric.Replication.Changes.relation_name()
}

Electric.Replication.Changes.NewRecord

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.NewRecord{
 key: String.t() | nil,
 last?: boolean(),
 log_offset: Electric.Replication.LogOffset.t(),
 move_tags: [Electric.Replication.Changes.tag()],
 record: Electric.Replication.Changes.record(),
 relation: Electric.Replication.Changes.relation_name()
}

Electric.Replication.Changes.Relation

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.Relation{
 affected_columns: [Electric.Replication.Changes.db_identifier()],
 columns: [Electric.Replication.Changes.Column.t()],
 id: Electric.Replication.Changes.relation_id(),
 schema: Electric.Replication.Changes.db_identifier(),
 table: Electric.Replication.Changes.db_identifier()
}

Electric.Replication.Changes.Transaction

 Summary

 Types

 t()

 Functions

 visible_in_snapshot?(xid, snapshot)

 Check if a transaction is visible in a snapshot.

 Types

 t()

 @type t() :: %Electric.Replication.Changes.Transaction{
 changes: [Electric.Replication.Changes.change()],
 commit_timestamp: DateTime.t() | nil,
 last_log_offset: Electric.Replication.LogOffset.t(),
 lsn: Electric.Postgres.Lsn.t(),
 num_changes: non_neg_integer(),
 xid: Electric.Replication.Changes.xid() | nil
}

 Functions

 visible_in_snapshot?(xid, snapshot)

 @spec visible_in_snapshot?(
 t() | Electric.Postgres.Xid.anyxid(),
 %{
 xmin: Electric.Postgres.Xid.anyxid(),
 xmax: Electric.Postgres.Xid.anyxid(),
 xip_list: [Electric.Postgres.Xid.anyxid()]
 }
 | {Electric.Postgres.Xid.anyxid(), Electric.Postgres.Xid.anyxid(),
 [Electric.Postgres.Xid.anyxid()]}
) :: boolean()

Check if a transaction is visible in a snapshot.

Electric.Replication.Changes.TransactionFragment

Represents a transaction or part of a transaction from the replication stream.
The has_begin? and commit fields indicate which portion of a transaction
the fragment represents:
	Full transaction: has_begin? is true and commit is set
	Start of a transaction: has_begin? is true but no commit
	Middle of a transaction: has_begin? is false and no commit
	End of a transaction: has_begin? is false but commit is set

 Summary

 Types

 t()

 Functions

 complete_transaction?(transaction_fragment)

 Types

 t()

 @type t() :: %Electric.Replication.Changes.TransactionFragment{
 affected_relations: MapSet.t(Electric.Replication.Changes.relation_name()),
 change_count: non_neg_integer(),
 changes: [Electric.Replication.Changes.change()],
 commit: Electric.Replication.Changes.Commit.t() | nil,
 has_begin?: boolean(),
 last_log_offset: Electric.Replication.LogOffset.t() | nil,
 lsn: Electric.Postgres.Lsn.t() | nil,
 xid: Electric.Replication.Changes.xid() | nil
}

 Functions

 complete_transaction?(transaction_fragment)

Electric.Replication.Changes.TruncatedRelation

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Replication.Changes.TruncatedRelation{
 last?: boolean(),
 log_offset: Electric.Replication.LogOffset.t(),
 relation: Electric.Replication.Changes.relation_name()
}

Electric.Replication.Changes.UpdatedRecord

 Summary

 Types

 t()

 Functions

 new(attrs)

 Types

 t()

 @type t() :: %Electric.Replication.Changes.UpdatedRecord{
 changed_columns: MapSet.t(),
 key: String.t() | nil,
 last?: boolean(),
 log_offset: Electric.Replication.LogOffset.t(),
 move_tags: [Electric.Replication.Changes.tag()],
 old_key: String.t() | nil,
 old_record: Electric.Replication.Changes.record() | nil,
 record: Electric.Replication.Changes.record(),
 relation: Electric.Replication.Changes.relation_name(),
 removed_move_tags: [Electric.Replication.Changes.tag()]
}

 Functions

 new(attrs)

Electric.Replication.Eval

Utilities for evaluating and converting replication-related types.

 Summary

 Functions

 type_to_pg_cast(type, is_in_array? \\ false)

 Converts a type specification to a PostgreSQL cast string.

 Functions

 type_to_pg_cast(type, is_in_array? \\ false)

Converts a type specification to a PostgreSQL cast string.
Parameters
	type - A type specification, which can be:	An atom representing a basic PostgreSQL type
	A tuple {:array, type} for array types
	A tuple {:enum, name} for enum types

Returns
A string representation of the PostgreSQL cast type.
Examples
Basic types:
iex> Electric.Replication.Eval.type_to_pg_cast(:int4)
"int4"

iex> Electric.Replication.Eval.type_to_pg_cast(:text)
"text"

iex> Electric.Replication.Eval.type_to_pg_cast(:bool)
"bool"
Array types:
iex> Electric.Replication.Eval.type_to_pg_cast({:array, :int4})
"int4[]"

iex> Electric.Replication.Eval.type_to_pg_cast({:array, :text})
"text[]"
Nested array types:
iex> Electric.Replication.Eval.type_to_pg_cast({:array, {:array, :int4}})
"int4[]"
Enum types:
iex> Electric.Replication.Eval.type_to_pg_cast({:enum, :my_enum})
"my_enum"

iex> Electric.Replication.Eval.type_to_pg_cast({:enum, "custom_enum"})
"custom_enum"
Unsupported types raise errors:
iex> Electric.Replication.Eval.type_to_pg_cast({:row, []})
** (RuntimeError) Unsupported type: row

iex> Electric.Replication.Eval.type_to_pg_cast({:internal, :something})
** (RuntimeError) Unsupported type: internal

Electric.Replication.Eval.Env

Evaluation environment for parsing PostgreSQL expressions.
We have a need to parse PG expressions, and then be able to
execute them in Electric without reaching for Postgres on every operation.
This is achieved by parsing Postgres expressions, however Postgres has
a lot of features we're unlikely to support, and, moreover, very dynamic:
new features, new data types - everything can be redefined, including
so-called "preferred" data types, new type categories, implicit casts, etc.
Redefining all this for normal types is quite unlikely in the wild, but may be
later common for custom types.
Parsing PG expressions, we need to know what we support. It's then reasonable
to have a good set of defaults we know how to deal with, but leave an escape hatch
so that until we add support for pulling all this data from PG, we have a working
system. Even afterwards, a set of PG functions using, say PLSQL is likely to use
default PG functions, which we still need to know how to execute.
This module defines a struct that contains information, relevant to parsing PG
statements into something Electric can understand, while respecting PG types
and function/operator overload selections.
It's also worth noting that our defaults, especially implicit casts specifically
omit any "system" types (e.g. regclass or pg_ndistinct) because we're essentially
never going to have enough context in Electric to be able to correctly utilize those
types.

 Summary

 Types

 basic_type()

 basic_type_registry()

 cast_function()

 cast_key()

 cast_registry()

 env_property()

 flat_pg_type()

 func()

 func_id()

 funcs()

 implicit_cast_function()

 implicit_cast_registry()

 pg_type()

 t()

 type_info()

 Functions

 can_implicitly_coerce_types?(env, inputs, targets)

 Check if a list of inputs can be implicitly coerced to a list of targets.

 const_to_pg_string(env, value, type)

 empty(additions \\ [])

 Create a new empty environment, without any default functions or explicit casts

 find_cast_function(env, from_type, to_type)

 Find an appropriate cast function for the given types in this environment.

 get_type_category(arg1, name)

 Get type category for the given type (possibly non-basic).

 get_unified_coercion_targets(env, inputs, targets, return_type \\ nil)

 implicitly_castable?(arg1, same, same)

 Check if one type is implicitly castable to another type in this environment.

 is_preferred?(env, type)

 Check if type is preferred within the type category.

 new(additions \\ [])

 Create a new environment with known defaults, merging in provided keys

 parse_const(env, value, x)

 Parse an unknown value constant as a known type in the current environment.

 Types

 basic_type()

 @type basic_type() :: atom()

 basic_type_registry()

 @type basic_type_registry() :: %{required(basic_type()) => type_info()}

 cast_function()

 @type cast_function() :: {module :: module(), function :: atom()}

 cast_key()

 @type cast_key() :: {from :: basic_type(), to :: basic_type()}

 cast_registry()

 @type cast_registry() :: %{required(cast_key()) => cast_function()}

 env_property()

 @type env_property() ::
 {:funcs, funcs()}
 | {:operators, funcs()}
 | {:explicit_casts, cast_registry()}
 | {:implicit_casts, implicit_cast_registry()}
 | {:known_basic_types, basic_type_registry()}

 flat_pg_type()

 @type flat_pg_type() :: basic_type() | {:composite, map()} | :record | {:enum, term()}

 func()

 @type func() :: %{
 optional(:strict?) => boolean(),
 optional(:immutable?) => boolean(),
 args: [pg_type()],
 returns: pg_type(),
 implementation: {module(), atom()} | fun(),
 name: String.t()
}

 func_id()

 @type func_id() :: {name :: String.t(), arity :: non_neg_integer()}

 funcs()

 @type funcs() :: %{required(func_id()) => [func(), ...]}

 implicit_cast_function()

 @type implicit_cast_function() :: cast_function() | :as_is

 implicit_cast_registry()

 @type implicit_cast_registry() :: %{required(cast_key()) => implicit_cast_function()}

 pg_type()

 @type pg_type() ::
 flat_pg_type()
 | {:array, flat_pg_type()}
 | {:range, flat_pg_type()}
 | {:multirange, flat_pg_type()}

 t()

 @type t() :: %Electric.Replication.Eval.Env{
 allow_enums: boolean(),
 explicit_casts: cast_registry(),
 funcs: funcs(),
 implicit_casts: implicit_cast_registry(),
 known_basic_types: basic_type_registry(),
 operators: funcs()
}

 type_info()

 @type type_info() :: %{category: atom(), preferred?: boolean()}

 Functions

 can_implicitly_coerce_types?(env, inputs, targets)

 @spec can_implicitly_coerce_types?(t(), [pg_type()], [pg_type()]) :: boolean()

Check if a list of inputs can be implicitly coerced to a list of targets.
Note that other functions may not exactly support all of types

 const_to_pg_string(env, value, type)

 empty(additions \\ [])

Create a new empty environment, without any default functions or explicit casts

 find_cast_function(env, from_type, to_type)

 @spec find_cast_function(t(), pg_type(), pg_type()) ::
 {:ok, implicit_cast_function()}
 | {:ok, :array_cast, implicit_cast_function()}
 | :error

Find an appropriate cast function for the given types in this environment.

 get_type_category(arg1, name)

 @spec get_type_category(t(), pg_type()) :: atom()

Get type category for the given type (possibly non-basic).

 get_unified_coercion_targets(env, inputs, targets, return_type \\ nil)

 implicitly_castable?(arg1, same, same)

 @spec implicitly_castable?(t(), basic_type(), basic_type()) :: boolean()

Check if one type is implicitly castable to another type in this environment.

 is_preferred?(env, type)

Check if type is preferred within the type category.

 new(additions \\ [])

 @spec new([env_property()]) :: t()

Create a new environment with known defaults, merging in provided keys

 parse_const(env, value, x)

 @spec parse_const(t(), String.t() | nil, pg_type()) :: {:ok, term()} | :error

Parse an unknown value constant as a known type in the current environment.

Electric.Replication.Eval.Env.BasicTypes

This module describes basic types, their categories, and if they are preferred within said category.
Information here is gathered from a system catalog pg_type, as described in
PG docs.
Known types
	type	category	preferred?
	bool	boolean	t
	int2	numeric	
	int4	numeric	
	int8	numeric	
	float4	numeric	
	float8	numeric	t
	numeric	numeric	
	name	string	
	text	string	t
	varchar	string	
	date	datetime	
	time	datetime	
	timestamp	datetime	
	timestamptz	datetime	t
	interval	timespan	t
	unknown	unknown	
	bytea	user	
	uuid	user	
	anyarray	pseudo	
	anycompatible	pseudo	
	anycompatiblearray	pseudo	
	anycompatiblemultirange	pseudo	
	anycompatiblenonarray	pseudo	
	anycompatiblerange	pseudo	
	anyelement	pseudo	
	anyenum	pseudo	
	anymultirange	pseudo	
	anynonarray	pseudo	
	anyrange	pseudo	

 Summary

 Functions

 known()

 List all known basic types

 noop(input)

 Functions

 known()

List all known basic types
Examples
iex> noop(known()[:timestamptz])
%{category: :datetime, preferred?: true}

 noop(input)

Electric.Replication.Eval.Env.ExplicitCasts

Postgres has explicit casts, achievable via ::type calls.
This module defines implementations for a subset of known ones.
"function name" column here is a function name in this module.
List of explicit casts
	source	target	function name
	bool	int4	bool_to_int4
	char	int4	
	int8	bit	
	int4	bit	
	int4	bool	int4_to_bool
	int4	char	
	text	xml	
	lseg	point	
	box	point	
	box	lseg	
	box	circle	
	polygon	box	
	polygon	circle	
	polygon	point	
	circle	box	
	circle	point	
	circle	polygon	
	bpchar	xml	
	varchar	xml	
	bit	int4	
	bit	int8	
	jsonb	bool	
	jsonb	int8	
	jsonb	int2	
	jsonb	int4	
	jsonb	float4	
	jsonb	float8	
	jsonb	numeric	
	int4range	int4multirange	
	numrange	nummultirange	
	tsrange	tsmultirange	
	tstzrange	tstzmultirange	
	daterange	datemultirange	
	int8range	int8multirange	
	xid8	xid	

 Summary

 Functions

 bool_to_int4(bool)

 int4_to_bool(x)

 known()

 Functions

 bool_to_int4(bool)

 int4_to_bool(x)

 known()

Electric.Replication.Eval.Env.ImplicitCasts

List of all implicit casts in (raw) PostgreSQL. Does not account for custom casts, which
are discouraged anyway. If needed, this list can be extended in Electric.Replication.Eval.Env.new/1
This list of implicit casts functions as-is, meaning that in Elixir land, we can just "relabel" the type,
without doing any actual conversion, and it will work.
Types are always considered implicitly castable to themselves (as in PG code), but three casts are missing
from this list: time to timetz, timestamp to timestamptz, and date to timestamptz. Reason for this is that the implicit
cast appends a timezone of the server to the original type, which is not something that makes a whole
lot of sense to do on Electric.
Duplicated source and target usually mean that there is some property of the type that may be present
(e.g. length of the bit type, or precision of interval) but shouldn't interfere with casting
List of implicit casts
	source	targets	function name
	bit	varbit,bit	
	bpchar	text,name,varchar,bpchar	
	char	text	
	cidr	inet	
	date	timestamp	date_to_timestamp
	float4	float8	
	int2	float8,int8,int4,numeric,float4	
	int4	float4,float8,numeric,int8	
	int8	float8,float4,numeric	
	interval	interval	
	macaddr	macaddr8	
	macaddr8	macaddr	
	name	text	
	numeric	numeric,float8,float4	
	text	bpchar,varchar,name	
	time	interval	
	time	time	
	timestamp	timestamp	
	timestamptz	timestamptz	
	timetz	timetz	
	varbit	varbit,bit	
	varchar	name,text,bpchar,varchar	

 Summary

 Functions

 date_to_timestamp(date)

 known()

 Functions

 date_to_timestamp(date)

 known()

Electric.Replication.Eval.Env.KnownFunctions

 Summary

 Functions

 arrays_overlap?(left, right)

 bool_out(bool)

 date_subtract(date, int)

 known_functions()

 known_operators()

 left_array_contains_right?(left, right)

 naive_from_timestamptz(tz, datetime)

 not_ilike?(text1, text2)

 not_like?(text1, text2)

 right_array_contains_left?(left, right)

 text_concat(t1, t2)

 timestamptz_from_naive(tz, datetime)

 Functions

 arrays_overlap?(left, right)

 bool_out(bool)

 date_subtract(date, int)

 known_functions()

 known_operators()

 left_array_contains_right?(left, right)

 naive_from_timestamptz(tz, datetime)

 not_ilike?(text1, text2)

 not_like?(text1, text2)

 right_array_contains_left?(left, right)

 text_concat(t1, t2)

 timestamptz_from_naive(tz, datetime)

Electric.Replication.Eval.Expr

Parsed expression, available for evaluation using the runner

 Summary

 Types

 t()

 used_refs()

 Functions

 unqualified_refs(expr)

 Returns a flat list of all used refs used in the expression
that point to the current table

 wrap_parser_part(expr)

 Wrap a parser part (Const, Ref, Func, Array, RowExpr) in an Expr struct, so that it can be evaluated on it's own.

 Types

 t()

 @type t() :: %Electric.Replication.Eval.Expr{
 eval: term(),
 query: String.t(),
 returns: Electric.Replication.Eval.Env.pg_type(),
 used_refs: used_refs()
}

 used_refs()

 @type used_refs() :: %{
 required([String.t(), ...]) => Electric.Replication.Eval.Env.pg_type()
}

 Functions

 unqualified_refs(expr)

 @spec unqualified_refs(t()) :: [String.t()]

Returns a flat list of all used refs used in the expression
that point to the current table
Examples
iex> used_refs = %{["id"] => :int8, ["created_at"] => :timestamp}
iex> unqualified_refs(%Expr{query: "id = 1", used_refs: used_refs})
["created_at", "id"]

iex> used_refs = %{["id"] => :int8, ["potato", "created_at"] => :timestamp}
iex> unqualified_refs(%Expr{query: "id = 1", used_refs: used_refs, returns: :int8})
["id"]

 wrap_parser_part(expr)

Wrap a parser part (Const, Ref, Func, Array, RowExpr) in an Expr struct, so that it can be evaluated on it's own.
This is used when a subtree of our AST needs to be made evaluatable on it's own inside Electric. The query field
is not needed in that context, it's used when going back to postgres, so we don't bother calculating it.

Electric.Replication.Eval.KnownDefinition

Special module to be use-d to define translation of PostgreSQL
operators and functions into Elixir calls.

 Summary

 Functions

 before_compile(env)

 defcompare(datatype, opts)

 defpostgres(operator_or_func, opts, do_block \\ [])

 Define a postgres operator or function and it's implementation in Elixir.

 expand_categories(impl)

 Functions

 before_compile(env)

 (macro)

 defcompare(datatype, opts)

 (macro)

 defpostgres(operator_or_func, opts, do_block \\ [])

 (macro)

Define a postgres operator or function and it's implementation in Elixir.

 expand_categories(impl)

Electric.Replication.Eval.Lookups

 Summary

 Functions

 pick_concrete_function_overload(choices, args, env)

 Given multiple possible function overloads (same name and arity), try to
find a concrete implementation that matches the argument types.

 pick_concrete_operator_overload(choices, args, env)

 Given multiple possible operator overloads (same name and arity), try to
find a concrete implementation that matches the argument types.

 pick_union_type(args, env)

 Given a list of types, get a candidate type that best represents the union of all types.

 Functions

 pick_concrete_function_overload(choices, args, env)

 @spec pick_concrete_function_overload(
 list(),
 [struct()],
 Electric.Replication.Eval.Env.t()
) ::
 {:ok, term()} | :error

Given multiple possible function overloads (same name and arity), try to
find a concrete implementation that matches the argument types.
Rules for picking a function overload closely mimic those outlined in postgres
documentation:
	Check if there is an overload where all variable types match exactly
	Check if only one overload remains based on implicit conversion rules
(unknowns are considered always matching), discard those that cannot
be applied even after implicit conversion
	Check if only one overload remains based on most exact type matches
	Keep overloads that accept most preferred types in each conversion spot
	If there are any unknowns, for each position first look for any overloads that
accept string category, and if none found, check if all overloads accept
the same type category. If that fails, keep all overloads, or pick any that
don't accept picked category
	If there are both unknown and known arguments, and all known arguments have
the same type category, assume unknowns have the same type category and look
for overloads that fit.

If exactly one overload matched after those steps, pick it, otherwise fail.

 pick_concrete_operator_overload(choices, args, env)

 @spec pick_concrete_operator_overload(
 list(),
 [struct()],
 Electric.Replication.Eval.Env.t()
) ::
 {:ok, term()} | :error

Given multiple possible operator overloads (same name and arity), try to
find a concrete implementation that matches the argument types.
Operators can only be 1 or 2-arity.
Rules for picking a operation overload closely mimic those outlined in postgres
documentation, and
mostly match pick_concrete_function_overload/3.

 pick_union_type(args, env)

Given a list of types, get a candidate type that best represents the union of all types.
Algorithm implements Postgres type resolution for UNION, CASE, and related constructs, like
ARRAY[] constructor syntax. They are outlined in
documentation.
	If all inputs are of the same type, and it is not unknown, resolve as that type.
	If any input is of a domain type, treat it as being of the domain's base type for all subsequent steps.
	If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored for the purposes of the remaining rules.
	If the non-unknown inputs are not all of the same type category, fail.
	Select the first non-unknown input type as the candidate type, then consider each other non-unknown input type, left to right.
If the candidate type can be implicitly converted to the other type but not vice-versa, select the other type as the new
candidate type. Then continue considering the remaining inputs.
If, at any stage of this process, a preferred type is selected, stop considering additional inputs.
	Convert all inputs to the final candidate type. Fail if there is not an implicit conversion from a given input type to the candidate type.

Electric.Replication.Eval.Parser

 Summary

 Types

 parse_opt()

 refs_map()

 tree_part()

 Functions

 extract_parts_from_select(select)

 extract_subqueries(ast)

 find_refs(tree, acc \\ %{})

 parse_and_validate_expression(query, opts \\ [])

 Parses and validates a WHERE clause in PostgreSQL SQL syntax.

 parse_and_validate_expression!(query, opts \\ [])

 parse_query(query)

 Parses a query into a Postgres AST

 unwrap_node_string(node)

 validate_order_by(order_by, columns)

 validate_where_ast(ast, opts)

 Types

 parse_opt()

 @type parse_opt() ::
 {:env, Electric.Replication.Eval.Env.t()}
 | {:refs, refs_map()}
 | {:params, %{required(String.t()) => String.t()}}

 refs_map()

 @type refs_map() :: %{
 optional([String.t(), ...]) => Electric.Replication.Eval.Env.pg_type()
}

 tree_part()

 @type tree_part() ::
 %Electric.Replication.Eval.Parser.Const{
 location: term(),
 meta: term(),
 type: term(),
 value: term()
 }
 | %Electric.Replication.Eval.Parser.Ref{
 location: term(),
 path: term(),
 type: term()
 }
 | %Electric.Replication.Eval.Parser.Func{
 args: term(),
 immutable?: term(),
 implementation: term(),
 location: term(),
 map_over_array_in_pos: term(),
 name: term(),
 strict?: term(),
 type: term(),
 variadic_arg: term()
 }
 | %Electric.Replication.Eval.Parser.Array{
 elements: term(),
 location: term(),
 type: term()
 }

 Functions

 extract_parts_from_select(select)

 extract_subqueries(ast)

 find_refs(tree, acc \\ %{})

 parse_and_validate_expression(query, opts \\ [])

 @spec parse_and_validate_expression(String.t(), [parse_opt()]) ::
 {:ok, Electric.Replication.Eval.Expr.t()} | {:error, String.t()}

Parses and validates a WHERE clause in PostgreSQL SQL syntax.
Returns a tuple of {:ok, Expr.t()} or {:error, String.t()}.
Query may contain $1 parameter references, which will be taken from a params keyword argument.
params must be a map with both strings and values as keys. Because we're using this query later in
places that won't support parameter references, the Expr will have a query field that contains
normalized query with parameters substrituted with strings with explicit type casts. For example:
{:ok, %Expr{query: "1 > '0'::int4"}} =
 Parser.parse_and_validate_expression("1 > $1", params: %{"1" => "0"})

Query will be always be normalized, i.e. extra whitespace removed and keywords converted to upper case.

 parse_and_validate_expression!(query, opts \\ [])

 @spec parse_and_validate_expression!(String.t(), [parse_opt()]) ::
 Electric.Replication.Eval.Expr.t()

 parse_query(query)

Parses a query into a Postgres AST

 unwrap_node_string(node)

 validate_order_by(order_by, columns)

 validate_where_ast(ast, opts)

Electric.Replication.Eval.Parser.Array

Electric.Replication.Eval.Parser.Const

Electric.Replication.Eval.Parser.Func

Electric.Replication.Eval.Parser.Ref

Electric.Replication.Eval.Parser.RowExpr

Electric.Replication.Eval.Parser.UnknownConst

Electric.Replication.Eval.Runner

 Summary

 Functions

 execute(tree, ref_values)

 Run a PG function parsed by Electric.Replication.Eval.Parser based on the inputs

 execute_for_record(expr, record, extra_refs \\ %{})

 record_to_ref_values(used_refs, record, env \\ Env.new())

 Generate a ref values object based on the record and a given table name

 Functions

 execute(tree, ref_values)

 @spec execute(Electric.Replication.Eval.Expr.t(), map()) ::
 {:ok, term()}
 | {:error,
 {%Electric.Replication.Eval.Parser.Func{
 args: term(),
 immutable?: term(),
 implementation: term(),
 location: term(),
 map_over_array_in_pos: term(),
 name: term(),
 strict?: term(),
 type: term(),
 variadic_arg: term()
 }, [term()]}}

Run a PG function parsed by Electric.Replication.Eval.Parser based on the inputs

 execute_for_record(expr, record, extra_refs \\ %{})

 record_to_ref_values(used_refs, record, env \\ Env.new())

 @spec record_to_ref_values(
 Electric.Replication.Eval.Expr.used_refs(),
 map(),
 Electric.Replication.Eval.Env.t()
) :: {:ok, map()} | :error

Generate a ref values object based on the record and a given table name
Examples
iex> used_refs = %{["id"] => :int8, ["created_at"] => :timestamp}
iex> record_to_ref_values(used_refs, %{"id" => "80", "created_at" => "2020-01-01T11:00:00Z"})
%{
 ["id"] => 80,
 ["created_at"] => ~N[2020-01-01 11:00:00]
}

Electric.Replication.Eval.Walker

 Summary

 Types

 children_map()

 Functions

 accumulating_fold(tree, fold_fn, acc_fn, acc, ctx \\ [])

 Given a Electric.Walkable structure, visit every node and apply the fold_fn to it, then apply the acc_fn to the result and the accumulated value to
get a new structure.

 fold(tree, fold_fn, ctx \\ [])

 Given a Electric.Walkable structure, visit every node and apply the fold_fn to it to get a new structure.

 reduce(tree, reduce_fn, acc, ctx \\ [])

 Given a Electric.Walkable structure, visit every node and apply the reduce_fn to it to get an accumulated value.

 reduce!(tree, reduce_fn, acc, ctx \\ [])

 Same as reduce/4, but raises on error instead of returning an error tuple.

 Types

 children_map()

 @type children_map() :: %{required(atom()) => nil | struct() | [struct()]}

 Functions

 accumulating_fold(tree, fold_fn, acc_fn, acc, ctx \\ [])

 @spec accumulating_fold(
 target :: struct() | nil,
 fold_fn :: fold_fn,
 acc_fn :: acc_fn,
 acc :: acc,
 ctx :: context
) :: {:error, any()} | {:ok, {result | nil, acc}}
when acc: any(),
 context: any(),
 result: any(),
 fold_fn: (struct(), children_map(), acc, context ->
 {:ok, result} | {:error, any()}),
 acc_fn: (struct(), result, children_map(), acc, context ->
 {:ok, acc} | {:error, any()})

Given a Electric.Walkable structure, visit every node and apply the fold_fn to it, then apply the acc_fn to the result and the accumulated value to
get a new structure.
fold_fn is called with the current node, the result of processing the children nodes, the accumulated value and the context.
Result of processing children nodes is a map with the same keys as the node, but with replaced children instead of originals.
This function is expected to return a replacement for the current node, and that replacement will be propagated to the parent node.
acc_fn is called with the current node, the result of processing the current node, the result of processing the children nodes, the accumulated value and the context.
This function is expected to return a new accumulated value.
Both fold_fn and acc_fn are expected to return an ok tuple, or an error tuple, any other value will raise an error.
Returning the error tuple will halt the traversal.
Tree traversal is depth-first, with accumulator being updated after each node is processed. Next nodes will see the updated accumulator.
This function takes an optional ctx argument, which is passed to fold_fn and acc_fn as the last argument.

 fold(tree, fold_fn, ctx \\ [])

 @spec fold(target :: struct() | nil, fold_fn :: fold_fn, ctx :: context) ::
 {:error, any()} | {:ok, result}
when context: any(),
 result: any(),
 fold_fn: (struct(), children_map(), context ->
 {:ok, result} | {:error, any()})

Given a Electric.Walkable structure, visit every node and apply the fold_fn to it to get a new structure.
fold_fn is called with the current node, the result of processing the children nodes and the context.
Result of processing children nodes is a map with the same keys as the node, but with replaced children instead of originals.
This function is expected to return a replacement for the current node, and that replacement will be propagated to the parent node.
Returning the error tuple will halt the traversal.
fold_fn is expected to return an ok tuple, or an error tuple, any other value will raise an error.
This function takes an optional ctx argument, which is passed to fold_fn as the last argument.

 reduce(tree, reduce_fn, acc, ctx \\ [])

 @spec reduce(target :: struct() | nil, reduce_fn, acc, context) ::
 {:error, any()} | {:ok, acc}
when acc: any(),
 context: any(),
 reduce_fn: (struct(), acc, context -> {:ok, acc} | {:error, any()})

Given a Electric.Walkable structure, visit every node and apply the reduce_fn to it to get an accumulated value.
reduce_fn is called with the current node, the accumulated value and the context.
This function is expected to return an ok tuple, or an error tuple, any other value will raise an error.
Returning the error tuple will halt the traversal.
This function takes an optional ctx argument, which is passed to reduce_fn as the last argument.

 reduce!(tree, reduce_fn, acc, ctx \\ [])

 @spec reduce!(target :: struct() | nil, reduce_fn, acc, context) :: acc
when acc: any(),
 context: any(),
 reduce_fn: (struct(), acc, context -> {:ok, acc} | {:error, any()})

Same as reduce/4, but raises on error instead of returning an error tuple.

Electric.Replication.LogOffset

Uniquely identifies an operation inside the shape log.
Combines a transaction ID with operation ID.

 Summary

 Types

 int64()

 t()

 t_tuple()

 Functions

 before_all()

 An offset that is smaller than all offsets in the log.

 compare(offset, offset)

 Compare two log offsets

 extract_lsn(log_offset)

 Returns the LSN part of the LogOffset.

 first()

 The first possible offset in the log.

 from_string(str)

 Parse the given string as a LogOffset value.

 increment(log_offset, increment \\ 1)

 Increments the offset of the change inside the transaction.

 is_last_virtual_offset(offset)

 is_log_offset_lt(offset1, offset2)

 Guard that checks if offset1 is less than offset2.

 is_log_offset_lte(offset1, offset2)

 Guard that checks if offset1 is less than or equal to offset2.

 is_min_offset(offset)

 is_real_offset(offset)

 is_virtual_offset(offset)

 last()

 The last possible offset in the log.

 last_before_real_offsets()

 The last possible offset for the "virtual" part of the log - i.e. snapshots.

 max(a, b)

 Get a maximum of 2 log offsets

 min(a, b)

 Get a minimum of 2 log offsets

 new(offset)

 new(tx_offset, op_offset)

 Create a new LogOffset value.

 to_int128(log_offset)

 Convert the log offset to a binary representation used on disk, sized to int128

 to_iolist(log_offset)

 Format a LogOffset value to its text representation in an iolist.

 to_tuple(log_offset)

 Returns a tuple with the tx_offset and the op_offset.

 Types

 int64()

 @type int64() :: 0..18_446_744_073_709_551_615

 t()

 @type t() :: %Electric.Replication.LogOffset{
 op_offset: non_neg_integer() | :infinity,
 tx_offset: int64() | -1
}

 t_tuple()

 @type t_tuple() :: {int64(), non_neg_integer() | :infinity}

 Functions

 before_all()

 @spec before_all() :: t()

An offset that is smaller than all offsets in the log.
Examples
iex> compare(before_all(), first())
:lt

 compare(offset, offset)

Compare two log offsets
Examples
iex> compare(new(10, 0), new(10, 1))
:lt

iex> compare(new(9, 1), new(10, 1))
:lt

iex> compare(new(10, 1), new(10, 0))
:gt

iex> compare(new(11, 1), new(10, 1))
:gt

iex> compare(new(0, 0), before_all())
:gt

iex> compare(new(10, 0), %LogOffset{tx_offset: 10, op_offset: 0})
:eq

 extract_lsn(log_offset)

 @spec extract_lsn(t()) :: Electric.Postgres.Lsn.t()

Returns the LSN part of the LogOffset.
Examples
iex> extract_lsn(%LogOffset{tx_offset: 10, op_offset: 0})
#Lsn<0/A>

iex> extract_lsn(%LogOffset{tx_offset: 10, op_offset: 5})
#Lsn<0/A>

iex> extract_lsn(%LogOffset{tx_offset: 11, op_offset: 5})
#Lsn<0/B>

iex> extract_lsn(LogOffset.before_all())
#Lsn<0/0>

 first()

 @spec first() :: t()

The first possible offset in the log.

 from_string(str)

 @spec from_string(String.t()) :: {:ok, t() | :now} | {:error, String.t()}

Parse the given string as a LogOffset value.
Examples
iex> from_string("-1")
{:ok, before_all()}

iex> from_string("now")
{:ok, :now}

iex> from_string("0_0")
{:ok, %LogOffset{tx_offset: 0, op_offset: 0}}

iex> from_string("11_13")
{:ok, %LogOffset{tx_offset: 11, op_offset: 13}}

iex> from_string("0_02")
{:ok, %LogOffset{tx_offset: 0, op_offset: 2}}

iex> from_string("0_inf")
{:ok, %LogOffset{tx_offset: 0, op_offset: :infinity}}

iex> from_string("1_2_3")
{:error, "has invalid format"}

iex> from_string("1_2 ")
{:error, "has invalid format"}

iex> from_string("10")
{:error, "has invalid format"}

iex> from_string("10_32.1")
{:error, "has invalid format"}

 increment(log_offset, increment \\ 1)

Increments the offset of the change inside the transaction.
Examples
iex> increment(new(10, 5))
%LogOffset{tx_offset: 10, op_offset: 6}

iex> compare(new(10, 5) |> increment, new(10, 5))
:gt

iex> increment(new(10, 5), 5)
%LogOffset{tx_offset: 10, op_offset: 10}

iex> compare(new(10, 1) |> increment(4), new(10, 5))
:eq

 is_last_virtual_offset(offset)

 (macro)

 is_log_offset_lt(offset1, offset2)

 (macro)

Guard that checks if offset1 is less than offset2.
Examples
iex> LogOffset.is_log_offset_lt(new(10, 0), new(10, 1))
true

iex> LogOffset.is_log_offset_lt(new(9, 5), new(10, 1))
true

iex> LogOffset.is_log_offset_lt(new(10, 1), new(10, 0))
false

iex> LogOffset.is_log_offset_lt(new(10, 0), new(10, 0))
false

iex> LogOffset.is_log_offset_lt(new(10, 5), new(10, :infinity))
true

iex> LogOffset.is_log_offset_lt(new(10, :infinity), new(10, 5))
false

iex> LogOffset.is_log_offset_lt(new(10, :infinity), new(10, :infinity))
false

iex> LogOffset.is_log_offset_lt(new(9, :infinity), new(10, 0))
true

 is_log_offset_lte(offset1, offset2)

 (macro)

Guard that checks if offset1 is less than or equal to offset2.
Examples
iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, 0), new(10, 1))
true

iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, 0), new(10, 0))
true

iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, 1), new(10, 0))
false

iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, 5), new(10, :infinity))
true

iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, :infinity), new(10, :infinity))
true

iex> require LogOffset
iex> LogOffset.is_log_offset_lte(new(10, :infinity), new(10, 5))
false

 is_min_offset(offset)

 (macro)

 is_real_offset(offset)

 (macro)

 is_virtual_offset(offset)

 (macro)

 last()

 @spec last() :: t()

The last possible offset in the log.
Examples
iex> compare(first(), last())
:lt

iex> compare(new(Lsn.from_integer(10), 0), last())
:lt

 last_before_real_offsets()

 @spec last_before_real_offsets() :: t()

The last possible offset for the "virtual" part of the log - i.e. snapshots.

 max(a, b)

Get a maximum of 2 log offsets
Examples
iex> LogOffset.max(new(10, 0), new(10, 1))
new(10, 1)

 min(a, b)

Get a minimum of 2 log offsets
Examples
iex> LogOffset.min(new(10, 0), new(10, 1))
new(10, 0)

 new(offset)

 new(tx_offset, op_offset)

Create a new LogOffset value.
Examples
iex> new(Lsn.from_integer(10), 0)
%LogOffset{tx_offset: 10, op_offset: 0}

iex> new(11, 3)
%LogOffset{tx_offset: 11, op_offset: 3}

iex> new(to_tuple(new(Lsn.from_integer(5), 1)))
%LogOffset{tx_offset: 5, op_offset: 1}

iex> new({11, 3})
%LogOffset{tx_offset: 11, op_offset: 3}

iex> new({11, 3.2})
** (FunctionClauseError) no function clause matching in Electric.Replication.LogOffset.new/2

iex> new(10, -2)
** (FunctionClauseError) no function clause matching in Electric.Replication.LogOffset.new/2

 to_int128(log_offset)

Convert the log offset to a binary representation used on disk, sized to int128

 to_iolist(log_offset)

 @spec to_iolist(t()) :: iolist()

Format a LogOffset value to its text representation in an iolist.
Examples
iex> to_iolist(first())
["0", ?_, "0"]

iex> to_iolist(new(Lsn.from_integer(10), 3))
["10", ?_, "3"]

iex> to_iolist(before_all())
["-1"]

 to_tuple(log_offset)

 @spec to_tuple(t()) :: {int64(), non_neg_integer()}

Returns a tuple with the tx_offset and the op_offset.
Examples
iex> to_tuple(first())
{0, 0}

iex> to_tuple(new(Lsn.from_integer(10), 3))
{10, 3}

Electric.Replication.PersistentReplicationState

 Summary

 Types

 opts()

 tracked_relations()

 Functions

 get_tracked_relations(opts)

 reset(opts)

 set_tracked_relations(tracked_relations, opts)

 Types

 opts()

 @type opts() :: [stack_id: String.t(), persistent_kv: Electric.PersistentKV.t()]

 tracked_relations()

 @type tracked_relations() :: %{
 table_to_id: %{
 required({String.t(), String.t()}) =>
 Electric.Replication.Changes.relation_id()
 },
 id_to_table_info: %{
 required(Electric.Replication.Changes.relation_id()) =>
 Electric.Replication.Changes.Relation.t()
 }
}

 Functions

 get_tracked_relations(opts)

 @spec get_tracked_relations(opts()) :: tracked_relations()

 reset(opts)

 @spec reset(opts()) :: :ok

 set_tracked_relations(tracked_relations, opts)

 @spec set_tracked_relations(tracked_relations(), opts()) :: :ok

Electric.Replication.PostgresInterop.Casting

 Summary

 Functions

 ilike?(text, pattern)

 is_pg_int2(x)

 is_pg_int4(x)

 is_pg_int8(x)

 like?(text, pattern, ignore_case? \\ false)

 LIKE function from SQL. Case sensitive by default.

 parse_bool(x)

 parse_date(maybe_date)

 parse_float8(input)

 parse_int2(input)

 parse_int4(input)

 parse_int8(input)

 parse_time(maybe_time)

 parse_timestamp(maybe_timestamp)

 parse_timestamptz(maybe_timestamp)

 parse_uuid(maybe_uuid)

 pg_and(a, b)

 The Postgres AND operator, which has some specific behaviour when
comparing NULLs with booleans.

 pg_or(a, b)

 The Postgres OR operator, which has some specific behaviour when
comparing NULLs with booleans.

 values_distinct?(v1, v2, plain_comparison)

 values_not_distinct?(v1, v2, plain_comparison)

 Functions

 ilike?(text, pattern)

 is_pg_int2(x)

 (macro)

 is_pg_int4(x)

 (macro)

 is_pg_int8(x)

 (macro)

 like?(text, pattern, ignore_case? \\ false)

LIKE function from SQL. Case sensitive by default.
Examples
iex> like?("hello", "hell_")
true

iex> like?("helloo", "hell_")
false

iex> like?("helloo", "%o_")
true

iex> like?("HELLO", "hello")
false

iex> like?("HELLO", "hello", true)
true

 parse_bool(x)

 parse_date(maybe_date)

 parse_float8(input)

 parse_int2(input)

 parse_int4(input)

 parse_int8(input)

 parse_time(maybe_time)

 parse_timestamp(maybe_timestamp)

 parse_timestamptz(maybe_timestamp)

 parse_uuid(maybe_uuid)

 pg_and(a, b)

 @spec pg_and(boolean() | nil, boolean() | nil) :: boolean() | nil

The Postgres AND operator, which has some specific behaviour when
comparing NULLs with booleans.
Examples
iex> pg_and(true, true)
true

iex> pg_and(true, false)
false

iex> pg_and(false, false)
false

iex> pg_and(nil, true)
nil

iex> pg_and(nil, false)
false

iex> pg_and(nil, nil)
nil

 pg_or(a, b)

 @spec pg_or(boolean() | nil, boolean() | nil) :: boolean() | nil

The Postgres OR operator, which has some specific behaviour when
comparing NULLs with booleans.
Examples
iex> pg_or(true, false)
true

iex> pg_or(false, false)
false

iex> pg_or(nil, true)
true

iex> pg_or(nil, false)
nil

iex> pg_or(nil, nil)
nil

 values_distinct?(v1, v2, plain_comparison)

 values_not_distinct?(v1, v2, plain_comparison)

Electric.Replication.PublicationManager

Manages a PostgreSQL publication for a given Electric stack, tracking shapes
and ensuring that the publication configuration matches the required set of
relations that need to be published for the shapes to function correctly.
Includes periodic checks of the publication to ensure that it remains valid,
and expires any shapes that are no longer valid due to schema changes or
permission issues.

 Summary

 Functions

 add_shape(stack_id, shape_handle, shape)

 See Electric.Replication.PublicationManager.RelationTracker.add_shape/3.

 child_spec(opts)

 See Electric.Replication.PublicationManager.Supervisor.child_spec/1.

 name(opts)

 See Electric.Replication.PublicationManager.RelationTracker.name/1.

 remove_shape(stack_id, shape_handle)

 See Electric.Replication.PublicationManager.RelationTracker.remove_shape/2.

 start_link(opts)

 See Electric.Replication.PublicationManager.Supervisor.start_link/1.

 wait_for_restore(stack_id, opts \\ [])

 See Electric.Replication.PublicationManager.RelationTracker.wait_for_restore/2.

 Functions

 add_shape(stack_id, shape_handle, shape)

See Electric.Replication.PublicationManager.RelationTracker.add_shape/3.

 child_spec(opts)

See Electric.Replication.PublicationManager.Supervisor.child_spec/1.

 name(opts)

See Electric.Replication.PublicationManager.RelationTracker.name/1.

 remove_shape(stack_id, shape_handle)

See Electric.Replication.PublicationManager.RelationTracker.remove_shape/2.

 start_link(opts)

See Electric.Replication.PublicationManager.Supervisor.start_link/1.

 wait_for_restore(stack_id, opts \\ [])

See Electric.Replication.PublicationManager.RelationTracker.wait_for_restore/2.

Electric.Replication.PublicationManager.Configurator

Configures and maintains a PostgreSQL publication on behalf of
Electric.Replication.PublicationManager.RelationTracker.
It receives requests to update the publication such that a given
set of relations are published with REPLICA IDENTITY FULL, and
performs the necessary SQL commands to ensure that the publication
matches the requested set of relations.
Each relation is updated individually to avoid blocking all other
operations on the publication due to locks held on individual tables.

 Summary

 Types

 state()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 configure_publication(opts, filters)

 name(stack_ref)

 start_link(opts)

 Types

 state()

 @type state() :: %Electric.Replication.PublicationManager.Configurator{
 can_alter_publication?: boolean(),
 db_pool: term(),
 manual_table_publishing?: boolean(),
 publication_name: String.t(),
 scheduled_filters:
 Electric.Replication.PublicationManager.RelationTracker.relation_filters()
 | nil,
 scheduled_update_ref: nil | reference(),
 stack_id: Electric.stack_id(),
 update_debounce_timeout: timeout()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 configure_publication(opts, filters)

 name(stack_ref)

 start_link(opts)

Electric.Replication.PublicationManager.RelationTracker

Provides interface for shapes to register and deregister themselves
from a publication, and tracks the overall set of relations that need
to be published using reference counting.
Relies on Electric.Replication.PublicationManager.Configurator
to perform the actual publication updates and handles status updates
to reply to shapes requesting to be registered.

 Summary

 Types

 relation_filters()

 Functions

 add_shape(stack_id, shape_handle, shape)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 fetch_current_filters!(opts)

 name(stack_ref)

 notify_configuration_error(result, opts)

 notify_publication_status(status, opts)

 notify_relation_configuration_result(oid_rel, result, opts)

 remove_shape(stack_id, shape_handle)

 start_link(opts)

 wait_for_restore(stack_id, opts \\ [])

 Types

 relation_filters()

 @type relation_filters() :: MapSet.t(Electric.oid_relation())

 Functions

 add_shape(stack_id, shape_handle, shape)

 @spec add_shape(stack_id(), shape_handle(), Electric.Shapes.Shape.t()) :: :ok

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 fetch_current_filters!(opts)

 @spec fetch_current_filters!(Keyword.t()) :: relation_filters()

 name(stack_ref)

 notify_configuration_error(result, opts)

 @spec notify_configuration_error(
 {:error, any()},
 Keyword.t()
) :: :ok

 notify_publication_status(status, opts)

 @spec notify_publication_status(
 Electric.Postgres.Configuration.publication_status(),
 Keyword.t()
) :: :ok

 notify_relation_configuration_result(oid_rel, result, opts)

 @spec notify_relation_configuration_result(
 Electric.oid_relation(),
 {:ok, term()} | {:error, any()},
 Keyword.t()
) :: :ok

 remove_shape(stack_id, shape_handle)

 @spec remove_shape(stack_id(), shape_handle()) :: :ok

 start_link(opts)

 wait_for_restore(stack_id, opts \\ [])

 @spec wait_for_restore(stack_id(), Keyword.t()) :: :ok

Electric.Replication.PublicationManager.Supervisor

Supervisor for the PublicationManager components.
The strategy is :one_for_one, supervising the RelationTracker and
Configurator processes.
The Configurator process always starts after the RelationTracker process, and
as part of its initialization it fetches the current set of shape filters. This makes
the system resilient to Configurator restarts as it will always be eager to
commit any outstanding filters to the publication.
The RelationTracker process does not depend on the Configurator process being
alive to function correctly, as it only tracks the shapes and their filters, and
notifies the Configurator of any changes. The system is resilient to RelationTracker
restarts as it repopulates its filters from the in-memory shape status cache, and
can handle notifications for filters it is not tracking.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_id)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_id)

 start_link(opts)

Electric.Replication.SchemaReconciler

Takes care of periodically reconciling the schema of the database with
the inspector caches and active shapes.
Covers cases where either the table was recreated and thus isn't in the
publication anymore, or where some alterations were made to the schema,
but we don't see them because there were no writes to the affected tables.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_continue(atom, state)

 Callback implementation for GenServer.handle_continue/2.

 init(opts)

 Callback implementation for GenServer.init/1.

 name(stack_id)

 reconcile_now(name_or_pid)

 Triggers an immediate schema reconciliation check.

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_continue(atom, state)

Callback implementation for GenServer.handle_continue/2.

 init(opts)

Callback implementation for GenServer.init/1.

 name(stack_id)

 reconcile_now(name_or_pid)

Triggers an immediate schema reconciliation check.

 start_link(opts)

Electric.Replication.ShapeLogCollector

The ShapeLogCollector is responsible for collecting and processing
shape log operations and managing shape registrations.
It consists of two main components: the processor and the RequestBatcher.
The processor handles the processing of shape log operations
and manages the shape matching index updates. When any txn comes from postgres,
we need to store it into the log for this shape if and only if it has
txid >= xmin of the snapshot.
The RequestBatcher batches the registration and deregistration of shapes
to avoid overwhelming the processor with frequent updates.

 Summary

 Functions

 activate_mocked_functions_from_test_process()

 active_shapes(stack_id)

 Returns the list of currently active shapes being tracked
in the shape matching filters.

 add_shape(stack_id, shape_handle, shape, operation)

 Adds a shape to the shape matching index in the ShapeLogCollector
used for matching and sending replication stream operations.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_process_flags(stack_id)

 handle_continue(atom, state)

 Callback implementation for GenServer.handle_continue/2.

 handle_event(event, stack_id)

 Handles a replication log events.

 handle_shape_registration_updates(stack_id, shapes_to_add, shapes_to_remove)

 Handles batched shape registration updates from the RequestBatcher.

 init(opts)

 Callback implementation for GenServer.init/1.

 mark_as_ready(stack_id)

 Marks the collector as ready to process operations from
the replication stream.

 monitor(stack_id)

 Utility for tests, monitors the SLC process.

 name(stack_id)

 notify_flushed(stack_id, shape_handle, offset)

 Notifies the ShapeLogCollector that a shape's data has been flushed
up to a certain offset, used to mark the overall flush progress.

 remove_shape(stack_id, shape_handle)

 Removes a shape from the shape matching index in the ShapeLogCollector.
This call succeeds before the shape is actually removed from the index.

 set_process_flags(stack_id, flags)

 Set process flags on the given ShapeLogCollector process.

 start_link(opts)

 Functions

 activate_mocked_functions_from_test_process()

 active_shapes(stack_id)

 @spec active_shapes(Electric.stack_id()) :: MapSet.t(Electric.shape_handle())

Returns the list of currently active shapes being tracked
in the shape matching filters.

 add_shape(stack_id, shape_handle, shape, operation)

Adds a shape to the shape matching index in the ShapeLogCollector
used for matching and sending replication stream operations.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_process_flags(stack_id)

 handle_continue(atom, state)

Callback implementation for GenServer.handle_continue/2.

 handle_event(event, stack_id)

Handles a replication log events.
Should be called with operations received from the replication stream.
Uuse GenServer.call/2 here to make the event processing synchronous.
This call/3 has a timeout of :infinity because timeouts are
handled at the storage layer, that is this function doesn't
assume any aggregate max time for the shape consumers to actually commit
the new txn to disk, instead the storage backend is responsible for
determining how long a write should reasonably take and if that fails
it should raise.

 handle_shape_registration_updates(stack_id, shapes_to_add, shapes_to_remove)

Handles batched shape registration updates from the RequestBatcher.

 init(opts)

Callback implementation for GenServer.init/1.

 mark_as_ready(stack_id)

 @spec mark_as_ready(Electric.stack_id()) :: :ok

Marks the collector as ready to process operations from
the replication stream.
This is typically called after the initial shape registrations
have been processed.

 monitor(stack_id)

Utility for tests, monitors the SLC process.

 name(stack_id)

 notify_flushed(stack_id, shape_handle, offset)

 @spec notify_flushed(
 Electric.stack_id(),
 Electric.shape_handle(),
 Electric.Replication.LogOffset.t()
) ::
 :ok

Notifies the ShapeLogCollector that a shape's data has been flushed
up to a certain offset, used to mark the overall flush progress.
Should be called by consumer processes after they flush data.

 remove_shape(stack_id, shape_handle)

Removes a shape from the shape matching index in the ShapeLogCollector.
This call succeeds before the shape is actually removed from the index.

 set_process_flags(stack_id, flags)

Set process flags on the given ShapeLogCollector process.
Accepts a list of flags to set, see Process.flag/2 for valid settings.
Doesn't crash if given an invalid flag or value - instead returns the list of
invalid flags.
iex> ShapeLogCollector.set_process_flags("my-stack-id", min_heap_size: 1024 * 1024, min_bin_vheap_size: 1024 * 1024)
{:ok, settings: [min_heap_size: 1024 * 1024, min_bin_vheap_size: 1024 * 1024], invalid: []}

 start_link(opts)

Electric.Replication.ShapeLogCollector.FlushTracker

 Summary

 Types

 shape_id()

 t()

 Functions

 empty?(flush_tracker)

 handle_flush_notification(state, shape_id, last_flushed_offset)

 handle_shape_removed(state, shape_id)

 handle_txn_fragment(state, transaction_fragment, affected_shapes)

 new(opts \\ [])

 Create a new flush tracker to figure out when flush boundary moves up across all writers

 Types

 shape_id()

 @type shape_id() :: term()

 t()

 @type t() :: %Electric.Replication.ShapeLogCollector.FlushTracker{
 last_flushed: %{
 optional(shape_id()) =>
 {last_sent :: Electric.Replication.LogOffset.t(),
 last_flushed :: Electric.Replication.LogOffset.t()}
 },
 last_global_flushed_offset: Electric.Replication.LogOffset.t(),
 last_seen_offset: Electric.Replication.LogOffset.t(),
 min_incomplete_flush_tree:
 :gb_trees.tree(
 Electric.Replication.LogOffset.t_tuple(),
 MapSet.t(shape_id())
),
 notify_fn: (non_neg_integer() -> any())
}

 Functions

 empty?(flush_tracker)

 handle_flush_notification(state, shape_id, last_flushed_offset)

 @spec handle_flush_notification(t(), shape_id(), Electric.Replication.LogOffset.t()) ::
 t()

 handle_shape_removed(state, shape_id)

 handle_txn_fragment(state, transaction_fragment, affected_shapes)

 @spec handle_txn_fragment(
 t(),
 Electric.Replication.Changes.TransactionFragment.t(),
 Enumerable.t(shape_id())
) :: t()

 new(opts \\ [])

Create a new flush tracker to figure out when flush boundary moves up across all writers
When doing a flush across N shapes, it might be delayed on different cadences depending on the amount of data we’re writing.
It also might be worth it eventually to break lock-step writes. We need to tell Postgres accurately (enough) when we’ve actually flushed the data it sent us.
Main problem is that we’re not only flushing on different cadences, but also each shape might not see every operation, so our flush acknowledgement
should take a complicated minimum across all shapes depending on what they are seeing. What’s more is that we want to align the acknowledged WALs
to transaction boundaries, because that’s how PG is sending the data.
It’s important to note that because shapes are not seeing all operations, they don’t necessarily see the last-in-transaction operation, while the
sender doesn’t know how many operations will be sent upfront. Because of that it’s up to the writer to acknowledge the intermediate flushes but also
to align the last-seen operation to the transaction offset so that the sender can be sure the writer has caught up.
Tracked state:
	last_global_flushed_offset
	last_seen_offset
	Pending writes Mapping:Shape => {last_sent, last_flushed}
	Shapes where last_sent == last_flushed can be considered caught-up, and can be discarded from the mapping

Algorithm:
On incoming transaction: expressed via handle_transaction/3
	Update last_seen_offset to the max offset of the transaction/block we received
	Determine affected shapes
	For each shape,
	If Mapping already has the shape, update last_sent to the max offset of the transaction
	If Mapping doesn’t have the shape, add it with {last_sent, prev_log_offset} where prev_log_offset is an
artificial offset with its tx_offset set to one less than the incoming transaction. This is a safe upper bound
to use, as the shape must have flushed all relevant data before this transaction, and thus even if the previous
transaction did not affect this shape we can consider it "flushed" by the shape.
	If Mapping is empty after this update, then we’re up-to-date and should consider this transaction immediately flushed.
Set last_global_flushed_offset to equal last_seen_offset and notify appropriately. See step 2 of writer flush process.
	Wait for the writers to send the flushed offset

On writer flush (i.e. when writer notifies the central process of a flushed write) notifying with newlast_flushed expressed via handle_flush_notification/3
	Update the mapping for the shape:
	If last_sent equals to the new flush position, then we’re caught up. Delete this shape from the mapping
	Otherwise, replace last_flushed with this new value
	If Mapping is empty after the update, we’re globally caught up - set last_global_flushed_offset to equal last_seen_offset
	Otherwise:
	Determine the new global flushed offset:
last_global_flushed_offset = max(last_global_flushed_offset, min(for {_, {_, last_flushed}} <- Mapping, do: last_flushed))
We take the maximum between the already last flushed offset, and the lowest flushed offset across shapes that
had not caught up. Because this min is expected to be called very often, we use a lookup structure to get this min in a fast manner
	On last_global_flushed_offset update - notify the replication client with actual transaction LSN:
	If flushes are caught up (i.e. Mapping is empty), then notify with LSN = tx_offset of the last flushed offset
	Otherwise, it’s complicated to determine which transactions have been flushed completely without keeping track of
all intermediate points, so notify with LSN = tx_offset - 1, essentially lagging the flush by one transaction just in case.

Aligning the writers flushed offset with the transaction boundary:
	On incoming transaction, store a mapping of last offset that’s meant to be written by this writer to the last offset for the txn
	On a flush, the writer should remove from the mapping all elements that are less-then-or-equal to last flushed offset, and then
	If last removed element from the mapping is equal to the flushed, then use the transaction last offset instead to notify the sender
	Otherwise, use actual last flushed offset to notify the sender.

Electric.Replication.ShapeLogCollector.RequestBatcher

Module responsible for registering and unregistering shapes
with the ShapeLogCollector. It batches registration and
unregistration requests to avoid overwhelming the ShapeLogCollector
with frequent updates.
The current implementation batches updates until it receives an
acknowledgement that its previous update was processed by the processor,
and only then sends the next batch of updates. This is slower than a
regular debounce, but prevents any buildup on the processor.
In the future, this could also create diffs to the shape filters
instead of sending the full list of shapes to add/remove on each update.

 Summary

 Types

 t()

 Functions

 add_shape(stack_id, shape_handle, shape, atom)

 Registers a shape with the SLC, returns after the shape has actually
been added and is receiving operations from the log.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_processor_update_response(stack_id, ref, results)

 Handles the response from the Processor acknowledging a registration update.

 name(stack_id)

 remove_shape(stack_id, shape_handle)

 Schedules a shape removal from the SLC, returns before the shape is
actually removed.

 start_link(opts)

 Types

 t()

 @type t() :: %Electric.Replication.ShapeLogCollector.RequestBatcher{
 ack_ref: reference() | nil,
 ack_waiters: [{Electric.shape_handle(), GenServer.from()}],
 stack_id: Electric.stack_id(),
 to_add: %{required(Electric.shape_handle()) => Electric.Shapes.Shape.t()},
 to_remove: MapSet.t(Electric.shape_handle()),
 to_schedule_waiters: %{
 required(Electric.shape_handle()) => GenServer.from() | nil
 }
}

 Functions

 add_shape(stack_id, shape_handle, shape, atom)

 @spec add_shape(
 Electric.stack_id(),
 Electric.shape_handle(),
 Electric.Shapes.Shape.t(),
 :create | :restore
) :: :ok | {:error, any()}

Registers a shape with the SLC, returns after the shape has actually
been added and is receiving operations from the log.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_processor_update_response(stack_id, ref, results)

 @spec handle_processor_update_response(
 Electric.stack_id(),
 reference(),
 %{optional(Electric.shape_handle()) => :ok | {:error, String.t()}}
) :: :ok

Handles the response from the Processor acknowledging a registration update.

 name(stack_id)

 @spec name(Electric.stack_id()) :: GenServer.name()

 remove_shape(stack_id, shape_handle)

 @spec remove_shape(Electric.stack_id(), Electric.shape_handle()) :: :ok

Schedules a shape removal from the SLC, returns before the shape is
actually removed.

 start_link(opts)

Electric.Replication.ShapeLogCollector.Supervisor

Supervisor for the ShapeLogCollector components.
Setting max_restarts to 0 as the supervisor only acts as
a coordinator for starting and normal shutdowns, to preserve
the ShapeLogCollector's death side effects in its supervision
tree as before.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for Supervisor.init/1.

 name(stack_id)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for Supervisor.init/1.

 name(stack_id)

 start_link(opts)

Electric.Replication.TransactionBuilder

Builds complete transactions from a stream of TransactionFragments.
Takes TransactionFragments containing begin, commit, and changes,
and builds up Transaction structs. Returns complete transactions
when a fragment with a commit is seen.

 Summary

 Types

 t()

 Functions

 build(fragment, state)

 Build transactions from a TransactionFragment.

 new()

 Types

 t()

 @type t() :: %Electric.Replication.TransactionBuilder{
 transaction: nil | Electric.Replication.Changes.Transaction.t()
}

 Functions

 build(fragment, state)

 @spec build(Electric.Replication.Changes.TransactionFragment.t(), t()) ::
 {[Electric.Replication.Changes.Transaction.t()], t()}

Build transactions from a TransactionFragment.
Returns a tuple of {results, state} where results is a list of
complete transactions, and state is the updated builder state
containing any partial transaction.

 new()

Electric.Schema

 Summary

 Types

 column_name()

 schema()

 type_name()

 Functions

 from_column_info(column_info, included_columns \\ nil)

 Convert column information into a schema map

 Types

 column_name()

 @type column_name() :: String.t()

 schema()

 @type schema() :: %{
 :type => type_name(),
 optional(:dims) => non_neg_integer(),
 optional(:pk_index) => non_neg_integer(),
 optional(:max_length) => String.t(),
 optional(:length) => String.t(),
 optional(:precision) => String.t(),
 optional(:scale) => String.t(),
 optional(:fields) => String.t(),
 optional(:type_mod) => integer()
}

 type_name()

 @type type_name() :: String.t()

 Functions

 from_column_info(column_info, included_columns \\ nil)

 @spec from_column_info(
 [Electric.Postgres.Inspector.column_info()],
 [String.t(), ...] | nil
) :: %{
 required(column_name()) => schema()
}

Convert column information into a schema map

Electric.ShapeCache

 Summary

 Types

 handle_position()

 shape_def()

 shape_handle()

 stack_id()

 Functions

 activate_mocked_functions_from_test_process()

 await_snapshot_start(shape_handle, stack_id)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clean_shape(shape_handle, stack_id)

 count_shapes(stack_id)

 fetch_handle_by_shape(shape, stack_id)

 fetch_shape_by_handle(handle, stack_id)

 get_or_create_shape_handle(shape, stack_id, opts \\ [])

 has_shape?(shape_handle, stack_id)

 list_shapes(stack_id)

 name(stack_ref)

 resolve_shape_handle(shape_handle, shape, stack_id)

 start_consumer_for_handle(shape_handle, stack_id)

 start_link(opts)

 Types

 handle_position()

 @type handle_position() ::
 {shape_handle(),
 current_snapshot_offset :: Electric.Replication.LogOffset.t()}

 shape_def()

 @type shape_def() :: Electric.Shapes.Shape.t()

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 stack_id()

 @type stack_id() :: Electric.stack_id()

 Functions

 activate_mocked_functions_from_test_process()

 await_snapshot_start(shape_handle, stack_id)

 @spec await_snapshot_start(shape_handle(), stack_id()) :: :started | {:error, term()}

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clean_shape(shape_handle, stack_id)

 @spec clean_shape(shape_handle(), stack_id()) :: :ok

 count_shapes(stack_id)

 @spec count_shapes(stack_id()) :: non_neg_integer() | :error

 fetch_handle_by_shape(shape, stack_id)

 @spec fetch_handle_by_shape(shape_def(), stack_id()) :: {:ok, shape_handle()} | :error

 fetch_shape_by_handle(handle, stack_id)

 @spec fetch_shape_by_handle(shape_handle(), stack_id()) ::
 {:ok, Electric.Shapes.Shape.t()} | :error

 get_or_create_shape_handle(shape, stack_id, opts \\ [])

 @spec get_or_create_shape_handle(shape_def(), stack_id(), opts :: Access.t()) ::
 handle_position()

 has_shape?(shape_handle, stack_id)

 @spec has_shape?(shape_handle(), Access.t()) :: boolean()

 list_shapes(stack_id)

 @spec list_shapes(stack_id()) ::
 [{shape_handle(), Electric.Shapes.Shape.t()}] | :error

 name(stack_ref)

 resolve_shape_handle(shape_handle, shape, stack_id)

 @spec resolve_shape_handle(shape_handle(), shape_def(), stack_id()) ::
 handle_position() | nil

 start_consumer_for_handle(shape_handle, stack_id)

 @spec start_consumer_for_handle(shape_handle(), stack_id()) ::
 {:ok, pid()} | {:error, :no_shape}

 start_link(opts)

Electric.ShapeCache.CrashingFileStorage

A thing wrapper module around PureFileStorage that can be configured to raise an error after a
certain number of writes.

 Summary

 Functions

 append_control_message!(control_message, writer_state)

 Callback implementation for c:Electric.ShapeCache.Storage.append_control_message!/2.

 append_move_in_snapshot_to_log!(name, writer_state)

 Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log!/2.

 append_move_in_snapshot_to_log_filtered!(name, writer_state, touch_tracker, snapshot, tags_to_skip)

 Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log_filtered!/5.

 append_to_log!(log_items, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.append_to_log!/2.

 cleanup!(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/1.

 cleanup!(opts, shape_handle)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/2.

 cleanup_all!(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup_all!/1.

 compact(opts, keep_complete_chunks)

 Callback implementation for c:Electric.ShapeCache.Storage.compact/2.

 fetch_latest_offset(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.fetch_latest_offset/1.

 fetch_pg_snapshot(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.fetch_pg_snapshot/1.

 for_shape(shape_handle, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.for_shape/2.

 get_all_stored_shape_handles(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_all_stored_shape_handles/1.

 get_chunk_end_log_offset(offset, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_chunk_end_log_offset/2.

 get_log_stream(offset, max_offset, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_log_stream/3.

 get_stored_shapes(opts, shape_handles)

 Callback implementation for c:Electric.ShapeCache.Storage.get_stored_shapes/2.

 get_total_disk_usage(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_total_disk_usage/1.

 hibernate(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.hibernate/1.

 init_writer!(opts, shape_definition)

 Callback implementation for c:Electric.ShapeCache.Storage.init_writer!/2.

 make_new_snapshot!(data_stream, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.make_new_snapshot!/2.

 mark_snapshot_as_started(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.mark_snapshot_as_started/1.

 metadata_backup_dir(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.metadata_backup_dir/1.

 set_pg_snapshot(pg_snapshot, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.set_pg_snapshot/2.

 shared_opts(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.shared_opts/1.

 snapshot_started?(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.snapshot_started?/1.

 stack_start_link(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.stack_start_link/1.

 start_link(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.start_link/1.

 terminate(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.terminate/1.

 write_move_in_snapshot!(stream, name, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.write_move_in_snapshot!/3.

 Functions

 append_control_message!(control_message, writer_state)

Callback implementation for c:Electric.ShapeCache.Storage.append_control_message!/2.

 append_move_in_snapshot_to_log!(name, writer_state)

Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log!/2.

 append_move_in_snapshot_to_log_filtered!(name, writer_state, touch_tracker, snapshot, tags_to_skip)

Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log_filtered!/5.

 append_to_log!(log_items, opts)

Callback implementation for c:Electric.ShapeCache.Storage.append_to_log!/2.

 cleanup!(opts)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/1.

 cleanup!(opts, shape_handle)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/2.

 cleanup_all!(opts)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup_all!/1.

 compact(opts, keep_complete_chunks)

Callback implementation for c:Electric.ShapeCache.Storage.compact/2.

 fetch_latest_offset(opts)

Callback implementation for c:Electric.ShapeCache.Storage.fetch_latest_offset/1.

 fetch_pg_snapshot(opts)

Callback implementation for c:Electric.ShapeCache.Storage.fetch_pg_snapshot/1.

 for_shape(shape_handle, opts)

Callback implementation for c:Electric.ShapeCache.Storage.for_shape/2.

 get_all_stored_shape_handles(opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_all_stored_shape_handles/1.

 get_chunk_end_log_offset(offset, opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_chunk_end_log_offset/2.

 get_log_stream(offset, max_offset, opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_log_stream/3.

 get_stored_shapes(opts, shape_handles)

Callback implementation for c:Electric.ShapeCache.Storage.get_stored_shapes/2.

 get_total_disk_usage(opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_total_disk_usage/1.

 hibernate(opts)

Callback implementation for c:Electric.ShapeCache.Storage.hibernate/1.

 init_writer!(opts, shape_definition)

Callback implementation for c:Electric.ShapeCache.Storage.init_writer!/2.

 make_new_snapshot!(data_stream, opts)

Callback implementation for c:Electric.ShapeCache.Storage.make_new_snapshot!/2.

 mark_snapshot_as_started(opts)

Callback implementation for c:Electric.ShapeCache.Storage.mark_snapshot_as_started/1.

 metadata_backup_dir(opts)

Callback implementation for c:Electric.ShapeCache.Storage.metadata_backup_dir/1.

 set_pg_snapshot(pg_snapshot, opts)

Callback implementation for c:Electric.ShapeCache.Storage.set_pg_snapshot/2.

 shared_opts(opts)

Callback implementation for c:Electric.ShapeCache.Storage.shared_opts/1.

 snapshot_started?(opts)

Callback implementation for c:Electric.ShapeCache.Storage.snapshot_started?/1.

 stack_start_link(opts)

Callback implementation for c:Electric.ShapeCache.Storage.stack_start_link/1.

 start_link(opts)

Callback implementation for c:Electric.ShapeCache.Storage.start_link/1.

 terminate(opts)

Callback implementation for c:Electric.ShapeCache.Storage.terminate/1.

 write_move_in_snapshot!(stream, name, opts)

Callback implementation for c:Electric.ShapeCache.Storage.write_move_in_snapshot!/3.

Electric.ShapeCache.ExpiryManager

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(opts)

 Callback implementation for GenServer.init/1.

 name(stack_ref)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(opts)

Callback implementation for GenServer.init/1.

 name(stack_ref)

 start_link(opts)

Electric.ShapeCache.InMemoryStorage

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 name(stack_id, shape_handle)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_id, shape_handle)

Electric.ShapeCache.LogChunker

 Summary

 Functions

 default_chunk_size_threshold()

 fit_into_chunk(chunk_bytes, total_chunk_size, chunk_bytes_threshold \\ 10_485_760)

 Check if adding the given number of bytes to the current chunk would exceed the threshold.

 intersperse_boundaries(stream, current_size \\ 0, chunk_size, item_size_fn, boundary_fn)

 Functions

 default_chunk_size_threshold()

 @spec default_chunk_size_threshold() :: non_neg_integer()

 fit_into_chunk(chunk_bytes, total_chunk_size, chunk_bytes_threshold \\ 10_485_760)

 @spec fit_into_chunk(non_neg_integer(), non_neg_integer(), non_neg_integer()) ::
 {:ok | :threshold_exceeded, non_neg_integer()}

Check if adding the given number of bytes to the current chunk would exceed the threshold.
Returns either an ok-tuple with the new total chunk size or a threshold_exceeded-tuple with the
new chunk size of 0.

 intersperse_boundaries(stream, current_size \\ 0, chunk_size, item_size_fn, boundary_fn)

Electric.ShapeCache.PureFileStorage

Main architecture & feature overview:
	2 file formats: for snapshots and for main log, because snapshots have a requirement to be streamed as they're written

	Snapshot format: comma-separated JSON lines (for future copy-to-socket possibilities), one file per chunk, ends with a 0x04 byte (end-of-transmission) to distinguish EOF because reader is up to date with writer from EOF because writer is finished

	Main log format:

	Log file: binary file, formatted as:
<<tx_offset::64, op_offset::64,
 key_size::32, key::binary(key_size),
 op_type::8, flag::8,
 json_size::64 json::binary(json_size)>>

	Chunk file: binary file, formatted as:
<<min_tx_offset::64, min_op_offset::64, start_pos::64, key_start_pos::64,
 max_tx_offset::64, max_op_offset::64, end_pos::64, key_end_pos::64>>
where start_pos & end_pos can be used for full chunk read into memory if needed, and min/max offsets are inclusive. Last chunk might not have the max/end part of the binary (i.e. it's half width)

	Writes are buffered at 64kb or 1s boundary, and the main pointer is the "last persisted full txn offset" - it's updated atomically, and last, and the readers are expected to respect that pointer as an upper bound for reading - any entires in the log file beyond that are considered volatile and might be trimmed in case the writer hard-crashes without flushing. Any reads beyond that boundary should rely on system being live (see 2 next points).

	For read consistency on live tail of the log, buffered writes are also made available to readers through an ETS. Anything not flushed to disk yet is addressable inside an ETS, and deleted from there as soon as flushed

	Buffering is not transaction-aligned. Flush might include multiple transactions, or be done mid-transaction. To allow for consistent reads, we maintain an in-memory pointer to "last written offset" (always gte than "last persisted full txn offset") which acts as a definitely-synced boundary for ongoing reads which read part of the transaction from ETS and disk when a transaction is partially written.

	This 2-layer setup is there to allow for read-consistent buffered writes without reader processes going to the writer.

	In case the writer is offline and in-memory ETS/buffer is not present, reads still succeed using on-disk information (i.e. last persisted full txn offset).

 Summary

 Types

 chunk()

 file_opener()

 Functions

 append_control_message!(control_message, state)

 Callback implementation for c:Electric.ShapeCache.Storage.append_control_message!/2.

 append_move_in_snapshot_to_log!(name, state)

 Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log!/2.

 append_move_in_snapshot_to_log_filtered!(name, state, touch_tracker, snapshot, tags_to_skip)

 Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log_filtered!/5.

 append_to_log!(txn_lines, state)

 Callback implementation for c:Electric.ShapeCache.Storage.append_to_log!/2.

 cleanup!(shape_opts)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/1.

 cleanup!(stack_opts, shape_handle)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/2.

 cleanup_all!(map)

 Callback implementation for c:Electric.ShapeCache.Storage.cleanup_all!/1.

 compact(state, keep_complete_chunks)

 Callback implementation for c:Electric.ShapeCache.Storage.compact/2.

 compaction_boundary(opts)

 drop_all_ets_entries(stack_id)

 fetch_latest_offset(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.fetch_latest_offset/1.

 fetch_pg_snapshot(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.fetch_pg_snapshot/1.

 for_shape(shape_handle, stack_opts)

 Callback implementation for c:Electric.ShapeCache.Storage.for_shape/2.

 get_all_stored_shape_handles(map)

 Callback implementation for c:Electric.ShapeCache.Storage.get_all_stored_shape_handles/1.

 get_chunk_end_log_offset(offset, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_chunk_end_log_offset/2.

 get_log_stream(min_offset, max_offset, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.get_log_stream/3.

 get_stored_shapes(stack_opts, shape_handles)

 Callback implementation for c:Electric.ShapeCache.Storage.get_stored_shapes/2.

 get_total_disk_usage(map)

 Callback implementation for c:Electric.ShapeCache.Storage.get_total_disk_usage/1.

 hibernate(state)

 Callback implementation for c:Electric.ShapeCache.Storage.hibernate/1.

 init_writer!(shape_opts, shape_definition)

 Callback implementation for c:Electric.ShapeCache.Storage.init_writer!/2.

 latest_name(opts)

 make_compacted_files(parent, opts, offset, log_file_pos)

 make_new_snapshot!(stream, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.make_new_snapshot!/2.

 mark_snapshot_as_started(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.mark_snapshot_as_started/1.

 metadata_backup_dir(map)

 Callback implementation for c:Electric.ShapeCache.Storage.metadata_backup_dir/1.

 open_file(arg, type)

 perform_scheduled_flush(state, requested)

 schedule_compaction(compaction_config)

 scheduled_compaction(state, compaction_config)

 set_compaction_boundary(opts, boundary)

 set_latest_name(opts, name)

 set_pg_snapshot(pg_snapshot, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.set_pg_snapshot/2.

 shape_data_dir(shape_opts)

 shape_log_path(opts, filename)

 shared_opts(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.shared_opts/1.

 snapshot_started?(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.snapshot_started?/1.

 stack_start_link(opts)

 Callback implementation for c:Electric.ShapeCache.Storage.stack_start_link/1.

 start_link(_)

 Callback implementation for c:Electric.ShapeCache.Storage.start_link/1.

 terminate(state)

 Callback implementation for c:Electric.ShapeCache.Storage.terminate/1.

 update_chunk_boundaries_cache(opts, boundaries)

 update_global_persistence_information(opts, last_persisted_txn_offset, last_persisted_offset, last_seen_txn_offset, old_last_persisted_txn_offset)

 write_move_in_snapshot!(stream, name, opts)

 Callback implementation for c:Electric.ShapeCache.Storage.write_move_in_snapshot!/3.

 Types

 chunk()

 @type chunk() ::
 {{min :: Electric.Replication.LogOffset.t(),
 max :: Electric.Replication.LogOffset.t()},
 {log_start :: pos_integer(), log_end :: pos_integer()}}

 file_opener()

 @type file_opener() :: (Path.t(), [File.mode()] ->
 {:ok, File.file_descriptor()} | {:error, File.posix()})

 Functions

 append_control_message!(control_message, state)

Callback implementation for c:Electric.ShapeCache.Storage.append_control_message!/2.

 append_move_in_snapshot_to_log!(name, state)

Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log!/2.

 append_move_in_snapshot_to_log_filtered!(name, state, touch_tracker, snapshot, tags_to_skip)

Callback implementation for c:Electric.ShapeCache.Storage.append_move_in_snapshot_to_log_filtered!/5.

 append_to_log!(txn_lines, state)

Callback implementation for c:Electric.ShapeCache.Storage.append_to_log!/2.

 cleanup!(shape_opts)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/1.

 cleanup!(stack_opts, shape_handle)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup!/2.

 cleanup_all!(map)

Callback implementation for c:Electric.ShapeCache.Storage.cleanup_all!/1.

 compact(state, keep_complete_chunks)

Callback implementation for c:Electric.ShapeCache.Storage.compact/2.

 compaction_boundary(opts)

 drop_all_ets_entries(stack_id)

 fetch_latest_offset(opts)

Callback implementation for c:Electric.ShapeCache.Storage.fetch_latest_offset/1.

 fetch_pg_snapshot(opts)

Callback implementation for c:Electric.ShapeCache.Storage.fetch_pg_snapshot/1.

 for_shape(shape_handle, stack_opts)

Callback implementation for c:Electric.ShapeCache.Storage.for_shape/2.

 get_all_stored_shape_handles(map)

Callback implementation for c:Electric.ShapeCache.Storage.get_all_stored_shape_handles/1.

 get_chunk_end_log_offset(offset, opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_chunk_end_log_offset/2.

 get_log_stream(min_offset, max_offset, opts)

Callback implementation for c:Electric.ShapeCache.Storage.get_log_stream/3.

 get_stored_shapes(stack_opts, shape_handles)

Callback implementation for c:Electric.ShapeCache.Storage.get_stored_shapes/2.

 get_total_disk_usage(map)

Callback implementation for c:Electric.ShapeCache.Storage.get_total_disk_usage/1.

 hibernate(state)

Callback implementation for c:Electric.ShapeCache.Storage.hibernate/1.

 init_writer!(shape_opts, shape_definition)

Callback implementation for c:Electric.ShapeCache.Storage.init_writer!/2.

 latest_name(opts)

 make_compacted_files(parent, opts, offset, log_file_pos)

 make_new_snapshot!(stream, opts)

Callback implementation for c:Electric.ShapeCache.Storage.make_new_snapshot!/2.

 mark_snapshot_as_started(opts)

Callback implementation for c:Electric.ShapeCache.Storage.mark_snapshot_as_started/1.

 metadata_backup_dir(map)

Callback implementation for c:Electric.ShapeCache.Storage.metadata_backup_dir/1.

 open_file(arg, type)

 perform_scheduled_flush(state, requested)

 schedule_compaction(compaction_config)

 scheduled_compaction(state, compaction_config)

 set_compaction_boundary(opts, boundary)

 set_latest_name(opts, name)

 set_pg_snapshot(pg_snapshot, opts)

Callback implementation for c:Electric.ShapeCache.Storage.set_pg_snapshot/2.

 shape_data_dir(shape_opts)

 shape_log_path(opts, filename)

 shared_opts(opts)

Callback implementation for c:Electric.ShapeCache.Storage.shared_opts/1.

 snapshot_started?(opts)

Callback implementation for c:Electric.ShapeCache.Storage.snapshot_started?/1.

 stack_start_link(opts)

Callback implementation for c:Electric.ShapeCache.Storage.stack_start_link/1.

 start_link(_)

Callback implementation for c:Electric.ShapeCache.Storage.start_link/1.

 terminate(state)

Callback implementation for c:Electric.ShapeCache.Storage.terminate/1.

 update_chunk_boundaries_cache(opts, boundaries)

 update_global_persistence_information(opts, last_persisted_txn_offset, last_persisted_offset, last_seen_txn_offset, old_last_persisted_txn_offset)

 write_move_in_snapshot!(stream, name, opts)

Callback implementation for c:Electric.ShapeCache.Storage.write_move_in_snapshot!/3.

Electric.ShapeCache.PureFileStorage.FileInfo

 Summary

 Functions

 delete(path)

 dir?(path)

 exists?(path)

 file_info(args \\ [])

 file_info(record, args)

 file_size(path)

 get_file_size!(path)

 ls(path)

 mkdir_p(path)

 recursive_disk_usage(path, acc \\ 0)

 rename(old, new)

 See :prim_file.rename/2.

 stat(path)

 See :prim_file.read_file_info/1.

 truncate(path, size)

 Functions

 delete(path)

 dir?(path)

 exists?(path)

 file_info(args \\ [])

 (macro)

 file_info(record, args)

 (macro)

 file_size(path)

 get_file_size!(path)

 ls(path)

 mkdir_p(path)

 recursive_disk_usage(path, acc \\ 0)

 rename(old, new)

See :prim_file.rename/2.

 stat(path)

See :prim_file.read_file_info/1.

 truncate(path, size)

Electric.ShapeCache.PureFileStorage.KeyIndex

 Summary

 Functions

 copy_adjusting_positions(source, target, starting_pos, adjustment)

 create_from_log(log_file_path, key_index_path, end_pos \\ :eof)

 expected_position(pos, arg)

 make_entry(arg, log_file_entry_start_pos, label \\ 0)

 read_key_file(path)

 sort(inputs, output)

 stream_for_actions(path, starting_pos \\ 0)

 trim(path, log_file_path, search_start_pos)

 write_from_stream(stream, path, label)

 This is a "side-write" function when log file is being written start-to-end.

 Functions

 copy_adjusting_positions(source, target, starting_pos, adjustment)

 create_from_log(log_file_path, key_index_path, end_pos \\ :eof)

 expected_position(pos, arg)

 make_entry(arg, log_file_entry_start_pos, label \\ 0)

 @spec make_entry(
 Electric.ShapeCache.PureFileStorage.LogFile.log_item_with_sizes(),
 non_neg_integer(),
 non_neg_integer()
) :: {iodata(), iodata_size :: non_neg_integer()}

 read_key_file(path)

 sort(inputs, output)

 stream_for_actions(path, starting_pos \\ 0)

 trim(path, log_file_path, search_start_pos)

 write_from_stream(stream, path, label)

This is a "side-write" function when log file is being written start-to-end.
"Live" keyfile appends shouldn't be done using this function because we're not controlling
flush points.

Electric.ShapeCache.PureFileStorage.SharedRecords

 Summary

 Types

 storage_meta()

 Functions

 create_storage_meta(key_values)

 expand_storage_meta(meta, keys)

 set_storage_meta(meta, key_values)

 storage_meta(args \\ [])

 storage_meta(record, args)

 storage_meta_key_pos(atom)

 storage_meta_keys()

 storage_meta_unset(key)

 writer_state(args \\ [])

 writer_state(record, args)

 Types

 storage_meta()

 @type storage_meta() :: term()

 Functions

 create_storage_meta(key_values)

 @spec create_storage_meta(keyword()) :: storage_meta()

 expand_storage_meta(meta, keys)

 @spec expand_storage_meta(storage_meta(), [atom(), ...]) :: keyword()

 set_storage_meta(meta, key_values)

 storage_meta(args \\ [])

 (macro)

 storage_meta(record, args)

 (macro)

 storage_meta_key_pos(atom)

 storage_meta_keys()

 storage_meta_unset(key)

 writer_state(args \\ [])

 (macro)

 writer_state(record, args)

 (macro)

Electric.ShapeCache.ShapeCleaner

Removes a shape (consumer, status entry, on-disk data and publication entry) on demand.

 Summary

 Types

 reason()

 shape_handle()

 stack_id()

 Functions

 activate_mocked_functions_from_test_process()

 consumer_cleanup_reason()

 consumer_suspend_reason()

 handle_writer_termination(stack_id, shape_handle, reason)

 remove_shape(stack_id, shape_handle, reason \\ {:shutdown, :cleanup})

 remove_shape_async(stack_id, shape_handle)

 remove_shape_storage_async(stack_id, shape_handles)

 remove_shapes(stack_id, shape_handles, reason \\ {:shutdown, :cleanup})

 remove_shapes_async(stack_id, shape_handles)

 remove_shapes_for_relations(stack_id, relations, reason \\ {:shutdown, :cleanup})

 Types

 reason()

 @type reason() :: {:shutdown, :cleanup} | {:shutdown, :suspend} | term()

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 stack_id()

 @type stack_id() :: Electric.stack_id()

 Functions

 activate_mocked_functions_from_test_process()

 consumer_cleanup_reason()

 consumer_suspend_reason()

 handle_writer_termination(stack_id, shape_handle, reason)

 @spec handle_writer_termination(stack_id(), shape_handle(), reason()) ::
 :removed | :ok

 remove_shape(stack_id, shape_handle, reason \\ {:shutdown, :cleanup})

 @spec remove_shape(stack_id(), shape_handle(), term()) :: :ok | {:error, term()}

 remove_shape_async(stack_id, shape_handle)

 @spec remove_shape_async(stack_id(), shape_handle()) :: :ok

 remove_shape_storage_async(stack_id, shape_handles)

 @spec remove_shape_storage_async(stack_id(), [shape_handle()]) :: :ok

 remove_shapes(stack_id, shape_handles, reason \\ {:shutdown, :cleanup})

 @spec remove_shapes(stack_id(), [shape_handle()], term()) :: :ok | {:error, term()}

 remove_shapes_async(stack_id, shape_handles)

 @spec remove_shapes_async(stack_id(), [shape_handle()]) :: :ok

 remove_shapes_for_relations(stack_id, relations, reason \\ {:shutdown, :cleanup})

 @spec remove_shapes_for_relations([Electric.oid_relation()], stack_id(), term()) ::
 :ok

Electric.ShapeCache.ShapeCleaner.CleanupTaskSupervisor

 Summary

 Functions

 child_spec(opts)

 cleanup_async(stack_id, shape_handles)

 name(stack_id)

 perform_async(stack_id, fun)

 start_link(opts)

 Functions

 child_spec(opts)

 cleanup_async(stack_id, shape_handles)

 name(stack_id)

 perform_async(stack_id, fun)

 start_link(opts)

Electric.ShapeCache.ShapeStatus

Keeps track of shape state.
Can recover basic persisted shape metadata from shape storage to repopulate
the in-memory cache.
The shape cache then loads this and starts processes (storage and consumer)
for each {shape_handle, %Shape{}} pair. These then use their attached storage
to recover the status information for the shape (snapshot xmin and latest
offset).
The ETS metadata table name is part of the config because we need to be able
to access the data in the ETS from anywhere, so there's an internal api,
using the full state and an external api using just the table name.

 Summary

 Types

 shape_handle()

 stack_id()

 Functions

 add_shape(stack_id, shape)

 count_shapes(stack_id)

 fetch_handle_by_shape(stack_id, shape)

 fetch_shape_by_handle(stack_id, shape_handle)

 has_shape_handle?(stack_id, shape_handle)

 initialize(stack_id)

 Runs a validation step on the existing Shape data.

 least_recently_used(stack_id, shape_count)

 list_shape_handles_for_relations(stack_id, relations)

 list_shapes(stack_id)

 mark_snapshot_complete(stack_id, shape_handle)

 mark_snapshot_started(stack_id, shape_handle)

 reduce_shapes(stack_id, acc, reducer_fun)

 remove_shape(stack_id, shape_handle)

 reset(stack_id)

 snapshot_complete?(stack_id, shape_handle)

 snapshot_started?(stack_id, shape_handle)

 update_last_read_time(stack_id, shape_handle, time)

 Sets the last read time for the given shape to the provided time.

 update_last_read_time_to_now(stack_id, shape_handle)

 Updates the last read time for the given shape to the current time.

 validate_shape_handle(stack_id, shape_handle, shape)

 Cheaply validate that a shape handle matches the shape definition by matching
the shape's saved hash against the provided shape's hash.

 version()

 Types

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 stack_id()

 @type stack_id() :: Electric.stack_id()

 Functions

 add_shape(stack_id, shape)

 @spec add_shape(stack_id(), Electric.Shapes.Shape.t()) ::
 {:ok, shape_handle()} | {:error, term()}

 count_shapes(stack_id)

 @spec count_shapes(stack_id()) :: non_neg_integer()

 fetch_handle_by_shape(stack_id, shape)

 @spec fetch_handle_by_shape(stack_id(), Electric.Shapes.Shape.t()) ::
 {:ok, shape_handle()} | :error

 fetch_shape_by_handle(stack_id, shape_handle)

 @spec fetch_shape_by_handle(stack_id(), shape_handle()) ::
 {:ok, Electric.Shapes.Shape.t()} | :error

 has_shape_handle?(stack_id, shape_handle)

 initialize(stack_id)

 @spec initialize(stack_id()) :: :ok | {:error, term()}

Runs a validation step on the existing Shape data.
The database path is dependent on both @version above and
ShapeDb.Connection's @schema_version.
A change to either of those, or to the OTP release, will result in an empty
database.

 least_recently_used(stack_id, shape_count)

 list_shape_handles_for_relations(stack_id, relations)

 @spec list_shape_handles_for_relations(stack_id(), [Electric.oid_relation()]) :: [
 shape_handle()
]

 list_shapes(stack_id)

 @spec list_shapes(stack_id()) :: [{shape_handle(), Electric.Shapes.Shape.t()}]

 mark_snapshot_complete(stack_id, shape_handle)

 @spec mark_snapshot_complete(stack_id(), shape_handle()) :: :ok | :error

 mark_snapshot_started(stack_id, shape_handle)

 @spec mark_snapshot_started(stack_id(), shape_handle()) :: :ok | :error

 reduce_shapes(stack_id, acc, reducer_fun)

 remove_shape(stack_id, shape_handle)

 @spec remove_shape(stack_id(), shape_handle()) :: :ok | {:error, term()}

 reset(stack_id)

 @spec reset(stack_id()) :: :ok

 snapshot_complete?(stack_id, shape_handle)

 snapshot_started?(stack_id, shape_handle)

 update_last_read_time(stack_id, shape_handle, time)

Sets the last read time for the given shape to the provided time.
Used for tests, otherwise prefer update_last_read_time_to_now/2.

 update_last_read_time_to_now(stack_id, shape_handle)

Updates the last read time for the given shape to the current time.

 validate_shape_handle(stack_id, shape_handle, shape)

 @spec validate_shape_handle(stack_id(), shape_handle(), Electric.Shapes.Shape.t()) ::
 :ok | :error

Cheaply validate that a shape handle matches the shape definition by matching
the shape's saved hash against the provided shape's hash.

 version()

 @spec version() :: pos_integer()

Electric.ShapeCache.ShapeStatus.ShapeDb.Migrator

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(args)

Electric.ShapeCache.ShapeStatus.ShapeDb.Query

 Summary

 Functions

 add_shape(connection, shape_handle, shape, comparable_shape, shape_hash, relations)

 count_shapes(connection)

 explain(conn, atom)

 handle_exists?(connection, shape_handle)

 handle_for_shape(connection, comparable_shape)

 list_handles_stream(connection)

 list_shape_stream(connection)

 list_shapes(connection)

 mark_snapshot_complete(connection, shape_handle)

 mark_snapshot_started(connection, shape_handle)

 prepare!(conn, opts)

 remove_shape(connection, shape_handle)

 reset(connection)

 select_invalid(connection)

 shape_for_handle(connection, shape_handle)

 shape_handles_for_relations(connection, relations)

 shape_hash(connection, shape_handle)

 snapshot_complete?(connection, shape_handle)

 snapshot_started?(connection, shape_handle)

 Functions

 add_shape(connection, shape_handle, shape, comparable_shape, shape_hash, relations)

 count_shapes(connection)

 explain(conn, atom)

 handle_exists?(connection, shape_handle)

 handle_for_shape(connection, comparable_shape)

 list_handles_stream(connection)

 list_shape_stream(connection)

 list_shapes(connection)

 mark_snapshot_complete(connection, shape_handle)

 mark_snapshot_started(connection, shape_handle)

 prepare!(conn, opts)

 remove_shape(connection, shape_handle)

 reset(connection)

 select_invalid(connection)

 shape_for_handle(connection, shape_handle)

 shape_handles_for_relations(connection, relations)

 shape_hash(connection, shape_handle)

 snapshot_complete?(connection, shape_handle)

 snapshot_started?(connection, shape_handle)

Electric.ShapeCache.ShapeStatus.ShapeDb.Supervisor

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(args)

 Callback implementation for Supervisor.init/1.

 name(stack_ref)

 start_link(args)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(args)

Callback implementation for Supervisor.init/1.

 name(stack_ref)

 start_link(args)

Electric.ShapeCache.ShapeStatusOwner

Owns the ETS table and the ShapeStatus state.
This process creates the ETS table for shapes and initializes
Electric.ShapeCache.ShapeStatus early in the supervision tree so that
dependent processes (e.g., shape consumers) can use a single, shared
ShapeStatus instance regardless of their own supervisor start order.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 initialize(stack_id)

 name(stack_id)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 initialize(stack_id)

 name(stack_id)

 start_link(opts)

Electric.Shapes

 Summary

 Types

 shape_handle()

 stack_id()

 Functions

 clean_shape(stack_id, shape_handle)

 Remove and clean up all data (meta data and shape log + snapshot) associated with
the given shape handle

 clean_shapes(stack_id, shape_handles)

 fetch_handle_by_shape(stack_id, shape_def)

 Get the shape handle that corresponds to this shape definition and return it

 fetch_shape_by_handle(stack_id, shape_handle)

 get_chunk_end_log_offset(stack_id, shape_handle, offset)

 Get the last exclusive offset of the chunk starting from the given offset

 get_merged_log_stream(stack_id, shape_handle, opts)

 Get the snapshot followed by the log.

 get_or_create_shape_handle(stack_id, shape_def)

 Get or create a shape handle and return it along with the latest offset of the shape

 has_shape?(stack_id, shape_handle)

 Check whether the log has an entry for a given shape handle

 make_new_snapshot!(stream, storage, stack_id, shape_handle)

 Wrap the writing of a snapshot to some Storage backend with the required
ShapeStatus update calls.

 mark_snapshot_started(storage, stack_id, shape_handle)

 query_subset(handle, shape, subset, opts)

 resolve_shape_handle(stack_id, shape_handle, shape)

 Cheaply validate that a shape handle matches the shape definition.

 Types

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 stack_id()

 @type stack_id() :: Electric.stack_id()

 Functions

 clean_shape(stack_id, shape_handle)

 @spec clean_shape(stack_id(), shape_handle()) :: :ok

Remove and clean up all data (meta data and shape log + snapshot) associated with
the given shape handle

 clean_shapes(stack_id, shape_handles)

 @spec clean_shapes(stack_id(), [shape_handle()]) :: :ok

 fetch_handle_by_shape(stack_id, shape_def)

 @spec fetch_handle_by_shape(stack_id(), Electric.Shapes.Shape.t()) ::
 {:ok, shape_handle()} | :error

Get the shape handle that corresponds to this shape definition and return it

 fetch_shape_by_handle(stack_id, shape_handle)

 @spec fetch_shape_by_handle(stack_id(), shape_handle()) ::
 Electric.Shapes.Shape.t() | :error

 get_chunk_end_log_offset(stack_id, shape_handle, offset)

 @spec get_chunk_end_log_offset(
 stack_id(),
 shape_handle(),
 Electric.Replication.LogOffset.t()
) ::
 Electric.Replication.LogOffset.t() | nil

Get the last exclusive offset of the chunk starting from the given offset
If nil is returned, chunk is not complete and the shape's latest offset should be used

 get_merged_log_stream(stack_id, shape_handle, opts)

Get the snapshot followed by the log.

 get_or_create_shape_handle(stack_id, shape_def)

 @spec get_or_create_shape_handle(stack_id(), Electric.Shapes.Shape.t()) ::
 {shape_handle(), Electric.Replication.LogOffset.t()}

Get or create a shape handle and return it along with the latest offset of the shape

 has_shape?(stack_id, shape_handle)

 @spec has_shape?(stack_id(), shape_handle()) :: boolean()

Check whether the log has an entry for a given shape handle

 make_new_snapshot!(stream, storage, stack_id, shape_handle)

 @spec make_new_snapshot!(
 Electric.Shapes.Querying.json_result_stream(),
 Electric.ShapeCache.Storage.shape_storage(),
 stack_id(),
 shape_handle()
) :: :ok | {:error, term()}

Wrap the writing of a snapshot to some Storage backend with the required
ShapeStatus update calls.

 mark_snapshot_started(storage, stack_id, shape_handle)

 @spec mark_snapshot_started(
 Electric.ShapeCache.Storage.shape_storage(),
 stack_id(),
 shape_handle()
) ::
 :ok | {:error, term()}

 query_subset(handle, shape, subset, opts)

 resolve_shape_handle(stack_id, shape_handle, shape)

Cheaply validate that a shape handle matches the shape definition.

Electric.Shapes.Api

 Summary

 Types

 options()

 shape_opts()

 t()

 Functions

 configure(opts)

 configure!(opts)

 delete_shape(request)

 delete_shape(conn, request)

 encode_error_message(api, message)

 encode_message(request, message)

 if_not_modified(conn, request)

 options(conn)

 plug_opts(opts)

 predefined_shape(api, shape_params)

 Create a version of the given configured Api instance that is specific to the
given shape.

 schema(arg1)

 serve_shape_log(request)

 Return shape log data.

 serve_shape_log(conn, request)

 serve_shape_response(request)

 serve_shape_response(conn, request)

 serve_subset_response(request)

 stack_id(arg1)

 validate(api, params)

 Validate the parameters for the request.

 validate_for_delete(api, params)

 Types

 options()

 @type options() :: [
 stack_id: binary(),
 inspector: {module(), [term()]},
 allow_shape_deletion: boolean(),
 feature_flags: [binary()],
 keepalive_interval: integer(),
 long_poll_timeout: integer(),
 sse_timeout: integer(),
 max_age: integer(),
 stack_ready_timeout: integer(),
 stale_age: integer(),
 send_cache_headers?: boolean(),
 encoder: atom(),
 max_concurrent_requests: map()
]

 shape_opts()

 @type shape_opts() :: [
 relation: {binary(), binary()},
 where: term(),
 columns: [binary()] | nil,
 params: %{optional(binary()) => binary()},
 autofill_pk_select?: boolean(),
 replica: term(),
 feature_flags: [binary()],
 storage: nil | Electric.Shapes.Shape.storage_config(),
 log_mode: term(),
 table: binary(),
 schema: binary(),
 namespace: binary()
]

 t()

 @type t() :: %Electric.Shapes.Api{
 allow_shape_deletion: term(),
 configured: term(),
 encoder: term(),
 feature_flags: term(),
 inspector: term(),
 keepalive_interval: term(),
 long_poll_timeout: term(),
 max_age: term(),
 max_concurrent_requests: term(),
 send_cache_headers?: term(),
 shape: term(),
 sse_encoder: term(),
 sse_timeout: term(),
 stack_id: term(),
 stack_ready_timeout: term(),
 stale_age: term()
}

 Functions

 configure(opts)

 configure!(opts)

 delete_shape(request)

 @spec delete_shape(Electric.Shapes.Api.Request.t()) ::
 Electric.Shapes.Api.Response.t()

 @spec delete_shape(Plug.Conn.t()) :: Plug.Conn.t()

 delete_shape(conn, request)

 encode_error_message(api, message)

 @spec encode_error_message(t() | Electric.Shapes.Api.Request.t(), term()) :: Enum.t()

 encode_message(request, message)

 @spec encode_message(Electric.Shapes.Api.Request.t(), term()) :: Enum.t()

 if_not_modified(conn, request)

 options(conn)

 @spec options(Plug.Conn.t()) :: Plug.Conn.t()

 plug_opts(opts)

 predefined_shape(api, shape_params)

 @spec predefined_shape(t(), shape_opts()) :: {:ok, t()} | {:error, term()}

Create a version of the given configured Api instance that is specific to the
given shape.
This allows you to provide a locked-down version of the API that ignores
shape-definition parameters such as table, where and columns and only
honours the shape-tailing parameters such as offset and handle.

 schema(arg1)

 serve_shape_log(request)

 @spec serve_shape_log(Electric.Shapes.Api.Request.t()) ::
 Electric.Shapes.Api.Response.t()

Return shape log data.

 serve_shape_log(conn, request)

 serve_shape_response(request)

 serve_shape_response(conn, request)

 serve_subset_response(request)

 stack_id(arg1)

 @spec stack_id(
 t()
 | Electric.Shapes.Api.Request.t()
 | Electric.Shapes.Api.Response.t()
) :: String.t()

 validate(api, params)

 @spec validate(t(), %{required(atom() | binary()) => term()}) ::
 {:ok, Electric.Shapes.Api.Request.t()}
 | {:error, Electric.Shapes.Api.Response.t()}

Validate the parameters for the request.

 validate_for_delete(api, params)

 @spec validate_for_delete(t(), %{required(atom() | binary()) => term()}) ::
 {:ok, Electric.Shapes.Api.Request.t()}
 | {:error, Electric.Shapes.Api.Response.t()}

Electric.Shapes.Api.Encoder behaviour

 Summary

 Callbacks

 log(term)

 message(term)

 subset(term)

 Functions

 validate!(impl)

 Callbacks

 log(term)

 @callback log(term()) :: Enum.t()

 message(term)

 @callback message(term()) :: Enum.t()

 subset(term)

 @callback subset(term()) :: Enum.t()

 Functions

 validate!(impl)

Electric.Shapes.Api.Encoder.JSON

Electric.Shapes.Api.Encoder.SSE

Electric.Shapes.Api.Encoder.Term

Electric.Shapes.Api.Error

 Summary

 Functions

 must_refetch()

 Functions

 must_refetch()

Electric.Shapes.Api.Options

 Summary

 Functions

 call(conn)

 Functions

 call(conn)

Electric.Shapes.Api.Params

 Summary

 Types

 t()

 Functions

 cast_offset(changeset)

 cast_root_table(changeset, api)

 validate(api, params)

 validate_for_delete(api, params)

 validate_handle_with_offset(changeset)

 validate_live_sse(changeset)

 validate_live_with_offset(changeset)

 Types

 t()

 @type t() :: %Electric.Shapes.Api.Params{
 columns: term(),
 experimental_compaction: term(),
 handle: term(),
 live: term(),
 live_sse: term(),
 log: term(),
 offset: term(),
 params: term(),
 replica: term(),
 shape_definition: term(),
 subset: term(),
 table: term(),
 where: term()
}

 Functions

 cast_offset(changeset)

 cast_root_table(changeset, api)

 validate(api, params)

 validate_for_delete(api, params)

 validate_handle_with_offset(changeset)

 validate_live_sse(changeset)

 validate_live_with_offset(changeset)

Electric.Shapes.Api.Params.ColumnList

 Summary

 Functions

 cast(columns)

 Callback implementation for Ecto.Type.cast/1.

 dump(columns)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(columns)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 Functions

 cast(columns)

Callback implementation for Ecto.Type.cast/1.

 dump(columns)

Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

 load(columns)

Callback implementation for Ecto.Type.load/1.

 type()

Callback implementation for Ecto.Type.type/0.

Electric.Shapes.Api.Params.JsonOrMapStringParams

Custom Ecto type that accepts params as either:
	A JSON string (e.g., "{"1":"value1","2":"value2"}")
	A map with string values (for backwards compatibility)

 Summary

 Functions

 cast(params)

 Callback implementation for Ecto.Type.cast/1.

 dump(data)

 Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 load(data)

 Callback implementation for Ecto.Type.load/1.

 type()

 Callback implementation for Ecto.Type.type/0.

 Functions

 cast(params)

Callback implementation for Ecto.Type.cast/1.

 dump(data)

Callback implementation for Ecto.Type.dump/1.

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

 load(data)

Callback implementation for Ecto.Type.load/1.

 type()

Callback implementation for Ecto.Type.type/0.

Electric.Shapes.Api.Params.SubsetParams

 Summary

 Functions

 changeset(struct, params, shape_definition, api)

 extract_result(data, arg2)

 Functions

 changeset(struct, params, shape_definition, api)

 extract_result(data, arg2)

Electric.Shapes.Api.Request

 Summary

 Types

 shape_handle()

 t()

 Functions

 update_response(request, fun)

 Types

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 t()

 @type t() :: %Electric.Shapes.Api.Request{
 api: Electric.Shapes.Api.t(),
 chunk_end_offset: nil | Electric.Replication.LogOffset.t(),
 global_last_seen_lsn: nil | pos_integer(),
 handle: nil | shape_handle(),
 last_offset: nil | Electric.Replication.LogOffset.t(),
 new_changes_pid: nil | pid(),
 new_changes_ref: nil | reference(),
 params: Electric.Shapes.Api.Params.t(),
 response: Electric.Shapes.Api.Response.t()
}

 Functions

 update_response(request, fun)

 @spec update_response(t(), (Electric.Shapes.Api.Response.t() ->
 Electric.Shapes.Api.Response.t())) ::
 t()

Electric.Shapes.Api.Response

 Summary

 Types

 shape_handle()

 t()

 Functions

 electric_headers()

 ensure_cleanup(response)

 error(api_or_request, message, args \\ [])

 etag(response, opts \\ [])

 final(response)

 invalid_request(api_or_request, args)

 send(conn, response)

 shape_definition_mismatch(request)

 Types

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 t()

 @type t() :: %Electric.Shapes.Api.Response{
 api: Electric.Shapes.Api.t(),
 body: Enum.t(),
 chunked: boolean(),
 finalized?: boolean(),
 handle: nil | shape_handle(),
 known_error: term(),
 no_changes: boolean(),
 offset: nil | Electric.Replication.LogOffset.t(),
 params: Electric.Shapes.Api.Params.t(),
 response_type: :normal_log | :subset,
 retry_after: term(),
 shape_definition: nil | Electric.Shapes.Shape.t(),
 status: pos_integer(),
 trace_attrs: %{optional(atom()) => term()},
 up_to_date: boolean()
}

 Functions

 electric_headers()

 ensure_cleanup(response)

 error(api_or_request, message, args \\ [])

 @spec error(
 Electric.Shapes.Api.t() | Electric.Shapes.Api.Request.t(),
 term(),
 keyword()
) :: t()

 etag(response, opts \\ [])

 final(response)

 invalid_request(api_or_request, args)

 send(conn, response)

 @spec send(Plug.Conn.t(), t()) :: Plug.Conn.t()

 shape_definition_mismatch(request)

Electric.Shapes.Api.SseState

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Electric.Shapes.Api.SseState{
 keepalive_ref: reference(),
 last_message_time: pos_integer(),
 mode: :receive | :emit | :done,
 request: Electric.Shapes.Api.Request.t(),
 since_offset: Electric.Replication.LogOffset.t(),
 stream: Enumerable.t() | nil
}

Electric.Shapes.Consumer

 Summary

 Functions

 activate_mocked_functions_from_test_process()

 await_snapshot_start(stack_id, shape_handle, timeout \\ 45000)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_id, shape_handle)

 register_for_changes(stack_id, shape_handle)

 start_link(config)

 stop(pid, reason)

 stop(stack_id, shape_handle, reason)

 subscribe_materializer(stack_id, shape_handle, pid)

 whereis(stack_id, shape_handle)

 Functions

 activate_mocked_functions_from_test_process()

 await_snapshot_start(stack_id, shape_handle, timeout \\ 45000)

 @spec await_snapshot_start(Electric.stack_id(), Electric.shape_handle(), timeout()) ::
 :started | {:error, any()}

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_id, shape_handle)

 register_for_changes(stack_id, shape_handle)

 start_link(config)

 stop(pid, reason)

 stop(stack_id, shape_handle, reason)

 subscribe_materializer(stack_id, shape_handle, pid)

 @spec subscribe_materializer(Electric.stack_id(), Electric.shape_handle(), pid()) ::
 :ok

 whereis(stack_id, shape_handle)

 @spec whereis(Electric.stack_id(), Electric.shape_handle()) :: pid() | nil

Electric.Shapes.Consumer.ChangeHandling

 Summary

 Functions

 do_process_changes(changes, state, ctx, acc, count)

 process_changes(changes, state, ctx)

 Functions

 do_process_changes(changes, state, ctx, acc, count)

 process_changes(changes, state, ctx)

 @spec process_changes(
 [Electric.Replication.Changes.change()],
 Electric.Shapes.Consumer.State.t(),
 context
) ::
 {filtered_changes :: [Electric.Replication.Changes.change()],
 state :: Electric.Shapes.Consumer.State.t(), count :: non_neg_integer(),
 last_log_offset :: Electric.Replication.LogOffset.t() | nil}
 | :includes_truncate
when context: map()

Electric.Shapes.Consumer.Materializer

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_all_as_refs(shape, stack_id)

 get_link_values(opts)

 get_stream_up_to_date(min_offset, storage)

 handle_continue(arg1, state)

 Callback implementation for GenServer.handle_continue/2.

 init(opts)

 Callback implementation for GenServer.init/1.

 name(map)

 name(stack_id, shape_handle)

 new_changes(state, changes)

 start_link(opts)

 subscribe(opts)

 subscribe(stack_id, shape_handle)

 wait_until_ready(state)

 whereis(map)

 whereis(stack_id, shape_handle)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_all_as_refs(shape, stack_id)

 get_link_values(opts)

 get_stream_up_to_date(min_offset, storage)

 handle_continue(arg1, state)

Callback implementation for GenServer.handle_continue/2.

 init(opts)

Callback implementation for GenServer.init/1.

 name(map)

 name(stack_id, shape_handle)

 new_changes(state, changes)

 @spec new_changes(
 map(),
 [Electric.Replication.Changes.change()]
 | {Electric.Replication.LogOffset.t(), Electric.Replication.LogOffset.t()}
) :: :ok

 start_link(opts)

 subscribe(opts)

 subscribe(stack_id, shape_handle)

 wait_until_ready(state)

 whereis(map)

 whereis(stack_id, shape_handle)

Electric.Shapes.Consumer.MoveIns

 Summary

 Types

 in_flight_values()

 move_in_name()

 pg_snapshot()

 t()

 Information needed to reason about move-in handling and correct stream processing.

 Functions

 add_waiting(state, name, moved_values)

 Add information about a new move-in to the state for which we're waiting.
Snapshot is initially nil and will be set later when the query begins.

 change_already_visible?(arg1, xid, arg3)

 Check if a change is already visible in one of the completed move-ins.

 change_to_filtering(state, name, key_set)

 Change a move-in from "waiting" to "filtering", marking it as complete and return best-effort visibility boundary.

 change_visible_in_unresolved_move_ins_for_values?(move_ins, referenced_values, xid)

 gc_touch_tracker(state)

 Garbage collect touches that are visible in all pending snapshots.
A touch is visible if its xid is before the minimum xmin of all waiting snapshots.

 get_and_clear_maximum_resolved_snapshot(state)

 Get the stored maximum resolved snapshot and clear it, or return nil if none is stored.
Returns {snapshot | nil, updated_state}.

 is_minimum_snapshot?(move_ins, snapshot)

 Check if the given snapshot is the minimum among all concurrent waiting move-ins
(excluding the current one being resolved, and only considering those with known snapshots).

 move_out_happened(state, new_tags)

 new()

 remove_completed(state, transaction)

 Remove completed move-ins from the state.

 set_snapshot(state, name, snapshot)

 Set the snapshot for a waiting move-in when it becomes known.

 should_skip_query_row?(touch_tracker, snapshot, key)

 Check if a query result row should be skipped because a fresher version exists in the stream.
Skip if: touch exists AND touch xid is NOT visible in query snapshot.

 store_maximum_resolved_snapshot(state, snapshot)

 Store or update the maximum resolved snapshot.
If there's already a stored snapshot, keep the maximum of the two.

 track_touch(state, xid, arg3)

 Track a touch for a non-delete change.
Returns updated touch_tracker.

 Types

 in_flight_values()

 @type in_flight_values() :: %{required(term()) => MapSet.t()}

 move_in_name()

 @type move_in_name() :: String.t()

 pg_snapshot()

 @type pg_snapshot() :: Electric.Postgres.SnapshotQuery.pg_snapshot()

 t()

 @type t() :: %Electric.Shapes.Consumer.MoveIns{
 filtering_move_ins: [{pg_snapshot(), keys :: [String.t()]}],
 in_flight_values: in_flight_values(),
 maximum_resolved_snapshot: nil | pg_snapshot(),
 minimum_unresolved_snapshot: nil | pg_snapshot(),
 move_in_buffering_snapshot: nil | pg_snapshot(),
 moved_out_tags: %{required(move_in_name()) => MapSet.t(String.t())},
 touch_tracker: %{required(String.t()) => pos_integer()},
 waiting_move_ins: %{
 required(move_in_name()) => {pg_snapshot() | nil, {term(), MapSet.t()}}
 }
}

Information needed to reason about move-in handling and correct stream processing.
	waiting_move_ins: Information about move-ins we're waiting for. That means a move-in was triggered, but query results are not yet available. The map value has pg snapshot and actual values that were
 moved in and thus should be skipped in where clause evaluation until the results are appended to the log

	filtering_move_ins: Information about move-ins we're filtering. That means a move-in has resolved and was added to the shape log, and we need to skip changes that are already visible there.

	touch_tracker: A map of keys to xids of transactions that have touched them. This is used to skip changes inside move-in query results that are already visible in the shape log.

	move_in_buffering_snapshot: A snapshot that is a union of all the "waiting" move-in snapshots. This is used to reduce a check whether something is visible in any of the "waiting" move-in snapshots
 down to a single check instead of checking each snapshot individually.

	in_flight_values: A precalculated map of all moved-in values that caused a move-in and thus should be skipped in where clause evaluation until the results are appended to the log.

	moved_out_tags: A map of move-in names to sets of tags that were moved out while the move-in was happening and thus should be skipped when appending move-in results to the log.

	maximum_resolved_snapshot: Stores the maximum snapshot of resolved move-ins that weren't immediately appended as snapshot-end control messages, to be appended when the last concurrent move-in resolves.

	minimum_unresolved_snapshot: Stores the minimum snapshot of unresolved move-ins.

 Functions

 add_waiting(state, name, moved_values)

 @spec add_waiting(t(), move_in_name(), {term(), MapSet.t()}) :: t()

Add information about a new move-in to the state for which we're waiting.
Snapshot is initially nil and will be set later when the query begins.

 change_already_visible?(arg1, xid, arg3)

 @spec change_already_visible?(
 t(),
 Electric.Postgres.Xid.anyxid(),
 Electric.Replication.Changes.change()
) :: boolean()

Check if a change is already visible in one of the completed move-ins.
A visible change means it needs to be skipped to avoid duplicates.

 change_to_filtering(state, name, key_set)

 @spec change_to_filtering(t(), move_in_name(), MapSet.t(String.t())) ::
 {visibility_boundary :: nil | pg_snapshot(), t()}

Change a move-in from "waiting" to "filtering", marking it as complete and return best-effort visibility boundary.

 change_visible_in_unresolved_move_ins_for_values?(move_ins, referenced_values, xid)

 gc_touch_tracker(state)

 @spec gc_touch_tracker(t()) :: t()

Garbage collect touches that are visible in all pending snapshots.
A touch is visible if its xid is before the minimum xmin of all waiting snapshots.

 get_and_clear_maximum_resolved_snapshot(state)

 @spec get_and_clear_maximum_resolved_snapshot(t()) :: {pg_snapshot() | nil, t()}

Get the stored maximum resolved snapshot and clear it, or return nil if none is stored.
Returns {snapshot | nil, updated_state}.

 is_minimum_snapshot?(move_ins, snapshot)

 @spec is_minimum_snapshot?(t(), pg_snapshot()) :: boolean()

Check if the given snapshot is the minimum among all concurrent waiting move-ins
(excluding the current one being resolved, and only considering those with known snapshots).

 move_out_happened(state, new_tags)

 new()

 remove_completed(state, transaction)

 @spec remove_completed(t(), Electric.Replication.Changes.Transaction.t()) :: t()

Remove completed move-ins from the state.
Move-in is considered "completed" (i.e. not included in the filtering logic)
once we see any transaction that is after the end of the move-in snapshot.
Filtering generally is applied only to transactions that are already visible
in the snapshot, and those can only be with xid < xmax.

 set_snapshot(state, name, snapshot)

 @spec set_snapshot(t(), move_in_name(), pg_snapshot()) :: t()

Set the snapshot for a waiting move-in when it becomes known.

 should_skip_query_row?(touch_tracker, snapshot, key)

 @spec should_skip_query_row?(
 %{required(String.t()) => pos_integer()},
 pg_snapshot(),
 String.t()
) ::
 boolean()

Check if a query result row should be skipped because a fresher version exists in the stream.
Skip if: touch exists AND touch xid is NOT visible in query snapshot.

 store_maximum_resolved_snapshot(state, snapshot)

 @spec store_maximum_resolved_snapshot(t(), pg_snapshot()) :: t()

Store or update the maximum resolved snapshot.
If there's already a stored snapshot, keep the maximum of the two.

 track_touch(state, xid, arg3)

 @spec track_touch(t(), pos_integer(), Electric.Replication.Changes.change()) :: t()

Track a touch for a non-delete change.
Returns updated touch_tracker.

Electric.Shapes.Consumer.Snapshotter

 Summary

 Functions

 activate_mocked_functions_from_test_process()

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_continue(atom, state)

 Callback implementation for GenServer.handle_continue/2.

 init(config)

 Callback implementation for GenServer.init/1.

 name(map)

 name(stack_id, shape_handle)

 start_link(config)

 stream_snapshot_from_db(task_parent, consumer, shape_handle, shape, map)

 Functions

 activate_mocked_functions_from_test_process()

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_continue(atom, state)

Callback implementation for GenServer.handle_continue/2.

 init(config)

Callback implementation for GenServer.init/1.

 name(map)

 name(stack_id, shape_handle)

 start_link(config)

 stream_snapshot_from_db(task_parent, consumer, shape_handle, shape, map)

Electric.Shapes.ConsumerRegistry

 Summary

 Types

 shape_handle()

 stack_id()

 stack_ref()

 t()

 Functions

 active_consumer_count(stack_id)

 broadcast(handle_event_pids)

 Calls many GenServers asynchronously with per-handle messages and waits
for their responses before returning.

 enable_suspend(stack_id, hibernate_after, jitter_period)

 Dynamically (re-)enable consumer suspension on all running consumers.

 name(stack_id, shape_handle)

 new(stack_id, opts \\ [])

 publish(events_by_handle, registry_state)

 register_consumer(pid, shape_handle, stack_id)

 register_name(arg, pid)

 remove_consumer(shape_handle, stack_id)

 unregister_name(arg)

 whereis(stack_ref, shape_handle)

 whereis_name(arg)

 Types

 shape_handle()

 @type shape_handle() :: Electric.shape_handle()

 stack_id()

 @type stack_id() :: Electric.stack_id()

 stack_ref()

 @type stack_ref() :: stack_id() | [{:stack_id, stack_id()}] | %{stack_id: stack_id()}

 t()

 @type t() :: %Electric.Shapes.ConsumerRegistry{
 stack_id: stack_id(),
 table: :ets.table()
}

 Functions

 active_consumer_count(stack_id)

 @spec active_consumer_count(stack_id()) :: non_neg_integer()

 broadcast(handle_event_pids)

 @spec broadcast([{shape_handle(), term(), pid() | nil}]) :: %{
 required(shape_handle()) => term()
}

Calls many GenServers asynchronously with per-handle messages and waits
for their responses before returning.
Returns a map of shape_handle => event for handles that need to be retried
(because their consumers suspended).
There is no timeout so if the GenServers do not respond or die, this
function will block indefinitely.

 enable_suspend(stack_id, hibernate_after, jitter_period)

 @spec enable_suspend(stack_id(), pos_integer(), pos_integer()) ::
 consumer_count :: non_neg_integer()

Dynamically (re-)enable consumer suspension on all running consumers.
This allows for dynamically re-configuring consumer suspension even if it was
disabled, because the configuration message will have the side-effect of
waking all consumers from hibernation.
The jitter_period value allows for spreading the suspension of existing
consumers over a large time period to avoid a sudden rush of consumer
shutdowns after hibernate_after ms.
To re-enable consumer suspend:
set the hibernation timeout to 1 minute but phase the suspension of
existing consumers over a 20 minute period
Electric.Shapes.ConsumerRegistry.enable_suspend(stack_id, 60_000, 60_000 * 20)
Disabling suspension is as easy as:
Electric.StackConfig.put(stack_id, :shape_enable_suspend?, false)

 name(stack_id, shape_handle)

 new(stack_id, opts \\ [])

 publish(events_by_handle, registry_state)

 @spec publish(%{required(shape_handle()) => term()}, t()) :: :ok

 register_consumer(pid, shape_handle, stack_id)

 @spec register_consumer(pid(), shape_handle(), stack_id()) :: {:ok, non_neg_integer()}

 @spec register_consumer(pid(), shape_handle(), t()) :: {:ok, non_neg_integer()}

 @spec register_consumer(pid(), shape_handle(), :ets.table()) ::
 {:ok, non_neg_integer()}

 register_name(arg, pid)

 remove_consumer(shape_handle, stack_id)

 @spec remove_consumer(shape_handle(), t()) :: :ok

 @spec remove_consumer(shape_handle(), stack_id()) :: :ok

 unregister_name(arg)

 whereis(stack_ref, shape_handle)

 @spec whereis(stack_ref(), shape_handle()) :: pid() | nil

 whereis_name(arg)

Electric.Shapes.DependencyLayers

 Summary

 Functions

 add_dependency(layers, shape, shape_handle)

 get_for_handles(layers, shape_handles)

 new()

 remove_dependency(layers, shape_handle)

 Functions

 add_dependency(layers, shape, shape_handle)

 get_for_handles(layers, shape_handles)

 new()

 remove_dependency(layers, shape_handle)

Electric.Shapes.DynamicConsumerSupervisor

Responsible for managing shape consumer processes

 Summary

 Functions

 child_spec(arg)

 Returns a child spec for the PartitionSupervisor that starts a pool of
DynamicConsumerSupervisor procecesses to shard child processes across.

 name(name)

 start_link(opts)

 start_materializer(supervisor_ref, config)

 start_shape_consumer(supervisor_ref, config)

 start_snapshotter(supervisor_ref, config)

 Functions

 child_spec(arg)

Returns a child spec for the PartitionSupervisor that starts a pool of
DynamicConsumerSupervisor procecesses to shard child processes across.
The number of dynamic supervisors is equal to the number of CPU cores.

 name(name)

 start_link(opts)

 start_materializer(supervisor_ref, config)

 start_shape_consumer(supervisor_ref, config)

 start_snapshotter(supervisor_ref, config)

Electric.Shapes.EventRouter

Routes replication events to shapes, returning per-shape transaction fragments.
The EventRouter wraps a Filter and adds transaction-aware routing:
	For Relation events, returns the relation for all affected shapes
	For TransactionFragment events, returns per-shape TransactionFragments
with only the changes that affect each shape.

Transaction state is tracked to ensure:
	Each shape receives Begin only once per transaction (on first relevant operation)
	Each shape receives Commit only if it received operations in the transaction
	Shapes added mid-transaction are skipped for that transaction
	Shapes removed mid-transaction stop receiving events immediately

 Summary

 Types

 shape_id()

 t()

 Functions

 active_shapes(router)

 add_shape(router, shape_id, shape)

 event_by_shape_handle(router, relation)

 has_shape?(router, shape_id)

 new(opts \\ [])

 remove_shape(router, shape_id)

 Types

 shape_id()

 @type shape_id() :: any()

 t()

 @type t() :: %Electric.Shapes.EventRouter{
 current_xid: term(),
 filter: term(),
 in_txn: term(),
 shapes_added_mid_txn: term(),
 shapes_in_txn: term(),
 shapes_seen_begin: term()
}

 Functions

 active_shapes(router)

 @spec active_shapes(t()) :: MapSet.t(shape_id())

 add_shape(router, shape_id, shape)

 @spec add_shape(t(), shape_id(), Electric.Shapes.Shape.t()) :: t()

 event_by_shape_handle(router, relation)

 @spec event_by_shape_handle(
 t(),
 Electric.Replication.Changes.Relation.t()
 | Electric.Replication.Changes.TransactionFragment.t()
) ::
 {%{
 required(shape_id()) =>
 Electric.Replication.Changes.Relation.t()
 | Electric.Replication.Changes.TransactionFragment.t()
 }, t()}

 has_shape?(router, shape_id)

 @spec has_shape?(t(), shape_id()) :: boolean()

 new(opts \\ [])

 @spec new(keyword()) :: t()

 remove_shape(router, shape_id)

 @spec remove_shape(t(), shape_id()) :: t()

Electric.Shapes.Filter

Responsible for knowing which shapes are affected by a change.
affected_shapes(filter, change) will return a set of IDs for the shapes that are affected by the change
considering all the shapes that have been added to the filter using add_shape/3.
The Filter module keeps track of what tables are referenced by the shapes and changes and delegates
the table specific logic to the Filter.WhereCondition module.
Data is stored in ETS tables (outside the process heap) to avoid GC pressure with large numbers of shapes.

 Summary

 Types

 shape_id()

 t()

 Functions

 active_shapes(filter)

 add_shape(filter, shape_id, shape)

 Add a shape for the filter to track.

 affected_shapes(filter, change)

 Returns the shape IDs for all shapes that have been added to the filter
that are affected by the given change.

 get_shape(filter, shape_id)

 Get a shape by its ID. Used internally for where clause evaluation.

 has_shape?(filter, shape_handle)

 new(opts \\ [])

 remove_shape(filter, shape_id)

 Remove a shape from the filter.

 Types

 shape_id()

 @type shape_id() :: any()

 t()

 @type t() :: %Electric.Shapes.Filter{
 eq_index_table: term(),
 incl_index_table: term(),
 refs_fun: term(),
 shapes_table: term(),
 tables_table: term(),
 where_cond_table: term()
}

 Functions

 active_shapes(filter)

 @spec active_shapes(t()) :: [shape_id()]

 add_shape(filter, shape_id, shape)

 @spec add_shape(t(), shape_id(), Electric.Shapes.Shape.t()) :: t()

Add a shape for the filter to track.
The shape_id can be any term you like to identify the shape. Whatever you use will be returned
by affected_shapes/2 when the shape is affected by a change.

 affected_shapes(filter, change)

 @spec affected_shapes(
 t(),
 Electric.Replication.Changes.change()
 | Electric.Replication.Changes.Relation.t()
) :: MapSet.t(shape_id())

Returns the shape IDs for all shapes that have been added to the filter
that are affected by the given change.

 get_shape(filter, shape_id)

Get a shape by its ID. Used internally for where clause evaluation.

 has_shape?(filter, shape_handle)

 @spec has_shape?(t(), shape_id()) :: boolean()

 new(opts \\ [])

 @spec new(keyword()) :: t()

 remove_shape(filter, shape_id)

 @spec remove_shape(t(), shape_id()) :: t()

Remove a shape from the filter.

Electric.Shapes.Filter.Index

Efficiently finds shapes that are affected by a change, specifically for a particular operation in where clause.
Each type of operation that has been optimised such as = or @> has its own index module
(EqualityIndex, InclusionIndex) that stores data in ETS tables.
This module dispatches to the appropriate index implementation based on the operation type.

 Summary

 Functions

 add_shape(filter, where_cond_id, shape_id, optimisation)

 affected_shapes(filter, where_cond_id, field, operation, record)

 all_shape_ids(filter, where_cond_id, field, operation)

 remove_shape(filter, where_cond_id, shape_id, optimisation)

 Functions

 add_shape(filter, where_cond_id, shape_id, optimisation)

 affected_shapes(filter, where_cond_id, field, operation, record)

 all_shape_ids(filter, where_cond_id, field, operation)

 remove_shape(filter, where_cond_id, shape_id, optimisation)

Electric.Shapes.Filter.Indexes.EqualityIndex

Efficiently finds shapes that are affected by a change when the shape's where clause has field = const in it.
Data is stored in the Filter's eq_index_table ETS table with keys of the form:
{condition_id, field, value} -> {type, next_condition_id}
The type is stored to know how to parse values from records.
The next_condition_id points to a WhereCondition for the remaining conditions
of the where clause.
Additionally, the field type is cached at:
{:type, condition_id, field} -> type
This enables O(1) type lookup for parsing record values.

 Summary

 Functions

 add_shape(filter, condition_id, shape_id, optimisation)

 affected_shapes(filter, condition_id, field, record)

 all_shape_ids(filter, condition_id, field)

 remove_shape(filter, condition_id, shape_id, optimisation)

 Functions

 add_shape(filter, condition_id, shape_id, optimisation)

 affected_shapes(filter, condition_id, field, record)

 all_shape_ids(filter, condition_id, field)

 remove_shape(filter, condition_id, shape_id, optimisation)

Electric.Shapes.Filter.Indexes.InclusionIndex

Efficiently finds shapes that are affected by a change when the shape's where clause has array_field @> const_array in it.
The index is a tree stored in ETS. Each node in the tree represents a value in the array.
When adding a shape to the tree, the shape's array is sorted and deduplicated, then first value is used to find the child node of the root node.
The child to that node is then found using the next value and so on. When there are no values left, the shape is then added to the last node.
Adding the shape to the last node is done by adding the shape the node's WhereCondition which represents the rest of the where
clause of the shape (the @> comparison may be only part of the where clause) and can also contain many shapes.
To find the shapes affected by a change, the values of the array in the change are sorted and deduplicated. The tree is then traversed using the values
and any nodes that contain shapes on the way are added to the result set, because if the node has been reached the shape's array must be a subset of the change's array.
ETS Storage
Tree nodes are stored in the incl_index_table with keys of the form:
{condition_id, field, path} -> %{keys: [...], condition_id: condition_id | nil}
Where path is the list of array values traversed to reach this node (e.g., [] for root, [1], [1, 2], etc.).
Additionally, the field type is cached at:
{:type, condition_id, field} -> type
This enables O(1) type lookup for parsing record values.

 Summary

 Functions

 add_shape(filter, condition_id, shape_id, optimisation)

 affected_shapes(filter, condition_id, field, record)

 all_shape_ids(filter, condition_id, field)

 remove_shape(filter, condition_id, shape_id, optimisation)

 Functions

 add_shape(filter, condition_id, shape_id, optimisation)

 affected_shapes(filter, condition_id, field, record)

 all_shape_ids(filter, condition_id, field)

 remove_shape(filter, condition_id, shape_id, optimisation)

Electric.Shapes.Filter.WhereCondition

Responsible for knowing which shapes are affected by a change to a specific table.
When add_shape/4 is called, shapes are added to a tree stored in ETS. Each node on the tree represents
an optimised (indexed) condition in the shape's where clause, with shapes that share an optimised condition
being on the same branch.
Each WhereCondition is identified by a unique reference and stores:
	index_keys: MapSet of {field, operation} tuples for indexed conditions
	other_shapes: map of shape_id -> where_clause for non-optimized shapes

The logic for specific indexes (equality, inclusion) is handled by dedicated modules that also use ETS.

 Summary

 Functions

 add_shape(filter, condition_id, shape_id, where_clause)

 affected_shapes(filter, condition_id, record)

 all_shape_ids(filter, condition_id)

 init(filter, condition_id)

 remove_shape(filter, condition_id, shape_id, where_clause)

 Remove a shape from a WhereCondition.

 Functions

 add_shape(filter, condition_id, shape_id, where_clause)

 affected_shapes(filter, condition_id, record)

 all_shape_ids(filter, condition_id)

 init(filter, condition_id)

 remove_shape(filter, condition_id, shape_id, where_clause)

 @spec remove_shape(
 Electric.Shapes.Filter.t(),
 reference(),
 String.t(),
 Electric.Replication.Eval.Expr.t() | nil
) :: :deleted | :ok

Remove a shape from a WhereCondition.
Returns :deleted if the condition is now empty and was deleted,
or :ok if the condition still has shapes.

Electric.Shapes.PartialModes

 Summary

 Functions

 query_move_in(supervisor, shape_handle, shape, where, opts)

 query_move_in_async(supervisor, shape_handle, shape, where, opts)

 Asynchronous version of query_move_in that doesn't block on snapshot.
Sends {:pg_snapshot_known, name, snapshot} immediately when snapshot is known.
Sends {:query_move_in_complete, name, key_set, snapshot} when query completes.

 query_subset(shape_handle, shape, subset, opts)

 Functions

 query_move_in(supervisor, shape_handle, shape, where, opts)

 query_move_in_async(supervisor, shape_handle, shape, where, opts)

Asynchronous version of query_move_in that doesn't block on snapshot.
Sends {:pg_snapshot_known, name, snapshot} immediately when snapshot is known.
Sends {:query_move_in_complete, name, key_set, snapshot} when query completes.

 query_subset(shape_handle, shape, subset, opts)

Electric.Shapes.Partitions

Keeps track of shapes defined on partitioned tables and re-writes
transactions to send an equivalent change on the root partitioned table for
every change to a partition of that table.

 Summary

 Types

 options()

 partition_table()

 root_table()

 shape_id()

 t()

 Functions

 add_shape(state, shape_id, shape)

 Update the partition information table with the given shape.

 handle_relation(state, relation)

 Handle relation changes from the replication stream,
expanding changes to partitions into the partition root as appropriate.

 handle_txn_fragment(state, txn_fragment)

 Handle transaction fragments from the replication stream, updating the partition mapping as appropriate.

 new(opts)

 remove_shape(state, shape_id)

 Remove a shape that was previously added under the given id.

 Types

 options()

 @type options() :: [{:inspector, Electric.Postgres.Inspector.inspector()}]

 partition_table()

 @type partition_table() :: Electric.relation()

 root_table()

 @type root_table() :: Electric.relation()

 shape_id()

 @type shape_id() :: term()

 t()

 @type t() :: %Electric.Shapes.Partitions{
 active: non_neg_integer(),
 inspector: Electric.Postgres.Inspector.inspector(),
 partition_ownership: %{required(Electric.relation()) => MapSet.t(shape_id())},
 partitions: %{required(partition_table()) => root_table()}
}

 Functions

 add_shape(state, shape_id, shape)

 @spec add_shape(t(), shape_id(), Electric.Shapes.Shape.t()) ::
 {:ok, t()} | {:error, :connection_not_available}

Update the partition information table with the given shape.
If the shape is defined on a partitioned table (not a partition of that
table) then this will expand the mapping function to add a change to the
partition root for every change to a partition of that root.

 handle_relation(state, relation)

 @spec handle_relation(t(), Electric.Replication.Changes.Relation.t()) ::
 {:ok, t()} | {:error, :connection_not_available}

Handle relation changes from the replication stream,
expanding changes to partitions into the partition root as appropriate.

 handle_txn_fragment(state, txn_fragment)

 @spec handle_txn_fragment(t(), Electric.Replication.Changes.TransactionFragment.t()) ::
 {t(), Electric.Replication.Changes.TransactionFragment.t()}

Handle transaction fragments from the replication stream, updating the partition mapping as appropriate.

 new(opts)

 @spec new(options()) :: t()

 remove_shape(state, shape_id)

 @spec remove_shape(t(), shape_id()) :: t()

Remove a shape that was previously added under the given id.
If that shape was defined on a partitioned table, this will clean up the
partition mapping table.

Electric.Shapes.Querying

 Summary

 Types

 json_iodata()

 json_result_stream()

 Functions

 query_move_in(conn, stack_id, shape_handle, shape, arg)

 query_subset(conn, stack_id, shape_handle, shape, subset, headers \\ [])

 stream_initial_data(conn, stack_id, shape_handle, shape, chunk_bytes_threshold \\ LogChunker.default_chunk_size_threshold())

 Streams the initial data for a shape. Query results are returned as a stream of JSON strings, as prepared on PostgreSQL.

 Types

 json_iodata()

 @type json_iodata() :: iodata()

 json_result_stream()

 @type json_result_stream() :: Enumerable.t(json_iodata())

 Functions

 query_move_in(conn, stack_id, shape_handle, shape, arg)

 query_subset(conn, stack_id, shape_handle, shape, subset, headers \\ [])

 stream_initial_data(conn, stack_id, shape_handle, shape, chunk_bytes_threshold \\ LogChunker.default_chunk_size_threshold())

 @spec stream_initial_data(
 DBConnection.t(),
 String.t(),
 String.t(),
 Electric.Shapes.Shape.t(),
 non_neg_integer()
) :: json_result_stream()

Streams the initial data for a shape. Query results are returned as a stream of JSON strings, as prepared on PostgreSQL.

Electric.Shapes.Shape

Struct describing the requested shape

 Summary

 Types

 comparable()

 flag()

 handle()

 json_relation()

 json_safe()

 json_table_info()

 json_table_list()

 log_mode()

 replica()

 storage_config()

 t()

 table_info()

 Functions

 affected_tables(shape)

 List tables that are a part of this shape.

 are_deps_filled(shape)

 comparable(shape)

 Return a comparable representation of the shape.

 comparable_hash(shape)

 convert_change(shape, change, opts \\ [])

 Convert a change to be correctly represented within the shape.

 default_replica_mode()

 dependency_handles_known?(shape)

 fill_move_tags(change, arg2, stack_id, shape_handle)

 from_json_safe(data)

 generate_id(shape)

 has_dependencies(shape)

 hash(shape)

 is_affected_by_relation_change?(shape, relation)

 list_relations(shape)

 List all relations that are a part of this shape, as oid-name tuples.

 new(opts)

 new(table, opts)

 new!(table, opts \\ [])

 pk(shape, relation \\ nil)

 schema_options()

 verify_replica(mode)

 Types

 comparable()

 @type comparable() :: term()

 flag()

 @type flag() ::
 :selects_all_columns
 | :selects_generated_columns
 | :non_primitive_columns_in_where

 handle()

 @type handle() :: String.t()

 json_relation()

 @type json_relation() :: [String.t(), ...]

 json_safe()

 @type json_safe() :: %{
 version: non_neg_integer(),
 root_table: json_relation(),
 root_table_id: non_neg_integer(),
 root_pks: [String.t(), ...],
 root_column_count: non_neg_integer(),
 where: String.t(),
 selected_columns: [String.t(), ...],
 flags: %{optional(flag()) => boolean()},
 replica: String.t(),
 storage: storage_config() | nil,
 shape_dependencies: [json_safe(), ...],
 log_mode: log_mode()
}

 json_table_info()

 @type json_table_info() :: table_info() | json_relation()

 json_table_list()

 @type json_table_list() :: [json_table_info(), ...]

 log_mode()

 @type log_mode() :: :changes_only | :full

 replica()

 @type replica() :: :full | :default

 storage_config()

 @type storage_config() :: %{compaction: :enabled | :disabled}

 t()

 @type t() :: %Electric.Shapes.Shape{
 explicitly_selected_columns: [String.t(), ...],
 flags: %{optional(flag()) => boolean()},
 log_mode: log_mode(),
 replica: replica(),
 root_column_count: non_neg_integer(),
 root_pk: [String.t(), ...],
 root_table: Electric.relation(),
 root_table_id: Electric.relation_id(),
 selected_columns: [String.t(), ...],
 shape_dependencies: [t(), ...],
 shape_dependencies_handles: term(),
 storage: storage_config() | nil,
 subquery_comparison_expressions: term(),
 tag_structure: [String.t() | [String.t(), ...]],
 where: Electric.Replication.Eval.Expr.t() | nil
}

 table_info()

 @type table_info() :: %{
 columns: [Electric.Postgres.Inspector.column_info(), ...],
 pk: [String.t(), ...]
}

 Functions

 affected_tables(shape)

 @spec affected_tables(t()) :: [Electric.relation()]

List tables that are a part of this shape.

 are_deps_filled(shape)

 (macro)

 comparable(shape)

 @spec comparable(t()) :: comparable()

Return a comparable representation of the shape.
This is used to compare shapes for equality as an ETS key - and thus it'll be
matched in some cases, not just compared equal. This representation must
therefore not contain any maps (as they are matched when one is missing a key
for example).
This representation must contain all the information that identifies
user-specified properties of the shape. We're omitting storage configuration
and other internal state.

 comparable_hash(shape)

 convert_change(shape, change, opts \\ [])

Convert a change to be correctly represented within the shape.
New or deleted changes are either propagated as-is, or filtered out completely.
Updates, on the other hand, may be converted to an "new record" or a "deleted record"
if the previous/new version of the updated row isn't in the shape.

 default_replica_mode()

 dependency_handles_known?(shape)

 fill_move_tags(change, arg2, stack_id, shape_handle)

 from_json_safe(data)

 @spec from_json_safe(map()) :: {:ok, t()} | {:error, String.t()}

 generate_id(shape)

 has_dependencies(shape)

 (macro)

 hash(shape)

 is_affected_by_relation_change?(shape, relation)

 list_relations(shape)

 @spec list_relations(t()) :: [Electric.oid_relation()]

List all relations that are a part of this shape, as oid-name tuples.

 new(opts)

 new(table, opts)

 new!(table, opts \\ [])

 pk(shape, relation \\ nil)

 schema_options()

 verify_replica(mode)

Electric.Shapes.Shape.Comparable protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 comparable(term)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 comparable(term)

 @spec comparable(t()) :: t()

Electric.Shapes.Shape.Subset

 Summary

 Functions

 new(shape, fields, opts)

 Functions

 new(shape, fields, opts)

Electric.Shapes.Shape.Validators

 Summary

 Functions

 validate_parameters(params)

 validate_where_return_type(where)

 Functions

 validate_parameters(params)

 validate_where_return_type(where)

Electric.Shapes.Supervisor

Supervisor responsible for the entire shape subsystem.
It starts up and supervises the processes that manage shapes (create/remove), keep the
Postgres publication up to date, consume incoming transactions and write them to shape logs.
It also supervisers the consumer supervisor which starts a new consumer process for each
shape.

 Summary

 Functions

 canary_name(stack_id)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 name(stack_ref)

 reset_storage(opts)

 start_link(opts)

 Functions

 canary_name(stack_id)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 name(stack_ref)

 reset_storage(opts)

 start_link(opts)

Electric.Shapes.WhereClause

 Summary

 Functions

 includes_record?(where_clause, record, extra_refs \\ %{})

 Functions

 includes_record?(where_clause, record, extra_refs \\ %{})

Electric.StackConfig

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 lookup(stack_id, key, default \\ nil)

 lookup!(stack_id, key)

 name(stack_ref)

 put(stack_id, key, val)

 spawn_opts(stack_id, process_name)

 start_link(opts)

 table(stack_id)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 lookup(stack_id, key, default \\ nil)

 lookup!(stack_id, key)

 name(stack_ref)

 put(stack_id, key, val)

 spawn_opts(stack_id, process_name)

 start_link(opts)

 table(stack_id)

Electric.StackSupervisor

Root supervisor that starts a stack of processes to serve shapes.
Full supervision tree looks roughly like this:
First, we start 2 registries, Electric.ProcessRegistry, and a registry for shape subscriptions. Both are named using the provided stack_id variable.
	Electric.Postgres.Inspector.EtsInspector is started with a pool name as a config option, module that is passed from the base config is ignored

	Electric.Connection.Supervisor takes a LOT of options to configure replication and start the rest of the tree. It starts (3) and then (4) in rest-for-one mode

	Electric.Connection.Manager takes all the connection/replication options and starts the db pool. It goes through the following steps:
	start_lock_connection
	exclusive_connection_lock_acquired (as a callback from the lock connection)
	start_replication_client
This starts a replication client (3.1) with no auto-reconnection, because manager is expected to restart this client in case something goes wrong. The streaming of WAL does not start automatically and has to be started explicitly by the manager
	start_connection_pool (only if it's not started already, otherwise start streaming)
This starts a Postgrex connection pool (3.2) to the DB we're going to use. If it's ok, we then do a bunch of checks, then ask (3) to finally start (4), and start streaming

	Electric.Postgres.ReplicationClient - connects to PG in replication mod, sets up slots, does not start streaming until requested
	Postgrex connection pool is started for querying initial snapshots & info about the DB

	Electric.Shapes.Supervisor is a supervisor responsible for taking the replication log from the replication client and shoving it into storage appropriately. It starts 3 things in one-for-all mode:
	Electric.Shapes.DynamicConsumerSupervisor is DynamicSupervisor. It oversees various per-shape processes	Electric.Shapes.Consumer is a consumer subscribing to LogCollector, which acts a shared producer for all shapes. It passes any incoming operation along to the storage.
	Electric.Shapes.Consumer.Snapshotter is a temporary GenServer that executes initial snapshot query and writes that to storage
	Electric.Shapes.Consumer.Materializer monitors a sub-shape in order to invalidate dependent shapes

	Electric.Replication.PublicationManager manages all filters on the publication for the replication
	Electric.Replication.ShapeLogCollector collects transactions from the replication connection, fanning them out to Electric.Shapes.Consumer (4.1.1.2)
	Electric.ShapeCache coordinates shape creation and handle allocation, shape metadata

 Summary

 Functions

 build_shared_opts(opts)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 dispatch_stack_event(registry \\ Electric.stack_events_registry(), stack_id, event)

 opts_schema()

 registry_name(stack_id)

 start_link(opts)

 subscribe_to_shape_events(stack_id, handle, ref \\ make_ref())

 subscribe_to_stack_events(registry \\ Electric.stack_events_registry(), stack_id, ref \\ make_ref())

 Functions

 build_shared_opts(opts)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 dispatch_stack_event(registry \\ Electric.stack_events_registry(), stack_id, event)

 opts_schema()

 registry_name(stack_id)

 start_link(opts)

 subscribe_to_shape_events(stack_id, handle, ref \\ make_ref())

 subscribe_to_stack_events(registry \\ Electric.stack_events_registry(), stack_id, ref \\ make_ref())

Electric.StackSupervisor.Telemetry

 Summary

 Functions

 child_spec(arg1)

 configure(config)

 Functions

 child_spec(arg1)

 configure(config)

Electric.Telemetry

 Summary

 Functions

 with_telemetry(dependencies, list)

 Functions

 with_telemetry(dependencies, list)

 (macro)

Electric.Telemetry.IntervalTimer

Times intervals between calls to start_interval/2. This is useful if you
want to find out which part of a process took the longest time. It works
out simpler than wrapping each part of the process in a timer, and
guarentees no gaps in the timings.
The simplest way to use the timer is to store the timer state in the
process memory, see OpenTelemetry.start_interval. This module should
only be used directly if you do not want to use the process memory.

 Summary

 Types

 t()

 Functions

 durations(state, opts \\ [])

 init()

 start_interval(state, interval_name, opts \\ [])

 time()

 total_time(durations)

 Types

 t()

 @type t() :: [{term(), non_neg_integer()}]

 Functions

 durations(state, opts \\ [])

 init()

 start_interval(state, interval_name, opts \\ [])

 time()

 total_time(durations)

Electric.Telemetry.OpenTelemetry

This module implements an API to cover parts of the code with tracing spans that are then
exported using the OpenTelemetry protocol.
OpenTelemetry is an observability framework that is widely supported by observability tools.
This module's implementation is based on the opentelemetry-erlang suite of libraries.
There is a rudimentary Elixir API there but it's incomplete and non-idiomatic. The idea with
this module is to expose all of the functionality we're using in our code by wrapping
opentelemetry-erlang's API.
The configuration for OpenTelemetry export is located in config/runtime.exs.
The API implemented here so far includes support for:
	Defining a span to cover the execution of a piece of code. See with_span/3.

	Propagating span context across Elixir processes, to allow for a span started in one
process to be registered as a parent of a span started in a different process. See
get_current_context/1 and set_current_context/1.

	Adding dynamic attributes to the current span, after it has already started. See
add_span_attributes/2.

	Recording an error or an exception as a span event. See record_exception/4.

 Summary

 Functions

 add_span_attributes(span_ctx \\ nil, attributes)

 Add dynamic attributes to the current span.

 execute(event_name, measurements, metadata)

 A thin wrapper around :telemetry.execute/3 that adds the span attributes for the current
stack to the metadata.

 extract_interval_timer()

 Removes the current interval timer from prcess memory and returns it.

 get_current_context()

 get_from_baggage(key)

 get_stack_span_attrs(stack_id)

 Retrieve the telemetry span attributes from the persistent term for this stack.

 record_exception(error_str, attributes \\ [])

 Add an error event to the current span.

 record_exception(kind, error, stacktrace, attributes \\ [])

 set_current_context(arg)

 set_in_baggage(key, value)

 set_interval_timer(timer)

 Set the interval timer for the current process.

 set_stack_span_attrs(stack_id, attrs)

 Store the telemetry span attributes in the persistent term for this stack.

 start_interval(interval_name)

 Records that an interval with the given interval_name has started.

 stop_and_save_intervals(opts)

 Records the interval timings as attributes in the current span
and wipes the interval timer from process memory.

 timed_fun(span_ctx \\ nil, name, fun)

 Executes the provided function and records its duration in microseconds.
The duration is added to the current span as a span attribute named with the given name.

 wipe_interval_timer()

 Wipe the current interval timer from process memory.

 with_child_span(name, attributes, stack_id \\ nil, fun)

 Creates a span providing there is a parent span in the current context.
If there is no parent span, the function fun is called without creating a span.

 with_span(name, attributes, stack_id \\ nil, fun)

 Create a span that starts at the current point in time and ends when fun returns.

 Functions

 add_span_attributes(span_ctx \\ nil, attributes)

 @spec add_span_attributes(span_ctx() | nil, span_attrs()) :: boolean()

Add dynamic attributes to the current span.
For example, if a span is started prior to issuing a DB request, an attribute named
num_rows_fetched can be added to it using this function once the DB query returns its
result.

 execute(event_name, measurements, metadata)

 @spec execute(
 :telemetry.event_name(),
 :telemetry.event_measurements() | :telemetry.event_value(),
 :telemetry.event_metadata()
) :: :ok

A thin wrapper around :telemetry.execute/3 that adds the span attributes for the current
stack to the metadata.

 extract_interval_timer()

 @spec extract_interval_timer() :: Electric.Telemetry.IntervalTimer.t()

Removes the current interval timer from prcess memory and returns it.
Useful if you want to time intervals over multiple processes,
extract the timer, pass it to another process, and then
use set_interval_timer/1 to restore it in the new process.

 get_current_context()

 get_from_baggage(key)

 get_stack_span_attrs(stack_id)

 @spec get_stack_span_attrs(String.t()) :: map()

Retrieve the telemetry span attributes from the persistent term for this stack.

 record_exception(error_str, attributes \\ [])

Add an error event to the current span.

 record_exception(kind, error, stacktrace, attributes \\ [])

 set_current_context(arg)

 set_in_baggage(key, value)

 set_interval_timer(timer)

 @spec set_interval_timer(Electric.Telemetry.IntervalTimer.t()) :: :ok

Set the interval timer for the current process.

 set_stack_span_attrs(stack_id, attrs)

 @spec set_stack_span_attrs(String.t(), span_attrs()) :: :ok

Store the telemetry span attributes in the persistent term for this stack.

 start_interval(interval_name)

 @spec start_interval(atom()) :: :ok

Records that an interval with the given interval_name has started.
This is useful if you want to find out which part of a process took
the longest time. It works out simpler than wrapping each part of
the process in a timer, and guarentees no gaps in the timings.
Once a number of intervals have been started, call
stop_and_save_intervals() to record the interval timings as
attributes in the current span.
e.g.
OpenTelemetry.start_interval(:quick_sleep.duration_µs)
Process.sleep(1)
OpenTelemetry.start_interval(:longer_sleep.duration_µs)
Process.sleep(2)
OpenTelemetry.stop_and_save_intervals(total_attribute: "total_sleep_µs")
will add the following attributes to the current span:
 quicksleep.durationµs: 1000
 longersleep.durationµs: 2000
 totalsleepµs: 3000

 stop_and_save_intervals(opts)

Records the interval timings as attributes in the current span
and wipes the interval timer from process memory.
Options:
	:timer - the interval timer to use. If not provided, the timer
is extracted from the process memory.
	:total_attribute - the name of the attribute to store the total
time across all intervals. If not provided no total time is recorded.

 timed_fun(span_ctx \\ nil, name, fun)

 @spec timed_fun(span_ctx() | nil, attr_name(), (-> term())) :: term()

Executes the provided function and records its duration in microseconds.
The duration is added to the current span as a span attribute named with the given name.

 wipe_interval_timer()

Wipe the current interval timer from process memory.

 with_child_span(name, attributes, stack_id \\ nil, fun)

Creates a span providing there is a parent span in the current context.
If there is no parent span, the function fun is called without creating a span.
This is necessary for the custom way we do sampling, if the parent span is not sampled, the child span
will not be created either.

 with_span(name, attributes, stack_id \\ nil, fun)

 @spec with_span(span_name(), span_attrs(), String.t() | nil, (-> t)) :: t
when t: term()

Create a span that starts at the current point in time and ends when fun returns.
Returns the result of calling the function fun.
Calling this function inside another span establishes a parent-child relationship between
the two, as long as both calls happen within the same Elixir process. Use get_current_context/1 for
interprocess progragation of span context.
The stack_id parameter must be set in root spans. For child spans the stack_id is optional
and will be inherited from the parent span.

Electric.Telemetry.OpenTelemetry.Config

 Summary

 Functions

 configure(opts)

 Configure opentelemetry_exporter and opentelemetry apps.

 Functions

 configure(opts)

Configure opentelemetry_exporter and opentelemetry apps.
This function is supposed to be called from config/runtime.exs.

Electric.Telemetry.Sampler

Decides which spans should be included and how often.
This deviates from the standard way to OpenTelemetry sampling by sampling as the spans are created.
This is done to avoid the overhead of creating spans that will not be recorded.
Child spans of a sampled span should use OpenTelemetry.with_child_span/4 to ensure that
they are only sampled if the parent span is sampled.

 Summary

 Functions

 include_span?(arg1)

 sample_metrics?()

 Functions

 include_span?(arg1)

 sample_metrics?()

Electric.Telemetry.Sentry

 Summary

 Functions

 add_logger_handler(id \\ :electric_sentry_handler)

 set_tags_context(tags)

 Functions

 add_logger_handler(id \\ :electric_sentry_handler)

 @spec add_logger_handler(handler_id :: atom()) :: :ok | {:error, term()}

 set_tags_context(tags)

 @spec set_tags_context(keyword()) :: :ok

Electric.Timeline

Module exporting functions for handling Postgres timelines.
Verifies the Postgres ID and its timeline.

 Summary

 Types

 check_result()

 pg_id()

 timeline()

 timeline_id()

 Functions

 check(pg_timeline, opts)

 Checks that we're connected to the same Postgres DB as before and on the same timeline.
TO this end, it checks the provided pg_id against the persisted PG ID.
If the PG IDs match, it also checks the provided pg_timeline against the persisted timeline.
Normally, Postgres and Electric are on the same timeline and nothing must be done.
If the timelines differ, that indicates that a Point In Time Recovery (PITR) has occurred and all shapes must be cleaned.
If we fail to fetch timeline information, we also clean all shapes for safety as we can't be sure that Postgres and Electric are on the same timeline.

 load_timeline(opts)

 store_irrecoverable_timeline(pg_id, opts)

 Stores a timeline that is irrecoverable.

 store_timeline(arg, opts)

 Types

 check_result()

 @type check_result() :: :ok | :timeline_changed | :no_previous_timeline

 pg_id()

 @type pg_id() :: non_neg_integer()

 timeline()

 @type timeline() :: {pg_id(), timeline_id()} | nil

 timeline_id()

 @type timeline_id() :: integer()

 Functions

 check(pg_timeline, opts)

 @spec check(
 timeline(),
 keyword()
) :: check_result()

Checks that we're connected to the same Postgres DB as before and on the same timeline.
TO this end, it checks the provided pg_id against the persisted PG ID.
If the PG IDs match, it also checks the provided pg_timeline against the persisted timeline.
Normally, Postgres and Electric are on the same timeline and nothing must be done.
If the timelines differ, that indicates that a Point In Time Recovery (PITR) has occurred and all shapes must be cleaned.
If we fail to fetch timeline information, we also clean all shapes for safety as we can't be sure that Postgres and Electric are on the same timeline.

 load_timeline(opts)

 @spec load_timeline(Keyword.t()) :: timeline()

 store_irrecoverable_timeline(pg_id, opts)

 @spec store_irrecoverable_timeline(pg_id(), Keyword.t()) :: :ok

Stores a timeline that is irrecoverable.
We use the fact that timelines are positive to store a special timeline
that's guaranteed to not match thus ensuring shape cleanup.

 store_timeline(arg, opts)

 @spec store_timeline(timeline(), Keyword.t()) :: :ok

Electric.Utils

 Summary

 Types

 item_reader_fn(elem)

 sortable_binary(key)

 Functions

 all_max_by(enum, fun, sorter \\ &>=/2, comparator \\ &==/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Return a list of values from enum that are the maximal elements as calculated
by the given fun.

 apply_fn_or_mfa(fun, args)

 Applies either an anonymous function or a MFA tuple, prepending the given arguments
in case of an MFA.

 deep_map(enum, fun)

 Apply a function to each element of an enumerable, recursively if the element is an enumerable itself.

 deobfuscate_password(connection_opts)

 Undo the obfuscation applied by obfuscate_password/1.

 encode_uuid(arg)

 Encode binary representation of a UUID into a string

 escape_quotes(text, quot_char \\ 34)

 extract_prefixed_keys_into_map(map, prefix, joiner \\ "_")

 Extract keys from a map that start with a given prefix into a nested map.

 flat_map_reduce_mark_last(enum, acc, fun)

 Flat map reduce that marks the last element of the enumerable.

 inspect_relation(arg)

 Output a 2-tuple relation (table) reference as pg-style "schema"."table".

 list_reverse_map(list, mapper, acc \\ [])

 Map each value of the enumerable using a mapper and reverse the resulting list.

 map_if_ok(other, fun)

 Map a value if it's in an OK tuple, but not otherwise.

 map_values(map, fun)

 Apply a function to each value of a map.

 map_while_ok(enum, mapper)

 Map each value of the enumerable using a mapper, unwrapping a result tuple returned by
the mapper and stopping on error.

 merge_all(list)

 obfuscate_password(connection_opts)

 Given a keyword list of database connection options, obfuscate the password by wrapping it in
a zero-arity function.

 parse_md_table(string, opts)

 Parse a markdown table from a string

 parse_quoted_name(str)

 Parses quoted names.
Lowercases unquoted names to match Postgres' case insensitivity.

 quote_name(str)

 Quote the given identifier for use in SQL queries.

 quote_string(str)

 Quote the given binary for use as a literal string in SQL queries.

 reduce_while_ok(enum, acc, fun)

 Reduce an enumerable while accumulating an accumulator, unwrapping a result tuple returned by
the reducer and stopping on error.

 relation_to_sql(relation, force_quote \\ false)

 Format a relation tuple to be correctly escaped for use in SQL queries.

 stream_add_side_effect(stream, start_fun, reducer, last_fun \\ & &1, after_fun \\ & &1)

 Transform the stream to call a side-effect function for each element before continuing.

 stream_file_items(path, item_reader)

 unzip_any(list)

 Like Enum.unzip/1, but works for any tuple size instead of just 2.

 uuid4()

 Generate a random UUID v4.

 Types

 item_reader_fn(elem)

 @type item_reader_fn(elem) :: (file :: :file.io_device() ->
 sortable_binary(elem) | :halt)

 sortable_binary(key)

 @type sortable_binary(key) :: {key :: key, data :: binary()}

 Functions

 all_max_by(enum, fun, sorter \\ &>=/2, comparator \\ &==/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

Return a list of values from enum that are the maximal elements as calculated
by the given fun.
Base behaviour is similar to Enum.max_by/4, but this function returns a list
of all maximal values instead of just the first one.
Examples
iex> all_max_by([4, 1, 1, 3, -4], &abs/1)
[4, -4]

iex> all_max_by([4, 1, -1, 3, 4], &abs/1, &<=/2)
[1, -1]

iex> all_max_by([], &abs/1)
** (Enum.EmptyError) empty error

 apply_fn_or_mfa(fun, args)

Applies either an anonymous function or a MFA tuple, prepending the given arguments
in case of an MFA.
Examples
iex> apply_fn_or_mfa(&String.contains?(&1, "foo"), ["foobar"])
true

iex> apply_fn_or_mfa({String, :contains?, ["foo"]}, ["foobar"])
true

 deep_map(enum, fun)

 @spec deep_map(Enumerable.t(elem), (elem -> result)) :: [result]
when elem: var, result: var

Apply a function to each element of an enumerable, recursively if the element is an enumerable itself.
Examples
iex> deep_map([1, [2, [3]], 4], &(&1 * 2))
[2, [4, [6]], 8]

 deobfuscate_password(connection_opts)

 @spec deobfuscate_password(Keyword.t()) :: Keyword.t()

Undo the obfuscation applied by obfuscate_password/1.
This function should be called just before passing connection options to one of
Postgrex functions. Never store deobfuscated password in any of our process
states.

 encode_uuid(arg)

Encode binary representation of a UUID into a string
Examples
iex> encode_uuid(<<1, 35, 69, 103, 137, 171, 76, 222, 143, 227, 251, 149, 223, 249, 31, 215>>)
"01234567-89ab-4cde-8fe3-fb95dff91fd7"

 escape_quotes(text, quot_char \\ 34)

 extract_prefixed_keys_into_map(map, prefix, joiner \\ "_")

 @spec extract_prefixed_keys_into_map(map(), String.t(), String.t()) :: map()

Extract keys from a map that start with a given prefix into a nested map.
Examples
iex> extract_prefixed_keys_into_map(%{"foo_bar" => "baz", "foo_moo" => "qux", "other" => "value"}, "foo")
%{"foo" => %{"bar" => "baz", "moo" => "qux"}, "other" => "value"}

iex> extract_prefixed_keys_into_map(%{"other" => "value"}, "foo")
%{"other" => "value"}

 flat_map_reduce_mark_last(enum, acc, fun)

Flat map reduce that marks the last element of the enumerable.
This is equivalent to Enum.flat_map_reduce/3, but mapping function receives a boolean
indicating if the element is the last one.
Examples
iex> flat_map_reduce_mark_last(
...> [1, 2, 3],
...> 0,
...> fn
...> x, false, acc -> {[x], acc + x}
...> x, true, acc -> {[x * 2], acc + x}
...> end
...>)
{[1, 2, 6], 6}

 inspect_relation(arg)

 @spec inspect_relation({String.t(), String.t()}) :: String.t()

Output a 2-tuple relation (table) reference as pg-style "schema"."table".
Examples
iex> inspect_relation({"schema", "table"})
~S|"schema"."table"|

 list_reverse_map(list, mapper, acc \\ [])

 @spec list_reverse_map(Enumerable.t(elem), (elem -> result), [result]) :: [result]
when elem: var, result: var

Map each value of the enumerable using a mapper and reverse the resulting list.
Equivalent to Enum.reverse/1 followed by Enum.map/2.
Examples
iex> list_reverse_map([1, 2, 3], &(&1 + 1))
[4, 3, 2]

 map_if_ok(other, fun)

Map a value if it's in an OK tuple, but not otherwise.
Examples
iex> map_if_ok({:ok, "a"}, &String.upcase/1)
{:ok, "A"}

iex> map_if_ok({:error, :invalid}, &String.upcase/1)
{:error, :invalid}

 map_values(map, fun)

 @spec map_values(map(), (term() -> term())) :: map()

Apply a function to each value of a map.

 map_while_ok(enum, mapper)

 @spec map_while_ok(Enumerable.t(elem), (elem -> {:ok, result} | {:error, term()})) ::
 {:ok, [result]} | {:error, term()}
when elem: var, result: var

Map each value of the enumerable using a mapper, unwrapping a result tuple returned by
the mapper and stopping on error.
Examples
iex> map_while_ok(["2015-01-23 23:50:07.0", "2015-01-23 23:50:08"], &NaiveDateTime.from_iso8601/1)
{:ok, [~N[2015-01-23 23:50:07.0], ~N[2015-01-23 23:50:08]]}

iex> map_while_ok(["2015-01-23 23:50:07A", "2015-01-23 23:50:08"], &NaiveDateTime.from_iso8601/1)
{:error, :invalid_format}

 merge_all(list)

 @spec merge_all([keyword()]) :: keyword()

 obfuscate_password(connection_opts)

 @spec obfuscate_password(Keyword.t()) :: Keyword.t()

Given a keyword list of database connection options, obfuscate the password by wrapping it in
a zero-arity function.
This should be done as early as possible when parsing connection options from the OS env. The
aim of this obfuscation is to avoid accidentally leaking the password when inspecting connection
opts or logging them as part of a process state (which is done automatically by OTP when a
process that implements an OTP behaviour crashes).

 parse_md_table(string, opts)

 @spec parse_md_table(String.t(), [{:after, String.t()}]) :: [[String.t(), ...]]

Parse a markdown table from a string
Options:
	after: - taking a first table that comes right after a given substring.

Example
iex> """
...> Some text
...>
...> ## Known types
...>
...> | type | category | preferred? |
...> | ----------------------- | -------- | ---------- |
...> | bool | boolean | t |
...> | int2 | numeric | |
...> """|> parse_md_table(after: "## Known types")
[["bool", "boolean", "t"], ["int2", "numeric", ""]]

iex> """
...> Some text
...> """|> parse_md_table([])
[]

 parse_quoted_name(str)

Parses quoted names.
Lowercases unquoted names to match Postgres' case insensitivity.
Examples
iex> parse_quoted_name("foo")
"foo"

iex> parse_quoted_name(~S|"foo"|)
"foo"

iex> parse_quoted_name(~S|"fo""o"|)
~S|fo"o|

iex> parse_quoted_name(~S|"FooBar"|)
~S|FooBar|

iex> parse_quoted_name(~S|FooBar|)
~S|FooBar|

 quote_name(str)

 @spec quote_name(String.t()) :: String.t()

Quote the given identifier for use in SQL queries.
Examples
iex> quote_name("foo")
~S|"foo"|

iex> quote_name(~S|fo"o|)
~S|"fo""o"|

 quote_string(str)

 @spec quote_string(String.t()) :: String.t()

Quote the given binary for use as a literal string in SQL queries.

 reduce_while_ok(enum, acc, fun)

 @spec reduce_while_ok(Enumerable.t(elem), acc, (elem, acc ->
 {:ok, acc} | {:error, term()})) ::
 {:ok, acc} | {:error, term()}
when acc: var, elem: var

Reduce an enumerable while accumulating an accumulator, unwrapping a result tuple returned by
the reducer and stopping on error.

 relation_to_sql(relation, force_quote \\ false)

Format a relation tuple to be correctly escaped for use in SQL queries.
Examples
iex> relation_to_sql({"public", "items"})
~S|public.items|

iex> relation_to_sql({"public", "items"}, true)
~S|"public"."items"|

iex> relation_to_sql({"public", "items-again"})
~S|public."items-again"|

iex> relation_to_sql({"public", "99red_balloons"})
~S|public."99red_balloons"|

iex> relation_to_sql({"public", "when"})
~S|public."when"|

iex> relation_to_sql({"with spaces", ~S|and "quoted"!|})
~S|"with spaces"."and ""quoted""!"|

 stream_add_side_effect(stream, start_fun, reducer, last_fun \\ & &1, after_fun \\ & &1)

Transform the stream to call a side-effect function for each element before continuing.
Acts like Stream.each/2 but with an aggregate. start_fun, last_fun, after_fun
have the same semantics as in Stream.transform/5

 stream_file_items(path, item_reader)

 @spec stream_file_items(
 path :: String.t(),
 reader :: item_reader_fn(elem)
) :: Enumerable.t(sortable_binary(elem))

 unzip_any(list)

Like Enum.unzip/1, but works for any tuple size instead of just 2.
Returns nil on empty list.
Examples
iex> unzip_any([{1, 2}, {3, 4}])
{[1, 3], [2, 4]}

iex> unzip_any([{1, 2, 3}, {4, 5, 6}])
{[1, 4], [2, 5], [3, 6]}

iex> unzip_any([{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}])
{[1, 7], [2, 8], [3, 9], [4, 10], [5, 11], [6, 12]}

 uuid4()

Generate a random UUID v4.
Code taken from Ecto: https://github.com/elixir-ecto/ecto/blob/v3.10.2/lib/ecto/uuid.ex#L174
Examples
iex> Regex.match?(~r/^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/, uuid4())
true

Electric.Walkable protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 children(node)

 Returns a keyword list with all children of the node that should be processed.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 children(node)

Returns a keyword list with all children of the node that should be processed.
The keys are the names of the children groups, and the values are the children themselves.
Values can be both further Electric.Walkable structures, or a list of Electric.Walkable structures.
If it's a list, all items will be processed.

PgInterop.Array

 Summary

 Functions

 array_append(list, elem)

 array_append_concat(arr, elem)

 array_prepend(elem, list)

 array_prepend_concat(elem, arr)

 concat_arrays(arr1, arr2)

 get_array_dim(arr, dim \\ 0)

 Get the dimension of a postgres array.

 index_access(array, list_of_indices)

 Access an index of a postgres array. If the index is out of bounds or array has more dimensions than the indices provided, returns nil.

 parse(str, casting_fun \\ & &1)

 Parse a Postgres string-serialized array into a list of strings, unwrapping the escapes. Parses nested arrays.
If a casting function is provided, it will be applied to each element.

 serialize(array, quote_char \\ 34)

 Serialize a list of strings into a postgres string-serialized array into a list of strings, wrapping the contents

 slice_access(array, instructions)

 Access a slice or index of a postgres array.

 Functions

 array_append(list, elem)

 array_append_concat(arr, elem)

 array_prepend(elem, list)

 array_prepend_concat(elem, arr)

 concat_arrays(arr1, arr2)

 get_array_dim(arr, dim \\ 0)

Get the dimension of a postgres array.
Examples
iex> ~S|{}| |> parse() |> get_array_dim()
nil

iex> ~S|{1,2,3,4,5}| |> parse() |> get_array_dim()
1

iex> ~S|{{1,2},{3,4}}| |> parse() |> get_array_dim()
2

 index_access(array, list_of_indices)

 @spec index_access(list(), [{:index, integer()}]) :: list()

Access an index of a postgres array. If the index is out of bounds or array has more dimensions than the indices provided, returns nil.
Examples
iex> ~S|{1,2,3,4,5}| |> parse(&String.to_integer/1) |> index_access([{:index, 3}])
3

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> index_access([{:index, 2}, {:index, 1}])
3

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> index_access([{:index, 3}])
nil

 parse(str, casting_fun \\ & &1)

Parse a Postgres string-serialized array into a list of strings, unwrapping the escapes. Parses nested arrays.
If a casting function is provided, it will be applied to each element.
Parsing follows SOME of the same rules as the postgres parser, in particular:
	at most 6 nesting levels are allowed,
	arrays must be of uniform dimension, i.e. all sub-arrays must have the same number of elements if at the same depth.

This implementation also breaks away from the postgres parser in that some bugs are NOT reimplemented:
	select '{{1},{{2}}}'::text[]; yields {{{1}},{{2}}} in PG, we raise an error
	select '{{{1}},{2}}'::text[]; yields {} in PG, we raise an error
	select '{{{1}},{2},{{3}}}::text[]; yields {{{1}},{{NULL}},{{3}}} in PG, we raise an error

Examples
iex> ~S|{"(\"2023-06-15 11:18:05.372698+00\",)"}| |> parse()
[~s|("2023-06-15 11:18:05.372698+00",)|]

iex> ~S|{"(\"2023-06-15 11:18:05.372698+00\",)","(\"2023-06-15 11:18:05.372698+00\",)"}| |> parse()
[~s|("2023-06-15 11:18:05.372698+00",)|, ~s|("2023-06-15 11:18:05.372698+00",)|]

iex> ~S|{hello, world, null, "null"}| |> parse()
["hello", "world", nil, "null"]

iex> ~S|{"2023-06-15 11:18:05.372698+00",2023-06-15 11:18:05.372698+00}| |> parse(fn x -> {:ok, n, _} = DateTime.from_iso8601(x); n end)
[~U[2023-06-15 11:18:05.372698Z], ~U[2023-06-15 11:18:05.372698Z]]

iex> ~s|{ "1" , 3 , "2" , 3 3 }| |> parse()
["1", "3", "2", "3 3"]

iex> ~s|{ {{1, 1}, { "2" , 2 }} ,{{"3", 3}, {4, 4} }, { {5, 5},{6, 6} }}| |> parse(&String.to_integer/1)
[[[1, 1], [2, 2]], [[3, 3], [4, 4]], [[5, 5], [6, 6]]]

iex> ~s|{ "1" , "2" , 3 3 , , 4}| |> parse()
** (RuntimeError) Unexpected ',' character

iex> ~s|{ "1" , 3, "2" , 3 3 , }| |> parse()
** (RuntimeError) Unexpected '}' character

iex> ~s|{ {1} ,{ 2 }, {3 }} }| |> parse()
** (RuntimeError) Invalid array syntax

iex> ~s|{{{1} ,{ 2 }, {3 }} | |> parse()
** (RuntimeError) Unexpected end of input

iex> ~s|{"}| |> parse()
** (RuntimeError) Unexpected end of input

iex> ~s|{{1},2,{3}}| |> parse(&String.to_integer/1)
** (RuntimeError) Unexpected array element

iex> ~s|{{{{{{{1}}}}}}}| |> parse()
** (RuntimeError) number of dimensions (7) exceeds maximum of 6

iex> ~s|{ {1} ,{ {2} }, {3 }}| |> parse()
** (RuntimeError) Inconsistent array dimensions

iex> ~s|{ {{1}} ,{2}, {3 }}| |> parse()
** (RuntimeError) Inconsistent array dimensions

 serialize(array, quote_char \\ 34)

Serialize a list of strings into a postgres string-serialized array into a list of strings, wrapping the contents
Examples
iex> [~s|("2023-06-15 11:18:05.372698+00",)|] |> serialize()
~S|{"(\"2023-06-15 11:18:05.372698+00\",)"}|

iex> [~s|("2023-06-15 11:18:05.372698+00",)|, ~s|("2023-06-15 11:18:05.372698+00",)|] |> serialize()
~S|{"(\"2023-06-15 11:18:05.372698+00\",)","(\"2023-06-15 11:18:05.372698+00\",)"}|

iex> str = ~S|{"(\"2023-06-15 11:18:05.372698+00\",)","(\"2023-06-15 11:18:05.372698+00\",)"}|
iex> str |> parse() |> serialize()
str

 slice_access(array, instructions)

 @spec slice_access(
 list(),
 [{:slice, nil | integer(), nil | integer()} | {:index, integer()}]
) :: list()

Access a slice or index of a postgres array.
Examples
iex> ~S|{1,2,3,4,5}| |> parse(&String.to_integer/1) |> slice_access([{:slice, nil, 3}])
[1, 2, 3]

iex> ~S|{1,2,3,4,5}| |> parse(&String.to_integer/1) |> slice_access([{:slice, 3, nil}])
[3, 4, 5]

iex> ~S|{1,2,3,4,5}| |> parse(&String.to_integer/1) |> slice_access([{:slice, 3, 4}])
[3, 4]

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> slice_access([{:slice, nil, nil}, {:index, 2}])
[[1, 2], [3, 4]]

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> slice_access([{:slice, nil, nil}, {:slice, 2, 2}])
[[2], [4]]

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> slice_access([{:slice, nil, nil}, {:slice, -1, 1}])
[[1], [3]]

iex> ~S|{{1,2},{3,4}}| |> parse(&String.to_integer/1) |> slice_access([{:slice, nil, nil}, {:slice, 1, -1}])
[]

PgInterop.Interval

PostgreSQL interval representation.
Timex.Duration does not match PG interval representation because it doesn't store month
separately, leading to discrepancies like date '2024-01-31' + interval '1 month' being
datetime '2024-02-29 00:00:00 in Postgres, but Timex.add(~N[2024-01-31 00:00:00], Timex.Duration.parse!("P1M")) being ~N[2024-03-01 00:00:00]. This implementation
sticks to PG interpretation of the events.

 Summary

 Types

 t()

 Functions

 add(interval1, interval2)

 Add two intervals together

 add_to_date(date, interval)

 Add the interval to a given Date or NaiveDateTime.

 add_to_time(time, interval)

 Add the interval to a given Date or NaiveDateTime.

 datetime_diff(d1, d2)

 Build an interval as a difference between DateTimes. Interval is positive when
first datetime is greater than the second one.

 format(interval)

 Format the interval in ISO8601 format.

 from_days(days)

 Create an interval from specified amount of days.

 from_hours(hours)

 Create an interval from specified amount of hours.

 from_microseconds(microseconds)

 Create an interval from specified amount of microseconds.

 from_milliseconds(milliseconds)

 Create an interval from specified amount of milliseconds.

 from_minutes(minutes)

 Create an interval from specified amount of minutes.

 from_months(months)

 Create an interval from specified amount of months. Fractional
months are counted as parts of 30 days.

 from_seconds(seconds)

 Create an interval from specified amount of seconds.

 from_time(time)

 Create an interval from a time instance.

 from_weeks(weeks)

 Create an interval from specified amount of weeks.

 justify_days(interval)

 Move complete 30 day periods from the day portion of the interval to the month portion.

 justify_hours(interval)

 Move complete 24 hour periods from the microsecond portion of the interval to the day portion.

 justify_interval(i)

 Move complete 24 hour periods from the microsecond portion of the interval to the day portion
and complete 30 day periods from the day portion of the interval to the month portion.

 parse(string)

 Parse a PostgreSQL interval string, in any of the supported PostgreSQL input formats.

 parse!(string)

 Parse a PostgreSQL interval string, in any of the supported PostgreSQL input formats.

 scale(interval, by)

 Scale an interval by a factor.

 subtract(interval1, interval2)

 Subtracts the second interval from the first one

 subtract_from_date(date, interval)

 Subtracts an interval from a given date or date-time to get a new date-time.

 zero()

 Zero-length interval, useful in reductions

 Types

 t()

 @type t() :: %PgInterop.Interval{
 days: integer(),
 microseconds: integer(),
 months: integer()
}

 Functions

 add(interval1, interval2)

Add two intervals together

 add_to_date(date, interval)

Add the interval to a given Date or NaiveDateTime.
Examples
iex> add_to_date(~D[2024-01-01], parse!("P1D"))
~N[2024-01-02 00:00:00]

iex> add_to_date(~N[2024-01-01 12:00:00], parse!("P1DT10M"))
~N[2024-01-02 12:10:00.000000]

 add_to_time(time, interval)

Add the interval to a given Date or NaiveDateTime.
Examples
iex> add_to_time(~T[10:00:00], parse!("PT1H1M"))
~T[11:01:00.000000]

 datetime_diff(d1, d2)

Build an interval as a difference between DateTimes. Interval is positive when
first datetime is greater than the second one.
Examples
iex> datetime_diff(~N[2024-01-02 00:10:00], ~N[2024-01-01 00:00:00])
Interval.parse!("P1DT10M")

iex> datetime_diff(~N[2024-01-02 00:00:00], ~N[2024-01-01 00:10:00])
Interval.parse!("PT23H50M")

iex> datetime_diff(~N[2024-01-02 00:00:00], ~N[2024-01-03 00:00:00])
Interval.parse!("P-1D")

iex> datetime_diff(DateTime.from_naive!(~N[2024-01-02 00:00:00], "Europe/Istanbul"), ~U[2024-01-02 00:00:00Z])
Interval.parse!("PT-3H")

 format(interval)

Format the interval in ISO8601 format.
Examples
iex> parse!("5 minutes 3d 4 hours 6") |> format()
"P3DT4H5M6S"

 from_days(days)

Create an interval from specified amount of days.
Examples
iex> from_days(10)
Interval.parse!("P10D")

iex> from_days(10.5)
Interval.parse!("P10DT12H")

 from_hours(hours)

Create an interval from specified amount of hours.
Examples
iex> from_hours(10)
Interval.parse!("PT10H")

 from_microseconds(microseconds)

Create an interval from specified amount of microseconds.
Examples
iex> from_microseconds(1_000_000)
Interval.parse!("PT1S")

 from_milliseconds(milliseconds)

Create an interval from specified amount of milliseconds.
Examples
iex> from_milliseconds(1_000)
Interval.parse!("PT1S")

 from_minutes(minutes)

Create an interval from specified amount of minutes.
Examples
iex> from_minutes(60.5)
Interval.parse!("PT1H30S")

 from_months(months)

Create an interval from specified amount of months. Fractional
months are counted as parts of 30 days.
Examples
iex> from_months(14.5)
Interval.parse!("P1Y2M15D")

 from_seconds(seconds)

Create an interval from specified amount of seconds.
Examples
iex> from_seconds(60)
Interval.parse!("PT1M")

 from_time(time)

Create an interval from a time instance.
Examples
iex> from_time(~T[12:30:40.1])
Interval.parse!("PT12H30M40.1S")

iex> from_time(~T[12:30:40.000001])
Interval.parse!("PT12H30M40.000001S")

 from_weeks(weeks)

Create an interval from specified amount of weeks.
Examples
iex> from_weeks(4.2)
Interval.parse!("P29DT9H36M")

 justify_days(interval)

Move complete 30 day periods from the day portion of the interval to the month portion.

 justify_hours(interval)

Move complete 24 hour periods from the microsecond portion of the interval to the day portion.

 justify_interval(i)

Move complete 24 hour periods from the microsecond portion of the interval to the day portion
and complete 30 day periods from the day portion of the interval to the month portion.
Examples
iex> interval = %Interval{months: 0, days: 29, microseconds: 86400000000 + 60_000_000}
Interval.parse!("P29DT24H1M")
iex> justify_interval(interval)
Interval.parse!("P1MT1M")

 parse(string)

Parse a PostgreSQL interval string, in any of the supported PostgreSQL input formats.
For supported formats, see parse!/1

 parse!(string)

Parse a PostgreSQL interval string, in any of the supported PostgreSQL input formats.
Raises an error when parsing fails, unlike parse/1
Examples
SQL standard format
iex> parse!("1-2")
Interval.parse!("P1Y2M")
iex> parse!("3 4:05:06")
Interval.parse!("P3DT4H5M6S")

iex> parse!("5 minutes 3d 4 hours 6")
Interval.parse!("P3DT4H5M6S")
ISO8601 format
iex> parse!("P1Y2M3DT4H5M6S")
Interval.parse!("P1Y2M3DT4H5M6S")
ISO8601 "alternative" format
iex> parse!("P0001-02-03T04:05:06")
Interval.parse!("P1Y2M3DT4H5M6S")

iex> parse!("what")
** (RuntimeError) Not a valid PostgreSQL interval

 scale(interval, by)

Scale an interval by a factor.
Examples
iex> scale(parse!("P2M4DT6H"), 1.5)
Interval.parse!("P3M6DT9H")

 subtract(interval1, interval2)

Subtracts the second interval from the first one
Examples
iex> subtract(parse!("P2D"), parse!("P1D"))
Interval.parse!("P1D")

 subtract_from_date(date, interval)

Subtracts an interval from a given date or date-time to get a new date-time.
Accepts DateTime, NaiveDateTime, and Date. Returns DateTime in the first case
and NaiveDateTime in second and third. If a plain Date is passed, midnight is assumed.
Examples
iex> subtract_from_date(~D[2024-01-10], parse!("P2DT12H"))
~N[2024-01-07 12:00:00.000000]

iex> subtract_from_date(~N[2024-01-10 13:00:00], parse!("P2DT12H"))
~N[2024-01-08 01:00:00.000000]

iex> subtract_from_date(~U[2024-01-10 13:00:00Z], parse!("P2DT12H"))
~U[2024-01-08 01:00:00.000000Z]

 zero()

Zero-length interval, useful in reductions

PgInterop.Interval.ISO8601AlternativeParser

This module parses alternative ISO-8601 duration strings into Interval structs.

 Summary

 Functions

 parse(arg)

 Parses an ISO-8601 formatted duration string into a Interval struct.
The parse result is wrapped in a :ok/:error tuple.

 split_on_time(x)

 validate_hms(hms)

 validate_ymd(ymd)

 Functions

 parse(arg)

 @spec parse(String.t()) :: {:ok, PgInterop.Interval.t()} | {:error, term()}

Parses an ISO-8601 formatted duration string into a Interval struct.
The parse result is wrapped in a :ok/:error tuple.
Examples
iex> parse("P0015-3-2T1:14:37.25")
{:ok, Interval.parse!("P15Y3M2DT1H14M37.25S")}

iex> parse("P0015-3-2")
{:ok, Interval.parse!("P15Y3M2D")}

iex> parse("PT3:12:25.001")
{:ok, Interval.parse!("PT3H12M25.001S")}

iex> parse("P0015T30:00")
{:ok, Interval.parse!("P15YT30H")}

iex> parse("")
{:error, "input string cannot be empty"}
iex> parse("W")
{:error, "expected P, got W"}
iex> parse("P0015TT30:00")
{:error, "unexpected duplicate T"}
iex> parse("P0015-3-2-1")
{:error, "unexpected 4th section in y-m-d part"}
iex> parse("P0015-3-y")
{:error, "invalid number `y`"}
iex> parse("P0015-3-1T30:00:10.y")
{:error, "invalid number `10.y`"}

 split_on_time(x)

 validate_hms(hms)

 validate_ymd(ymd)

PgInterop.Interval.ISO8601Parser

This module parses ISO-8601 duration strings into Interval structs.
Implementation taken from https://github.com/bitwalker/timex/blob/3.7.9/lib/parse/duration/parsers/iso8601.ex
and adapted to fill a different structure + support negatives.

 Summary

 Functions

 parse(arg)

 Parses an ISO-8601 formatted duration string into a Interval struct.
The parse result is wrapped in a :ok/:error tuple.

 Functions

 parse(arg)

 @spec parse(String.t()) :: {:ok, PgInterop.Interval.t()} | {:error, term()}

Parses an ISO-8601 formatted duration string into a Interval struct.
The parse result is wrapped in a :ok/:error tuple.
Examples
iex> parse("P15Y3M2DT1H14M37.25S")
{:ok, Interval.parse!("P15Y3M2DT1H14M37.25S")}

iex> parse("P15Y3M2D")
{:ok, Interval.parse!("P15Y3M2D")}

iex> parse("PT3H12M25.001S")
{:ok, Interval.parse!("PT3H12M25.001S")}

iex> parse("P2W1D")
{:ok, Interval.parse!("P15D")}

iex> parse("")
{:error, "input string cannot be empty"}
iex> parse("P15YT3D")
{:error, "invalid use of date component after time separator"}
iex> parse("P15Y3H")
{:error, "missing T separator between date and time components"}
iex> parse("P15YTT3H")
{:error, "encountered duplicate time separator T"}

iex> parse("P1O")
{:error, "unexpected token O"}
iex> parse("P1-1D")
{:error, "invalid number `1-1`"}
iex> parse("P1")
{:error, "unexpected end of input at 1"}
iex> parse("P11")
{:error, "unexpected end of input at 1"}
iex> parse("PT")
{:error, "unexpected end of input at T"}
iex> parse("PO")
{:error, "expected numeric, but got `O`"}
iex> parse("O")
{:error, "expected P, got `O`"}

PgInterop.Interval.Iso8601Formatter

 Summary

 Functions

 format(interval)

 Return a human readable string representing the duration, formatted according
to ISO8601. Negative sections will be formatted accordingly, as does PG.

 Functions

 format(interval)

Return a human readable string representing the duration, formatted according
to ISO8601. Negative sections will be formatted accordingly, as does PG.
Examples
iex> format(Interval.parse!("PT2S"))
"PT2S"

iex> format(Interval.parse!("PT2.0001S"))
"PT2.0001S"

iex> format(Interval.parse!("PT1M5S"))
"PT1M5S"

iex> format(Interval.parse!("PT1M5S"))
"PT1M5S"

iex> format(Interval.parse!("P45Y6M5DT21H12M34.590264S"))
"P45Y6M5DT21H12M34.590264S"
0-length interval is special-cased to render as "0S"
iex> format(%Interval{months: 0, days: 0, microseconds: 0})
"PT0S"

PgInterop.Interval.PostgresAndSQLParser

This module parses Postgres classic and SQL strings

 Summary

 Functions

 parse(str)

 Parses an Postgres classic and SQL formatted duration string into
a Interval struct. The parse result is wrapped in a :ok/:error tuple.

 Functions

 parse(str)

 @spec parse(String.t()) :: {:ok, PgInterop.Interval.t()} | {:error, term()}

Parses an Postgres classic and SQL formatted duration string into
a Interval struct. The parse result is wrapped in a :ok/:error tuple.
Examples
iex> parse("1-2")
{:ok, Interval.parse!("P1Y2M")}

iex> parse("@ 1-2")
{:ok, Interval.parse!("P1Y2M")}

iex> parse("-1-2 +3 -4:05:06")
{:ok, Interval.parse!("P-1Y-2M3DT-4H-5M-6S")}

iex> parse("-1-2 -5:10.1")
{:ok, Interval.parse!("P-1Y-2MT-5M-10.1S")}

iex> parse("3 4:05:06")
{:ok, Interval.parse!("P3DT4H5M6S")}

iex> parse("1 year 2 months 3 days 4 hours 5 minutes 6 seconds")
{:ok, Interval.parse!("P1Y2M3DT4H5M6S")}

iex> parse("1 year 2-1 3 days +2")
{:ok, Interval.parse!("P3Y1M3DT2S")}

iex> parse("1 year 2-1 3 days -2")
{:ok, Interval.parse!("P3Y1M3DT-2S")}

iex> parse("1 year 2-1 3 days 2:2")
{:ok, Interval.parse!("P3Y1M3DT2H2M")}

iex> parse("1 year 2-1 3 days 2.2")
{:ok, Interval.parse!("P3Y1M3DT2.2S")}

iex> parse("-1-2 -5:10.1")
{:ok, Interval.parse!("P-1Y-2MT-5M-10.1S")}

iex> parse("1.3 cent 100-11 10.3")
{:ok, Interval.parse!("P230Y11MT10.3S")}

iex> parse("- 1 year -2 mons +3 days - 04:05:06")
{:ok, Interval.parse!("P-1Y-2M3DT-4H-5M-6S")}

iex> parse("0.1 mils 1 cent 1 decade 1 year 1 month 1 week 1 day 1 hour 1 minute 1 second 1000 ms 1000000 us")
{:ok, Interval.parse!("P211Y1M8DT1H1M3S")}

iex> parse("1.3 cent 100-11 10.3 1-1")
{:error, "invalid input syntax at `10.3`"}

iex> parse("10 10:01 1 10:01:10")
{:error, "invalid input syntax"}
iex> parse("1 month 1-10")
{:error, "invalid input syntax"}
iex> parse("1-13")
{:error, "invalid input syntax"}
iex> parse("1 minute 1 10:01:10")
{:error, "invalid input syntax"}
iex> parse("1 second 1 10:01:10")
{:error, "invalid input syntax"}
iex> parse("10 10:01 1")
{:error, "invalid input syntax"}

iex> parse("")
{:error, "input string cannot be empty"}

PgInterop.Postgrex.Extensions.PgLsn

 Summary

 Functions

 decode(_)

 Callback implementation for Postgrex.Extension.decode/1.

 encode(state)

 Callback implementation for Postgrex.Extension.encode/1.

 format(_)

 Callback implementation for Postgrex.Extension.format/1.

 init(_)

 Callback implementation for Postgrex.Extension.init/1.

 matching(_)

 Callback implementation for Postgrex.Extension.matching/1.

 Functions

 decode(_)

Callback implementation for Postgrex.Extension.decode/1.

 encode(state)

Callback implementation for Postgrex.Extension.encode/1.

 format(_)

Callback implementation for Postgrex.Extension.format/1.

 init(_)

Callback implementation for Postgrex.Extension.init/1.

 matching(_)

Callback implementation for Postgrex.Extension.matching/1.

PgInterop.Postgrex.Extensions.PgSnapshot

 Summary

 Functions

 decode(_)

 Callback implementation for Postgrex.Extension.decode/1.

 encode(state)

 Callback implementation for Postgrex.Extension.encode/1.

 format(_)

 Callback implementation for Postgrex.Extension.format/1.

 init(_)

 Callback implementation for Postgrex.Extension.init/1.

 matching(_)

 Callback implementation for Postgrex.Extension.matching/1.

 Functions

 decode(_)

Callback implementation for Postgrex.Extension.decode/1.

 encode(state)

Callback implementation for Postgrex.Extension.encode/1.

 format(_)

Callback implementation for Postgrex.Extension.format/1.

 init(_)

Callback implementation for Postgrex.Extension.init/1.

 matching(_)

Callback implementation for Postgrex.Extension.matching/1.

PgInterop.Sublink

 Summary

 Functions

 member?(value, list)

 Functions

 member?(value, list)

Electric.DbConfigurationError exception

 Summary

 Functions

 publication_missing(pub_name)

 publication_missing_generated_columns(pub_name)

 publication_missing_operations(pub_name)

 publication_not_owned(pub_name)

 Functions

 publication_missing(pub_name)

 publication_missing_generated_columns(pub_name)

 publication_missing_operations(pub_name)

 publication_not_owned(pub_name)

Electric.DbConnectionError exception

 Summary

 Types

 t()

 Functions

 format_original_error(db_connection_error)

 from_error(error)

 Types

 t()

 @type t() :: %{
 message: String.t(),
 type: atom(),
 original_error: any(),
 retry_may_fix?: boolean(),
 drop_slot_and_restart?: boolean()
}

 Functions

 format_original_error(db_connection_error)

 from_error(error)

Electric.ShapeCache.ShapeStatus.ShapeDb.Error exception

Electric.ShapeCache.Storage.Error exception

Electric.Shapes.Querying.QueryError exception

Electric.SnapshotError exception

 Summary

 Functions

 connection_not_available()

 from_error(error)

 slow_snapshot_query(ttf_ms)

 table_lock_timeout()

 Functions

 connection_not_available()

 from_error(error)

 slow_snapshot_query(ttf_ms)

 table_lock_timeout()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

