

 Elixir

 v1.20.0-rc.0

 [image: Logo]

 Table of contents

 	Changelog for Elixir v1.20

 	Getting started

 	Introduction

 	Basic types

 	Lists and tuples

 	Pattern matching

 	case, cond, and if

 	Anonymous functions

 	Binaries, strings, and charlists

 	Keyword lists and maps

 	Modules and functions

 	alias, require, import, and use

 	Module attributes

 	Structs

 	Recursion

 	Enumerables and Streams

 	Comprehensions

 	Protocols

 	Sigils

 	try, catch, and rescue

 	Processes

 	IO and the file system

 	Writing documentation

 	Optional syntax sheet

 	Erlang libraries

 	Debugging

 	Cheatsheets

 	Enum cheatsheet

 	Set-theoretic types cheatsheet

 	Mix & OTP

 	Introduction to Mix

 	Simple state with agents

 	Registries and supervision trees

 	Supervising dynamic children

 	Task and gen_tcp

 	Doctests, patterns, and with

 	Configuration and distribution

 	Client-server with GenServer

 	Releases

 	Anti-patterns

 	What are anti-patterns?

 	Code-related anti-patterns

 	Design-related anti-patterns

 	Process-related anti-patterns

 	Meta-programming anti-patterns

 	Meta-programming

 	Quote and unquote

 	Macros

 	Domain-Specific Languages (DSLs)

 	References

 	Compatibility and deprecations

 	Gradual set-theoretic types

 	Library guidelines

 	Naming conventions

 	Operators reference

 	Patterns and guards

 	Syntax reference

 	Typespecs reference

 	Unicode syntax

 	
 Modules

 	Kernel

 	Kernel.SpecialForms

 	Data Types

 	Atom

 	Base

 	Bitwise

 	Date

 	DateTime

 	Duration

 	Exception

 	Float

 	Function

 	Integer

 	JSON

 	Module

 	NaiveDateTime

 	Record

 	Regex

 	String

 	Time

 	Tuple

 	URI

 	Version

 	Version.Requirement

 	Collections & Enumerables

 	Access

 	Date.Range

 	Enum

 	Keyword

 	List

 	Map

 	MapSet

 	Range

 	Stream

 	IO & System

 	File

 	File.Stat

 	File.Stream

 	IO

 	IO.ANSI

 	IO.Stream

 	OptionParser

 	Path

 	Port

 	StringIO

 	System

 	Calendar

 	Calendar

 	Calendar.ISO

 	Calendar.TimeZoneDatabase

 	Calendar.UTCOnlyTimeZoneDatabase

 	Processes & Applications

 	Agent

 	Application

 	Config

 	Config.Provider

 	Config.Reader

 	DynamicSupervisor

 	GenServer

 	Node

 	PartitionSupervisor

 	Process

 	Registry

 	Supervisor

 	Task

 	Task.Supervisor

 	Protocols

 	Collectable

 	Enumerable

 	Inspect

 	Inspect.Algebra

 	Inspect.Opts

 	JSON.Encoder

 	List.Chars

 	Protocol

 	String.Chars

 	Code & Macros

 	Code

 	Code.Fragment

 	Kernel.ParallelCompiler

 	Macro

 	Macro.Env

 	Deprecated

 	Behaviour

 	Dict

 	GenEvent

 	HashDict

 	HashSet

 	Set

 	Supervisor.Spec

 	Exceptions

 	ArgumentError

 	ArithmeticError

 	BadArityError

 	BadBooleanError

 	BadFunctionError

 	BadMapError

 	CaseClauseError

 	Code.LoadError

 	CompileError

 	CondClauseError

 	Enum.EmptyError

 	Enum.OutOfBoundsError

 	ErlangError

 	File.CopyError

 	File.Error

 	File.LinkError

 	File.RenameError

 	FunctionClauseError

 	IO.StreamError

 	Inspect.Error

 	JSON.DecodeError

 	Kernel.TypespecError

 	KeyError

 	MatchError

 	MismatchedDelimiterError

 	MissingApplicationsError

 	OptionParser.ParseError

 	Protocol.UndefinedError

 	Regex.CompileError

 	RuntimeError

 	SyntaxError

 	System.EnvError

 	SystemLimitError

 	TokenMissingError

 	TryClauseError

 	URI.Error

 	UndefinedFunctionError

 	UnicodeConversionError

 	Version.InvalidRequirementError

 	Version.InvalidVersionError

 	WithClauseError

 Changelog for Elixir v1.20

Type system improvements
This release includes type inference of all constructs.
Type inference of function calls
Elixir now performs inference of whole functions. The best way to show the new capabilities are with examples. Take the following code:
def add_foo_and_bar(data) do
 data.foo + data.bar
end
Elixir now infers that the function expects a map as first argument, and the map must have the keys .foo and .bar whose values are either integer() or float(). The return type will be either integer() or float().
Here is another example:
def sum_to_string(a, b) do
 Integer.to_string(a + b)
end
Even though the + operator works with both integers and floats, Elixir infers that a and b must be both integers, as the result of + is given to a function that expects an integer. The inferred type information is then used during type checking to find possible typing errors.
Type inference of guards
This release also performs inference of guards! Let's see some examples:
def example(x, y) when is_list(x) and is_integer(y)
The code above correctly infers x is a list and y is an integer.
def example({:ok, x} = y) when is_binary(x) or is_integer(x)
The one above infers x is a binary or an integer, and y is a two element tuple with :ok as first element and a binary or integer as second.
def example(x) when is_map_key(x, :foo)
The code above infers x is a map which has the :foo key, represented as %{..., foo: dynamic()}. Remember the leading ... indicates the map may have other keys.
def example(x) when not is_map_key(x, :foo)
And the code above infers x does not have the :foo key (hence x.foo will raise a typing violation), which has the type: %{..., foo: not_set()}.
You can also have expressions that assert on the size of data structures:
def example(x) when tuple_size(x) < 3
Elixir will correctly track the tuple has at most two elements, and therefore accessing elem(x, 3) will emit a typing violation. In other words, Elixir can look at complex guards, infer types, and use this information to find bugs in our code, without a need to introduce type signatures (yet).
Complete typing of maps keys
Maps were one of the first data-structures we implemented within the Elixir type system however, up to this point, they only supported atom keys. If they had additional keys, those keys were simply marked as dynamic().
As of Elixir v1.20, we can track all possible domains as map keys. For example, the map:
%{123 => "hello", 456.0 => :ok}
will have the type:
%{integer() => binary(), float() => :ok}
It is also possible to mix domain keys, as above, with atom keys, yielding the following:
%{integer() => integer(), root: integer()}
This system is an implementation of Typing Records, Maps, and Structs, by Giuseppe Castagna (2023).
Typing of map operations
We have typed the majority of the functions in the Map module, allowing the type system to track how keys are added, updated, and removed across all possible key types.
For example, imagine we are calling the following Map functions with a variable map, which we don't know the exact shape of, and an atom key:
Map.put(map, :key, 123)
#=> returns type %{..., key: integer()}

Map.delete(map, :key)
#=> returns type %{..., key: not_set()}
As you can see, we track when keys are set and also when they are removed.
Some operations, like Map.replace/3, only replace the key if it exists, and that is also propagated by the type system:
Map.replace(map, :key, 123)
#=> returns type %{..., key: if_set(integer())}
In other words, if the key exists, it would have been replaced by an integer value. Furthermore, whenever calling a function in the Map module and the given key is statically proven to never exist in the map, an error is emitted.
By combining full type inference with bang operations like Map.fetch!/2, Map.pop!/2, Map.replace!/3, and Map.update!/3, Elixir is able to propagate information about the desired keys. Take this module:
defmodule User do
 def name(map), do: Map.fetch!(map, :name)
end

defmodule CallsUser do
 def calls_name do
 User.name(%{})
 end
end
The code above has a type violation, which is now caught by the type system:
 warning: incompatible types given to User.name/1:

 User.name(%{})

 given types:

 %{name: not_set()}

 but expected one of:

 dynamic(%{..., name: term()})

 typing violation found at:
 │
 16 │ User.name(%{})
 │ ~
 │
 └─ lib/calls_user.ex:7:5: CallsUser.calls_name/0
Acknowledgements
The type system was made possible thanks to a partnership between CNRS and Remote. The development work is currently sponsored by Fresha and Tidewave.
v1.20.0-rc.0 (2026-01-09)
1. Enhancements
Elixir
	[Calendar] Optimize date_from_iso_days by using the Neri-Schneider algorithm
	[Enum] Add Enum.min_max sorter
	[Integer] Add Integer.ceil_div/2
	[IO] Add IO.iodata_empty?/1
	[File] Skip device, named pipes, etc in File.cp_r/3 instead of erroring with reason :eio
	[Kernel] Print intermediate results of dbg for pipes
	[Kernel] Warn on unused requires
	[Regex] Add Regex.import/1 to import regexes defined with /E

ExUnit
	[ExUnit.CaptureLog] Add :formatter option for custom log formatting

Mix
	[mix deps] Support filtering mix deps output
	[mix test] Add mix test --dry-run

2. Hard deprecations
Elixir
	[File] File.stream!(path, modes, lines_or_bytes) is deprecated in favor of File.stream!(path, lines_or_bytes, modes)
	[Kernel] Matching on the size inside a bit pattern now requires the pin operator for consistency, such as <<x::size(^existing_var)>>
	[Kernel.ParallelCompiler] Kernel.ParallelCompiler.async/1 is deprecated in favor of Kernel.ParallelCompiler.pmap/2, which is more performant and addresses known limitations

Logger
	[Logger] Logger.*_backend functions are deprecated in favor of handlers. If you really want to keep on using backends, see the :logger_backends package
	[Logger] Logger.enable/1 and Logger.disable/1 have been deprecated in favor of Logger.put_process_level/2 and Logger.delete_process_level/1

v1.19
The CHANGELOG for v1.19 releases can be found in the v1.19 branch.

 Introduction

Welcome!
This guide will teach you about Elixir fundamentals - the language syntax, how to define modules, the common data structures in the language, and more. This chapter will focus on ensuring that Elixir is installed and that you can successfully run Elixir's Interactive Shell, called IEx.
Let's get started.
Installation
If you haven't yet installed Elixir, visit our installation page. Once you are done, you can run elixir --version to get the current Elixir version. The requirements for this guide are:
	Elixir 1.15.0 onwards
	Erlang/OTP 26 onwards

If you are looking for other resources for learning Elixir, you can also consult the learning page of the official website.
Interactive mode
When you install Elixir, you will have three new command line executables: iex, elixir and elixirc.
For now, let's start by running iex (or iex.bat if you are on Windows PowerShell, where iex is a PowerShell command) which stands for Interactive Elixir. In interactive mode, we can type any Elixir expression and get its result. Let's warm up with some basic expressions.
Open up iex and type the following expressions:
Erlang/OTP 26 [64-bit] [smp:2:2] [...]

Interactive Elixir - press Ctrl+C to exit
iex(1)> 40 + 2
42
iex(2)> "hello" <> " world"
"hello world"
Please note that some details like version numbers may differ a bit in your session, that's not important. By executing the code above, you should evaluate expressions and see their results. To exit iex press Ctrl+C twice.
It seems we are ready to go! We will use the interactive shell quite a lot in the next chapters to get a bit more familiar with the language constructs and basic types, starting in the next chapter.
Running scripts
After getting familiar with the basics of the language you may want to try writing simple programs. This can be accomplished by putting the following Elixir code into a file:
IO.puts("Hello world from Elixir")
Save it as simple.exs and execute it with elixir:
$ elixir simple.exs
Hello world from Elixir

iex and elixir are all we need to learn the main language concepts. There is a separate guide named "Mix and OTP guide" that explores how to actually create, manage, and test full-blown Elixir projects. For now, let's move on to learn the basic data types in the language.

 Basic types

In this chapter we will learn more about Elixir basic types: integers, floats, booleans, atoms, and strings. Other data types, such as lists and tuples, will be explored in the next chapter.
iex> 1 # integer
iex> 0x1F # integer
iex> 1.0 # float
iex> true # boolean
iex> :atom # atom / symbol
iex> "elixir" # string
iex> [1, 2, 3] # list
iex> {1, 2, 3} # tuple
Basic arithmetic
Open up iex and type the following expressions:
iex> 1 + 2
3
iex> 5 * 5
25
iex> 10 / 2
5.0
Notice that 10 / 2 returned a float 5.0 instead of an integer 5. This is expected. In Elixir, the operator / always returns a float. If you want to do integer division or get the division remainder, you can invoke the div and rem functions:
iex> div(10, 2)
5
iex> div 10, 2
5
iex> rem 10, 3
1
Notice that Elixir allows you to drop the parentheses when invoking functions that expect one or more arguments. This feature gives a cleaner syntax when writing declarations and control-flow constructs. However, Elixir developers generally prefer to use parentheses.
Elixir also supports shortcut notations for entering binary, octal, and hexadecimal numbers:
iex> 0b1010
10
iex> 0o777
511
iex> 0x1F
31
Float numbers require a dot followed by at least one digit and also support e for scientific notation:
iex> 1.0
1.0
iex> 1.0e-10
1.0e-10
Floats in Elixir are 64-bit precision.
You can invoke the round function to get the closest integer to a given float, or the trunc function to get the integer part of a float.
iex> round(3.58)
4
iex> trunc(3.58)
3
Finally, we work with different data types, we will learn Elixir provides several predicate functions to check for the type of a value. For example, is_integer can be used to check if a value is an integer or not:
iex> is_integer(1)
true
iex> is_integer(2.0)
false
You can also use is_float or is_number to check, respectively, if an argument is a float, or either an integer or float.
Booleans and nil
Elixir supports true and false as booleans:
iex> true
true
iex> true == false
false
Elixir also provides three boolean operators: or, and, and not. These operators are strict in the sense that they expect something that evaluates to a boolean (true or false) as their first argument:
iex> true and true
true
iex> false or is_boolean(true)
true
Providing a non-boolean will raise an exception:
iex> 1 and true
** (BadBooleanError) expected a boolean on left-side of "and", got: 1
or and and are short-circuit operators. They only execute the right side if the left side is not enough to determine the result:
iex> false and raise("This error will never be raised")
false
iex> true or raise("This error will never be raised")
true
Elixir also provides the concept of nil, to indicate the absence of a value, and a set of logical operators that also manipulate nil: ||/2, &&/2, and !/1. For these operators, false and nil are considered "falsy", all other values are considered "truthy":
or
iex> 1 || true
1
iex> false || 11
11

and
iex> nil && 13
nil
iex> true && 17
17

not
iex> !true
false
iex> !1
false
iex> !nil
true
Similarly, values like 0 and "", which some other programming languages consider to be "falsy", are also "truthy" in Elixir.
As a rule of thumb, use and, or and not when you are expecting booleans. If any of the arguments are non-boolean, use &&, || and !.
Atoms
An atom is a constant whose value is its own name. Some other languages call these symbols. They are often useful to enumerate over distinct values, such as:
iex> :apple
:apple
iex> :orange
:orange
iex> :watermelon
:watermelon
Atoms are equal if their names are equal.
iex> :apple == :apple
true
iex> :apple == :orange
false
Often they are used to express the state of an operation, by using values such as :ok and :error.
The booleans true and false are also atoms:
iex> true == :true
true
iex> is_atom(false)
true
iex> is_boolean(:false)
true
Elixir allows you to skip the leading : for the atoms false, true and nil.
Strings
Strings in Elixir are delimited by double quotes, and they are encoded in UTF-8:
iex> "hellö"
"hellö"
Note: if you are running on Windows, there is a chance your terminal does not use UTF-8 by default. You can change the encoding of your current session by running chcp 65001 before entering IEx.

You can concatenate two strings with the <> operator:
iex> "hello " <> "world!"
"hello world!"
Elixir also supports string interpolation:
iex> string = "world"
iex> "hello #{string}!"
"hello world!"
String concatenation requires both sides to be strings but interpolation supports any data type that may be converted to a string:
iex> number = 42
iex> "i am #{number} years old!"
"i am 42 years old!"
Strings can have line breaks in them. You can introduce them using escape sequences:
iex> "hello
...> world"
"hello\nworld"
iex> "hello\nworld"
"hello\nworld"
You can print a string using the IO.puts function from the IO module:
iex> IO.puts("hello\nworld")
hello
world
:ok
Notice that the IO.puts function returns the atom :ok after printing.
Strings in Elixir are represented internally by contiguous sequences of bytes known as binaries:
iex> is_binary("hellö")
true
We can also get the number of bytes in a string:
iex> byte_size("hellö")
6
Notice that the number of bytes in that string is 6, even though it has 5 graphemes. That's because the grapheme "ö" takes 2 bytes to be represented in UTF-8. We can get the actual length of the string, based on the number of graphemes, by using the String.length function:
iex> String.length("hellö")
5
The String module contains a bunch of functions that operate on strings as defined in the Unicode standard:
iex> String.upcase("hellö")
"HELLÖ"
Structural comparison
Elixir also provides ==, !=, <=, >=, < and > as comparison operators. We can compare numbers:
iex> 1 == 1
true
iex> 1 != 2
true
iex> 1 < 2
true
But also atoms, strings, booleans, etc:
iex> "foo" == "foo"
true
iex> "foo" == "bar"
false
Integers and floats compare the same if they have the same value:
iex> 1 == 1.0
true
iex> 1 == 2.0
false
However, you can use the strict comparison operator === and !== if you want to distinguish between integers and floats:
iex> 1 === 1.0
false
The comparison operators in Elixir can compare across any data type. We say these operators perform structural comparison. For more information, you can read our documentation on Structural vs Semantic comparisons.
Elixir also provides data-types for expressing collections, such as lists and tuples, which we learn next. When we talk about concurrency and fault-tolerance via processes, we will also discuss ports, pids, and references, but that will come on later chapters. Let's move forward.

 Lists and tuples

In this chapter we will learn two of the most used collection data-types in Elixir: lists and tuples.
(Linked) Lists
Elixir uses square brackets to specify a list of values. Values can be of any type:
iex> [1, 2, true, 3]
[1, 2, true, 3]
iex> length([1, 2, 3])
3
Two lists can be concatenated or subtracted using the ++ and -- operators respectively:
iex> [1, 2, 3] ++ [4, 5, 6]
[1, 2, 3, 4, 5, 6]
iex> [1, true, 2, false, 3, true] -- [true, false]
[1, 2, 3, true]
List operators never modify the existing list. Concatenating to or removing elements from a list returns a new list. We say that Elixir data structures are immutable. One advantage of immutability is that it leads to clearer code. You can freely pass the data around with the guarantee no one will mutate it in memory - only transform it.
Throughout the tutorial, we will talk a lot about the head and tail of a list. The head is the first element of a list and the tail is the remainder of the list. They can be retrieved with the functions hd and tl. Let's assign a list to a variable and retrieve its head and tail:
iex> list = [1, 2, 3]
iex> hd(list)
1
iex> tl(list)
[2, 3]
Getting the head or the tail of an empty list throws an error:
iex> hd([])
** (ArgumentError) argument error
Sometimes you will create a list and it will return a quoted value preceded by ~c. For example:
iex> [11, 12, 13]
~c"\v\f\r"
iex> [104, 101, 108, 108, 111]
~c"hello"
When Elixir sees a list of printable ASCII numbers, Elixir will print that as a charlist (literally a list of characters). Charlists are quite common when interfacing with existing Erlang code. Whenever you see a value in IEx and you are not quite sure what it is, you can use i to retrieve information about it:
iex> i ~c"hello"
Term
 i ~c"hello"
Data type
 List
Description
 ...
Raw representation
 [104, 101, 108, 108, 111]
Reference modules
 List
Implemented protocols
 ...
We will talk more about charlists in the "Binaries, strings, and charlists" chapter.
Single-quoted strings
In Elixir, you can also use 'hello' to build charlists, but this notation has been soft-deprecated in Elixir v1.15 and will emit warnings in future versions. Prefer to write ~c"hello" instead.
Tuples
Elixir uses curly brackets to define tuples. Like lists, tuples can hold any value:
iex> {:ok, "hello"}
{:ok, "hello"}
iex> tuple_size({:ok, "hello"})
2
Tuples store elements contiguously in memory. This means accessing a tuple element by index or getting the tuple size is a fast operation. Indexes start from zero:
iex> tuple = {:ok, "hello"}
{:ok, "hello"}
iex> elem(tuple, 1)
"hello"
iex> tuple_size(tuple)
2
It is also possible to put an element at a particular index in a tuple with put_elem:
iex> tuple = {:ok, "hello"}
{:ok, "hello"}
iex> put_elem(tuple, 1, "world")
{:ok, "world"}
iex> tuple
{:ok, "hello"}
Notice that put_elem returned a new tuple. The original tuple stored in the tuple variable was not modified. Like lists, tuples are also immutable. Every operation on a tuple returns a new tuple, it never changes the given one.
Lists or tuples?
What is the difference between lists and tuples?
Lists are stored in memory as linked lists, meaning that each element in a list holds its value and points to the following element until the end of the list is reached. This means accessing the length of a list is a linear operation: we need to traverse the whole list in order to figure out its size.
Similarly, the performance of list concatenation depends on the length of the left-hand list:
iex> list = [1, 2, 3]
[1, 2, 3]

This is fast as we only need to traverse `[0]` to prepend to `list`
iex> [0] ++ list
[0, 1, 2, 3]

This is slow as we need to traverse `list` to append 4
iex> list ++ [4]
[1, 2, 3, 4]
Tuples, on the other hand, are stored contiguously in memory. This means getting the tuple size or accessing an element by index is fast. On the other hand, updating or adding elements to tuples is expensive because it requires creating a new tuple in memory:
iex> tuple = {:a, :b, :c, :d}
{:a, :b, :c, :d}
iex> put_elem(tuple, 2, :e)
{:a, :b, :e, :d}
Note, however, the elements themselves are not copied. When you update a tuple, all entries are shared between the old and the new tuple, except for the entry that has been replaced. This rule applies to most data structures in Elixir. This reduces the amount of memory allocation the language needs to perform and is only possible thanks to the immutable semantics of the language.
Those performance characteristics dictate the usage of those data structures. In a nutshell, lists are used when the number of elements returned may vary. Tuples have a fixed size. Let's see two examples from the String module:
iex> String.split("hello world")
["hello", "world"]
iex> String.split("hello beautiful world")
["hello", "beautiful", "world"]
The String.split function breaks a string into a list of strings on every whitespace character. Since the amount of elements returned depends on the input, we use a list.
On the other hand, String.split_at splits a string in two parts at a given position. Since it always returns two entries, regardless of the input size, it returns tuples:
iex> String.split_at("hello world", 3)
{"hel", "lo world"}
iex> String.split_at("hello world", -4)
{"hello w", "orld"}
It is also very common to use tuples and atoms to create "tagged tuples", which is a handy return value when an operation may succeed or fail. For example, File.read reads the contents of a file at a given path, which may or may not exist. It returns tagged tuples:
iex> File.read("path/to/existing/file")
{:ok, "... contents ..."}
iex> File.read("path/to/unknown/file")
{:error, :enoent}
If the path given to File.read exists, it returns a tuple with the atom :ok as the first element and the file contents as the second. Otherwise, it returns a tuple with :error and the error description. As we will soon learn, Elixir allows us to pattern match on tagged tuples and effortlessly handle both success and failure cases.
Given Elixir consistently follows those rules, the choice between lists and tuples get clearer as you learn and use the language. Elixir often guides you to do the right thing. For example, there is an elem function to access a tuple item:
iex> tuple = {:ok, "hello"}
{:ok, "hello"}
iex> elem(tuple, 1)
"hello"
However, given you often don't know the number of elements in a list, there is no built-in equivalent for accessing arbitrary entries in a lists, apart from its head.
Size or length?
When counting the elements in a data structure, Elixir also abides by a simple rule: the function is named size if the operation is in constant time (the value is pre-calculated) or length if the operation is linear (calculating the length gets slower as the input grows). As a mnemonic, both "length" and "linear" start with "l".
For example, we have used 4 counting functions so far: byte_size (for the number of bytes in a string), tuple_size (for tuple size), length (for list length) and String.length (for the number of graphemes in a string). We use byte_size to get the number of bytes in a string, which is a cheap operation. Retrieving the number of Unicode graphemes, on the other hand, uses String.length, and may be expensive as it relies on a traversal of the entire string.
Now that we are familiar with the basic data-types in the language, let's learn important constructs for writing code, before we discuss more complex data structures.

 Pattern matching

In this chapter, we will learn why the = operator in Elixir is called the match operator and how to use it to pattern match inside data structures. We will learn about the pin operator ^ used to access previously bound values.
The match operator
We have used the = operator a couple times to assign variables in Elixir:
iex> x = 1
1
iex> x
1
In Elixir, the = operator is actually called the match operator. Let's see why:
iex> x = 1
1
iex> 1 = x
1
iex> 2 = x
** (MatchError) no match of right hand side value: 1
Notice that 1 = x is a valid expression, and it matched because both the left and right side are equal to 1. When the sides do not match, a MatchError is raised.
A variable can only be assigned on the left side of =:
iex> 1 = unknown
** (CompileError) iex:1: undefined variable "unknown"
Pattern matching
The match operator is not only used to match against simple values, but it is also useful for destructuring more complex data types. For example, we can pattern match on tuples:
iex> {a, b, c} = {:hello, "world", 42}
{:hello, "world", 42}
iex> a
:hello
iex> b
"world"
A pattern match error will occur if the sides can't be matched, for example if the tuples have different sizes:
iex> {a, b, c} = {:hello, "world"}
** (MatchError) no match of right hand side value: {:hello, "world"}
And also when comparing different types, for example if matching a tuple on the left side with a list on the right side:
iex> {a, b, c} = [:hello, "world", 42]
** (MatchError) no match of right hand side value: [:hello, "world", 42]
More interestingly, we can match on specific values. The example below asserts that the left side will only match the right side when the right side is a tuple that starts with the atom :ok:
iex> {:ok, result} = {:ok, 13}
{:ok, 13}
iex> result
13

iex> {:ok, result} = {:error, :oops}
** (MatchError) no match of right hand side value: {:error, :oops}
We can pattern match on lists:
iex> [a, b, c] = [1, 2, 3]
[1, 2, 3]
iex> a
1
A list also supports matching on its own head and tail:
iex> [head | tail] = [1, 2, 3]
[1, 2, 3]
iex> head
1
iex> tail
[2, 3]
Similar to the hd and tl functions, we can't match an empty list with a head and tail pattern:
iex> [head | tail] = []
** (MatchError) no match of right hand side value: []
The [head | tail] format is not only used on pattern matching but also for prepending items to a list:
iex> list = [1, 2, 3]
[1, 2, 3]
iex> [0 | list]
[0, 1, 2, 3]
In some cases, you don't care about a particular value in a pattern. It is a common practice to bind those values to the underscore, _. For example, if only the head of the list matters to us, we can assign the tail to underscore:
iex> [head | _] = [1, 2, 3]
[1, 2, 3]
iex> head
1
The variable _ is special in that it can never be read from. Trying to read from it gives a compile error:
iex> _
** (CompileError) iex:1: invalid use of _. "_" represents a value to be ignored in a pattern and cannot be used in expressions
If a variable is mentioned more than once in a pattern, all references must bind to the same value:
iex> {x, x} = {1, 1}
{1, 1}
iex> {x, x} = {1, 2}
** (MatchError) no match of right hand side value: {1, 2}
Although pattern matching allows us to build powerful constructs, its usage is limited. For instance, you cannot make function calls on the left side of a match. The following example is invalid:
iex> length([1, [2], 3]) = 3
** (CompileError) iex:1: cannot invoke remote function :erlang.length/1 inside match
Pattern matching allows developers to easily destructure data types such as tuples and lists. As we will see in the following chapters, it is one of the foundations of recursion in Elixir and applies to other types as well, like maps and binaries.
The pin operator
Variables in Elixir can be rebound:
iex> x = 1
1
iex> x = 2
2
However, there are times when we don't want variables to be rebound.
Use the pin operator ^ when you want to pattern match against a variable's existing value rather than rebinding the variable.
iex> x = 1
1
iex> ^x = 2
** (MatchError) no match of right hand side value: 2
Because we have pinned x when it was bound to the value of 1, it is equivalent to the following:
iex> 1 = 2
** (MatchError) no match of right hand side value: 2
Notice that we even see the exact same error message.
We can use the pin operator inside other pattern matches, such as tuples or lists:
iex> x = 1
1
iex> [^x, 2, 3] = [1, 2, 3]
[1, 2, 3]
iex> {y, ^x} = {2, 1}
{2, 1}
iex> y
2
iex> {y, ^x} = {2, 2}
** (MatchError) no match of right hand side value: {2, 2}
Because x was bound to the value of 1 when it was pinned, this last example could have been written as:
iex> {y, 1} = {2, 2}
** (MatchError) no match of right hand side value: {2, 2}
This finishes our introduction to pattern matching. As we will see in the next chapter, pattern matching is very common in many language constructs and they can be further augmented with guards.

 case, cond, and if

In this chapter, we will learn about the case, cond, and if control flow structures.
case
case allows us to compare a value against many patterns until we find a matching one:
iex> case {1, 2, 3} do
...> {4, 5, 6} ->
...> "This clause won't match"
...> {1, x, 3} ->
...> "This clause will match and bind x to 2 in this clause"
...> _ ->
...> "This clause would match any value"
...> end
"This clause will match and bind x to 2 in this clause"
If you want to pattern match against an existing variable, you need to use the ^ operator:
iex> x = 1
1
iex> case 10 do
...> ^x -> "Won't match"
...> _ -> "Will match"
...> end
"Will match"
Clauses also allow extra conditions to be specified via guards:
iex> case {1, 2, 3} do
...> {1, x, 3} when x > 0 ->
...> "Will match"
...> _ ->
...> "Would match, if guard condition were not satisfied"
...> end
"Will match"
The first clause above will only match when x is positive.
Keep in mind errors in guards do not leak but simply make the guard fail:
iex> hd(1)
** (ArgumentError) argument error
iex> case 1 do
...> x when hd(x) -> "Won't match"
...> x -> "Got #{x}"
...> end
"Got 1"
If none of the clauses match, an error is raised:
iex> case :ok do
...> :error -> "Won't match"
...> end
** (CaseClauseError) no case clause matching: :ok
The documentation for the Kernel module lists all available guards in its sidebar. You can also consult the complete Patterns and Guards reference for in-depth documentation.
if
case builds on pattern matching and guards to destructure and match on certain conditions. However, patterns and guards are limited only to certain expressions which are optimized by the compiler. In many situations, you need to write conditions that go beyond what can be expressed with case. For those, if is a useful alternative:
iex> if true do
...> "This works!"
...> end
"This works!"
iex> if false do
...> "This will never be seen"
...> end
nil
If the condition given to if returns false or nil, the body given between do-end is not executed and instead it returns nil.
if also supports else blocks:
iex> if nil do
...> "This won't be seen"
...> else
...> "This will"
...> end
"This will"
Expressions
Some programming languages make a distinction about expressions (code that returns a value) and statements (code that returns no value). In Elixir, there are only expressions, no statements. Everything you write in Elixir language returns some value.
This property allows variables to be scoped to individual blocks of code such as if, case, where declarations or changes are only visible inside the block. A change can't leak to outer blocks, which makes code easier to follow and understand. For example:
iex> x = 1
1
iex> if true do
...> x = x + 1
...> end
2
iex> x
1
You see the return value of the if expression as the resulting 2 here. To retain changes made within the if expression on the outer block you need to assign the returned value to a variable in the outer block.
iex> x = 1
1
iex> x =
...> if true do
...> x + 1
...> else
...> x
...> end
2
With all expressions returning a value there's also no need for alternative constructs, such as ternary operators posing as an alternative to if. Elixir does include an inline notation for if and, as we will learn later, it is a syntactic variation on if's arguments.
if is a macro
An interesting note regarding if is that it is implemented as a macro in the language: it isn't a special language construct as it would be in many languages. You can check the documentation and its source for more information.
If you find yourself nesting several if blocks, you may want to consider using cond instead. Let's check it out.
cond
We have used case to find a matching clause from many patterns. We have used if to check for a single condition. If you need to check across several conditions and find the first one that does not evaluate to nil or false, cond is a useful construct:
iex> cond do
...> 2 + 2 == 5 ->
...> "This will not be true"
...> 2 * 2 == 3 ->
...> "Nor this"
...> 1 + 1 == 2 ->
...> "But this will"
...> end
"But this will"
This is equivalent to else if clauses in many imperative languages - although used less frequently in Elixir.
If all of the conditions return nil or false, an error (CondClauseError) is raised. For this reason, it may be necessary to add a final condition, equal to true, which will always match:
iex> cond do
...> 2 + 2 == 5 ->
...> "This is never true"
...> 2 * 2 == 3 ->
...> "Nor this"
...> true ->
...> "This is always true (equivalent to else)"
...> end
"This is always true (equivalent to else)"
Similar to if, cond considers any value besides nil and false to be true:
iex> cond do
...> hd([1, 2, 3]) ->
...> "1 is considered as true"
...> end
"1 is considered as true"
Summing up
We have concluded the introduction to the most fundamental control-flow constructs in Elixir. Generally speaking, Elixir developers prefer pattern matching and guards, using case and function definitions (which we will explore in future chapters), as they are succinct and precise. When your logic cannot be outlined within patterns and guards, you may consider if, falling back to cond when there are several conditions to check.

 Anonymous functions

Anonymous functions allow us to store and pass executable code around as if it was an integer or a string. Let's learn more.
Identifying functions and documentation
Before we move on to discuss anonymous functions, let's talk about how Elixir identifies named functions – the functions defined in modules.
Functions in Elixir are identified by both their name and their arity. The arity of a function describes the number of arguments that the function takes. From this point on we will use both the function name and its arity to describe functions throughout the documentation. trunc/1 identifies the function which is named trunc and takes 1 argument, whereas trunc/2 identifies a different (nonexistent) function with the same name but with an arity of 2.
We can also use this syntax to access documentation. The Elixir shell defines the h function, which you can use to access documentation for any function. For example, typing h trunc/1 is going to print the documentation for the trunc/1 function:
iex> h trunc/1
 def trunc(number)

Returns the integer part of number.
h trunc/1 works because it is defined in the Kernel module. All functions in the Kernel module are automatically imported into our namespace. Most often you will also include the module name when looking up the documentation for a given function:
iex> h Kernel.trunc/1
 def trunc(number)

Returns the integer part of number.
You can use the module+function identifiers to lookup documentation for anything, including operators (try h Kernel.+/2). Invoking h without arguments displays the documentation for IEx.Helpers, which is where h and other functionalities are defined.
Defining anonymous functions
Anonymous functions in Elixir are delimited by the keywords fn and end:
iex> add = fn a, b -> a + b end
#Function<12.71889879/2 in :erl_eval.expr/5>
In the example above, we defined an anonymous function that receives two arguments, a and b, and returns the result of a + b. The arguments are always on the left-hand side of -> and the code to be executed on the right-hand side. The anonymous function is stored in the variable add. You can see it returns a value represented by #Function<...>. While its representation is opaque, the :erl_eval.expr bit tells us the function was defined in the shell (during evaluation).
We can invoke anonymous functions by passing arguments to it, using a dot (.) between the variable and the opening parenthesis:
iex> add.(1, 2)
3
The dot makes it clear when you are calling an anonymous function, stored in the variable add, opposed to a function named add/2. For example, if you have an anonymous function stored in the variable is_atom, there is no ambiguity between is_atom.(:foo) and is_atom(:foo). If both used the same is_atom(:foo) syntax, the only way to know the actual behavior of is_atom(:foo) would be by scanning all code thus far for a possible definition of the is_atom variable. This scanning hurts maintainability as it requires developers to track additional context in their head when reading and writing code.
Anonymous functions in Elixir are also identified by the number of arguments they receive. We can check if a value is a function using is_function/1 and also check its arity by using is_function/2:
iex> is_function(add)
true
check if add is a function that expects exactly 2 arguments
iex> is_function(add, 2)
true
check if add is a function that expects exactly 1 argument
iex> is_function(add, 1)
false
Closures
Anonymous functions can also access variables that are in scope when the function is defined. This is typically referred to as closures, as they close over their scope. Let's define a new anonymous function that uses the add anonymous function we have previously defined:
iex> double = fn a -> add.(a, a) end
#Function<6.71889879/1 in :erl_eval.expr/5>
iex> double.(2)
4
A variable assigned inside a function does not affect its surrounding environment:
iex> x = 42
42
iex> (fn -> x = 0 end).()
0
iex> x
42
Clauses and guards
Similar to case/2, we can pattern match on the arguments of anonymous functions as well as define multiple clauses and guards:
iex> f = fn
...> x, y when x > 0 -> x + y
...> x, y -> x * y
...> end
#Function<12.71889879/2 in :erl_eval.expr/5>
iex> f.(1, 3)
4
iex> f.(-1, 3)
-3
The number of arguments in each anonymous function clause needs to be the same, otherwise an error is raised.
iex> f2 = fn
...> x, y when x > 0 -> x + y
...> x, y, z -> x * y + z
...> end
** (CompileError) iex:1: cannot mix clauses with different arities in anonymous functions
The capture operator
Throughout this guide, we have been using the notation name/arity to refer to functions. It happens that this notation can actually be used to capture an existing function into a data-type we can pass around, similar to how anonymous functions behave.
iex> fun = &is_atom/1
&:erlang.is_atom/1
iex> is_function(fun)
true
iex> fun.(:hello)
true
iex> fun.(123)
false
As you can see, once a function is captured, we can pass it as argument or invoke it using the anonymous function notation. The returned value above also hints we can capture functions defined in modules:
iex> fun = &String.length/1
&String.length/1
iex> fun.("hello")
5
Since operators are functions in Elixir, you can also capture operators:
iex> add = &+/2
&:erlang.+/2
iex> add.(1, 2)
3
The capture syntax can also be used as a shortcut for creating functions that wrap existing functions. For example, imagine you want to create an anonymous function that checks if a given function has arity 2. You could write it as:
iex> is_arity_2 = fn fun -> is_function(fun, 2) end
#Function<8.71889879/1 in :erl_eval.expr/5>
iex> is_arity_2.(add)
true
But using the capture syntax, you can write it as:
iex> is_arity_2 = &is_function(&1, 2)
#Function<8.71889879/1 in :erl_eval.expr/5>
iex> is_arity_2.(add)
true
The &1 represents the first argument passed into the function. Therefore both is_arity_2 anonymous functions defined above are equivalent.
Once again, given operators are function calls, the capture syntax shorthand also works with operators, or even string interpolation:
iex> fun = &(&1 + 1)
#Function<6.71889879/1 in :erl_eval.expr/5>
iex> fun.(1)
2

iex> fun2 = &"Good #{&1}"
#Function<6.127694169/1 in :erl_eval.expr/5>
iex> fun2.("morning")
"Good morning"
&(&1 + 1) above is exactly the same as fn x -> x + 1 end. You can read more about the capture operator & in its documentation.
Next let's revisit some of the data-types we learned in the past and dig deeper into how they work.

 Binaries, strings, and charlists

In "Basic types", we learned a bit about strings and we used the is_binary/1 function for checks:
iex> string = "hello"
"hello"
iex> is_binary(string)
true
In this chapter, we will gain clarity on what exactly binaries are and how they relate to strings. We will also learn about charlists, ~c"like this", which are often used for interoperability with Erlang.
Although strings are one of the most common data types in computer languages, they are subtly complex and are often misunderstood. To understand strings in Elixir, let's first discuss Unicode and character encodings, specifically the UTF-8 encoding.
Unicode and Code Points
In order to facilitate meaningful communication between computers across multiple languages, a standard is required so that the ones and zeros on one machine mean the same thing when they are transmitted to another. The Unicode Standard acts as an official registry of virtually all the characters we know: this includes characters from classical and historical texts, emoji, and formatting and control characters as well.
Unicode organizes all of the characters in its repertoire into code charts, and each character is given a unique numerical index. This numerical index is known as a Code Point.
In Elixir you can use a ? in front of a character literal to reveal its code point:
iex> ?a
97
iex> ?ł
322
Note that most Unicode code charts will refer to a code point by its hexadecimal (hex) representation, e.g. 97 translates to 0061 in hex, and we can represent any Unicode character in an Elixir string by using the \uXXXX notation and the hex representation of its code point number:
iex> "\u0061" == "a"
true
iex> 0x0061 = 97 = ?a
97
The hex representation will also help you look up information about a code point, e.g. https://codepoints.net/U+0061 has a data sheet all about the lower case a, a.k.a. code point 97.
UTF-8 and Encodings
Now that we understand what the Unicode standard is and what code points are, we can finally talk about encodings. Whereas the code point is what we store, an encoding deals with how we store it: encoding is an implementation. In other words, we need a mechanism to convert the code point numbers into bytes so they can be stored in memory, written to disk, etc.
Elixir uses UTF-8 to encode its strings, which means that code points are encoded as a series of 8-bit bytes. UTF-8 is a variable width character encoding that uses one to four bytes to store each code point. It is capable of encoding all valid Unicode code points. Let's see an example:
iex> string = "héllo"
"héllo"
iex> String.length(string)
5
iex> byte_size(string)
6
Although the string above has 5 characters, it uses 6 bytes, as two bytes are used to represent the character é.
Note: if you are running on Windows, there is a chance your terminal does not use UTF-8 by default. You can change the encoding of your current session by running chcp 65001 before entering iex (iex.bat).

Besides defining characters, UTF-8 also provides a notion of graphemes. Graphemes may consist of multiple characters that are often perceived as one. For example, the woman firefighter emoji is represented as the combination of three characters: the woman emoji (👩), a hidden zero-width joiner, and the fire engine emoji (🚒):
iex> String.codepoints("👩‍🚒")
["👩", "‍", "🚒"]
iex> String.graphemes("👩‍🚒")
["👩‍🚒"]
However, Elixir is smart enough to know they are seen as a single character, and therefore the length is still one:
iex> String.length("👩‍🚒")
1
Note: if you can't see the emoji above in your terminal, you need to make sure your terminal supports emoji and that you are using a font that can render them.

Although these rules may sound complicated, UTF-8 encoded documents are everywhere. This page itself is encoded in UTF-8. The encoding information is given to your browser which then knows how to render all of the bytes, characters, and graphemes accordingly.
If you want to see the exact bytes that a string would be stored in a file, a common trick is to concatenate the null byte <<0>> to it:
iex> "hełło" <> <<0>>
<<104, 101, 197, 130, 197, 130, 111, 0>>
Alternatively, you can view a string's binary representation by using IO.inspect/2:
iex> IO.inspect("hełło", binaries: :as_binaries)
<<104, 101, 197, 130, 197, 130, 111>>
We are getting a little bit ahead of ourselves. Let's talk about bitstrings to learn about what exactly the <<>> constructor means.
Bitstrings
Although we have covered code points and UTF-8 encoding, we still need to go a bit deeper into how exactly we store the encoded bytes, and this is where we introduce the bitstring. A bitstring is a fundamental data type in Elixir, denoted with the <<>> syntax. A bitstring is a contiguous sequence of bits in memory.
By default, 8 bits (i.e. 1 byte) is used to store each number in a bitstring, but you can manually specify the number of bits via a ::n modifier to denote the size in n bits, or you can use the more verbose declaration ::size(n):
iex> <<42>> == <<42::8>>
true
iex> <<3::4>>
<<3::size(4)>>
For example, the decimal number 3 when represented with 4 bits in base 2 would be 0011, which is equivalent to the values 0, 0, 1, 1, each stored using 1 bit:
iex> <<0::1, 0::1, 1::1, 1::1>> == <<3::4>>
true
Any value that exceeds what can be stored by the number of bits provisioned is truncated:
iex> <<1>> == <<257>>
true
Here, 257 in base 2 would be represented as 100000001, but since we have reserved only 8 bits for its representation (by default), the left-most bit is ignored and the value becomes truncated to 00000001, or simply 1 in decimal.
A complete reference for the bitstring constructor can be found in <<>>'s documentation.
Binaries
A binary is a bitstring where the number of bits is divisible by 8. That means that every binary is a bitstring, but not every bitstring is a binary. We can use the is_bitstring/1 and is_binary/1 functions to demonstrate this.
iex> is_bitstring(<<3::4>>)
true
iex> is_binary(<<3::4>>)
false
iex> is_bitstring(<<0, 255, 42>>)
true
iex> is_binary(<<0, 255, 42>>)
true
iex> is_binary(<<42::16>>)
true
We can pattern match on binaries / bitstrings:
iex> <<0, 1, x>> = <<0, 1, 2>>
<<0, 1, 2>>
iex> x
2
iex> <<0, 1, x>> = <<0, 1, 2, 3>>
** (MatchError) no match of right hand side value: <<0, 1, 2, 3>>
Note that unless you explicitly use :: modifiers, each entry in the binary pattern is expected to match a single byte (exactly 8 bits). If we want to match on a binary of unknown size, we can use the binary modifier at the end of the pattern:
iex> <<0, 1, x::binary>> = <<0, 1, 2, 3>>
<<0, 1, 2, 3>>
iex> x
<<2, 3>>
There are a couple other modifiers that can be useful when doing pattern matches on binaries. The binary-size(n) modifier will match n bytes in a binary:
iex> <<head::binary-size(2), rest::binary>> = <<0, 1, 2, 3>>
<<0, 1, 2, 3>>
iex> head
<<0, 1>>
iex> rest
<<2, 3>>
A string is a UTF-8 encoded binary, where the code point for each character is encoded using 1 to 4 bytes. Thus every string is a binary, but due to the UTF-8 standard encoding rules, not every binary is a valid string.
iex> is_binary("hello")
true
iex> is_binary(<<239, 191, 19>>)
true
iex> String.valid?(<<239, 191, 19>>)
false
The string concatenation operator <> is actually a binary concatenation operator:
iex> "a" <> "ha"
"aha"
iex> <<0, 1>> <> <<2, 3>>
<<0, 1, 2, 3>>
Given that strings are binaries, we can also pattern match on strings:
iex> <<head, rest::binary>> = "banana"
"banana"
iex> head == ?b
true
iex> rest
"anana"
However, remember that binary pattern matching works on bytes, so matching on the string like "über" with multibyte characters won't match on the character, it will match on the first byte of that character:
iex> "ü" <> <<0>>
<<195, 188, 0>>
iex> <<x, rest::binary>> = "über"
"über"
iex> x == ?ü
false
iex> rest
<<188, 98, 101, 114>>
Above, x matched on only the first byte of the multibyte ü character.
Therefore, when pattern matching on strings, it is important to use the utf8 modifier:
iex> <<x::utf8, rest::binary>> = "über"
"über"
iex> x == ?ü
true
iex> rest
"ber"
Charlists
Our tour of our bitstrings, binaries, and strings is nearly complete, but we have one more data type to explain: the charlist.
A charlist is a list of integers where all the integers are valid code points. In practice, you will not come across them often, only in specific scenarios such as interfacing with older Erlang libraries that do not accept binaries as arguments.
iex> ~c"hello"
~c"hello"
iex> [?h, ?e, ?l, ?l, ?o]
~c"hello"
The ~c sigil (we'll cover sigils later in the "Sigils" chapter) indicates the fact that we are dealing with a charlist and not a regular string.
Instead of containing bytes, a charlist contains integer code points. However, the list is only printed as a sigil if all code points are within the ASCII range:
iex> ~c"hełło"
[104, 101, 322, 322, 111]
iex> is_list(~c"hełło")
true
This is done to ease interoperability with Erlang, even though it may lead to some surprising behavior. For example, if you are storing a list of integers that happen to range between 0 and 127, by default IEx will interpret this as a charlist and it will display the corresponding ASCII characters.
iex> heartbeats_per_minute = [99, 97, 116]
~c"cat"
You can always force charlists to be printed in their list representation by calling the inspect/2 function:
iex> inspect(heartbeats_per_minute, charlists: :as_list)
"[99, 97, 116]"
Furthermore, you can convert a charlist to a string and back by using the to_string/1 and to_charlist/1:
iex> to_charlist("hełło")
[104, 101, 322, 322, 111]
iex> to_string(~c"hełło")
"hełło"
iex> to_string(:hello)
"hello"
iex> to_string(1)
"1"
The functions above are polymorphic, in other words, they accept many shapes: not only do they convert charlists to strings (and vice-versa), they can also convert integers, atoms, and so on.
String (binary) concatenation uses the <> operator but charlists, being lists, use the list concatenation operator ++:
iex> ~c"this " <> ~c"fails"
** (ArgumentError) expected binary argument in <> operator but got: ~c"this "
 (elixir) lib/kernel.ex:1821: Kernel.wrap_concatenation/3
 (elixir) lib/kernel.ex:1808: Kernel.extract_concatenations/2
 (elixir) expanding macro: Kernel.<>/2
 iex:1: (file)
iex> ~c"this " ++ ~c"works"
~c"this works"
iex> "he" ++ "llo"
** (ArgumentError) argument error
 :erlang.++("he", "llo")
iex> "he" <> "llo"
"hello"
With binaries, strings, and charlists out of the way, it is time to talk about key-value data structures.

 Keyword lists and maps

Now let's talk about associative data structures. Associative data structures are able to associate a key to a certain value. Different languages call these different names like dictionaries, hashes, associative arrays, etc.
In Elixir, we have two main associative data structures: keyword lists and maps.
Keyword lists
Keyword lists are a data-structure used to pass options to functions. Let's see a scenario where they may be useful.
Imagine you want to split a string of numbers. Initially, we can invoke String.split/2 passing two strings as arguments:
iex> String.split("1 2 3 4", " ")
["1", "2", "3", "4"]
What if you only want to split at most 2 times? The String.split/3 function allows the parts option to be set to the maximum number of entries in the result:
iex> String.split("1 2 3 4", " ", [parts: 3])
["1", "2", "3 4"]
As you can see, we got 3 parts, the last one containing the remaining of the input without splitting it.
Now imagine that some of the inputs you must split on contains additional spaces between the numbers:
iex> String.split("1 2 3 4", " ", [parts: 3])
["1", "", "2 3 4"]
As you can see, the additional spaces lead to empty entries in the output. Luckily, we can also set the trim option to true to remove them:
iex> String.split("1 2 3 4", " ", [parts: 3, trim: true])
["1", "2", " 3 4"]
Once again we got 3 parts, with the last one containing the leftovers.
[parts: 3] and [parts: 3, trim: true] are keyword lists. When a keyword list is the last argument of a function, we can skip the brackets and write:
iex> String.split("1 2 3 4", " ", parts: 3, trim: true)
["1", "2", " 3 4"]
As shown in the example above, keyword lists are mostly used as optional arguments to functions.
As the name implies, keyword lists are simply lists. In particular, they are lists consisting of 2-item tuples where the first element (the key) is an atom and the second element can be any value. Both representations are the same:
iex> [{:parts, 3}, {:trim, true}] == [parts: 3, trim: true]
true
Keyword lists are important because they have three special characteristics:
	Keys must be atoms.
	Keys are ordered, as specified by the developer.
	Keys can be given more than once.

For example, we use the fact that keys can be repeated when importing functions in Elixir:
iex> import String, only: [split: 1, split: 2]
String
iex> split("hello world")
["hello", "world"]
In the example above, we imported both split/1 and split/2 from the String module, allowing us to invoke them without typing the module name. We used a keyword list to list the functions to import.
Since keyword lists are lists, we can use all operations available to lists. For example, we can use ++ to add new values to a keyword list:
iex> list = [a: 1, b: 2]
[a: 1, b: 2]
iex> list ++ [c: 3]
[a: 1, b: 2, c: 3]
iex> [a: 0] ++ list
[a: 0, a: 1, b: 2]
You can read the value of a keyword list using the brackets syntax, which will return the value of the first matching key. This is also known as the access syntax, as it is defined by the Access module:
iex> list[:a]
1
iex> list[:b]
2
Although we can pattern match on keyword lists, it is not done in practice since pattern matching on lists requires the number of items and their order to match:
iex> [a: a] = [a: 1]
[a: 1]
iex> a
1
iex> [a: a] = [a: 1, b: 2]
** (MatchError) no match of right hand side value: [a: 1, b: 2]
iex> [b: b, a: a] = [a: 1, b: 2]
** (MatchError) no match of right hand side value: [a: 1, b: 2]
Furthermore, given keyword lists are often used as optional arguments, they are used in situations where not all keys may be present, which would make it impossible to match on them. In a nutshell, do not pattern match on keyword lists.
In order to manipulate keyword lists, Elixir provides the Keyword module. Remember, though, keyword lists are simply lists, and as such they provide the same linear performance characteristics: the longer the list, the longer it will take to find a key, to count the number of items, and so on. If you need to store a large amount of keys in a key-value data structure, Elixir offers maps, which we will soon learn.
do-blocks and keywords
As we have seen, keywords are mostly used in the language to pass optional values. In fact, we have used keywords in earlier chapters. Let's look at the if/2 macro:
iex> if true do
...> "This will be seen"
...> else
...> "This won't"
...> end
"This will be seen"
In the example above, the do and else blocks make up a keyword list. They are nothing more than a syntax convenience on top of keyword lists. We can rewrite the above to:
iex> if(true, do: "This will be seen", else: "This won't")
"This will be seen"
Pay close attention to both syntaxes. The second example uses keyword lists, exactly as in the String.split/3 example, so we separate each key-value pair with commas and each key is followed by :. In the do-blocks, we use bare words, such as do, else, and end, and separate them by a newline. They are useful precisely when writing blocks of code. Most of the time, you will use the block syntax, but it is good to know they are equivalent.
The fact the block syntax is equivalent to keywords means we only need few data structures to represent the language, keeping it simple overall. We will come back to this topic when discussing optional syntax and meta-programming.
With this out of the way, let's talk about maps.
Maps as key-value pairs
Whenever you need to store key-value pairs, maps are the "go to" data structure in Elixir. A map is created using the %{} syntax:
iex> map = %{:a => 1, 2 => :b}
%{2 => :b, :a => 1}
iex> map[:a]
1
iex> map[2]
:b
iex> map[:c]
nil
Compared to keyword lists, we can already see two differences:
	Maps allow any value as a key.
	Maps have their own internal ordering, which is not guaranteed to be the same across different maps, even if they have the same keys

In contrast to keyword lists, maps are very useful with pattern matching. When a map is used in a pattern, it will always match on a subset of the given value:
iex> %{} = %{:a => 1, 2 => :b}
%{2 => :b, :a => 1}
iex> %{:a => a} = %{:a => 1, 2 => :b}
%{2 => :b, :a => 1}
iex> a
1
iex> %{:c => c} = %{:a => 1, 2 => :b}
** (MatchError) no match of right hand side value: %{2 => :b, :a => 1}
As shown above, a map matches as long as the keys in the pattern exist in the given map. Therefore, an empty map matches all maps.
The Map module provides a very similar API to the Keyword module with convenience functions to add, remove, and update maps keys:
iex> Map.get(%{:a => 1, 2 => :b}, :a)
1
iex> Map.put(%{:a => 1, 2 => :b}, :c, 3)
%{2 => :b, :a => 1, :c => 3}
iex> Map.to_list(%{:a => 1, 2 => :b})
[{2, :b}, {:a, 1}]
Maps of predefined keys
In the previous section, we have used maps as a key-value data structure where keys can be added or removed at any time. However, it is also common to create maps with a predefined set of keys. Their values may be updated, but new keys are never added nor removed. This is useful when we know the shape of the data we are working with and, if we get a different key, it likely means a mistake was done elsewhere. In such cases, the keys are most often atoms:
iex> map = %{:name => "John", :age => 23}
%{name: "John", age: 23}
As you can see from the printed result above, Elixir also allows you to write maps of atom keys using the same key: value syntax as keyword lists:
iex> map = %{name: "John", age: 23}
%{name: "John", age: 23}
When a key is an atom, we can also access them using the map.key syntax:
iex> map.name
"John"
iex> map.agee
** (KeyError) key :agee not found in: %{name: "John", age: 23}
There is also syntax for updating keys, which also raises if the key has not yet been defined:
iex> %{map | name: "Mary"}
%{name: "Mary", age: 23}
iex> %{map | agee: 27}
** (KeyError) key :agee not found in: %{name: "John", age: 23}
These operations have one large benefit in that they raise if the key does not exist in the map and the compiler may even detect and warn when possible. This makes them useful to get quick feedback and spot bugs and typos early on. This is also the syntax used to power another Elixir feature called "Structs", which we will learn later on.
Elixir developers typically prefer to use the map.key syntax and pattern matching instead of the functions in the Map module when working with maps because they lead to an assertive style of programming. This blog post by José Valim provides insight and examples on how you get more concise and faster software by writing assertive code in Elixir.
In a further chapter you'll learn about "Structs", which further enforce the idea of a map with predefined keys.
Nested data structures
Often we will have maps inside maps, or even keywords lists inside maps, and so forth. Elixir provides conveniences for manipulating nested data structures via the get_in/1, put_in/2, update_in/2, and other macros giving the same conveniences you would find in imperative languages while keeping the immutable properties of the language.
Imagine you have the following structure:
iex> users = [
 john: %{name: "John", age: 27, languages: ["Erlang", "Ruby", "Elixir"]},
 mary: %{name: "Mary", age: 29, languages: ["Elixir", "F#", "Clojure"]}
]
[
 john: %{age: 27, languages: ["Erlang", "Ruby", "Elixir"], name: "John"},
 mary: %{age: 29, languages: ["Elixir", "F#", "Clojure"], name: "Mary"}
]
We have a keyword list of users where each value is a map containing the name, age and a list of programming languages each user likes. If we wanted to access the age for john, we could write:
iex> users[:john].age
27
It happens we can also use this same syntax for updating the value:
iex> users = put_in(users[:john].age, 31)
[
 john: %{age: 31, languages: ["Erlang", "Ruby", "Elixir"], name: "John"},
 mary: %{age: 29, languages: ["Elixir", "F#", "Clojure"], name: "Mary"}
]
The update_in/2 macro is similar but allows us to pass a function that controls how the value changes. For example, let's remove "Clojure" from Mary's list of languages:
iex> users = update_in(users[:mary].languages, fn languages -> List.delete(languages, "Clojure") end)
[
 john: %{age: 31, languages: ["Erlang", "Ruby", "Elixir"], name: "John"},
 mary: %{age: 29, languages: ["Elixir", "F#"], name: "Mary"}
]
Summary
There are two different data structures for working with key-value stores in Elixir. Alongside the Access module and pattern matching, they provide a rich set of tools for manipulating complex, potentially nested, data structures.
As we conclude this chapter, remember that you should:
	Use keyword lists for passing optional values to functions

	Use maps for general key-value data structures

	Use maps when working with data that has a predefined set of keys

Now let's talk about modules and functions.

 Modules and functions

In Elixir we group several functions into modules. We've already used many different modules in the previous chapters, such as the String module:
iex> String.length("hello")
5
In order to create our own modules in Elixir, we use the defmodule macro. The first letter of a module name (an alias, as described further down) must be in uppercase. We use the def macro to define functions in that module. The first letter of every function must be in lowercase (or underscore):
iex> defmodule Math do
...> def sum(a, b) do
...> a + b
...> end
...> end

iex> Math.sum(1, 2)
3
In this chapter we will define our own modules, with different levels of complexity. As our examples get longer in size, it can be tricky to type them all in the shell, so we will resort more frequently to scripting.
Scripting
Elixir has two file extensions .ex (Elixir) and .exs (Elixir scripts). Elixir treats both files exactly the same way, the only difference is in intention. .ex files are meant to be compiled while .exs files are used for scripting.
Let's create a file named math.exs:
defmodule Math do
 def sum(a, b) do
 a + b
 end
end

IO.puts Math.sum(1, 2)
And execute it as:
$ elixir math.exs

You can also load the file within iex by running:
$ iex math.exs

And then have direct access to the Math module.
Function definition
Inside a module, we can define functions with def/2 and private functions with defp/2. A function defined with def/2 can be invoked from other modules while a private function can only be invoked locally.
defmodule Math do
 def sum(a, b) do
 do_sum(a, b)
 end

 defp do_sum(a, b) do
 a + b
 end
end

IO.puts Math.sum(1, 2) #=> 3
IO.puts Math.do_sum(1, 2) #=> ** (UndefinedFunctionError)
Function declarations also support guards and multiple clauses. If a function has several clauses, Elixir will try each clause until it finds one that matches. Here is an implementation of a function that checks if the given number is zero or not:
defmodule Math do
 def zero?(0) do
 true
 end

 def zero?(x) when is_integer(x) do
 false
 end
end

IO.puts Math.zero?(0) #=> true
IO.puts Math.zero?(1) #=> false
IO.puts Math.zero?([1, 2, 3]) #=> ** (FunctionClauseError)
IO.puts Math.zero?(0.0) #=> ** (FunctionClauseError)
The trailing question mark in zero? means that this function returns a boolean. To learn more about the naming conventions for modules, function names, variables and more in Elixir, see Naming Conventions.
Giving an argument that does not match any of the clauses raises an error.
Similar to constructs like if, function definitions support both do: and do-block syntax, as we learned in the previous chapter. For example, we can edit math.exs to look like this:
defmodule Math do
 def zero?(0), do: true
 def zero?(x) when is_integer(x), do: false
end
And it will provide the same behavior. You may use do: for one-liners but always use do-blocks for functions spanning multiple lines. If you prefer to be consistent, you can use do-blocks throughout your codebase.
Default arguments
Function definitions in Elixir also support default arguments:
defmodule Concat do
 def join(a, b, sep \\ " ") do
 a <> sep <> b
 end
end

IO.puts(Concat.join("Hello", "world")) #=> Hello world
IO.puts(Concat.join("Hello", "world", "_")) #=> Hello_world
Any expression is allowed to serve as a default value, but it won't be evaluated during the function definition. Every time the function is invoked and any of its default values have to be used, the expression for that default value will be evaluated:
defmodule DefaultTest do
 def dowork(x \\ "hello") do
 x
 end
end
iex> DefaultTest.dowork()
"hello"
iex> DefaultTest.dowork(123)
123
iex> DefaultTest.dowork()
"hello"
If a function with default values has multiple clauses, it is required to create a function head (a function definition without a body) for declaring defaults:
defmodule Concat do
 # A function head declaring defaults
 def join(a, b, sep \\ " ")

 def join(a, b, _sep) when b == "" do
 a
 end

 def join(a, b, sep) do
 a <> sep <> b
 end
end

IO.puts(Concat.join("Hello", "")) #=> Hello
IO.puts(Concat.join("Hello", "world")) #=> Hello world
IO.puts(Concat.join("Hello", "world", "_")) #=> Hello_world
When a variable is not used by a function or a clause, we add a leading underscore (_) to its name to signal this intent. This rule is also covered in our Naming Conventions document.
Understanding Aliases
An alias in Elixir is a capitalized identifier (like String, Keyword, etc) which is converted to an atom during compilation. For instance, the String alias translates by default to the atom :"Elixir.String":
iex> is_atom(String)
true
iex> to_string(String)
"Elixir.String"
iex> :"Elixir.String" == String
true
By using the alias/2 directive, we are changing the atom the alias expands to.
Aliases expand to atoms because in the Erlang Virtual Machine (and consequently Elixir) modules are always represented by atoms. By namespacing
those atoms elixir modules avoid conflicting with existing erlang modules.
iex> List.flatten([1, [2], 3])
[1, 2, 3]
iex> :"Elixir.List".flatten([1, [2], 3])
[1, 2, 3]
That's the mechanism we use to call Erlang modules:
iex> :lists.flatten([1, [2], 3])
[1, 2, 3]
Module nesting
Now that we have talked about aliases, we can talk about nesting and how it works in Elixir. Consider the following example:
defmodule Foo do
 defmodule Bar do
 end
end
The example above will define two modules: Foo and Foo.Bar. The second can be accessed as Bar inside Foo as long as they are in the same lexical scope.
If, later, the Bar module is moved outside the Foo module definition, it must be referenced by its full name (Foo.Bar) or an alias must be set using the alias directive discussed above.
Note: in Elixir, you don't have to define the Foo module before being able to define the Foo.Bar module, as they are effectively independent. The above could also be written as:
defmodule Foo.Bar do
end

defmodule Foo do
 alias Foo.Bar
 # Can still access it as `Bar`
end
Aliasing a nested module does not bring parent modules into scope. Consider the following example:
defmodule Foo do
 defmodule Bar do
 defmodule Baz do
 end
 end
end

alias Foo.Bar.Baz
The module `Foo.Bar.Baz` is now available as `Baz`
However, the module `Foo.Bar` is *not* available as `Bar`
As we will see in later chapters, aliases also play a crucial role in macros, to guarantee they are hygienic.

 alias, require, import, and use

In order to facilitate software reuse, Elixir provides three directives (alias, require, and import) plus a macro called use summarized below:
Alias the module so it can be called as Bar instead of Foo.Bar
alias Foo.Bar, as: Bar

Require the module in order to use its macros
require Foo

Import functions from Foo so they can be called without the `Foo.` prefix
import Foo

Invokes the custom code defined in Foo as an extension point
use Foo
We are going to explore them in detail now. Keep in mind the first three are called directives because they have lexical scope, while use is a common extension point that allows the used module to inject code.
alias
alias allows you to set up aliases for any given module name.
Imagine a module uses a specialized list implemented in Math.List. The alias directive allows referring to Math.List just as List within the module definition:
defmodule Stats do
 alias Math.List, as: List
 # In the remaining module definition List expands to Math.List.
end
The original List can still be accessed within Stats by the fully-qualified name Elixir.List.
All modules defined in Elixir are defined inside the main Elixir namespace, such as Elixir.String. However, for convenience, you can omit "Elixir." when referencing them.

Aliases are frequently used to define shortcuts. In fact, calling alias without an :as option sets the alias automatically to the last part of the module name, for example:
alias Math.List
Is the same as:
alias Math.List, as: List
Note that alias is lexically scoped, which allows you to set aliases inside specific functions:
defmodule Math do
 def plus(a, b) do
 alias Math.List
 # ...
 end

 def minus(a, b) do
 # ...
 end
end
In the example above, since we are invoking alias inside the function plus/2, the alias will be valid only inside the function plus/2. minus/2 won't be affected at all.
require
Elixir provides macros as a mechanism for meta-programming (writing code that generates code). Macros are expanded at compile time.
Public functions in modules are globally available, but in order to use macros, you need to opt-in by requiring the module they are defined in.
iex> Integer.is_odd(3)
** (UndefinedFunctionError) function Integer.is_odd/1 is undefined or private. However, there is a macro with the same name and arity. Be sure to require Integer if you intend to invoke this macro
 (elixir) Integer.is_odd(3)
iex> require Integer
Integer
iex> Integer.is_odd(3)
true
In Elixir, Integer.is_odd/1 is defined as a macro so that it can be used as a guard. This means that, in order to invoke Integer.is_odd/1, we need to first require the Integer module.
Note that like the alias directive, require is also lexically scoped. We will talk more about macros in a later chapter.
import
We use import whenever we want to access functions or macros from other modules without using the fully-qualified name. Note we can only import public functions, as private functions are never accessible externally.
For example, if we want to use the duplicate/2 function from the List module several times, we can import it:
iex> import List, only: [duplicate: 2]
List
iex> duplicate(:ok, 3)
[:ok, :ok, :ok]
We imported only the function duplicate (with arity 2) from List. Although :only is optional, its usage is recommended in order to avoid importing all the functions of a given module inside the current scope. :except could also be given as an option in order to import everything in a module except a list of functions.
Note that import is lexically scoped too. This means that we can import specific macros or functions inside function definitions:
defmodule Math do
 def some_function do
 import List, only: [duplicate: 2]
 duplicate(:ok, 10)
 end
end
In the example above, the imported List.duplicate/2 is only visible within that specific function. duplicate/2 won't be available in any other function in that module (or any other module for that matter).
While imports can be useful for frameworks and libraries to build abstractions, developers should generally prefer alias to import on their own codebases, as aliases make the origin of the function being invoked clearer.
use
The use macro is frequently used as an extension point. This means that, when you use a module FooBar, you allow that module to inject any code in the current module, such as importing itself or other modules, defining new functions, setting a module state, etc.
For example, in order to write tests using the ExUnit framework, a developer should use the ExUnit.Case module:
defmodule AssertionTest do
 use ExUnit.Case, async: true

 test "always pass" do
 assert true
 end
end
Behind the scenes, use requires the given module and then calls the __using__/1 callback on it allowing the module to inject some code into the current context. Some modules (for example, the above ExUnit.Case, but also Supervisor and GenServer) use this mechanism to populate your module with some basic behaviour, which your module is intended to override or complete.
Generally speaking, the following module:
defmodule Example do
 use Feature, option: :value
end
is compiled into
defmodule Example do
 require Feature
 Feature.__using__(option: :value)
end
Since use allows any code to run, we can't really know the side-effects of using a module without reading its documentation. Therefore use this function with care and only if strictly required. Don't use use where an import or alias would do.
Multi alias/import/require/use
It is possible to alias, import, require, or use multiple modules at once. This is particularly useful once we start nesting modules, which is very common when building Elixir applications. For example, imagine you have an application where all modules are nested under MyApp, you can alias the modules MyApp.Foo, MyApp.Bar and MyApp.Baz at once as follows:
alias MyApp.{Foo, Bar, Baz}
With this, we have finished our tour of Elixir modules.

 Module attributes

Module attributes in Elixir serve three purposes:
	as module and function annotations
	as temporary module storage to be used during compilation
	as compile-time constants

Let's check these examples.
As annotations
Elixir brings the concept of module attributes from Erlang. For example:
defmodule MyServer do
 @moduledoc "My server code."
end
In the example above, we are defining the module documentation by using the module attribute syntax. Elixir has a handful of reserved attributes. Here are a few of them, the most commonly used ones:
	@moduledoc — provides documentation for the current module.
	@doc — provides documentation for the function or macro that follows the attribute.
	@spec — provides a typespec for the function that follows the attribute.
	@behaviour — (notice the British spelling) used for specifying an OTP or user-defined behaviour.

@moduledoc and @doc are by far the most used attributes, and we expect you to use them a lot. Elixir treats documentation as first-class and provides many functions to access documentation. We will cover them in their own chapter.
Documentation is only accessible from compiled modules. So in order to give it a try, let's once again define the Math module, but this time within a file named math.ex:
defmodule Math do
 @moduledoc """
 Provides math-related functions.

 ## Examples

 iex> Math.sum(1, 2)
 3

 """

 @doc """
 Calculates the sum of two numbers.
 """
 def sum(a, b), do: a + b
end
Elixir promotes the use of Markdown with heredocs to write readable documentation. Heredocs are multi-line strings, they start and end with triple double-quotes, keeping the formatting of the inner text.
Now let's compile it. Start iex and then invoke the c/2 helper:
iex> c("math.ex", ".")
[Math]
And now we can access them:
iex> h Math # Docs for module Math
...
iex> h Math.sum # Docs for the sum function
...
When we compiled the module, you may have noticed Elixir created a Elixir.Math.beam file. That's the bytecode for the module and that's where the documentation is stored.
In our day to day, Elixir developers use the Mix build tool to compile code and projects like ExDoc to generate HTML and EPUB pages from the documentation.
Take a look at the docs for Module for a complete list of supported attributes.
As temporary storage
So far, we have seen how to define attributes, but how can we read them? Let's see an example:
defmodule MyServer do
 @service URI.parse("https://example.com")
 IO.inspect(@service)
end
Newlines
Do not add a newline between the attribute and its value, otherwise Elixir will assume you are reading the value, rather than setting it.
Trying to access an attribute that was not defined will print a warning:
defmodule MyServer do
 @unknown
end
warning: undefined module attribute @unknown, please remove access to @unknown or explicitly set it before access
Attributes can also be read inside functions:
defmodule MyApp.Status do
 @service URI.parse("https://example.com")
 def status(email) do
 SomeHttpClient.get(@service)
 end
end
The module attribute is defined at compilation time and its return value, not the function call itself, is what will be substituted in for the attribute. So the above will effectively compile to this:
defmodule MyApp.Status do
 def status(email) do
 SomeHttpClient.get(%URI{
 authority: "example.com",
 host: "example.com",
 port: 443,
 scheme: "https"
 })
 end
end
This can be useful for pre-computing values and then injecting its results into the module. This is what we mean by temporary storage: after the module is compiled, the module attribute is discarded, except for the functions that have read the attribute. Note you cannot invoke functions defined in the same module as part of the attribute itself, as those functions have not yet been defined.
Every time we read an attribute inside a function, Elixir takes a snapshot of its current value. Therefore if you read the same attribute multiple times inside multiple functions, you end-up increasing compilation times as Elixir now has to compile every snapshot. Generally speaking, you want to avoid reading the same attribute multiple times and instead move it to function. For example, instead of this:
def some_function, do: do_something_with(@example)
def another_function, do: do_something_else_with(@example)
Prefer this:
def some_function, do: do_something_with(example())
def another_function, do: do_something_else_with(example())
defp example, do: @example
As compile-time constants
Module attributes may also be useful as compile-time constants. Generally speaking, functions themselves are sufficient for the role of constants in a codebase. For example, instead of defining:
@hours_in_a_day 24
You should prefer:
defp hours_in_a_day(), do: 24
You may even define a public function if it needs to be shared across modules. It is common in many projects to have a module called MyApp.Constants that defines all constants used throughout the codebase.
You can even have composite data structures as constants, as long as they are made exclusively of other data types (no function calls, no operators, and no other expressions). For example, you may specify a system configuration constant as follows:
defp system_config(), do: %{timezone: "Etc/UTC", locale: "pt-BR"}
Given data structures in Elixir are immutable, only a single instance of the data structure above is allocated and shared across all functions calls, as long as it doesn't have any executable expression.
The use case for module attributes arise when you need to do some work at compile-time and then inject its results inside a function. A common scenario is module attributes inside patterns and guards (as an alternative to defguard/1), since they only support a limited set of expressions:
Inside pattern
@default_timezone "Etc/UTC"
def shift(@default_timezone), do: ...

Inside guards
@time_periods [:am, :pm]
def shift(time, period) when period in @time_periods, do: ...
Module attributes as constants and as temporary storage are most often used together: the module attribute is used to compute and store an expensive value, and then exposed as constant from that module.
Going further
Libraries and frameworks can leverage module attributes to provide custom annotations. To see an example, look no further than Elixir's unit test framework called ExUnit. ExUnit uses module attributes for multiple different purposes:
defmodule MyTest do
 use ExUnit.Case, async: true

 @tag :external
 @tag os: :unix
 test "contacts external service" do
 # ...
 end
end
In the example above, ExUnit stores the value of async: true in a module attribute to change how the module is compiled. Tags also work as annotations and they can be supplied multiple times, thanks to Elixir's ability to accumulate attributes. Then you can use tags to setup and filter tests, such as avoiding executing Unix specific tests while running your test suite on Windows.
To fully understand how ExUnit works, we'd need macros, so we will revisit this pattern in the Meta-programming guide and learn how to use module attributes as storage for custom annotations.
In the next chapters, we'll explore structs and protocols before moving to exception handling and other constructs like sigils and comprehensions.

 Structs

We learned about maps in earlier chapters:
iex> map = %{a: 1, b: 2}
%{a: 1, b: 2}
iex> map[:a]
1
iex> %{map | a: 3}
%{a: 3, b: 2}
Structs are extensions built on top of maps that provide compile-time checks and default values.
Defining structs
To define a struct, the defstruct/1 construct is used:
iex> defmodule User do
...> defstruct name: "John", age: 27
...> end
The keyword list used with defstruct defines what fields the struct will have along with their default values. Structs take the name of the module they're defined in. In the example above, we defined a struct named User.
We can now create User structs by using a syntax similar to the one used to create maps:
iex> %User{}
%User{age: 27, name: "John"}
iex> %User{name: "Jane"}
%User{age: 27, name: "Jane"}
Structs provide compile-time guarantees that only the fields defined through defstruct will be allowed to exist in a struct:
iex> %User{oops: :field}
** (KeyError) key :oops not found expanding struct: User.__struct__/1
Accessing and updating structs
Structs share the same syntax for accessing and updating fields as maps of fixed keys:
iex> john = %User{}
%User{age: 27, name: "John"}
iex> john.name
"John"
iex> jane = %{john | name: "Jane"}
%User{age: 27, name: "Jane"}
iex> %{jane | oops: :field}
** (KeyError) key :oops not found in: %User{age: 27, name: "Jane"}
When using the update syntax (|), Elixir is aware that no new keys will be added to the struct, allowing the maps underneath to share their structure in memory. In the example above, both john and jane share the same key structure in memory.
Structs can also be used in pattern matching, both for matching on the value of specific keys as well as for ensuring that the matching value is a struct of the same type as the matched value.
iex> %User{name: name} = john
%User{age: 27, name: "John"}
iex> name
"John"
iex> %User{} = %{}
** (MatchError) no match of right hand side value: %{}
For more details on creating, updating, and pattern matching structs, see the documentation for %/2.
Dynamic struct updates
When you need to update structs with data from keyword lists or maps, use Kernel.struct!/2:
iex> john = %User{name: "John", age: 27}
%User{age: 27, name: "John"}
iex> updates = [name: "Jane", age: 30]
[name: "Jane", age: 30]
iex> struct!(john, updates)
%User{age: 30, name: "Jane"}
struct!/2 will raise an error if you try to set invalid fields:
iex> struct!(john, invalid: "field")
** (KeyError) key :invalid not found in: %User{age: 27, name: "John"}
Use the map update syntax (%{john | name: "Jane"}) when you know the exact fields at compile time. Always use struct!/2 instead of Map functions to preserve struct integrity.
Structs are bare maps underneath
Structs are simply maps with a "special" field named __struct__ that holds the name of the struct:
iex> is_map(john)
true
iex> john.__struct__
User
However, structs do not inherit any of the protocols that maps do. For example, you can neither enumerate nor access a struct:
iex> john = %User{}
%User{age: 27, name: "John"}
iex> john[:name]
** (UndefinedFunctionError) function User.fetch/2 is undefined (User does not implement the Access behaviour)
 User.fetch(%User{age: 27, name: "John"}, :name)
iex> Enum.each(john, fn {field, value} -> IO.puts(value) end)
** (Protocol.UndefinedError) protocol Enumerable not implemented for %User{age: 27, name: "John"} of type User (a struct)
Structs alongside protocols provide one of the most important features for Elixir developers: data polymorphism. That's what we will explore in the next chapter.
Default values and required keys
If you don't specify a default key value when defining a struct, nil will be assumed:
iex> defmodule Product do
...> defstruct [:name]
...> end
iex> %Product{}
%Product{name: nil}
You can define a structure combining both fields with explicit default values, and implicit nil values. In this case you must first specify the fields which implicitly default to nil:
iex> defmodule User do
...> defstruct [:email, name: "John", age: 27]
...> end
iex> %User{}
%User{age: 27, email: nil, name: "John"}
Doing it in reverse order will raise a syntax error:
iex> defmodule User do
...> defstruct [name: "John", age: 27, :email]
...> end
** (SyntaxError) iex:107: unexpected expression after keyword list. Keyword lists must always come last in lists and maps.
You can also enforce that certain keys have to be specified when creating the struct via the @enforce_keys module attribute:
iex> defmodule Car do
...> @enforce_keys [:make]
...> defstruct [:model, :make]
...> end
iex> %Car{}
** (ArgumentError) the following keys must also be given when building struct Car: [:make]
 expanding struct: Car.__struct__/1
Enforcing keys provides a simple compile-time guarantee to aid developers when building structs. It is not enforced on updates and it does not provide any sort of value-validation.

 Recursion

Elixir does not provide loop constructs. Instead we leverage recursion and high-level functions for working with collections. This chapter will explore the former.
Loops through recursion
Due to immutability, loops in Elixir (as in any functional programming language) are written differently from imperative languages. For example, in an imperative language like C, one would write:
for(i = 0; i < sizeof(array); i++) {
 array[i] = array[i] * 2;
}
In the example above, we are mutating both the array and the variable i. However, data structures in Elixir are immutable. For this reason, functional languages rely on recursion: a function is called recursively until a condition is reached that stops the recursive action from continuing. No data is mutated in this process. Consider the example below that prints a string an arbitrary number of times:
defmodule Recursion do
 def print_multiple_times(msg, n) when n > 0 do
 IO.puts(msg)
 print_multiple_times(msg, n - 1)
 end

 def print_multiple_times(_msg, 0) do
 :ok
 end
end

Recursion.print_multiple_times("Hello!", 3)
Hello!
Hello!
Hello!
:ok
Similar to case, a function may have many clauses. A particular clause is executed when the arguments passed to the function match the clause's argument patterns and its guards evaluate to true.
When print_multiple_times/2 is initially called in the example above, the argument n is equal to 3.
The first clause has a guard which says "use this definition if and only if n is more than 0". Since this is the case, it prints the msg and then calls itself passing n - 1 (2) as the second argument.
Now we execute the same function again, starting from the first clause. Given the second argument, n, is still more than 0, we print the message and call ourselves once more, now with the second argument set to 1. Then we print the message one last time and call print_multiple_times("Hello!", 0), starting from the top once again.
When the second argument is zero, the guard n > 0 evaluates to false, and the first function clause won't execute. Elixir then proceeds to try the next function clause, which explicitly matches on the case where n is 0. This clause, also known as the termination clause, ignores the message argument by assigning it to the _msg variable and returns the atom :ok.
Finally, if you pass an argument that does not match any clause, Elixir raises a FunctionClauseError:
iex> Recursion.print_multiple_times("Hello!", -1)
** (FunctionClauseError) no function clause matching in Recursion.print_multiple_times/2

 The following arguments were given to Recursion.print_multiple_times/2:

 # 1
 "Hello!"

 # 2
 -1

 iex:1: Recursion.print_multiple_times/2
Reduce and map algorithms
Let's now see how we can use the power of recursion to sum a list of numbers:
defmodule Math do
 def sum_list([head | tail], accumulator) do
 sum_list(tail, head + accumulator)
 end

 def sum_list([], accumulator) do
 accumulator
 end
end

IO.puts Math.sum_list([1, 2, 3], 0) #=> 6
We invoke sum_list with the list [1, 2, 3] and the initial value 0 as arguments. We will try each clause until we find one that matches according to the pattern matching rules. In this case, the list [1, 2, 3] matches against [head | tail] which binds head to 1 and tail to [2, 3]; accumulator is set to 0.
Then, we add the head of the list to the accumulator head + accumulator and call sum_list again, recursively, passing the tail of the list as its first argument. The tail will once again match [head | tail] until the list is empty, as seen below:
sum_list([1, 2, 3], 0)
sum_list([2, 3], 1)
sum_list([3], 3)
sum_list([], 6)
When the list is empty, it will match the final clause which returns the final result of 6.
The process of taking a list and reducing it down to one value is known as a reduce algorithm and is central to functional programming.
What if we instead want to double all of the values in our list?
defmodule Math do
 def double_each([head | tail]) do
 [head * 2 | double_each(tail)]
 end

 def double_each([]) do
 []
 end
end

Math.double_each([1, 2, 3]) #=> [2, 4, 6]
Here we have used recursion to traverse a list, doubling each element and returning a new list. The process of taking a list and mapping over it is known as a map algorithm.
Recursion and tail call optimization are an important part of Elixir and are commonly used to create loops. However, when programming in Elixir you will rarely use recursion as above to manipulate lists.
The Enum module, which we're going to see in the next chapter already provides many conveniences for working with lists. For instance, the examples above could be written as:
iex> Enum.reduce([1, 2, 3], 0, fn x, acc -> x + acc end)
6
iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]
Or, using the capture syntax:
iex> Enum.reduce([1, 2, 3], 0, &+/2)
6
iex> Enum.map([1, 2, 3], &(&1 * 2))
[2, 4, 6]
Let's take a deeper look at Enumerable and, while we're at it, its lazy counterpart, Stream.

 Enumerables and Streams

While Elixir allows us to write recursive code, most operations we perform on collections is done with the help of the Enum and Stream modules. Let's learn how.
Enumerables
Elixir provides the concept of enumerables and the Enum module to work with them. We have already learned two enumerables: lists and maps.
iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]
iex> Enum.map(%{1 => 2, 3 => 4}, fn {k, v} -> k * v end)
[2, 12]
The Enum module provides a huge range of functions to transform, sort, group, filter and retrieve items from enumerables. It is one of the modules developers use frequently in their Elixir code. For a general overview of all functions in the Enum module, see the Enum cheatsheet.
Elixir also provides ranges (see Range), which are also enumerable:
iex> Enum.map(1..3, fn x -> x * 2 end)
[2, 4, 6]
iex> Enum.reduce(1..3, 0, &+/2)
6
The functions in the Enum module are limited to, as the name says, enumerating values in data structures. For specific operations, like inserting and updating particular elements, you may need to reach for modules specific to the data type. For example, if you want to insert an element at a given position in a list, you should use the List.insert_at/3 function, as it would make little sense to insert a value into, for example, a range.
We say the functions in the Enum module are polymorphic because they can work with diverse data types. In particular, the functions in the Enum module can work with any data type that implements the Enumerable protocol. We are going to discuss Protocols in a later chapter, for now we are going to move on to a specific kind of enumerable called a stream.
Eager vs Lazy
All the functions in the Enum module are eager. Many functions expect an enumerable and return a list back:
iex> odd? = fn x -> rem(x, 2) != 0 end
#Function<6.80484245/1 in :erl_eval.expr/5>
iex> Enum.filter(1..3, odd?)
[1, 3]
This means that when performing multiple operations with Enum, each operation is going to generate an intermediate list until we reach the result:
iex> 1..100_000 |> Enum.map(&(&1 * 3)) |> Enum.filter(odd?) |> Enum.sum()
7500000000
The example above has a pipeline of operations. We start with a range and then multiply each element in the range by 3. This first operation will now create and return a list with 100_000 items. Then we keep all odd elements from the list, generating a new list, now with 50_000 items, and then we sum all entries.
The pipe operator
The |> symbol used in the snippet above is the pipe operator: it takes the output from the expression on its left side and passes it as the first argument to the function call on its right side. Its purpose is to highlight the data being transformed by a series of functions. To see how it can make the code cleaner, have a look at the example above rewritten without using the |> operator:
iex> Enum.sum(Enum.filter(Enum.map(1..100_000, &(&1 * 3)), odd?))
7500000000
Find more about the pipe operator by reading its documentation.
Streams
As an alternative to Enum, Elixir provides the Stream module which supports lazy operations:
iex> 1..100_000 |> Stream.map(&(&1 * 3)) |> Stream.filter(odd?) |> Enum.sum()
7500000000
Streams are lazy, composable enumerables.
In the example above, 1..100_000 |> Stream.map(&(&1 * 3)) returns a data type, an actual stream, that represents the map computation over the range 1..100_000:
iex> 1..100_000 |> Stream.map(&(&1 * 3))
#Stream<[enum: 1..100000, funs: [#Function<34.16982430/1 in Stream.map/2>]]>
Furthermore, they are composable because we can pipe many stream operations:
iex> 1..100_000 |> Stream.map(&(&1 * 3)) |> Stream.filter(odd?)
#Stream<[enum: 1..100000, funs: [...]]>
Instead of generating intermediate lists, streams build a series of computations that are invoked only when we pass the underlying stream to the Enum module. Streams are useful when working with large, possibly infinite, collections.
Many functions in the Stream module accept any enumerable as an argument and return a stream as a result. It also provides functions for creating streams. For example, Stream.cycle/1 can be used to create a stream that cycles a given enumerable infinitely. Be careful to not call a function like Enum.map/2 on such streams, as they would cycle forever:
iex> stream = Stream.cycle([1, 2, 3])
#Function<15.16982430/2 in Stream.unfold/2>
iex> Enum.take(stream, 10)
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1]
Another interesting function is Stream.resource/3 which can be used to wrap around resources, guaranteeing they are opened right before enumeration and closed afterwards, even in the case of failures. For example, File.stream!/1 builds on top of Stream.resource/3 to stream files:
iex> "path/to/file" |> File.stream!() |> Enum.take(10)
The example above will fetch the first 10 lines of the file you have selected. This means streams can be very useful for handling large files or even slow resources like network resources.
The Enum and Stream modules provide a wide range of functions, but you don't have to know all of them by heart. Familiarize yourself with Enum.map/2, Enum.reduce/3 and other functions with either map or reduce in their names, and you will naturally build an intuition around the most important use cases. You may also focus on the Enum module first and only move to Stream for the particular scenarios where laziness is required, to either deal with slow resources or large, possibly infinite, collections.
Next, we'll look at a feature central to Elixir, Processes, which allows us to write concurrent, parallel and distributed programs in an easy and understandable way.

 Comprehensions

In Elixir, it is common to loop over an Enumerable, often filtering out some results and mapping values into another list. Comprehensions are syntactic sugar for such constructs: they group those common tasks into the for special form.
For example, we can map a list of integers into their squared values:
iex> for n <- [1, 2, 3, 4], do: n * n
[1, 4, 9, 16]
A comprehension is made of three parts: generators, filters, and collectables.
Generators and filters
In the expression above, n <- [1, 2, 3, 4] is the generator. It is literally generating values to be used in the comprehension. Any enumerable can be passed on the right-hand side of the generator expression:
iex> for n <- 1..4, do: n * n
[1, 4, 9, 16]
Generator expressions also support pattern matching on their left-hand side; all non-matching patterns are ignored. Imagine that, instead of a range, we have a keyword list where the key is the atom :good or :bad and we only want to compute the square of the :good values:
iex> values = [good: 1, good: 2, bad: 3, good: 4]
iex> for {:good, n} <- values, do: n * n
[1, 4, 16]
Alternatively to pattern matching, filters can be used to select some particular elements. For example, we can select the multiples of 3 and discard all others:
iex> for n <- 0..5, rem(n, 3) == 0, do: n * n
[0, 9]
Comprehensions discard all elements for which the filter expression returns false or nil; all other values are selected.
Comprehensions generally provide a much more concise representation than using the equivalent functions from the Enum and Stream modules. Furthermore, comprehensions also allow multiple generators and filters to be given. Here is an example that receives a list of directories and gets the size of each file in those directories:
dirs = ["/home/mikey", "/home/james"]

for dir <- dirs,
 file <- File.ls!(dir),
 path = Path.join(dir, file),
 File.regular?(path) do
 File.stat!(path).size
end
Multiple generators can also be used to calculate the Cartesian product of two lists:
iex> for i <- [:a, :b, :c], j <- [1, 2], do: {i, j}
[a: 1, a: 2, b: 1, b: 2, c: 1, c: 2]
Finally, keep in mind that variable assignments inside the comprehension, be it in generators, filters or inside the block, are not reflected outside of the comprehension.
Bitstring generators
Bitstring generators are also supported and are very useful when you need to comprehend over bitstring streams. The example below receives a list of pixels from a binary with their respective red, green and blue values and converts them into tuples of three elements each:
iex> pixels = <<213, 45, 132, 64, 76, 32, 76, 0, 0, 234, 32, 15>>
iex> for <<r::8, g::8, b::8 <- pixels>>, do: {r, g, b}
[{213, 45, 132}, {64, 76, 32}, {76, 0, 0}, {234, 32, 15}]
A bitstring generator can be mixed with "regular" enumerable generators, and supports filters as well.
The :into option
In the examples above, all the comprehensions returned lists as their result. However, the result of a comprehension can be inserted into different data structures by passing the :into option to the comprehension.
For example, a bitstring generator can be used with the :into option in order to easily remove all spaces in a string:
iex> for <<c <- " hello world ">>, c != ?\s, into: "", do: <<c>>
"helloworld"
Sets, maps, and other dictionaries can also be given to the :into option. In general, :into accepts any structure that implements the Collectable protocol.
A common use case of :into can be transforming values in a map:
iex> for {key, val} <- %{"a" => 1, "b" => 2}, into: %{}, do: {key, val * val}
%{"a" => 1, "b" => 4}
Let's make another example using streams. Since the IO module provides streams (that are both Enumerables and Collectables), an echo terminal that echoes back the upcased version of whatever is typed can be implemented using comprehensions:
iex> stream = IO.stream(:stdio, :line)
iex> for line <- stream, into: stream do
...> String.upcase(line) <> "\n"
...> end
Now type any string into the terminal and you will see that the same value will be printed in upper-case. Unfortunately, this example also got your IEx shell stuck in the comprehension, so you will need to hit Ctrl+C twice to get out of it. :)
Other options
Comprehensions support other options, such as :reduce and :uniq. Here are additional resources to learn more about comprehensions:
	for official reference in Elixir documentation
	Mitchell Hanberg's comprehensive guide to Elixir's comprehensions

 Protocols

Protocols are a mechanism to achieve polymorphism in Elixir where you want the behavior to vary depending on the data type. We are already familiar with one way of solving this type of problem: via pattern matching and guard clauses. Consider a simple utility module that would tell us the type of input variable:
defmodule Utility do
 def type(value) when is_binary(value), do: "string"
 def type(value) when is_integer(value), do: "integer"
 # ... other implementations ...
end
If the use of this module were confined to your own project, you would be able to keep defining new type/1 functions for each new data type. However, this code could be problematic if it was shared as a dependency by multiple apps because there would be no easy way to extend its functionality.
This is where protocols can help us: protocols allow us to extend the original behavior for as many data types as we need. That's because dispatching on a protocol is available to any data type that has implemented the protocol and a protocol can be implemented by anyone, at any time.
Here's how we could write the same Utility.type/1 functionality as a protocol:
defprotocol Utility do
 @spec type(t) :: String.t()
 def type(value)
end

defimpl Utility, for: BitString do
 def type(_value), do: "string"
end

defimpl Utility, for: Integer do
 def type(_value), do: "integer"
end
We define the protocol using defprotocol/2 - its functions and specs may look similar to interfaces or abstract base classes in other languages. We can add as many implementations as we like using defimpl/2. The output is exactly the same as if we had a single module with multiple functions:
iex> Utility.type("foo")
"string"
iex> Utility.type(123)
"integer"
With protocols, however, we are no longer stuck having to continuously modify the same module to support more and more data types. For example, we could spread the defimpl calls above over multiple files and Elixir will dispatch the execution to the appropriate implementation based on the data type. Functions defined in a protocol may have more than one input, but the dispatching will always be based on the data type of the first input.
One of the most common protocols you may encounter is the String.Chars protocol: implementing its to_string/1 function for your custom structs will tell the Elixir kernel how to represent them as strings. We will explore all the built-in protocols later. For now, let's implement our own.
Example
Now that you have seen an example of the type of problem protocols help solve and how they solve them, let's look at a more in-depth example.
In Elixir, we have two idioms for checking how many items there are in a data structure: length and size. length means the information must be computed. For example, length(list) needs to traverse the whole list to calculate its length. On the other hand, tuple_size(tuple) and byte_size(binary) do not depend on the tuple and binary size as the size information is pre-computed in the data structure.
Even if we have type-specific functions for getting the size built into Elixir (such as tuple_size/1), we could implement a generic Size protocol that all data structures for which size is pre-computed would implement.
The protocol definition would look like this:
defprotocol Size do
 @doc "Calculates the size (and not the length!) of a data structure"
 def size(data)
end
The Size protocol expects a function called size that receives one argument (the data structure we want to know the size of) to be implemented. We can now implement this protocol for the data structures that would have a compliant implementation:
defimpl Size, for: BitString do
 def size(string), do: byte_size(string)
end

defimpl Size, for: Map do
 def size(map), do: map_size(map)
end

defimpl Size, for: Tuple do
 def size(tuple), do: tuple_size(tuple)
end
We didn't implement the Size protocol for lists as there is no "size" information pre-computed for lists, and the length of a list has to be computed (with length/1).
Now with the protocol defined and implementations in hand, we can start using it:
iex> Size.size("foo")
3
iex> Size.size({:ok, "hello"})
2
iex> Size.size(%{label: "some label"})
1
Passing a data type that doesn't implement the protocol raises an error:
iex> Size.size([1, 2, 3])
** (Protocol.UndefinedError) protocol Size not implemented for [1, 2, 3] of type List
It's possible to implement protocols for all Elixir data types:
	Atom
	BitString
	Float
	Function
	Integer
	List
	Map
	PID
	Port
	Reference
	Tuple

Protocols and structs
The power of Elixir's extensibility comes when protocols and structs are used together.
In the previous chapter, we have learned that although structs are maps, they do not share protocol implementations with maps. For example, MapSets (sets based on maps) are implemented as structs. Let's try to use the Size protocol with a MapSet:
iex> Size.size(%{})
0
iex> set = %MapSet{} = MapSet.new
MapSet.new([])
iex> Size.size(set)
** (Protocol.UndefinedError) protocol Size not implemented for MapSet.new([]) of type MapSet (a struct)
Instead of sharing protocol implementation with maps, structs require their own protocol implementation. Since a MapSet has its size precomputed and accessible through MapSet.size/1, we can define a Size implementation for it:
defimpl Size, for: MapSet do
 def size(set), do: MapSet.size(set)
end
If desired, you could come up with your own semantics for the size of your struct. Not only that, you could use structs to build more robust data types, like queues, and implement all relevant protocols, such as Enumerable and possibly Size, for this data type.
defmodule User do
 defstruct [:name, :age]
end

defimpl Size, for: User do
 def size(_user), do: 2
end
Implementing Any
Manually implementing protocols for all types can quickly become repetitive and tedious. In such cases, Elixir provides two options: we can explicitly derive the protocol implementation for our types or automatically implement the protocol for all types. In both cases, we need to implement the protocol for Any.
Deriving
Elixir allows us to derive a protocol implementation based on the Any implementation. Let's first implement Any as follows:
defimpl Size, for: Any do
 def size(_), do: 0
end
The implementation above is arguably not a reasonable one. For example, it makes no sense to say that the size of a PID or an Integer is 0.
However, should we be fine with the implementation for Any, in order to use such implementation we would need to tell our struct to explicitly derive the Size protocol:
defmodule OtherUser do
 @derive [Size]
 defstruct [:name, :age]
end
When deriving, Elixir will implement the Size protocol for OtherUser based on the implementation provided for Any.
Fallback to Any
Another alternative to @derive is to explicitly tell the protocol to fallback to Any when an implementation cannot be found. This can be achieved by setting @fallback_to_any to true in the protocol definition:
defprotocol Size do
 @fallback_to_any true
 def size(data)
end
As we said in the previous section, the implementation of Size for Any is not one that can apply to any data type. That's one of the reasons why @fallback_to_any is an opt-in behavior. For the majority of protocols, raising an error when a protocol is not implemented is the proper behavior. That said, assuming we have implemented Any as in the previous section:
defimpl Size, for: Any do
 def size(_), do: 0
end
Now all data types (including structs) that have not implemented the Size protocol will be considered to have a size of 0.
Which technique is best between deriving and falling back to Any depends on the use case but, given Elixir developers prefer explicit over implicit, you may see many libraries pushing towards the @derive approach.
Built-in protocols
Elixir ships with some built-in protocols. In previous chapters, we have discussed the Enum module which provides many functions that work with any data structure that implements the Enumerable protocol:
iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]
iex> Enum.reduce(1..3, 0, fn x, acc -> x + acc end)
6
Another useful example is the String.Chars protocol, which specifies how to convert a data structure to its human representation as a string. It's exposed via the to_string function:
iex> to_string(:hello)
"hello"
Notice that string interpolation in Elixir calls the to_string function:
iex> "age: #{25}"
"age: 25"
The snippet above only works because numbers implement the String.Chars protocol. Passing a tuple, for example, will lead to an error:
iex> tuple = {1, 2, 3}
{1, 2, 3}
iex> "tuple: #{tuple}"
** (Protocol.UndefinedError) protocol String.Chars not implemented for {1, 2, 3} of type Tuple
When there is a need to "print" a more complex data structure, one can use the inspect function, based on the Inspect protocol:
iex> "tuple: #{inspect(tuple)}"
"tuple: {1, 2, 3}"
The Inspect protocol is the protocol used to transform any data structure into a readable textual representation. This is what tools like IEx use to print results:
iex> {1, 2, 3}
{1, 2, 3}
iex> %User{}
%User{name: "john", age: 27}
Keep in mind that, by convention, whenever the inspected value starts with #, it is representing a data structure in non-valid Elixir syntax. This means the inspect protocol is not reversible as information may be lost along the way:
iex> inspect &(&1+2)
"#Function<6.71889879/1 in :erl_eval.expr/5>"
There are other protocols in Elixir, but this covers the most common ones. You can learn more about protocols and implementations in the Protocol module.

 Sigils

Elixir provides double-quoted strings as well as a concept called charlists, which are defined using the ~c"hello world" sigil syntax. In this chapter, we will learn more about sigils and how to define our own.
One of Elixir's goals is extensibility: developers should be able to extend the language to fit any particular domain. Sigils provide the foundation for extending the language with custom textual representations. Sigils start with the tilde (~) character which is followed by either a single lower-case letter or one or more upper-case letters, and then a delimiter. Optional modifiers are added after the final delimiter.
Regular expressions
The most common sigil in Elixir is ~r, which is used to create regular expressions:
A regular expression that matches strings which contain "foo" or "bar":
iex> regex = ~r/foo|bar/
~r/foo|bar/
iex> "foo" =~ regex
true
iex> "bat" =~ regex
false
Elixir provides Perl-compatible regular expressions (regexes), as implemented by the PCRE library. Regexes also support modifiers. For example, the i modifier makes a regular expression case insensitive:
iex> "HELLO" =~ ~r/hello/
false
iex> "HELLO" =~ ~r/hello/i
true
Check out the Regex module for more information on other modifiers and the supported operations with regular expressions.
So far, all examples have used / to delimit a regular expression. However, sigils support 8 different delimiters:
~r/hello/
~r|hello|
~r"hello"
~r'hello'
~r(hello)
~r[hello]
~r{hello}
~r<hello>
The reason behind supporting different delimiters is to provide a way to write literals without escaped delimiters. For example, a regular expression with forward slashes like ~r(^https?://) reads arguably better than ~r/^https?:\/\//. Similarly, if the regular expression has forward slashes and capturing groups (that use ()), you may then choose double quotes instead of parentheses.
Strings, charlists, and word lists sigils
Elixir ships with three sigils for building textual data structures. These allow you to choose an appropriate delimiter for your literal text such that you do not have to worry about escaping.
Strings
The ~s sigil is used to generate strings, like double quotes are. The ~s sigil is useful when a string contains double quotes:
iex> ~s(this is a string with "double" quotes, not 'single' ones)
"this is a string with \"double\" quotes, not 'single' ones"
Charlists
The ~c sigil is the regular way to represent charlists.
iex> [?c, ?a, ?t]
~c"cat"
iex> ~c(this is a char list containing "double quotes")
~c"this is a char list containing \"double quotes\""
Word lists
The ~w sigil is used to generate lists of words (words are just regular strings). Inside the ~w sigil, words are separated by whitespace.
iex> ~w(foo bar bat)
["foo", "bar", "bat"]
The ~w sigil also accepts the c, s and a modifiers (for charlists, strings, and atoms, respectively), which specify the data type of the elements of the resulting list:
iex> ~w(foo bar bat)a
[:foo, :bar, :bat]
Interpolation and escaping in textual sigils
Elixir supports some sigil variants to deal with escaping characters and interpolation. In particular, uppercase-letter textual sigils do not perform interpolation nor escaping. For example, although both ~s and ~S will return strings, the former allows escape codes and interpolation while the latter does not:
iex> ~s(String with escape codes \x26 #{"inter" <> "polation"})
"String with escape codes & interpolation"
iex> ~S(String without escape codes \x26 without #{interpolation})
"String without escape codes \\x26 without \#{interpolation}"
The following escape codes can be used in textual sigils:
	\\ – single backslash
	\a – bell/alert
	\b – backspace
	\d - delete
	\e - escape
	\f - form feed
	\n – newline
	\r – carriage return
	\s – space
	\t – tab
	\v – vertical tab
	\0 - null byte
	\xDD - represents a single byte in hexadecimal (such as \x13)
	\uDDDD and \u{D...} - represents a Unicode codepoint in hexadecimal (such as \u{1F600})

In addition to those, a double quote inside a double-quoted string needs to be escaped as \", and, analogously, a single quote inside a single-quoted char list needs to be escaped as \'. Nevertheless, it is better style to change delimiters as seen above than to escape them.
Sigils also support heredocs, that is, three double-quotes or single-quotes as separators:
iex> ~s"""
...> this is
...> a heredoc string
...> """
The most common use case for heredoc sigils is when writing documentation. For example, writing escape characters in the documentation would soon become error prone because of the need to double-escape some characters:
@doc """
Converts double-quotes to single-quotes.

Examples

 iex> convert("\\\"foo\\\"")
 "'foo'"

"""
def convert(...)
By using ~S, this problem can be avoided altogether:
@doc ~S"""
Converts double-quotes to single-quotes.

Examples

 iex> convert("\"foo\"")
 "'foo'"

"""
def convert(...)
Calendar sigils
Elixir offers several sigils to deal with various flavors of times and dates.
Date
A %Date{} struct contains the fields year, month, day, and calendar. You can create one using the ~D sigil:
iex> d = ~D[2019-10-31]
~D[2019-10-31]
iex> d.day
31
Time
The %Time{} struct contains the fields hour, minute, second, microsecond, and calendar. You can create one using the ~T sigil:
iex> t = ~T[23:00:07.0]
~T[23:00:07.0]
iex> t.second
7
NaiveDateTime
The %NaiveDateTime{} struct contains fields from both Date and Time. You can create one using the ~N sigil:
iex> ndt = ~N[2019-10-31 23:00:07]
~N[2019-10-31 23:00:07]
Why is it called naive? Because it does not contain timezone information. Therefore, the given datetime may not exist at all or it may exist twice in certain timezones - for example, when we move the clock back and forward for daylight saving time.
UTC DateTime
A %DateTime{} struct contains the same fields as a NaiveDateTime with the addition of fields to track timezones. The ~U sigil allows developers to create a DateTime in the UTC timezone:
iex> dt = ~U[2019-10-31 19:59:03Z]
~U[2019-10-31 19:59:03Z]
iex> %DateTime{minute: minute, time_zone: time_zone} = dt
~U[2019-10-31 19:59:03Z]
iex> minute
59
iex> time_zone
"Etc/UTC"
Custom sigils
As hinted at the beginning of this chapter, sigils in Elixir are extensible. In fact, using the sigil ~r/foo/i is equivalent to calling sigil_r with a binary and a char list as the argument:
iex> sigil_r(<<"foo">>, [?i])
~r"foo"i
We can access the documentation for the ~r sigil via sigil_r:
iex> h sigil_r
...
We can also provide our own sigils by implementing functions that follow the sigil_{character} pattern. For example, let's implement the ~i sigil that returns an integer (with the optional n modifier to make it negative):
iex> defmodule MySigils do
...> def sigil_i(string, []), do: String.to_integer(string)
...> def sigil_i(string, [?n]), do: -String.to_integer(string)
...> end
iex> import MySigils
iex> ~i(13)
13
iex> ~i(42)n
-42
Custom sigils may be either a single lowercase character, or an uppercase character followed by more uppercase characters and digits.
Sigils can also be used to do compile-time work with the help of macros. For example, regular expressions in Elixir are compiled into an efficient representation during compilation of the source code, therefore skipping this step at runtime. If you're interested in the subject, you can learn more about macros and check out how sigils are implemented in the Kernel module (where the sigil_* functions are defined).

 try, catch, and rescue

Elixir has three error mechanisms: errors, throws, and exits. In this chapter, we will explore each of them and include remarks about when each should be used.
Errors
Errors (or exceptions) are used when exceptional things happen in the code. A sample error can be retrieved by trying to add a number to an atom:
iex> :foo + 1
** (ArithmeticError) bad argument in arithmetic expression
 :erlang.+(:foo, 1)
A runtime error can be raised any time by using raise/1:
iex> raise "oops"
** (RuntimeError) oops
Other errors can be raised with raise/2 passing the error name and a list of keyword arguments:
iex> raise ArgumentError, message: "invalid argument foo"
** (ArgumentError) invalid argument foo
You can also define your own errors by creating a module and using the defexception/1 construct inside it. This way, you'll create an error with the same name as the module it's defined in. The most common case is to define a custom exception with a message field:
iex> defmodule MyError do
iex> defexception message: "default message"
iex> end
iex> raise MyError
** (MyError) default message
iex> raise MyError, message: "custom message"
** (MyError) custom message
Errors can be rescued using the try/rescue construct:
iex> try do
...> raise "oops"
...> rescue
...> e in RuntimeError -> e
...> end
%RuntimeError{message: "oops"}
The example above rescues the runtime error and returns the exception itself, which is then printed in the iex session.
If you don't have any use for the exception, you don't have to pass a variable to rescue:
iex> try do
...> raise "oops"
...> rescue
...> RuntimeError -> "Error!"
...> end
"Error!"
In practice, Elixir developers rarely use the try/rescue construct. For example, many languages would force you to rescue an error when a file cannot be opened successfully. Elixir instead provides a File.read/1 function which returns a tuple containing information about whether the file was opened successfully:
iex> File.read("hello")
{:error, :enoent}
iex> File.write("hello", "world")
:ok
iex> File.read("hello")
{:ok, "world"}
There is no try/rescue here. In case you want to handle multiple outcomes of opening a file, you can use pattern matching using the case construct:
iex> case File.read("hello") do
...> {:ok, body} -> IO.puts("Success: #{body}")
...> {:error, reason} -> IO.puts("Error: #{reason}")
...> end
For the cases where you do expect a file to exist (and the lack of that file is truly an error) you may use File.read!/1:
iex> File.read!("unknown")
** (File.Error) could not read file "unknown": no such file or directory
 (elixir) lib/file.ex:272: File.read!/1
At the end of the day, it's up to your application to decide if an error while opening a file is exceptional or not. That's why Elixir doesn't impose exceptions on File.read/1 and many other functions. Instead, it leaves it up to the developer to choose the best way to proceed.
Many functions in the standard library follow the pattern of having a counterpart that raises an exception instead of returning tuples to match against. The convention is to create a function (foo) which returns {:ok, result} or {:error, reason} tuples and another function (foo!, same name but with a trailing !) that takes the same arguments as foo but which raises an exception if there's an error. foo! should return the result (not wrapped in a tuple) if everything goes fine. The File module is a good example of this convention.
Fail fast / Let it crash
One saying that is common in the Erlang community, as well as Elixir's, is "fail fast" / "let it crash". The idea behind let it crash is that, in case something unexpected happens, it is best to let the exception happen, without rescuing it.
It is important to emphasize the word unexpected. For example, imagine you are building a script to process files. Your script receives filenames as inputs. It is expected that users may make mistakes and provide unknown filenames. In this scenario, while you could use File.read!/1 to read files and let it crash in case of invalid filenames, it probably makes more sense to use File.read/1 and provide users of your script with a clear and precise feedback of what went wrong.
Other times, you may fully expect a certain file to exist, and in case it does not, it means something terribly wrong has happened elsewhere. In such cases, File.read!/1 is all you need.
The second approach also works because, as discussed in the Processes chapter, all Elixir code runs inside processes that are isolated and don't share anything by default. Therefore, an unhandled exception in a process will never crash or corrupt the state of another process. This allows us to define supervisor processes, which are meant to observe when a process terminates unexpectedly, and start a new one in its place.
At the end of the day, "fail fast" / "let it crash" is a way of saying that, when something unexpected happens, it is best to start from scratch within a new process, freshly started by a supervisor, rather than blindly trying to rescue all possible error cases without the full context of when and how they can happen.
Reraise
While we generally avoid using try/rescue in Elixir, one situation where we may want to use such constructs is for observability/monitoring. Imagine you want to log that something went wrong, you could do:
try do
 ... some code ...
rescue
 e ->
 Logger.error(Exception.format(:error, e, __STACKTRACE__))
 reraise e, __STACKTRACE__
end
In the example above, we rescued the exception, logged it, and then re-raised it. We use the __STACKTRACE__ construct both when formatting the exception and when re-raising. This ensures we reraise the exception as is, without changing value or its origin.
Generally speaking, we take errors in Elixir literally: they are reserved for unexpected and/or exceptional situations, never for controlling the flow of our code. In case you actually need flow control constructs, throws should be used. That's what we are going to see next.
Throws
In Elixir, a value can be thrown and later be caught. throw and catch are reserved for situations where it is not possible to retrieve a value unless by using throw and catch.
Those situations are quite uncommon in practice except when interfacing with libraries that do not provide a proper API. For example, let's imagine the Enum module did not provide any API for finding a value and that we needed to find the first multiple of 13 in a list of numbers:
iex> try do
...> Enum.each(-50..50, fn x ->
...> if rem(x, 13) == 0, do: throw(x)
...> end)
...> "Got nothing"
...> catch
...> x -> "Got #{x}"
...> end
"Got -39"
Since Enum does provide a proper API, in practice Enum.find/2 is the way to go:
iex> Enum.find(-50..50, &(rem(&1, 13) == 0))
-39
Exits
All Elixir code runs inside processes that communicate with each other. When a process dies of "natural causes" (e.g., unhandled exceptions), it sends an exit signal. A process can also die by explicitly sending an exit signal:
iex> spawn_link(fn -> exit(1) end)
** (EXIT from #PID<0.56.0>) shell process exited with reason: 1
In the example above, the linked process died by sending an exit signal with a value of 1. The Elixir shell automatically handles those messages and prints them to the terminal.
exit can also be "caught" using try/catch:
iex> try do
...> exit("I am exiting")
...> catch
...> :exit, _ -> "not really"
...> end
"not really"
catch can also be used within a function body without a matching try.
defmodule Example do
 def matched_catch do
 exit(:timeout)
 catch
 :exit, :timeout ->
 {:error, :timeout}
 end

 def mismatched_catch do
 exit(:timeout)
 catch
 # Since no clause matches, this catch will have no effect
 :exit, :explosion ->
 {:error, :explosion}
 end
end
However, using try/catch is already uncommon and using it to catch exits is even rarer.
exit signals are an important part of the fault tolerant system provided by the Erlang VM. Processes usually run under supervision trees which are themselves processes that listen to exit signals from the supervised processes. Once an exit signal is received, the supervision strategy kicks in and the supervised process is restarted.
It is exactly this supervision system that makes constructs like try/catch and try/rescue so uncommon in Elixir. Instead of rescuing an error, we'd rather "fail fast" since the supervision tree will guarantee our application will go back to a known initial state after the error.
After
Sometimes it's necessary to ensure that a resource is cleaned up after some action that could potentially raise an error. The try/after construct allows you to do that. For example, we can open a file and use an after clause to close it—even if something goes wrong:
iex> {:ok, file} = File.open("sample", [:utf8, :write])
iex> try do
...> IO.write(file, "olá")
...> raise "oops, something went wrong"
...> after
...> File.close(file)
...> end
** (RuntimeError) oops, something went wrong
The after clause will be executed regardless of whether or not the tried block succeeds. Note, however, that if a linked process exits,
this process will exit and the after clause will not get run. Thus after provides only a soft guarantee. Luckily, files in Elixir are also linked to the current processes and therefore they will always get closed if the current process crashes, independent of the
after clause. You will find the same to be true for other resources like ETS tables, sockets, ports and more.
Sometimes you may want to wrap the entire body of a function in a try construct, often to guarantee some code will be executed afterwards. In such cases, Elixir allows you to omit the try line:
iex> defmodule RunAfter do
...> def without_even_trying do
...> raise "oops"
...> after
...> IO.puts("cleaning up!")
...> end
...> end
iex> RunAfter.without_even_trying
cleaning up!
** (RuntimeError) oops
Elixir will automatically wrap the function body in a try whenever one of after, rescue or catch is specified. The after block handles side effects and does not change the return value from the clauses above it.
Else
If an else block is present, it will match on the results of the try block whenever the try block finishes without a throw or an error.
iex> x = 2
2
iex> try do
...> 1 / x
...> rescue
...> ArithmeticError ->
...> :infinity
...> else
...> y when y < 1 and y > -1 ->
...> :small
...> _ ->
...> :large
...> end
:small
Exceptions in the else block are not caught. If no pattern inside the else block matches, an exception will be raised; this exception is not caught by the current try/catch/rescue/after block.
Variables scope
Similar to case, cond, if and other constructs in Elixir, variables defined inside try/catch/rescue/after blocks do not leak to the outer context. In other words, this code is invalid:
iex> try do
...> raise "fail"
...> what_happened = :did_not_raise
...> rescue
...> _ -> what_happened = :rescued
...> end
iex> what_happened
** (CompileError) undefined variable "what_happened"
Instead, you should return the value of the try expression:
iex> what_happened =
...> try do
...> raise "fail"
...> :did_not_raise
...> rescue
...> _ -> :rescued
...> end
iex> what_happened
:rescued
Furthermore, variables defined in the do-block of try are not available inside rescue/after/else either. This is because the try block may fail at any moment and therefore the variables may have never been bound in the first place. So this also isn't valid:
iex> try do
...> raise "fail"
...> another_what_happened = :did_not_raise
...> rescue
...> _ -> another_what_happened
...> end
** (CompileError) undefined variable "another_what_happened"
This finishes our introduction on try, catch, and rescue. You will find they are used less frequently in Elixir than in other languages. Next we will talk about a very important subject to Elixir developers: writing documentation.

 Processes

In Elixir, all code runs inside processes. Processes are isolated from each other, run concurrent to one another and communicate via message passing. Processes are not only the basis for concurrency in Elixir, but they also provide the means for building distributed and fault-tolerant programs.
Elixir's processes should not be confused with operating system processes. Processes in Elixir are extremely lightweight in terms of memory and CPU (even compared to threads as used in many other programming languages). Because of this, it is not uncommon to have tens or even hundreds of thousands of processes running simultaneously.
In this chapter, we will learn about the basic constructs for spawning new processes, as well as sending and receiving messages between processes.
Spawning processes
The basic mechanism for spawning new processes is the auto-imported spawn/1 function:
iex> spawn(fn -> 1 + 2 end)
#PID<0.43.0>
spawn/1 takes a function which it will execute in another process.
Notice spawn/1 returns a PID (process identifier). At this point, the process you spawned is very likely dead. The spawned process will execute the given function and exit after the function is done:
iex> pid = spawn(fn -> 1 + 2 end)
#PID<0.44.0>
iex> Process.alive?(pid)
false
Note: you will likely get different process identifiers than the ones we are showing in our snippets.

We can retrieve the PID of the current process by calling self/0:
iex> self()
#PID<0.41.0>
iex> Process.alive?(self())
true
Processes get much more interesting when we are able to send and receive messages.
Sending and receiving messages
We can send messages to a process with send/2 and receive them with receive/1:
iex> send(self(), {:hello, "world"})
{:hello, "world"}
iex> receive do
...> {:hello, msg} -> msg
...> {:world, _msg} -> "won't match"
...> end
"world"
When a message is sent to a process, the message is stored in the process mailbox. The receive/1 block goes through the current process mailbox searching for a message that matches any of the given patterns. receive/1 supports guards and many clauses, exactly as case/2.
The process that sends the message does not block on send/2, it puts the message in the recipient's mailbox and continues. In particular, a process can send messages to itself.
If there is no message in the mailbox matching any of the patterns, the current process will wait until a matching message arrives. A timeout can also be specified:
iex> receive do
...> {:hello, msg} -> msg
...> after
...> 1_000 -> "nothing after 1s"
...> end
"nothing after 1s"
A timeout of 0 can be given when you already expect the message to be in the mailbox.
Let's put it all together and send messages between processes:
iex> parent = self()
#PID<0.41.0>
iex> spawn(fn -> send(parent, {:hello, self()}) end)
#PID<0.48.0>
iex> receive do
...> {:hello, pid} -> "Got hello from #{inspect pid}"
...> end
"Got hello from #PID<0.48.0>"
The inspect/1 function is used to convert a data structure's internal representation into a string, typically for printing. Notice that when the receive block gets executed the sender process we have spawned may already be dead, as its only instruction was to send a message.
While in the shell, you may find the helper flush/0 quite useful. It flushes and prints all the messages in the mailbox.
iex> send(self(), :hello)
:hello
iex> flush()
:hello
:ok
Links
The majority of times we spawn processes in Elixir, we spawn them as linked processes. Before we show an example with spawn_link/1, let's see what happens when a process started with spawn/1 fails:
iex> spawn(fn -> raise "oops" end)
#PID<0.58.0>

[error] Process #PID<0.58.00> raised an exception
** (RuntimeError) oops
 (stdlib) erl_eval.erl:668: :erl_eval.do_apply/6
It merely logged an error but the parent process is still running. That's because processes are isolated. If we want the failure in one process to propagate to another one, we should link them. This can be done with spawn_link/1:
iex> self()
#PID<0.41.0>
iex> spawn_link(fn -> raise "oops" end)

** (EXIT from #PID<0.41.0>) evaluator process exited with reason: an exception was raised:
 ** (RuntimeError) oops
 (stdlib) erl_eval.erl:668: :erl_eval.do_apply/6

[error] Process #PID<0.289.0> raised an exception
** (RuntimeError) oops
 (stdlib) erl_eval.erl:668: :erl_eval.do_apply/6
Because processes are linked, we now see a message saying the parent process, which is the shell process, has received an EXIT signal from another process causing the shell to terminate. IEx detects this situation and starts a new shell session.
Linking can also be done manually by calling Process.link/1. We recommend that you take a look at the Process module for other functionality provided by processes.
Processes and links play an important role when building fault-tolerant systems. Elixir processes are isolated and don't share anything by default. Therefore, a failure in a process will never crash or corrupt the state of another process. Links, however, allow processes to establish a relationship in case of failure. We often link our processes to supervisors which will detect when a process dies and start a new process in its place.
While other languages would require us to catch/handle exceptions, in Elixir we are actually fine with letting processes fail because we expect supervisors to properly restart our systems. "Failing fast" (sometimes referred as "let it crash") is a common philosophy when writing Elixir software!
spawn/1 and spawn_link/1 are the basic primitives for creating processes in Elixir. Although we have used them exclusively so far, most of the time we are going to use abstractions that build on top of them. Let's see the most common one, called tasks.
Tasks
Tasks build on top of the spawn functions to provide better error reports and introspection:
iex> Task.start(fn -> raise "oops" end)
{:ok, #PID<0.55.0>}

15:22:33.046 [error] Task #PID<0.55.0> started from #PID<0.53.0> terminating
** (RuntimeError) oops
 (stdlib) erl_eval.erl:668: :erl_eval.do_apply/6
 (elixir) lib/task/supervised.ex:85: Task.Supervised.do_apply/2
 (stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3
Function: #Function<20.99386804/0 in :erl_eval.expr/5>
 Args: []
Instead of spawn/1 and spawn_link/1, we use Task.start/1 and Task.start_link/1 which return {:ok, pid} rather than just the PID. This is what enables tasks to be used in supervision trees. Furthermore, Task provides convenience functions, like Task.async/1 and Task.await/1, and functionality to ease distribution.
We will explore tasks and other abstractions around processes in the "Mix and OTP guide".
State
We haven't talked about state so far. If you are building an application that requires state, for example, to keep your application configuration, or you need to parse a file and keep it in memory, where would you store it?
Processes are the most common answer to this question. We can write processes that loop infinitely, maintain state, and send and receive messages. As an example, let's write a module that starts new processes that work as a key-value store in a file named kv.exs:
defmodule KV do
 def start_link do
 Task.start_link(fn -> loop(%{}) end)
 end

 defp loop(map) do
 receive do
 {:get, key, caller} ->
 send(caller, Map.get(map, key))
 loop(map)
 {:put, key, value} ->
 loop(Map.put(map, key, value))
 end
 end
end
Note that the start_link function starts a new process that runs the loop/1 function, starting with an empty map. The loop/1 (private) function then waits for messages and performs the appropriate action for each message. We made loop/1 private by using defp instead of def. In the case of a :get message, it sends a message back to the caller and calls loop/1 again, to wait for a new message. While the :put message actually invokes loop/1 with a new version of the map, with the given key and value stored.
Let's give it a try by running iex kv.exs:
iex> {:ok, pid} = KV.start_link()
{:ok, #PID<0.62.0>}
iex> send(pid, {:get, :hello, self()})
{:get, :hello, #PID<0.41.0>}
iex> flush()
nil
:ok
At first, the process map has no keys, so sending a :get message and then flushing the current process inbox returns nil. Let's send a :put message and try it again:
iex> send(pid, {:put, :hello, :world})
{:put, :hello, :world}
iex> send(pid, {:get, :hello, self()})
{:get, :hello, #PID<0.41.0>}
iex> flush()
:world
:ok
Notice how the process is keeping a state and we can get and update this state by sending the process messages. In fact, any process that knows the pid above will be able to send it messages and manipulate the state.
It is also possible to register the pid, giving it a name, and allowing everyone that knows the name to send it messages:
iex> Process.register(pid, :kv)
true
iex> send(:kv, {:get, :hello, self()})
{:get, :hello, #PID<0.41.0>}
iex> flush()
:world
:ok
Using processes to maintain state and name registration are very common patterns in Elixir applications. However, most of the time, we won't implement those patterns manually as above, but by using one of the many abstractions that ship with Elixir. For example, Elixir provides Agents, which are simple abstractions around state. Our code above could be directly written as:
iex> {:ok, pid} = Agent.start_link(fn -> %{} end)
{:ok, #PID<0.72.0>}
iex> Agent.update(pid, fn map -> Map.put(map, :hello, :world) end)
:ok
iex> Agent.get(pid, fn map -> Map.get(map, :hello) end)
:world
A :name option could also be given to Agent.start_link/2 and it would be automatically registered. Besides agents, Elixir provides an API for building generic servers (called GenServer), registries, and more, all powered by processes underneath. Those, along with supervision trees, will be explored with more detail in the "Mix and OTP guide", which will build a complete Elixir application from start to finish.
For now, let's move on and explore the world of I/O in Elixir.

 IO and the file system

This chapter introduces the input/output mechanisms, file-system-related tasks, and related modules such as IO, File, and Path. The IO system provides a great opportunity to shed some light on some philosophies and curiosities of Elixir and the Erlang VM.
The IO module
The IO module is the main mechanism in Elixir for reading and writing to standard input/output (:stdio), standard error (:stderr), files, and other IO devices. Usage of the module is pretty straightforward:
iex> IO.puts("hello world")
hello world
:ok
iex> IO.gets("yes or no? ")
yes or no? yes
"yes\n"
By default, functions in the IO module read from the standard input and write to the standard output. We can change that by passing, for example, :stderr as an argument (in order to write to the standard error device):
iex> IO.puts(:stderr, "hello world")
hello world
:ok
The File module
The File module contains functions that allow us to open files as IO devices. By default, files are opened in binary mode, which requires developers to use the specific IO.binread/2 and IO.binwrite/2 functions from the IO module:
Potential data loss warning
The following code opens a file for writing. If an existing file is available at the given path, its contents will be deleted.
iex> {:ok, file} = File.open("path/to/file/hello", [:write])
{:ok, #PID<0.47.0>}
iex> IO.binwrite(file, "world")
:ok
iex> File.close(file)
:ok
iex> File.read("path/to/file/hello")
{:ok, "world"}
The file could be opened with the :append option, instead of :write, to preserve its contents. You may also pass the :utf8 option, which tells the File module to interpret the bytes read from the file as UTF-8-encoded bytes.
Besides functions for opening, reading and writing files, the File module has many functions to work with the file system. Those functions are named after their UNIX equivalents. For example, File.rm/1 can be used to remove files, File.mkdir/1 to create directories, File.mkdir_p/1 to create directories and all their parent chain. There are even File.cp_r/2 and File.rm_rf/1 to respectively copy and remove files and directories recursively (i.e., copying and removing the contents of the directories too).
You will also notice that functions in the File module have two variants: one "regular" variant and another variant with a trailing bang (!). For example, when we read the "hello" file in the example above, we use File.read/1. Alternatively, we can use File.read!/1:
iex> File.read("path/to/file/hello")
{:ok, "world"}
iex> File.read!("path/to/file/hello")
"world"
iex> File.read("path/to/file/unknown")
{:error, :enoent}
iex> File.read!("path/to/file/unknown")
** (File.Error) could not read file "path/to/file/unknown": no such file or directory
Notice that the version with ! returns the contents of the file instead of a tuple, and if anything goes wrong the function raises an error.
The version without ! is preferred when you want to handle different outcomes using pattern matching:
case File.read("path/to/file/hello") do
 {:ok, body} -> # do something with the `body`
 {:error, reason} -> # handle the error caused by `reason`
end
However, if you expect the file to be there, the bang variation is more useful as it raises a meaningful error message. Avoid writing:
{:ok, body} = File.read("path/to/file/unknown")
as, in case of an error, File.read/1 will return {:error, reason} and the pattern matching will fail. You will still get the desired result (a raised error), but the message will be about the pattern which doesn't match (thus being cryptic in respect to what the error actually is about).
Therefore, if you don't want to handle the error outcomes, prefer to use the functions ending with an exclamation mark, such as File.read!/1.
The Path module
The majority of the functions in the File module expect paths as arguments. Most commonly, those paths will be regular binaries. The Path module provides facilities for working with such paths:
iex> Path.join("foo", "bar")
"foo/bar"
iex> Path.expand("~/hello")
"/Users/jose/hello"
Using functions from the Path module as opposed to directly manipulating strings is preferred since the Path module takes care of different operating systems transparently. Finally, keep in mind that Elixir will automatically convert slashes (/) into backslashes (\) on Windows when performing file operations.
With this, we have covered the main modules that Elixir provides for dealing with IO and interacting with the file system. In the next section, we will peek a bit under the covers and learn how the IO system is implemented in the VM.
Processes
You may have noticed that File.open/2 returns a tuple like {:ok, pid}:
iex> {:ok, file} = File.open("hello")
{:ok, #PID<0.47.0>}
This happens because the IO module actually works with processes (see the previous chapter). Given a file is a process, when you write to a file that has been closed, you are actually sending a message to a process which has been terminated:
iex> File.close(file)
:ok
iex> IO.write(file, "is anybody out there")
** (ErlangError) Erlang error: :terminated:

 * 1st argument: the device has terminated

 (stdlib 5.0) io.erl:94: :io.put_chars(#PID<0.114.0>, "is anybody out there")
 iex:4: (file)
Let's see in more detail what happens when you request IO.write(pid, binary). The IO module sends a message to the process identified by pid with the desired operation. A small ad-hoc process can help us see it:
iex> pid = spawn(fn ->
...> receive do
...> msg -> IO.inspect(msg)
...> end
...> end)
#PID<0.57.0>
iex> IO.write(pid, "hello")
{:io_request, #PID<0.41.0>, #Reference<0.0.8.91>,
 {:put_chars, :unicode, "hello"}}
** (ErlangError) erlang error: :terminated
After IO.write/2, we can see the request sent by the IO module printed out (a four-elements tuple). Soon after that, we see that it fails since the IO module expected some kind of result, which we did not supply.
By modeling IO devices with processes, the Erlang VM allows us to even read and write to files across nodes. Neat!
iodata and chardata
In all of the examples above, we used binaries when writing to files. However, most of the IO functions in Elixir also accept either "iodata" or "chardata".
One of the main reasons for using "iodata" and "chardata" is for performance. For example,
imagine you need to greet someone in your application:
name = "Mary"
IO.puts("Hello " <> name <> "!")
Given strings in Elixir are immutable, as most data structures, the example above will copy the string "Mary" into the new "Hello Mary!" string. While this is unlikely to matter for the short string as above, copying can be quite expensive for large strings! For this reason, the IO functions in Elixir allow you to pass instead a list of strings:
name = "Mary"
IO.puts(["Hello ", name, "!"])
In the example above, there is no copying. Instead we create a list that contains the original name. We call such lists either "iodata" or "chardata" and we will learn the precise difference between them soon.
Those lists are very useful because it can actually simplify the processing strings in several scenarios. For example, imagine you have a list of values, such as ["apple", "banana", "lemon"] that you want to write to disk separated by commas. How can you achieve this?
One option is to use Enum.join/2 and convert the values to a string:
iex> Enum.join(["apple", "banana", "lemon"], ",")
"apple,banana,lemon"
The above returns a new string by copying each value into the new string. However, with the knowledge in this section, we know that we can pass a list of strings to the IO/File functions. So instead we can do:
iex> Enum.intersperse(["apple", "banana", "lemon"], ",")
["apple", ",", "banana", ",", "lemon"]
"iodata" and "chardata" do not only contain strings, but they may contain arbitrary nested lists of strings too:
iex> IO.puts(["apple", [",", "banana", [",", "lemon"]]])
"iodata" and "chardata" may also contain integers. For example, we could print our comma separated list of values by using ?, as separator, which is the integer representing a comma (44):
iex> IO.puts(["apple", ?,, "banana", ?,, "lemon"])
The difference between "iodata" and "chardata" is precisely what said integer represents. For iodata, the integers represent bytes. For chardata, the integers represent Unicode codepoints. For ASCII characters, the byte representation is the same as the codepoint representation, so it fits both classifications. However, the default IO device works with chardata, which means we can do:
iex> IO.puts([?O, ?l, ?á, ?\s, "Mary", ?!])
Charlists, such as ~c"hello world", are lists of integers, and therefore are chardata.
We packed a lot into this small section, so let's break it down:
	iodata and chardata are lists of binaries and integers. Those binaries and integers can be arbitrarily nested inside lists. Their goal is to give flexibility and performance when working with IO devices and files;

	the choice between iodata and chardata depends on the encoding of the IO device. If the file is opened without encoding, the file expects iodata, and the functions in the IO module starting with bin* must be used. The default IO device (:stdio) and files opened with :utf8 encoding expect chardata and work with the remaining functions in the IO module;

This finishes our tour of IO devices and IO related functionality. We have learned about three Elixir modules - IO, File, and Path - as well as how the VM uses processes for the underlying IO mechanisms and how to use chardata and iodata for IO operations.

 Writing documentation

Elixir treats documentation as a first-class citizen. Documentation must be easy to write and easy to read. In this guide you will learn how to write documentation in Elixir, covering constructs like module attributes, style practices, and doctests.
Markdown
Elixir documentation is written using Markdown. There are plenty of guides on Markdown online, we recommend the one from GitHub as a getting started point:
	Basic writing and formatting syntax

Module Attributes
Documentation in Elixir is usually attached to module attributes. Let's see an example:
defmodule MyApp.Hello do
 @moduledoc """
 This is the Hello module.
 """
 @moduledoc since: "1.0.0"

 @doc """
 Says hello to the given `name`.

 Returns `:ok`.

 ## Examples

 iex> MyApp.Hello.world(:john)
 :ok

 """
 @doc since: "1.3.0"
 def world(name) do
 IO.puts("hello #{name}")
 end
end
The @moduledoc attribute is used to add documentation to the module. @doc is used before a function to provide documentation for it. Besides the attributes above, @typedoc can also be used to attach documentation to types defined as part of typespecs.
Function arguments
When documenting a function, argument names are inferred by the compiler. For example:
def size(%{size: size}) do
 size
end
The compiler will infer this argument as map. Sometimes the inference will be suboptimal, especially if the function contains multiple clauses with the argument matching on different values each time. You can specify the proper names for documentation by declaring only the function head at any moment before the implementation:
def size(map_with_size)

def size(%{size: size}) do
 size
end
Documentation metadata
Elixir allows developers to attach arbitrary metadata to the documentation. This is done by passing a keyword list to the relevant attribute (such as @moduledoc, @typedoc, and @doc).
Metadata can have any key. Documentation tools often use metadata to provide more data to readers and to enrich the user experience. The following keys already have a predefined meaning used by tooling:
:deprecated
Another common metadata is :deprecated, which emits a warning in the documentation, explaining that its usage is discouraged:
@doc deprecated: "Use Foo.bar/2 instead"
Note that the :deprecated key does not warn when a developer invokes the functions. If you want the code to also emit a warning, you can use the @deprecated attribute:
@deprecated "Use Foo.bar/2 instead"
:group
The group a function, callback or type belongs to. This is used in iex for autocompleting and also to automatically by ExDoc to group items in the sidebar:
@doc group: "Query"
def all(query)

@doc group: "Schema"
def insert(schema)
:since
It annotates in which version that particular module, function, type, or callback was added:
@doc since: "1.3.0"
def world(name) do
 IO.puts("hello #{name}")
end
Recommendations
When writing documentation:
	Keep the first paragraph of the documentation concise and simple, typically one-line. Tools like ExDoc use the first line to generate a summary.

	Reference modules by their full name. Markdown uses backticks (`) to quote code. Elixir builds on top of that to automatically generate links when module or function names are referenced. For this reason, always use full module names. If you have a module called MyApp.Hello, always reference it as `MyApp.Hello` and never as `Hello`.

	Reference functions by name and arity if they are local, as in `world/1`, or by module, name and arity if pointing to an external module: `MyApp.Hello.world/1`.

	Reference a @callback by prepending c:, as in `c:world/1`.

	Reference a @type by prepending t:, as in `t:values/0`.

	Start new sections with second level Markdown headers ##. First level headers are reserved for module and function names.

	Place documentation before the first clause of multi-clause functions. Documentation is always per function and arity and not per clause.

	Use the :since key in the documentation metadata to annotate whenever new functions or modules are added to your API.

Doctests
We advise developers to include examples in their documentation, often under their own ## Examples heading. To ensure examples do not get out of date, Elixir's test framework (ExUnit) provides a feature called doctests that allows developers to test the examples in their documentation. Doctests work by parsing out code samples starting with iex> from the documentation. You can read more about them at ExUnit.DocTest.
Documentation != Code comments
Elixir treats documentation and code comments as different concepts. Documentation is an explicit contract between you and users of your Application Programming Interface (API), be they third-party developers, co-workers, or your future self. Modules and functions must always be documented if they are part of your API.
Code comments are aimed at developers reading the code. They are useful for marking improvements, leaving notes (for example, why you had to resort to a workaround due to a bug in a library), and so forth. They are tied to the source code: you can completely rewrite a function and remove all existing code comments, and it will continue to behave the same, with no change to either its behavior or its documentation.
Because private functions cannot be accessed externally, Elixir will warn if a private function has a @doc attribute and will discard its content. However, you can add code comments to private functions, as with any other piece of code, and we recommend developers to do so whenever they believe it will add relevant information to the readers and maintainers of such code.
In summary, documentation is a contract with users of your API, who may not necessarily have access to the source code, whereas code comments are for those who interact directly with the source. You can learn and express different guarantees about your software by separating those two concepts.
Hiding internal modules and functions
Besides the modules and functions libraries provide as part of their public interface, libraries may also implement important functionality that is not part of their API. While these modules and functions can be accessed, they are meant to be internal to the library and thus should not have documentation for end users.
Conveniently, Elixir allows developers to hide modules and functions from the documentation, by setting @doc false to hide a particular function, or @moduledoc false to hide the whole module. If a module is hidden, you may even document the functions in the module, but the module itself won't be listed in the documentation:
defmodule MyApp.Hidden do
 @moduledoc false

 @doc """
 This function won't be listed in docs.
 """
 def function_that_wont_be_listed_in_docs do
 # ...
 end
end
In case you don't want to hide a whole module, you can hide functions individually:
defmodule MyApp.Sample do
 @doc false
 def add(a, b), do: a + b
end
However, keep in mind @moduledoc false or @doc false do not make a function private. The function above can still be invoked as MyApp.Sample.add(1, 2). Not only that, if MyApp.Sample is imported, the add/2 function will also be imported into the caller. For those reasons, be cautious when adding @doc false to functions, instead use one of these two options:
	Move the undocumented function to a module with @moduledoc false, like MyApp.Hidden, ensuring the function won't be accidentally exposed or imported. Remember that you can use @moduledoc false to hide a whole module and still document each function with @doc. Tools will still ignore the module.

	Start the function name with one or two underscores, for example, __add__/2. Functions starting with underscore are automatically treated as hidden, although you can also be explicit and add @doc false. The compiler does not import functions with leading underscores and they hint to anyone reading the code of their intended private usage.

Code.fetch_docs/1
Elixir stores documentation inside pre-defined chunks in the bytecode. Documentation is not loaded into memory when modules are loaded, instead, it can be read from the bytecode in disk using the Code.fetch_docs/1 function. The downside is that modules defined in-memory, like the ones defined in IEx, cannot have their documentation accessed as they do not write their bytecode to disk.

 Optional syntax sheet

In the previous chapters, we learned that the Elixir syntax allows developers to omit delimiters in a few occasions to make code more readable. For example, we learned that parentheses are optional:
iex> length([1, 2, 3]) == length [1, 2, 3]
true
and that do-end blocks are equivalent to keyword lists:
do-end blocks
iex> if true do
...> :this
...> else
...> :that
...> end
:this

keyword lists
iex> if true, do: :this, else: :that
:this
Keyword lists use Elixir's regular notation for separating arguments, where we separate each key-value pair with commas, and each key is followed by :. In the do-blocks, we get rid of the colons, the commas, and separate each keyword by a newline. They are useful exactly because they remove the verbosity when writing blocks of code. Most of the time, we use the block syntax, but it is good to know they are equivalent.
Those conveniences, which we call here "optional syntax", allow the language syntax core to be small, without sacrificing the readability and expressiveness of your code. In this brief chapter, we will review the four rules provided by the language, using a short snippet as playground.
Walk-through
Take the following code:
if variable? do
 Call.this()
else
 Call.that()
end
Now let's remove the conveniences one by one:
	do-end blocks are equivalent to keywords:
if variable?, do: Call.this(), else: Call.that()

	Keyword lists as last argument do not require square brackets, but let's add them:
if variable?, [do: Call.this(), else: Call.that()]

	Keyword lists are the same as lists of two-element tuples:
if variable?, [{:do, Call.this()}, {:else, Call.that()}]

	Finally, parentheses are optional on function calls, but let's add them:
if(variable?, [{:do, Call.this()}, {:else, Call.that()}])

That's it! Those four rules outline the optional syntax available in Elixir.
To understand why these rules matter, we can briefly compare Elixir with many other programming languages. Most programming languages have several keywords for defining methods, functions, conditionals, loops, and so forth. Each of those keywords have their own syntax rules attached to them.
However, in Elixir, none of these language features require special "keywords", instead they all build from this small set of rules. The other benefit is that developers can also extend the language in a way that is consistent with the language itself, since the constructs for designing and extending the language are the same. We further explore this topic in the "Meta-programming" guide.
At the end of the day, those rules are what enables us to write:
defmodule Math do
 def add(a, b) do
 a + b
 end
end
instead of:
defmodule(Math, [
 {:do, def(add(a, b), [{:do, a + b}])}
])
Whenever you have any questions, this quick walk-through has you covered.
Finally, if you are concerned about when to apply these rules, it's worth noting that the Elixir formatter handles those concerns for you. Most Elixir developers use the mix format task to format their codebases according to a well-defined set of rules defined by the Elixir team and the community. For instance, mix format will always add parentheses to function calls unless explicitly configured not to do so. This helps to maintain consistency across all codebases within organizations and the wider community.

 Erlang libraries

Elixir provides excellent interoperability with Erlang libraries. In fact, Elixir discourages simply wrapping Erlang libraries in favor of directly interfacing with Erlang code. In this section, we will present some of the most common and useful Erlang functionality that is not found in Elixir.
Erlang modules have a different naming convention than in Elixir and start in lowercase. In both cases, module names are atoms and we invoke functions by dispatching to the module name:
iex> is_atom(String)
true
iex> String.first("hello")
"h"
iex> is_atom(:binary)
true
iex> :binary.first("hello")
104
As you grow more proficient in Elixir, you may want to explore the Erlang STDLIB Reference Manual in more detail.
The binary module
The built-in Elixir String module handles binaries that are UTF-8 encoded. The :binary module is useful when you are dealing with binary data that is not necessarily UTF-8 encoded.
iex> String.to_charlist("Ø")
[216]
iex> :binary.bin_to_list("Ø")
[195, 152]
The above example shows the difference; the String module returns Unicode codepoints, while :binary deals with raw data bytes.
Formatted text output
Elixir does not contain a function similar to printf found in C and other languages. Luckily, the Erlang standard library functions :io.format/2 and :io_lib.format/2 may be used. The first formats to terminal output, while the second formats to an iolist. The format specifiers differ from printf, refer to the Erlang documentation for details.
iex> :io.format("Pi is approximately given by:~10.3f~n", [:math.pi])
Pi is approximately given by: 3.142
:ok
iex> to_string(:io_lib.format("Pi is approximately given by:~10.3f~n", [:math.pi]))
"Pi is approximately given by: 3.142\n"
The crypto module
The :crypto module contains hashing functions, digital signatures, encryption and more:
iex> Base.encode16(:crypto.hash(:sha256, "Elixir"))
"3315715A7A3AD57428298676C5AE465DADA38D951BDFAC9348A8A31E9C7401CB"
The :crypto module is part of the :crypto application that ships with Erlang. This means you must list the :crypto application as an additional application in your project configuration. To do this, edit your mix.exs file to include:
def application do
 [extra_applications: [:crypto]]
end
Any module that is not part of the :kernel or :stdlib Erlang applications must have their application explicitly listed in your mix.exs. You can find the application name of any Erlang module in the Erlang documentation, immediately below the Erlang logo in the sidebar.
The digraph module
The :digraph and :digraph_utils modules contain functions for dealing with directed graphs built of vertices and edges. After constructing the graph, the algorithms in there will help find, for instance, the shortest path between two vertices, or loops in the graph.
Given three vertices, find the shortest path from the first to the last.
iex> digraph = :digraph.new()
iex> coords = [{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}]
iex> [v0, v1, v2] = (for c <- coords, do: :digraph.add_vertex(digraph, c))
iex> :digraph.add_edge(digraph, v0, v1)
iex> :digraph.add_edge(digraph, v1, v2)
iex> :digraph.get_short_path(digraph, v0, v2)
[{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}]
Note that the functions in :digraph alter the graph structure in-place, this
is possible because they are implemented as ETS tables, explained next.
Erlang Term Storage (ETS)
The modules :ets and :dets handle storage of large data structures in memory or on disk respectively.
ETS lets you create a table containing tuples. By default, ETS tables are protected, which means only the owner process may write to the table but any other process can read. ETS has some functionality to allow a table to be used as a simple database, a key-value store or as a cache mechanism.
The functions in the ets module will modify the state of the table as a side-effect.
iex> table = :ets.new(:ets_test, [])
Store as tuples with {name, population}
iex> :ets.insert(table, {"China", 1_374_000_000})
iex> :ets.insert(table, {"India", 1_284_000_000})
iex> :ets.insert(table, {"USA", 322_000_000})
iex> :ets.i(table)
<1 > {<<"India">>,1284000000}
<2 > {<<"USA">>,322000000}
<3 > {<<"China">>,1374000000}
The math module
The :math module contains common mathematical operations covering trigonometry, exponential, and logarithmic functions.
iex> angle_45_deg = :math.pi() * 45.0 / 180.0
iex> :math.sin(angle_45_deg)
0.7071067811865475
iex> :math.exp(55.0)
7.694785265142018e23
iex> :math.log(7.694785265142018e23)
55.0
The queue module
The :queue module provides a data structure that implements (double-ended) FIFO (first-in first-out) queues efficiently:
iex> q = :queue.new
iex> q = :queue.in("A", q)
iex> q = :queue.in("B", q)
iex> {value, q} = :queue.out(q)
iex> value
{:value, "A"}
iex> {value, q} = :queue.out(q)
iex> value
{:value, "B"}
iex> {value, q} = :queue.out(q)
iex> value
:empty
The rand module
The :rand has functions for returning random values and setting the random seed.
iex> :rand.uniform()
0.8175669086010815
iex> _ = :rand.seed(:exs1024, {123, 123_534, 345_345})
iex> :rand.uniform()
0.5820506340260994
iex> :rand.uniform(6)
6
The zip and zlib modules
The :zip module lets you read and write ZIP files to and from disk or memory, as well as extracting file information.
This code counts the number of files in a ZIP file:
iex> :zip.foldl(fn _, _, _, acc -> acc + 1 end, 0, :binary.bin_to_list("file.zip"))
{:ok, 633}
The :zlib module deals with data compression in zlib format, as found in the gzip command line utility found in Unix systems.
iex> song = "
...> Mary had a little lamb,
...> His fleece was white as snow,
...> And everywhere that Mary went,
...> The lamb was sure to go."
iex> compressed = :zlib.compress(song)
iex> byte_size(song)
110
iex> byte_size(compressed)
99
iex> :zlib.uncompress(compressed)
"\nMary had a little lamb,\nHis fleece was white as snow,\nAnd everywhere that Mary went,\nThe lamb was sure to go."
Learning Erlang
If you want to get deeper into Erlang, here's a list of online resources that cover Erlang's fundamentals and its more advanced features:
	This Erlang Syntax: A Crash Course provides a concise intro to Erlang's syntax. Each code snippet is accompanied by equivalent code in Elixir. This is an opportunity for you to not only get some exposure to Erlang's syntax but also review what you learned about Elixir.

	Erlang's official website has a short tutorial. There is a chapter with pictures briefly describing Erlang's primitives for concurrent programming.

	Learn You Some Erlang for Great Good! is an excellent introduction to Erlang, its design principles, standard library, best practices, and much more. Once you have read through the crash course mentioned above, you'll be able to safely skip the first couple of chapters in the book that mostly deal with the syntax. When you reach The Hitchhiker's Guide to Concurrency chapter, that's where the real fun starts.

Our last step is to take a look at existing Elixir (and Erlang) libraries you might use while debugging.

 Debugging

There are a number of ways to debug code in Elixir. In this chapter we will cover some of the more common ways of doing so.
IO.inspect/2
What makes IO.inspect(item, opts \\ []) really useful in debugging is that it returns the item argument passed to it without affecting the behavior of the original code. Let's see an example.
(1..10)
|> IO.inspect()
|> Enum.map(fn x -> x * 2 end)
|> IO.inspect()
|> Enum.sum()
|> IO.inspect()
Prints:
1..10
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
110
As you can see IO.inspect/2 makes it possible to "spy" on values almost anywhere in your code without altering the result, making it very helpful inside of a pipeline like in the above case.
IO.inspect/2 also provides the ability to decorate the output with a label option. The label will be printed before the inspected item:
[1, 2, 3]
|> IO.inspect(label: "before")
|> Enum.map(&(&1 * 2))
|> IO.inspect(label: "after")
|> Enum.sum
Prints:
before: [1, 2, 3]
after: [2, 4, 6]
It is also very common to use IO.inspect/2 with binding/0, which returns all variable names and their values:
def some_function(a, b, c) do
 IO.inspect(binding())
 ...
end
When some_function/3 is invoked with :foo, "bar", :baz it prints:
[a: :foo, b: "bar", c: :baz]
See IO.inspect/2 and Inspect.Opts respectively to learn more about the function and read about all supported options.
dbg/2
Elixir v1.14 introduced dbg/2. dbg is similar to IO.inspect/2 but specifically tailored for debugging. It prints the value passed to it and returns it (just like IO.inspect/2), but it also prints the code and location.
In my_file.exs
feature = %{name: :dbg, inspiration: "Rust"}
dbg(feature)
dbg(Map.put(feature, :in_version, "1.14.0"))
The code above prints this:
[my_file.exs:2: (file)]
feature #=> %{inspiration: "Rust", name: :dbg}
[my_file.exs:3: (file)]
Map.put(feature, :in_version, "1.14.0") #=> %{in_version: "1.14.0", inspiration: "Rust", name: :dbg}
When talking about IO.inspect/2, we mentioned its usefulness when placed between steps of |> pipelines. dbg does it better: it understands Elixir code, so it will print values at every step of the pipeline.
In dbg_pipes.exs
__ENV__.file
|> String.split("/", trim: true)
|> List.last()
|> File.exists?()
|> dbg()
This code prints:
[dbg_pipes.exs:5: (file)]
__ENV__.file #=> "/home/myuser/dbg_pipes.exs"
|> String.split("/", trim: true) #=> ["home", "myuser", "dbg_pipes.exs"]
|> List.last() #=> "dbg_pipes.exs"
|> File.exists?() #=> true
While dbg provides conveniences around Elixir constructs, you will need IEx if you want to execute code and set breakpoints while debugging.
Pry
When using IEx, you may pass --dbg pry as an option to "stop" the code execution where the dbg call is:
$ iex --dbg pry

Or to debug inside of a project:
$ iex --dbg pry -S mix

Now any call to dbg will ask if you want to pry the existing code. If you accept, you'll be able to access all variables, as well as imports and aliases from the code, directly from IEx. This is called "prying". While the pry session is running, the code execution stops, until continue (or c) or next (or n) are called. Remember you can always run iex in the context of a project with iex -S mix TASK.

Breakpoints
dbg calls require us to change the code we intend to debug and has limited stepping functionality. Luckily IEx also provides a IEx.break!/2 function which allows you to set and manage breakpoints on any Elixir code without modifying its source:

Similar to dbg, once a breakpoint is reached, code execution stops until continue (or c) or next (or n) are invoked. Breakpoints can navigate line-by-line by default, however, they do not have access to aliases and imports when breakpoints are set on compiled modules.
The mix test task direct integration with breakpoints via the -b/--breakpoints flag. When the flag is used, a breakpoint is set at the beginning of every test that will run:

Here are some commands you can use in practice:
Debug all failed tests
$ iex -S mix test --breakpoints --failed
Debug the test at the given file:line
$ iex -S mix test -b path/to/file:line

Observer
For debugging complex systems, jumping at the code is not enough. It is necessary to have an understanding of the whole virtual machine, processes, applications, as well as set up tracing mechanisms. Luckily this can be achieved in Erlang with :observer. In your application:
$ iex
iex> :observer.start()
Missing dependencies
When running iex inside a project with iex -S mix, observer won't be available as a dependency. To do so, you will need to call the following functions before:
iex> Mix.ensure_application!(:wx) # Not necessary on Erlang/OTP 27+
iex> Mix.ensure_application!(:runtime_tools) # Not necessary on Erlang/OTP 27+
iex> Mix.ensure_application!(:observer)
iex> :observer.start()
If any of the calls above fail, here is what may have happened: some package managers default to installing a minimized Erlang without WX bindings for GUI support. In some package managers, you may be able to replace the headless Erlang with a more complete package (look for packages named erlang vs erlang-nox on Debian/Ubuntu/Arch). In others managers, you may need to install a separate erlang-wx (or similarly named) package.
The above will open another Graphical User Interface that provides many panes to fully understand and navigate the runtime and your project.
We explore the Observer in the context of an actual project in the Dynamic Supervisor chapter of the Mix & OTP guide. This is one of the debugging techniques the Phoenix framework used to achieve 2 million connections on a single machine.
If you are using the Phoenix web framework, it ships with the Phoenix LiveDashboard, a web dashboard for production nodes which provides similar features to Observer.
Finally, remember you can also get a mini-overview of the runtime info by calling runtime_info/0 directly in IEx.
Other tools and community
We have just scratched the surface of what the Erlang VM has to offer, for example:
	Alongside the observer application, Erlang also includes a :crashdump_viewer to view crash dumps

	Integration with OS level tracers, such as Linux Trace Toolkit, DTRACE, and SystemTap

	Microstate accounting measures how much time the runtime spends in several low-level tasks in a short time interval

	Mix ships with many tasks under the profile namespace, such as mix profile.cprof and mix profile.fprof

	For more advanced use cases, we recommend the excellent Erlang in Anger, which is available as a free ebook

Happy debugging!

 Enum cheatsheet

A quick reference into the Enum module, a module for working with collections (known as enumerables). Most of the examples below use the following data structure:
cart = [
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
Some examples use the string =~ part operator, which checks the string on the left contains the part on the right.
Predicates
any?(enum, fun)
iex> Enum.any?(cart, & &1.fruit == "orange")
true
iex> Enum.any?(cart, & &1.fruit == "pear")
false
any? with an empty collection is always false:
iex> Enum.any?([], & &1.fruit == "orange")
false
all?(enum, fun)
iex> Enum.all?(cart, & &1.count > 0)
true
iex> Enum.all?(cart, & &1.count > 1)
false
all? with an empty collection is always true:
iex> Enum.all?([], & &1.count > 0)
true
member?(enum, value)
iex> Enum.member?(cart, %{fruit: "apple", count: 3})
true
iex> Enum.member?(cart, :something_else)
false
item in enum is equivalent to Enum.member?(enum, item):
iex> %{fruit: "apple", count: 3} in cart
true
iex> :something_else in cart
false
empty?(enum)
iex> Enum.empty?(cart)
false
iex> Enum.empty?([])
true
Filtering
filter(enum, fun)
iex> Enum.filter(cart, &(&1.fruit =~ "o"))
[%{fruit: "orange", count: 6}]
iex> Enum.filter(cart, &(&1.fruit =~ "e"))
[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
reject(enum, fun)
iex> Enum.reject(cart, &(&1.fruit =~ "o"))
[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
flat_map(enum, fun)
This function (also listed below) can
be used to transform and filter in one pass, returning empty lists
to exclude results:
iex> Enum.flat_map(cart, fn item ->
...> if item.count > 1, do: [item.fruit], else: []
...> end)
["apple", "orange"]
Comprehension
Filtering can also be done with comprehensions:
iex> for item <- cart, item.fruit =~ "e" do
...> item
...> end
[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
Pattern-matching in comprehensions acts as a filter as well:
iex> for %{count: 1, fruit: fruit} <- cart do
...> fruit
...> end
["banana"]
Mapping
map(enum, fun)
iex> Enum.map(cart, & &1.fruit)
["apple", "banana", "orange"]
iex> Enum.map(cart, fn item ->
...> %{item | count: item.count + 10}
...> end)
[
 %{fruit: "apple", count: 13},
 %{fruit: "banana", count: 11},
 %{fruit: "orange", count: 16}
]
map_every(enum, nth, fun)
iex> Enum.map_every(cart, 2, fn item ->
...> %{item | count: item.count + 10}
...> end)
[
 %{fruit: "apple", count: 13},
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 16}
]
Comprehension
Mapping can also be done with comprehensions:
iex> for item <- cart do
...> item.fruit
...> end
["apple", "banana", "orange"]
You can also filter and map at once:
iex> for item <- cart, item.fruit =~ "e" do
...> item.fruit
...> end
["apple", "orange"]
Side-effects
each(enum, fun)
iex> Enum.each(cart, &IO.puts(&1.fruit))
apple
banana
orange
:ok
Enum.each/2 is used exclusively for side-effects.
Accumulating
reduce(enum, acc, fun)
iex> Enum.reduce(cart, 0, fn item, acc ->
...> item.count + acc
...> end)
10
map_reduce(enum, acc, fun)
iex> Enum.map_reduce(cart, 0, fn item, acc ->
...> {item.fruit, item.count + acc}
...> end)
{["apple", "banana", "orange"], 10}
scan(enum, acc, fun)
iex> Enum.scan(cart, 0, fn item, acc ->
...> item.count + acc
...> end)
[3, 4, 10]
reduce_while(enum, acc, fun)
iex> Enum.reduce_while(cart, 0, fn item, acc ->
...> if item.fruit == "orange" do
...> {:halt, acc}
...> else
...> {:cont, item.count + acc}
...> end
...> end)
4
Comprehension
Reducing can also be done with comprehensions:
iex> for item <- cart, reduce: 0 do
...> acc -> item.count + acc
...> end
10
You can also filter and reduce at once:
iex> for item <- cart, item.fruit =~ "e", reduce: 0 do
...> acc -> item.count + acc
...> end
9
Aggregations
count(enum)
iex> Enum.count(cart)
3
See Enum.count_until/2 to count until a limit.
frequencies(enum)
iex> Enum.frequencies(["apple", "banana", "orange", "apple"])
%{"apple" => 2, "banana" => 1, "orange" => 1}
frequencies_by(enum, key_fun)
Frequencies of the last letter of the fruit:
iex> Enum.frequencies_by(cart, &String.last(&1.fruit))
%{"a" => 1, "e" => 2}
count(enum, fun)
iex> Enum.count(cart, &(&1.fruit =~ "e"))
2
iex> Enum.count(cart, &(&1.fruit =~ "y"))
0
See Enum.count_until/3 to count until a limit with a function.
sum(enum)
iex> cart |> Enum.map(& &1.count) |> Enum.sum()
10
Note: this should typically be done in one pass using Enum.sum_by/2.
sum_by(enum, mapper)
iex> Enum.sum_by(cart, & &1.count)
10
product(enum)
iex> cart |> Enum.map(& &1.count) |> Enum.product()
18
Note: this should typically be done in one pass using Enum.product_by/2.
product_by(enum, mapper)
iex> Enum.product_by(cart, & &1.count)
18
Sorting
sort(enum, sorter \\ :asc)
iex> cart |> Enum.map(& &1.fruit) |> Enum.sort()
["apple", "banana", "orange"]
iex> cart |> Enum.map(& &1.fruit) |> Enum.sort(:desc)
["orange", "banana", "apple"]
When sorting structs, use Enum.sort/2 with a module as sorter.
sort_by(enum, mapper, sorter \\ :asc)
iex> Enum.sort_by(cart, & &1.count)
[
 %{fruit: "banana", count: 1},
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
iex> Enum.sort_by(cart, & &1.count, :desc)
[
 %{fruit: "orange", count: 6},
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
When the sorted by value is a struct, use Enum.sort_by/3 with a module as sorter.
min(enum)
iex> cart |> Enum.map(& &1.count) |> Enum.min()
1
When comparing structs, use Enum.min/2 with a module as sorter.
min_by(enum, mapper)
iex> Enum.min_by(cart, & &1.count)
%{fruit: "banana", count: 1}
When comparing structs, use Enum.min_by/3 with a module as sorter.
max(enum)
iex> cart |> Enum.map(& &1.count) |> Enum.max()
6
When comparing structs, use Enum.max/2 with a module as sorter.
max_by(enum, mapper)
iex> Enum.max_by(cart, & &1.count)
%{fruit: "orange", count: 6}
When comparing structs, use Enum.max_by/3 with a module as sorter.
Concatenating & flattening
concat(enums)
iex> Enum.concat([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
concat(left, right)
iex> Enum.concat([1, 2, 3], [4, 5, 6])
[1, 2, 3, 4, 5, 6]
flat_map(enum, fun)
iex> Enum.flat_map(cart, fn item ->
...> List.duplicate(item.fruit, item.count)
...> end)
["apple", "apple", "apple", "banana", "orange",
 "orange", "orange", "orange", "orange", "orange"]
flat_map_reduce(enum, acc, fun)
iex> Enum.flat_map_reduce(cart, 0, fn item, acc ->
...> list = List.duplicate(item.fruit, item.count)
...> acc = acc + item.count
...> {list, acc}
...> end)
{["apple", "apple", "apple", "banana", "orange",
 "orange", "orange", "orange", "orange", "orange"], 10}
Comprehension
Flattening can also be done with comprehensions:
iex> for item <- cart,
...> fruit <- List.duplicate(item.fruit, item.count) do
...> fruit
...> end
["apple", "apple", "apple", "banana", "orange",
 "orange", "orange", "orange", "orange", "orange"]
Conversion
into(enum, collectable)
iex> pairs = [{"apple", 3}, {"banana", 1}, {"orange", 6}]
iex> Enum.into(pairs, %{})
%{"apple" => 3, "banana" => 1, "orange" => 6}
into(enum, collectable, transform)
iex> Enum.into(cart, %{}, fn item ->
...> {item.fruit, item.count}
...> end)
%{"apple" => 3, "banana" => 1, "orange" => 6}
to_list(enum)
iex> Enum.to_list(1..5)
[1, 2, 3, 4, 5]
Comprehension
Conversion can also be done with comprehensions:
iex> for item <- cart, into: %{} do
...> {item.fruit, item.count}
...> end
%{"apple" => 3, "banana" => 1, "orange" => 6}
Duplicates & uniques
dedup(enum)
dedup only removes contiguous duplicates:
iex> Enum.dedup([1, 2, 2, 3, 3, 3, 1, 2, 3])
[1, 2, 3, 1, 2, 3]
dedup_by(enum, fun)
Remove contiguous entries given a property:
iex> Enum.dedup_by(cart, & &1.fruit =~ "a")
[%{fruit: "apple", count: 3}]
iex> Enum.dedup_by(cart, & &1.count < 5)
[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
uniq(enum)
uniq applies to the whole collection:
iex> Enum.uniq([1, 2, 2, 3, 3, 3, 1, 2, 3])
[1, 2, 3]
Comprehensions also support the uniq: true option.
uniq_by(enum, fun)
Get entries which are unique by the last letter of the fruit:
iex> Enum.uniq_by(cart, &String.last(&1.fruit))
[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
Indexing
at(enum, index, default \\ nil)
iex> Enum.at(cart, 0)
%{fruit: "apple", count: 3}
iex> Enum.at(cart, 10)
nil
iex> Enum.at(cart, 10, :none)
:none
Accessing a list by index in a loop is discouraged.
fetch(enum, index)
iex> Enum.fetch(cart, 0)
{:ok, %{fruit: "apple", count: 3}}
iex> Enum.fetch(cart, 10)
:error
fetch!(enum, index)
iex> Enum.fetch!(cart, 0)
%{fruit: "apple", count: 3}
iex> Enum.fetch!(cart, 10)
** (Enum.OutOfBoundsError) out of bounds error
with_index(enum)
iex> Enum.with_index(cart)
[
 {%{fruit: "apple", count: 3}, 0},
 {%{fruit: "banana", count: 1}, 1},
 {%{fruit: "orange", count: 6}, 2}
]
with_index(enum, fun)
iex> Enum.with_index(cart, fn item, index ->
...> {item.fruit, index}
...> end)
[
 {"apple", 0},
 {"banana", 1},
 {"orange", 2}
]
Finding
find(enum, default \\ nil, fun)
iex> Enum.find(cart, &(&1.fruit =~ "o"))
%{fruit: "orange", count: 6}
iex> Enum.find(cart, &(&1.fruit =~ "y"))
nil
iex> Enum.find(cart, :none, &(&1.fruit =~ "y"))
:none
find_index(enum, fun)
iex> Enum.find_index(cart, &(&1.fruit =~ "o"))
2
iex> Enum.find_index(cart, &(&1.fruit =~ "y"))
nil
find_value(enum, default \\ nil, fun)
iex> Enum.find_value(cart, fn item ->
...> if item.count == 1, do: item.fruit, else: nil
...> end)
"banana"
iex> Enum.find_value(cart, :none, fn item ->
...> if item.count == 100, do: item.fruit, else: nil
...> end)
:none
Grouping
group_by(enum, key_fun)
Group by the last letter of the fruit:
iex> Enum.group_by(cart, &String.last(&1.fruit))
%{
 "a" => [%{fruit: "banana", count: 1}],
 "e" => [
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
}
group_by(enum, key_fun, value_fun)
Group by the last letter of the fruit with custom value:
iex> Enum.group_by(cart, &String.last(&1.fruit), & &1.fruit)
%{
 "a" => ["banana"],
 "e" => ["apple", "orange"]
}
Joining & interspersing
join(enum, joiner \\ "")
iex> Enum.join(["apple", "banana", "orange"], ", ")
"apple, banana, orange"
map_join(enum, joiner \\ "", mapper)
iex> Enum.map_join(cart, ", ", & &1.fruit)
"apple, banana, orange"
intersperse(enum, separator \\ "")
iex> Enum.intersperse(["apple", "banana", "orange"], ", ")
["apple", ", ", "banana", ", ", "orange"]
map_intersperse(enum, separator \\ "", mapper)
iex> Enum.map_intersperse(cart, ", ", & &1.fruit)
["apple", ", ", "banana", ", ", "orange"]
Slicing
slice(enum, index_range)
iex> Enum.slice(cart, 0..1)
[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
Negative ranges count from the back:
iex> Enum.slice(cart, -2..-1)
[
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
slice(enum, start_index, amount)
iex> Enum.slice(cart, 1, 2)
[
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
slide(enum, range_or_single_index, insertion_index)
fruits = ["apple", "banana", "grape", "orange", "pear"]
iex> Enum.slide(fruits, 2, 0)
["grape", "apple", "banana", "orange", "pear"]
iex> Enum.slide(fruits, 2, 4)
["apple", "banana", "orange", "pear", "grape"]
iex> Enum.slide(fruits, 1..3, 0)
["banana", "grape", "orange", "apple", "pear"]
iex> Enum.slide(fruits, 1..3, 4)
["apple", "pear", "banana", "grape", "orange"]
Reversing
reverse(enum)
iex> Enum.reverse(cart)
[
 %{fruit: "orange", count: 6},
 %{fruit: "banana", count: 1},
 %{fruit: "apple", count: 3}
]
reverse(enum, tail)
iex> Enum.reverse(cart, [:this_will_be, :the_tail])
[
 %{fruit: "orange", count: 6},
 %{fruit: "banana", count: 1},
 %{fruit: "apple", count: 3},
 :this_will_be,
 :the_tail
]
reverse_slice(enum, start_index, count)
iex> Enum.reverse_slice(cart, 1, 2)
[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6},
 %{fruit: "banana", count: 1}
]
Splitting
split(enum, amount)
iex> Enum.split(cart, 1)
{[%{fruit: "apple", count: 3}],
 [
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]}
Negative indexes count from the back:
iex> Enum.split(cart, -1)
{[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
],
 [%{fruit: "orange", count: 6}]}
split_while(enum, fun)
Stops splitting as soon as it is false:
iex> Enum.split_while(cart, &(&1.fruit =~ "e"))
{[%{fruit: "apple", count: 3}],
 [
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]}
split_with(enum, fun)
Splits the whole collection:
iex> Enum.split_with(cart, &(&1.fruit =~ "e"))
{[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
],
 [%{fruit: "banana", count: 1}]}
Splitting (drop and take)
drop(enum, amount)
iex> Enum.drop(cart, 1)
[
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
Negative indexes count from the back:
iex> Enum.drop(cart, -1)
[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
drop_every(enum, nth)
iex> Enum.drop_every(cart, 2)
[%{fruit: "banana", count: 1}]
drop_while(enum, fun)
iex> Enum.drop_while(cart, &(&1.fruit =~ "e"))
[
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
take(enum, amount)
iex> Enum.take(cart, 1)
[%{fruit: "apple", count: 3}]
Negative indexes count from the back:
iex> Enum.take(cart, -1)
[%{fruit: "orange", count: 6}]
take_every(enum, nth)
iex> Enum.take_every(cart, 2)
[
 %{fruit: "apple", count: 3},
 %{fruit: "orange", count: 6}
]
take_while(enum, fun)
iex> Enum.take_while(cart, &(&1.fruit =~ "e"))
[%{fruit: "apple", count: 3}]
Random
random(enum)
Results will vary on every call:
iex> Enum.random(cart)
%{fruit: "orange", count: 6}
take_random(enum, count)
Results will vary on every call:
iex> Enum.take_random(cart, 2)
[
 %{fruit: "orange", count: 6},
 %{fruit: "apple", count: 3}
]
shuffle(enum)
Results will vary on every call:
iex> Enum.shuffle(cart)
[
 %{fruit: "orange", count: 6},
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
]
Chunking
chunk_by(enum, fun)
iex> Enum.chunk_by(cart, &String.length(&1.fruit))
[
 [%{fruit: "apple", count: 3}],
 [
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
]
chunk_every(enum, count)
iex> Enum.chunk_every(cart, 2)
[
 [
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
],
 [%{fruit: "orange", count: 6}]
]
chunk_every(enum, count, step, leftover \\ [])
iex> Enum.chunk_every(cart, 2, 2, [:elements, :to_complete])
[
 [
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
],
 [
 %{fruit: "orange", count: 6},
 :elements
]
]
iex> Enum.chunk_every(cart, 2, 1, :discard)
[
 [
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1}
],
 [
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
]
See Enum.chunk_while/4 for custom chunking.
Zipping
zip(enum1, enum2)
iex> fruits = ["apple", "banana", "orange"]
iex> counts = [3, 1, 6]
iex> Enum.zip(fruits, counts)
[{"apple", 3}, {"banana", 1}, {"orange", 6}]
See Enum.zip/1 for zipping many collections at once.
zip_with(enum1, enum2, fun)
iex> fruits = ["apple", "banana", "orange"]
iex> counts = [3, 1, 6]
iex> Enum.zip_with(fruits, counts, fn fruit, count ->
...> %{fruit: fruit, count: count}
...> end)
[
 %{fruit: "apple", count: 3},
 %{fruit: "banana", count: 1},
 %{fruit: "orange", count: 6}
]
See Enum.zip_with/2 for zipping many collections at once.
zip_reduce(left, right, acc, fun)
iex> fruits = ["apple", "banana", "orange"]
iex> counts = [3, 1, 6]
iex> Enum.zip_reduce(fruits, counts, 0, fn fruit, count, acc ->
...> price = if fruit =~ "e", do: count * 2, else: count
...> acc + price
...> end)
19
See Enum.zip_reduce/3 for zipping many collections at once.
unzip(list)
iex> cart |> Enum.map(&{&1.fruit, &1.count}) |> Enum.unzip()
{["apple", "banana", "orange"], [3, 1, 6]}

 Set-theoretic types cheatsheet

Set operators
Union
type1 or type2
Intersection
type1 and type2
Difference
type1 and not type2
Negation
not type
Data types
Broad types
bitstring()
binary()
empty_list()
integer()
float()
pid()
port()
reference()
binary() is a subtype of bitstring().
Atoms
All atoms
atom()
Individual atoms
:ok
:error
SomeModule
Functions
All functions
function()
n-arity functions
(-> :ok)
(integer() -> boolean())
(binary(), binary() -> binary())
Multiple clauses
(integer() -> binary()) and (binary() -> atom())
Maps
All maps
map()
Empty map
empty_map()
Maps with atom keys
Only has the keys name and age
%{name: binary(), age: integer()}

Has the name key and age is optional
%{name: binary(), age: if_set(integer())}

Has the keys name and age and may have other keys (open map)
%{..., name: binary(), age: integer()}

Has the key name, may have other keys, but age is not set
%{..., name: binary(), age: not_set()}
Maps with domain keys (domain keys are always treated as optional)
Has atom and binary keys
%{atom() => binary(), binary() => binary()}

Has atom and binary keys and may have other keys (open map)
%{..., atom() => binary(), binary() => binary()}
Maps with mixed keys
Has atom keys with binary values but a `:root` key of type integer
%{atom() => binary(), root: integer()}

Has atom keys with binary values but a `:root` key of type integer, and may have other keys
%{..., atom() => binary(), root: integer()}
Domain keys are atom(), binary(), integer(), float(), fun(), list(), map(), pid(), port(), reference(), tuple()
Non-empty lists
Proper lists
non_empty_list(elem_type)
Improper lists (as long as tail_type does not include lists)
non_empty_list(elem_type, tail_type)
Tuples
All tuples
tuple()
n-element tuples
{:ok, binary()}
{:error, binary(), term()}
{pid(), reference()}
At least n-element tuples
{binary(), binary(), ...}
Additional types for convenience
Common aliases
boolean() = true or false
number() = integer() or float()
List aliases
list() = empty_list() or non_empty_list(term())
list(a) = empty_list() or non_empty_list(a)
list(a, b) = empty_list() or non_empty_list(a, b)

 Introduction to Mix

In this guide, we will build a complete Elixir application, with its own supervision tree, configuration, tests, and more.
The requirements for this guide are (see elixir -v):
	Elixir 1.18.0 onwards
	Erlang/OTP 27 onwards

The application works as a distributed key-value store. We are going to organize key-value pairs into buckets and distribute those buckets across multiple nodes. We will also build a simple client that allows us to connect to any of those nodes and send requests such as:
CREATE shopping
OK

PUT shopping milk 1
OK

PUT shopping eggs 3
OK

GET shopping milk
1
OK

DELETE shopping eggs
OK
In order to build our key-value application, we are going to use three main tools:
	OTP (Open Telecom Platform) is a set of libraries that ships with Erlang. Erlang developers use OTP to build robust, fault-tolerant applications. In this chapter we will explore how many aspects from OTP integrate with Elixir, including supervision trees, event managers and more;

	Mix is a build tool that ships with Elixir that provides tasks for creating, compiling, testing your application, managing its dependencies and much more;

	ExUnit is a unit-test based framework that ships with Elixir.

In this chapter, we will create our first project using Mix and explore different features in OTP, Mix, and ExUnit as we go.
Source code
The final code for the application built in this guide is in this repository and can be used as a reference.
Is this guide required reading?
This guide is not required reading in your Elixir journey. We'll explain.
As an Elixir developer, you will most likely use one of the many existing frameworks when writing your Elixir code. Phoenix covers web applications, Ecto communicates with databases, you can craft embedded software with Nerves, Nx powers machine learning and AI projects, Membrane assembles audio/video processing pipelines, Broadway handles data ingestion and processing, and many more. These frameworks handle the lower level details of concurrency, distribution, and fault-tolerance, so you, as a user, can focus on your own needs and demands.
On the other hand, if you want to learn the foundations these frameworks are built upon, and the abstractions that power the Elixir ecosystem, this guide will give you a tour through several important concepts.
Our first project
When you install Elixir, besides getting the elixir, elixirc, and iex executables, you also get an executable Elixir script named mix.
Let's create our first project by invoking mix new from the command line. We'll pass the project path as the argument (kv, in this case). By default, the application name and module name will be retrieved from the path. So we tell Mix that our main module should be the all-uppercase KV, instead of the default, which would have been Kv:
$ mix new kv --module KV

Mix will create a directory named kv with a few files in it:
* creating README.md
* creating .formatter.exs
* creating .gitignore
* creating mix.exs
* creating lib
* creating lib/kv.ex
* creating test
* creating test/test_helper.exs
* creating test/kv_test.exs
Let's take a brief look at those generated files.
Executables in the PATH
Mix is an Elixir executable. This means that in order to run mix, you need to have both mix and elixir executables in your PATH. That's what happens when you install Elixir.
Project compilation
A file named mix.exs was generated inside our new project folder (kv) and its main responsibility is to configure our project. Let's take a look at it:
defmodule KV.MixProject do
 use Mix.Project

 def project do
 [
 app: :kv,
 version: "0.1.0",
 elixir: "~> 1.11",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 # Run "mix help compile.app" to learn about applications
 def application do
 [
 extra_applications: [:logger]
]
 end

 # Run "mix help deps" to learn about dependencies
 defp deps do
 [
 # {:dep_from_hexpm, "~> 0.3.0"},
 # {:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git", tag: "0.1.0"},
]
 end
end
Our mix.exs defines two public functions: project, which returns project configuration like the project name and version, and application, which is used to generate an application file.
There is also a private function named deps, which is invoked from the project function, that defines our project dependencies. Defining deps as a separate function is not required, but it helps keep the project configuration tidy.
Mix also generates a file at lib/kv.ex with a module containing exactly one function, called hello:
defmodule KV do
 @moduledoc """
 Documentation for KV.
 """

 @doc """
 Hello world.

 ## Examples

 iex> KV.hello()
 :world

 """
 def hello do
 :world
 end
end

This structure is enough to compile our project:
$ cd kv
$ mix compile

Will output:
Compiling 1 file (.ex)
Generated kv app
The lib/kv.ex file was compiled and an application manifest named kv.app was generated. All compilation artifacts are placed inside the _build directory using the options defined in the mix.exs file.
Once the project is compiled, you can start a iex session inside the project by running the command below. The -S mix is necessary to load the project in the interactive shell:
$ iex -S mix

We are going to work on this kv project, making modifications and trying out the latest changes from a iex session. While you may start a new session whenever there are changes to the project source code, you can also recompile the project from within iex with the recompile helper, like this:
iex> recompile()
Compiling 1 file (.ex)
:ok
iex> recompile()
:noop
If anything had to be compiled, you see some informative text, and get the :ok atom back, otherwise the function is silent, and returns :noop.
Running tests
Mix also generated the appropriate structure for running our project tests. Mix projects usually follow the convention of having a <filename>_test.exs file in the test directory for each file in the lib directory. For this reason, we can already find a test/kv_test.exs corresponding to our lib/kv.ex file. It doesn't do much at this point:
defmodule KVTest do
 use ExUnit.Case
 doctest KV

 test "greets the world" do
 assert KV.hello() == :world
 end
end
It is important to note a couple of things:
	the test file is an Elixir script file (.exs). This is convenient because we don't need to compile test files before running them;

	we define a test module named KVTest, in which we use ExUnit.Case to inject the testing API;

	we use one of the imported macros, ExUnit.DocTest.doctest/1, to indicate that the KV module contains doctests (we will discuss those in a later chapter);

	we use the ExUnit.Case.test/2 macro to define a simple test;

Mix also generated a file named test/test_helper.exs which is responsible for setting up the test framework:
ExUnit.start()
This file will be required by Mix every time before we run our tests. We can run tests with:
$ mix test
Compiled lib/kv.ex
Generated kv app
Running ExUnit with seed: 540224, max_cases: 16
..

Finished in 0.04 seconds
1 doctest, 1 test, 0 failures

Notice that by running mix test, Mix has compiled the source files and generated the application manifest once again. This happens because Mix supports multiple environments, which we will discuss later in this chapter.
Furthermore, you can see that ExUnit prints a dot for each successful test and automatically randomizes tests too. Let's make the test fail on purpose and see what happens.
Change the assertion in test/kv_test.exs to the following:
assert KV.hello() == :oops
Now run mix test again (notice this time there will be no compilation):
 1) test greets the world (KVTest)
 test/kv_test.exs:5
 Assertion with == failed
 code: assert KV.hello() == :oops
 left: :world
 right: :oops
 stacktrace:
 test/kv_test.exs:6: (test)

.

Finished in 0.05 seconds
1 doctest, 1 test, 1 failure
For each failure, ExUnit prints a detailed report, containing the test name with the test case, the code that failed and the values for the left side and right side (RHS) of the == operator.
In the second line of the failure, right below the test name, there is the location where the test was defined. If you copy the test location in full, including the file and line number, and append it to mix test, Mix will load and run just that particular test:
$ mix test test/kv_test.exs:5

This shortcut will be extremely useful as we build our project, allowing us to quickly iterate by running a single test.
Finally, the stacktrace relates to the failure itself, giving information about the test and often the place the failure was generated from within the source files.
Automatic code formatting
One of the files generated by mix new is the .formatter.exs. Elixir ships with a code formatter that is capable of automatically formatting our codebase according to a consistent style. The formatter is triggered with the mix format task. The generated .formatter.exs file configures which files should be formatted when mix format runs.
To give the formatter a try, change a file in the lib or test directories to include extra spaces or extra newlines, such as def hello do, and then run mix format.
Most editors provide built-in integration with the formatter, allowing a file to be formatted on save or via a chosen keybinding. If you are learning Elixir, editor integration gives you useful and quick feedback when learning the Elixir syntax.
For companies and teams, we recommend developers to run mix format --check-formatted on their continuous integration servers, ensuring all current and future code follows the standard.
You can learn more about the code formatter by checking the format task documentation or by reading the release announcement for Elixir v1.6, the first version to include the formatter.
Environments
Mix provides the concept of "environments". They allow a developer to customize compilation and other options for specific scenarios. By default, Mix understands three environments:
	:dev — the one in which Mix tasks (like compile) run by default
	:test — used by mix test
	:prod — the one you will use to run your project in production

The environment applies only to the current project. As we will see in future chapters, any dependency you add to your project will by default run in the :prod environment.
Customization per environment can be done by accessing the Mix.env/0 in your mix.exs file, which returns the current environment as an atom. That's what we have used in the :start_permanent options:
def project do
 [
 ...,
 start_permanent: Mix.env() == :prod,
 ...
]
end
When true, the :start_permanent option starts your application in permanent mode, which means the Erlang VM will crash if your application's supervision tree shuts down. Notice we don't want this behavior in dev and test because it is useful to keep the VM instance running in those environments for troubleshooting purposes.
Mix will default to the :dev environment, except for the test task that will default to the :test environment. The environment can be changed via the MIX_ENV environment variable:
$ MIX_ENV=prod mix compile

Or on Windows:
> set "MIX_ENV=prod" && mix compile
Mix in production
Mix is a build tool and, as such, it is not expected to be available in production. Therefore, it is recommended to access Mix.env/0 only in configuration files and inside mix.exs, never in your application code (lib).
Exploring
There is much more to Mix, and we will continue to explore it as we build our project. A general overview is available on the Mix documentation and you can always invoke the help task to list all available tasks:
$ mix help
$ mix help compile

Now let's move forward and add the first modules and functions to our application.

 Simple state with agents

In this chapter, we will learn how to keep and share state between multiple entities. If you have previous programming experience, you may think of globally shared variables, but the model we will learn here is quite different. The next chapters will generalize the concepts introduced here.
If you have skipped the Getting Started guide or read it long ago, be sure to re-read the Processes chapter. We will use it as a starting point.
The trouble with (mutable) state
Elixir is an immutable language where nothing is shared by default. If we want to share information, this is typically done by sending messages between processes.
When it comes to processes though, we rarely hand-roll our own, instead we use the abstractions available in Elixir and OTP:
	Agent — Simple wrappers around state.
	GenServer — "Generic servers" (processes) that encapsulate state, provide sync and async calls, support code reloading, and more.
	Task — Asynchronous units of computation that allow spawning a process and potentially retrieving its result at a later time.

Here, we will use agents, and create a module named KV.Bucket, responsible for storing our key-value entries in a way that allows them to be read and modified by other processes.
Agents 101
Agents are simple wrappers around state. If all you want from a process is to keep state, agents are a great fit. Let's start a iex session inside the project with:
$ iex -S mix

And play a bit with agents:
iex> {:ok, agent} = Agent.start_link(fn -> [] end)
{:ok, #PID<0.57.0>}
iex> Agent.update(agent, fn list -> ["eggs" | list] end)
:ok
iex> Agent.get(agent, fn list -> list end)
["eggs"]
iex> Agent.stop(agent)
:ok
We started an agent with an initial state of an empty list. The start_link/1 function returned the :ok tuple with a process identifier (PID) of the agent. We will use this PID for all further interactions. We then updated the agent's state, adding our new item to the head of the list. The second argument of Agent.update/3 is a function that takes the agent's current state as input and returns its desired new state. Finally, we retrieved the whole list. The second argument of Agent.get/3 is a function that takes the state as input and returns the value that Agent.get/3 itself will return. Once we are done with the agent, we can call Agent.stop/3 to terminate the agent process.
The Agent.update/3 function accepts as a second argument any function that receives one argument and returns a value:
iex> {:ok, agent} = Agent.start_link(fn -> [] end)
{:ok, #PID<0.338.0>}
iex> Agent.update(agent, fn _list -> 123 end)
:ok
iex> Agent.update(agent, fn content -> %{a: content} end)
:ok
iex> Agent.update(agent, fn content -> [12 | [content]] end)
:ok
iex> Agent.update(agent, fn list -> [:nop | list] end)
:ok
iex> Agent.get(agent, fn content -> content end)
[:nop, 12, %{a: 123}]
As you can see, we can modify the agent state in any way we want. Therefore, we most likely don't want to access the Agent API throughout many different places in our code. Instead, we want to encapsulate all Agent-related functionality in a single module, which we will call KV.Bucket. Before we implement it, let's write some tests which will outline the API exposed by our module.
Create a file at test/kv/bucket_test.exs (remember the .exs extension) with the following:
defmodule KV.BucketTest do
 use ExUnit.Case, async: true

 test "stores values by key" do
 {:ok, bucket} = KV.Bucket.start_link([])
 assert KV.Bucket.get(bucket, "milk") == nil

 KV.Bucket.put(bucket, "milk", 3)
 assert KV.Bucket.get(bucket, "milk") == 3
 end
end
use ExUnit.Case is responsible for setting up our module for testing and imports many test-related functionality, such as the test/2 macro.
Our first test starts a new KV.Bucket by calling the start_link/1 and passing an empty list of options. Then we perform some get/2 and put/3 operations on it, asserting the result.
Also note the async: true option passed to ExUnit.Case. This option makes the test case run in parallel with other :async test cases by using multiple cores in our machine. This is extremely useful to speed up our test suite. However, :async must only be set if the test case does not rely on or change any global values. For example, if the test requires writing to the file system or access a database, keep it synchronous (omit the :async option) to avoid race conditions between tests.
Async or not, our new test should obviously fail, as none of the functionality is implemented in the module being tested:
1) test stores values by key (KV.BucketTest)
 test/kv/bucket_test.exs:4
 ** (UndefinedFunctionError) function KV.Bucket.start_link/1 is undefined (module KV.Bucket is not available)
In order to fix the failing test, let's create a file at lib/kv/bucket.ex with the contents below. Feel free to give a try at implementing the KV.Bucket module yourself using agents before peeking at the implementation below.
defmodule KV.Bucket do
 use Agent

 @doc """
 Starts a new bucket.

 All options are forwarded to `Agent.start_link/2`.
 """
 def start_link(opts) do
 Agent.start_link(fn -> %{} end, opts)
 end

 @doc """
 Gets a value from the `bucket` by `key`.
 """
 def get(bucket, key) do
 Agent.get(bucket, &Map.get(&1, key))
 end

 @doc """
 Puts the `value` for the given `key` in the `bucket`.
 """
 def put(bucket, key, value) do
 Agent.update(bucket, &Map.put(&1, key, value))
 end
end
The first step in our implementation is to call use Agent. This is a pattern we will see throughout the guides and understand in depth in the next chapter.
Then we define a start_link/1 function, which will effectively start the agent. It is a convention to define a start_link/1 function that always accepts a list of options. We then call Agent.start_link/2 passing an anonymous function that returns the Agent's initial state and the same list of options we received.
We are keeping a map inside the agent to store our keys and values. Getting and putting values on the map is done with the Agent API and the capture operator &, introduced in the Getting Started guide. The agent passes its state to the anonymous function via the &1 argument when Agent.get/2 and Agent.update/2 are called.
Now that the KV.Bucket module has been defined, our test should pass! You can try it yourself by running: mix test.
Naming processes
When starting KV.Bucket, we pass a list of options which we forward to Agent.start_link/2. One of the options accepted by Agent.start_link/2 is a name option which allows us to name a process, so we can interact with it using its name instead of its PID.
Let's write a test as an example. Back on KV.BucketTest, add this:
 test "stores values by key on a named process" do
 {:ok, _} = KV.Bucket.start_link(name: :shopping_list)
 assert KV.Bucket.get(:shopping_list, "milk") == nil

 KV.Bucket.put(:shopping_list, "milk", 3)
 assert KV.Bucket.get(:shopping_list, "milk") == 3
 end
However, keep in mind that names are shared in the current node. If two tests attempt to create two processes named :shopping_list at the same time, one would succeed and the other would fail. For this reason, it is a common practice in Elixir to name processes started during tests after the test itself, like this:
 test "stores values by key on a named process", config do
 {:ok, _} = KV.Bucket.start_link(name: config.test)
 assert KV.Bucket.get(config.test, "milk") == nil

 KV.Bucket.put(config.test, "milk", 3)
 assert KV.Bucket.get(config.test, "milk") == 3
 end
The config argument, passed after the test name, is the test context and it includes configuration and metadata about the current test, which is useful in scenarios like these.
Other agent actions
Besides getting a value and updating the agent state, agents allow us to get a value and update the agent state in one function call via Agent.get_and_update/2. Let's implement a KV.Bucket.delete/2 function that deletes a key from the bucket, returning its current value:
@doc """
Deletes `key` from `bucket`.

Returns the current value of `key`, if `key` exists.
"""
def delete(bucket, key) do
 Agent.get_and_update(bucket, &Map.pop(&1, key))
end
Now it is your turn to write a test for the functionality above! Also, be sure to explore the documentation for the Agent module to learn more about them.
Client/server in agents
Before we move on to the next chapter, let's discuss the client/server dichotomy in agents. Let's expand the delete/2 function we have just implemented:
def delete(bucket, key) do
 Agent.get_and_update(bucket, fn map ->
 Map.pop(map, key)
 end)
end
Everything that is inside the function we passed to the agent happens in the agent process. In this case, since the agent process is the one receiving and responding to our messages, we say the agent process is the server. Everything outside the function is happening in the client.
This distinction is important. If there are expensive actions to be done, you must consider if it will be better to perform these actions on the client or on the server. For example:
def delete(bucket, key) do
 Process.sleep(1000) # puts client to sleep
 Agent.get_and_update(bucket, fn map ->
 Process.sleep(1000) # puts server to sleep
 Map.pop(map, key)
 end)
end
When a long action is performed on the server, all other requests to that particular server will wait until the action is done, which may cause some clients to timeout.
Some APIs, such as GenServers, make a clearer distinction between client and server, and we will explore them in future chapters. Next let's talk about naming things, applications, and supervisors.

 Registries and supervision trees

In the previous chapter, we used agents to represent our buckets. In the introduction to mix, we specified we would like to name each bucket so we can do the following:
CREATE shopping
OK

PUT shopping milk 1
OK

GET shopping milk
1
OK
In the example session above we interacted with the "shopping" bucket by referencing its name. Therefore, an important feature in our key-value store is to give names to processes.
We have also learned in the previous chapter we can already name our buckets. For example:
iex> KV.Bucket.start_link(name: :shopping)
{:ok, #PID<0.43.0>}
iex> KV.Bucket.put(:shopping, "milk", 1)
:ok
iex> KV.Bucket.get(:shopping, "milk")
1
However, naming dynamic processes with atoms is a terrible idea! If we use atoms, we would need to convert the bucket name (often received from an external client) to atoms, and we should never convert user input to atoms. This is because atoms are not garbage collected. Once an atom is created, it is never reclaimed. Generating atoms from user input would mean the user can inject enough different names to exhaust our system memory!
In practice, it is more likely you will reach the Erlang VM limit for the maximum number of atoms before you run out of memory, which will bring your system down regardless.
Luckily, Elixir (and Erlang) comes with built-in abstractions for naming processes, called name registries, each with different trade-offs which we will explore throughout these guides.
Local, decentralized, and scalable registry
Elixir ships with a single-node process registry module aptly called Registry. Its main feature is that you can use any Elixir value to name a process, not only atoms. Let's take it for a spin in iex:
iex> Registry.start_link(name: KV, keys: :unique)
iex> name = {:via, Registry, {KV, "shopping"}}
iex> KV.Bucket.start_link(name: name)
{:ok, #PID<0.43.0>}
iex> KV.Bucket.put(name, "milk", 1)
:ok
iex> KV.Bucket.get(name, "milk")
1
As you can see, instead of passing an atom to the :name option, we pass a tuple of shape {:via, registry_module, {registry_name, process_name}}, and everything just worked. You could have used anything as the process_name, even an integer or a map! That's because all of Elixir built-in behaviours, agents, supervisors, tasks, etc, are compatible with naming registries, as long as you pass them using the "via" tuple format.
Therefore, all we need to do to name our buckets is to start a Registry, using Registry.start_link/1. But you may be wondering, where exactly should we place that?
Understanding applications
Every Elixir project is an application. Elixir itself is defined in an application named :elixir. The ExUnit.Case module is part of the :ex_unit application. And so forth.
In fact, we have been working inside an application this entire time. Every time we changed a file and ran mix compile, we could see a Generated kv app message in the compilation output.
We can find the generated .app file at _build/dev/lib/kv/ebin/kv.app. Let's have a look at its contents:
{application,kv,
 [{applications,[kernel,stdlib,elixir,logger]},
 {description,"kv"},
 {modules,['Elixir.KV','Elixir.KV.Bucket']},
 {registered,[]},
 {vsn,"0.1.0"}]}.
This file contains Erlang terms (written using Erlang syntax). Even though we are not familiar with Erlang, it is easy to guess this file holds our application definition. It contains our application version, all the modules defined by it, as well as a list of applications we depend on, like Erlang's kernel, elixir itself, and logger.
The logger application ships as part of Elixir. We stated that our application needs it by specifying it in the :extra_applications list in mix.exs. See the official documentation for more information.

In a nutshell, an application consists of all the modules defined in the .app file, including the .app file itself. The application itself is located at the _build/dev/lib/kv folder and typically has only two directories: ebin, for Elixir artifacts, such as .beam and .app files, and priv, with any other artifact or asset you may need in your application.
Although Mix generates and maintains the .app file for us, we can customize its contents by adding new entries to the application/0 function inside the mix.exs project file. We are going to do our first customization soon.
Starting applications
Each application in our system can be started and stopped. The rules for starting and stopping an application are also defined in the .app file. When we invoke iex -S mix, Mix compiles our application and then starts it.
Let's see this in practice. Start a console with iex -S mix and try:
iex> Application.start(:kv)
{:error, {:already_started, :kv}}
Oops, it's already started. Mix starts the current application and all of its dependencies automatically. This is also true for mix test and many other Mix commands.
We can, however, stop our :kv application, as well as the :logger application:
iex> Application.stop(:kv)
:ok
iex> Application.stop(:logger)
:ok
And let's try to start our application again:
iex> Application.start(:kv)
{:error, {:not_started, :logger}}
Now we get an error because an application that :kv depends on (:logger in this case) isn't started. We need to either start each application manually in the correct order or call Application.ensure_all_started/1 as follows:
iex> Application.ensure_all_started(:kv)
{:ok, [:logger, :kv]}
In practice, our tools always start our applications for us, and you don't have to worry about the above, but it is good to know how it all works behind the scenes.
The application callback
Whenever we invoke iex -S mix, Mix automatically starts our application by calling Application.start(:kv). But can we customize what happens when our application starts? As a matter of fact, we can! To do so, we define an application callback.
The first step is to tell our application definition (for example, our .app file) which module is going to implement the application callback. Let's do so by opening mix.exs and changing def application to the following:
 def application do
 [
 extra_applications: [:logger],
 mod: {KV, []}
]
 end
The :mod option specifies the "application callback module", followed by the arguments to be passed on application start. The application callback module can be any module that invokes use Application. Since we have specified KV as the module callback, let's change the KV module defined in lib/kv.ex to the following:
defmodule KV do
 use Application
end
Now run mix test and you will see a couple things happening. First of all, you will get a compilation warning:
Compiling 1 file (.ex)
 warning: function start/2 required by behaviour Application is not implemented (in module KV)
 │
 1 │ defmodule KV do
 │ ~~~~~~~~~~~~~~~
 │
 └─ lib/kv.ex:1: KV (module)
This warning is telling us that use Application actually defines a behaviour, which expects us to implement to a start/2 function in our KV module.
Then our application does not even boot because the start/2 function is not actually implemented:
18:29:39.109 [notice] Application kv exited: exited in: KV.start(:normal, [])
 ** (EXIT) an exception was raised:
 ** (UndefinedFunctionError) function KV.start/2 is undefined or private
Implementing the start/2 callback is relatively straight-forward, all we need to do is to start a supervision tree, and return {:ok, root_supervisor_pid}. The Supervisor.start_link/2 function does precisely that, it only expects a list of children and the supervision strategy. Let's just pass an empty list of children for now:
defmodule KV do
 use Application

 # The @impl true annotation says we are implementing a callback
 @impl true
 def start(_type, _args) do
 Supervisor.start_link([], strategy: :one_for_one)
 end
end
Now run mix test again and our app should boot but we should see one failure. When we changed the KV module, we broke the boilerplate test case which tested the KV.hello/0 function. You can simply remove that test case and we are back to a green suite.
We wrote very little code but we did something incredibly powerful. We now have a function, KV.start/2 that is invoked whenever your application starts. This gives us the perfect place to start our key-value registry. The Application module also allows us to define a stop/1 callback and other functionality. You can check the Application and Supervisor modules for extensive documentation on their uses.
Let's finally start our registry.
Supervision trees
Now that we have the start/2 callback, we can finally go ahead and start our registry. You may be tempted to do it like this:
 def start(_type, _args) do
 Registry.start_link(name: KV, keys: :unique)
 Supervisor.start_link([], strategy: :one_for_one)
 end
However, this would not be a good idea. In Elixir, we typically start processes inside supervision trees. In fact, we rarely use the start_link functions to start processes (except at the root of the supervision tree itself). Instead, do this:
 def start(_type, _args) do
 children = [
 {Registry, name: KV, keys: :unique}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
A supervisor receives one or more child specifications that tell it exactly how to start each child. A child specification is typically represented by a {module, options} pair, as shown above, and often as simply the module name. Sometimes, these children are supervisors themselves, giving us supervision trees.
Let's take it for a spin and see if we can indeed name our buckets using our new registry. Let's make sure to start a new iex -S mix (recompile() is not enough, as it does not reload your supervision tree) and then:
iex> name = {:via, Registry, {KV, "shopping"}}
iex> KV.Bucket.start_link(name: name)
{:ok, #PID<0.43.0>}
iex> KV.Bucket.put(name, "milk", 1)
:ok
iex> KV.Bucket.get(name, "milk")
1
Perfect, this time we didn't need to start the registry inside iex, as it was started as part of the application itself.
By starting processes inside supervisors, we gain important properties such as:
	Introspection: for each application, you can fully introspect and visualize each process in its supervision tree, its memory usage, message queue, etc

	Resilience: when a process fails for an unexpected reason, its supervisor controls if and how those processes should be restarted, leading to self-healing systems

	Graceful shutdown: when your application is shutting down, the children of a supervision tree are terminated in the opposite order they were started, leading to graceful shutdowns

Projects or applications?
Mix makes a distinction between projects and applications. Based on the contents of our mix.exs file, we would say we have a Mix project that defines the :kv application.
When we say "project" you should think about Mix. Mix is the tool that manages your project. It knows how to compile your project, test your project and more. It also knows how to compile and start the application relevant to your project.
When we talk about applications, we talk about OTP. Applications are the entities that are started and stopped as a whole by the runtime. You can learn more about applications and how they relate to booting and shutting down of your system as a whole in the documentation for the Application module.
Summing up
We learned important concepts in this chapter:
	Naming registries allow us to find processes in a given machine (or, as we will see in the future, even in a cluster)

	Applications bundle our modules, its dependencies, and how code starts and stops

	Processes are started as part of supervisors for introspection and fault-tolerance

In the next chapter, we will tie it all up by making sure all our buckets are named and supervised. To do so, we will learn a new tool called dynamic supervisors.

 Supervising dynamic children

We have successfully learned how our supervision tree is automatically started (and stopped) as part of our application's life cycle. We can also name our buckets via the :name option. We also learned that, in practice, we should always start new processes inside supervisors. Let's apply these insights by ensuring our buckets are named and supervised.
Child specs
Supervisors know how to start processes because they are given "child specifications". In our lib/kv.ex file, we defined a list of children with a single child spec:
children = [
 {Registry, name: KV, keys: :unique}
]
When the child specification is a tuple (as above) or module, then it is equivalent to calling the child_spec/1 function on said module, which then returns the full specification. The pair above is equivalent to:
iex> Registry.child_spec(name: KV, keys: :unique)
%{
 id: KV,
 start: {Registry, :start_link, [[name: KV, keys: :unique]]},
 type: :supervisor
}
The underlying map returns the :id (required), the module-function-args triplet to invoke to start the process (required), the type of the process (optional), among other optional keys. In other words, the child_spec/1 function allows us to compose and encapsulate specifications in modules.
Therefore, if we want to supervise KV.Bucket, we only need to define a child_spec/1 function. Luckily for us, whenever we invoke use Agent (or use GenServer or use Supervisor and so forth), an implementation with reasonable defaults is provided. So let's take it for a spin. Back on iex -S mix, try this:
iex> KV.Bucket.child_spec([])
%{id: KV.Bucket, start: {KV.Bucket, :start_link, [[]]}}
iex> KV.Bucket.child_spec([name: :shopping])
%{id: KV.Bucket, start: {KV.Bucket, :start_link, [[name: :shopping]]}}
Let's try to start it as part of a supervisor then, using the {module, options} format to pass the bucket name (let's also use an atom as the name for convenience):
iex> children = [{KV.Bucket, name: :shopping}]
iex> Supervisor.start_link(children, strategy: :one_for_one)
iex> KV.Bucket.put(:shopping, "milk", 1)
:ok
iex> KV.Bucket.get(:shopping, "milk")
1
What happens now if we explicitly kill the bucket process?
Find the pid for the given name
iex> pid = Process.whereis(:shopping)
#PID<0.48.0>
Send it a kill exit signal
iex> Process.exit(pid, :kill)
true
But a new process is alive in its place
iex> Process.whereis(:shopping)
#PID<0.50.0>
Given our buckets can already be supervised, it is time to hook them into our supervision tree.
Dynamic supervisors
Given our buckets can already be supervised, you may be thinking to start them as part of our application start/2 callback, such as:
children = [
 {Registry, name: KV, keys: :unique}
 {KV.Bucket, name: {:via, Registry, {KV, "shopping"}}}
]
And while the above would definitely work, it comes with a huge caveat: it only starts a single bucket. In practice, we want the user to be able to create new buckets at any time. In other words, we need to start and supervise processes dynamically.
While the Supervisor module has APIs for starting children after its initialization, it was not designed or optimized for the use case of having potentially millions of children. For this purpose, Elixir instead provides the DynamicSupervisor module. Using it is quite similar to Supervisor except that, instead of specifying the children during start, you do it afterwards. Let's take it for a spin:
iex> {:ok, sup_pid} = DynamicSupervisor.start_link(strategy: :one_for_one)
iex> DynamicSupervisor.start_child(sup_pid, {KV.Bucket, name: :another_list})
iex> KV.Bucket.put(:another_list, "milk", 1)
:ok
iex> KV.Bucket.get(:another_list, "milk")
1
And it all works as expected. In fact, we can even give names to DynamicSupervisor themselves, instead of passing PIDs around and also use it to start buckets named using the registry:
iex> DynamicSupervisor.start_link(strategy: :one_for_one, name: :dyn_sup)
iex> name = {:via, Registry, {KV, "yet_another_list"}}
iex> DynamicSupervisor.start_child(:dyn_sup, {KV.Bucket, name: name})
iex> KV.Bucket.put(name, "milk", 1)
:ok
iex> KV.Bucket.get(name, "milk")
1
Overall, processes can be named and supervised, regardless if they are supervisors, agents, etc, since all of Elixir standard library was designed around those capabilities.
With all ingredients in place to supervise and name buckets, open up the lib/kv.ex module and let's add a new function called KV.lookup_bucket/1, which receives a name and either create or returns a bucket for the given name:
defmodule KV do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 {Registry, name: KV, keys: :unique},
 {DynamicSupervisor, name: KV.BucketSupervisor, strategy: :one_for_one}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end

 @doc """
 Creates a bucket with the given name.
 """
 def create_bucket(name) do
 DynamicSupervisor.start_child(KV.BucketSupervisor, {KV.Bucket, name: via(name)})
 end

 @doc """
 Looks up the given bucket.
 """
 def lookup_bucket(name) do
 GenServer.whereis(via(name))
 end

 defp via(name), do: {:via, Registry, {KV, name}}
end
The code is relatively simple. First we changed start/2 to also start a dynamic supervisor named KV.BucketSupervisor. Then, when implemented KV.create_bucket/1 which receives a bucket and starts with using our registry and dynamic supervisor. And we also added KV.lookup_bucket/1 that receives the same name and attempts to find its PID.
To make sure it all works as expected, let's write a test. Open up test/kv_test.exs and add this:
defmodule KVTest do
 use ExUnit.Case, async: true

 test "creates and looks up buckets by any name" do
 name = "a unique name that won't be shared"
 assert is_nil(KV.lookup_bucket(name))

 assert {:ok, bucket} = KV.create_bucket(name)
 assert KV.lookup_bucket(name) == bucket

 assert KV.create_bucket(name) == {:error, {:already_started, bucket}}
 end
end
The test shows we are creating and locating buckets with any name, making sure we use a unique name to avoid conflicts between tests.
The start_supervised test helper
Before we move on, let's do some clean up.
In test/kv/bucket_test.exs, we explicitly invoked KV.Bucket.start_link/1 to start our buckets. However, we now know that we should avoid calling start_link/1 directly and instead start processes as part of supervision trees.
In order to aid testing, ExUnit already starts a supervision tree per test and provides the start_supervised function to start processes within test-specific supervision tree. One advantage of this approach is that ExUnit guarantees any started process is shut down at the end of the test too. Let's rewrite our tests to use it instead:
defmodule KV.BucketTest do
 use ExUnit.Case, async: true

 test "stores values by key" do
 {:ok, bucket} = start_supervised(KV.Bucket)
 assert KV.Bucket.get(bucket, "milk") == nil

 KV.Bucket.put(bucket, "milk", 3)
 assert KV.Bucket.get(bucket, "milk") == 3
 end

 test "stores values by key on a named process", config do
 {:ok, _} = start_supervised({KV.Bucket, name: config.test})
 assert KV.Bucket.get(config.test, "milk") == nil

 KV.Bucket.put(config.test, "milk", 3)
 assert KV.Bucket.get(config.test, "milk") == 3
 end
end
It is a small change, but our tests are now using all of the relevant best practices. Excellent!
Observer
Now that we have defined our supervision tree, it is a great opportunity to introduce the Observer tool that ships with Erlang. Start your application with iex -S mix and key this in:
iex> :observer.start()
Missing dependencies
When running iex inside a project with iex -S mix, observer won't be available as a dependency. To do so, you will need to call the following functions:
iex> Mix.ensure_application!(:observer)
iex> :observer.start()
If the call above fails, here is what may have happened: some package managers default to installing a minimized Erlang without WX bindings for GUI support. In some package managers, you may be able to replace the headless Erlang with a more complete package (look for packages named erlang vs erlang-nox on Debian/Ubuntu/Arch). In others managers, you may need to install a separate erlang-wx (or similarly named) package.
There are conversations to improve this experience in future releases.
A GUI should pop up containing all sorts of information about our system, from general statistics to load charts as well as a list of all running processes and applications.
In the Applications tab, you will see all applications currently running in your system alongside their supervision tree. You can select the kv application to explore it further:
[image: Observer GUI screenshot]Not only that, as you create new buckets on the terminal, you should see new processes spawned in the supervision tree shown in Observer:
iex> KV.create_bucket("shopping")
#PID<0.89.0>
We will leave it up to you to further explore what Observer provides. Note you can double-click any process in the supervision tree to retrieve more information about it, as well as right-click a process to send "a kill signal", a perfect way to emulate failures and see if your supervisor reacts as expected.
At the end of the day, tools like Observer are one of the reasons you want to always start processes inside supervision trees, even if they are temporary, to ensure they are always reachable and introspectable.
Now that our buckets are named and supervised, we are ready to start our server and start receiving requests.

 Task and gen_tcp

In this chapter, we are going to learn how to use Erlang's :gen_tcp module to serve requests. This provides a great opportunity to explore Elixir's Task module. In future chapters, we will expand our server so that it can actually interact with buckets.
Echo server
We will start our TCP server by first implementing an echo server. It will send a response with the text it received in the request. We will slowly improve our server until it is supervised and ready to handle multiple connections.
A TCP server, in broad strokes, performs the following steps:
	Listens to a port until the port is available and it gets hold of the socket
	Waits for a client connection on that port and accepts it
	Reads the client request and writes a response back

Let's implement those steps. Create a new lib/kv/server.ex and add the following functions:
defmodule KV.Server do
 require Logger

 def accept(port) do
 # The options below mean:
 #
 # 1. `:binary` - receives data as binaries (instead of lists)
 # 2. `packet: :line` - receives data line by line
 # 3. `active: false` - blocks on `:gen_tcp.recv/2` until data is available
 # 4. `reuseaddr: true` - allows us to reuse the address if the listener crashes
 #
 {:ok, socket} =
 :gen_tcp.listen(port, [:binary, packet: :line, active: false, reuseaddr: true])
 Logger.info("Accepting connections on port #{port}")
 loop_acceptor(socket)
 end

 defp loop_acceptor(socket) do
 {:ok, client} = :gen_tcp.accept(socket)
 serve(client)
 loop_acceptor(socket)
 end

 defp serve(socket) do
 socket
 |> read_line()
 |> write_line(socket)

 serve(socket)
 end

 defp read_line(socket) do
 {:ok, data} = :gen_tcp.recv(socket, 0)
 data
 end

 defp write_line(line, socket) do
 :gen_tcp.send(socket, line)
 end
end
We are going to start our server by calling KV.Server.accept(4040), where 4040 is the port. The first step in accept/1 is to listen to the port until the socket becomes available and then call loop_acceptor/1. loop_acceptor/1 is a loop accepting client connections. For each accepted connection, we call serve/1.
serve/1 is another loop that reads a line from the socket and writes those lines back to the socket. Note that the serve/1 function uses the pipe operator |>/2 to express this flow of operations. The pipe operator evaluates the left side and passes its result as the first argument to the function on the right side. The example above:
socket |> read_line() |> write_line(socket)
is equivalent to:
write_line(read_line(socket), socket)
The read_line/1 implementation receives data from the socket using :gen_tcp.recv/2 and write_line/2 writes to the socket using :gen_tcp.send/2.
Note that serve/1 is an infinite loop called sequentially inside loop_acceptor/1, so the tail call to loop_acceptor/1 is never reached and could be avoided. However, as we shall see, we will need to execute serve/1 in a separate process, so we will need that tail call soon.
This is pretty much all we need to implement our echo server. Let's give it a try!
Start an IEx session inside the kv_server application with iex -S mix. Inside IEx, run:
iex> KV.Server.accept(4040)
The server is now running, and you will even notice the console is blocked. Let's use a telnet client to access our server. There are clients available on most operating systems, and their command lines are generally similar:
$ telnet 127.0.0.1 4040
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hello
hello
is it me
is it me
you are looking for?
you are looking for?

Type "hello", press enter, and you will get "hello" back. Excellent!
My particular telnet client can be exited by typing ctrl +], typing quit, and pressing <Enter>, but your client may require different steps.
Once you exit the telnet client, you will likely see an error in the IEx session:
** (MatchError) no match of right hand side value: {:error, :closed}
 (kv) lib/kv/server.ex:45: KV.Server.read_line/1
 (kv) lib/kv/server.ex:37: KV.Server.serve/1
 (kv) lib/kv/server.ex:30: KV.Server.loop_acceptor/1
That's because we were expecting data from :gen_tcp.recv/2 but the client closed the connection. We need to handle such cases better in future revisions of our server.
For now, there is a more important bug we need to fix: what happens if our TCP acceptor crashes? Since there is no supervision, the server dies and we won't be able to serve more requests, because it won't be restarted. That's why we must move our server to a supervision tree.
Tasks
Whenever you have an existing function and you simply want to execute it when your application starts, the Task module is exactly what you need. For example, it has a Task.start_link/1 function that receives an anonymous function and executes it inside a new process that will be part of a supervision tree.
Let's give it a try. Open up lib/kv.ex and let's add a new child:
 def start(_type, _args) do
 children = [
 {Registry, name: KV, keys: :unique},
 {DynamicSupervisor, name: KV.BucketSupervisor, strategy: :one_for_one},
 {Task, fn -> KV.Server.accept(4040) end}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
With this change, we are saying that we want to run KV.Server.accept(4040) as a task. We are hardcoding the port for now but we will make this a configuration in later chapters. As usual, we've passed a two-element tuple as a child specification, which in turn will invoke Task.start_link/1.
Now that the server is part of the supervision tree, it should start automatically when we run the application. Run iex -S mix to boot the app and use the telnet client to make sure that everything still works:
$ telnet 127.0.0.1 4321
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
say you
say you
say me
say me

Yes, it works! However, can it handle more than one client?
Try to connect two telnet clients at the same time. When you do so, you will notice that the second client doesn't echo:
$ telnet 127.0.0.1 4321
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hello
hello?
HELLOOOOOO?

It doesn't seem to work at all. That's because we are serving requests in the same process that are accepting connections. When one client is connected, we can't accept another client.
Adding (flawed) concurrency
In order to make our server handle simultaneous connections, we need to have one process working as an acceptor that spawns other processes to serve requests. One solution would be to change:
defp loop_acceptor(socket) do
 {:ok, client} = :gen_tcp.accept(socket)
 serve(client)
 loop_acceptor(socket)
end
to also use Task.start_link/1:
defp loop_acceptor(socket) do
 {:ok, client} = :gen_tcp.accept(socket)
 {:ok, pid} = Task.start_link(fn -> serve(client) end)
 :ok = :gen_tcp.controlling_process(client, pid)
 loop_acceptor(socket)
end
In the new acceptor loop, we are starting a new task every time there is a new client. Now, if you attempt to connect two clients at the same time, it should work!
Or does it? For example, what happens when you exit one telnet session? The other session should crash! The reason of this crash is two fold:
	We have a bug in our server where we don't expect :gen_tcp.recv/2 to return an {:error, :closed} tuple

	Because each server task is linked to the acceptor process, if one task crashes, the acceptor process will also crash, taking down all other tasks and clients

An important rule of thumb throughout this guide is to always start processes as children of supervisors. The code above is an excellent example of what happens when we don't. If we don't isolate the different parts of our systems, failures can now cascade through our system, as it would happen in other languages.
To fix this, we could use a DynamicSupervisor, but tasks also provide a specialized Task.Supervisor which has better ergonomics and is optimized for supervising tasks themselves. Let's give it a try.
Adding a task supervisor
Let's change start/2 in lib/kv.ex once more, to add the task supervisor to our tree:
 def start(_type, _args) do
 children = [
 {Registry, name: KV, keys: :unique},
 {DynamicSupervisor, name: KV.BucketSupervisor, strategy: :one_for_one},
 {Task.Supervisor, name: KV.ServerSupervisor},
 {Task, fn -> KV.Server.accept(4040) end}
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
We'll now start a Task.Supervisor process with name KV.TaskSupervisor. Keep in mind that the order children are started matters. For example, the acceptor must come last because, if it comes first, it means our application can start accepting requests before the Task.Supervisor is running or before we can locate buckets. Shutting down an application will also stop the children in reverse order, guaranteeing a clean termination.
Now we need to change loop_acceptor/1 to use Task.Supervisor to serve each request:
defp loop_acceptor(socket) do
 {:ok, client} = :gen_tcp.accept(socket)
 {:ok, pid} = Task.Supervisor.start_child(KV.ServerSupervisor, fn -> serve(client) end)
 :ok = :gen_tcp.controlling_process(client, pid)
 loop_acceptor(socket)
end
You might notice that we added a line, :ok = :gen_tcp.controlling_process(client, pid). This makes the child process the "controlling process" of the client socket. If we didn't do this, the acceptor would bring down all the clients if it crashed because sockets would be tied to the process that accepted them (which is the default behavior).
Now start a new server with iex -S mix and try to open up many concurrent telnet clients. You will notice that quitting a client does not bring the acceptor down, even though we haven't fixed the bug in :gen_tcp.recv/2 yet (which we will address in the next chapter). Excellent!
Restart strategies
There is one important topic we haven't explored yet with the necessary depth. What happens when a supervised process crashes?
In the previous chapter, when we started a bucket and killed it, the supervisor automatically started one in its place:
iex> children = [{KV.Bucket, name: :shopping}]
iex> Supervisor.start_link(children, strategy: :one_for_one)
iex> KV.Bucket.put(:shopping, "milk", 1)
iex> pid = Process.whereis(:shopping)
#PID<0.48.0>
iex> Process.exit(pid, :kill)
true
iex> Process.whereis(:shopping)
#PID<0.50.0>
What exactly happens when a process terminates is part of its child specification. For KV.Bucket, we have this:
iex> KV.Bucket.child_spec([])
%{id: KV.Bucket, start: {KV.Bucket, :start_link, [[]]}}
However, for tasks, we have this:
iex> Task.child_spec(fn -> :ok end)
%{
 id: Task,
 restart: :temporary,
 start: {Task, :start_link, [#Function<43.39164016/0 in :erl_eval.expr/6>]}
}
Notice that a task says :restart is :temporary. KV.Bucket says nothing, which means it defaults to :permanent. :temporary means that a process is never restarted, regardless of why it crashed. :permanent means a process is always restarted, regardless of the exit reason. There is also :transient, which means it won't be restarted as long as it terminates successfully.
Now we must ask ourselves, are those the correct settings?
For KV.Bucket, using :permanent seems logical, as we should not require the user to recreate a bucket they have previously created. Although currently we would lose the bucket data, in an actual system we would add mechanisms to recover it on initialization. However, for tasks, we have used them in two opposing ways in this chapter, which means at least one of them is wrong.
We use a task to start the acceptor. The acceptor is a critical component of our infrastructure. If it crashes, it means we won't accept further requests, and our server would then be useless as no one can connect to it. On the other hand, we also use Task.Supervisor to start tasks that deal with each connection. In this case, restarting may not be useful at all, given the reason we crashed could just as well be a connection issue, and attempting to restart over the same connection would lead to further failures.
Therefore, we want the acceptor to actually run in :permanent mode, while we preserve the Task.Supervisor as :temporary. Luckily Elixir has an API that allows us to change an existing child specification, which we use below.
Let's change start/2 in lib/kv.ex once more to the following:
 def start(_type, _args) do
 children = [
 {Registry, name: KV, keys: :unique},
 {DynamicSupervisor, name: KV.BucketSupervisor, strategy: :one_for_one},
 {Task.Supervisor, name: KV.ServerSupervisor},
 Supervisor.child_spec({Task, fn -> KV.Server.accept(4040) end}, restart: :permanent)
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
Now we have an always running acceptor that starts temporary task processes under an always running task supervisor.
Leveraging the ecosystem
In this chapter, we implemented a basic TCP acceptor while exploring concurrency and fault-tolerance. Our acceptor can manage concurrent connections, but it is still not ready for production. Production-ready TCP servers run a pool of acceptors, each with their own supervisor. Elixir's PartitionSupervisor might be used to partition and scale the acceptor, but it is out of scope for this guide. In practice, you will use existing packages tailored for this use-case, such as Ranch (in Erlang) or Thousand Island (in Elixir).
In the next chapter, we will start parsing the client requests and sending responses, finishing our server.

 Doctests, patterns, and with

In this chapter, we will implement the code that parses the commands we described in the first chapter:
CREATE shopping
OK

PUT shopping milk 1
OK

PUT shopping eggs 3
OK

GET shopping milk
1
OK

DELETE shopping eggs
OK
After the parsing is done, we will update our server to dispatch the parsed commands to the relevant buckets.
Doctests
On the language homepage, we mention that Elixir makes documentation a first-class citizen in the language. We have explored this concept many times throughout this guide, be it via mix help or by typing h Enum or another module in an IEx console.
In this section, we will implement the parsing functionality, document it and make sure our documentation is up to date with doctests. This helps us provide documentation with accurate code samples.
Let's create our command parser at lib/kv/command.ex and start with the doctest:
defmodule KV.Command do
 @doc ~S"""
 Parses the given `line` into a command.

 ## Examples

 iex> KV.Command.parse("CREATE shopping\r\n")
 {:ok, {:create, "shopping"}}

 """
 def parse(_line) do
 :not_implemented
 end
end
Doctests are specified by an indentation of four spaces followed by the iex> prompt in a documentation string. If a command spans multiple lines, you can use ...>, as in IEx. The expected result should start at the next line after iex> or ...> line(s) and is terminated either by a newline or a new iex> prefix.
Also, note that we started the documentation string using @doc ~S""". The ~S prevents the \r\n characters from being converted to a carriage return and line feed until they are evaluated in the test.
To run our doctests, we'll create a file at test/kv/command_test.exs and call doctest KV.Command in the test case:
defmodule KV.CommandTest do
 use ExUnit.Case, async: true
 doctest KV.Command
end
Run the test suite and the doctest should fail:
 1) doctest KV.Command.parse/1 (1) (KV.CommandTest)
 test/kv/command_test.exs:3
 Doctest failed
 doctest:
 iex> KV.Command.parse("CREATE shopping\r\n")
 {:ok, {:create, "shopping"}}
 code: KV.Command.parse "CREATE shopping\r\n" === {:ok, {:create, "shopping"}}
 left: :not_implemented
 right: {:ok, {:create, "shopping"}}
 stacktrace:
 lib/kv/command.ex:7: KV.Command (module)
Excellent!
Now let's make the doctest pass. Let's implement the parse/1 function:
def parse(line) do
 case String.split(line) do
 ["CREATE", bucket] -> {:ok, {:create, bucket}}
 end
end
Our implementation splits the line on whitespace and then matches the command against a list. Using String.split/1 means our commands will be whitespace-insensitive. Leading and trailing whitespace won't matter, nor will consecutive spaces between words. Let's add some new doctests to test this behavior along with the other commands:
 @doc ~S"""
 Parses the given `line` into a command.

 ## Examples

 iex> KV.Command.parse "CREATE shopping\r\n"
 {:ok, {:create, "shopping"}}

 iex> KV.Command.parse "CREATE shopping \r\n"
 {:ok, {:create, "shopping"}}

 iex> KV.Command.parse "PUT shopping milk 1\r\n"
 {:ok, {:put, "shopping", "milk", "1"}}

 iex> KV.Command.parse "GET shopping milk\r\n"
 {:ok, {:get, "shopping", "milk"}}

 iex> KV.Command.parse "DELETE shopping eggs\r\n"
 {:ok, {:delete, "shopping", "eggs"}}

 Unknown commands or commands with the wrong number of
 arguments return an error:

 iex> KV.Command.parse "UNKNOWN shopping eggs\r\n"
 {:error, :unknown_command}

 iex> KV.Command.parse "GET shopping\r\n"
 {:error, :unknown_command}

 """
With doctests at hand, it is your turn to make tests pass! Once you're ready, you can compare your work with our solution below:
 def parse(line) do
 case String.split(line) do
 ["CREATE", bucket] -> {:ok, {:create, bucket}}
 ["GET", bucket, key] -> {:ok, {:get, bucket, key}}
 ["PUT", bucket, key, value] -> {:ok, {:put, bucket, key, value}}
 ["DELETE", bucket, key] -> {:ok, {:delete, bucket, key}}
 _ -> {:error, :unknown_command}
 end
 end
Notice how we were able to elegantly parse the commands without adding a bunch of if/else clauses that check the command name and number of arguments!
Finally, you may have observed that each doctest corresponds to a different test in our suite, which now reports a total of 7 doctests. That is because ExUnit considers the following to define two different doctests:
iex> KV.Command.parse("UNKNOWN shopping eggs\r\n")
{:error, :unknown_command}

iex> KV.Command.parse("GET shopping\r\n")
{:error, :unknown_command}
Without new lines, as seen below, ExUnit compiles it into a single doctest:
iex> KV.Command.parse("UNKNOWN shopping eggs\r\n")
{:error, :unknown_command}
iex> KV.Command.parse("GET shopping\r\n")
{:error, :unknown_command}
As the name says, doctest is documentation first and a test later. Their goal is not to replace tests but to provide up-to-date documentation. You can read more about doctests in the ExUnit.DocTest documentation.
Using with
As we are now able to parse commands, we can finally start implementing the logic that runs the commands. Let's add a stub definition for this function for now:
defmodule KV.Command do
 @doc """
 Runs the given command.
 """
 def run(command, socket) do
 :gen_tcp.send(socket, "OK\r\n")
 :ok
 end
end
Before we implement this function, let's change our server to start using our new parse/1 and run/1 functions. Remember, our read_line/1 function was also crashing when the client closed the socket, so let's take the opportunity to fix it, too. Open up lib/kv/server.ex and replace the existing server definition:
 defp serve(socket) do
 socket
 |> read_line()
 |> write_line(socket)

 serve(socket)
 end

 defp read_line(socket) do
 {:ok, data} = :gen_tcp.recv(socket, 0)
 data
 end

 defp write_line(line, socket) do
 :gen_tcp.send(socket, line)
 end
by the following:
 defp serve(socket) do
 msg =
 case read_line(socket) do
 {:ok, data} ->
 case KV.Command.parse(data) do
 {:ok, command} ->
 KV.Command.run(command, socket)

 {:error, _} = err ->
 err
 end

 {:error, _} = err ->
 err
 end

 write_line(socket, msg)
 serve(socket)
 end

 defp read_line(socket) do
 :gen_tcp.recv(socket, 0)
 end

 defp write_line(_socket, :ok) do
 :ok
 end

 defp write_line(socket, {:error, :unknown_command}) do
 # Known error; write to the client
 :gen_tcp.send(socket, "UNKNOWN COMMAND\r\n")
 end

 defp write_line(_socket, {:error, :closed}) do
 # The connection was closed, exit politely
 exit(:shutdown)
 end

 defp write_line(socket, {:error, error}) do
 # Unknown error; write to the client and exit
 :gen_tcp.send(socket, "ERROR\r\n")
 exit(error)
 end
If we start our server, we can now send commands to it. For now, we will get two different responses: "OK" when the command is known and "UNKNOWN COMMAND" otherwise:
$ telnet 127.0.0.1 4040
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
CREATE shopping
OK
HELLO
UNKNOWN COMMAND

This means our implementation is going in the correct direction, but it doesn't look very elegant, does it?
The previous implementation used pipelines which made the logic straightforward to follow. However, now that we need to handle different error codes along the way, our server logic is nested inside many case calls.
Thankfully, Elixir has the with construct, which allows you to simplify code like the above, replacing nested case calls with a chain of matching clauses. Let's rewrite the serve/1 function to use with:
 defp serve(socket) do
 msg =
 with {:ok, data} <- read_line(socket),
 {:ok, command} <- KV.Command.parse(data),
 do: KV.Command.run(command, socket)

 write_line(socket, msg)
 serve(socket)
 end
Much better! with will retrieve the value returned by the right-side of <- and match it against the pattern on the left side. If the value matches the pattern, with moves on to the next expression. In case there is no match, the non-matching value is returned.
In other words, we converted each expression given to case/2 as a step in with. As soon as any of the steps return something that does not match {:ok, x}, with aborts, and returns the non-matching value.
You can read more about with/1 in our documentation.
Running commands
The last step is to implement KV.Command.run/1 to run the parsed commands on top of buckets. Its implementation is shown below:
 @doc """
 Runs the given command.
 """
 def run(command, socket)

 def run({:create, bucket}, socket) do
 KV.create_bucket(bucket)
 :gen_tcp.send(socket, "OK\r\n")
 :ok
 end

 def run({:get, bucket, key}, socket) do
 lookup(bucket, fn pid ->
 value = KV.Bucket.get(pid, key)
 :gen_tcp.send(socket, "#{value}\r\nOK\r\n")
 :ok
 end)
 end

 def run({:put, bucket, key, value}, socket) do
 lookup(bucket, fn pid ->
 KV.Bucket.put(pid, key, value)
 :gen_tcp.send(socket, "OK\r\n")
 :ok
 end)
 end

 def run({:delete, bucket, key}, socket) do
 lookup(bucket, fn pid ->
 KV.Bucket.delete(pid, key)
 :gen_tcp.send(socket, "OK\r\n")
 :ok
 end)
 end

 defp lookup(bucket, callback) do
 if bucket = KV.lookup_bucket(bucket) do
 callback.(bucket)
 else
 {:error, :not_found}
 end
 end
Each function clause dispatches the appropriate command to the appropriate bucket.
You might have noticed we have a function head, def run(command, socket), without a body. In the Modules and Functions chapter, we learned that a bodiless function can be used to declare default arguments for a multi-clause function. Here is another use case where we use a function without a body to document what the arguments are.
We have also defined a private function named lookup/2 to help with the common functionality of looking up a bucket and returning its pid if it exists, {:error, :not_found} otherwise.
By the way, since we are now returning {:error, :not_found}, we should amend the write_line/2 function in KV.Server to print such error as well:
defp write_line(socket, {:error, :not_found}) do
 :gen_tcp.send(socket, "NOT FOUND\r\n")
end
Our server functionality is almost complete. Only tests are missing.
Integration tests
KV.Command.run/1's implementation is sending commands directly to the KV module, which is using a local registry to name processes. This means if we have two tests sending messages to the same bucket, our tests will conflict with each other (and likely fail). One might think this would be a reason to use mocks and other strategies to keep our tests isolated, but such techniques often make our testing environment too distant from how our code actually runs in production, and you may end-up with bugs lurking.
Luckily, there is a technique that we have been using throughout this guide that would be equally applicable here: it is ok to rely on the local registry as long as each test uses unique names. Using a combination of the test module and test name is more than enough to guarantee that.
So let's write integration tests that rely on unique names to exercise the whole stack from the TCP server to the bucket.
Create a new file at test/kv/server_test.exs as shown below:
defmodule KV.ServerTest do
 use ExUnit.Case, async: true

 @socket_options [:binary, packet: :line, active: false]

 setup config do
 {:ok, socket} = :gen_tcp.connect(~c"localhost", 4040, @socket_options)
 test_name = config.test |> Atom.to_string() |> String.replace(" ", "-")
 %{socket: socket, name: "#{config.module}-#{test_name}"}
 end

 test "server interaction", %{socket: socket, name: name} do
 # CREATE
 assert send_and_recv(socket, "CREATE #{name}\r\n") == "OK\r\n"

 # PUT
 assert send_and_recv(socket, "PUT #{name} eggs 3\r\n") == "OK\r\n"

 # GET
 assert send_and_recv(socket, "GET #{name} eggs\r\n") == "3\r\n"
 assert send_and_recv(socket, "") == "OK\r\n"

 # DELETE
 assert send_and_recv(socket, "DELETE #{name} eggs\r\n") == "OK\r\n"

 # GET
 assert send_and_recv(socket, "GET #{name} eggs\r\n") == "\r\n"
 assert send_and_recv(socket, "") == "OK\r\n"
 end

 test "unknown command", %{socket: socket} do
 assert send_and_recv(socket, "WHATEVER\r\n") ==
 "UNKNOWN COMMAND\r\n"
 end

 test "unknown bucket", %{socket: socket} do
 assert send_and_recv(socket, "GET whatever eggs\r\n") ==
 "NOT FOUND\r\n"
 end

 defp send_and_recv(socket, command) do
 :ok = :gen_tcp.send(socket, command)
 {:ok, data} = :gen_tcp.recv(socket, 0, 1000)
 data
 end
end
Run mix test and the tests should all pass. However, make sure to terminate any iex -S mix session you may have running, as currently tests and development environment are running on the same port (4040). We will address it in the next chapter.
We added three tests, the first one tests most bucket actions, while the other two deal with error cases. Given there is a lot of shared setup across these tests, we used the setup/2 macro to deal with common boilerplate. The macro receives the same test context as tests and starts a client TCP connection per test. It also defines a unique bucket name using the module name and the test name, making sure any space in the test name is replaced by - as to not interfere with our command parsing logic.
Then, in each test, we pattern matched on the test context, extracting the socket or name as necessary. This is similar to the code we wrote in test/kv/bucket_test.exs:
 test "stores values by key on a named process", config do
Except back then we matched on all config and, this time around, we matched only on the data we needed.
Let's move to the next chapter. We will finally make our system distributed by adding a tiny bit of configuration and, spoiler alert, changing one line of code.

 Configuration and distribution

So far we have hardcoded our applications to run a web server on port 4040. This has been somewhat problematic since we can't, for example, run our development server and tests at the same time. In this chapter, we will learn how to use the application environment for configuration, paving the way for us to enable distribution by running multiple development servers on the same machine (on different ports).
In this last guide, we will make the routing table for our distributed key-value store configurable, and then finally package the software for production.
Let's do this.
Application environment
In the chapter Registries, applications, and supervisors, we have learned that our project is backed by an application, which bundles our modules and specifies how your supervision tree starts and shuts down. Each application can also have its own configuration, which in Erlang/OTP (and therefore Elixir) is called "application environment".
We can use the application environment to configure our own application, as well as others. Let's see the application environment in practice. Create a file config/runtime.exs with the following:
import Config

port =
 cond do
 port_env = System.get_env("PORT") ->
 String.to_integer(port_env)

 config_env() == :test ->
 4040

 true ->
 4050
 end

config :kv, :port, port
The above is attempting to read the "PORT" environment variable and use it as the port if defined. Otherwise, we default to port 4040 for tests and port 4050 for other environments, eliminating the conflict between environments we have seen in the past. Then we store its value under the :port key of our :kv application.
Now we just need to read this configuration. Open up lib/kv.ex and the start/2 function to the following:
 def start(_type, _args) do
 port = Application.fetch_env!(:kv, :port)

 children = [
 {Registry, name: KV, keys: :unique},
 {DynamicSupervisor, name: KV.BucketSupervisor, strategy: :one_for_one},
 {Task.Supervisor, name: KV.ServerSupervisor},
 Supervisor.child_spec({Task, fn -> KV.Server.accept(port) end}, restart: :permanent)
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
Run iex -S mix and you will see the following message printed:
[info] Accepting connections on port 4050
Run tests, without killing the development server, and you will see it running on port 4040.
Our change was straight-forward. We used Application.fetch_env!/2 to read the entry for port in :kv's environment. We explicitly used fetch_env!/2 (instead of get_env/2 or fetch_env) because it will raise if the port was not configured (preventing the app from booting).
Compile vs runtime configuration
Configuration files provide a mechanism for us to configure the environment of any application. Elixir provides two configuration entry points:
	config/config.exs — this file is read at build time, before we compile our application and before we even load our dependencies. This means we can't access the code in our application nor in our dependencies. However, it means we can control how they are compiled

	config/runtime.exs — this file is read after our application and dependencies are compiled and therefore it can configure how our application works at runtime. If you want to read system environment variables (via System.get_env/1) or access external configuration, this is the appropriate place to do so

You can learn more about configuration in the Config and Config.Provider modules.
Generally speaking, we use Application.fetch_env!/2 (and friends) to read runtime configuration. Application.compile_env/2 is available for reading compile-time configuration. This allows Elixir to track which modules to recompile when the compilation environment changes.
Now that we can start multiple servers, let's explore distribution.
Our first distributed code
Elixir ships with facilities to connect nodes and exchange information between them. In fact, we use the same concepts of processes, message passing and receiving messages when working in a distributed environment because Elixir processes are location transparent. This means that when sending a message, it doesn't matter if the recipient process is on the same node or on another node, the VM will be able to deliver the message in both cases.
In order to run distributed code, we need to start the VM with a name. The name can be short (when in the same network) or long (requires the full computer address). Let's start a new IEx session:
$ iex --sname foo

You can see now the prompt is slightly different and shows the node name followed by the computer name:
Interactive Elixir - press Ctrl+C to exit (type h() ENTER for help)
iex(foo@jv)1>
My computer is named jv, so I see foo@jv in the example above, but you will get a different result. We will use foo@computer-name in the following examples and you should update them accordingly when trying out the code.
Let's define a module named Hello in this shell:
iex> defmodule Hello do
...> def world, do: IO.puts("hello world")
...> end
If you have another computer on the same network with both Erlang and Elixir installed, you can start another shell on it. If you don't, you can start another IEx session in another terminal. In either case, give it the short name of bar:
$ iex --sname bar

Note that inside this new IEx session, we cannot access Hello.world/0:
iex> Hello.world
** (UndefinedFunctionError) function Hello.world/0 is undefined (module Hello is not available)
 Hello.world()
However, we can spawn a new process on foo@computer-name from bar@computer-name! Let's give it a try (where @computer-name is the one you see locally):
iex> Node.spawn_link(:"foo@computer-name", fn -> Hello.world() end)
#PID<9014.59.0>
hello world
Elixir spawned a process on another node and returned its PID. You can see the PID number no longer starts with zero, showing it belongs to another node. The code then executed on the other node where the Hello.world/0 function exists and invoked that function. Note that the result of "hello world" was printed on the current node bar and not on foo. In other words, the message to be printed was sent back from foo to bar. This happens because the process spawned on the other node (foo) knows all the output should be sent back to the original node!
We can send and receive messages from the PID returned by Node.spawn_link/2 as usual. Let's try a quick ping-pong example:
iex> pid = Node.spawn_link(:"foo@computer-name", fn ->
...> receive do
...> {:ping, client} -> send(client, :pong)
...> end
...> end)
#PID<9014.59.0>
iex> send(pid, {:ping, self()})
{:ping, #PID<0.73.0>}
iex> flush()
:pong
:ok
In other words, we can spawn processes in other nodes, hold onto their PIDs, and then send messages to them as if they were running on the same machine. That's the location transparency principle. And because everything we have built so far was built on top of messaging passing, we should be able to adjust our key-value store to become a distributed one with little work.
Distributed naming registry with :global
First, let's check that our code is not currently distributed. Start a new node like this:
$ PORT=4100 iex --sname foo -S mix

And the other like this:
$ PORT=4101 iex --sname bar -S mix

Now, within foo@computer-name, do this:
iex> :erpc.call(:"bar@computer-name", KV, :create_bucket, ["shopping"])
{:ok, #PID<22121.164.0>}
Instead of using Node.spawn_link/2, we used Erlang's builtin RPC module to call the function create_bucket in the KV module passing a one element list with the string "shopping" as the argument list. We could have used Node.spawn_link/2, but :erpc.call/4 conveniently returns the result of the invocation.
Still in foo@computer-name, let's try to access the bucket:
iex> KV.lookup_bucket("shopping")
nil
It returns nil. However, if you run KV.lookup_bucket("shopping") in bar@computer-name, it will return the proper bucket. In other words, the nodes can communicate with each other, but buckets spawned in one node are not visible to the other.
This is because we are using Elixir's Registry to name our buckets, which is a local process registry. In other words, it is designed for processes running on a single node and not for distribution.
Luckily, Erlang ships with a distributed registry called :global, which is directly supported by the :name option by passing a {:global, name} tuple. All we need to do is update the via/1 function in lib/kv.ex from this:
 defp via(name), do: {:via, Registry, {KV, name}}
to this:
 defp via(name), do: {:global, name}
Do the change above and restart both foo@computer-name and bar@computer-name. Now, back on foo@computer-name, let's give it another try:
iex> :erpc.call(:"bar@computer-name", KV, :create_bucket, ["shopping"])
{:ok, #PID<21821.179.0>}
iex> KV.lookup_bucket("shopping")
#PID<21821.179.0>
And there you go! By simply changing which naming registry we used, we now have a distributed key value store. You can even try using telnet to connect to the servers on different ports and validate that changes in one session are visible in the other one. Exciting!
Node discovery and dependencies
There is one essential ingredient to wrap up our distributed key-value store. In order for the :global registry to work, we need to make sure the nodes are connected to each other. When we run :erpc call passing the node name:
:erpc.call(:"bar@computer-name", KV, :create_bucket, ["shopping"])
Elixir automatically connected the nodes together. This is easy to do in an IEx session when both instances are running on the same machine but it requires more work in a production environment, where instances are on different machines which may be started at any time and running on different IP addresses.
Luckily for us, this is also a well-solved problem. For example, if you are using the Phoenix web framework in production, it ships with the dns_cluster package, which automatically runs DNS queries to find new nodes and connect them. If you are using Kubernetes or cloud providers, packages like libcluster ship with different strategies to discover and connect nodes.
Installing dependencies in Elixir is simple. Most commonly, we use the Hex Package Manager, by listing the dependency inside the deps function in our mix.exs file:
def deps do
 [{:dns_cluster, "~> 0.2"}]
end
This dependency refers to the latest version of dns_cluster in the 0.x version series that has been pushed to Hex. This is indicated by the ~> preceding the version number. For more information on specifying version requirements, see the documentation for the Version module.
Typically, stable releases are pushed to Hex. If you want to depend on an external dependency still in development, Mix is able to manage Git dependencies too:
def deps do
 [{:dns_cluster, git: "https://github.com/phoenixframework/dns_cluster.git"}]
end
You will notice that when you add a dependency to your project, Mix generates a mix.lock file that guarantees repeatable builds. The lock file must be checked in to your version control system, to guarantee that everyone who uses the project will use the same dependency versions as you.
Mix provides many tasks for working with dependencies, which can be seen in mix help:
$ mix help
mix deps # Lists dependencies and their status
mix deps.clean # Deletes the given dependencies' files
mix deps.compile # Compiles dependencies
mix deps.get # Gets all out of date dependencies
mix deps.tree # Prints the dependency tree
mix deps.unlock # Unlocks the given dependencies
mix deps.update # Updates the given dependencies

The most common tasks are mix deps.get and mix deps.update. Once fetched, dependencies are automatically compiled for you. You can read more about deps by running mix help deps.
To wrap up this chapter, we will build a very simple node discovery mechanism, where the name of the nodes we should connect to are given on boot, using the lessons we learned in this chapter.
Node.connect/1
We will change our application to support a "NODES" environment variable with the name of all nodes each instance should connect to.
Open up config/runtime.exs and add this to the bottom:
nodes =
 System.get_env("NODES", "")
 |> String.split(",", trim: true)
 |> Enum.map(&String.to_atom/1)

config :kv, :nodes, nodes
We fetch the environment variable, split it on "," while discarding all empty strings, and then convert each entry to an atom, as node names are atoms.
Now, in your start/2 callback, we will add this to of the start/2 function:
 def start(_type, _args) do
 for node <- Application.fetch_env!(:kv, :nodes) do
 Node.connect(node)
 end
Now we can start our nodes as:
$ NODES="foo@computer-name,bar@computer-name" PORT=4040 iex --sname foo -S mix
$ NODES="foo@computer-name,bar@computer-name" PORT=4041 iex --sname bar -S mix

And they should connect to each other. Give it a try!
In an actual production system, there is some additional care we must take. For example, we often use --name instead of --sname and give fully qualified node names.
Furthermore, when connecting two instances, we must guarantee they have the same cookie, which is a secret Erlang uses to authorize the connection. When they run on the same machine, they share the same cookie by default, but it must be either explicitly set or shared in other ways when deploying in a cluster.
We will revisit these topics in the last chapter when we talk about releases.
Distributed system trade-offs
In this chapter, we made our key-value store distributed by using the :global naming registry. However, it is important to keep in mind that every distributed system, be it a library or a full-blown database, is designed with a series of trade-offs in mind.
In particular, :global requires consistency across all known nodes whenever a new bucket is created. For example, if your cluster has three nodes, creating a new bucket will require all three nodes to agree on its name. This means if one node is unresponsive, perhaps due to a network partition, the node will have to either reconnect or be kicked out before registration succeeds. This also means that, as your cluster grows in size, registration becomes more expensive, although lookups are always cheap and immediate. Within the ecosystem, there are other named registries, which explore different trade-offs, such as Syn.
Further complications arise when we consider storage. Today, when our nodes terminate, we lose all data stored in the buckets. In our current design, since we allow each node to store their own buckets, it means we would need to backup each node. And, if we don't want data losses, we would also need to replicate the data.
For those reasons, it is still very common to use a database (or any storage system) when writing production applications in Elixir, and use Elixir to implement the realtime and collaborative aspects of your applications that extend beyond storage. For example, we can use Elixir to track which clients are connected to the cluster at any given moment or implement a feed where users are notified in realtime whenever items are added or removed from a bucket.
In fact, that's exactly what we will build in the next chapter. Allowing us to wrap up everything we have learned so far and also talk about one of the essential building blocks in Elixir software: GenServers.

 Client-server with GenServer

To wrap up our distributed key-value store, we will implement a feature where a client can subscribe to a bucket and receive realtime notifications of any modification happening in the bucket, regardless of where in the cluster the bucket is located.
We will do by adding a new command, called SUBSCRIBE, to be used like this:
SUBSCRIBE shopping
milk SET TO 1
eggs SET TO 10
milk DELETED
To make this work, we must change our KV.Bucket implementation to track subscriptions and emit broadcasts. However, as we will see, we cannot implement such on top of agents, and we will need to rewrite our bucket implementation to a GenServer.
Links and monitors
Processes in Elixir are isolated. When they need to communicate, they do so by sending messages. However, how do you know when a process terminates, either because it has completed or due to a crash?
We have two options: links and monitors.
We have used links extensively. Whenever we started a process, we typically did so by using start_link or similar. The idea behind links is that, if any of the processes crash, the other will crash due to the link. We talked about them in the Process chapter of the Getting Started guide. Here is a refresher:
iex> self()
#PID<0.115.0>
iex> spawn_link(fn -> :nothing_bad_will_happen end)
#PID<0.116.0>
iex> self()
#PID<0.115.0>
iex> spawn_link(fn -> raise "oops" end)
#PID<0.117.0>

12:37:33.229 [error] Process #PID<0.117.0> raised an exception
Interactive Elixir (1.18.4) - press Ctrl+C to exit (type h() ENTER for help)
iex> self()
#PID<0.118.0>
The reason why we links are so pervasive is because when we start a process inside a supervisor, we want our process to crash if the supervisor terminates. On the other hand, we don't want the supervisor to crash when a child terminates, and therefore supervisors trap exits from links by calling Process.flag(:trap_exit, true).
In other words, links create an intrinsic relationship between the processes. If we simply want to track when a process dies, without tying their exit signals to each other, a better solution is to use monitors. When a monitored process terminates, we receive a message in our inbox, regardless of the reason:
iex> pid = spawn(fn -> Process.sleep(5000) end)
#PID<0.119.0>
iex> Process.monitor(pid)
#Reference<0.1076459149.2159017989.118674>
iex> flush()
:ok
Wait five seconds
iex> flush()
{:DOWN, #Reference<0.1076459149.2159017989.118674>, :process, #PID<0.119.0>, :normal}
:ok
Once the process terminates, we receive a "DOWN message", represented in a five-element tuple. The last element is the reason why it crashed (:normal means it terminated successfully).
Monitors will play a very important role in our subscribe feature. When a client subscribes to a bucket, the bucket will store the client PID and send messages to it on every change. However, if the client terminates (for example because it was disconnected), the bucket must remove the client from its list of subscribers (otherwise the list would keep on growing forever as clients connect and disconnect).
We chose the Agent module to implement our KV.Bucket and, unfortunately, agents cannot receive messages. So the first step is to rewrite our KV.Bucket to a GenServer. The GenServer module documentation has a good overview on what they are and how to implement them. Give it a read and then we are ready to proceed.
GenServer callbacks
A GenServer is a process that invokes a limited set of functions under specific conditions. When we used an Agent, we would keep both the client code and the server code side by side, like this:
def put(bucket, key, value) do
 Agent.update(bucket, &Map.put(&1, key, value))
end
Let's break that code apart a bit:
def put(bucket, key, value) do
 # Here is the client code
 Agent.update(bucket, fn state ->
 # Here is the server code
 Map.put(state, key, value)
 end)
 # Back to the client code
end
In the code above, we have a process, which we call "the client" sending a request to an agent, "the server". The request contains an anonymous function, which must be executed by the server.
In a GenServer, the code above would be two separate functions, roughly like this:
def put(bucket, key, value) do
 # Send the server a :put "instruction"
 GenServer.call(bucket, {:put, key, value})
end

Server callback

def handle_call({:put, key, value}, _from, state) do
 {:reply, :ok, Map.put(state, key, value)}
end
Let's go ahead and rewrite KV.Bucket at once. Open up lib/kv/bucket.ex and replace its contents with this new version:
defmodule KV.Bucket do
 use GenServer

 @doc """
 Starts a new bucket.
 """
 def start_link(opts) do
 GenServer.start_link(__MODULE__, %{}, opts)
 end

 @doc """
 Gets a value from the `bucket` by `key`.
 """
 def get(bucket, key) do
 GenServer.call(bucket, {:get, key})
 end

 @doc """
 Puts the `value` for the given `key` in the `bucket`.
 """
 def put(bucket, key, value) do
 GenServer.call(bucket, {:put, key, value})
 end

 @doc """
 Deletes `key` from `bucket`.

 Returns the current value of `key`, if `key` exists.
 """
 def delete(bucket, key) do
 GenServer.call(bucket, {:delete, key})
 end

 ### Callbacks

 @impl true
 def init(bucket) do
 state = %{
 bucket: bucket
 }

 {:ok, state}
 end

 @impl true
 def handle_call({:get, key}, _from, state) do
 value = get_in(state.bucket[key])
 {:reply, value, state}
 end

 def handle_call({:put, key, value}, _from, state) do
 state = put_in(state.bucket[key], value)
 {:reply, :ok, state}
 end

 def handle_call({:delete, key}, _from, state) do
 {value, state} = pop_in(state.bucket[key])
 {:reply, value, state}
 end
end
The first function is start_link/1, which starts a new GenServer passing a list of options. GenServer.start_link/3, which takes three arguments:
	The module where the server callbacks are implemented, in this case __MODULE__ (meaning the current module)

	The initialization arguments, in this case the empty bucket %{}

	A list of options which can be used to specify things like the name of the server. Once again, we forward the list of options that we receive on start_link/1 to GenServer.start_link/3, as we did for agents

Once started, the GenServer will invoke the init/1 callback, that receives the second argument given to GenServer.start_link/3 and returns {:ok, state}, where state is a new map. We can already notice how the GenServer API makes the client/server segregation more apparent. start_link/3 happens in the client, while init/1 is the respective callback that runs on the server.
There are two types of requests you can send to a GenServer: calls and casts. Calls are synchronous and the server must send a response back to such requests. While the server computes the response, the client is waiting. Casts are asynchronous: the server won't send a response back and therefore the client won't wait for one. Both requests are messages sent to the server, and will be handled in sequence. So far we have only used GenServer.call/2, to keep the same semantics as the Agent, but we will give cast a try when implementing subscriptions. Given we kept the same behaviour, all tests will still pass.
Each request must be implemented as a specific callback. For call/2 requests, we implement a handle_call/3 callback that receives the request, the process from which we received the request (_from), and the current server state (state). The handle_call/3 callback returns a tuple in the format {:reply, reply, updated_state}. The first element of the tuple, :reply, indicates that the server should send a reply back to the client. The second element, reply, is what will be sent to the client while the third, updated_state is the new server state.
Another Elixir feature we used in the implementation above are the nested traversal functions: get_in/1, put_in/2, and pop_in/1. Instead of keeping the bucket as our GenServer state, we defined a state map with a bucket key inside. This will be important as we also need to track subscribers as part of the GenServer state. These new functions make it straight-forward to manipulate data structures nested in other data structures.
With our GenServer in place, let's work on subscription, starting with the tests.
Implementing subscriptions
Our new test will subscribe to a bucket and then assert that, as operations are performed against the bucket, we receive messages of said events.
Open up test/kv/bucket_test.exs and key this in:
 test "subscribes to puts and deletes" do
 {:ok, bucket} = start_supervised(KV.Bucket)
 KV.Bucket.subscribe(bucket)

 KV.Bucket.put(bucket, "milk", 3)
 assert_receive {:put, "milk", 3}

 # Also check it works even from another process
 spawn(fn -> KV.Bucket.delete(bucket, "milk") end)
 assert_receive {:delete, "milk"}
 end
In order to make the test pass, we need to implement the KV.Bucket.subscribe/1. So let's add these three new functions to KV.Bucket:
 @doc """
 Subscribes the current process to the bucket.
 """
 def subscribe(bucket) do
 GenServer.cast(bucket, {:subscribe, self()})
 end

 @impl true
 def handle_cast({:subscribe, pid}, state) do
 Process.monitor(pid)
 state = update_in(state.subscribers, &MapSet.put(&1, pid))
 {:noreply, state}
 end

 @impl true
 def handle_info({:DOWN, _ref, _type, pid, _reason}, state) do
 state = update_in(state.subscribers, &MapSet.delete(&1, pid))
 {:noreply, state}
 end
On subscription, we send a cast/2 request with the current process identifier and implement its handle_cast/2 callback that receives the request and the current server state. We then proceed to monitor the given pid and add it to the list of subscribers, which we are implementing using MapSet. The handle_cast/2 callback returns a tuple in the format {:noreply, updated_state}. Note that in a real application we would have probably implemented it with a synchronous call, as it provides back pressure, instead of an asynchronous cast. We are doing it this way to illustrate how to implement a cast callback.
Then, because we have monitored a process, once that process terminates, we will receive a "DOWN message". GenServers handle regular messages using the handle_info/2 callback, which also typically return {:noreply, updated_state}. In this callback, we remove the PID that terminated from our list of subscribers.
We are almost there. We can see both handle_cast/2 and handle_info/2 callbacks assume there is a subscribers key in our state with a MapSet. So let's add it by updating the existing init/1 to the following:
 @impl true
 def init(bucket) do
 state = %{
 bucket: bucket,
 subscribers: MapSet.new()
 }

 {:ok, state}
 end
And finally let's update the callbacks for put/3 and delete/2 to broadcast messages whenever they are invoked, like this:
 def handle_call({:put, key, value}, _from, state) do
 state = put_in(state.bucket[key], value)
 broadcast(state, {:put, key, value})
 {:reply, :ok, state}
 end

 def handle_call({:delete, key}, _from, state) do
 {value, state} = pop_in(state.bucket[key])
 broadcast(state, {:delete, key})
 {:reply, value, state}
 end

 defp broadcast(state, message) do
 for pid <- state.subscribers do
 send(pid, message)
 end
 end
There is no need to modify the callback for get/2. And that's it, run the tests again, and our new test should pass!
Wiring it all up
Now that our bucket deals with subscriptions, we need to expose this new functionality in our server. Let's once again start with the test.
Open up test/kv/server_test.exs and add this new test:
 test "subscribes to buckets", %{socket: socket, name: name} do
 assert send_and_recv(socket, "CREATE #{name}\r\n") == "OK\r\n"
 :gen_tcp.send(socket, "SUBSCRIBE #{name}\r\n")

 {:ok, other} = :gen_tcp.connect(~c"localhost", 4040, @socket_options)

 assert send_and_recv(other, "PUT #{name} milk 3\r\n") == "OK\r\n"
 assert :gen_tcp.recv(socket, 0, 1000) == {:ok, "milk SET TO 3\r\n"}

 assert send_and_recv(other, "DELETE #{name} milk\r\n") == "OK\r\n"
 assert :gen_tcp.recv(socket, 0, 1000) == {:ok, "milk DELETED\r\n"}
 end
The test creates a bucket and subscribes to it. Then it opens up another TCP connection to send commands. For each command sent, we expect the subscribed socket to receive a message.
To make the test pass, we need to change KV.Command to parse the new SUBSCRIBE command and then run it. Open up lib/kv/commands.ex and then first change the parse/1 definition to the following:
 def parse(line) do
 case String.split(line) do
 ["SUBSCRIBE", bucket] -> {:ok, {:subscribe, bucket}}
 ["CREATE", bucket] -> {:ok, {:create, bucket}}
 ["GET", bucket, key] -> {:ok, {:get, bucket, key}}
 ["PUT", bucket, key, value] -> {:ok, {:put, bucket, key, value}}
 ["DELETE", bucket, key] -> {:ok, {:delete, bucket, key}}
 _ -> {:error, :unknown_command}
 end
 end
We added a new clause that converts "SUBSCRIBE" into a tuple. Now we need to match on this tuple within run/1. We can do so by adding a new clause at the bottom of run/1, with the following code:
 def run({:subscribe, bucket}, socket) do
 lookup(bucket, fn pid ->
 KV.Bucket.subscribe(pid)
 :inet.setopts(socket, active: true)
 receive_messages(socket)
 end)
 end

 defp receive_messages(socket) do
 receive do
 {:put, key, value} ->
 :gen_tcp.send(socket, "#{key} SET TO #{value}\r\n")
 receive_messages(socket)

 {:delete, key} ->
 :gen_tcp.send(socket, "#{key} DELETED\r\n")
 receive_messages(socket)

 {:tcp_closed, ^socket} ->
 {:error, :closed}

 # If we receive any message, including socket writes, we discard them
 _ ->
 receive_messages(socket)
 end
 end
Let's go over it by parts. We use the existing lookup/2 private function to lookup for a bucket. If one is found, we subscribe the current process to the bucket. Then we call :inet.setopts(socket, active: true) (which we will explain soon) and receive_messages/1.
receive_messages/1 awaits for messages from the bucket and then calls itself again, becoming a loop. We match on {:put, key, value} and {:delete, key} and write to those events to the socket. We also match on {:tcp_closed, ^socket}, which is a message that will be delivered if the TCP socket closes, and use it to abort the loop. We discard any other message.
At this point you may be wondering: where does {:tcp_closed, ^socket} come from?
So far, when receiving messages from the socket, we used :gen_tcp.recv/3 to perform calls that will block the current process until content is available. This is known as "passive mode". However, we can also ask :gen_tcp to stream messages to the current process inbox as they arrive, which is known as "active mode", which is exactly what we configured when we called :inet.setopts(socket, active: true). Those messages have the shape {:tcp, socket, data}. When the socket is in active mode and it is closed, it delivers a {:tcp_closed, socket} message. Once we receive this message, we exit the loop, which will exit the connection process. Since the bucket is monitoring the process, it will automatically remove the subscription too. You could verify this in practice by adding a COUNT SUBSCRIPTIONS command that returns the number of subscribers for a given bucket.
In practice, many systems would prefer to call :inet.setopts(socket, active: :once) to specify only a single TCP message should be delivered to avoid overflowing message queues. Once the message is received, they call :inet.setopts/2 again. In our case, we are simply discarding anything that arrives over the socket, so setting active: true is equally fine. In all scenarios, the benefit of using active mode is that the process can receive TCP messages as well as messages from other processes at the same time, instead of blocking on :gen_tcp.recv/3.
To wrap it all up, you should give our new feature a try in a distributed setting too. Start two NODES=... PORT=... iex --sname ... -S mix instances. In one of them, create a bucket. In the other, subscribe to the same bucket. Once you go back to the first shell, you will see that, even as you send commands to the bucket in one machine, the messages will be streamed to the other one. In other words, our subscription system is also distributed, and all we had to do is to send messages!
call, cast or info?
So far we have used three callbacks: handle_call/3, handle_cast/2 and handle_info/2. Here is what we should consider when deciding when to use each:
	handle_call/3 must be used for synchronous requests. This should be the default choice as waiting for the server reply is a useful back-pressure mechanism.

	handle_cast/2 must be used for asynchronous requests, when you don't care about a reply. A cast does not guarantee the server has received the message and, for this reason, should be used sparingly. For example, the subscribe/1 function we have defined in this chapter should have used call/2. We have used cast/2 for educational purposes.

	handle_info/2 must be used for all other messages a server may receive that are not sent via GenServer.call/2 or GenServer.cast/2, including regular messages sent with send/2. The monitoring :DOWN messages are an example of this.

To help developers remember the differences between call, cast and info, the supported return values and more, we have a tiny GenServer cheat sheet.
Agents or GenServers?
Before moving forward to the last chapter, you may be wondering: in the future, should you use an Agent or a GenServer?
As we saw throughout this guide, agents are straight-forward to get started but they are limited in what they can do. Agents are effectively a subset of GenServers. In fact, agents are implemented on top of GenServers. As well as supervisors, the Registry module, and many other features you will find in both Erlang and Elixir.
In other words, GenServers are the most essential component for building concurrent and fault-tolerant systems in Elixir. They provide a robust and flexible framework for managing state and coordinating interactions between processes.
For those reasons, many adopt a rule of thumb to never use Agents and jump straight into GenServers instead. On the other hand, others are more than fine with using agents to store a bit of state here and there. Either way, you will be fine!
This is the last feature we have implemented for our distributed key-value store. In the next chapter, we will learn how to package our application before shipping it to production.

 Releases

Now that our application is ready, you may be wondering how we can package our application to run in production. After all, all of our code so far depends on Erlang and Elixir versions that are installed in your current system. To achieve this goal, Elixir provides releases.
A release is a self-contained directory that consists of your application code, all of its dependencies, plus the whole Erlang Virtual Machine (VM) and runtime. Once a release is assembled, it can be packaged and deployed to a target as long as the target runs on the same operating system (OS) distribution and version as the machine that assembled the release.
To get started, simply run mix release while setting MIX_ENV=prod:
$ MIX_ENV=prod mix release
Compiling 4 files (.ex)
Generated kv app
* assembling kv-0.1.0 on MIX_ENV=prod
* using config/runtime.exs to configure the release at runtime

Release created at _build/prod/rel/kv

 # To start your system
 _build/prod/rel/kv/bin/kv start

Once the release is running:

 # To connect to it remotely
 _build/prod/rel/kv/bin/kv remote

 # To stop it gracefully (you may also send SIGINT/SIGTERM)
 _build/prod/rel/kv/bin/kv stop

To list all commands:

 _build/prod/rel/kv/bin/kv

Excellent! A release was assembled in _build/prod/rel/kv. Everything you need to run your application is inside that directory. In particular, there is a bin/kv file which is the entry point to your system. It supports multiple commands, such as:
	bin/kv start, bin/kv start_iex, bin/kv restart, and bin/kv stop — for general management of the release

	bin/kv rpc COMMAND and bin/kv remote — for running commands on the running system or to connect to the running system

	bin/kv eval COMMAND — to start a fresh system that runs a single command and then shuts down

	bin/kv daemon and bin/kv daemon_iex — to start the system as a daemon on Unix-like systems

	bin/kv install — to install the system as a service on Windows machines

If you run bin/kv start_iex inside the release directory, it will start the system using a short name (--sname) equal to the release name, which in this case is kv. The next step is to start two instances, on different ports and different names, as we did earlier on. But before we do this, let's talk a bit about the benefits of releases.
Why releases?
Releases allow developers to precompile and package all of their code and the runtime into a single unit. The benefits of releases are:
	Code preloading. The VM has two mechanisms for loading code: interactive and embedded. By default, it runs in the interactive mode which dynamically loads modules when they are used for the first time. The first time your application calls Enum.map/2, the VM will find the Enum module and load it. There's a downside. When you start a new server in production, it may need to load many other modules, causing the first requests to have an unusual spike in response time. Releases run in embedded mode, which loads all available modules upfront, guaranteeing your system is ready to handle requests after booting.

	Configuration and customization. Releases give developers fine grained control over system configuration and the VM flags used to start the system.

	Self-contained. A release does not require the source code to be included in your production artifacts. All of the code is precompiled and packaged. Releases do not even require Erlang or Elixir on your servers, as they include the Erlang VM and its runtime by default. Furthermore, both Erlang and Elixir standard libraries are stripped to bring only the parts you are actually using.

	Multiple releases. You can assemble different releases with different configuration per application or even with different applications altogether.

We have written extensive documentation on releases, so please check the official documentation for more information. For now, we will continue exploring some of the features outlined above.
Configuring releases
Releases also provide built-in hooks for configuring almost every need of the production system:
	config/config.exs — provides build-time application configuration, which is executed before our application compiles. This file often imports configuration files based on the environment, such as config/dev.exs and config/prod.exs.

	config/runtime.exs — provides runtime application configuration. It is executed every time the release boots and is further extensible via config providers.

	rel/env.sh.eex and rel/env.bat.eex — template files that are copied into every release and executed on every command to set up environment variables, including ones specific to the VM, and the general environment.

	rel/vm.args.eex — a template file that is copied into every release and provides static configuration of the Erlang Virtual Machine and other runtime flags.

In this case, we already have specified a config/runtime.exs that deals with both PORT and NODES environment variables. Furthermore, while releases don't accept a --sname parameter, they do allow us to set the name via the RELEASE_NODE env var. Therefore, we can start two copies of the system by jumping into _build/prod/rel/kv and typing this (remember to adjust @computer-name to your actual computer name):
$ NODES="foo@computer-name,bar@computer-name" PORT=4040 RELEASE_NODE="foo" bin/kv start_iex

$ NODES="foo@computer-name,bar@computer-name" PORT=4041 RELEASE_NODE="bar" bin/kv start_iex

To verify it all worked out, you can type Node.list in the IEx section and see if it returns the other node. If it doesn't, you can start diagnosing, first by comparing the node names within each iex> prompt and calling Node.connect/1 directly. With applications running, you can telnet into them as usual too.
While the above is enough to get started, you may want to perform advanced configuration based on the environment you are replying to. Releases provide scripts for that, which are great to automate based on host, network, or cloud settings.
Operating System scripts
Every release contains an environment file, named env.sh on Unix-like systems and env.bat on Windows machines, that executes before the Elixir system starts. In this file, you can execute any OS-level code, such as invoke other applications, set environment variables and so on. Some of those environment variables can even configure how the release itself runs.
For instance, releases run using short-names (--sname). However, if you want to actually run a distributed key-value store in production, you will need multiple nodes and start the release with the --name option. We can achieve this by setting the RELEASE_DISTRIBUTION environment variable inside the env.sh and env.bat files. Mix already has a template for said files which we can customize, so let's ask Mix to copy them to our application:
$ mix release.init
* creating rel/vm.args.eex
* creating rel/remote.vm.args.eex
* creating rel/env.sh.eex
* creating rel/env.bat.eex

If you open up rel/env.sh.eex, you will see:
#!/bin/sh

Sets and enables heart (recommended only in daemon mode)
case $RELEASE_COMMAND in
daemon*)
HEART_COMMAND="$RELEASE_ROOT/bin/$RELEASE_NAME $RELEASE_COMMAND"
export HEART_COMMAND
export ELIXIR_ERL_OPTIONS="-heart"
;;
*)
;;
esac

Set the release to load code on demand (interactive) instead of preloading (embedded).
export RELEASE_MODE=interactive

Set the release to work across nodes.
RELEASE_DISTRIBUTION must be "sname" (local), "name" (distributed) or "none".
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>

The steps necessary to work across nodes is already commented out as an example. You can enable full distribution by setting the RELEASE_DISTRIBUTION variable to name.
If you are on Windows, you will have to open up rel/env.bat.eex, where you will find this:
@echo off
rem Set the release to load code on demand (interactive) instead of preloading (embedded).
rem set RELEASE_MODE=interactive

rem Set the release to work across nodes.
rem RELEASE_DISTRIBUTION must be "sname" (local), "name" (distributed) or "none".
rem set RELEASE_DISTRIBUTION=name
rem set RELEASE_NODE=<%= @release.name %>
Once again, set the RELEASE_DISTRIBUTION variable to name and you are good to go!
VM arguments
The rel/vm.args.eex allows you to specify low-level flags that control how the Erlang VM and its runtime operate. You specify entries as if you were specifying arguments in the command line with code comments also supported. Here is the default generated file:
Customize flags given to the VM: https://www.erlang.org/doc/man/erl.html
-mode/-name/-sname/-setcookie are configured via env vars, do not set them here

Increase number of concurrent ports/sockets
##+Q 65536

Tweak GC to run more often
##-env ERL_FULLSWEEP_AFTER 10
You can see a complete list of VM arguments and flags in the Erlang documentation.
Summing up
Throughout the guide, we have built a very simple distributed key-value store as an opportunity to explore many constructs like generic servers, supervisors, tasks, agents, applications and more. Not only that, we have written tests for the whole application, got familiar with ExUnit, and learned how to use the Mix build tool to accomplish a wide range of tasks.
If you are looking for a distributed key-value store to use in production, you should definitely look into Riak, which also runs in the Erlang VM. In Riak, the buckets are replicated and stored across several nodes to avoid data loss.
Of course, Elixir can be used for much more than distributed key-value stores. Embedded systems, data-processing and data-ingestion, web applications, audio/video streaming systems, machine learning, and others are many of the different domains Elixir excels at. We hope this guide has prepared you to explore any of those domains or any future domain you may desire to bring Elixir into.
Happy coding!

 What are anti-patterns?

Anti-patterns describe common mistakes or indicators of problems in code.
They are also known as "code smells".
The goal of these guides is to document potential anti-patterns found in Elixir software
and teach developers how to identify them and their pitfalls. If an existing piece
of code matches an anti-pattern, it does not mean your code must be rewritten.
Sometimes, even if a snippet matches a potential anti-pattern and its limitations,
it may be the best approach to the problem at hand. No codebase is free of anti-patterns
and one should not aim to remove all of them.
The anti-patterns in these guides are broken into 4 main categories:
	Code-related anti-patterns: related to your code and particular
language idioms and features;

	Design-related anti-patterns: related to your modules, functions,
and the role they play within a codebase;

	Process-related anti-patterns: related to processes and process-based
abstractions;

	Meta-programming anti-patterns: related to meta-programming.

Each anti-pattern is documented using the following structure:
	Name: Unique identifier of the anti-pattern. This name is important to facilitate
communication between developers;

	Problem: How the anti-pattern can harm code quality and what impacts this can have
for developers;

	Example: Code and textual descriptions to illustrate the occurrence of the anti-pattern;

	Refactoring: Ways to change your code to improve its qualities. Examples of refactored
code are presented to illustrate these changes.

An additional section with "Additional Remarks" may be provided. Those may include known scenarios where the anti-pattern does not apply.
The initial catalog of anti-patterns was proposed by Lucas Vegi and Marco Tulio Valente, from ASERG/DCC/UFMG. For more info, see Understanding Code Smells in Elixir Functional Language and the associated code repository.
Additionally, the Security Working Group of the Erlang Ecosystem Foundation publishes documents with security resources and best-practices of both Erlang and Elixir, including detailed guides for web applications.

 Code-related anti-patterns

This document outlines potential anti-patterns related to your code and particular Elixir idioms and features.
Comments overuse
Problem
When you overuse comments or comment self-explanatory code, it can have the effect of making code less readable.
Example
Returns the Unix timestamp of 5 minutes from the current time
defp unix_five_min_from_now do
 # Get the current time
 now = DateTime.utc_now()

 # Convert it to a Unix timestamp
 unix_now = DateTime.to_unix(now, :second)

 # Add five minutes in seconds
 unix_now + (60 * 5)
end
Refactoring
Prefer clear and self-explanatory function names, module names, and variable names when possible. In the example above, the function name explains well what the function does, so you likely won't need the comment before it. The code also explains the operations well through variable names and clear function calls.
You could refactor the code above like this:
@five_min_in_seconds 60 * 5

defp unix_five_min_from_now do
 now = DateTime.utc_now()
 unix_now = DateTime.to_unix(now, :second)
 unix_now + @five_min_in_seconds
end
We removed the unnecessary comments. We also added a @five_min_in_seconds module attribute, which serves the additional purpose of giving a name to the "magic" number 60 * 5, making the code clearer and more expressive.
Additional remarks
Elixir makes a clear distinction between documentation and code comments. The language has built-in first-class support for documentation through @doc, @moduledoc, and more. See the "Writing documentation" guide for more information.
Complex else clauses in with
Problem
This anti-pattern refers to with expressions that flatten all its error clauses into a single complex else block. This situation is harmful to the code readability and maintainability because it's difficult to know from which clause the error value came.
Example
An example of this anti-pattern, as shown below, is a function open_decoded_file/1 that reads a Base64-encoded string content from a file and returns a decoded binary string. This function uses a with expression that needs to handle two possible errors, all of which are concentrated in a single complex else block.
def open_decoded_file(path) do
 with {:ok, encoded} <- File.read(path),
 {:ok, decoded} <- Base.decode64(encoded) do
 {:ok, String.trim(decoded)}
 else
 {:error, _} -> {:error, :badfile}
 :error -> {:error, :badencoding}
 end
end
In the code above, it is unclear how each pattern on the left side of <- relates to their error at the end. The more patterns in a with, the less clear the code gets, and the more likely it is that unrelated failures will overlap each other.
Refactoring
In this situation, instead of concentrating all error handling within a single complex else block, it is better to normalize the return types in specific private functions. In this way, with can focus on the success case and the errors are normalized closer to where they happen, leading to better organized and maintainable code.
def open_decoded_file(path) do
 with {:ok, encoded} <- file_read(path),
 {:ok, decoded} <- base_decode64(encoded) do
 {:ok, String.trim(decoded)}
 end
end

defp file_read(path) do
 case File.read(path) do
 {:ok, contents} -> {:ok, contents}
 {:error, _} -> {:error, :badfile}
 end
end

defp base_decode64(contents) do
 case Base.decode64(contents) do
 {:ok, decoded} -> {:ok, decoded}
 :error -> {:error, :badencoding}
 end
end
Complex extractions in clauses
Problem
When we use multi-clause functions, it is possible to extract values in the clauses for further usage and for pattern matching/guard checking. This extraction itself does not represent an anti-pattern, but when you have extractions made across several clauses and several arguments of the same function, it becomes hard to know which extracted parts are used for pattern/guards and what is used only inside the function body. This anti-pattern is related to Unrelated multi-clause function, but with implications of its own. It impairs the code readability in a different way.
Example
The multi-clause function drive/1 is extracting fields of an %User{} struct for usage in the clause expression (age) and for usage in the function body (name):
def drive(%User{name: name, age: age}) when age >= 18 do
 "#{name} can drive"
end

def drive(%User{name: name, age: age}) when age < 18 do
 "#{name} cannot drive"
end
While the example above is small and does not constitute an anti-pattern, it is an example of mixed extraction and pattern matching. A situation where drive/1 was more complex, having many more clauses, arguments, and extractions, would make it hard to know at a glance which variables are used for pattern/guards and which ones are not.
Refactoring
As shown below, a possible solution to this anti-pattern is to extract only pattern/guard related variables in the signature once you have many arguments or multiple clauses:
def drive(%User{age: age} = user) when age >= 18 do
 %User{name: name} = user
 "#{name} can drive"
end

def drive(%User{age: age} = user) when age < 18 do
 %User{name: name} = user
 "#{name} cannot drive"
end
Dynamic atom creation
Problem
An Atom is an Elixir basic type whose value is its own name. Atoms are often useful to identify resources or express the state, or result, of an operation. Creating atoms dynamically is not an anti-pattern by itself. However, atoms are not garbage collected by the Erlang Virtual Machine, so values of this type live in memory during a software's entire execution lifetime. The Erlang VM limits the number of atoms that can exist in an application by default to 1 048 576, which is more than enough to cover all atoms defined in a program, but attempts to serve as an early limit for applications which are "leaking atoms" through dynamic creation.
For these reasons, creating atoms dynamically can be considered an anti-pattern when the developer has no control over how many atoms will be created during the software execution. This unpredictable scenario can expose the software to unexpected behavior caused by excessive memory usage, or even by reaching the maximum number of atoms possible.
Example
Picture yourself implementing code that converts string values into atoms. These strings could have been received from an external system, either as part of a request into our application, or as part of a response to your application. This dynamic and unpredictable scenario poses a security risk, as these uncontrolled conversions can potentially trigger out-of-memory errors.
defmodule MyRequestHandler do
 def parse(%{"status" => status, "message" => message} = _payload) do
 %{status: String.to_atom(status), message: message}
 end
end
iex> MyRequestHandler.parse(%{"status" => "ok", "message" => "all good"})
%{status: :ok, message: "all good"}
When we use the String.to_atom/1 function to dynamically create an atom, it essentially gains potential access to create arbitrary atoms in our system, causing us to lose control over adhering to the limits established by the BEAM. This issue could be exploited by someone to create enough atoms to shut down a system.
Refactoring
To eliminate this anti-pattern, developers must either perform explicit conversions by mapping strings to atoms or replace the use of String.to_atom/1 with String.to_existing_atom/1. An explicit conversion could be done as follows:
defmodule MyRequestHandler do
 def parse(%{"status" => status, "message" => message} = _payload) do
 %{status: convert_status(status), message: message}
 end

 defp convert_status("ok"), do: :ok
 defp convert_status("error"), do: :error
 defp convert_status("redirect"), do: :redirect
end
iex> MyRequestHandler.parse(%{"status" => "status_not_seen_anywhere", "message" => "all good"})
** (FunctionClauseError) no function clause matching in MyRequestHandler.convert_status/1
By explicitly listing all supported statuses, you guarantee only a limited number of conversions may happen. Passing an invalid status will lead to a function clause error.
An alternative is to use String.to_existing_atom/1, which will only convert a string to atom if the atom already exists in the system:
defmodule MyRequestHandler do
 def parse(%{"status" => status, "message" => message} = _payload) do
 %{status: String.to_existing_atom(status), message: message}
 end
end
iex> MyRequestHandler.parse(%{"status" => "status_not_seen_anywhere", "message" => "all good"})
** (ArgumentError) errors were found at the given arguments:

 * 1st argument: not an already existing atom
In such cases, passing an unknown status will raise as long as the status was not defined anywhere as an atom in the system. However, assuming status can be either :ok, :error, or :redirect, how can you guarantee those atoms exist? You must ensure those atoms exist somewhere in the same module where String.to_existing_atom/1 is called. For example, if you had this code:
defmodule MyRequestHandler do
 def parse(%{"status" => status, "message" => message} = _payload) do
 %{status: String.to_existing_atom(status), message: message}
 end

 def handle(%{status: status}) do
 case status do
 :ok -> ...
 :error -> ...
 :redirect -> ...
 end
 end
end
All valid statuses are defined as atoms within the same module, and that's enough. If you want to be explicit, you could also have a function that lists them:
def valid_statuses do
 [:ok, :error, :redirect]
end
However, keep in mind using a module attribute or defining the atoms in the module body, outside of a function, are not sufficient, as the module body is only executed during compilation and it is not necessarily part of the compiled module loaded at runtime.
Long parameter list
Problem
In a functional language like Elixir, functions tend to explicitly receive all inputs and return all relevant outputs, instead of relying on mutations or side-effects. As functions grow in complexity, the amount of arguments (parameters) they need to work with may grow, to a point where the function's interface becomes confusing and prone to errors during use.
Example
In the following example, the loan/6 functions takes too many arguments, causing its interface to be confusing and potentially leading developers to introduce errors during calls to this function.
defmodule Library do
 # Too many parameters that can be grouped!
 def loan(user_name, email, password, user_alias, book_title, book_ed) do
 ...
 end
end
Refactoring
To address this anti-pattern, related arguments can be grouped using key-value data structures, such as maps, structs, or even keyword lists in the case of optional arguments. This effectively reduces the number of arguments and the key-value data structures adds clarity to the caller.
For this particular example, the arguments to loan/6 can be grouped into two different maps, thereby reducing its arity to loan/2:
defmodule Library do
 def loan(%{name: name, email: email, password: password, alias: alias} = user, %{title: title, ed: ed} = book) do
 ...
 end
end
In some cases, the function with too many arguments may be a private function, which gives us more flexibility over how to separate the function arguments. One possible suggestion for such scenarios is to split the arguments in two maps (or tuples): one map keeps the data that may change, and the other keeps the data that won't change (read-only). This gives us a mechanical option to refactor the code.
Other times, a function may legitimately take half a dozen or more completely unrelated arguments. This may suggest the function is trying to do too much and would be better broken into multiple functions, each responsible for a smaller piece of the overall responsibility.
Namespace trespassing
Problem
This anti-pattern manifests when a package author or a library defines modules outside of its "namespace". A library should use its name as a "prefix" for all of its modules. For example, a package named :my_lib should define all of its modules within the MyLib namespace, such as MyLib.User, MyLib.SubModule, MyLib.Application, and MyLib itself.
This is important because the Erlang VM can only load one instance of a module at a time. So if there are multiple libraries that define the same module, then they are incompatible with each other due to this limitation. By always using the library name as a prefix, it avoids module name clashes due to the unique prefix.
Example
This problem commonly manifests when writing an extension of another library. For example, imagine you are writing a package that adds authentication to Plug called :plug_auth. You must avoid defining modules within the Plug namespace:
defmodule Plug.Auth do
 # ...
end
Even if Plug does not currently define a Plug.Auth module, it may add such a module in the future, which would ultimately conflict with plug_auth's definition.
Refactoring
Given the package is named :plug_auth, it must define modules inside the PlugAuth namespace:
defmodule PlugAuth do
 # ...
end
Additional remarks
There are few known exceptions to this anti-pattern:
	Protocol implementations are, by design, defined under the protocol namespace

	In some scenarios, the namespace owner may allow exceptions to this rule. For example, in Elixir itself, you defined custom Mix tasks by placing them under the Mix.Tasks namespace, such as Mix.Tasks.PlugAuth

	If you are the maintainer for both plug and plug_auth, then you may allow plug_auth to define modules with the Plug namespace, such as Plug.Auth. However, you are responsible for avoiding or managing any conflicts that may arise in the future

Non-assertive map access
Problem
In Elixir, it is possible to access values from Maps, which are key-value data structures, either statically or dynamically.
When a key is expected to exist in a map, it must be accessed using the map.key notation, making it clear to developers (and the compiler) that the key must exist. If the key does not exist, an exception is raised (and in some cases also compiler warnings). This is also known as the static notation, as the key is known at the time of writing the code.
When a key is optional, the map[:key] notation must be used instead. This way, if the informed key does not exist, nil is returned. This is the dynamic notation, as it also supports dynamic key access, such as map[some_var].
When you use map[:key] to access a key that always exists in the map, you are making the code less clear for developers and for the compiler, as they now need to work with the assumption the key may not be there. This mismatch may also make it harder to track certain bugs. If the key is unexpectedly missing, you will have a nil value propagate through the system, instead of raising on map access.
Table: Comparison of map access notations
	Access notation	Key exists	Key doesn't exist	Use case
	map.key	Returns the value	Raises KeyError	Structs and maps with known atom keys
	map[:key]	Returns the value	Returns nil	Any Access-based data structure, optional keys

Example
The function plot/1 tries to draw a graphic to represent the position of a point in a Cartesian plane. This function receives a parameter of Map type with the point attributes, which can be a point of a 2D or 3D Cartesian coordinate system. This function uses dynamic access to retrieve values for the map keys:
defmodule Graphics do
 def plot(point) do
 # Some other code...
 {point[:x], point[:y], point[:z]}
 end
end
iex> point_2d = %{x: 2, y: 3}
%{x: 2, y: 3}
iex> point_3d = %{x: 5, y: 6, z: 7}
%{x: 5, y: 6, z: 7}
iex> Graphics.plot(point_2d)
{2, 3, nil}
iex> Graphics.plot(point_3d)
{5, 6, 7}
Given we want to plot both 2D and 3D points, the behavior above is expected. But what happens if we forget to pass a point with either :x or :y?
iex> bad_point = %{y: 3, z: 4}
%{y: 3, z: 4}
iex> Graphics.plot(bad_point)
{nil, 3, 4}
The behavior above is unexpected because our function should not work with points without a :x key. This leads to subtle bugs, as we may now pass nil to another function, instead of raising early on, as shown next:
iex> point_without_x = %{y: 10}
%{y: 10}
iex> {x, y, _} = Graphics.plot(point_without_x)
{nil, 10, nil}
iex> distance_from_origin = :math.sqrt(x * x + y * y)
** (ArithmeticError) bad argument in arithmetic expression
 :erlang.*(nil, nil)
The error above occurs later in the code because nil (from missing :x) is invalid for arithmetic operations, making it harder to identify the original issue.
Refactoring
To remove this anti-pattern, we must use the dynamic map[:key] syntax and the static map.key notation according to our requirements. We expect :x and :y to always exist, but not :z. The next code illustrates the refactoring of plot/1, removing this anti-pattern:
defmodule Graphics do
 def plot(point) do
 # Some other code...
 {point.x, point.y, point[:z]}
 end
end
iex> Graphics.plot(point_2d)
{2, 3, nil}
iex> Graphics.plot(bad_point)
** (KeyError) key :x not found in: %{y: 3, z: 4}
 graphic.ex:4: Graphics.plot/1
This is beneficial because:
	It makes your expectations clear to others reading the code
	It fails fast when required data is missing
	It allows the compiler to provide warnings when accessing non-existent fields, particularly in compile-time structures like structs

Overall, the usage of map.key and map[:key] encode important information about your data structure, allowing developers to be clear about their intent. The Access module documentation also provides useful reference on this topic. You can also consider the Map module when working with maps of any keys, which contains functions for fetching keys (with or without default values), updating and removing keys, traversals, and more.
An alternative to refactor this anti-pattern is to use pattern matching, defining explicit clauses for 2D vs 3D points:
defmodule Graphics do
 # 3d
 def plot(%{x: x, y: y, z: z}) do
 # Some other code...
 {x, y, z}
 end

 # 2d
 def plot(%{x: x, y: y}) do
 # Some other code...
 {x, y}
 end
end
Pattern-matching is specially useful when matching over multiple keys as well as on the values themselves at once. In the example above, the code will not only extract the values but also verify that the required keys exist. If we try to call plot/1 with a map that doesn't have the required keys, we'll get a FunctionClauseError:
iex> incomplete_point = %{x: 5}
%{x: 5}
iex> Graphics.plot(incomplete_point)
** (FunctionClauseError) no function clause matching in Graphics.plot/1

 The following arguments were given to Graphics.plot/1:

 # 1
 %{x: 5}
Another option is to use structs. By default, structs only support static access to its fields. In such scenarios, you may consider defining structs for both 2D and 3D points:
defmodule Point2D do
 @enforce_keys [:x, :y]
 defstruct [x: nil, y: nil]
end
Generally speaking, structs are useful when sharing data structures across modules, at the cost of adding a compile time dependency between these modules. If module A uses a struct defined in module B, A must be recompiled if the fields in the struct B change.
In summary, Elixir provides several ways to access map values, each with different behaviors:
	Static access (map.key): Fails fast when keys are missing, ideal for structs and maps with known atom keys
	Dynamic access (map[:key]): Works with any Access data structure, suitable for optional fields, returns nil for missing keys
	Pattern matching: Provides a powerful way to both extract values and ensure required map/struct keys exist in one operation

Choosing the right approach depends if the keys are known upfront or not. Static access and pattern matching are mostly equivalent (although pattern matching allows you to match on multiple keys at once, including matching on the struct name).
Additional remarks
This anti-pattern was formerly known as Accessing non-existent map/struct fields.
Non-assertive pattern matching
Problem
Overall, Elixir systems are composed of many supervised processes, so the effects of an error are localized to a single process, and don't propagate to the entire application. A supervisor detects the failing process, reports it, and possibly restarts it. This anti-pattern arises when developers write defensive or imprecise code, capable of returning incorrect values which were not planned for, instead of programming in an assertive style through pattern matching and guards.
Example
The function get_value/2 tries to extract a value from a specific key of a URL query string. As it is not implemented using pattern matching, get_value/2 always returns a value, regardless of the format of the URL query string passed as a parameter in the call. Sometimes the returned value will be valid. However, if a URL query string with an unexpected format is used in the call, get_value/2 will extract incorrect values from it:
defmodule Extract do
 def get_value(string, desired_key) do
 parts = String.split(string, "&")

 Enum.find_value(parts, fn pair ->
 key_value = String.split(pair, "=")
 Enum.at(key_value, 0) == desired_key && Enum.at(key_value, 1)
 end)
 end
end
URL query string with the planned format - OK!
iex> Extract.get_value("name=Lucas&university=UFMG&lab=ASERG", "lab")
"ASERG"
iex> Extract.get_value("name=Lucas&university=UFMG&lab=ASERG", "university")
"UFMG"
Unplanned URL query string format - Unplanned value extraction!
iex> Extract.get_value("name=Lucas&university=institution=UFMG&lab=ASERG", "university")
"institution" # <= why not "institution=UFMG"? or only "UFMG"?
Refactoring
To remove this anti-pattern, get_value/2 can be refactored through the use of pattern matching. So, if an unexpected URL query string format is used, the function will crash instead of returning an invalid value. This behavior, shown below, allows clients to decide how to handle these errors and doesn't give a false impression that the code is working correctly when unexpected values are extracted:
defmodule Extract do
 def get_value(string, desired_key) do
 parts = String.split(string, "&")

 Enum.find_value(parts, fn pair ->
 [key, value] = String.split(pair, "=") # <= pattern matching
 key == desired_key && value
 end)
 end
end
URL query string with the planned format - OK!
iex> Extract.get_value("name=Lucas&university=UFMG&lab=ASERG", "name")
"Lucas"
Unplanned URL query string format - Crash explaining the problem to the client!
iex> Extract.get_value("name=Lucas&university=institution=UFMG&lab=ASERG", "university")
** (MatchError) no match of right hand side value: ["university", "institution", "UFMG"]
 extract.ex:7: anonymous fn/2 in Extract.get_value/2 # <= left hand: [key, value] pair
iex> Extract.get_value("name=Lucas&university&lab=ASERG", "university")
** (MatchError) no match of right hand side value: ["university"]
 extract.ex:7: anonymous fn/2 in Extract.get_value/2 # <= left hand: [key, value] pair
Elixir and pattern matching promote an assertive style of programming where you handle the known cases. Once an unexpected scenario arises, you can decide to address it accordingly based on practical examples, or conclude the scenario is indeed invalid and the exception is the desired choice.
case/2 is another important construct in Elixir that help us write assertive code, by matching on specific patterns. For example, if a function returns {:ok, ...} or {:error, ...}, prefer to explicitly match on both patterns:
case some_function(arg) do
 {:ok, value} -> # ...
 {:error, _} -> # ...
end
In particular, avoid matching solely on _, as shown below:
case some_function(arg) do
 {:ok, value} -> # ...
 _ -> # ...
end
 Matching on _ is less clear in intent and it may hide bugs if some_function/1 adds new return values in the future.
Additional remarks
This anti-pattern was formerly known as Speculative assumptions.
Non-assertive truthiness
Problem
Elixir provides the concept of truthiness: nil and false are considered "falsy" and all other values are "truthy". Many constructs in the language, such as &&/2, ||/2, and !/1 handle truthy and falsy values. Using those operators is not an anti-pattern. However, using those operators when all operands are expected to be booleans, may be an anti-pattern.
Example
The simplest scenario where this anti-pattern manifests is in conditionals, such as:
if is_binary(name) && is_integer(age) do
 # ...
else
 # ...
end
Given both operands of &&/2 are booleans, the code is more generic than necessary, and potentially unclear.
Refactoring
To remove this anti-pattern, we can replace &&/2, ||/2, and !/1 by and/2, or/2, and not/1 respectively. These operators assert at least their first argument is a boolean:
if is_binary(name) and is_integer(age) do
 # ...
else
 # ...
end
This technique may be particularly important when working with Erlang code. Erlang does not have the concept of truthiness. It never returns nil, instead its functions may return :error or :undefined in places an Elixir developer would return nil. Therefore, to avoid accidentally interpreting :undefined or :error as a truthy value, you may prefer to use and/2, or/2, and not/1 exclusively when interfacing with Erlang APIs.
Structs with 32 fields or more
Problem
Structs in Elixir are implemented as compile-time maps, which have a predefined amount of fields. When structs have 32 or more fields, their internal representation in the Erlang Virtual Machines changes, potentially leading to bloating and higher memory usage.
Example
Any struct with 32 or more fields will be problematic:
defmodule MyExample do
 defstruct [
 :field1,
 :field2,
 ...,
 :field35
]
end
The Erlang VM has two internal representations for maps: a flat map and a hash map. A flat map is represented internally as two tuples: one tuple containing the keys and another tuple holding the values. Whenever you update a flat map, the tuple keys are shared, reducing the amount of memory used by the update. A hash map has a more complex structure, which is efficient for a large amount of keys, but it does not share the key space.
Maps of up to 32 keys are represented as flat maps. All others are hash map. Structs are maps (with a metadata field called __struct__) and so any struct with fewer than 32 fields is represented as a flat map. This allows us to optimize several struct operations, as we never add or remove fields to structs, we simply update them.
Furthermore, structs of the same name "instantiated" in the same module will share the same "tuple keys" at compilation times, as long as they have fewer than 32 fields. For example, in the following code:
defmodule Example do
 def users do
 [%User{name: "John"}, %User{name: "Meg"}, ...]
 end
end
All user structs will point to the same tuple keys at compile-time, also reducing the memory cost of instantiating structs with %MyStruct{...} notation. This optimization is also not available if the struct has 32 keys or more.
Refactoring
Removing this anti-pattern, in a nutshell, requires ensuring your struct has fewer than 32 fields. There are a few techniques you could apply:
	If the struct has "optional" fields, for example, fields which are initialized with nil, you could nest all optional fields into other field, called :metadata, :optionals, or similar. This could lead to benefits such as being able to use pattern matching to check if a field exists or not, instead of relying on nil values

	You could nest structs, by storing structs within other fields. Fields that are rarely read or written to are good candidates to be moved to a nested struct

	You could nest fields as tuples. For example, if two fields are always read or updated together, they could be moved to a tuple (or another composite data structure)

The challenge is to balance the changes above with API ergonomics, in particular, when fields may be frequently read and written to.

 Design-related anti-patterns

This document outlines potential anti-patterns related to your modules, functions, and the role they play within a codebase.
Alternative return types
Problem
This anti-pattern refers to functions that receive options (typically as a keyword list parameter) that drastically change their return type. Because options are optional and sometimes set dynamically, if they also change the return type, it may be hard to understand what the function actually returns.
Example
An example of this anti-pattern, as shown below, is when a function has many alternative return types, depending on the options received as a parameter.
defmodule AlternativeInteger do
 @spec parse(String.t(), keyword()) :: integer() | {integer(), String.t()} | :error
 def parse(string, options \\ []) when is_list(options) do
 if Keyword.get(options, :discard_rest, false) do
 case Integer.parse(string) do
 {int, _rest} -> int
 :error -> :error
 end
 else
 Integer.parse(string)
 end
 end
end
iex> AlternativeInteger.parse("13")
{13, ""}
iex> AlternativeInteger.parse("13", discard_rest: false)
{13, ""}
iex> AlternativeInteger.parse("13", discard_rest: true)
13
Refactoring
To refactor this anti-pattern, as shown next, add a specific function for each return type (for example, parse_discard_rest/1), no longer delegating this to options passed as arguments.
defmodule AlternativeInteger do
 @spec parse(String.t()) :: {integer(), String.t()} | :error
 def parse(string) do
 Integer.parse(string)
 end

 @spec parse_discard_rest(String.t()) :: integer() | :error
 def parse_discard_rest(string) do
 case Integer.parse(string) do
 {int, _rest} -> int
 :error -> :error
 end
 end
end
iex> AlternativeInteger.parse("13")
{13, ""}
iex> AlternativeInteger.parse_discard_rest("13")
13
Boolean obsession
Problem
This anti-pattern happens when booleans are used instead of atoms to encode information. The usage of booleans themselves is not an anti-pattern, but whenever multiple booleans are used with overlapping states, replacing the booleans by atoms (or composite data types such as tuples) may lead to clearer code.
This is a special case of Primitive obsession, specific to boolean values.
Example
An example of this anti-pattern is a function that receives two or more options, such as editor: true and admin: true, to configure its behavior in overlapping ways. In the code below, the :editor option has no effect if :admin is set, meaning that the :admin option has higher priority than :editor, and they are ultimately related.
defmodule MyApp do
 def process(invoice, options \\ []) do
 cond do
 options[:admin] -> # Is an admin
 options[:editor] -> # Is an editor
 true -> # Is none
 end
 end
end
Refactoring
Instead of using multiple options, the code above could be refactored to receive a single option, called :role, that can be either :admin, :editor, or :default:
defmodule MyApp do
 def process(invoice, options \\ []) do
 case Keyword.get(options, :role, :default) do
 :admin -> # Is an admin
 :editor -> # Is an editor
 :default -> # Is none
 end
 end
end
This anti-pattern may also happen in our own data structures. For example, we may define a User struct with two boolean fields, :editor and :admin, while a single field named :role may be preferred.
Finally, it is worth noting that using atoms may be preferred even when we have a single boolean argument/option. For example, consider an invoice which may be set as approved/unapproved. One option is to provide a function that expects a boolean:
MyApp.update(invoice, approved: true)
However, using atoms may read better and make it simpler to add further states (such as pending) in the future:
MyApp.update(invoice, status: :approved)
Remember booleans are internally represented as atoms. Therefore there is no performance penalty in one approach over the other.
Exceptions for control-flow
Problem
This anti-pattern refers to code that uses Exceptions for control flow. Exception handling itself does not represent an anti-pattern, but developers must prefer to use case and pattern matching to change the flow of their code, instead of try/rescue. In turn, library authors should provide developers with APIs to handle errors without relying on exception handling. When developers have no freedom to decide if an error is exceptional or not, this is considered an anti-pattern.
Example
An example of this anti-pattern, as shown below, is using try/rescue to deal with file operations:
defmodule MyModule do
 def print_file(file) do
 try do
 IO.puts(File.read!(file))
 rescue
 e -> IO.puts(:stderr, Exception.message(e))
 end
 end
end
iex> MyModule.print_file("valid_file")
This is a valid file!
:ok
iex> MyModule.print_file("invalid_file")
could not read file "invalid_file": no such file or directory
:ok
Refactoring
To refactor this anti-pattern, as shown next, use File.read/1, which returns tuples instead of raising when a file cannot be read:
defmodule MyModule do
 def print_file(file) do
 case File.read(file) do
 {:ok, binary} -> IO.puts(binary)
 {:error, reason} -> IO.puts(:stderr, "could not read file #{file}: #{reason}")
 end
 end
end
This is only possible because the File module provides APIs for reading files with tuples as results (File.read/1), as well as a version that raises an exception (File.read!/1). The bang (exclamation point) is effectively part of Elixir's naming conventions.
Library authors are encouraged to follow the same practices. In practice, the bang variant is implemented on top of the non-raising version of the code. For example, File.read!/1 is implemented as:
def read!(path) do
 case read(path) do
 {:ok, binary} ->
 binary

 {:error, reason} ->
 raise File.Error, reason: reason, action: "read file", path: IO.chardata_to_string(path)
 end
end
A common practice followed by the community is to make the non-raising version return {:ok, result} or {:error, Exception.t}. For example, an HTTP client may return {:ok, %HTTP.Response{}} on success cases and {:error, %HTTP.Error{}} for failures, where HTTP.Error is implemented as an exception. This makes it convenient for anyone to raise an exception by simply calling Kernel.raise/1.
Additional remarks
This anti-pattern is of special importance to library authors and whenever writing functions that will be invoked by other developers and third-party code. Nevertheless, there are still scenarios where developers can afford to raise exceptions directly, for example:
	invalid arguments: it is expected that functions will raise for invalid arguments, as those are structural error and not semantic errors. For example, File.read(123) will always raise, because 123 is never a valid filename

	during tests, scripts, etc: those are common scenarios where you want your code to fail as soon as possible in case of errors. Using ! functions, such as File.read!/1, allows you to do so quickly and with clear error messages

	some frameworks, such as Phoenix, allow developers to raise exceptions in their code and uses a protocol to convert these exceptions into semantic HTTP responses

This anti-pattern was formerly known as Using exceptions for control-flow.
Primitive obsession
Problem
This anti-pattern happens when Elixir basic types (for example, integer, float, and string) are excessively used to carry structured information, rather than creating specific composite data types (for example, tuples, maps, and structs) that can better represent a domain.
Example
An example of this anti-pattern is the use of a single string to represent an Address. An Address is a more complex structure than a simple basic (aka, primitive) value.
defmodule MyApp do
 def extract_postal_code(address) when is_binary(address) do
 # Extract postal code with address...
 end

 def fill_in_country(address) when is_binary(address) do
 # Fill in missing country...
 end
end
While you may receive the address as a string from a database, web request, or a third-party, if you find yourself frequently manipulating or extracting information from the string, it is a good indicator you should convert the address into structured data:
Another example of this anti-pattern is using floating numbers to model money and currency, when richer data structures should be preferred.
Refactoring
Possible solutions to this anti-pattern is to use maps or structs to model our address. The example below creates an Address struct, better representing this domain through a composite type. Additionally, we introduce a parse/1 function, that converts the string into an Address, which will simplify the logic of remaining functions. With this modification, we can extract each field of this composite type individually when needed.
defmodule Address do
 defstruct [:street, :city, :state, :postal_code, :country]
end
defmodule MyApp do
 def parse(address) when is_binary(address) do
 # Returns %Address{}
 end

 def extract_postal_code(%Address{} = address) do
 # Extract postal code with address...
 end

 def fill_in_country(%Address{} = address) do
 # Fill in missing country...
 end
end
Unrelated multi-clause function
Problem
Using multi-clause functions is a powerful Elixir feature. However, some developers may abuse this feature to group unrelated functionality, which is an anti-pattern.
Example
A frequent example of this usage of multi-clause functions occurs when developers mix unrelated business logic into the same function definition, in a way that the behavior of each clause becomes completely distinct from the others. Such functions often have too broad specifications, making it difficult for other developers to understand and maintain them.
Some developers may use documentation mechanisms such as @doc annotations to compensate for poor code readability, however the documentation itself may end-up full of conditionals to describe how the function behaves for each different argument combination. This is a good indicator that the clauses are ultimately unrelated.
@doc """
Updates a struct.

If given a product, it will...

If given an animal, it will...
"""
def update(%Product{count: count, material: material}) do
 # ...
end

def update(%Animal{count: count, skin: skin}) do
 # ...
end
If updating an animal is completely different from updating a product and requires a different set of rules, it may be worth splitting those over different functions or even different modules.
Refactoring
As shown below, a possible solution to this anti-pattern is to break the business rules that are mixed up in a single unrelated multi-clause function in simple functions. Each function can have a specific name and @doc, describing its behavior and parameters received. While this refactoring sounds simple, it can impact the function's callers, so be careful!
@doc """
Updates a product.

It will...
"""
def update_product(%Product{count: count, material: material}) do
 # ...
end

@doc """
Updates an animal.

It will...
"""
def update_animal(%Animal{count: count, skin: skin}) do
 # ...
end
These functions may still be implemented with multiple clauses, as long as the clauses group related functionality. For example, update_product could be in practice implemented as follows:
def update_product(%Product{count: 0}) do
 # ...
end

def update_product(%Product{material: material})
 when material in ["metal", "glass"] do
 # ...
end

def update_product(%Product{material: material})
 when material not in ["metal", "glass"] do
 # ...
end
You can see this pattern in practice within Elixir itself. The +/2 operator can add Integers and Floats together, but not Strings, which instead use the <>/2 operator. In this sense, it is reasonable to handle integers and floats in the same operation, but strings are unrelated enough to deserve their own function.
You will also find examples in Elixir of functions that work with any struct, which would seemingly be an occurrence of this anti-pattern, such as struct/2:
iex> struct(URI.parse("/foo/bar"), path: "/bar/baz")
%URI{
 scheme: nil,
 userinfo: nil,
 host: nil,
 port: nil,
 path: "/bar/baz",
 query: nil,
 fragment: nil
}
The difference here is that the struct/2 function behaves precisely the same for any struct given, therefore there is no question of how the function handles different inputs. If the behavior is clear and consistent for all inputs, then the anti-pattern does not take place.
Using application configuration for libraries
Problem
The application environment can be used to parameterize global values that can be used in an Elixir system. This mechanism can be very useful and therefore is not considered an anti-pattern by itself. However, library authors should avoid using the application environment to configure their library. The reason is exactly that the application environment is a global state, so there can only be a single value for each key in the environment for an application. This makes it impossible for multiple applications depending on the same library to configure the same aspect of the library in different ways.
Example
The DashSplitter module represents a library that configures the behavior of its functions through the global application environment. These configurations are concentrated in the config/config.exs file, shown below:
import Config

config :app_config,
 parts: 3

import_config "#{config_env()}.exs"
One of the functions implemented by the DashSplitter library is split/1. This function aims to separate a string received via a parameter into a certain number of parts. The character used as a separator in split/1 is always "-" and the number of parts the string is split into is defined globally by the application environment. This value is retrieved by the split/1 function by calling Application.fetch_env!/2, as shown next:
defmodule DashSplitter do
 def split(string) when is_binary(string) do
 parts = Application.fetch_env!(:app_config, :parts) # <= retrieve parameterized value
 String.split(string, "-", parts: parts) # <= parts: 3
 end
end
Due to this parameterized value used by the DashSplitter library, all applications dependent on it can only use the split/1 function with identical behavior about the number of parts generated by string separation. Currently, this value is equal to 3, as we can see in the use examples shown below:
iex> DashSplitter.split("Lucas-Francisco-Vegi")
["Lucas", "Francisco", "Vegi"]
iex> DashSplitter.split("Lucas-Francisco-da-Matta-Vegi")
["Lucas", "Francisco", "da-Matta-Vegi"]
Refactoring
To remove this anti-pattern, this type of configuration should be performed using a parameter passed to the function. The code shown below performs the refactoring of the split/1 function by accepting keyword lists as a new optional parameter. With this new parameter, it is possible to modify the default behavior of the function at the time of its call, allowing multiple different ways of using split/2 within the same application:
defmodule DashSplitter do
 def split(string, opts \\ []) when is_binary(string) and is_list(opts) do
 parts = Keyword.get(opts, :parts, 2) # <= default config of parts == 2
 String.split(string, "-", parts: parts)
 end
end
iex> DashSplitter.split("Lucas-Francisco-da-Matta-Vegi", [parts: 5])
["Lucas", "Francisco", "da", "Matta", "Vegi"]
iex> DashSplitter.split("Lucas-Francisco-da-Matta-Vegi") #<= default config is used!
["Lucas", "Francisco-da-Matta-Vegi"]
Of course, not all uses of the application environment by libraries are incorrect. One example is using configuration to replace a component (or dependency) of a library by another that must behave the exact same. Consider a library that needs to parse CSV files. The library author may pick one package to use as default parser but allow its users to swap to different implementations via the application environment. At the end of the day, choosing a different CSV parser should not change the outcome, and library authors can even enforce this by defining behaviours with the exact semantics they expect.
Additional remarks: Supervision trees
In practice, libraries may require additional configuration beyond keyword lists. For example, if a library needs to start a supervision tree, how can the user of said library customize its supervision tree? Given the supervision tree itself is global (as it belongs to the library), library authors may be tempted to use the application configuration once more.
One solution is for the library to provide its own child specification, instead of starting the supervision tree itself. This allows the user to start all necessary processes under its own supervision tree, potentially passing custom configuration options during initialization.
You can see this pattern in practice in projects like Nx and DNS Cluster. These libraries require that you list processes under your own supervision tree:
children = [
 {DNSCluster, query: "my.subdomain"}
]
In such cases, if the users of DNSCluster need to configure DNSCluster per environment, they can be the ones reading from the application environment, without the library forcing them to:
children = [
 {DNSCluster, query: Application.get_env(:my_app, :dns_cluster_query) || :ignore}
]
Some libraries, such as Ecto, allow you to pass your application name as an option (called :otp_app or similar) and then automatically read the environment from your application. While this addresses the issue with the application environment being global, as they read from each individual application, it comes at the cost of some indirection, compared to the example above where users explicitly read their application environment from their own code, whenever desired.
Additional remarks: Compile-time configuration
A similar discussion entails compile-time configuration. What if a library author requires some configuration to be provided at compilation time?
Once again, instead of forcing users of your library to provide compile-time configuration, you may want to allow users of your library to generate the code themselves. That's the approach taken by libraries such as Ecto:
defmodule MyApp.Repo do
 use Ecto.Repo, adapter: Ecto.Adapters.Postgres
end
Instead of forcing developers to share a single repository, Ecto allows its users to define as many repositories as they want. Given the :adapter configuration is required at compile-time, it is a required value on use Ecto.Repo. If developers want to configure the adapter per environment, then it is their choice:
defmodule MyApp.Repo do
 use Ecto.Repo, adapter: Application.compile_env(:my_app, :repo_adapter)
end
On the other hand, code generation comes with its own anti-patterns, and must be considered carefully. That's to say: while using the application environment for libraries is discouraged, especially compile-time configuration, in some cases they may be the best option. For example, consider a library needs to parse CSV or JSON files to generate code based on data files. In such cases, it is best to provide reasonable defaults and make them customizable via the application environment, instead of asking each user of your library to generate the exact same code.
Additional remarks: Mix tasks
For Mix tasks and related tools, it may be necessary to provide per-project configuration. For example, imagine you have a :linter project, which supports setting the output file and the verbosity level. You may choose to configure it through application environment:
config :linter,
 output_file: "/path/to/output.json",
 verbosity: 3
However, Mix allows tasks to read per-project configuration via Mix.Project.config/0. In this case, you can configure the :linter directly in the mix.exs file:
def project do
 [
 app: :my_app,
 version: "1.0.0",
 linter: [
 output_file: "/path/to/output.json",
 verbosity: 3
],
 ...
]
end
Additionally, if a Mix task is available, you can also accept these options as command line arguments (see OptionParser):
mix linter --output-file /path/to/output.json --verbosity 3

 Process-related anti-patterns

This document outlines potential anti-patterns related to processes and process-based abstractions.
Code organization by process
Problem
This anti-pattern refers to code that is unnecessarily organized by processes. A process itself does not represent an anti-pattern, but it should only be used to model runtime properties (such as concurrency, access to shared resources, error isolation, etc). When you use a process for code organization, it can create bottlenecks in the system.
Example
An example of this anti-pattern, as shown below, is a module that implements arithmetic operations (like add and subtract) by means of a GenServer process. If the number of calls to this single process grows, this code organization can compromise the system performance, therefore becoming a bottleneck.
defmodule Calculator do
 @moduledoc """
 Calculator that performs basic arithmetic operations.

 This code is unnecessarily organized in a GenServer process.
 """

 use GenServer

 def add(a, b, pid) do
 GenServer.call(pid, {:add, a, b})
 end

 def subtract(a, b, pid) do
 GenServer.call(pid, {:subtract, a, b})
 end

 @impl GenServer
 def init(init_arg) do
 {:ok, init_arg}
 end

 @impl GenServer
 def handle_call({:add, a, b}, _from, state) do
 {:reply, a + b, state}
 end

 def handle_call({:subtract, a, b}, _from, state) do
 {:reply, a - b, state}
 end
end
iex> {:ok, pid} = GenServer.start_link(Calculator, :init)
{:ok, #PID<0.132.0>}
iex> Calculator.add(1, 5, pid)
6
iex> Calculator.subtract(2, 3, pid)
-1
Refactoring
In Elixir, as shown next, code organization must be done only through modules and functions. Whenever possible, a library should not impose specific behavior (such as parallelization) on its users. It is better to delegate this behavioral decision to the developers of clients, thus increasing the potential for code reuse of a library.
defmodule Calculator do
 def add(a, b) do
 a + b
 end

 def subtract(a, b) do
 a - b
 end
end
iex> Calculator.add(1, 5)
6
iex> Calculator.subtract(2, 3)
-1
Scattered process interfaces
Problem
In Elixir, the use of an Agent, a GenServer, or any other process abstraction is not an anti-pattern in itself. However, when the responsibility for direct interaction with a process is spread throughout the entire system, it can become problematic. This bad practice can increase the difficulty of code maintenance and make the code more prone to bugs.
Example
The following code seeks to illustrate this anti-pattern. The responsibility for interacting directly with the Agent is spread across four different modules (A, B, C, and D).
defmodule A do
 def update(process) do
 # Some other code...
 Agent.update(process, fn _list -> 123 end)
 end
end
defmodule B do
 def update(process) do
 # Some other code...
 Agent.update(process, fn content -> %{a: content} end)
 end
end
defmodule C do
 def update(process) do
 # Some other code...
 Agent.update(process, fn content -> [:atom_value | content] end)
 end
end
defmodule D do
 def get(process) do
 # Some other code...
 Agent.get(process, fn content -> content end)
 end
end
This spreading of responsibility can generate duplicated code and make code maintenance more difficult. Also, due to the lack of control over the format of the shared data, complex composed data can be shared. This freedom to use any format of data is dangerous and can induce developers to introduce bugs.
start an agent with initial state of an empty list
iex> {:ok, agent} = Agent.start_link(fn -> [] end)
{:ok, #PID<0.135.0>}

many data formats (for example, List, Map, Integer, Atom) are
combined through direct access spread across the entire system
iex> A.update(agent)
iex> B.update(agent)
iex> C.update(agent)

state of shared information
iex> D.get(agent)
[:atom_value, %{a: 123}]
For a GenServer and other behaviours, this anti-pattern will manifest when scattering calls to GenServer.call/3 and GenServer.cast/2 throughout multiple modules, instead of encapsulating all the interaction with the GenServer in a single place.
Refactoring
Instead of spreading direct access to a process abstraction, such as Agent, over many places in the code, it is better to refactor this code by centralizing the responsibility for interacting with a process in a single module. This refactoring improves maintainability by removing duplicated code; it also allows you to limit the accepted format for shared data, reducing bug-proneness. As shown below, the module Foo.Bucket is centralizing the responsibility for interacting with the Agent. Any other place in the code that needs to access shared data must now delegate this action to Foo.Bucket. Also, Foo.Bucket now only allows data to be shared in Map format.
defmodule Foo.Bucket do
 use Agent

 def start_link(_opts) do
 Agent.start_link(fn -> %{} end)
 end

 def get(bucket, key) do
 Agent.get(bucket, &Map.get(&1, key))
 end

 def put(bucket, key, value) do
 Agent.update(bucket, &Map.put(&1, key, value))
 end
end
The following are examples of how to delegate access to shared data (provided by an Agent) to Foo.Bucket.
start an agent through `Foo.Bucket`
iex> {:ok, bucket} = Foo.Bucket.start_link(%{})
{:ok, #PID<0.114.0>}

add shared values to the keys `milk` and `beer`
iex> Foo.Bucket.put(bucket, "milk", 3)
iex> Foo.Bucket.put(bucket, "beer", 7)

access shared data of specific keys
iex> Foo.Bucket.get(bucket, "beer")
7
iex> Foo.Bucket.get(bucket, "milk")
3
Additional remarks
This anti-pattern was formerly known as Agent obsession.
Sending unnecessary data
Problem
Sending a message to a process can be an expensive operation if the message is big enough. That's because that message will be fully copied to the receiving process, which may be CPU and memory intensive. This is due to Erlang's "share nothing" architecture, where each process has its own memory, which simplifies and speeds up garbage collection.
This is more obvious when using send/2, GenServer.call/3, or the initial data in GenServer.start_link/3. Notably this also happens when using spawn/1, Task.async/1, Task.async_stream/3, and so on. It is more subtle here as the anonymous function passed to these functions captures the variables it references, and all captured variables will be copied over. By doing this, you can accidentally send way more data to a process than you actually need.
Example
Imagine you were to implement some simple reporting of IP addresses that made requests against your application. You want to do this asynchronously and not block processing, so you decide to use spawn/1. It may seem like a good idea to hand over the whole connection because we might need more data later. However passing the connection results in copying a lot of unnecessary data like the request body, params, etc.
log_request_ip send the ip to some external service
spawn(fn -> log_request_ip(conn) end)
This problem also occurs when accessing only the relevant parts:
spawn(fn -> log_request_ip(conn.remote_ip) end)
This will still copy over all of conn, because the conn variable is being captured inside the spawned function. The function then extracts the remote_ip field, but only after the whole conn has been copied over.
send/2 and the GenServer APIs also rely on message passing. In the example below, the conn is once again copied to the underlying GenServer:
GenServer.cast(pid, {:report_ip_address, conn})
Refactoring
This anti-pattern has many potential remedies:
	Limit the data you send to the absolute necessary minimum instead of sending an entire struct. For example, don't send an entire conn struct if all you need is a couple of fields.

	If the only process that needs data is the one you are sending to, consider making the process fetch that data instead of passing it.

	Some abstractions, such as :persistent_term, allows you to share data between processes, as long as such data changes infrequently.

In our case, limiting the input data is a reasonable strategy. If all we need right now is the IP address, then let's only work with that and make sure we're only passing the IP address into the closure, like so:
ip_address = conn.remote_ip
spawn(fn -> log_request_ip(ip_address) end)
Or in the GenServer case:
GenServer.cast(pid, {:report_ip_address, conn.remote_ip})
Unsupervised processes
Problem
In Elixir, creating a process outside a supervision tree is not an anti-pattern in itself. However, when you spawn many long-running processes outside of supervision trees, this can make visibility and monitoring of these processes difficult, preventing developers from fully controlling their lifecycle.
Example
The following code example seeks to illustrate a library responsible for maintaining a numerical Counter through a Agent process outside a supervision tree.
defmodule Counter do
 @moduledoc """
 Global counter implemented as an Agent.
 """

 use Agent

 @doc "Starts a counter process."
 def start_link(opts \\ []) do
 initial_state = Keyword.get(opts, :initial_value, 0)
 name = Keyword.get(opts, :name, __MODULE__)
 Agent.start_link(fn -> initial_state end, name: name)
 end

 @doc "Gets the current value of the given counter."
 def get(name \\ __MODULE__) do
 Agent.get(name, fn state -> state end)
 end

 @doc "Bumps the value of the given counter."
 def bump(name \\ __MODULE__, value) do
 Agent.get_and_update(fn state -> {state, value + state} end)
 end
end
While it is possible to start the process outside of a supervision tree:
iex> Counter.start_link()
{:ok, #PID<0.115.0>}
iex> Counter.bump(13)
0
iex> Counter.get()
13
Such processes are harder to observe and control their lifecycle. For example, if you have other processes that depend on the Counter above, you will need ad-hoc mechanisms to make sure they are initialized in order. Furthermore, when your application is shutting down, there is no guarantee when they are terminated.
Refactoring
To ensure that clients of a library have full control over their systems, regardless of the number of processes used and the lifetime of each one, all processes must be started inside a supervision tree. As shown below, this code uses a Supervisor as a supervision tree.
defmodule SupervisedProcess.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 # With the default values for counter and name
 Counter,
 # With custom values for counter, name, and a custom ID
 Supervisor.child_spec(
 {Counter, name: :other_counter, initial_value: 15},
 id: :other_counter
)
]

 Supervisor.start_link(children, strategy: :one_for_one, name: App.Supervisor)
 end
end
Besides having a deterministic order in which processes are started, supervision trees also guarantee they are terminated in reverse order, allowing you to perform any necessary clean up during shut down. Furthermore, supervision strategies allows us to configure exactly how process should act in case of unexpected failures.
Finally, applications and supervision trees can be introspected through applications like the Phoenix.LiveDashboard and Erlang's built-in observer:
[image: Observer GUI screenshot]

 Meta-programming anti-patterns

This document outlines potential anti-patterns related to meta-programming.
Compile-time dependencies
Problem
This anti-pattern is related to dependencies between files in Elixir. Because macros are used at compile-time, the use of any macro in Elixir adds a compile-time dependency to the module that defines the macro.
However, when macros are used in the body of a module, the arguments to the macro themselves may become compile-time dependencies. These dependencies may lead to dependency graphs where changing a single file causes several files to be recompiled.
Example
Let's take the Plug library as an example. The Plug project allows you to specify several modules, also known as plugs, which will be invoked whenever there is a request. As a user of Plug, you would use it as follows:
defmodule MyApp do
 use Plug.Builder

 plug MyApp.Authentication
end
And imagine Plug has the following definitions of the macros above (simplified):
defmodule Plug.Builder do
 defmacro __using__(_opts) do
 quote do
 Module.register_attribute(__MODULE__, :plugs, accumulate: true)
 @before_compile Plug.Builder
 end
 end

 defmacro plug(mod) do
 quote do
 @plugs unquote(mod)
 end
 end

 ...
end
The implementation accumulates all modules inside the @plugs module attribute. Right before the module is compiled, Plug.Builder will reads all modules stored in @plugs and compile them into a function, like this:
def call(conn, _opts) do
 MyApp.Authentication.call(conn)
end
The trouble with the code above is that, because the plug MyApp.Authentication was invoked at compile-time, the module MyApp.Authentication is now a compile-time dependency of MyApp, even though MyApp.Authentication is never used at compile-time. If MyApp.Authentication depends on other modules, even at runtime, this can now lead to a large recompilation graph in case of changes.
Refactoring
To address this anti-pattern, a macro can expand literals within the context they are meant to be used, as follows:
 defmacro plug(mod) do
 mod = Macro.expand_literals(mod, %{__CALLER__ | function: {:call, 2}})

 quote do
 @plugs unquote(mod)
 end
 end
In the example above, since mod is used only within the call/2 function, we prematurely expand module reference as if it was inside the call/2 function. Now MyApp.Authentication is only a runtime dependency of MyApp, no longer a compile-time one.
Note, however, the above must only be done if your macros do not attempt to invoke any function, access any struct, or any other metadata of the module at compile-time. If you interact with the module given to a macro anywhere outside of definition of a function, then you effectively have a compile-time dependency. And, even though you generally want to avoid them, it is not always possible.
In actual projects, developers may use mix xref trace path/to/file.ex to execute a file and have it print information about which modules it depends on, and if those modules are compile-time, runtime, or export dependencies. See mix xref for more information.
Large code generation
Problem
This anti-pattern is related to macros that generate too much code. When a macro generates a large amount of code, it impacts how the compiler and/or the runtime work. The reason for this is that Elixir may have to expand, compile, and execute the code multiple times, which will make compilation slower and the resulting compiled artifacts larger.
Example
Imagine you are defining a router for a web application, where you could have macros like get/2. On every invocation of the macro (which could be hundreds), the code inside get/2 will be expanded and compiled, which can generate a large volume of code overall.
defmodule Routes do
 defmacro get(route, handler) do
 quote do
 route = unquote(route)
 handler = unquote(handler)

 if not is_binary(route) do
 raise ArgumentError, "route must be a binary"
 end

 if not is_atom(handler) do
 raise ArgumentError, "handler must be a module"
 end

 @store_route_for_compilation {route, handler}
 end
 end
end
Refactoring
To remove this anti-pattern, the developer should simplify the macro, delegating part of its work to other functions. As shown below, by encapsulating the code inside quote/1 inside the function __define__/3 instead, we reduce the code that is expanded and compiled on every invocation of the macro, and instead we dispatch to a function to do the bulk of the work.
defmodule Routes do
 defmacro get(route, handler) do
 quote do
 Routes.__define__(__MODULE__, unquote(route), unquote(handler))
 end
 end

 def __define__(module, route, handler) do
 if not is_binary(route) do
 raise ArgumentError, "route must be a binary"
 end

 if not is_atom(handler) do
 raise ArgumentError, "handler must be a module"
 end

 Module.put_attribute(module, :store_route_for_compilation, {route, handler})
 end
end
Unnecessary macros
Problem
Macros are powerful meta-programming mechanisms that can be used in Elixir to extend the language. While using macros is not an anti-pattern in itself, this meta-programming mechanism should only be used when absolutely necessary. Whenever a macro is used, but it would have been possible to solve the same problem using functions or other existing Elixir structures, the code becomes unnecessarily more complex and less readable. Because macros are more difficult to implement and reason about, their indiscriminate use can compromise the evolution of a system, reducing its maintainability.
Example
The MyMath module implements the sum/2 macro to perform the sum of two numbers received as parameters. While this code has no syntax errors and can be executed correctly to get the desired result, it is unnecessarily more complex. By implementing this functionality as a macro rather than a conventional function, the code became less clear:
defmodule MyMath do
 defmacro sum(v1, v2) do
 quote do
 unquote(v1) + unquote(v2)
 end
 end
end
iex> require MyMath
MyMath
iex> MyMath.sum(3, 5)
8
iex> MyMath.sum(3 + 1, 5 + 6)
15
Refactoring
To remove this anti-pattern, the developer must replace the unnecessary macro with structures that are simpler to write and understand, such as named functions. The code shown below is the result of the refactoring of the previous example. Basically, the sum/2 macro has been transformed into a conventional named function. Note that the require/2 call is no longer needed:
defmodule MyMath do
 def sum(v1, v2) do # <= The macro became a named function
 v1 + v2
 end
end
iex> MyMath.sum(3, 5)
8
iex> MyMath.sum(3+1, 5+6)
15
use instead of import
Problem
Elixir has mechanisms such as import/1, alias/1, and use/1 to establish dependencies between modules. Code implemented with these mechanisms does not characterize a smell by itself. However, while the import/1 and alias/1 directives have lexical scope and only facilitate a module calling functions of another, the use/1 directive has a broader scope, which can be problematic.
The use/1 directive allows a module to inject any type of code into another, including propagating dependencies. In this way, using the use/1 directive makes code harder to read, because to understand exactly what will happen when it references a module, it is necessary to have knowledge of the internal details of the referenced module.
Example
The code shown below is an example of this anti-pattern. It defines three modules -- ModuleA, Library, and ClientApp. ClientApp is reusing code from the Library via the use/1 directive, but is unaware of its internal details. This makes it harder for the author of ClientApp to visualize which modules and functionality are now available within its module. To make matters worse, Library also imports ModuleA, which defines a foo/0 function that conflicts with a local function defined in ClientApp:
defmodule ModuleA do
 def foo do
 "From Module A"
 end
end
defmodule Library do
 defmacro __using__(_opts) do
 quote do
 import Library
 import ModuleA # <= propagating dependencies!
 end
 end

 def from_lib do
 "From Library"
 end
end
defmodule ClientApp do
 use Library

 def foo do
 "Local function from client app"
 end

 def from_client_app do
 from_lib() <> " - " <> foo()
 end
end
When we try to compile ClientApp, Elixir detects the conflict and throws the following error:
error: imported ModuleA.foo/0 conflicts with local function
 └ client_app.ex:4:
Refactoring
To remove this anti-pattern, we recommend library authors avoid providing __using__/1 callbacks whenever it can be replaced by alias/1 or import/1 directives. In the following code, we assume use Library is no longer available and ClientApp was refactored in this way, and with that, the code is clearer and the conflict as previously shown no longer exists:
defmodule ClientApp do
 import Library

 def foo do
 "Local function from client app"
 end

 def from_client_app do
 from_lib() <> " - " <> foo()
 end
end
iex> ClientApp.from_client_app()
"From Library - Local function from client app"
Additional remarks
In situations where you need to do more than importing and aliasing modules, providing use MyModule may be necessary, as it provides a common extension point within the Elixir ecosystem.
Therefore, to provide guidance and clarity, we recommend library authors to include an admonition block in their @moduledoc that explains how use MyModule impacts the developer's code. As an example, the GenServer documentation outlines:
use GenServer
When you use GenServer, the GenServer module will
set @behaviour GenServer and define a child_spec/1
function, so your module can be used as a child
in a supervision tree.
Think of this summary as a "Nutrition facts label" for code generation. Make sure to only list changes made to the public API of the module. For example, if use Library sets an internal attribute called @_some_module_info and this attribute is never meant to be public, avoid documenting it in the nutrition facts.
For convenience, the markup notation to generate the admonition block above is this:
> #### `use GenServer` {: .info}
>
> When you `use GenServer`, the `GenServer` module will
> set `@behaviour GenServer` and define a `child_spec/1`
> function, so your module can be used as a child
> in a supervision tree.
Untracked compile-time dependencies
Problem
This anti-pattern is the opposite of "Compile-time dependencies" and it happens when a compile-time dependency is accidentally bypassed, making the Elixir compiler unable to track dependencies and recompile files correctly. This happens when building aliases (in other words, module names) dynamically, either within a module or within a macro.
Example
For example, imagine you invoke a module at compile-time, you could write it as such:
defmodule MyModule do
 SomeOtherModule.example()
end
In this case, Elixir knows MyModule is invoked SomeOtherModule.example/0 outside of a function, and therefore at compile-time.
Elixir can also track module names even during dynamic calls:
defmodule MyModule do
 mods = [OtherModule.Foo, OtherModule.Bar]

 for mod <- mods do
 mod.example()
 end
end
In the previous example, even though Elixir does not know which modules the function example/0 was invoked on, it knows the modules OtherModule.Foo and OtherModule.Bar are referred outside of a function and therefore they become compile-time dependencies. If any of them change, Elixir will recompile MyModule itself.
However, you should not programmatically generate the module names themselves, as that would make it impossible for Elixir to track them. More precisely, do not do this:
defmodule MyModule do
 parts = [:Foo, :Bar]

 for part <- parts do
 Module.concat(OtherModule, part).example()
 end
end
In this case, because the whole module was generated, Elixir sees a dependency only to OtherModule, never to OtherModule.Foo and OtherModule.Bar, potentially leading to inconsistencies when recompiling projects.
A similar bug can happen when abusing the property that aliases are simply atoms, defining the atoms directly. In the case below, Elixir never sees the aliases, leading to untracked compile-time dependencies:
defmodule MyModule do
 mods = [:"Elixir.OtherModule.Foo", :"Elixir.OtherModule.Bar"]

 for mod <- mods do
 mod.example()
 end
end
Refactoring
To address this anti-pattern, you should avoid defining module names programmatically. For example, if you need to dispatch to multiple modules, do so by using full module names.
Instead of:
defmodule MyModule do
 parts = [:Foo, :Bar]

 for part <- parts do
 Module.concat(OtherModule, part).example()
 end
end
Do:
defmodule MyModule do
 mods = [OtherModule.Foo, OtherModule.Bar]

 for mod <- mods do
 mod.example()
 end
end
If you really need to define modules dynamically, you can do so via meta-programming, building the whole module name at compile-time:
defmodule MyMacro do
 defmacro call_examples(parts) do
 for part <- parts do
 quote do
 # This builds OtherModule.Foo at compile-time
 OtherModule.unquote(part).example()
 end
 end
 end
end

defmodule MyModule do
 import MyMacro
 call_examples [:Foo, :Bar]
end
In actual projects, developers may use mix xref trace path/to/file.ex to execute a file and have it print information about which modules it depends on, and if those modules are compile-time, runtime, or export dependencies. This can help you debug if the dependencies are being properly tracked in relation to external modules. See mix xref for more information.

 Quote and unquote

This guide aims to introduce the meta-programming techniques available in Elixir. The ability to represent an Elixir program by its own data structures is at the heart of meta-programming. This chapter starts by exploring those structures and the associated quote/2 and unquote/1 constructs, so we can take a look at macros in the next guide, and finally build our own domain specific language.
Quoting
The building block of an Elixir program is a tuple with three elements. For example, the function call sum(1, 2, 3) is represented internally as:
{:sum, [], [1, 2, 3]}
You can get the representation of any expression by using the quote/2 macro:
iex> quote do: sum(1, 2, 3)
{:sum, [], [1, 2, 3]}
The first element is the function name, the second is a keyword list containing metadata, and the third is the arguments list.
Operators are also represented as such tuples:
iex> quote do: 1 + 2
{:+, [context: Elixir, import: Kernel], [1, 2]}
Even a map is represented as a call to %{}:
iex> quote do: %{1 => 2}
{:%{}, [], [{1, 2}]}
Variables are represented using such triplets, with the difference that the last element is an atom, instead of a list:
iex> quote do: x
{:x, [], Elixir}
When quoting more complex expressions, we can see that the code is represented in such tuples, which are often nested inside each other in a structure resembling a tree. Many languages would call such representations an Abstract Syntax Tree (AST). Elixir calls them quoted expressions:
iex> quote do: sum(1, 2 + 3, 4)
{:sum, [], [1, {:+, [context: Elixir, import: Kernel], [2, 3]}, 4]}
Sometimes, when working with quoted expressions, it may be useful to get the textual code representation back. This can be done with Macro.to_string/1:
iex> Macro.to_string(quote do: sum(1, 2 + 3, 4))
"sum(1, 2 + 3, 4)"
In general, the tuples above are structured according to the following format:
{atom | tuple, list, list | atom}
	The first element is an atom or another tuple in the same representation;
	The second element is a keyword list containing metadata, like numbers and contexts;
	The third element is either a list of arguments for the function call or an atom. When this element is an atom, it means the tuple represents a variable.

Besides the tuple defined above, there are five Elixir literals that, when quoted, return themselves (and not a tuple). They are:
:sum #=> Atoms
1.0 #=> Numbers
[1, 2] #=> Lists
"strings" #=> Strings
{key, value} #=> Tuples with two elements
Most Elixir code has a straight-forward translation to its underlying quoted expression. We recommend you try out different code samples and see what the results are. For example, what does String.upcase("foo") expand to? We have also learned that if(true, do: :this, else: :that) is the same as if true do :this else :that end. How does this affirmation hold with quoted expressions?
Unquoting
Quoting is about retrieving the inner representation of some particular chunk of code. However, sometimes it may be necessary to inject some other particular chunk of code inside the representation we want to retrieve.
For example, imagine you have a variable called number which contains the number you want to inject inside a quoted expression.
iex> number = 13
iex> Macro.to_string(quote do: 11 + number)
"11 + number"
That's not what we wanted, since the value of the number variable has not been injected and number has been quoted in the expression. In order to inject the value of the number variable, unquote/1 has to be used inside the quoted representation:
iex> number = 13
iex> Macro.to_string(quote do: 11 + unquote(number))
"11 + 13"
unquote/1 can even be used to inject function names:
iex> fun = :hello
iex> Macro.to_string(quote do: unquote(fun)(:world))
"hello(:world)"
In some cases, it may be necessary to inject many values inside a list. For example, imagine you have a list containing [1, 2, 6], and we want to inject [3, 4, 5] into it. Using unquote/1 won't yield the desired result:
iex> inner = [3, 4, 5]
iex> Macro.to_string(quote do: [1, 2, unquote(inner), 6])
"[1, 2, [3, 4, 5], 6]"
That's when unquote_splicing/1 comes in handy:
iex> inner = [3, 4, 5]
iex> Macro.to_string(quote do: [1, 2, unquote_splicing(inner), 6])
"[1, 2, 3, 4, 5, 6]"
Unquoting is very useful when working with macros. When writing macros, developers are able to receive code chunks and inject them inside other code chunks, which can be used to transform code or write code that generates code during compilation.
Escaping
As we saw at the beginning of this chapter, only some values are valid quoted expressions in Elixir. For example, a map is not a valid quoted expression. Neither is a tuple with four elements. However, such values can be expressed as a quoted expression:
iex> quote do: %{1 => 2}
{:%{}, [], [{1, 2}]}
In some cases, you may need to inject such values into quoted expressions. To do that, we need to first escape those values into quoted expressions with the help of Macro.escape/1:
iex> map = %{hello: :world}
iex> Macro.escape(map)
{:%{}, [], [hello: :world]}
Macros receive quoted expressions and must return quoted expressions. However, sometimes during the execution of a macro, you may need to work with values and making a distinction between values and quoted expressions will be required.
In other words, it is important to make a distinction between a regular Elixir value (like a list, a map, a process, a reference, and so on) and a quoted expression. Some values, such as integers, atoms, and strings, have a quoted expression equal to the value itself. Other values, like maps, need to be explicitly converted. Finally, values like functions and references cannot be converted to a quoted expression at all.
When working with macros and code that generates code, check out the documentation for the Macro module, which contains many functions to work with Elixir's AST.
In this introduction, we have laid the groundwork to finally write our first macro. You can check that out in the next guide.

 Macros

Even though Elixir attempts its best to provide a safe environment for macros, most of the responsibility of writing clean code with macros falls on developers. Macros are harder to write than ordinary Elixir functions, and it's considered to be bad style to use them when they're not necessary. Write macros responsibly.
Elixir already provides mechanisms to write your everyday code in a simple and readable fashion by using its data structures and functions. Macros should only be used as a last resort. Remember that explicit is better than implicit. Clear code is better than concise code.
Our first macro
Macros in Elixir are defined via defmacro/2.
For this guide, we will be using files instead of running code samples in IEx. That's because the code samples will span multiple lines of code and typing them all in IEx can be counter-productive. You should be able to run the code samples by saving them into a macros.exs file and running it with elixir macros.exs or iex macros.exs.

In order to better understand how macros work, let's create a new module where we are going to implement unless (which does the opposite of if/2), as a macro and as a function:
defmodule Unless do
 def fun_unless(clause, do: expression) do
 if(!clause, do: expression)
 end

 defmacro macro_unless(clause, do: expression) do
 quote do
 if(!unquote(clause), do: unquote(expression))
 end
 end
end
The function receives the arguments and passes them to if/2. However, as we learned in the previous guide, the macro will receive quoted expressions, inject them into the quote, and finally return another quoted expression.
Let's start iex with the module above:
$ iex macros.exs

and play with those definitions:
iex> require Unless
iex> Unless.macro_unless(true, do: IO.puts("this should never be printed"))
nil
iex> Unless.fun_unless(true, do: IO.puts("this should never be printed"))
"this should never be printed"
nil
In our macro implementation, the sentence was not printed, although it was printed in our function implementation. That's because the arguments to a function call are evaluated before calling the function. However, macros do not evaluate their arguments. Instead, they receive the arguments as quoted expressions which are then transformed into other quoted expressions. In this case, we have rewritten our unless macro to become an if/2 behind the scenes.
In other words, when invoked as:
Unless.macro_unless(true, do: IO.puts("this should never be printed"))
Our macro_unless macro received the following:
macro_unless(true, [do: {{:., [], [{:__aliases__, [], [:IO]}, :puts]}, [], ["this should never be printed"]}])
and it then returned a quoted expression as follows:
{:if, [],
 [{:!, [], [true]},
 [do: {{:., [],
 [{:__aliases__,
 [], [:IO]},
 :puts]}, [], ["this should never be printed"]}]]}
We can actually verify that this is the case by using Macro.expand_once/2:
iex> expr = quote do: Unless.macro_unless(true, do: IO.puts("this should never be printed"))
iex> res = Macro.expand_once(expr, __ENV__)
iex> IO.puts(Macro.to_string(res))
if(!true) do
 IO.puts("this should never be printed")
end
:ok
Macro.expand_once/2 receives a quoted expression and expands it according to the current environment. In this case, it expanded/invoked the Unless.macro_unless/2 macro and returned its result. We then proceeded to convert the returned quoted expression to a string and print it (we will talk about __ENV__ later in this chapter).
That's what macros are all about. They are about receiving quoted expressions and transforming them into something else.
In fact, if/2 in Elixir is implemented as a macro:
defmacro if(clause, do: expression) do
 quote do
 case unquote(clause) do
 x when x in [false, nil] -> nil
 _ -> unquote(expression)
 end
end
Constructs such as if/2, defmacro/2, def/2, defprotocol/2, and many others used throughout the Elixir standard library are written in pure Elixir, often as a macro. This means that the constructs being used to build the language can be used by developers to extend the language to the domains they are working on.
We can define any function and macro we want, including ones that override the built-in definitions provided by Elixir. The only exceptions are Elixir special forms which are not implemented in Elixir and therefore cannot be overridden. The full list of special forms is available in Kernel.SpecialForms.
Macro hygiene
Elixir macros have "late resolution". This guarantees that a variable defined inside a quote won't conflict with a variable defined in the context where that macro is expanded. For example:
defmodule Hygiene do
 defmacro no_interference do
 quote do: a = 1
 end
end

defmodule HygieneTest do
 def go do
 require Hygiene
 a = 13
 Hygiene.no_interference()
 a
 end
end

HygieneTest.go()
=> 13
In the example above, even though the macro injects a = 1, it does not affect the variable a defined by the go/0 function. If a macro wants to explicitly affect the context, it can use var!/1:
defmodule Hygiene do
 defmacro interference do
 quote do: var!(a) = 1
 end
end

defmodule HygieneTest do
 def go do
 require Hygiene
 a = 13
 Hygiene.interference()
 a
 end
end

HygieneTest.go()
=> 1
The code above will work but issue a warning: variable "a" is unused. The macro is overriding the original value and the original value is never used.
Variable hygiene only works because Elixir annotates variables with their context. For example, a variable x defined on line 3 of a module would be represented as:
{:x, [line: 3], nil}
However, a quoted variable would be represented as:
defmodule Sample do
 def quoted do
 quote do: x
 end
end

Sample.quoted() #=> {:x, [line: 3], Sample}
Notice that the third element in the quoted variable is the atom Sample, instead of nil, which marks the variable as coming from the Sample module. Therefore, Elixir considers these two variables as coming from different contexts and handles them accordingly.
Elixir provides similar mechanisms for imports and aliases too. This guarantees that a macro will behave as specified by its source module rather than conflicting with the target module where the macro is expanded. Hygiene can be bypassed under specific situations by using macros like var!/2 and alias!/1, although one must be careful when using those as they directly change the user environment.
Sometimes variable names might be dynamically created. In such cases, Macro.var/2 can be used to define new variables:
defmodule Sample do
 defmacro initialize_to_char_count(variables) do
 Enum.map(variables, fn name ->
 var = Macro.var(name, nil)
 length = name |> Atom.to_string() |> String.length()

 quote do
 unquote(var) = unquote(length)
 end
 end)
 end

 def run do
 initialize_to_char_count([:red, :green, :yellow])
 [red, green, yellow]
 end
end

> Sample.run() #=> [3, 5, 6]
Take note of the second argument to Macro.var/2. This is the context being used and will determine hygiene as described in the next section. Check out also Macro.unique_var/2, for cases when you need to generate variables with unique names.
The environment
When calling Macro.expand_once/2 earlier in this chapter, we used the special form __ENV__/0.
__ENV__/0 returns a Macro.Env struct which contains useful information about the compilation environment, including the current module, file, and line, all variables defined in the current scope, as well as imports, requires, and more:
iex> __ENV__.module
nil
iex> __ENV__.file
"iex"
iex> __ENV__.requires
[IEx.Helpers, Kernel, Kernel.Typespec]
iex> require Integer
nil
iex> __ENV__.requires
[IEx.Helpers, Integer, Kernel, Kernel.Typespec]
Many of the functions in the Macro module expect a Macro.Env environment. You can read more about these functions in Macro and learn more about the compilation environment in the Macro.Env.
Private macros
Elixir also supports private macros via defmacrop. Like private functions, these macros are only available inside the module that defines them, and only at compilation time.
It is important that a macro is defined before its usage. Failing to define a macro before its invocation will raise an error at runtime, since the macro won't be expanded and will be translated to a function call:
iex> defmodule Sample do
...> def four, do: two() + two()
...> defmacrop two, do: 2
...> end
** (CompileError) iex:2: function two/0 undefined
Write macros responsibly
Macros are a powerful construct and Elixir provides many mechanisms to ensure they are used responsibly.
	Macros are hygienic: by default, variables defined inside a macro are not going to affect the user code. Furthermore, function calls and aliases available in the macro context are not going to leak into the user context.

	Macros are lexical: it is impossible to inject code or macros globally. In order to use a macro, you need to explicitly require or import the module that defines the macro.

	Macros are explicit: it is impossible to run a macro without explicitly invoking it. For example, some languages allow developers to completely rewrite functions behind the scenes, often via parse transforms or via some reflection mechanisms. In Elixir, a macro must be explicitly invoked in the caller during compilation time.

	Macros' language is clear: many languages provide syntax shortcuts for quote and unquote. In Elixir, we preferred to have them explicitly spelled out, in order to clearly delimit the boundaries of a macro definition and its quoted expressions.

Even with such guarantees, the developer plays a big role when writing macros responsibly. If you are confident you need to resort to macros, remember that macros are not your API. Keep your macro definitions short, including their quoted contents. For example, instead of writing a macro like this:
defmodule MyModule do
 defmacro my_macro(a, b, c) do
 quote do
 do_this(unquote(a))
 # ...
 do_that(unquote(b))
 # ...
 and_that(unquote(c))
 end
 end
end
write:
defmodule MyModule do
 defmacro my_macro(a, b, c) do
 quote do
 # Keep what you need to do here to a minimum
 # and move everything else to a function
 MyModule.do_this_that_and_that(unquote(a), unquote(b), unquote(c))
 end
 end

 def do_this_that_and_that(a, b, c) do
 do_this(a)
 ...
 do_that(b)
 ...
 and_that(c)
 end
end
This makes your code clearer and easier to test and maintain, as you can invoke and test do_this_that_and_that/3 directly. It also helps you design an actual API for developers that do not want to rely on macros.
With this guide, we finish our introduction to macros. The next guide is a brief discussion on DSLs that shows how we can mix macros and module attributes to annotate and extend modules and functions.

 Domain-Specific Languages (DSLs)

Domain-specific Languages (DSLs) are languages tailored to a specific application domain. You don't need macros in order to have a DSL: every data structure and every function you define in your module is part of your domain-specific language.
For example, imagine we want to implement a Validator module which provides a data validation domain-specific language. We could implement it using data structures, functions, or macros. Let's see what those different DSLs would look like:
1. Data structures
import Validator
validate user, name: [length: 1..100], email: [matches: ~r/@/]

2. Functions
import Validator
user
|> validate_length(:name, 1..100)
|> validate_matches(:email, ~r/@/)

3. Macros + modules
defmodule MyValidator do
 use Validator
 validate_length :name, 1..100
 validate_matches :email, ~r/@/
end

MyValidator.validate(user)
Of all the approaches above, the first is definitely the most flexible. If our domain rules can be encoded with data structures, they are by far the easiest to compose and implement, as Elixir's standard library is filled with functions for manipulating different data types.
The second approach uses function calls which better suits more complex APIs (for example, if you need to pass many options) and reads nicely in Elixir thanks to the pipe operator.
The third approach uses macros, and is by far the most complex. It will take more lines of code to implement, it is hard and expensive to test (compared to testing simple functions), and it limits how the user may use the library since all validations need to be defined inside a module.
To drive the point home, imagine you want to validate a certain attribute only if a given condition is met. We could easily achieve it with the first solution, by manipulating the data structure accordingly, or with the second solution by using conditionals (if/else) before invoking the function. However, it is impossible to do so with the macros approach unless its DSL is augmented.
In other words:
data > functions > macros
That said, there are still cases where using macros and modules to build domain-specific languages is useful. Since we have explored data structures and function definitions in the Getting Started guide, this chapter will explore how to use macros and module attributes to tackle more complex DSLs.
Building our own test case
The goal in this chapter is to build a module named TestCase that allows us to write the following:
defmodule MyTest do
 use TestCase

 test "arithmetic operations" do
 4 = 2 + 2
 end

 test "list operations" do
 [1, 2, 3] = [1, 2] ++ [3]
 end
end

MyTest.run()
In the example above, by using TestCase, we can write tests using the test macro, which defines a function named run to automatically run all tests for us. Our prototype will rely on the match operator (=) as a mechanism to do assertions.
The test macro
Let's start by creating a module that defines and imports the test macro when used:
defmodule TestCase do
 # Callback invoked by `use`.
 #
 # For now it returns a quoted expression that
 # imports the module itself into the user code.
 @doc false
 defmacro __using__(_opts) do
 quote do
 import TestCase
 end
 end

 @doc """
 Defines a test case with the given description.

 ## Examples

 test "arithmetic operations" do
 4 = 2 + 2
 end

 """
 defmacro test(description, do: block) do
 function_name = String.to_atom("test " <> description)
 quote do
 def unquote(function_name)(), do: unquote(block)
 end
 end
end
Assuming we defined TestCase in a file named tests.exs, we can open it up by running iex tests.exs and define our first tests:
iex> defmodule MyTest do
...> use TestCase
...>
...> test "hello" do
...> "hello" = "world"
...> end
...> end
For now, we don't have a mechanism to run tests, but we know that a function named test hello was defined behind the scenes. When we invoke it, it should fail:
iex> MyTest."test hello"()
** (MatchError) no match of right hand side value: "world"
Storing information with attributes
In order to finish our TestCase implementation, we need to be able to access all defined test cases. One way of doing this is by retrieving the tests at runtime via __MODULE__.__info__(:functions), which returns a list of all functions in a given module. However, considering that we may want to store more information about each test besides the test name, a more flexible approach is required.
When discussing module attributes in earlier chapters, we mentioned how they can be used as temporary storage. That's exactly the property we will apply in this section.
In the __using__/1 implementation, we will initialize a module attribute named @tests to an empty list, then store the name of each defined test in this attribute so the tests can be invoked from the run function.
Here is the updated code for the TestCase module:
defmodule TestCase do
 @doc false
 defmacro __using__(_opts) do
 quote do
 import TestCase

 # Initialize @tests to an empty list
 @tests []

 # Invoke TestCase.__before_compile__/1 before the module is compiled
 @before_compile TestCase
 end
 end

 @doc """
 Defines a test case with the given description.

 ## Examples

 test "arithmetic operations" do
 4 = 2 + 2
 end

 """
 defmacro test(description, do: block) do
 function_name = String.to_atom("test " <> description)
 quote do
 # Prepend the newly defined test to the list of tests
 @tests [unquote(function_name) | @tests]
 def unquote(function_name)(), do: unquote(block)
 end
 end

 # This will be invoked right before the target module is compiled
 # giving us the perfect opportunity to inject the `run/0` function
 @doc false
 defmacro __before_compile__(_env) do
 quote do
 def run do
 Enum.each(@tests, fn name ->
 IO.puts("Running #{name}")
 apply(__MODULE__, name, [])
 end)
 end
 end
 end
end
By starting a new IEx session, we can now define our tests and run them:
iex> defmodule MyTest do
...> use TestCase
...>
...> test "hello" do
...> "hello" = "world"
...> end
...> end
iex> MyTest.run()
Running test hello
** (MatchError) no match of right hand side value: "world"
Although we have overlooked some details, this is the main idea behind creating domain-specific languages in Elixir via modules and macros. Macros enable us to return quoted expressions that are executed in the caller, which we can then use to transform code and store relevant information in the target module via module attributes. Finally, callbacks such as @before_compile allow us to inject code into the module when its definition is complete.
Besides @before_compile, there are other useful module attributes like @on_definition and @after_compile, which you can read more about in the docs for Module. You can also find useful information about macros and the compilation environment in the documentation for the Macro and Macro.Env.

 Compatibility and deprecations

Elixir is versioned according to a vMAJOR.MINOR.PATCH schema.
Elixir is currently at major version v1. A new backwards compatible minor release happens every 6 months. Patch releases are not scheduled and are made whenever there are bug fixes or security patches.
Elixir applies bug fixes only to the latest minor branch. Security patches are available for the last 5 minor branches:
	Elixir version	Support
	1.20	Development
	1.19	Bug fixes and security patches
	1.18	Security patches only
	1.17	Security patches only
	1.16	Security patches only
	1.15	Security patches only

New releases are announced in the read-only announcements mailing list. All security releases will be tagged with [security].
There are currently no plans for a major v2 release.
Between non-major Elixir versions
Elixir minor and patch releases are backwards compatible: well-defined behaviors and documented APIs in a given version will continue working on future versions.
Although we expect the vast majority of programs to remain compatible over time, it is impossible to guarantee that no future change will break any program. Under some unlikely circumstances, we may introduce changes that break existing code:
	Security: a security issue in the implementation may arise whose resolution requires backwards incompatible changes. We reserve the right to address such security issues.

	Bugs: if an API has undesired behavior, a program that depends on the buggy behavior may break if the bug is fixed. We reserve the right to fix such bugs.

	Compiler front-end: improvements may be done to the compiler, introducing new warnings for ambiguous modes and providing more detailed error messages. Those can lead to compilation errors (when running with --warnings-as-errors) or tooling failures when asserting on specific error messages (although one should avoid such). We reserve the right to do such improvements.

	Imports: new functions may be added to the Kernel module, which is auto-imported. They may collide with local functions defined in your modules. Collisions can be resolved in a backwards compatible fashion using import Kernel, except: [...] with a list of all functions you don't want to be imported from Kernel. We reserve the right to do such additions.

In order to continue evolving the language without introducing breaking changes, Elixir will rely on deprecations to demote certain practices and promote new ones. Our deprecation policy is outlined in the "Deprecations" section.
The only exception to the compatibility guarantees above are experimental features, which will be explicitly marked as such, and do not provide any compatibility guarantee until they are stabilized.
Between Elixir and Erlang/OTP
Erlang/OTP versioning is independent from the versioning of Elixir. Erlang releases a new major version yearly. Our goal is to support the last three Erlang major versions by the time Elixir is released. The compatibility table is shown below.
	Elixir version	Supported Erlang/OTP versions
	1.20	26 - 28
	1.19	26 - 28
	1.18	25 - 27
	1.17	25 - 27
	1.16	24 - 26
	1.15	24 - 26
	1.14	23 - 25 (and Erlang/OTP 26 from v1.14.5)
	1.13	22 - 24 (and Erlang/OTP 25 from v1.13.4)
	1.12	22 - 24
	1.11	21 - 23 (and Erlang/OTP 24 from v1.11.4)
	1.10	21 - 22 (and Erlang/OTP 23 from v1.10.3)
	1.9	20 - 22
	1.8	20 - 22
	1.7	19 - 22
	1.6	19 - 20 (and Erlang/OTP 21 from v1.6.6)
	1.5	18 - 20
	1.4	18 - 19 (and Erlang/OTP 20 from v1.4.5)
	1.3	18 - 19
	1.2	18 - 18 (and Erlang/OTP 19 from v1.2.6)
	1.1	17 - 18
	1.0	17 - 17 (and Erlang/OTP 18 from v1.0.5)

Elixir may add compatibility to new Erlang/OTP versions on patch releases, such as support for Erlang/OTP 20 in v1.4.5. Those releases are made for convenience and typically contain the minimum changes for Elixir to run without errors, if any changes are necessary. Only the next minor release, in this case v1.5.0, effectively leverages the new features provided by the latest Erlang/OTP release.
Deprecations
Policy
Elixir deprecations happen in 3 steps:
	The feature is soft-deprecated. It means both CHANGELOG and documentation must list the feature as deprecated but no warning is effectively emitted by running the code. There is no requirement to soft-deprecate a feature.

	The feature is effectively deprecated by emitting warnings on usage. This is also known as hard-deprecation. In order to deprecate a feature, the proposed alternative MUST exist for AT LEAST THREE minor versions. For example, Enum.uniq/2 was soft-deprecated in favor of Enum.uniq_by/2 in Elixir v1.1. This means a deprecation warning may only be emitted by Elixir v1.4 or later.

	The feature is removed. This can only happen on major releases. This means deprecated features in Elixir v1.x shall only be removed by Elixir v2.x.

Table of deprecations
The first column is the version the feature was hard deprecated. The second column shortly describes the deprecated feature and the third column explains the replacement and from which the version the replacement is available from.
	Version	Deprecated feature	Replaced by (available since)
	v1.20	<<x::size(y)>> in patterns without ^	<<x::size(^y)>> (v1.15)
	v1.20	File.stream!(path, modes, lines_or_bytes)	File.stream!(path, lines_or_bytes, modes) (v1.16)
	v1.20	Kernel.ParallelCompiler.async/1	Kernel.ParallelCompiler.pmap/2 (v1.16)
	v1.20	Logger.*_backend functions	The LoggerBackends module from :logger_backends package
	v1.20	Logger.enable/1 and Logger.disable/1	Logger.put_process_level/2 and Logger.delete_process_level/1 respectively (v1.15)
	v1.19	CLI configuration in def project inside mix.exs	Moving it to def cli (v1.14)
	v1.19	Using , to separate tasks in mix do	Using + (v1.14)
	v1.19	Logger's :backends configuration	Logger's :default_handler configuration (v1.15)
	v1.19	Passing a callback to File.cp/3, File.cp!/3, File.cp_r/3, and File.cp_r!/3	The :on_conflict option (v1.14)
	v1.18	<%# in EEx	<%!-- (v1.14) or <% # (v1.0)
	v1.18	EEx.Engine.handle_text/2 callback in EEx	EEx.Engine.handle_text/3 (v1.14)
	v1.18	Returning a 2-arity function from Enumerable.slice/1	Returning a 3-arity function (v1.14)
	v1.18	Ranges with negative steps in Range.new/2	Explicit steps in ranges (v1.11)
	v1.18	Tuple.append/2	Tuple.insert_at/3 (v1.0)
	v1.18	mix cmd --app APP	mix do --app APP (v1.14)
	v1.18	List.zip/1	Enum.zip/1 (v1.0)
	v1.18	Module.eval_quoted/3	Code.eval_quoted/3 (v1.0)
	v1.17	Single-quoted charlists ('foo')	~c"foo" (v1.0)
	v1.17	left..right in patterns and guards	left..right//step (v1.11)
	v1.17	ExUnit.Case.register_test/4	register_test/6 (v1.10)
	v1.17	:all in IO.read/2 and IO.binread/2	:eof (v1.13)
	v1.16	~R/.../	~r/.../ (v1.0)
	v1.16	Ranges with negative steps in Enum.slice/2	Explicit steps in ranges (v1.11)
	v1.16	Ranges with negative steps in String.slice/2	Explicit steps in ranges (v1.11)
	v1.15	Calendar.ISO.day_of_week/3	Calendar.ISO.day_of_week/4 (v1.11)
	v1.15	Exception.exception?/1	Kernel.is_exception/1 (v1.11)
	v1.15	Regex.regex?/1	Kernel.is_struct/2 (Kernel.is_struct(term, Regex)) (v1.11)
	v1.15	Logger.warn/2	Logger.warning/2 (v1.11)
	v1.14	use Bitwise	import Bitwise (v1.0)
	v1.14	~~~/1	bnot/2 (v1.0)
	v1.14	Application.get_env/3 and similar in module body	Application.compile_env/3 (v1.10)
	v1.14	Compiled patterns in String.starts_with?/2	Pass a list of strings instead (v1.0)
	v1.14	Mix.Tasks.Xref.calls/1	Compilation tracers (outlined in Code) (v1.10)
	v1.14	$levelpad in Logger	None
	v1.14	<|> as a custom operator	Another custom operator (v1.0)
	v1.13	! and != in Version requirements	~> or >= (v1.0)
	v1.13	Mix.Config	Config (v1.9)
	v1.13	:strip_beam config to mix escript.build	:strip_beams (v1.9)
	v1.13	Macro.to_string/2	Macro.to_string/1 (v1.0)
	v1.13	System.get_pid/0	System.pid/0 (v1.9)
	v1.12	^^^/2	bxor/2 (v1.0)
	v1.12	@foo() to read module attributes	Remove the parenthesis (v1.0)
	v1.12	use EEx.Engine	Explicitly delegate to EEx.Engine instead (v1.0)
	v1.12	:xref compiler in Mix	Nothing (it always runs as part of the compiler now)
	v1.11	Mix.Project.compile/2	Mix.Task.run("compile", args) (v1.0)
	v1.11	Supervisor.Spec.worker/3 and Supervisor.Spec.supervisor/3	The new child specs outlined in Supervisor (v1.5)
	v1.11	Supervisor.start_child/2 and Supervisor.terminate_child/2	DynamicSupervisor (v1.6)
	v1.11	System.stacktrace/1	__STACKTRACE__ in try/catch/rescue (v1.7)
	v1.10	Code.ensure_compiled?/1	Code.ensure_compiled/1 (v1.0)
	v1.10	Code.load_file/2	Code.require_file/2 (v1.0) or Code.compile_file/2 (v1.7)
	v1.10	Code.loaded_files/0	Code.required_files/0 (v1.7)
	v1.10	Code.unload_file/1	Code.unrequire_files/1 (v1.7)
	v1.10	Passing non-chardata to Logger.log/2	Explicitly convert to string with to_string/1 (v1.0)
	v1.10	:compile_time_purge_level in Logger app environment	:compile_time_purge_matching in Logger app environment (v1.7)
	v1.10	Supervisor.Spec.supervise/2	The new child specs outlined in Supervisor (v1.5)
	v1.10	:simple_one_for_one strategy in Supervisor	DynamicSupervisor (v1.6)
	v1.10	:restart and :shutdown in Task.Supervisor.start_link/1	:restart and :shutdown in Task.Supervisor.start_child/3 (v1.6)
	v1.9	Enumerable keys in Map.drop/2, Map.split/2, and Map.take/2	Call Enum.to_list/1 on the second argument before hand (v1.0)
	v1.9	Mix.Project.load_paths/1	Mix.Project.compile_path/1 (v1.0)
	v1.9	Passing :insert_replaced to String.replace/4	Use :binary.replace/4 (v1.0)
	v1.8	Passing a non-empty list to Collectable.into/1	++/2 or Keyword.merge/2 (v1.0)
	v1.8	Passing a non-empty list to :into in for/1	++/2 or Keyword.merge/2 (v1.0)
	v1.8	Passing a non-empty list to Enum.into/2	++/2 or Keyword.merge/2 (v1.0)
	v1.8	Time units in its plural form, such as: :seconds, :milliseconds, and the like	Use the singular form, such as: :second, :millisecond, and so on (v1.4)
	v1.8	Inspect.Algebra.surround/3	Inspect.Algebra.concat/2 and Inspect.Algebra.nest/2 (v1.0)
	v1.8	Inspect.Algebra.surround_many/6	Inspect.Algebra.container_doc/6 (v1.6)
	v1.9	--detached in Kernel.CLI	--erl "-detached" (v1.0)
	v1.8	Kernel.ParallelCompiler.files/2	Kernel.ParallelCompiler.compile/2 (v1.6)
	v1.8	Kernel.ParallelCompiler.files_to_path/2	Kernel.ParallelCompiler.compile_to_path/2 (v1.6)
	v1.8	Kernel.ParallelRequire.files/2	Kernel.ParallelCompiler.require/2 (v1.6)
	v1.8	Returning {:ok, contents} or :error from Mix.Compilers.Erlang.compile/6's callback	Return {:ok, contents, warnings} or {:error, errors, warnings} (v1.6)
	v1.8	System.cwd/0 and System.cwd!/0	File.cwd/0 and File.cwd!/0 respectively (v1.0)
	v1.7	Code.get_docs/2	Code.fetch_docs/1 (v1.7)
	v1.7	Enum.chunk/2,3,4	Enum.chunk_every/2 and Enum.chunk_every/3,4 (v1.5)
	v1.7	Calling super/1 inGenServer callbacks	Implementing the behaviour explicitly without calling super/1 (v1.0)
	v1.7	not left in right	left not in right (v1.5)
	v1.7	Registry.start_link/3	Registry.start_link/1 (v1.5)
	v1.7	Stream.chunk/2,3,4	Stream.chunk_every/2 and Stream.chunk_every/3,4 (v1.5)
	v1.6	Enum.partition/2	Enum.split_with/2 (v1.4)
	v1.6	Macro.unescape_tokens/1,2	Use Enum.map/2 to traverse over the arguments (v1.0)
	v1.6	Module.add_doc/6	@doc module attribute (v1.0)
	v1.6	Range.range?/1	Pattern match on _.._ (v1.0)
	v1.5	() to mean nil	nil (v1.0)
	v1.5	char_list/0 type	charlist/0 type (v1.3)
	v1.5	Atom.to_char_list/1	Atom.to_charlist/1 (v1.3)
	v1.5	Enum.filter_map/3	Enum.filter/2 + Enum.map/2 or for/1 comprehensions (v1.0)
	v1.5	Float.to_char_list/1	Float.to_charlist/1 (v1.3)
	v1.5	GenEvent module	Supervisor and GenServer (v1.0)
	v1.5	<%= in middle and end expressions in EEx	Use <% (<%= is allowed only in start expressions) (v1.0)
	v1.5	:as_char_lists value in Inspect.Opts.t/0 type	:as_charlists value (v1.3)
	v1.5	:char_lists key in Inspect.Opts.t/0 type	:charlists key (v1.3)
	v1.5	Integer.to_char_list/1,2	Integer.to_charlist/1 and Integer.to_charlist/2 (v1.3)
	v1.5	to_char_list/1	to_charlist/1 (v1.3)
	v1.5	List.Chars.to_char_list/1	List.Chars.to_charlist/1 (v1.3)
	v1.5	@compile {:parse_transform, _} in Module	None
	v1.5	Stream.filter_map/3	Stream.filter/2 + Stream.map/2 (v1.0)
	v1.5	String.ljust/3 and String.rjust/3	Use String.pad_leading/3 and String.pad_trailing/3 with a binary padding (v1.3)
	v1.5	String.lstrip/1 and String.rstrip/1	String.trim_leading/1 and String.trim_trailing/1 (v1.3)
	v1.5	String.lstrip/2 and String.rstrip/2	Use String.trim_leading/2 and String.trim_trailing/2 with a binary as second argument (v1.3)
	v1.5	String.strip/1 and String.strip/2	String.trim/1 and String.trim/2 (v1.3)
	v1.5	String.to_char_list/1	String.to_charlist/1 (v1.3)
	v1.4	Anonymous functions with no expression after ->	Use an expression or explicitly return nil (v1.0)
	v1.4	Support for making private functions overridable	Use public functions (v1.0)
	v1.4	Variable used as function call	Use parentheses (v1.0)
	v1.4	Access.key/1	Access.key/2 (v1.3)
	v1.4	Behaviour module	@callback module attribute (v1.0)
	v1.4	Enum.uniq/2	Enum.uniq_by/2 (v1.2)
	v1.4	Float.to_char_list/2	:erlang.float_to_list/2 (Erlang/OTP 17)
	v1.4	Float.to_string/2	:erlang.float_to_binary/2 (Erlang/OTP 17)
	v1.4	HashDict module	Map (v1.2)
	v1.4	HashSet module	MapSet (v1.1)
	v1.4	IEx.Helpers.import_file/2	IEx.Helpers.import_file_if_available/1 (v1.3)
	v1.4	Mix.Utils.camelize/1	Macro.camelize/1 (v1.2)
	v1.4	Mix.Utils.underscore/1	Macro.underscore/1 (v1.2)
	v1.4	Multi-letter aliases in OptionParser	Use single-letter aliases (v1.0)
	v1.4	Set module	MapSet (v1.1)
	v1.4	Stream.uniq/2	Stream.uniq_by/2 (v1.2)
	v1.3	\x{X*} inside strings/sigils/charlists	\uXXXX or \u{X*} (v1.1)
	v1.3	Dict module	Keyword (v1.0) or Map (v1.2)
	v1.3	:append_first option in defdelegate/2	Define the function explicitly (v1.0)
	v1.3	Map/dictionary as 2nd argument in Enum.group_by/3	Enum.reduce/3 (v1.0)
	v1.3	Keyword.size/1	length/1 (v1.0)
	v1.3	Map.size/1	map_size/1 (v1.0)
	v1.3	/r option in Regex	/U (v1.1)
	v1.3	Set behaviour	MapSet data structure (v1.1)
	v1.3	String.valid_character?/1	String.valid?/1 (v1.0)
	v1.3	Task.find/2	Use direct message matching (v1.0)
	v1.3	Non-map as 2nd argument in URI.decode_query/2	Use a map (v1.0)
	v1.2	Dict behaviour	Map and Keyword (v1.0)
	v1.1	?\xHEX	0xHEX (v1.0)
	v1.1	Access protocol	Access behaviour (v1.1)
	v1.1	as: true | false in alias/2 and require/2	None

 Gradual set-theoretic types

Elixir is in the process of incorporating set-theoretic types into the compiler. This document outlines the current stage of our implementation for this Elixir version. Elixir's type system is:
	sound - the inferred and assigned by the type system align with the behaviour of the program

	gradual - Elixir's type system includes the dynamic() type, which can be used when the type of a variable or expression is checked at runtime. However, instead of simply discarding all typing information, Elixir's dynamic() type works as a range. For example, if you write dynamic(integer() or binary()), Elixir's type system will still emit violations if none of those types are accepted. Furthermore, in the absence of dynamic(), Elixir's type system behaves as a static one

	developer friendly - the types are described, implemented, and composed using basic set operations: unions, intersections, and negation (hence it is a set-theoretic type system)

The current milestone aims to infer types from existing programs and use them for type checking, enabling the Elixir compiler to find faults and bugs in codebases without requiring changes to existing software. User provided type signatures are planned for future releases. The underlying principles, theory, and roadmap of our work have been outlined in "The Design Principles of the Elixir Type System" by Giuseppe Castagna, Guillaume Duboc, José Valim.
A gentle introduction
Types in Elixir are written using the type named followed by parentheses, such as integer() or list(integer()).
The basic types are:
atom()
binary()
bitstring()
empty_list()
integer()
float()
function()
map()
non_empty_list(elem_type, tail_type)
pid()
port()
reference()
tuple()
Many of the types above can also be written more precisely. We will discuss their syntax in the next sections, but here are two examples:
	While atom() represents all atoms, the atom :ok can also be represented in the type system as :ok

	While tuple() represents all tuples, you can specify the type of a two-element tuple where the first element is the atom :ok and the second is an integer as {:ok, integer()}

There are also three special types: none() (represents an empty set), term() (represents all types), dynamic() (represents a range of the given types).
Given the types are set-theoretic, we can compose them using unions (or), intersections (and), and negations (not). For example, to say a function returns either atoms or integers, one could write: atom() or integer().
Intersections will find the elements in common between the operands. For example, atom() and integer(), which in this case is the empty set none(). You can combine intersections and negations to perform difference, for example, to say that a function expects all atoms, except nil (which is an atom), you could write: atom() and not nil.
You can find a complete reference in the set-theoretic types cheatsheet.
The syntax of data types
In this section we will cover the syntax of all data types. At the moment, developers will interact with those types mostly through compiler warnings and diagnostics.
Broad types
These types are broad in that they cannot represent individual elements, only the whole set. For example, the numbers 1 and 42 are both represented by the type integer().
They are: binary(), bitstring(), integer(), float(), pid(), port(), reference().
The binary() type is a subtype of the less frequently used bitstring() type, as binaries are bitstrings where the number of bits is divisible by 8.
Atoms
You can represent all atoms as atom(). You can also represent each individual atom using their literal syntax. For instance, the atom :foo and :hello_world are also valid (distinct) types.
nil, true, and false are also atoms and can be written as is. boolean() is a convenience type alias that represents true or false.
Tuples
You can represent all tuples as tuple(). Tuples may also be written using the curly brackets syntax, such as {:ok, binary()}.
You may use ... at the end of the tuple to imply the overall size of the tuple is unknown. For example, the following tuple has at least two elements: {:ok, binary(), ...}.
Lists
You can represent all proper lists as list(), which also includes the empty list.
You can also specify the type of the list element as argument. For example, list(integer()) represents the values [] and [1, 2, 3], but not [1, "two", 3].
Internally, Elixir represents the type list(a) as the union two distinct types, empty_list() and not_empty_list(a). In other words, list(integer()) is equivalent to empty_list() or non_empty_list(integer()).
Improper lists
While most developers will simply use list(a), the type system can express all different representations of lists in Elixirby passing a second argument to non_empty_list, which represents the type of the tail.
A proper list is one where the tail is the empty list itself. The type non_empty_list(integer()) is equivalent to non_empty_list(integer(), empty_list()).
If the tail_type is anything but a list, then we have an improper list. For example, the value [1, 2 | 3] would have the type non_empty_list(integer(), integer()).
If you pass a list type as the tail, then the list type is merged into the element type. For example, non_empty_list(integer(), list(binary())) is the same as non_empty_list(integer() or binary(), empty_list()).
Maps
You can represent all maps as map().
Maps may also be written using their literal syntax:
%{name: binary(), age: integer()}
which outlines a map with exactly two keys, :name and :age, and values of type binary() and integer() respectively. We say the map above is "closed": it only supports the keys explicitly defined. We can also mark a map as "open", by including ... as its first element:
%{..., name: binary(), age: integer()}
The type above says the keys :name and :age must exist, with their respective types, but other keys may be present. The map() type is the same as %{...}. For the empty map, you may write %{}, although we recommend using empty_map() for clarity.
Optional keys
A key may be marked as optional using the if_set/1 operation on its value type:
%{name: binary(), age: if_set(integer())}
is a map that certainly has the :name key but it may have the :age key (and if it has such key, its value type is integer()).
You can also use not_set() to denote a key cannot be present:
%{..., age: not_set()}
The type above says the map may have any key, except the :age one. This is, for instance, the type returned by Map.delete(map, :age).
Domain types
In the examples above, all map keys were atoms, but we can also use other types as map keys. For example:
Closed map
%{binary() or atom() => integer()}

Open map
%{..., binary() or atom() => integer()}
Currently, the type system only tracks the top of each individial type as the domain keys. For example, if you say:
%{list(integer()) => integer(), list(binary()) => binary()}
That's the same as specifying all lists:
%{list() => integer() or binary()}
The supported domain keys are atom(), bitstring(), binary(), integer(), float(), fun(), list(), map(), pid(), port(), reference(), and tuple(). In the case of maps, the bitstring() domain stores exclusively keys which are not binary. The ones which are binary() are stored under the binary() domain.
Furthermore, it is important to note that domain keys are, by definition, optional. Whenever you have a %{integer() => integer()}and you try to fetch a key, we must assume the key may not exist (after all, it is not possible to store all integers as map keys as they are infinite).
Mixed keys
It is also possible to mix domain and atom keys. For example, the following map says that all atom keys are of type binary(), except the :root key, which has type integer():
Closed map
%{atom() => binary(), root: integer()}

Open map
%{..., atom() => binary(), root: integer()}
The order of the keys is of increasing precision. :root is more precise than atom(), therefore it comes later. This mirrors the runtime semantics of maps, where duplicate keys override the value of earlier ones.
Functions
You can represent all functions as function(). However, in practice, most functions are represented as arrows. For example, a function that receives an integer and return boolean would be written as (integer() -> boolean()). A function that receives two integers and return a string (i.e. a binary) would be written as (integer(), integer() -> binary()).
When representing functions with multiple clauses, which may take different input types, we use intersections. For example, imagine the following function:
def negate(x) when is_integer(x), do: -x
def negate(x) when is_boolean(x), do: not x
If you give it an integer, it negates it. If you give it a boolean, it negates it.
We can say this function has the type (integer() -> integer()) because it is capable of receiving an integer and returning an integer. In this case, (integer() -> integer()) is a set that represents all functions that can receive an integer and return an integer. Even though this function can receive other arguments and return other values, it is still part of the (integer() -> integer()) set.
This function also has the type (boolean() -> boolean()), because it also receives booleans and returns booleans. If you pass the function above to another function that expects (boolean() -> boolean()), type checking will succeed. Therefore, we can say the overall type of the function is (integer() -> integer()) and (boolean() -> boolean()). The intersection means the function belongs to both sets.
At this point, you may ask, why not a union? As a real-world example, take a t-shirt with green and yellow stripes. We can say the t-shirt belongs to the set of "t-shirts with green color". We can also say the t-shirt belongs to the set of "t-shirts with yellow color". Let's see the difference between unions and intersections:
	(t_shirts_with_green() or t_shirts_with_yellow()) - contains t-shirts with either green or yellow, such as green, green and red, green and yellow, but also only yellow, yellow and red, etc.

	(t_shirts_with_green() and t_shirts_with_yellow()) - contains t-shirts with both green and yellow (and maybe other colors)

Since the t-shirt has both colors, we could say it belongs to the union of green and yellow t-shirts, but doing so would not capture the fact it is both green and yellow. Therefore it is more precise to say it belongs to the intersection of both sets. The same way that a function that goes from (integer() -> integer()) and (boolean() -> boolean()) is also an intersection. In practice, it is not useful to define the union of two functions in Elixir, so the compiler will point you to the right direction if you specify the wrong one.
The dynamic() type
Existing Elixir programs do not have type declarations, but we still want to be able to type check them. This is done with the introduction of the dynamic() type.
When Elixir sees the following function:
def negate(x) when is_integer(x), do: -x
def negate(x) when is_boolean(x), do: not x
Elixir type checks it as if the function had the type (dynamic() -> dynamic()). Then, based on patterns and guards, we can refine the value of the variable x to be dynamic() and integer() and dynamic() and boolean() for each clause respectively. We say dynamic() is a gradual type, which leads us to gradual set-theoretic types.
The simplest way to reason about dynamic() in Elixir is that it is a range of types. If you have a type atom() or integer(), the underlying code needs to work with both atom() or integer(). For example, if you call Integer.to_string(var), and var has type atom() or integer(), the type system will emit a warning, because Integer.to_string/1 does not accept atoms.
However, by intersecting a type with dynamic(), we make the type gradual and therefore only a subset of the type needs to be valid. For instance, if you call Integer.to_string(var), and var has type dynamic() and (atom() or integer()), the type system will not emit a warning, because Integer.to_string/1 works with at least one of the types. For convenience, most programs will write dynamic(atom() or integer()) instead of the intersection. They are equivalent.
Compared to other gradually typed languages, the dynamic() type in Elixir is quite powerful: it restricts our program to certain types, via intersections, while still emitting warnings once it is certain the code will fail. This makes dynamic() an excellent tool for typing existing Elixir code with meaningful warnings.
If the user provides their own types, and those types are not dynamic(), then Elixir's type system behaves as a statically typed one. This brings us to one last property of dynamic types in Elixir: dynamic types are always at the root. For example, when you write a tuple of type {:ok, dynamic()}, Elixir will rewrite it to dynamic({:ok, term()}). While this has the downside that you cannot make part of a tuple/map/list gradual, only the whole tuple/map/list, it comes with the upside that dynamic is always explicitly at the root, making it harder to accidentally sneak dynamic() in a statically typed program.
Type inference
Type inference (or reconstruction) is the ability of a type system to automatically deduce, either partially or fully, the type of an expression at compile time. Type inference may occur at different levels. For example, many programming languages can automatically infer the types of variables, also known "local type inference", but not all can infer type signatures of functions.
Inferring type signatures comes with a series of trade-offs:
	Speed - type inference algorithms are often more computationally intensive than type checking algorithms.

	Expressiveness - in any given type system, the constructs that support inference are always a subset of those that can be type-checked. Therefore, if a programming language is restricted to fully reconstructed types, it is less expressive than a solely type checked counterpart.

	Incremental compilation - type inference complicates incremental compilation. If module A depends on module B, which depends on module C, a change to C may require the type signature in B to be reconstructed, which may then require A to be recomputed (and so on). This dependency chain may require large projects to explicitly add type signatures for stability and compilation efficiency.

	Cascading errors - when a user accidentally makes type errors or the code has conflicting assumptions, type inference may lead to less clear error messages as the type system tries to reconcile diverging type assumptions across code paths.

On the other hand, type inference offers the benefit of enabling type checking for functions and codebases without requiring the user to add type annotations. To balance these trade-offs, Elixir aims to provide "module type inference": our goal is to infer the types of functions considering the current module, Elixir's standard library and your dependencies, while calls to modules within the same project are assumed to be dynamic(). Once types are inferred, then the whole project is type checked considering all modules and all types (inferred or otherwise).
Type inference in Elixir is best-effort: it doesn't guarantee it will find all possible type incompatibilities, only that it may find bugs where all combinations of a type will fail, even in the absence of explicit type annotations. It is meant to be an efficient routine that brings developers some benefits of static typing without requiring any effort from them.
In the long term, Elixir developers who want typing guarantees must explicitly add type signatures to their functions (see "Roadmap"). Any function with an explicit type signature will be typed checked against the user-provided annotations, as in other statically typed languages, without performing type inference. In summary, type checking will rely on type signatures and only fallback to inferred types when no signature is available.
Roadmap
The current milestone is to implement type inference of existing codebases, as well as type checking of all language constructs, without changes to the Elixir language. At this stage, we want to collect feedback on the quality of error messages and performance, and therefore the type system has no user facing API. Full type inference of patterns was released in Elixir v1.18, and complete inference is expected as part of Elixir v1.20.
If the results are satisfactory, the next milestone will include a mechanism for defining typed structs. Elixir programs frequently pattern match on structs, which reveals information about the struct fields, but it knows nothing about their respective types. By propagating types from structs and their fields throughout the program, we will increase the type system’s ability to find errors while further straining our type system implementation. Proposals including the required changes to the language surface will be sent to the community once we reach this stage.
The third milestone is to introduce set-theoretic type signatures for functions. Unfortunately, the existing Erlang Typespecs are not precise enough for set-theoretic types and they will be phased out of the language and have their postprocessing moved into a separate library once this stage concludes.
Acknowledgements
The type system was made possible thanks to a partnership between CNRS and Remote. The development work is currently sponsored by Fresha, and Tidewave.

 Library guidelines

This document outlines general guidelines for those writing and publishing
Elixir libraries meant to be consumed by other developers.
Getting started
You can create a new Elixir library by running the mix new command:
$ mix new my_library

The project name is given in the snake_case convention where all letters are lowercase and words are separate with underscores. This is the same convention used by variables, function names and atoms in Elixir. See the Naming Conventions document for more information.
Every project has a mix.exs file, with instructions on how to build, compile, run tests, and so on. Libraries commonly have a lib directory, which includes Elixir source code, and a test directory. A src directory may also exist for Erlang sources.
The mix new command also allows the --sup option to scaffold a new project with a supervision tree out of the box. For more information on running your project, see the official Mix & OTP guide or Mix documentation.
Publishing
Writing code is only the first of many steps to publish a package. We strongly recommend developers to:
	Choose a versioning schema. Elixir requires versions to be in the format MAJOR.MINOR.PATCH but the meaning of those numbers is up to you. Most projects choose Semantic Versioning.

	Choose a license. The most common licenses in the Elixir community are the MIT License and the Apache License 2.0. The latter is also the one used by Elixir itself.

	Run the code formatter. The code formatter formats your code according to a consistent style shared by your library and the whole community, making it easier for other developers to understand your code and contribute.

	Write tests. Elixir ships with a test-framework named ExUnit. The project generated by mix new includes sample tests and doctests.

	Write documentation. The Elixir community is proud of treating documentation as a first-class citizen and making documentation easily accessible. Libraries contribute to the status quo by providing complete API documentation with examples for their modules, types and functions. See the Writing documentation chapter of the Getting Started guide for more information. Projects like ExDoc can be used to generate HTML and EPUB documents from the documentation. ExDoc also supports "extra pages", like this one that you are reading. Such pages augment the documentation with tutorials, guides, references, and even cheat-sheets.

	Follow best practices. The Elixir project documents a series of anti-patterns that you may want to avoid in your code. The process-related anti-patterns and meta-programming anti-patterns are of special attention to library authors.

Projects are often made available to other developers by publishing a Hex package. Hex also supports private packages for organizations. If ExDoc is configured for the Mix project, publishing a package on Hex will also automatically publish the generated documentation to HexDocs.
Dependency handling
When your library is used as a dependency, it runs by default in the :prod environment. Therefore, if your library has dependencies that are only useful in development or testing, you want to specify those dependencies with the :only option. You can also specify :optional dependencies in your library, which are not enforced upon users of your library. In such cases, you should also consider compiling your projects with the mix compile --no-optional-deps --warnings-as-errors in your test environments, to ensure your library compiles without warnings even if optional dependencies are missing. See mix deps for all available options.
Keep in mind your library's lockfile (usually named mix.lock) is ignored by the host project. Running mix deps.get in the host project attempts to get the latest possible versions of your library’s dependencies, as specified by the requirements in the deps section of your mix.exs. These versions might be greater than those stored in your mix.lock (and hence used in your tests / CI).
On the other hand, contributors of your library, need a deterministic build, which implies the presence of mix.lock in your Version Control System (VCS), such as git.
If you want to validate both scenarios, you should check the mix.lock into version control and run two different Continuous Integration (CI) workflows: one that relies on the mix.lock for deterministic builds, and another one, that starts with mix deps.unlock --all and always compiles your library and runs tests against latest versions of dependencies. The latter one might be even run nightly or otherwise recurrently to stay notified about any possible issue in regard to dependencies updates.
Dependency Version Requirements
When depending on other libraries, the dependency version requirements are ultimately up to you. However, you should consider the effects that an overly strict dependency requirement can have on users of your library. Most dependencies adopt Semantic Versioning, and therefore provide reasonable guarantees about what each release contains. For instance, if you use {:some_dep, “== 0.2.3”}, this prevents users from using any other version but the one that you specified, which means that they cannot receive bug fix upgrades to that package. When in doubt, use a dependency in the format of "~> x.y". This prevents the user from using a higher major version of the library, but allows them to upgrade to newer minor and patch versions, which should only include bug fixes and non-breaking improvements.
The exception to this is pre 1.0 libraries using Semantic Versioning, which provide no guarantees about what might change from one version to the next. In this scenario, depending on the full patch version, i.e "~> 0.1.2" is a better default.
A common mistake is to use a dependency in the format of "~> x.y.z" to express "a version greater than x.y.z". For example, if you are depending on "~> 1.2", and the dependency publishes a fix in version 1.2.1 that you need for the next version of your library. If you use "~> 1.2.1" to express that dependency, you are preventing users from upgrading to "1.3.0" or higher! Instead of "~> 1.2.1", you should use "~> 1.2 and >= 1.2.1" as the version requirement. This allows users to use any version less than 2.0, and greater than 1.2.1.

 Naming conventions

This document is a reference of the naming conventions in Elixir, from casing to punctuation characters.
The naming convention is, by definition, a subset of the Elixir syntax. A convention aims to
follow and set best practices for language and the community. If instead you want a complete reference into the Elixir syntax, beyond its conventions, see the Syntax reference.
Casing
Elixir developers must use snake_case when defining variables, function names, module attributes, and the like:
some_map = %{this_is_a_key: "and a value"}
is_map(some_map)
Aliases, commonly used as module names, are an exception as they must be capitalized and written in CamelCase, like OptionParser. For aliases, capital letters are kept in acronyms, like ExUnit.CaptureIO or Mix.SCM.
Atoms can be written either in :snake_case or :CamelCase, although the convention is to use the snake case version throughout Elixir.
Generally speaking, filenames follow the snake_case convention of the module they define. For example, MyApp should be defined inside the my_app.ex file. However, this is only a convention. At the end of the day any filename can be used as they do not affect the compiled code in any way.
Underscore (_foo)
Elixir relies on underscores in different situations.
For example, a value that is not meant to be used must be assigned to _ or to a variable starting with underscore:
iex> {:ok, _contents} = File.read("README.md")
Function names may also start with an underscore. Such functions are never imported by default:
iex> defmodule Example do
...> def _wont_be_imported do
...> :oops
...> end
...> end

iex> import Example
iex> _wont_be_imported()
** (CompileError) iex:1: undefined function _wont_be_imported/0
Due to this property, Elixir relies on functions starting with underscore to attach compile-time metadata to modules. Such functions are most often in the __foo__ format. For example, every module in Elixir has an __info__/1 function:
iex> String.__info__(:functions)
[at: 2, capitalize: 1, chunk: 2, ...]
Elixir also includes five special forms that follow the double underscore format: __CALLER__/0, __DIR__/0, __ENV__/0and __MODULE__/0 retrieve compile-time information about the current environment, while __STACKTRACE__/0 retrieves the stacktrace for the current exception.
Trailing bang (foo!)
A trailing bang (exclamation mark) signifies a function or macro where failure cases raise an exception. They most often exist as a "raising variant" of a function that returns :ok/:error tuples (or nil).
One example is File.read/1 and File.read!/1. File.read/1 will return a success or failure tuple, whereas File.read!/1 will return a plain value or else raise an exception:
iex> File.read("file.txt")
{:ok, "file contents"}
iex> File.read("no_such_file.txt")
{:error, :enoent}

iex> File.read!("file.txt")
"file contents"
iex> File.read!("no_such_file.txt")
** (File.Error) could not read file no_such_file.txt: no such file or directory
The version without ! is preferred when you want to handle different outcomes using pattern matching:
case File.read(file) do
 {:ok, body} -> # do something with the `body`
 {:error, reason} -> # handle the error caused by `reason`
end
However, if you expect the outcome to always be successful (for instance, if you expect the file always to exist), the bang variation can be more convenient and will raise a more helpful error message (than a failed pattern match) on failure.
When thinking about failure cases, we are often thinking about semantic errors related to the operation being performed, such as failing to open a file or trying to fetch key from a map. Errors that come from invalid argument types, or similar, must always raise regardless if the function has a bang or not. In such cases, the exception is often an ArgumentError or a detailed FunctionClauseError:
iex(1)> File.read(123)
** (FunctionClauseError) no function clause matching in IO.chardata_to_string/1

 The following arguments were given to IO.chardata_to_string/1:

 # 1
 123

 Attempted function clauses (showing 2 out of 2):

 def chardata_to_string(string) when is_binary(string)
 def chardata_to_string(list) when is_list(list)
More examples of paired functions: Base.decode16/2 and Base.decode16!/2, File.cwd/0 and File.cwd!/0. In some situations, you may have bang functions without a non-bang counterpart. They also imply the possibility of errors, such as: Protocol.assert_protocol!/1 and PartitionSupervisor.resize!/2. This can be useful if you foresee the possibility of adding a non-raising variant in the future.
Trailing question mark (foo?)
Functions that return a boolean are named with a trailing question mark.
Examples: Keyword.keyword?/1, Mix.debug?/0, String.contains?/2
However, functions that return booleans and are valid in guards follow another convention, described next.
is_ prefix (is_foo)
Type checks and other boolean checks that are allowed in guard clauses are named with an is_ prefix.
Examples: Integer.is_even/1, is_list/1
These functions and macros follow the Erlang convention of an is_ prefix, instead of a trailing question mark, precisely to indicate that they are allowed in guard clauses. Type checks that are not valid in guard clauses do not follow this convention, such as Keyword.keyword?/1.
A trailing question mark should not be used in combination with the is_ prefix.
Special names
Some names have specific meaning in Elixir. We detail those cases below.
length and size
When you see size in a function name, it means the operation runs in constant time (also written as "O(1) time") because the size is stored alongside the data structure.
Examples: map_size/1, tuple_size/1
When you see length, the operation runs in linear time ("O(n) time") because the entire data structure has to be traversed.
Examples: length/1, String.length/1
In other words, functions using the word "size" in its name will take the same amount of time whether the data structure is tiny or huge. Conversely, functions having "length" in its name will take more time as the data structure grows in size.
get, fetch, fetch!
When you see the functions get, fetch, and fetch! for key-value data structures, you can expect the following behaviours:
	get returns a default value (which itself defaults to nil) if the key is not present, or returns the requested value.
	fetch returns :error if the key is not present, or returns {:ok, value} if it is.
	fetch! raises if the key is not present, or returns the requested value.

Examples: Map.get/2, Map.fetch/2, Map.fetch!/2, Keyword.get/2, Keyword.fetch/2, Keyword.fetch!/2
compare
The function compare/2 should return :lt if the first term is less than the second, :eq if the two
terms compare as equivalent, or :gt if the first term is greater than the second.
Examples: DateTime.compare/2
Note that this specific convention is important due to the expectations of Enum.sort/2

 Operators reference

This document is a complete reference of operators in Elixir, how they are parsed, how they can be defined, and how they can be overridden.
General operators
Elixir provides the following built-in operators:
	+ and - - unary positive/negative
	+, -, *, and / - basic arithmetic operations
	++ and -- - list concatenation and subtraction
	and and && - strict and relaxed boolean "and"
	or and || - strict and relaxed boolean "or"
	not and ! - strict and relaxed boolean "not"
	in and not in - membership
	@ - module attribute
	.., .., and ..// - range creation
	<> - binary concatenation
	|> - pipeline
	=~ - text-based match

Many of those can be used in guards. Consult the list of allowed guard functions and operators.
Additionally, there are a few other operators that Elixir parses but doesn't actually use.
See Custom and overridden operators below for a list and for guidelines about their use.
Some other operators are special forms and cannot be overridden:
	^ - pin operator
	. - dot operator
	= - match operator
	& - capture operator
	:: - type operator

Finally, these operators appear in the precedence table below but are only meaningful within certain constructs:
	=> - see %{}
	when - see Guards
	<- - see for and with
	\\ - see Default arguments

Comparison operators
Elixir provides the following built-in comparison operators (all of which can be used in guards):
	== - equal to
	=== - strictly equal to
	!= - not equal to
	!== - strictly not equal to
	< - less-than
	> - greater-than
	<= - less-than or equal to
	>= - greater-than or equal to

The only difference between == and === is that === is strict when it comes to comparing integers and floats:
iex> 1 == 1.0
true
iex> 1 === 1.0
false
!= and !== act as the negation of == and ===, respectively.
Operator precedence and associativity
The following is a list of all operators that Elixir is capable of parsing, ordered from higher to lower precedence, alongside their associativity:
	Operator	Associativity
	@	Unary
	.	Left
	+ - ! ^ not	Unary
	**	Left
	* /	Left
	+ -	Left
	++ -- +++ --- .. <>	Right
	// (valid only inside ..//)	Right
	in not in	Left
	|> <<< >>> <<~ ~>> <~ ~> <~>	Left
	< > <= >=	Left
	== != =~ === !==	Left
	&& &&& and	Left
	|| ||| or	Left
	=	Right
	&, ...	Unary
	|	Right
	::	Right
	when	Right
	<- \\	Left
	=> (valid only inside %{})	None

Elixir also has two ternary operators:
	Operator	Associativity
	first..last//step	Right
	%{map | key => value, ...}	None

Deprecated operator precedence
Elixir parses not left in right as not(left in right) and !left in right as !(left in right), which mismatches the precedence table above, but such behaviour is deprecated and emits a warning. Both constructs must be written as left not in right instead. In future major versions, the parser will match the table above.
Custom and overridden operators
Elixir is capable of parsing a predefined set of operators. It's not possible to define new operators (as supported by some languages). However, not all operators that Elixir can parse are used by Elixir: for example, + and || are used by Elixir for addition and boolean or, but <~> is not used (but valid).
To define an operator, you can use the usual def* constructs (def, defp, defmacro, and so on) but with a syntax similar to how the operator is used:
defmodule MyOperators do
 # We define ~> to return the maximum of the given two numbers,
 # and <~ to return the minimum.

 def a ~> b, do: max(a, b)
 def a <~ b, do: min(a, b)
end
To use the newly defined operators, you have to import the module that defines them:
iex> import MyOperators
iex> 1 ~> 2
2
iex> 1 <~ 2
1
The following is a table of all the operators that Elixir is capable of parsing, but that are not used by default:
	|||
	&&&
	<<<
	>>>
	<<~
	~>>
	<~
	~>
	<~>
	+++

	...

The following operators are used by the Bitwise module when imported: &&&, <<<, >>>, and |||. See the Bitwise documentation for more information.
Note that the Elixir community generally discourages custom operators. They can be hard to read and even more to understand, as they don't have a descriptive name like functions do. That said, some specific cases or custom domain specific languages (DSLs) may justify these practices.
It is also possible to replace predefined operators, such as +, but doing so is extremely discouraged.

 Patterns and guards

Elixir provides pattern matching, which allows us to assert on the shape or extract values from data structures. Patterns are often augmented with guards, which give developers the ability to perform more complex checks, albeit limited.
This document provides a complete reference on patterns and guards, their semantics, where they are allowed, and how to extend them.
Patterns
Patterns in Elixir are made of variables, literals, and data structure specific syntax. One of the most used constructs to perform pattern matching is the match operator (=):
iex> x = 1
1
iex> 1 = x
1
In the example above, x starts without a value and has 1 assigned to it. Then, we compare the value of x to the literal 1, which succeeds as they are both 1.
Matching x against 2 would raise:
iex> 2 = x
** (MatchError) no match of right hand side value: 1
Patterns are not bidirectional. If you have a variable y that was never assigned to (often called an unbound variable) and you write 1 = y, an error will be raised:
iex> 1 = y
** (CompileError) iex:2: undefined variable "y"
In other words, patterns are allowed only on the left side of =. The right side of = follows the regular evaluation semantics of the language.
Now let's cover the pattern matching rules for each construct and then for each relevant data types.
Variables
Variables in patterns are always assigned to:
iex> x = 1
1
iex> x = 2
2
iex> x
2
In other words, Elixir supports rebinding. In case you don't want the value of a variable to change, you can use the pin operator (^):
iex> x = 1
1
iex> ^x = 2
** (MatchError) no match of right hand side value: 2
If the same variable appears multiple times in the same pattern, then all of them must be bound to the same value:
iex> {x, x} = {1, 1}
{1, 1}
iex> {x, x} = {1, 2}
** (MatchError) no match of right hand side value: {1, 2}
The underscore variable (_) has a special meaning as it can never be bound to any value. It is especially useful when you don't care about certain value in a pattern:
iex> {_, integer} = {:not_important, 1}
{:not_important, 1}
iex> integer
1
iex> _
** (CompileError) iex:3: invalid use of _
A pinned value represents the value itself and not its – even if syntactically equal – pattern. The right hand side is compared to be equal to the pinned value:
iex> x = %{}
%{}
iex> {:ok, %{}} = {:ok, %{a: 13}}
{:ok, %{a: 13}}
iex> {:ok, ^x} = {:ok, %{a: 13}}
** (MatchError) no match of right hand side value: {:ok, %{a: 13}}
 (stdlib 6.2) erl_eval.erl:667: :erl_eval.expr/6
 iex:2: (file)
Literals (numbers and atoms)
Atoms and numbers (integers and floats) can appear in patterns and they are always represented as is. For example, an atom will only match an atom if they are the same atom:
iex> :atom = :atom
:atom
iex> :atom = :another_atom
** (MatchError) no match of right hand side value: :another_atom
Similar rule applies to numbers. Finally, note that numbers in patterns perform strict comparison. In other words, integers to do not match floats:
iex> 1 = 1.0
** (MatchError) no match of right hand side value: 1.0
Tuples
Tuples may appear in patterns using the curly brackets syntax ({}). A tuple in a pattern will match only tuples of the same size, where each individual tuple element must also match:
iex> {:ok, integer} = {:ok, 13}
{:ok, 13}

won't match due to different size
iex> {:ok, integer} = {:ok, 11, 13}
** (MatchError) no match of right hand side value: {:ok, 11, 13}

won't match due to mismatch on first element
iex> {:ok, binary} = {:error, :enoent}
** (MatchError) no match of right hand side value: {:error, :enoent}
Lists
Lists may appear in patterns using the square brackets syntax ([]). A list in a pattern will match only lists of the same size, where each individual list element must also match:
iex> [:ok, integer] = [:ok, 13]
[:ok, 13]

won't match due to different size
iex> [:ok, integer] = [:ok, 11, 13]
** (MatchError) no match of right hand side value: [:ok, 11, 13]

won't match due to mismatch on first element
iex> [:ok, binary] = [:error, :enoent]
** (MatchError) no match of right hand side value: [:error, :enoent]
Opposite to tuples, lists also allow matching on non-empty lists by using the [head | tail] notation, which matches on the head and tail of a list:
iex> [head | tail] = [1, 2, 3]
[1, 2, 3]
iex> head
1
iex> tail
[2, 3]
Multiple elements may prefix the | tail construct:
iex> [first, second | tail] = [1, 2, 3]
[1, 2, 3]
iex> tail
[3]
Note [head | tail] does not match empty lists:
iex> [head | tail] = []
** (MatchError) no match of right hand side value: []
Given charlists are represented as a list of integers, one can also perform prefix matches on charlists using the list concatenation operator (++):
iex> ~c"hello " ++ world = ~c"hello world"
~c"hello world"
iex> world
~c"world"
Which is equivalent to matching on [?h, ?e, ?l, ?l, ?o, ?\s | world]. Suffix matches (hello ++ ~c" world") are not valid patterns.
Maps
Maps may appear in patterns using the percentage sign followed by the curly brackets syntax (%{}). Opposite to lists and tuples, maps perform a subset match. This means a map pattern will match any other map that has at least all of the keys in the pattern.
Here is an example where all keys match:
iex> %{name: name} = %{name: "meg"}
%{name: "meg"}
iex> name
"meg"
Here is when a subset of the keys match:
iex> %{name: name} = %{name: "meg", age: 23}
%{age: 23, name: "meg"}
iex> name
"meg"
If a key in the pattern is not available in the map, then they won't match:
iex> %{name: name, age: age} = %{name: "meg"}
** (MatchError) no match of right hand side value: %{name: "meg"}
Note that the empty map will match all maps, which is a contrast to tuples and lists, where an empty tuple or an empty list will only match empty tuples and empty lists respectively:
iex> %{} = %{name: "meg"}
%{name: "meg"}
Finally, note map keys in patterns must always be literals or previously bound variables matched with the pin operator.
Structs
Structs may appear in patterns using the percentage sign, the struct module name or a variable followed by the curly brackets syntax (%{}).
Given the following struct:
defmodule User do
 defstruct [:name]
end
Here is an example where all keys match:
iex> %User{name: name} = %User{name: "meg"}
%User{name: "meg"}
iex> name
"meg"
If an unknown key is given, the compiler will raise an error:
iex> %User{type: type} = %User{name: "meg"}
** (CompileError) iex: unknown key :type for struct User
The struct name can be extracted when putting a variable instead of a module name:
iex> %struct_name{} = %User{name: "meg"}
%User{name: "meg"}
iex> struct_name
User
Binaries
Binaries may appear in patterns using the double less-than/greater-than syntax (<<>>). A binary in a pattern can match multiple segments at the same time, each with different type, size, and unit:
iex> <<val::unit(8)-size(2)-integer>> = <<123, 56>>
"{8"
iex> val
31544
See the documentation for <<>> for a complete definition of pattern matching for binaries.
Finally, remember that strings in Elixir are UTF-8 encoded binaries. This means that, similar to charlists, prefix matches on strings are also possible with the binary concatenation operator (<>):
iex> "hello " <> world = "hello world"
"hello world"
iex> world
"world"
Suffix matches (hello <> " world") are not valid patterns.
Guards
Guards are a way to augment pattern matching with more complex checks. They are allowed in a predefined set of constructs where pattern matching is allowed, such as function definitions, case clauses, and others.
Not all expressions are allowed in guard clauses, but only a handful of them. This is a deliberate choice. This way, Elixir (through Erlang) ensures that all guards are predictable (no mutations or other side-effects) and they can be optimized and performed efficiently.
List of allowed functions and operators
You can find the built-in list of guards in the Kernel module. Here is an overview:
	comparison operators (==, !=, ===, !==,
<, <=, >, >=), max, min
	strictly boolean operators (and, or, not). Note &&, ||, and ! sibling operators are not allowed as they're not strictly boolean - meaning they don't require arguments to be booleans
	arithmetic unary operators (+, -)
	arithmetic binary operators (+, -, *, /)
	in and not in operators (as long as the right-hand side is a list or a range)
	"type-check" functions (is_list/1, is_number/1, and the like)
	functions that work on built-in data types (abs/1, hd/1, map_size/1, and others)
	the map.field syntax

The module Bitwise also includes a handful of Erlang bitwise operations as guards.
Macros constructed out of any combination of the above guards are also valid guards - for example, Integer.is_even/1. For more information, see the "Custom patterns and guards expressions" section shown below.
Why guards
Let's see an example of a guard used in a function clause:
def empty_map?(map) when map_size(map) == 0, do: true
def empty_map?(map) when is_map(map), do: false
Guards start with the when operator, followed by a guard expression. The clause will be executed if and only if the guard expression returns true. Multiple boolean conditions can be combined with the and and or operators.
Writing the empty_map?/1 function by only using pattern matching would not be possible (as pattern matching on %{} would match any map, not only the empty ones).
Non-passing guards
A function clause will be executed if and only if its guard expression evaluates to true. If any other value is returned, the function clause will be skipped. In particular, guards have no concept of "truthy" or "falsy".
For example, imagine a function that checks that the head of a list is not nil:
def not_nil_head?([head | _]) when head, do: true
def not_nil_head?(_), do: false

not_nil_head?(["some_value", "another_value"])
#=> false
Even though the head of the list is not nil, the first clause for not_nil_head?/1 fails because the expression does not evaluate to true, but to "some_value", therefore triggering the second clause which returns false. To make the guard behave correctly, you must ensure that the guard evaluates to true, like so:
def not_nil_head?([head | _]) when head != nil, do: true
def not_nil_head?(_), do: false

not_nil_head?(["some_value", "another_value"])
#=> true
Errors in guards
In guards, when functions would normally raise exceptions, they cause the guard to fail instead.
For example, the tuple_size/1 function only works with tuples. If we use it with anything else, an argument error is raised:
iex> tuple_size("hello")
** (ArgumentError) argument error
However, when used in guards, the corresponding clause will fail to match instead of raising an error:
iex> case "hello" do
...> something when tuple_size(something) == 2 ->
...> :worked
...> _anything_else ->
...> :failed
...> end
:failed
In many cases, we can take advantage of this. In the code above, we used tuple_size/1 to both check that the given value is a tuple and check its size (instead of using is_tuple(something) and tuple_size(something) == 2).
However, if your guard has multiple conditions, such as checking for tuples or maps, it is best to call type-check functions like is_tuple/1 before tuple_size/1, otherwise the whole guard will fail if a tuple is not given. Alternatively, your function clause can use multiple guards as shown in the following section.
Multiple guards in the same clause
There exists an additional way to simplify a chain of or expressions in guards: Elixir supports writing "multiple guards" in the same clause. The following code:
def categorize_number(term) when is_integer(term) or is_float(term) or is_nil(term),
 do: :maybe_number
def categorize_number(_other),
 do: :something_else
can be alternatively written as:
def categorize_number(term)
 when is_integer(term)
 when is_float(term)
 when is_nil(term) do
 :maybe_number
end

def categorize_number(_other) do
 :something_else
end
If each guard expression always returns a boolean, the two forms are equivalent. However, recall that if any function call in a guard raises an exception, the entire guard fails. To illustrate this, the following function will not detect empty tuples:
defmodule Check do
 # If given a tuple, map_size/1 will raise, and tuple_size/1 will not be evaluated
 def empty?(val) when map_size(val) == 0 or tuple_size(val) == 0, do: true
 def empty?(_val), do: false
end

Check.empty?(%{})
#=> true

Check.empty?({})
#=> false # true was expected!
This could be corrected by ensuring that no exception is raised, either via type checks like is_map(val) and map_size(val) == 0, or by using multiple guards, so that if an exception causes one guard to fail, the next one is evaluated.
defmodule Check do
 # If given a tuple, map_size/1 will raise, and the second guard will be evaluated
 def empty?(val)
 when map_size(val) == 0
 when tuple_size(val) == 0,
 do: true

 def empty?(_val), do: false
end

Check.empty?(%{})
#=> true

Check.empty?({})
#=> true
Where patterns and guards can be used
In the examples above, we have used the match operator (=) and function clauses to showcase patterns and guards respectively. Here is the list of the built-in constructs in Elixir that support patterns and guards.
	match?/2:
match?({:ok, value} when value > 0, {:ok, 13})

	function clauses:
def type(term) when is_integer(term), do: :integer
def type(term) when is_float(term), do: :float

	case expressions:
case x do
 1 -> :one
 2 -> :two
 n when is_integer(n) and n > 2 -> :larger_than_two
end

	anonymous functions (fn/1):
larger_than_two? = fn
 n when is_integer(n) and n > 2 -> true
 n when is_integer(n) -> false
end

	for and with support patterns and guards on the left side of <-:
for x when x >= 0 <- [1, -2, 3, -4], do: x
with also supports the else keyword, which supports patterns matching and guards.

	try supports patterns and guards on catch and else

	receive supports patterns and guards to match on the received messages.

	custom guards can also be defined with defguard/1 and defguardp/1. A custom guard can only be defined based on existing guards.

Note that the match operator (=) does not support guards:
{:ok, binary} = File.read("some/file")
Custom patterns and guards expressions
Only the constructs listed in this page are allowed in patterns and guards. However, we can take advantage of macros to write custom patterns guards that can simplify our programs or make them more domain-specific. At the end of the day, what matters is that the output of the macros boils down to a combination of the constructs above.
For example, the Record module in Elixir provides a series of macros to be used in patterns and guards that allows tuples to have named fields during compilation.
For defining your own guards, Elixir even provides conveniences in defguard and defguardp. Let's look at a quick case study: we want to check whether an argument is an even or an odd integer. With pattern matching this is impossible because there is an infinite number of integers, and therefore we can't pattern match on every single one of them. Therefore we must use guards. We will just focus on checking for even numbers since checking for the odd ones is almost identical.
Such a guard would look like this:
def my_function(number) when is_integer(number) and rem(number, 2) == 0 do
 # do stuff
end
It would be repetitive to write every time we need this check. Instead, you can use defguard/1 and defguardp/1 to create guard macros. Here's an example how:
defmodule MyInteger do
 defguard is_even(term) when is_integer(term) and rem(term, 2) == 0
end
and then:
import MyInteger, only: [is_even: 1]

def my_function(number) when is_even(number) do
 # do stuff
end
While it's possible to create custom guards with macros, it's recommended to define them using defguard/1 and defguardp/1 which perform additional compile-time checks.

 Syntax reference

Elixir syntax was designed to have a straightforward conversion to an abstract syntax tree (AST). This means the Elixir syntax is mostly uniform with a handful of "syntax sugar" constructs to reduce the noise in common Elixir idioms.
This document covers all of Elixir syntax constructs as a reference and then discuss their exact AST representation.
Reserved words
These are the reserved words in the Elixir language. They are detailed throughout this guide but summed up here for convenience:
	true, false, nil - used as atoms
	when, and, or, not, in - used as operators
	fn - used for anonymous function definitions
	do, end, catch, rescue, after, else - used in do-end blocks

Data types
Numbers
Integers (1234) and floats (123.4) in Elixir are represented as a sequence of digits that may be separated by underscore for readability purposes, such as 1_000_000. Integers never contain a dot (.) in their representation. Floats contain a dot and at least one other digit after the dot. Floats also support the scientific notation, such as 123.4e10 or 123.4E10.
Atoms
Unquoted atoms start with a colon (:) which must be immediately followed by a Unicode letter or an underscore. The atom may continue using a sequence of Unicode letters, numbers, underscores, and @. Atoms may end in ! or ?. Valid unquoted atoms are: :ok, :ISO8601, and :integer?.
If the colon is immediately followed by a pair of double- or single-quotes surrounding the atom name, the atom is considered quoted. In contrast with an unquoted atom, this one can be made of any Unicode character (not only letters), such as :'🌢 Elixir', :"++olá++", and :"123".
Quoted and unquoted atoms with the same name are considered equivalent, so :atom, :"atom", and :'atom' represent the same atom. The only catch is that the compiler will warn when quotes are used in atoms that do not need to be quoted.
All operators in Elixir are also valid atoms. Valid examples are :foo, :FOO, :foo_42, :foo@bar, and :++. Invalid examples are :@foo (@ is not allowed at start), :123 (numbers are not allowed at start), and :(*) (not a valid operator).
true, false, and nil are reserved words that are represented by the atoms :true, :false and :nil respectively.
To learn more about all Unicode characters allowed in atom, see the Unicode syntax document.
Strings
Single-line strings in Elixir are written between double-quotes, such as "foo". Any double-quote inside the string must be escaped with \. Strings support Unicode characters and are stored as UTF-8 encoded binaries.
Multi-line strings in Elixir are called heredocs. They are written with three double-quotes, and can have unescaped quotes within them. The resulting string will end with a newline. The indentation of the last """ is used to strip indentation from the inner string. For example:
iex> test = """
...> this
...> is
...> a
...> test
...> """
" this\n is\n a\n test\n"
iex> test = """
...> This
...> Is
...> A
...> Test
...> """
"This\nIs\nA\nTest\n"
Strings are always represented as themselves in the AST.
Charlists
Charlists are lists of non-negative integers where each integer represents a Unicode code point.
iex(6)> 'abc' === [97, 98, 99]
true
Charlists are written in single-quotes, such as 'foo'. Any single-quote inside the string must be escaped with \.
Multi-line charlists are written with three single-quotes ('''), the same way multi-line strings are.
However, this syntax is deprecated in favor of the charlist sigil ~c.
Charlists are always represented as themselves in the AST.
For more in-depth information, please read the "Charlists" section in the List module.
Lists, tuples and binaries
Data structures such as lists, tuples, and binaries are marked respectively by the delimiters [...], {...}, and <<...>>. Each element is separated by comma. A trailing comma is also allowed, such as in [1, 2, 3,].
Maps and keyword lists
Maps use the %{...} notation and each key-value is given by pairs marked with =>, such as %{"hello" => 1, 2 => "world"}.
Both keyword lists (list of two-element tuples where the first element is an atom) and maps with atom keys support a keyword notation where the colon character : is moved to the end of the atom. %{hello: "world"} is equivalent to %{:hello => "world"} and [foo: :bar] is equivalent to [{:foo, :bar}]. We discuss keywords in later sections.
Structs
Structs built on the map syntax by passing the struct name between % and {. For example, %User{...}.
Expressions
Variables
Variables in Elixir must start with an underscore or a Unicode letter that is not in uppercase or titlecase. The variable may continue using a sequence of Unicode letters, numbers, and underscores. Variables may end in ? or !. To learn more about all Unicode characters allowed in variables, see the Unicode syntax document.
Elixir's naming conventions recommend variables to be in snake_case format.
Non-qualified calls (local calls)
Non-qualified calls, such as add(1, 2), must start with characters and then follow the same rules as variables, which are optionally followed by parentheses, and then arguments.
Parentheses are required for zero-arity calls (i.e. calls without arguments), to avoid ambiguity with variables. If parentheses are used, they must immediately follow the function name without spaces. For example, add (1, 2) is a syntax error, since (1, 2) is treated as an invalid block which is attempted to be given as a single argument to add.
Elixir's naming conventions recommend calls to be in snake_case format.
Operators
As many programming languages, Elixir also support operators as non-qualified calls with their precedence and associativity rules. Constructs such as =, when, & and @ are simply treated as operators. See the Operators page for a full reference.
Qualified calls (remote calls)
Qualified calls, such as Math.add(1, 2), must start with characters and then follow the same rules as variables, which are optionally followed by parentheses, and then arguments. Qualified calls also support operators, such as Kernel.+(1, 2). Elixir also allows the function name to be written between double- or single-quotes, allowing any character in between the quotes, such as Math."++add++"(1, 2).
Similar to non-qualified calls, parentheses have different meaning for zero-arity calls (i.e. calls without arguments). If parentheses are used, such as mod.fun(), it means a function call. If parenthesis are skipped, such as map.field, it means accessing a field of a map.
Elixir's naming conventions recommend calls to be in snake_case format.
Aliases
Aliases are constructs that expand to atoms at compile-time. The alias String expands to the atom :"Elixir.String". Aliases must start with an ASCII uppercase character which may be followed by any ASCII letter, number, or underscore. Non-ASCII characters are not supported in aliases.
Multiple aliases can be joined with ., such as MyApp.String, and it expands to the atom :"Elixir.MyApp.String". The dot is effectively part of the name but it can also be used for composition. If you define alias MyApp.Example, as: Example in your code, then Example will always expand to :"Elixir.MyApp.Example" and Example.String will expand to :"Elixir.MyApp.Example.String".
Elixir's naming conventions recommend aliases to be in CamelCase format.
Module attributes
Module attributes are module-specific storage and are written as the composition of the unary operator @ with variables and local calls. For example, to write to a module attribute named foo, use @foo "value", and use @foo to read from it. Given module attributes are written using existing constructs, they follow the same rules above defined for operators, variables, and local calls.
Blocks
Blocks are multiple Elixir expressions separated by newlines or semi-colons. A new block may be created at any moment by using parentheses.
Left to right arrow
The left to right arrow (->) is used to establish a relationship between left and right, commonly referred as clauses. The left side may have zero, one, or more arguments; the right side is zero, one, or more expressions separated by new line. The -> may appear one or more times between one of the following terminators: do-end, fn-end or (-). When -> is used, only other clauses are allowed between those terminators. Mixing clauses and regular expressions is invalid syntax.
It is seen on case and cond constructs between do and end:
case 1 do
 2 -> 3
 4 -> 5
end

cond do
 true -> false
end
Seen in typespecs between (and):
(integer(), boolean() -> integer())
It is also used between fn and end for building anonymous functions:
fn
 x, y -> x + y
end
Sigils
Sigils start with ~ and are followed by one lowercase letter or by one or more uppercase letters, immediately followed by one of the following pairs:
	(and)
	{ and }
	[and]
	< and >
	" and "
	' and '
	| and |
	/ and /

After closing the pair, zero or more ASCII letters and digits can be given as a modifier. Sigils are expressed as non-qualified calls prefixed with sigil_ where the first argument is the sigil contents as a string and the second argument is a list of integers as modifiers:
If the sigil letter is in uppercase, no interpolation is allowed in the sigil, otherwise its contents may be dynamic. Compare the results of the sigils below for more information:
~s/f#{"o"}o/
~S/f#{"o"}o/
Sigils are useful to encode text with their own escaping rules, such as regular expressions, datetimes, and others.
The Elixir AST
Elixir syntax was designed to have a straightforward conversion to an abstract syntax tree (AST). Elixir's AST is a regular Elixir data structure composed of the following elements:
	atoms - such as :foo
	integers - such as 42
	floats - such as 13.1
	strings - such as "hello"
	lists - such as [1, 2, 3]
	tuples with two elements - such as {"hello", :world}
	tuples with three elements, representing calls or variables, as explained next

The building block of Elixir's AST is a call, such as:
sum(1, 2, 3)
which is represented as a tuple with three elements:
{:sum, meta, [1, 2, 3]}
the first element is an atom (or another tuple), the second element is a list of two-element tuples with metadata (such as line numbers) and the third is a list of arguments.
We can retrieve the AST for any Elixir expression by calling quote:
quote do
 sum()
end
#=> {:sum, [], []}
Variables are also represented using a tuple with three elements and a combination of lists and atoms, for example:
quote do
 sum
end
#=> {:sum, [], Elixir}
You can see that variables are also represented with a tuple, except the third element is an atom expressing the variable context.
Over the course of this section, we will explore many Elixir syntax constructs alongside their AST representations.
Operators
Operators are treated as non-qualified calls:
quote do
 1 + 2
end
#=> {:+, [], [1, 2]}
Note that . is also an operator. Remote calls use the dot in the AST with two arguments, where the second argument is always an atom:
quote do
 foo.bar(1, 2, 3)
end
#=> {{:., [], [{:foo, [], Elixir}, :bar]}, [], [1, 2, 3]}
Calling anonymous functions uses the dot in the AST with a single argument, mirroring the fact the function name is "missing" from right side of the dot:
quote do
 foo.(1, 2, 3)
end
#=> {{:., [], [{:foo, [], Elixir}]}, [], [1, 2, 3]}
Aliases
Aliases are represented by an __aliases__ call with each segment separated by a dot as an argument:
quote do
 Foo.Bar.Baz
end
#=> {:__aliases__, [], [:Foo, :Bar, :Baz]}

quote do
 __MODULE__.Bar.Baz
end
#=> {:__aliases__, [], [{:__MODULE__, [], Elixir}, :Bar, :Baz]}
All arguments, except the first, are guaranteed to be atoms.
Data structures
Remember that lists are literals, so they are represented as themselves in the AST:
quote do
 [1, 2, 3]
end
#=> [1, 2, 3]
Tuples have their own representation, except for two-element tuples, which are represented as themselves:
quote do
 {1, 2}
end
#=> {1, 2}

quote do
 {1, 2, 3}
end
#=> {:{}, [], [1, 2, 3]}
Binaries have a representation similar to tuples, except they are tagged with :<<>> instead of :{}:
quote do
 <<1, 2, 3>>
end
#=> {:<<>>, [], [1, 2, 3]}
The same applies to maps, where pairs are treated as a list of tuples with two elements:
quote do
 %{1 => 2, 3 => 4}
end
#=> {:%{}, [], [{1, 2}, {3, 4}]}
Blocks
Blocks are represented as a __block__ call with each line as a separate argument:
quote do
 1
 2
 3
end
#=> {:__block__, [], [1, 2, 3]}

quote do 1; 2; 3; end
#=> {:__block__, [], [1, 2, 3]}
Left to right arrow
The left to right arrow (->) is represented similar to operators except that they are always part of a list, its left side represents a list of arguments and the right side is an expression.
For example, in case and cond:
quote do
 case 1 do
 2 -> 3
 4 -> 5
 end
end
#=> {:case, [], [1, [do: [{:->, [], [[2], 3]}, {:->, [], [[4], 5]}]]]}

quote do
 cond do
 true -> false
 end
end
#=> {:cond, [], [[do: [{:->, [], [[true], false]}]]]}
Between (and):
quote do
 (1, 2 -> 3
 4, 5 -> 6)
end
#=> [{:->, [], [[1, 2], 3]}, {:->, [], [[4, 5], 6]}]
Between fn and end:
quote do
 fn
 1, 2 -> 3
 4, 5 -> 6
 end
end
#=> {:fn, [], [{:->, [], [[1, 2], 3]}, {:->, [], [[4, 5], 6]}]}
Qualified tuples
Qualified tuples (foo.{bar, baz}) are represented by a {:., [], [expr, :{}]} call, where the expr represents the left hand side of the dot, and the arguments represent the elements inside the curly braces. This is used in Elixir to provide multi aliases:
quote do
 Foo.{Bar, Baz}
end
#=> {{:., [], [{:__aliases__, [], [:Foo]}, :{}]}, [], [{:__aliases__, [], [:Bar]}, {:__aliases__, [], [:Baz]}]}
do-end blocks
Elixir's do-end blocks are equivalent to keywords as the last argument of a function call, where the block contents are wrapped in parentheses. For example:
if true do
 this
else
 that
end
is the same as:
if(true, do: (this), else: (that))
While the construct above does not require custom nodes in Elixir's AST, they are restricted only to certain keywords, listed next:
	after
	catch
	else
	rescue

You will find them in constructs such as receive, try, and others. You can also find more examples in the Optional Syntax chapter.

 Typespecs reference

Typespecs are not set-theoretic types
Elixir is in the process of implementing its
own type system based on set-theoretic types.
Typespecs, which are described in the following document, are a distinct notation
for declaring types and specifications based on Erlang.
Typespecs may be phased out as the set-theoretic type effort moves forward.
Elixir is a dynamically typed language, and as such, type specifications are never used by the compiler to optimize or modify code. Still, using type specifications is useful because:
	they provide documentation (for example, tools such as ExDoc show type specifications in the documentation)
	they're used by tools such as Dialyzer, that can analyze code with typespecs to find type inconsistencies and possible bugs

Type specifications (most often referred to as typespecs) are defined in different contexts using the following attributes:
	@type
	@opaque
	@typep
	@spec
	@callback
	@macrocallback

In addition, you can use @typedoc to document a custom @type definition.
See the "User-defined types" and "Defining a specification" sub-sections below for more information on defining types and typespecs.
A simple example
defmodule StringHelpers do
 @typedoc "A word from the dictionary"
 @type word() :: String.t()

 @spec long_word?(word()) :: boolean()
 def long_word?(word) when is_binary(word) do
 String.length(word) > 8
 end
end
In the example above:
	We declare a new type (word()) that is equivalent to the string type (String.t()).

	We describe the type using a @typedoc, which will be included in the generated documentation.

	We specify that the long_word?/1 function takes an argument of type word() and
returns a boolean (boolean()), that is, either true or false.

Types and their syntax
The syntax Elixir provides for type specifications is similar to the one in Erlang. Most of the built-in types provided in Erlang (for example, pid()) are expressed in the same way: pid() (or simply pid). Parameterized types (such as list(integer)) are supported as well and so are remote types (such as Enum.t()). Integers and atom literals are allowed as types (for example, 1, :atom, or false). All other types are built out of unions of predefined types. Some types can also be declared using their syntactical notation, such as [type] for lists, {type1, type2, ...} for tuples and <<_ * _>> for binaries.
The notation to represent the union of types is the pipe |. For example, the typespec type :: atom() | pid() | tuple() creates a type type that can be either an atom, a pid, or a tuple. This is usually called a sum type in other languages
Differences with set-theoretic types
While they do share some similarities, the types below do not map one-to-one
to the new types from the set-theoretic type system.
For example, there is no plan to support subsets of the integer() type such
as positive, ranges or literals.
Furthermore, set-theoretic types support the full range of set operations,
including intersections and negations.
Basic types
type ::
 any() # the top type, the set of all terms
 | none() # the bottom type, contains no terms
 | atom()
 | map() # any map
 | pid() # process identifier
 | port() # port identifier
 | reference()
 | tuple() # tuple of any size

 ## Numbers
 | float()
 | integer()
 | neg_integer() # ..., -3, -2, -1
 | non_neg_integer() # 0, 1, 2, 3, ...
 | pos_integer() # 1, 2, 3, ...

 ## Lists
 | list(type) # proper list ([]-terminated)
 | nonempty_list(type) # non-empty proper list
 | maybe_improper_list(content_type, termination_type) # proper or improper list
 | nonempty_improper_list(content_type, termination_type) # improper list
 | nonempty_maybe_improper_list(content_type, termination_type) # non-empty proper or improper list

 | Literals # Described in section "Literals"
 | BuiltIn # Described in section "Built-in types"
 | Remotes # Described in section "Remote types"
 | UserDefined # Described in section "User-defined types"
Literals
The following literals are also supported in typespecs:
type :: ## Atoms
 :atom # atoms: :foo, :bar, ...
 | true | false | nil # special atom literals

 ## Bitstrings
 | <<>> # empty bitstring
 | <<_::size>> # size is 0 or a positive integer
 | <<_::_*unit>> # unit is an integer from 1 to 256
 | <<_::size, _::_*unit>>

 ## (Anonymous) Functions
 | (-> type) # zero-arity, returns type
 | (type1, type2 -> type) # two-arity, returns type
 | (... -> type) # any arity, returns type

 ## Integers
 | 1 # integer
 | 1..10 # integer from 1 to 10

 ## Lists
 | [type] # list with any number of type elements
 | [] # empty list
 | [...] # shorthand for nonempty_list(any())
 | [type, ...] # shorthand for nonempty_list(type)
 | [key: value_type] # keyword list with optional key :key of value_type

 ## Maps
 | %{} # empty map
 | %{key: value_type} # map with required key :key of value_type
 | %{key_type => value_type} # map with required pairs of key_type and value_type
 | %{required(key_type) => value_type} # map with required pairs of key_type and value_type
 | %{optional(key_type) => value_type} # map with optional pairs of key_type and value_type
 | %SomeStruct{} # struct with all fields of any type
 | %SomeStruct{key: value_type} # struct with required key :key of value_type

 ## Tuples
 | {} # empty tuple
 | {:ok, type} # two-element tuple with an atom and any type
Built-in types
The following types are also provided by Elixir as shortcuts on top of the basic and literal types described above.
	Built-in type	Defined as
	term()	any()
	arity()	0..255
	as_boolean(t)	t
	binary()	<<_::_*8>>
	nonempty_binary()	<<_::8, _::_*8>>
	bitstring()	<<_::_*1>>
	nonempty_bitstring()	<<_::1, _::_*1>>
	boolean()	true | false
	byte()	0..255
	char()	0..0x10FFFF
	charlist()	[char()]
	nonempty_charlist()	[char(), ...]
	fun()	(... -> any)
	function()	fun()
	identifier()	pid() | port() | reference()
	iodata()	iolist() | binary()
	iolist()	maybe_improper_list(byte() | binary() | iolist(), binary() | [])
	keyword()	[{atom(), any()}]
	keyword(t)	[{atom(), t}]
	list()	[any()]
	nonempty_list()	nonempty_list(any())
	maybe_improper_list()	maybe_improper_list(any(), any())
	nonempty_maybe_improper_list()	nonempty_maybe_improper_list(any(), any())
	mfa()	{module(), atom(), arity()}
	module()	atom()
	no_return()	none()
	node()	atom()
	number()	integer() | float()
	struct()	%{:__struct__ => atom(), optional(atom()) => any()}
	timeout()	:infinity | non_neg_integer()

as_boolean(t) exists to signal users that the given value will be treated as a boolean, where nil and false will be evaluated as false and everything else is true. For example, Enum.filter/2 has the following specification: filter(t, (element -> as_boolean(term))) :: list.
Remote types
Any module is also able to define its own types and the modules in Elixir are no exception. For example, the Range module defines a t/0 type that represents a range: this type can be referred to as Range.t/0. In a similar fashion, a string is String.t/0, and so on.
Maps
The key types in maps are allowed to overlap, and if they do, the leftmost key takes precedence.
A map value does not belong to this type if it contains a key that is not in the allowed map keys.
If you want to denote that keys that were not previously defined in the map are allowed,
it is common to end a map type with optional(any) => any.
Note that the syntactic representation of map() is %{optional(any) => any}, not %{}. The notation %{} specifies the singleton type for the empty map.
Keyword Lists
Beyond keyword() and keyword(t), it can be helpful to compose a spec for an expected keyword list.
For example:
@type option :: {:name, String.t} | {:max, pos_integer} | {:min, pos_integer}
@type options :: [option()]
This makes it clear that only these options are allowed, none are required, and order does not matter.
It also allows composition with existing types.
For example:
@type option :: {:my_option, String.t()} | GenServer.option()

@spec start_link([option()]) :: GenServer.on_start()
def start_link(opts) do
 {my_opts, gen_server_opts} = Keyword.split(opts, [:my_option])
 GenServer.start_link(__MODULE__, my_opts, gen_server_opts)
end
The following spec syntaxes are equivalent:
@type options [{:name, String.t} | {:max, pos_integer} | {:min, pos_integer}]

@type options [name: String.t, max: pos_integer, min: pos_integer]
User-defined types
The @type, @typep, and @opaque module attributes can be used to define new types:
@type type_name :: type
@typep type_name :: type
@opaque type_name :: type
A type defined with @typep is private. An opaque type, defined with @opaque is a type where the internal structure of the type will not be visible, but the type is still public.
Types can be parameterized by defining variables as parameters; these variables can then be used to define the type.
@type dict(key, value) :: [{key, value}]
Defining a specification
A specification for a function can be defined as follows:
@spec function_name(type1, type2) :: return_type
Guards can be used to restrict type variables given as arguments to the function.
@spec function(arg) :: [arg] when arg: atom
If you want to specify more than one variable, you separate them by a comma.
@spec function(arg1, arg2) :: {arg1, arg2} when arg1: atom, arg2: integer
Type variables with no restriction can also be defined using var.
@spec function(arg) :: [arg] when arg: var
This guard notation only works with @spec, @callback, and @macrocallback.
You can also name your arguments in a typespec using arg_name :: arg_type syntax. This is particularly useful in documentation as a way to differentiate multiple arguments of the same type (or multiple elements of the same type in a type definition):
@spec days_since_epoch(year :: integer, month :: integer, day :: integer) :: integer
@type color :: {red :: integer, green :: integer, blue :: integer}
Specifications can be overloaded, just like ordinary functions.
@spec function(integer) :: atom
@spec function(atom) :: integer
Behaviours
Behaviours in Elixir (and Erlang) are a way to separate and abstract the generic part of a component (which becomes the behaviour module) from the specific part (which becomes the callback module).
A behaviour module defines a set of functions and macros (referred to as callbacks) that callback modules implementing that behaviour must export. This "interface" identifies the specific part of the component. For example, the GenServer behaviour and functions abstract away all the message-passing (sending and receiving) and error reporting that a "server" process will likely want to implement from the specific parts such as the actions that this server process has to perform.
Say we want to implement a bunch of parsers, each parsing structured data: for example, a JSON parser and a MessagePack parser. Each of these two parsers will behave the same way: both will provide a parse/1 function and an extensions/0 function. The parse/1 function will return an Elixir representation of the structured data, while the extensions/0 function will return a list of file extensions that can be used for each type of data (e.g., .json for JSON files).
We can create a Parser behaviour:
defmodule Parser do
 @doc """
 Parses a string.
 """
 @callback parse(String.t) :: {:ok, term} | {:error, atom}

 @doc """
 Lists all supported file extensions.
 """
 @callback extensions() :: [String.t]
end
As seen in the example above, defining a callback is a matter of defining a specification for that callback, made of:
	the callback name (parse or extensions in the example)
	the arguments that the callback must accept (String.t)
	the expected type of the callback return value

Modules adopting the Parser behaviour will have to implement all the functions defined with the @callback attribute. As you can see, @callback expects a function name but also a function specification like the ones used with the @spec attribute we saw above.
Implementing behaviours
Implementing a behaviour is straightforward:
defmodule JSONParser do
 @behaviour Parser

 @impl Parser
 def parse(str), do: {:ok, "some json " <> str} # ... parse JSON

 @impl Parser
 def extensions, do: [".json"]
end
defmodule CSVParser do
 @behaviour Parser

 @impl Parser
 def parse(str), do: {:ok, "some csv " <> str} # ... parse CSV

 @impl Parser
 def extensions, do: [".csv"]
end
If a module adopting a given behaviour doesn't implement one of the callbacks required by that behaviour, a compile-time warning will be generated.
Furthermore, with @impl you can also make sure that you are implementing the correct callbacks from the given behaviour in an explicit manner. For example, the following parser implements both parse and extensions. However, thanks to a typo, BADParser is implementing parse/0 instead of parse/1.
defmodule BADParser do
 @behaviour Parser

 @impl Parser
 def parse, do: {:ok, "something bad"}

 @impl Parser
 def extensions, do: ["bad"]
end
This code generates a warning letting you know that you are mistakenly implementing parse/0 instead of parse/1.
You can read more about @impl in the module documentation.
Using behaviours
Behaviours are useful because you can pass modules around as arguments and you can then call back to any of the functions specified in the behaviour. For example, we can have a function that receives a filename, several parsers, and parses the file based on its extension:
@spec parse_path(Path.t(), [module()]) :: {:ok, term} | {:error, atom}
def parse_path(filename, parsers) do
 with {:ok, ext} <- parse_extension(filename),
 {:ok, parser} <- find_parser(ext, parsers),
 {:ok, contents} <- File.read(filename) do
 parser.parse(contents)
 end
end

defp parse_extension(filename) do
 if ext = Path.extname(filename) do
 {:ok, ext}
 else
 {:error, :no_extension}
 end
end

defp find_parser(ext, parsers) do
 if parser = Enum.find(parsers, fn parser -> ext in parser.extensions() end) do
 {:ok, parser}
 else
 {:error, :no_matching_parser}
 end
end
You could also invoke any parser directly: CSVParser.parse(...).
Note you don't need to define a behaviour in order to dynamically dispatch on a module, but those features often go hand in hand.
Optional callbacks
Optional callbacks are callbacks that callback modules may implement if they want to, but are not required to. Usually, behaviour modules know if they should call those callbacks based on configuration, or they check if the callbacks are defined with function_exported?/3 or macro_exported?/3.
Unloaded modules
function_exported?/3 (and macro_exported?/3) do not load the module in case it is not loaded and Elixir lazily loads modules by default (except on releases). So in practice you will want to invoke Code.ensure_loaded?/1 before checking if the function/macro is exported. See the documentation for function_exported?/3 for examples.
Optional callbacks can be defined through the @optional_callbacks module attribute, which has to be a keyword list with function or macro name as key and arity as value. For example:
defmodule MyBehaviour do
 @callback vital_fun() :: any
 @callback non_vital_fun() :: any
 @macrocallback non_vital_macro(arg :: any) :: Macro.t
 @optional_callbacks non_vital_fun: 0, non_vital_macro: 1
end
One example of optional callback in Elixir's standard library is GenServer.format_status/1.
Inspecting behaviours
The @callback and @optional_callbacks attributes are used to create a behaviour_info/1 function available on the defining module. This function can be used to retrieve the callbacks and optional callbacks defined by that module.
For example, for the MyBehaviour module defined in "Optional callbacks" above:
MyBehaviour.behaviour_info(:callbacks)
#=> [vital_fun: 0, "MACRO-non_vital_macro": 2, non_vital_fun: 0]
MyBehaviour.behaviour_info(:optional_callbacks)
#=> ["MACRO-non_vital_macro": 2, non_vital_fun: 0]
When using iex, the IEx.Helpers.b/1 helper is also available.
Pitfalls
There are some known pitfalls when using typespecs, they are documented next.
The string() type
Elixir discourages the use of the string() type. The string() type refers to Erlang strings, which are known as "charlists" in Elixir. They do not refer to Elixir strings, which are UTF-8 encoded binaries. To avoid confusion, if you attempt to use the type string(), Elixir will emit a warning. You should use charlist(), nonempty_charlist(), binary() or String.t() accordingly, or any of the several literal representations for these types.
Note that String.t() and binary() are equivalent to analysis tools. Although, for those reading the documentation, String.t() implies it is a UTF-8 encoded binary.
Functions which raise an error
Typespecs do not need to indicate that a function can raise an error; any function can fail any time if given invalid input.
In the past, the Elixir standard library sometimes used no_return() to indicate this, but these usages have been removed.
The no_return() type also should not be used for functions which do return but whose purpose is a "side effect", such as IO.puts/1.
In these cases, the expected return type is :ok.
Instead, no_return() should be used as the return type for functions which can never return a value.
This includes functions which loop forever calling receive, or which exist specifically to raise an error, or which shut down the VM.

 Unicode syntax

Elixir supports Unicode throughout the language. This document is a complete reference of how
Elixir supports Unicode in its syntax.
Strings ("olá") and charlists ('olá') support Unicode since Elixir v1.0. Strings are UTF-8 encoded. Charlists are lists of Unicode code points. In such cases, the contents are kept as written by developers, without any transformation.
Elixir also supports Unicode in variables, atoms, and calls since Elixir v1.5. The focus of this document is to provide a high-level introduction to how Elixir allows Unicode in its syntax. We also provide technical documentation describing how Elixir complies with the Unicode specification.
To check the Unicode version of your current Elixir installation, run String.Unicode.version().
Introduction
Elixir allows Unicode characters in its variables, atoms, and calls. However, the Unicode characters must still obey the rules of the language syntax. In particular, variables and calls cannot start with an uppercase letter. From now on, we will refer to those terms as identifiers.
The characters allowed in identifiers are the ones specified by Unicode. Generally speaking, it is restricted to characters typically used by the writing system of human languages still in activity. In particular, it excludes symbols such as emojis, alternate numeric representations, musical notes, and the like.
Elixir imposes many restrictions on identifiers for security purposes. For example, the word "josé" can be written in two ways in Unicode: as the combination of the characters j o s é and as a combination of the characters j o s e ́, where the accent is its own character. The former is called NFC form and the latter is the NFD form. Elixir normalizes all characters to be the in the NFC form.
Elixir also disallows mixed-scripts which are not explicitly separated by _. For example, it is not possible to name a variable аdmin, where а is in Cyrillic and the remaining characters are in Latin. Doing so will raise the following error:
** (SyntaxError) invalid mixed-script identifier found: аdmin

Mixed-script identifiers are not supported for security reasons. 'аdmin' is made of the following scripts:

 \u0430 а {Cyrillic}
 \u0064 d {Latin}
 \u006D m {Latin}
 \u0069 i {Latin}
 \u006E n {Latin}

Make sure all characters in the identifier resolve to a single script or a highly
restrictive script. See https://hexdocs.pm/elixir/unicode-syntax.html for more information.
Finally, Elixir will also warn of confusable identifiers in the same file. For example, Elixir will emit a warning if you use both variables а (Cyrillic) and а (Latin) in your code.
That's the overall introduction of how Unicode is used in Elixir identifiers. In a nutshell, its goal is to support different writing systems in use today while keeping the Elixir language itself clear and secure.
For the technical details, see the next sections that cover the technical Unicode requirements.
Unicode Standard Annex #31
Elixir conforms to the standards outlined in the Unicode Standard Annex #31: Unicode Identifiers and Syntax, version 17.0.
R1. Default Identifiers
The general Elixir identifier rule is specified as:
<Identifier> := <Start> <Continue>* <Ending>?
where <Start> uses the same categories as the spec but normalizes them to the NFC form (see R4):
characters derived from the Unicode General Category of uppercase letters, lowercase letters, titlecase letters, modifier letters, other letters, letter numbers, plus Other_ID_Start, minus Pattern_Syntax and Pattern_White_Space code points
In set notation: [\p{L}\p{Nl}\p{Other_ID_Start}-\p{Pattern_Syntax}-\p{Pattern_White_Space}].

and <Continue> uses the same categories as the spec but normalizes them to the NFC form (see R4):
ID_Start characters, plus characters having the Unicode General Category of nonspacing marks, spacing combining marks, decimal number, connector punctuation, plus Other_ID_Continue, minus Pattern_Syntax and Pattern_White_Space code points.
In set notation: [\p{ID_Start}\p{Mn}\p{Mc}\p{Nd}\p{Pc}\p{Other_ID_Continue}-\p{Pattern_Syntax}-\p{Pattern_White_Space}].

<Ending> is an addition specific to Elixir that includes only the code points ? (003F) and ! (0021).
The spec also provides a <Medial> set, but Elixir does not include any character on this set. Therefore, the identifier rule has been simplified to consider this.
Elixir does not allow the use of ZWJ or ZWNJ in identifiers and therefore does not implement R1a. Bidirectional control characters are also not supported. R1b is guaranteed for backwards compatibility purposes.
Atoms
Unicode atoms in Elixir follow the identifier rule above with the following modifications:
	<Start> additionally includes the code point _ (005F)
	<Continue> additionally includes the code point @ (0040)

Note atoms can also be quoted, which allows any characters, such as :"hello elixir". All Elixir operators are also valid atoms, such as :+, :@, :|>, and others. The full description of valid atoms is available in the "Atoms" section in the syntax reference.
Variables, local calls, and remote calls
Variables in Elixir follow the identifier rule above with the following modifications:
	<Start> additionally includes the code point _ (005F)
	<Start> additionally excludes Lu (letter uppercase) and Lt (letter titlecase) characters

In set notation: [\u{005F}\p{Ll}\p{Lm}\p{Lo}\p{Nl}\p{Other_ID_Start}-\p{Pattern_Syntax}-\p{Pattern_White_Space}].
Aliases
Aliases in Elixir only allow ASCII characters, starting in uppercase, and no punctuation characters.
R3. Pattern_White_Space and Pattern_Syntax Characters
Elixir supports only code points \t (0009), \n (000A), \r (000D) and \s (0020) as whitespace and therefore does not follow requirement R3. R3 requires a wider variety of whitespace and syntax characters to be supported.
R4. Equivalent Normalized Identifiers
Identifiers in Elixir are case sensitive.
Elixir normalizes all atoms and variables to NFC form. Quoted-atoms and strings can, however, be in any form and are not verified by the parser.
In other words, the atom :josé can only be written with the code points 006A 006F 0073 00E9 or 006A 006F 0073 0065 0301, but Elixir will rewrite it to the former (from Elixir 1.14). On the other hand, :"josé" may be written as 006A 006F 0073 00E9 or 006A 006F 0073 0065 0301 and its form will be retained, since it is written between quotes.
Choosing requirement R4 automatically excludes requirements R5, R6, and R7.
Unicode Technical Standard #39
Elixir conforms to the clauses outlined in the Unicode Technical Standard #39 on Security, version 17.0.
C1. General Security Profile for Identifiers
Elixir will not allow tokenization of identifiers with codepoints in \p{Identifier_Status=Restricted}, except for the outlined 'Additional normalizations' section below.
An implementation following the General Security Profile does not permit any characters in \p{Identifier_Status=Restricted}, ...

For instance, the 'HANGUL FILLER' (ㅤ) character, which is often invisible, is an uncommon codepoint and will trigger a warning.
C2. Confusable detection
Elixir will warn of identifiers that look the same, but aren't. Examples: in а = a = 1, the two 'a' characters are Cyrillic and Latin, and could be confused for each other; in 力 = カ = 1, both are Japanese, but different codepoints, in different scripts of that writing system. Confusable identifiers can lead to hard-to-catch bugs (say, due to copy-pasted code) and can be unsafe, so we will warn of identifiers within a single file that could be confused with each other.
We use the means described in Section 4, 'Confusable Detection', with one noted modification:
Alternatively, it shall declare that it uses a modification, and provide a precise list of character mappings that are added to or removed from the provided ones.

Elixir will not warn about confusability for identifiers made up exclusively of characters in a-z, A-Z, 0-9, and _. This is because ASCII identifiers have existed for so long that the programming community has had their own means of dealing with confusability between identifiers like l,1 or O,0 (for instance, fonts designed for programming usually make it easy to differentiate between those characters).
C3. Mixed Script Detection
Elixir will not allow tokenization of mixed-script identifiers unless it is via chunks separated by an underscore, like http_сервер. We use the means described in Section 5.1, Mixed-Script Detection, to determine if script mixing is occurring, with the 'Additional Normalizations' documented in.
Examples: Elixir allows an identifiers like 幻한, even though it includes characters from multiple 'scripts', as Han characters may be mixed with Japanese and Korean, according to the rules from UTS 39 5.1. When mixing Latin and Japanese scripts, underscores are necessary, as in :T_シャツ (the Japanese word for 't-shirt' with an additional underscore separating the letter T).
Elixir does not allow code like if аdmin, do: :ok, else: :err, where the scriptset for the 'a' character is {Cyrillic} but all other characters have scriptsets of {Latin}. The scriptsets fail to resolve and a descriptive error is shown.
C4, C5 (inapplicable)
'C4 - Restriction Level detection' conformance is not claimed and does not apply to identifiers in code; rather, it applies to classifying the level of safety of a given arbitrary string into one of 5 restriction levels.
'C5 - Mixed number detection' conformance is inapplicable as Elixir does not support Unicode numbers.
Addition Normalizations
As of Elixir 1.14, some codepoints in \p{Identifier_Status=Restricted} are normalized to other, unrestricted codepoints.
This is currently only applied to translate MICRO SIGN (µ) to Greek lowercase mu (μ).
The normalization avoids confusability and the mixed-script detection is modified to the extent that the normalized codepoint is given the union of scriptsets from both characters.
	For instance, in the example of MICRO => MU, MICRO was a 'Common'-script character - the same script given to the '_' underscore codepoint - and thus the normalized character's scriptset will be {Greek, Common}. 'Common' intersects with all non-empty scriptsets, and thus the normalized character can be used in tokens written in any script without causing script mixing.

	The code points normalized in this fashion are those that are in use in the community, and judged not likely to cause issues with unsafe script mixing. For instance, the MICRO or MU codepoint may be used in an atom or variable dealing with microseconds.

Kernel

Kernel is Elixir's default environment.
It mainly consists of:
	basic language primitives, such as arithmetic operators, spawning of processes,
data type handling, and others
	macros for control-flow and defining new functionality (modules, functions, and the like)
	guard checks for augmenting pattern matching

You can invoke Kernel functions and macros anywhere in Elixir code
without the use of the Kernel. prefix since they have all been
automatically imported. For example, in IEx, you can call:
iex> is_number(13)
true
If you don't want to import a function or macro from Kernel, use the :except
option and then list the function/macro by arity:
import Kernel, except: [if: 2, is_number: 1]
See import/2 for more information on importing.
Elixir also has special forms that are always imported and
cannot be skipped. These are described in Kernel.SpecialForms.
The standard library
Kernel provides the basic capabilities the Elixir standard library
is built on top of. It is recommended to explore the standard library
for advanced functionality. Here are the main groups of modules in the
standard library (this list is not a complete reference, see the
documentation sidebar for all entries).
Built-in types
The following modules handle Elixir built-in data types:
	Atom - literal constants with a name (true, false, and nil are atoms)
	Float - numbers with floating point precision
	Function - a reference to code chunk, created with the fn/1 special form
	Integer - whole numbers (not fractions)
	List - collections of a variable number of elements (linked lists)
	Map - collections of key-value pairs
	Process - light-weight threads of execution
	Port - mechanisms to interact with the external world
	Tuple - collections of a fixed number of elements

There are two data types without an accompanying module:
	Bitstring - a sequence of bits, created with <<>>/1.
When the number of bits is divisible by 8, they are called binaries and can
be manipulated with Erlang's :binary module
	Reference - a unique value in the runtime system, created with make_ref/0

Data types
Elixir also provides other data types that are built on top of the types
listed above. Some of them are:
	Date - year-month-day structs in a given calendar
	DateTime - date and time with time zone in a given calendar
	Exception - data raised from errors and unexpected scenarios
	MapSet - unordered collections of unique elements
	NaiveDateTime - date and time without time zone in a given calendar
	Keyword - lists of two-element tuples, often representing optional values
	Range - inclusive ranges between two integers
	Regex - regular expressions
	String - UTF-8 encoded binaries representing characters
	Time - hour:minute:second structs in a given calendar
	URI - representation of URIs that identify resources
	Version - representation of versions and requirements

System modules
Modules that interface with the underlying system, such as:
	IO - handles input and output
	File - interacts with the underlying file system
	Path - manipulates file system paths
	System - reads and writes system information

Protocols
Protocols add polymorphic dispatch to Elixir. They are contracts
implementable by data types. See Protocol for more information on
protocols. Elixir provides the following protocols in the standard library:
	Collectable - collects data into a data type
	Enumerable - handles collections in Elixir. The Enum module
provides eager functions for working with collections, the Stream
module provides lazy functions
	Inspect - converts data types into their programming language
representation
	List.Chars - converts data types to their outside world
representation as charlists (non-programming based)
	String.Chars - converts data types to their outside world
representation as strings (non-programming based)

Process-based and application-centric functionality
The following modules build on top of processes to provide concurrency,
fault-tolerance, and more.
	Agent - a process that encapsulates mutable state
	Application - functions for starting, stopping and configuring
applications
	GenServer - a generic client-server API
	Registry - a key-value process-based storage
	Supervisor - a process that is responsible for starting,
supervising and shutting down other processes
	Task - a process that performs computations
	Task.Supervisor - a supervisor for managing tasks exclusively

Supporting documents
Under the "Pages" section in sidebar you will find tutorials, guides,
and reference documents that outline Elixir semantics and behaviors
in more detail. Those are:
	Compatibility and deprecations - lists
compatibility between every Elixir version and Erlang/OTP, release schema;
lists all deprecated functions, when they were deprecated and alternatives
	Library guidelines - general guidelines, anti-patterns,
and rules for those writing libraries
	Naming conventions - naming conventions for Elixir code
	Operators reference - lists all Elixir operators and their precedences
	Patterns and guards - an introduction to patterns,
guards, and extensions
	Syntax reference - the language syntax reference
	Typespecs reference- types and function specifications, including list of types
	Unicode syntax - outlines Elixir support for Unicode

Guards
This module includes the built-in guards used by Elixir developers.
They are a predefined set of functions and macros that augment pattern
matching, typically invoked after the when operator. For example:
def drive(%User{age: age}) when age >= 16 do
 ...
end
The clause above will only be invoked if the user's age is more than
or equal to 16. Guards also support joining multiple conditions with
and and or. The whole guard is true if all guard expressions will
evaluate to true. A more complete introduction to guards is available
in the Patterns and guards page.
Truthy and falsy values
Besides the booleans true and false, Elixir has the
concept of a "truthy" or "falsy" value.
	 a value is truthy when it is neither false nor nil
	 a value is falsy when it is either false or nil

Elixir has functions, like and/2, that only work with
booleans, but also functions that work with these
truthy/falsy values, like &&/2 and !/1.
Structural comparison
The functions in this module perform structural comparison. This allows
different data types to be compared using comparison operators:
1 < :an_atom
This is possible so Elixir developers can create collections, such as
dictionaries and ordered sets, that store a mixture of data types in them.
To understand why this matters, let's discuss the two types of comparisons
we find in software: structural and semantic.
Structural means we are comparing the underlying data structures and we often
want those operations to be as fast as possible, because it is used to power
several algorithms and data structures in the language. A semantic comparison
worries about what each data type represents. For example, semantically
speaking, it doesn't make sense to compare Time with Date.
One example that shows the differences between structural and semantic
comparisons are strings: "alien" sorts less than "office" ("alien" < "office")
but "álien" is greater than "office". This happens because < compares the
underlying bytes that form the string. If you were doing alphabetical listing,
you may want "álien" to also appear before "office".
This means comparisons in Elixir are structural, as it has the goal
of comparing data types as efficiently as possible to create flexible
and performant data structures. This distinction is specially important
for functions that provide ordering, such as >/2, </2, >=/2,
<=/2, min/2, and max/2. For example:
~D[2017-03-31] > ~D[2017-04-01]
will return true because structural comparison compares the :day
field before :month or :year. Luckily, the Elixir compiler will
detect whenever comparing structs or whenever comparing code that is
either always true or false, and emit a warning accordingly.
In order to perform semantic comparisons, the relevant data-types
provide a compare/2 function, such as Date.compare/2:
iex> Date.compare(~D[2017-03-31], ~D[2017-04-01])
:lt
Alternatively, you can use the functions in the Enum module to
sort or compute a maximum/minimum:
iex> Enum.sort([~D[2017-03-31], ~D[2017-04-01]], Date)
[~D[2017-03-31], ~D[2017-04-01]]
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]], Date)
~D[2017-04-01]
The second argument is precisely the module to be used for semantic
comparison. Keeping this distinction is important, because if semantic
comparison was used by default for implementing data structures and
algorithms, they could become orders of magnitude slower!
Finally, note there is an overall structural sorting order, called
"Term Ordering", defined below. This order is provided for reference
purposes, it is not required for Elixir developers to know it by heart.
Term ordering
number < atom < reference < function < port < pid < tuple < map < list < bitstring
When comparing two numbers of different types (a number being either
an integer or a float), a conversion to the type with greater precision
will always occur, unless the comparison operator used is either ===/2
or !==/2. A float will be considered more precise than an integer, unless
the float is greater/less than +/-9007199254740992.0 respectively,
at which point all the significant figures of the float are to the left
of the decimal point. This behavior exists so that the comparison of large
numbers remains transitive.
The collection types are compared using the following rules:
	Tuples are compared by size, then element by element.
	Maps are compared by size, then by key-value pairs.
	Lists are compared element by element.
	Bitstrings are compared byte by byte, incomplete bytes are compared bit by bit.
	Atoms are compared using their string value, codepoint by codepoint.

Examples
We can check the truthiness of a value by using the !/1
function twice.
Truthy values:
iex> !!true
true
iex> !!5
true
iex> !![1,2]
true
iex> !!"foo"
true
Falsy values (of which there are exactly two):
iex> !!false
false
iex> !!nil
false
Inlining
Some of the functions described in this module are inlined by
the Elixir compiler into their Erlang counterparts in the
:erlang module.
Those functions are called BIFs (built-in internal functions)
in Erlang-land and they exhibit interesting properties, as some
of them are allowed in guards and others are used for compiler
optimizations.
Most of the inlined functions can be seen in effect when
capturing the function:
iex> &Kernel.is_atom/1
&:erlang.is_atom/1
Those functions will be explicitly marked in their docs as
"inlined by the compiler".

 Summary

 Guards

 left * right

 Arithmetic multiplication operator.

 +value

 Arithmetic positive unary operator.

 left + right

 Arithmetic addition operator.

 -value

 Arithmetic negative unary operator.

 left - right

 Arithmetic subtraction operator.

 left / right

 Arithmetic division operator.

 left != right

 Not equal to operator.

 left !== right

 Strictly not equal to operator.

 left < right

 Less-than operator.

 left <= right

 Less-than or equal to operator.

 left == right

 Equal to operator. Returns true if the two terms are equal.

 left === right

 Strictly equal to operator.

 left > right

 Greater-than operator.

 left >= right

 Greater-than or equal to operator.

 abs(number)

 Returns an integer or float which is the arithmetical absolute value of number.

 left and right

 Strictly boolean "and" operator.

 binary_part(binary, start, size)

 Extracts the part of the binary at start with size.

 bit_size(bitstring)

 Returns an integer which is the size in bits of bitstring.

 byte_size(bitstring)

 Returns the number of bytes needed to contain bitstring.

 ceil(number)

 Returns the smallest integer greater than or equal to number.

 div(dividend, divisor)

 Performs an integer division.

 elem(tuple, index)

 Gets the element at the zero-based index in tuple.

 floor(number)

 Returns the largest integer smaller than or equal to number.

 hd(list)

 Returns the head of a list. Raises ArgumentError if the list is empty.

 left in right

 Membership operator.

 is_atom(term)

 Returns true if term is an atom, otherwise returns false.

 is_binary(term)

 Returns true if term is a binary, otherwise returns false.

 is_bitstring(term)

 Returns true if term is a bitstring (including a binary), otherwise returns false.

 is_boolean(term)

 Returns true if term is either the atom true or the atom false (i.e.,
a boolean), otherwise returns false.

 is_exception(term)

 Returns true if term is an exception, otherwise returns false.

 is_exception(term, name)

 Returns true if term is an exception of name, otherwise returns false.

 is_float(term)

 Returns true if term is a floating-point number, otherwise returns false.

 is_function(term)

 Returns true if term is a function, otherwise returns false.

 is_function(term, arity)

 Returns true if term is a function that can be applied with arity number of arguments;
otherwise returns false.

 is_integer(term)

 Returns true if term is an integer, otherwise returns false.

 is_list(term)

 Returns true if term is a list with zero or more elements, otherwise returns false.

 is_map(term)

 Returns true if term is a map, otherwise returns false.

 is_map_key(map, key)

 Returns true if key is a key in map, otherwise returns false.

 is_nil(term)

 Returns true if term is nil, false otherwise.

 is_non_struct_map(term)

 Returns true if term is a map that is not a struct, otherwise
returns false.

 is_number(term)

 Returns true if term is either an integer or a floating-point number;
otherwise returns false.

 is_pid(term)

 Returns true if term is a PID (process identifier), otherwise returns false.

 is_port(term)

 Returns true if term is a port identifier, otherwise returns false.

 is_reference(term)

 Returns true if term is a reference, otherwise returns false.

 is_struct(term)

 Returns true if term is a struct, otherwise returns false.

 is_struct(term, name)

 Returns true if term is a struct of name, otherwise returns false.

 is_tuple(term)

 Returns true if term is a tuple, otherwise returns false.

 length(list)

 Returns the length of list.

 map_size(map)

 Returns the size of a map.

 max(first, second)

 Returns the biggest of the two given terms according to
their structural comparison.

 min(first, second)

 Returns the smallest of the two given terms according to
their structural comparison.

 node()

 Returns an atom representing the name of the local node.
If the node is not alive, :nonode@nohost is returned instead.

 node(arg)

 Returns the node where the given argument is located.
The argument can be a PID, a reference, or a port.
If the local node is not alive, :nonode@nohost is returned.

 not value

 Strictly boolean "not" operator.

 left or right

 Strictly boolean "or" operator.

 rem(dividend, divisor)

 Computes the remainder of an integer division.

 round(number)

 Rounds a number to the nearest integer.

 self()

 Returns the PID (process identifier) of the calling process.

 tl(list)

 Returns the tail of a list. Raises ArgumentError if the list is empty.

 trunc(number)

 Returns the integer part of number.

 tuple_size(tuple)

 Returns the size of a tuple.

 Functions

 left && right

 Boolean "and" operator.

 base ** exponent

 Power operator.

 left ++ right

 List concatenation operator. Concatenates a proper list and a term, returning a list.

 left -- right

 List subtraction operator. Removes the first occurrence of an element
on the left list for each element on the right.

 ..

 Creates the full-slice range 0..-1//1.

 first..last

 Creates a range from first to last.

 first..last//step

 Creates a range from first to last with step.

 !value

 Boolean "not" operator.

 left <> right

 Binary concatenation operator. Concatenates two binaries.

 left =~ right

 Text-based match operator. Matches the string on the left
against the regular expression or string on the right.

 @expr

 Module attribute unary operator.

 alias!(alias)

 When used inside quoting, marks that the given alias should not
be hygienized. This means the alias will be expanded when
the macro is expanded.

 apply(fun, args)

 Invokes the given anonymous function fun with the list of
arguments args.

 apply(module, function_name, args)

 Invokes the given function from module with the list of
arguments args.

 binary_slice(binary, range)

 Returns a binary from the offset given by the start of the
range to the offset given by the end of the range.

 binary_slice(binary, start, size)

 Returns a binary starting at the offset start and of the given size.

 binding(context \\ nil)

 Returns the binding for the given context as a keyword list.

 dbg(code \\ quote do
 binding()
end, options \\ [])

 Debugs the given code.

 def(call, expr \\ nil)

 Defines a public function with the given name and body.

 defdelegate(funs, opts)

 Defines a function that delegates to another module.

 defexception(fields)

 Defines an exception.

 defguard(guard)

 Defines a macro suitable for use in guard expressions.

 defguardp(guard)

 Defines a private macro suitable for use in guard expressions.

 defimpl(name, opts, do_block \\ [])

 Defines an implementation for the given protocol.

 defmacro(call, expr \\ nil)

 Defines a public macro with the given name and body.

 defmacrop(call, expr \\ nil)

 Defines a private macro with the given name and body.

 defmodule(alias, do_block)

 Defines a module given by name with the given contents.

 defoverridable(keywords_or_behaviour)

 Makes the given definitions in the current module overridable.

 defp(call, expr \\ nil)

 Defines a private function with the given name and body.

 defprotocol(name, do_block)

 Defines a protocol.

 defstruct(fields)

 Defines a struct.

 destructure(left, right)

 Destructures two lists, assigning each term in the
right one to the matching term in the left one.

 exit(reason)

 Stops the execution of the calling process with the given reason.

 function_exported?(module, function, arity)

 Returns true if module is loaded and contains a
public function with the given arity, otherwise false.

 get_and_update_in(path, fun)

 Gets a value and updates a nested data structure via the given path.

 get_and_update_in(data, keys, fun)

 Gets a value and updates a nested structure.

 get_in(path)

 Gets a key from the nested structure via the given path, with
nil-safe handling.

 get_in(data, keys)

 Gets a value from a nested structure with nil-safe handling.

 if(condition, clauses)

 Provides an if/2 macro.

 inspect(term, opts \\ [])

 Inspects the given argument according to the Inspect protocol.
The second argument is a keyword list with options to control
inspection.

 macro_exported?(module, macro, arity)

 Returns true if module is loaded and contains a
public macro with the given arity, otherwise false.

 make_ref()

 Returns an almost unique reference.

 match?(pattern, expression)

 A convenience macro that checks if the result of expression matches pattern.

 pop_in(path)

 Pops a key from the nested structure via the given path.

 pop_in(data, keys)

 Pops a key from the given nested structure.

 put_elem(tuple, index, value)

 Puts value at the given zero-based index in tuple.

 put_in(path, value)

 Puts a value in a nested structure via the given path.

 put_in(data, keys, value)

 Puts a value in a nested structure.

 raise(message)

 Raises an exception.

 raise(exception, attributes)

 Raises an exception.

 reraise(message, stacktrace)

 Raises an exception preserving a previous stacktrace.

 reraise(exception, attributes, stacktrace)

 Raises an exception preserving a previous stacktrace.

 send(dest, message)

 Sends a message to the given dest and returns the message.

 sigil_C(term, modifiers)

 Handles the sigil ~C for charlists.

 sigil_c(term, modifiers)

 Handles the sigil ~c for charlists.

 sigil_D(date_string, modifiers)

 Handles the sigil ~D for dates.

 sigil_N(naive_datetime_string, modifiers)

 Handles the sigil ~N for naive date times.

 sigil_r(term, modifiers)

 Handles the sigil ~r for regular expressions.

 sigil_S(term, modifiers)

 Handles the sigil ~S for strings.

 sigil_s(term, modifiers)

 Handles the sigil ~s for strings.

 sigil_T(time_string, modifiers)

 Handles the sigil ~T for times.

 sigil_U(datetime_string, modifiers)

 Handles the sigil ~U to create a UTC DateTime.

 sigil_W(term, modifiers)

 Handles the sigil ~W for list of words.

 sigil_w(term, modifiers)

 Handles the sigil ~w for list of words.

 spawn(fun)

 Spawns the given function and returns its PID.

 spawn(module, fun, args)

 Spawns the given function fun from the given module passing it the given
args and returns its PID.

 spawn_link(fun)

 Spawns the given function, links it to the current process, and returns its PID.

 spawn_link(module, fun, args)

 Spawns the given function fun from the given module passing it the given
args, links it to the current process, and returns its PID.

 spawn_monitor(fun)

 Spawns the given function, monitors it and returns its PID
and monitoring reference.

 spawn_monitor(module, fun, args)

 Spawns the given module and function passing the given args,
monitors it and returns its PID and monitoring reference.

 struct(struct, fields \\ [])

 Creates and updates a struct.

 struct!(struct, fields \\ [])

 Similar to struct/2 but checks for key validity.

 tap(value, fun)

 Pipes the first argument, value, into the second argument, a function fun,
and returns value itself.

 then(value, fun)

 Pipes the first argument, value, into the second argument, a function fun,
and returns the result of calling fun.

 throw(term)

 A non-local return from a function.

 to_charlist(term)

 Converts the given term to a charlist according to the List.Chars protocol.

 to_string(term)

 Converts the argument to a string according to the
String.Chars protocol.

 to_timeout(duration)

 Constructs a millisecond timeout from the given components, duration, or timeout.

 unless(condition, clauses)

 deprecated

 Provides an unless macro.

 update_in(path, fun)

 Updates a nested structure via the given path.

 update_in(data, keys, fun)

 Updates a key in a nested structure.

 use(module, opts \\ [])

 Uses the given module in the current context.

 var!(var, context \\ nil)

 Marks that the given variable should not be hygienized.

 left |> right

 Pipe operator.

 left || right

 Boolean "or" operator.

 Guards

 left * right

 @spec integer() * integer() :: integer()

 @spec float() * float() :: float()

 @spec integer() * float() :: float()

 @spec float() * integer() :: float()

Arithmetic multiplication operator.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 * 2
2

 +value

 @spec +integer() :: integer()

 @spec +float() :: float()

Arithmetic positive unary operator.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> +1
1

 left + right

 @spec integer() + integer() :: integer()

 @spec float() + float() :: float()

 @spec integer() + float() :: float()

 @spec float() + integer() :: float()

Arithmetic addition operator.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 + 2
3

 -value

 @spec -0 :: 0

 @spec -pos_integer() :: neg_integer()

 @spec -neg_integer() :: pos_integer()

 @spec -float() :: float()

Arithmetic negative unary operator.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> -2
-2

 left - right

 @spec integer() - integer() :: integer()

 @spec float() - float() :: float()

 @spec integer() - float() :: float()

 @spec float() - integer() :: float()

Arithmetic subtraction operator.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 - 2
-1

 left / right

 @spec number() / number() :: float()

Arithmetic division operator.
The result is always a float. Use div/2 and rem/2 if you want
an integer division or the remainder.
Raises ArithmeticError if right is 0 or 0.0.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 / 2
0.5

iex> -3.0 / 2.0
-1.5

iex> 5 / 1
5.0

7 / 0
** (ArithmeticError) bad argument in arithmetic expression

 left != right

 @spec term() != term() :: boolean()

Not equal to operator.
Returns true if the two terms are not equal.
This operator considers 1 and 1.0 to be equal. For match
comparison, use !==/2 instead.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 != 2
true

iex> 1 != 1.0
false

 left !== right

 @spec term() !== term() :: boolean()

Strictly not equal to operator.
Returns true if the two terms are not exactly equal.
See ===/2 for a definition of what is considered "exactly equal".
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 !== 2
true

iex> 1 !== 1.0
true

 left < right

 @spec term() < term() :: boolean()

Less-than operator.
Returns true if left is less than right.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 < 2
true

 left <= right

 @spec term() <= term() :: boolean()

Less-than or equal to operator.
Returns true if left is less than or equal to right.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 <= 2
true

 left == right

 @spec term() == term() :: boolean()

Equal to operator. Returns true if the two terms are equal.
This operator considers 1 and 1.0 to be equal. For stricter
semantics, use ===/2 instead.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 == 2
false

iex> 1 == 1.0
true

 left === right

 @spec term() === term() :: boolean()

Strictly equal to operator.
Returns true if the two terms are exactly equal.
The terms are only considered to be exactly equal if they
have the same value and are of the same type. For example,
1 == 1.0 returns true, but since they are of different
types, 1 === 1.0 returns false.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 === 2
false

iex> 1 === 1.0
false

 left > right

 @spec term() > term() :: boolean()

Greater-than operator.
Returns true if left is more than right.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 > 2
false

 left >= right

 @spec term() >= term() :: boolean()

Greater-than or equal to operator.
Returns true if left is more than or equal to right.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 >= 2
false

 abs(number)

 @spec abs(number()) :: number()

Returns an integer or float which is the arithmetical absolute value of number.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> abs(-3.33)
3.33

iex> abs(-3)
3

 left and right

 (macro)

Strictly boolean "and" operator.
If left is false, returns false, otherwise returns right.
Requires only the left operand to be a boolean since it short-circuits. If
the left operand is not a boolean, a BadBooleanError exception is raised.
Allowed in guard tests.
Examples
iex> true and false
false

iex> true and "yay!"
"yay!"

iex> "yay!" and true
** (BadBooleanError) expected a boolean on left-side of "and", got: "yay!"

 binary_part(binary, start, size)

 @spec binary_part(binary(), non_neg_integer(), integer()) :: binary()

Extracts the part of the binary at start with size.
If start or size reference in any way outside the binary,
an ArgumentError exception is raised.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> binary_part("foo", 1, 2)
"oo"
A negative size can be used to extract bytes that come before the byte
at start:
iex> binary_part("Hello", 5, -3)
"llo"
An ArgumentError is raised when the size is outside of the binary:
binary_part("Hello", 0, 10)
** (ArgumentError) argument error

 bit_size(bitstring)

 @spec bit_size(bitstring()) :: non_neg_integer()

Returns an integer which is the size in bits of bitstring.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bit_size(<<433::16, 3::3>>)
19

iex> bit_size(<<1, 2, 3>>)
24

 byte_size(bitstring)

 @spec byte_size(bitstring()) :: non_neg_integer()

Returns the number of bytes needed to contain bitstring.
That is, if the number of bits in bitstring is not divisible by 8, the
resulting number of bytes will be rounded up (by excess). This operation
happens in constant time.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> byte_size(<<433::16, 3::3>>)
3

iex> byte_size(<<1, 2, 3>>)
3

 ceil(number)

 (since 1.8.0)

 @spec ceil(number()) :: integer()

Returns the smallest integer greater than or equal to number.
If you want to perform ceil operation on other decimal places,
use Float.ceil/2 instead.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> ceil(10)
10

iex> ceil(10.1)
11

iex> ceil(-10.1)
-10

 div(dividend, divisor)

 @spec div(integer(), neg_integer() | pos_integer()) :: integer()

Performs an integer division.
Raises an ArithmeticError exception if one of the arguments is not an
integer, or when the divisor is 0.
div/2 performs truncated integer division. This means that
the result is always rounded towards zero.
If you want to perform floored integer division (rounding towards negative infinity),
use Integer.floor_div/2 instead.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> div(5, 2)
2

iex> div(6, -4)
-1

iex> div(-99, 2)
-49

div(100, 0)
** (ArithmeticError) bad argument in arithmetic expression

 elem(tuple, index)

 @spec elem(tuple(), non_neg_integer()) :: term()

Gets the element at the zero-based index in tuple.
It raises ArgumentError when index is negative or it is out of range of the tuple elements.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> tuple = {:foo, :bar, 3}
iex> elem(tuple, 1)
:bar

elem({}, 0)
** (ArgumentError) argument error

elem({:foo, :bar}, 2)
** (ArgumentError) argument error

 floor(number)

 (since 1.8.0)

 @spec floor(number()) :: integer()

Returns the largest integer smaller than or equal to number.
If you want to perform floor operation on other decimal places,
use Float.floor/2 instead.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> floor(10)
10

iex> floor(9.7)
9

iex> floor(-9.7)
-10

 hd(list)

 @spec hd(nonempty_maybe_improper_list(elem, term())) :: elem when elem: term()

Returns the head of a list. Raises ArgumentError if the list is empty.
The head of a list is its first element.
It works with improper lists.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> hd([1, 2, 3, 4])
1

iex> hd([1 | 2])
1
Giving it an empty list raises:
hd([])
** (ArgumentError) argument error

 left in right

 (macro)

Membership operator.
Checks if the element on the left-hand side is a member of the
collection on the right-hand side.
Examples
iex> x = 1
iex> x in [1, 2, 3]
true
This operator (which is a macro) simply translates to a call to
Enum.member?/2. The example above would translate to:
Enum.member?([1, 2, 3], x)
Elixir also supports left not in right, which evaluates to
not(left in right):
iex> x = 1
iex> x not in [1, 2, 3]
false
Guards
The in/2 operator (as well as not in) can be used in guard clauses as
long as the right-hand side is a range or a list.
If the right-hand side is a list, Elixir will expand the operator to a valid
guard expression which needs to check each value. For example:
when x in [1, 2, 3]
translates to:
when x === 1 or x === 2 or x === 3
However, this construct will be inefficient for large lists. In such cases, it
is best to stop using guards and use a more appropriate data structure, such
as MapSet.
If the right-hand side is a range, a more efficient comparison check will be
done. For example:
when x in 1..1000
translates roughly to:
when x >= 1 and x <= 1000
AST considerations
left not in right is parsed by the compiler into the AST:
{:not, _, [{:in, _, [left, right]}]}
This is the same AST as not(left in right).
Additionally, Macro.to_string/2 and Code.format_string!/2
will translate all occurrences of this AST to left not in right.

 is_atom(term)

 @spec is_atom(term()) :: boolean()

Returns true if term is an atom, otherwise returns false.
Note true, false, and nil are atoms in Elixir, as well as
module names. Therefore this function will return true to all
of those values.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_atom(:name)
true

iex> is_atom(false)
true

iex> is_atom(AnAtom)
true

iex> is_atom("string")
false

 is_binary(term)

 @spec is_binary(term()) :: boolean()

Returns true if term is a binary, otherwise returns false.
A binary always contains a complete number of bytes.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_binary("foo")
true
iex> is_binary(<<1::3>>)
false

 is_bitstring(term)

 @spec is_bitstring(term()) :: boolean()

Returns true if term is a bitstring (including a binary), otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_bitstring("foo")
true
iex> is_bitstring(<<1::3>>)
true

 is_boolean(term)

 @spec is_boolean(term()) :: boolean()

Returns true if term is either the atom true or the atom false (i.e.,
a boolean), otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_boolean(false)
true

iex> is_boolean(true)
true

iex> is_boolean(:test)
false

 is_exception(term)

 (since 1.11.0)

 (macro)

Returns true if term is an exception, otherwise returns false.
Allowed in guard tests.
Examples
iex> is_exception(%RuntimeError{})
true

iex> is_exception(%{})
false

 is_exception(term, name)

 (since 1.11.0)

 (macro)

Returns true if term is an exception of name, otherwise returns false.
Allowed in guard tests.
Examples
iex> is_exception(%RuntimeError{}, RuntimeError)
true

iex> is_exception(%RuntimeError{}, Macro.Env)
false

 is_float(term)

 @spec is_float(term()) :: boolean()

Returns true if term is a floating-point number, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_float(2.15)
true

iex> is_float(3.45e5)
true

iex> is_float(5)
false

 is_function(term)

 @spec is_function(term()) :: boolean()

Returns true if term is a function, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_function(fn x -> x + x end)
true

iex> is_function("not a function")
false

 is_function(term, arity)

 @spec is_function(term(), non_neg_integer()) :: boolean()

Returns true if term is a function that can be applied with arity number of arguments;
otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_function(fn x -> x * 2 end, 1)
true
iex> is_function(fn x -> x * 2 end, 2)
false

 is_integer(term)

 @spec is_integer(term()) :: boolean()

Returns true if term is an integer, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_integer(5)
true

iex> is_integer(5.0)
false

 is_list(term)

 @spec is_list(term()) :: boolean()

Returns true if term is a list with zero or more elements, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_list([1, 2, 3])
true

iex> is_list(key: :sum, value: 3)
true

iex> is_list({1, 2, 3})
false

 is_map(term)

 @spec is_map(term()) :: boolean()

Returns true if term is a map, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Structs are maps
Structs are also maps, and many of Elixir data structures are implemented
using structs: Ranges, Regexes, Dates...
iex> is_map(1..10)
true
iex> is_map(~D[2024-04-18])
true
If you mean to specifically check for non-struct maps, use
is_non_struct_map/1 instead.
iex> is_non_struct_map(1..10)
false

 is_map_key(map, key)

 (since 1.10.0)

 @spec is_map_key(map(), term()) :: boolean()

Returns true if key is a key in map, otherwise returns false.
It raises BadMapError if the first element is not a map.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_map_key(%{a: "foo", b: "bar"}, :a)
true

iex> is_map_key(%{a: "foo", b: "bar"}, :c)
false

 is_nil(term)

 (macro)

Returns true if term is nil, false otherwise.
Allowed in guard clauses.
Examples
iex> is_nil(1 + 2)
false

iex> is_nil(nil)
true

 is_non_struct_map(term)

 (since 1.17.0)

 (macro)

Returns true if term is a map that is not a struct, otherwise
returns false.
Allowed in guard tests.
Examples
iex> is_non_struct_map(%{})
true

iex> is_non_struct_map(URI.parse("/"))
false

iex> is_non_struct_map(nil)
false

 is_number(term)

 @spec is_number(term()) :: boolean()

Returns true if term is either an integer or a floating-point number;
otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_number(2.15)
true

iex> is_number(5)
true

iex> is_number(:one)
false

 is_pid(term)

 @spec is_pid(term()) :: boolean()

Returns true if term is a PID (process identifier), otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> {:ok, agent_pid} = Agent.start_link(fn -> 0 end)
iex> is_pid(agent_pid)
true

iex> is_pid(self())
true

iex> is_pid(:pid)
false

 is_port(term)

 @spec is_port(term()) :: boolean()

Returns true if term is a port identifier, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> [port | _] = Port.list()
iex> is_port(port)
true

iex> is_port(:port)
false

 is_reference(term)

 @spec is_reference(term()) :: boolean()

Returns true if term is a reference, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> ref = make_ref()
iex> is_reference(ref)
true

iex> is_reference(:ref)
false

 is_struct(term)

 (since 1.10.0)

 (macro)

Returns true if term is a struct, otherwise returns false.
Allowed in guard tests.
Examples
iex> is_struct(URI.parse("/"))
true

iex> is_struct(%{})
false

 is_struct(term, name)

 (since 1.11.0)

 (macro)

Returns true if term is a struct of name, otherwise returns false.
is_struct/2 does not check that name exists and is a valid struct.
If you want such validations, you must pattern match on the struct
instead, such as match?(%URI{}, arg).
Allowed in guard tests.
Examples
iex> is_struct(URI.parse("/"), URI)
true

iex> is_struct(URI.parse("/"), Macro.Env)
false

 is_tuple(term)

 @spec is_tuple(term()) :: boolean()

Returns true if term is a tuple, otherwise returns false.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> is_tuple({1, 2, 3})
true

iex> is_tuple({})
true

iex> is_tuple(true)
false

 length(list)

 @spec length(list()) :: non_neg_integer()

Returns the length of list.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> length([1, 2, 3, 4, 5, 6, 7, 8, 9])
9

 map_size(map)

 @spec map_size(map()) :: non_neg_integer()

Returns the size of a map.
The size of a map is the number of key-value pairs that the map contains.
This operation happens in constant time.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> map_size(%{a: "foo", b: "bar"})
2

 max(first, second)

 @spec max(first, second) :: first | second when first: term(), second: term()

Returns the biggest of the two given terms according to
their structural comparison.
If the terms compare equal, the first one is returned.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> max(1, 2)
2
iex> max("a", "b")
"b"

 min(first, second)

 @spec min(first, second) :: first | second when first: term(), second: term()

Returns the smallest of the two given terms according to
their structural comparison.
If the terms compare equal, the first one is returned.
This performs a structural comparison where all Elixir
terms can be compared with each other. See the "Structural
comparison" section
for more information.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> min(1, 2)
1
iex> min("foo", "bar")
"bar"

 node()

 @spec node() :: node()

Returns an atom representing the name of the local node.
If the node is not alive, :nonode@nohost is returned instead.
Allowed in guard tests. Inlined by the compiler.

 node(arg)

 @spec node(pid() | reference() | port()) :: node()

Returns the node where the given argument is located.
The argument can be a PID, a reference, or a port.
If the local node is not alive, :nonode@nohost is returned.
Allowed in guard tests. Inlined by the compiler.

 not value

 @spec not true :: false

 @spec not false :: true

Strictly boolean "not" operator.
value must be a boolean; if it's not, an ArgumentError exception is raised.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> not false
true

 left or right

 (macro)

Strictly boolean "or" operator.
If left is true, returns true, otherwise returns right.
Requires only the left operand to be a boolean since it short-circuits.
If the left operand is not a boolean, a BadBooleanError exception is
raised.
Allowed in guard tests.
Examples
iex> true or false
true

iex> false or 42
42

iex> 42 or false
** (BadBooleanError) expected a boolean on left-side of "or", got: 42

 rem(dividend, divisor)

 @spec rem(integer(), neg_integer() | pos_integer()) :: integer()

Computes the remainder of an integer division.
rem/2 uses truncated division, which means that
the result will always have the sign of the dividend.
Raises an ArithmeticError exception if one of the arguments is not an
integer, or when the divisor is 0.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> rem(5, 2)
1
iex> rem(6, -4)
2

 round(number)

 @spec round(number()) :: integer()

Rounds a number to the nearest integer.
If the number is equidistant to the two nearest integers, rounds away from zero.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> round(5.6)
6

iex> round(5.2)
5

iex> round(-9.9)
-10

iex> round(-9)
-9

iex> round(2.5)
3

iex> round(-2.5)
-3

 self()

 @spec self() :: pid()

Returns the PID (process identifier) of the calling process.
Allowed in guard clauses. Inlined by the compiler.

 tl(list)

 @spec tl(nonempty_maybe_improper_list(elem, last)) ::
 maybe_improper_list(elem, last) | last
when elem: term(), last: term()

Returns the tail of a list. Raises ArgumentError if the list is empty.
The tail of a list is the list without its first element.
It works with improper lists.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> tl([1, 2, 3, :go])
[2, 3, :go]

iex> tl([:one])
[]

iex> tl([:a, :b | :improper_end])
[:b | :improper_end]

iex> tl([:a | %{b: 1}])
%{b: 1}
Giving it an empty list raises:
tl([])
** (ArgumentError) argument error

 trunc(number)

 @spec trunc(number()) :: integer()

Returns the integer part of number.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> trunc(5.4)
5

iex> trunc(-5.99)
-5

iex> trunc(-5)
-5

 tuple_size(tuple)

 @spec tuple_size(tuple()) :: non_neg_integer()

Returns the size of a tuple.
This operation happens in constant time.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> tuple_size({:a, :b, :c})
3

 Functions

 left && right

 (macro)

Boolean "and" operator.
Provides a short-circuit operator that evaluates and returns
the second expression only if the first one evaluates to a truthy value
(neither false nor nil). Returns the first expression
otherwise.
Not allowed in guard clauses.
Examples
iex> Enum.empty?([]) && Enum.empty?([])
true

iex> List.first([]) && true
nil

iex> Enum.empty?([]) && List.first([1])
1

iex> false && throw(:bad)
false
Note that, unlike and/2, this operator accepts any expression
as the first argument, not only booleans.

 base ** exponent

 (since 1.13.0)

 @spec integer() ** non_neg_integer() :: integer()

 @spec integer() ** neg_integer() :: float()

 @spec float() ** float() :: float()

 @spec integer() ** float() :: float()

 @spec float() ** integer() :: float()

Power operator.
It takes two numbers for input. If both are integers and the right-hand
side (the exponent) is also greater than or equal to 0, then the result
will also be an integer. Otherwise it returns a float.
Examples
iex> 2 ** 2
4
iex> 2 ** -4
0.0625

iex> 2.0 ** 2
4.0
iex> 2 ** 2.0
4.0

 left ++ right

 @spec [] ++ a :: a when a: term()

 @spec [...] ++ term() :: maybe_improper_list()

List concatenation operator. Concatenates a proper list and a term, returning a list.
The complexity of a ++ b is proportional to length(a), so avoid repeatedly
appending to lists of arbitrary length, for example, list ++ [element].
Instead, consider prepending via [element | rest] and then reversing.
If the right operand is not a proper list, it returns an improper list.
If the left operand is not a proper list, it raises ArgumentError.
If the left operand is an empty list, it returns the right operand.
Inlined by the compiler.
Examples
iex> [1] ++ [2, 3]
[1, 2, 3]

iex> ~c"foo" ++ ~c"bar"
~c"foobar"

a non-list on the right will return an improper list
with said element at the end
iex> [1, 2] ++ 3
[1, 2 | 3]
iex> [1, 2] ++ {3, 4}
[1, 2 | {3, 4}]

improper list on the right will return an improper list
iex> [1] ++ [2 | 3]
[1, 2 | 3]

empty list on the left will return the right operand
iex> [] ++ 1
1
The ++/2 operator is right associative, meaning:
iex> [1, 2, 3] -- [1] ++ [2]
[3]
As it is equivalent to:
iex> [1, 2, 3] -- ([1] ++ [2])
[3]

 left -- right

 @spec list() -- list() :: list()

List subtraction operator. Removes the first occurrence of an element
on the left list for each element on the right.
This function is optimized so the complexity of a -- b is proportional
to length(a) * log(length(b)). See also the Erlang efficiency
guide.
Inlined by the compiler.
Examples
iex> [1, 2, 3] -- [1, 2]
[3]

iex> [1, 2, 3, 2, 1] -- [1, 2, 2]
[3, 1]
The --/2 operator is right associative, meaning:
iex> [1, 2, 3] -- [2] -- [3]
[1, 3]
As it is equivalent to:
iex> [1, 2, 3] -- ([2] -- [3])
[1, 3]

 ..

 (since 1.14.0)

 (macro)

Creates the full-slice range 0..-1//1.
This macro returns a range with the following properties:
	When enumerated, it is empty

	When used as a slice, it returns the sliced element as is

See ..///3 and the Range module for more information.
Examples
iex> Enum.to_list(..)
[]

iex> String.slice("Hello world!", ..)
"Hello world!"

 first..last

 (macro)

Creates a range from first to last.
If first is less than last, the range will be increasing from
first to last. If first is equal to last, the range will contain
one element, which is the number itself.
If first is more than last, the range will be decreasing from first
to last, albeit this behavior is deprecated. Instead prefer to
explicitly list the step with first..last//-1.
See the Range module for more information.
Examples
iex> 0 in 1..3
false
iex> 2 in 1..3
true

iex> Enum.to_list(1..3)
[1, 2, 3]

 first..last//step

 (since 1.12.0)

 (macro)

Creates a range from first to last with step.
See the Range module for more information.
Examples
iex> 0 in 1..3//1
false
iex> 2 in 1..3//1
true
iex> 2 in 1..3//2
false

iex> Enum.to_list(1..3//1)
[1, 2, 3]
iex> Enum.to_list(1..3//2)
[1, 3]
iex> Enum.to_list(3..1//-1)
[3, 2, 1]
iex> Enum.to_list(1..0//1)
[]

 !value

 (macro)

Boolean "not" operator.
Receives any value (not just booleans) and returns true if value
is false or nil; returns false otherwise.
Not allowed in guard clauses.
Examples
iex> !Enum.empty?([])
false

iex> !List.first([])
true

 left <> right

 (macro)

Binary concatenation operator. Concatenates two binaries.
Raises an ArgumentError if one of the sides aren't binaries.
Examples
iex> "foo" <> "bar"
"foobar"
The <>/2 operator can also be used in pattern matching (and guard clauses) as
long as the left argument is a literal binary:
iex> "foo" <> x = "foobar"
iex> x
"bar"
x <> "bar" = "foobar" would result in an ArgumentError exception.

 left =~ right

 @spec String.t() =~ (String.t() | Regex.t()) :: boolean()

Text-based match operator. Matches the string on the left
against the regular expression or string on the right.
If right is a regular expression, returns true if left matches right.
If right is a string, returns true if left contains right.
Examples
iex> "abcd" =~ ~r/c(d)/
true

iex> "abcd" =~ ~r/e/
false

iex> "abcd" =~ ~r//
true

iex> "abcd" =~ "bc"
true

iex> "abcd" =~ "ad"
false

iex> "abcd" =~ "abcd"
true

iex> "abcd" =~ ""
true
For more information about regular expressions, please check the Regex module.

 @expr

 (macro)

Module attribute unary operator.
Reads and writes attributes in the current module.
The canonical example for attributes is annotating that a module
implements an OTP behaviour, such as GenServer:
defmodule MyServer do
 @behaviour GenServer
 # ... callbacks ...
end
By default Elixir supports all the module attributes supported by Erlang, but
custom attributes can be used as well:
defmodule MyServer do
 @my_data 13
 IO.inspect(@my_data)
 #=> 13
end
Unlike Erlang, such attributes are not stored in the module by default since
it is common in Elixir to use custom attributes to store temporary data that
will be available at compile-time. Custom attributes may be configured to
behave closer to Erlang by using Module.register_attribute/3.
Prefixing module attributes
Libraries and frameworks should consider prefixing any
module attributes that are private by underscore, such as @_my_data,
so code completion tools do not show them on suggestions and prompts.
Finally, note that attributes can also be read inside functions:
defmodule MyServer do
 @my_data 11
 def first_data, do: @my_data
 @my_data 13
 def second_data, do: @my_data
end

MyServer.first_data()
#=> 11

MyServer.second_data()
#=> 13
It is important to note that reading an attribute takes a snapshot of
its current value. In other words, the value is read at compilation
time and not at runtime. Check the Module module for other functions
to manipulate module attributes.
Attention! Multiple references of the same attribute
As mentioned above, every time you read a module attribute, a snapshot
of its current value is taken. Therefore, if you are storing large
values inside module attributes (for example, embedding external files
in module attributes), you should avoid referencing the same attribute
multiple times. For example, don't do this:
@files %{
 example1: File.read!("lib/example1.data"),
 example2: File.read!("lib/example2.data")
}

def example1, do: @files[:example1]
def example2, do: @files[:example2]
In the above, each reference to @files may end-up with a complete
and individual copy of the whole @files module attribute. Instead,
reference the module attribute once in a private function:
@files %{
 example1: File.read!("lib/example1.data"),
 example2: File.read!("lib/example2.data")
}

defp files(), do: @files
def example1, do: files()[:example1]
def example2, do: files()[:example2]

 alias!(alias)

 (macro)

When used inside quoting, marks that the given alias should not
be hygienized. This means the alias will be expanded when
the macro is expanded.
Check quote/2 for more information.

 apply(fun, args)

 @spec apply(fun(), [any()]) :: any()

Invokes the given anonymous function fun with the list of
arguments args.
If the number of arguments is known at compile time, prefer
fun.(arg_1, arg_2, ..., arg_n) as it is clearer than
apply(fun, [arg_1, arg_2, ..., arg_n]).
Inlined by the compiler.
Examples
iex> apply(fn x -> x * 2 end, [2])
4

 apply(module, function_name, args)

 @spec apply(module(), function_name :: atom(), [any()]) :: any()

Invokes the given function from module with the list of
arguments args.
apply/3 is used to invoke functions where the module, function
name or arguments are defined dynamically at runtime. For this
reason, you can't invoke macros using apply/3, only functions.
If the number of arguments and the function name are known at compile time,
prefer module.function(arg_1, arg_2, ..., arg_n) as it is clearer than
apply(module, :function, [arg_1, arg_2, ..., arg_n]).
apply/3 cannot be used to call private functions.
Inlined by the compiler.
Examples
iex> apply(Enum, :reverse, [[1, 2, 3]])
[3, 2, 1]

 binary_slice(binary, range)

 (since 1.14.0)

Returns a binary from the offset given by the start of the
range to the offset given by the end of the range.
If the start or end of the range are negative, they are converted
into positive indices based on the binary size. For example,
-1 means the last byte of the binary.
This is similar to binary_part/3 except that it works with ranges
and it is not allowed in guards.
This function works with bytes. For a slicing operation that
considers characters, see String.slice/2.
Examples
iex> binary_slice("elixir", 0..5)
"elixir"
iex> binary_slice("elixir", 1..3)
"lix"
iex> binary_slice("elixir", 1..10)
"lixir"

iex> binary_slice("elixir", -4..-1)
"ixir"
iex> binary_slice("elixir", -4..6)
"ixir"
iex> binary_slice("elixir", -10..10)
"elixir"
For ranges where start > stop, you need to explicitly
mark them as increasing:
iex> binary_slice("elixir", 2..-1//1)
"ixir"
iex> binary_slice("elixir", 1..-2//1)
"lixi"
You can use ../0 as a shortcut for 0..-1//1, which returns
the whole binary as is:
iex> binary_slice("elixir", ..)
"elixir"
The step can be any positive number. For example, to
get every 2 characters of the binary:
iex> binary_slice("elixir", 0..-1//2)
"eii"
If the first position is after the string ends or after
the last position of the range, it returns an empty string:
iex> binary_slice("elixir", 10..3//1)
""
iex> binary_slice("elixir", -10..-7)
""
iex> binary_slice("a", 1..1500)
""

 binary_slice(binary, start, size)

 (since 1.14.0)

Returns a binary starting at the offset start and of the given size.
This is similar to binary_part/3 except that if start + size
is greater than the binary size, it automatically clips it to
the binary size instead of raising. Opposite to binary_part/3,
this function is not allowed in guards.
This function works with bytes. For a slicing operation that
considers characters, see String.slice/3.
Examples
iex> binary_slice("elixir", 0, 6)
"elixir"
iex> binary_slice("elixir", 0, 5)
"elixi"
iex> binary_slice("elixir", 1, 4)
"lixi"
iex> binary_slice("elixir", 0, 10)
"elixir"
If start is negative, it is normalized against the binary
size and clamped to 0:
iex> binary_slice("elixir", -3, 10)
"xir"
iex> binary_slice("elixir", -10, 10)
"elixir"
If the size is zero, an empty binary is returned:
iex> binary_slice("elixir", 1, 0)
""
If start is greater than or equal to the binary size,
an empty binary is returned:
iex> binary_slice("elixir", 10, 10)
""

 binding(context \\ nil)

 (macro)

Returns the binding for the given context as a keyword list.
In the returned result, keys are variable names and values are the
corresponding variable values.
If the given context is nil (by default it is), the binding for the
current context is returned.
Examples
iex> x = 1
iex> binding()
[x: 1]
iex> x = 2
iex> binding()
[x: 2]

iex> binding(:foo)
[]
iex> var!(x, :foo) = 1
1
iex> binding(:foo)
[x: 1]

 dbg(code \\ quote do
 binding()
end, options \\ [])

 (since 1.14.0)

 (macro)

Debugs the given code.
dbg/2 can be used to debug the given code through a configurable debug function.
It returns the result of the given code.
Examples
Let's take this call to dbg/2:
dbg(Atom.to_string(:debugging))
#=> "debugging"
It returns the string "debugging", which is the result of the Atom.to_string/1 call.
Additionally, the call above prints:
[my_file.ex:10: MyMod.my_fun/0]
Atom.to_string(:debugging) #=> "debugging"
The default debugging function prints additional debugging info when dealing with
pipelines. It prints the values at every "step" of the pipeline.
"Elixir is cool!"
|> String.trim_trailing("!")
|> String.split()
|> List.first()
|> dbg()
#=> "Elixir"
The code above prints:
[my_file.ex:10: MyMod.my_fun/0]
"Elixir is cool!" #=> "Elixir is cool!"
|> String.trim_trailing("!") #=> "Elixir is cool"
|> String.split() #=> ["Elixir", "is", "cool"]
|> List.first() #=> "Elixir"
With no arguments, dbg() debugs information about the current binding. See binding/1.
dbg inside IEx
You can enable IEx to replace dbg with its IEx.pry/0 backend by calling:
$ iex --dbg pry

In such cases, dbg will start a pry session where you can interact with
the imports, aliases, and variables of the current environment at the location
of the dbg call.
If you call dbg at the end of a pipeline (using |>) within IEx, you are able
to go through each step of the pipeline one by one by entering "next" (or "n").
Note dbg only supports stepping for pipelines (in other words, it can only
step through the code it sees). For general stepping, you can set breakpoints
using IEx.break!/4.
For more information, see IEx documentation.
Configuring the debug function
One of the benefits of dbg/2 is that its debugging logic is configurable,
allowing tools to extend dbg with enhanced behaviour. This is done, for
example, by IEx which extends dbg with an interactive shell where you
can directly inspect and access values.
The debug function can be configured at compile time through the :dbg_callback
key of the :elixir application. The debug function must be a
{module, function, args} tuple. The function function in module will be
invoked with three arguments prepended to args:
	The AST of code
	The AST of options
	The Macro.Env environment of where dbg/2 is invoked

The debug function is invoked at compile time and it must also return an AST.
The AST is expected to ultimately return the result of evaluating the debugged
expression.
Here's a simple example:
defmodule MyMod do
 def debug_fun(code, options, caller, device) do
 quote do
 result = unquote(code)
 IO.inspect(unquote(device), result, label: unquote(Macro.to_string(code)))
 end
 end
end
To configure the debug function:
In config/config.exs
config :elixir, :dbg_callback, {MyMod, :debug_fun, [:stdio]}
Default debug function
By default, the debug function we use is Macro.dbg/3. It just prints
information about the code to standard output and returns the value
returned by evaluating code. options are used to control how terms
are inspected. They are the same options accepted by inspect/2.

 def(call, expr \\ nil)

 (macro)

Defines a public function with the given name and body.
Examples
defmodule Foo do
 def bar, do: :baz
end

Foo.bar()
#=> :baz
A function that expects arguments can be defined as follows:
defmodule Foo do
 def sum(a, b) do
 a + b
 end
end
In the example above, a sum/2 function is defined; this function receives
two arguments and returns their sum.
Default arguments
\\ is used to specify a default value for a parameter of a function. For
example:
defmodule MyMath do
 def multiply_by(number, factor \\ 2) do
 number * factor
 end
end

MyMath.multiply_by(4, 3)
#=> 12

MyMath.multiply_by(4)
#=> 8
The compiler translates this into multiple functions with different arities,
here MyMath.multiply_by/1 and MyMath.multiply_by/2, that represent cases when
arguments for parameters with default values are passed or not passed.
When defining a function with default arguments as well as multiple
explicitly declared clauses, you must write a function head that declares the
defaults. For example:
defmodule MyString do
 def join(string1, string2 \\ nil, separator \\ " ")

 def join(string1, nil, _separator) do
 string1
 end

 def join(string1, string2, separator) do
 string1 <> separator <> string2
 end
end
Note that \\ can't be used with anonymous functions because they
can only have a sole arity.
Keyword lists with default arguments
Functions containing many arguments can benefit from using Keyword
lists to group and pass attributes as a single value.
defmodule MyConfiguration do
 @default_opts [storage: "local"]

 def configure(resource, opts \\ []) do
 opts = Keyword.merge(@default_opts, opts)
 storage = opts[:storage]
 # ...
 end
end
The difference between using Map and Keyword to store many
arguments is Keyword's keys:
	must be atoms
	can be given more than once
	ordered, as specified by the developer

Function names
Function and variable names in Elixir must start with an underscore or a
Unicode letter that is not in uppercase or titlecase. They may continue
using a sequence of Unicode letters, numbers, and underscores. They may
end in ? or !. Elixir's Naming Conventions
suggest for function and variable names to be written in the snake_case
format.
rescue/catch/after/else
Function bodies support rescue, catch, after, and else as try/1
does (known as "implicit try"). For example, the following two functions are equivalent:
def convert(number) do
 try do
 String.to_integer(number)
 rescue
 e in ArgumentError -> {:error, e.message}
 end
end

def convert(number) do
 String.to_integer(number)
rescue
 e in ArgumentError -> {:error, e.message}
end

 defdelegate(funs, opts)

 (macro)

Defines a function that delegates to another module.
Functions defined with defdelegate/2 are public and can be invoked from
outside the module they're defined in, as if they were defined using def/2.
Therefore, defdelegate/2 is about extending the current module's public API.
If what you want is to invoke a function defined in another module without
using its full module name, then use alias/2 to shorten the module name or use
import/2 to be able to invoke the function without the module name altogether.
Delegation only works with functions; delegating macros is not supported.
Check def/2 for rules on naming and default arguments.
Options
	:to - the module to dispatch to.

	:as - the function to call on the target given in :to.
This parameter is optional and defaults to the name being
delegated (funs).

Examples
defmodule MyList do
 defdelegate reverse(list), to: Enum
 defdelegate other_reverse(list), to: Enum, as: :reverse
end

MyList.reverse([1, 2, 3])
#=> [3, 2, 1]

MyList.other_reverse([1, 2, 3])
#=> [3, 2, 1]

 defexception(fields)

 (macro)

Defines an exception.
Exceptions are structs backed by a module that implements
the Exception behaviour. The Exception behaviour requires
two functions to be implemented:
	exception/1 - receives the arguments given to raise/2
and returns the exception struct. The default implementation
accepts either a set of keyword arguments that is merged into
the struct or a string to be used as the exception's message.

	message/1 - receives the exception struct and must return its
message. Most commonly exceptions have a message field which
by default is accessed by this function. However, if an exception
does not have a message field, this function must be explicitly
implemented.

Since exceptions are structs, the API supported by defstruct/1
is also available in defexception/1.
Raising exceptions
The most common way to raise an exception is via raise/2:
defmodule MyAppError do
 defexception [:message]
end

value = [:hello]

raise MyAppError,
 message: "did not get what was expected, got: #{inspect(value)}"
In many cases it is more convenient to pass the expected value to
raise/2 and generate the message in the Exception.exception/1 callback:
defmodule MyAppError do
 defexception [:message]

 @impl true
 def exception(value) do
 msg = "did not get what was expected, got: #{inspect(value)}"
 %MyAppError{message: msg}
 end
end

raise MyAppError, value
The example above shows the preferred strategy for customizing
exception messages.

 defguard(guard)

 (since 1.6.0)

 (macro)

 @spec defguard(Macro.t()) :: Macro.t()

Defines a macro suitable for use in guard expressions.
It raises at compile time if the guard uses expressions that aren't
allowed in guard clauses,
and otherwise creates a macro that can be used both inside or outside guards.
When defining your own guards, consider the
naming conventions
around boolean-returning guards.
Example
defmodule Integer.Guards do
 defguard is_even(value) when is_integer(value) and rem(value, 2) == 0
end

defmodule Collatz do
 @moduledoc "Tools for working with the Collatz sequence."
 import Integer.Guards

 @doc "Determines the number of steps `n` takes to reach `1`."
 # If this function never converges, please let me know what `n` you used.
 def converge(n) when n > 0, do: step(n, 0)

 defp step(1, step_count) do
 step_count
 end

 defp step(n, step_count) when is_even(n) do
 step(div(n, 2), step_count + 1)
 end

 defp step(n, step_count) do
 step(3 * n + 1, step_count + 1)
 end
end

 defguardp(guard)

 (since 1.6.0)

 (macro)

 @spec defguardp(Macro.t()) :: Macro.t()

Defines a private macro suitable for use in guard expressions.
It raises at compile time if the guard uses expressions that aren't
allowed in guard clauses,
and otherwise creates a private macro that can be used
both inside or outside guards in the current module.
When defining your own guards, consider the
naming conventions
around boolean-returning guards.
Similar to defmacrop/2, defguardp/1 must be defined before its use
in the current module.

 defimpl(name, opts, do_block \\ [])

 (macro)

Defines an implementation for the given protocol.
See the Protocol module for more information.

 defmacro(call, expr \\ nil)

 (macro)

Defines a public macro with the given name and body.
Macros must be defined before its usage.
Check def/2 for rules on naming and default arguments.
Examples
defmodule MyLogic do
 defmacro unless(expr, opts) do
 quote do
 if !unquote(expr), unquote(opts)
 end
 end
end

require MyLogic

MyLogic.unless false do
 IO.puts("It works")
end

 defmacrop(call, expr \\ nil)

 (macro)

Defines a private macro with the given name and body.
Private macros are only accessible from the same module in which they are
defined.
Private macros must be defined before its usage.
Check defmacro/2 for more information, and check def/2 for rules on
naming and default arguments.

 defmodule(alias, do_block)

 (macro)

Defines a module given by name with the given contents.
This macro defines a module with the given alias as its name and with the
given contents. It returns a tuple with four elements:
	:module
	the module name
	the binary contents of the module
	the result of evaluating the contents block

Examples
defmodule Number do
 def one, do: 1
 def two, do: 2
end
#=> {:module, Number, <<70, 79, 82, ...>>, {:two, 0}}

Number.one()
#=> 1

Number.two()
#=> 2
Module names and aliases
Module names (and aliases) must start with an ASCII uppercase character which
may be followed by any ASCII letter, number, or underscore. Elixir's
Naming Conventions suggest for module names and aliases
to be written in the CamelCase format.
You can also use atoms as the module name, although they must only contain ASCII
characters.
Nesting
Nesting a module inside another module affects the name of the nested module:
defmodule Foo do
 defmodule Bar do
 end
end
In the example above, two modules - Foo and Foo.Bar - are created.
When nesting, Elixir automatically creates an alias to the inner module,
allowing the second module Foo.Bar to be accessed as Bar in the same
lexical scope where it's defined (the Foo module). This only happens
if the nested module is defined via an alias.
If the Foo.Bar module is moved somewhere else, the references to Bar in
the Foo module need to be updated to the fully-qualified name (Foo.Bar) or
an alias has to be explicitly set in the Foo module with the help of
alias/2.
defmodule Foo.Bar do
 # code
end

defmodule Foo do
 alias Foo.Bar
 # code here can refer to "Foo.Bar" as just "Bar"
end
Dynamic names
Elixir module names can be dynamically generated. This is very
useful when working with macros. For instance, one could write:
defmodule Module.concat(["Foo", "Bar"]) do
 # contents ...
end
Elixir will accept any module name as long as the expression passed as the
first argument to defmodule/2 evaluates to an atom.
Note that, when a dynamic name is used, Elixir won't nest the name under
the current module nor automatically set up an alias.
Reserved module names
If you attempt to define a module that already exists, you will get a
warning saying that a module has been redefined.
There are some modules that Elixir does not currently implement but it
may be implement in the future. Those modules are reserved and defining
them will result in a compilation error:
defmodule Any do
 # code
end
** (CompileError) iex:1: module Any is reserved and cannot be defined
Elixir reserves the following module names: Elixir, Any, BitString,
PID, and Reference.

 defoverridable(keywords_or_behaviour)

 (macro)

Makes the given definitions in the current module overridable.
If the user defines a new function or macro with the same name
and arity, then the overridable ones are discarded. Otherwise, the
original definitions are used.
It is possible for the overridden definition to have a different
visibility than the original: a public function can be overridden
by a private function and vice-versa. Macros cannot be overridden
as functions and vice-versa.
Example
defmodule DefaultMod do
 defmacro __using__(_opts) do
 quote do
 def test(x, y) do
 x + y
 end

 defoverridable test: 2
 end
 end
end

defmodule ChildMod do
 use DefaultMod

 def test(x, y) do
 x * y + super(x, y)
 end
end
As seen as in the example above, super can be used to call the default
implementation.
Example with behaviour
defoverridable is commonly used with behaviours. The behaviours use
@callback definitions to define the general module API and the
__using__ callback is used to define default implementations of
functions, which can then be overridable.
For convenience, you can pass a behaviour to defoverridable and it
will mark all of the callbacks in the behaviour as overridable:
defmodule Behaviour do
 @callback test(number(), number()) :: number()
end

defmodule DefaultMod do
 defmacro __using__(_opts) do
 quote do
 @behaviour Behaviour

 def test(x, y) do
 x + y
 end

 defoverridable Behaviour
 end
 end
end

defmodule ChildMod do
 use DefaultMod

 def test(x, y) do
 x * y + super(x, y)
 end
end
Narrow behaviours and entry points
When defining behaviours, a general rule of thumb is to define narrow
behaviours, with the minimum amount of callbacks, to facilitate maintenance
over time. Fewer callbacks minimize the points of contact between different
parts of the system and reduces the risk of breaking changes and of different
implementations having inconsistent behaviour. However, when using defoverridable
with behaviours, you may accidentally define broad interfaces as all default
behaviour is provided via defoverridable. Furthermore, defoverridable
necessarily relies on meta-programming, which complicates debugging. super is
also hard to troubleshoot, as it by definition relies on calling an implicitly
defined function.
A possible alternative to defoverridable is to use optional callbacks and
move the default implementation to the caller. Then you can check if a callback
exists via Code.ensure_loaded?/1 and function_exported?/3. For instance,
in the example above, imagine there is a module that calls the test/2 function.
This module could be defined as such:
defmodule CallsTest do
 def receives_module_and_calls_test(module, x, y) do
 if Code.ensure_loaded?(module) and function_exported?(module, :test, 2) do
 module.test(x, y)
 else
 x + y
 end
 end
end
The downside of the above code is that it must call Code.ensure_loaded?/1 and
function_exported?/3 on every invocation of the behaviour, which may impact
runtime performance. For this reason, this approach works best when the behaviour
has an entry point, such as a init callback (as seen in GenServer), which you
invoke once to guarantee the module is loaded, and from that moment, you only need
to perform function_exported?/3 checks.
To recap:
	Prefer narrow behaviours

	If your behaviour has an entry point, consider using optional callbacks
followed by Code.ensure_loaded?/1 and function_exported?/3 checks

	If using defoverridable, avoid relying on super to trigger the default
behaviour, suggesting users to invoke well-defined APIs instead.

 defp(call, expr \\ nil)

 (macro)

Defines a private function with the given name and body.
Private functions are only accessible from within the module in which they are
defined. Trying to access a private function from outside the module it's
defined in results in an UndefinedFunctionError exception.
Check def/2 for more information.
Examples
defmodule Foo do
 def bar do
 sum(1, 2)
 end

 defp sum(a, b), do: a + b
end

Foo.bar()
#=> 3

Foo.sum(1, 2)
** (UndefinedFunctionError) undefined function Foo.sum/2

 defprotocol(name, do_block)

 (macro)

Defines a protocol.
See the Protocol module for more information.

 defstruct(fields)

 (macro)

Defines a struct.
A struct is a tagged map that allows developers to provide
default values for keys, tags to be used in polymorphic
dispatches and compile time assertions.
It is only possible to define a struct per module, as the
struct is tied to the module itself.
Examples
defmodule User do
 defstruct name: nil, age: nil
end
Struct fields are evaluated at compile-time, which allows
them to be dynamic. In the example below, 10 + 11 is
evaluated at compile-time and the age field is stored
with value 21:
defmodule User do
 defstruct name: nil, age: 10 + 11
end
The fields argument is usually a keyword list with field names
as atom keys and default values as corresponding values. defstruct/1
also supports a list of atoms as its argument: in that case, the atoms
in the list will be used as the struct's field names and they will all
default to nil.
defmodule Post do
 defstruct [:title, :content, :author]
end
Add documentation to a struct with the @doc attribute, like a function.
defmodule Post do
 @doc "A post. The content should be valid Markdown."
 defstruct [:title, :content, :author]
end
Once a struct is defined, it is possible to create them as follows:
%Post{title: "Hello world!"}
For more information on creating, updating, and pattern matching on
structs, please check %/2.
Deriving
Although structs are maps, by default structs do not implement
any of the protocols implemented for maps. For example, attempting
to use a protocol with the User struct leads to an error:
john = %User{name: "John"}
MyProtocol.call(john)
** (Protocol.UndefinedError) protocol MyProtocol not implemented for User (a struct)
defstruct/1, however, allows protocol implementations to be
derived. This can be done by defining a @derive attribute as a
list before invoking defstruct/1:
defmodule User do
 @derive MyProtocol
 defstruct name: nil, age: nil
end

MyProtocol.call(john) # it works!
A common example is to @derive the Inspect protocol to hide certain fields
when the struct is printed:
defmodule User do
 @derive {Inspect, only: :name}
 defstruct name: nil, age: nil
end
For each protocol in @derive, Elixir will verify if the protocol
has implemented the Protocol.__deriving__/2 callback. If so,
the callback will be invoked and it should define the implementation
module. Otherwise an implementation that simply points to the Any
implementation is automatically derived. For more information, see
Protocol.derive/3.
Enforcing keys
When building a struct, Elixir will automatically guarantee all keys
belong to the struct:
%User{name: "john", unknown: :key}
** (KeyError) key :unknown not found in: %User{age: 21, name: nil}
Elixir also allows developers to enforce that certain keys must always be
given when building the struct:
defmodule User do
 @enforce_keys [:name]
 defstruct name: nil, age: 10 + 11
end
Now trying to build a struct without the name key will fail:
%User{age: 21}
** (ArgumentError) the following keys must also be given when building struct User: [:name]
Keep in mind @enforce_keys is a simple compile-time guarantee
to aid developers when building structs. It is not enforced on
updates and it does not provide any sort of value-validation.
Types
It is recommended to define types for structs. By convention, such a type
is called t. To define a type for a struct, the struct literal syntax is
used:
defmodule User do
 defstruct name: "John", age: 25
 @type t :: %__MODULE__{name: String.t(), age: non_neg_integer}
end
It is recommended to only use the struct syntax when defining the struct's
type. When referring to another struct, it's better to use User.t() instead of
%User{}.
The types of the struct fields that are not included in %User{} default to
term() (see term/0).
Structs whose internal structure is private to the local module (pattern
matching them or directly accessing their fields should not be allowed) should
use the @opaque attribute. Structs whose internal structure is public should
use @type.

 destructure(left, right)

 (macro)

Destructures two lists, assigning each term in the
right one to the matching term in the left one.
Unlike pattern matching via =, if the sizes of the left
and right lists don't match, destructuring simply stops
instead of raising an error.
Examples
iex> destructure([x, y, z], [1, 2, 3, 4, 5])
iex> {x, y, z}
{1, 2, 3}
In the example above, even though the right list has more entries than the
left one, destructuring works fine. If the right list is smaller, the
remaining elements are simply set to nil:
iex> destructure([x, y, z], [1])
iex> {x, y, z}
{1, nil, nil}
The left-hand side supports any expression you would use
on the left-hand side of a match:
iex> x = 1
iex> destructure([^x, y, z], [1, 2, 3])
iex> {x, y, z}
{1, 2, 3}
The example above will only work if x matches the first value in the right
list. Otherwise, it will raise a MatchError (like the = operator would
do).

 exit(reason)

 @spec exit(term()) :: no_return()

Stops the execution of the calling process with the given reason.
Since evaluating this function causes the process to terminate,
it has no return value.
Inlined by the compiler.
Examples
When a process reaches its end, by default it exits with
reason :normal. You can also call exit/1 explicitly if you
want to terminate a process but not signal any failure:
exit(:normal)
In case something goes wrong, you can also use exit/1 with
a different reason:
exit(:seems_bad)
If the exit reason is not :normal, all the processes linked to the process
that exited will crash (unless they are trapping exits).
OTP exits
Exits are used by the OTP to determine if a process exited abnormally
or not. The following exits are considered "normal":
	exit(:normal)
	exit(:shutdown)
	exit({:shutdown, term})

Exiting with any other reason is considered abnormal and treated
as a crash. This means the default supervisor behavior kicks in,
error reports are emitted, and so forth.
This behavior is relied on in many different places. For example,
ExUnit uses exit(:shutdown) when exiting the test process to
signal linked processes, supervision trees and so on to politely
shut down too.
CLI exits
Building on top of the exit signals mentioned above, if the
process started by the command line exits with any of the three
reasons above, its exit is considered normal and the Operating
System process will exit with status 0.
It is, however, possible to customize the operating system exit
signal by invoking:
exit({:shutdown, integer})
This will cause the operating system process to exit with the status given by
integer while signaling all linked Erlang processes to politely
shut down.
Any other exit reason will cause the operating system process to exit with
status 1 and linked Erlang processes to crash.

 function_exported?(module, function, arity)

 @spec function_exported?(module(), atom(), arity()) :: boolean()

Returns true if module is loaded and contains a
public function with the given arity, otherwise false.
Unloaded modules
This function does not load the module in case it is not loaded
and Elixir lazily loads modules by default (except on releases).
This may lead to unexpected behaviour as the result of this function
may depend if another code has happened to load the given module
as argument beforehand. For example, this could manifest in mix test
by having tests that fail when running in isolation or depending on the
test seed. For those reasons, it is recommended to always check for
Code.ensure_loaded?/1 before function_exported?/3, unless you are
certain the module has been loaded before.
See Code.ensure_loaded/1 for more information.
Inlined by the compiler.
Examples
iex> Code.ensure_loaded?(Enum) and function_exported?(Enum, :map, 2)
true

iex> Code.ensure_loaded?(Enum) and function_exported?(Enum, :map, 10)
false

iex> Code.ensure_loaded?(List) and function_exported?(List, :to_string, 1)
true

 get_and_update_in(path, fun)

 (macro)

Gets a value and updates a nested data structure via the given path.
This is similar to get_and_update_in/3, except the path is extracted
via a macro rather than passing a list. For example:
get_and_update_in(opts[:foo][:bar], &{&1, &1 + 1})
Is equivalent to:
get_and_update_in(opts, [:foo, :bar], &{&1, &1 + 1})
This also works with nested structs and the struct.path.to.value way to specify
paths:
get_and_update_in(struct.foo.bar, &{&1, &1 + 1})
Note that in order for this macro to work, the complete path must always
be visible by this macro. See the "Paths" section below.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_and_update_in(users["john"].age, &{&1, &1 + 1})
{27, %{"john" => %{age: 28}, "meg" => %{age: 23}}}
Paths
A path may start with a variable, local or remote call, and must be
followed by one or more:
	foo[bar] - accesses the key bar in foo; in case foo is nil,
nil is returned

	foo.bar - accesses a map/struct field; in case the field is not
present, an error is raised

Here are some valid paths:
users["john"][:age]
users["john"].age
User.all()["john"].age
all_users()["john"].age
Here are some invalid ones:
Does a remote call after the initial value
users["john"].do_something(arg1, arg2)

Does not access any key or field
users

 get_and_update_in(data, keys, fun)

 @spec get_and_update_in(
 structure,
 keys,
 (term() | nil -> {current_value, new_value} | :pop)
) :: {current_value, new_structure :: structure}
when structure: Access.t(),
 keys: [term(), ...],
 current_value: Access.value(),
 new_value: Access.value()

Gets a value and updates a nested structure.
data is a nested structure (that is, a map, keyword
list, or struct that implements the Access behaviour).
The fun argument receives the value of key (or nil if key
is not present) and must return one of the following values:
	a two-element tuple {current_value, new_value}. In this case,
current_value is the retrieved value which can possibly be operated on before
being returned. new_value is the new value to be stored under key.

	:pop, which implies that the current value under key
should be removed from the structure and returned.

This function uses the Access module to traverse the structures
according to the given keys, unless the key is a function,
which is detailed in a later section.
Examples
This function is useful when there is a need to retrieve the current
value (or something calculated in function of the current value) and
update it at the same time. For example, it could be used to read the
current age of a user while increasing it by one in one pass:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_and_update_in(users, ["john", :age], &{&1, &1 + 1})
{27, %{"john" => %{age: 28}, "meg" => %{age: 23}}}
Note the current value given to the anonymous function may be nil.
If any of the intermediate values are nil, it will raise:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_and_update_in(users, ["jane", :age], &{&1, &1 + 1})
** (ArgumentError) could not put/update key :age on a nil value
Functions as keys
If a key is a function, the function will be invoked passing three
arguments:
	the operation (:get_and_update)
	the data to be accessed
	a function to be invoked next

This means get_and_update_in/3 can be extended to provide custom
lookups. The downside is that functions cannot be stored as keys
in the accessed data structures.
When one of the keys is a function, the function is invoked.
In the example below, we use a function to get and increment all
ages inside a list:
iex> users = [%{name: "john", age: 27}, %{name: "meg", age: 23}]
iex> all = fn :get_and_update, data, next ->
...> data |> Enum.map(next) |> Enum.unzip()
...> end
iex> get_and_update_in(users, [all, :age], &{&1, &1 + 1})
{[27, 23], [%{name: "john", age: 28}, %{name: "meg", age: 24}]}
If the previous value before invoking the function is nil,
the function will receive nil as a value and must handle it
accordingly (be it by failing or providing a sane default).
The Access module ships with many convenience accessor functions,
like the all anonymous function defined above. See Access.all/0,
Access.key/2, and others as examples.

 get_in(path)

 (since 1.17.0)

 (macro)

Gets a key from the nested structure via the given path, with
nil-safe handling.
This is similar to get_in/2, except the path is extracted via
a macro rather than passing a list. For example:
get_in(opts[:foo][:bar])
Is equivalent to:
get_in(opts, [:foo, :bar])
Additionally, this macro can traverse structs:
get_in(struct.foo.bar)
In case any of the keys returns nil, then nil will be returned
and get_in/1 won't traverse any further.
Note that in order for this macro to work, the complete path must always
be visible by this macro. For more information about the supported path
expressions, please check get_and_update_in/2 docs.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_in(users["john"].age)
27
iex> get_in(users["unknown"].age)
nil

 get_in(data, keys)

 @spec get_in(Access.t(), [term(), ...]) :: term()

Gets a value from a nested structure with nil-safe handling.
Uses the Access module to traverse the structures
according to the given keys, unless the key is a
function, which is detailed in a later section.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_in(users, ["john", :age])
27
iex> # Equivalent to:
iex> users["john"][:age]
27
get_in/2 can also use the accessors in the Access module
to traverse more complex data structures. For example, here we
use Access.all/0 to traverse a list:
iex> users = [%{name: "john", age: 27}, %{name: "meg", age: 23}]
iex> get_in(users, [Access.all(), :age])
[27, 23]
In case any of the components returns nil, nil will be returned
and get_in/2 won't traverse any further:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_in(users, ["unknown", :age])
nil
iex> # Equivalent to:
iex> users["unknown"][:age]
nil
Functions as keys
If a key given to get_in/2 is a function, the function will be invoked
passing three arguments:
	the operation (:get)
	the data to be accessed
	a function to be invoked next

This means get_in/2 can be extended to provide custom lookups.
That's precisely how the Access.all/0 key in the previous section
behaves. For example, we can manually implement such traversal as
follows:
iex> users = [%{name: "john", age: 27}, %{name: "meg", age: 23}]
iex> all = fn :get, data, next -> Enum.map(data, next) end
iex> get_in(users, [all, :age])
[27, 23]
The Access module ships with many convenience accessor functions.
See Access.all/0, Access.key/2, and others as examples.
Working with structs
By default, structs do not implement the Access behaviour required
by this function. Therefore, you can't do this:
get_in(some_struct, [:some_key, :nested_key])
There are two alternatives. Given structs have predefined keys,
we can use the struct.field notation:
some_struct.some_key.nested_key
However, the code above will fail if any of the values return nil.
If you also want to handle nil values, you can use get_in/1:
get_in(some_struct.some_key.nested_key)
Pattern-matching is another option for handling such cases,
which can be especially useful if you want to match on several
fields at once or provide custom return values:
case some_struct do
 %{some_key: %{nested_key: value}} -> value
 %{} -> nil
end

 if(condition, clauses)

 (macro)

Provides an if/2 macro.
This macro expects the first argument to be a condition and the second
argument to be a keyword list. Generally speaking, Elixir developers
prefer to use pattern matching and guards in function definitions and
case/2, as they are succinct and precise. However, not all conditions
can be expressed through patterns and guards, which makes if/2 a viable
alternative.
Similar to case/2, any assignment in the condition will be available
on both clauses, as well as after the if expression.
One-liner examples
iex> if 7 > 5, do: "yes"
"yes"

iex> if "truthy value", do: "yes"
"yes"
In the examples above, the do clause is evaluated and "yes" will be returned
because the condition evaluates to a truthy value (neither false nor nil).
Otherwise, the clause is not evaluated and nil will be returned:
iex> if 3 > 5, do: "yes"
nil

iex> if nil, do: IO.puts("this won't be printed")
nil
An else option can be given to specify the opposite:
iex> if 3 > 5, do: "yes", else: "no"
"no"
Blocks examples
It's also possible to pass a block to the if/2 macro. The first
example above would be translated to:
iex> if 7 > 5 do
...> "yes"
...> end
"yes"
Note that do-end become delimiters. The third example would
translate to:
iex> if 3 > 5 do
...> "yes"
...> else
...> "no"
...> end
"no"
If you find yourself nesting conditionals inside conditionals,
consider using cond/1.
Variables scope
Variables set within do/else blocks do not leak to the outer context:
x = 1
if x > 0 do
 x = x + 1
 IO.puts(x) # prints 2
end
x # 1
Variables set in the condition are available in the outer context:
fruits = %{oranges: 3}
if count = fruits[:apples] do
 # won't be evaluated
 IO.puts(count + 1)
end
count # nil

 inspect(term, opts \\ [])

 @spec inspect(Inspect.t(), [Inspect.Opts.new_opt()]) :: String.t()

Inspects the given argument according to the Inspect protocol.
The second argument is a keyword list with options to control
inspection.
Options
inspect/2 accepts a list of options that are internally
translated to an Inspect.Opts struct. Check the docs for
Inspect.Opts to see the supported options.
Examples
iex> inspect(:foo)
":foo"

iex> inspect([1, 2, 3, 4, 5], limit: 3)
"[1, 2, 3, ...]"

iex> inspect([1, 2, 3], pretty: true, width: 0)
"[1,\n 2,\n 3]"

iex> inspect("olá" <> <<0>>)
"<<111, 108, 195, 161, 0>>"

iex> inspect("olá" <> <<0>>, binaries: :as_strings)
"\"olá\\0\""

iex> inspect("olá", binaries: :as_binaries)
"<<111, 108, 195, 161>>"

iex> inspect(~c"bar")
"~c\"bar\""

iex> inspect([0 | ~c"bar"])
"[0, 98, 97, 114]"

iex> inspect(100, base: :octal)
"0o144"

iex> inspect(100, base: :hex)
"0x64"
Note that the Inspect protocol does not necessarily return a valid
representation of an Elixir term. In such cases, the inspected result
must start with #. For example, inspecting a function will return:
inspect(fn a, b -> a + b end)
#=> #Function<...>
The Inspect protocol can be derived to hide certain fields
from structs, so they don't show up in logs, inspects and similar.
See the "Deriving" section of the documentation of the Inspect
protocol for more information.

 macro_exported?(module, macro, arity)

 @spec macro_exported?(module(), atom(), arity()) :: boolean()

Returns true if module is loaded and contains a
public macro with the given arity, otherwise false.
Note that this function does not load the module in case
it is not loaded. See the notes under function_exported?/3
for more information.
If module is an Erlang module (as opposed to an Elixir module), this
function always returns false.
Examples
iex> Code.ensure_loaded?(Kernel) and macro_exported?(Kernel, :use, 2)
true

iex> Code.ensure_loaded?(:erlang) and macro_exported?(:erlang, :abs, 1)
false

 make_ref()

 @spec make_ref() :: reference()

Returns an almost unique reference.
The returned reference will re-occur after approximately 2^82 calls;
therefore it is unique enough for practical purposes.
Inlined by the compiler.
Examples
make_ref()
#=> #Reference<0.0.0.135>

 match?(pattern, expression)

 (macro)

A convenience macro that checks if the result of expression matches pattern.
Examples
iex> match?(1, 1)
true

iex> match?({1, _}, {1, 2})
true

iex> map = %{a: 1, b: 2}
iex> match?(%{a: _}, map)
true

iex> a = 1
iex> match?(^a, 1)
true
match?/2 is very useful when filtering or finding a value in an enumerable:
iex> list = [a: 1, b: 2, a: 3]
iex> Enum.filter(list, &match?({:a, _}, &1))
[a: 1, a: 3]
Guard clauses can also be given to the match:
iex> list = [a: 1, b: 2, a: 3]
iex> Enum.filter(list, &match?({:a, x} when x < 2, &1))
[a: 1]
Variables assigned in the match will not be available outside of the
function call (unlike regular pattern matching with the = operator):
iex> match?(_x, 1)
true
iex> binding()
[]
Values vs patterns
Remember the pin operator matches values, not patterns.
Passing a variable as the pattern will always return true and will
result in a warning that the variable is unused. Don't do this:
pattern = %{a: :a}
match?(pattern, %{b: :b})
#=> true
Similarly, moving an expression out the pattern may no longer preserve
its semantics. For example:
iex> match?([_ | _], [1, 2, 3])
true

pattern = [_ | _]
match?(pattern, [1, 2, 3])
** (CompileError) invalid use of _. _ can only be used inside patterns to ignore values and cannot be used in expressions. Make sure you are inside a pattern or change it accordingly
Another example is that a map as a pattern performs a subset match, but not
once assigned to a variable:
iex> match?(%{x: 1}, %{x: 1, y: 2})
true

iex> attrs = %{x: 1}
iex> match?(^attrs, %{x: 1, y: 2})
false
The pin operator will check if the values are equal, using ===/2, while
patterns have their own rules when matching maps, lists, and so forth.
Such behavior is not specific to match?/2. The following code also
throws an exception:
attrs = %{x: 1}
^attrs = %{x: 1, y: 2}
#=> (MatchError) no match of right hand side value: %{x: 1, y: 2}

 pop_in(path)

 (macro)

Pops a key from the nested structure via the given path.
This is similar to pop_in/2, except the path is extracted via
a macro rather than passing a list. For example:
pop_in(opts[:foo][:bar])
Is equivalent to:
pop_in(opts, [:foo, :bar])
Note that in order for this macro to work, the complete path must always
be visible by this macro. For more information about the supported path
expressions, please check get_and_update_in/2 docs.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> pop_in(users["john"][:age])
{27, %{"john" => %{}, "meg" => %{age: 23}}}

iex> users = %{john: %{age: 27}, meg: %{age: 23}}
iex> pop_in(users.john[:age])
{27, %{john: %{}, meg: %{age: 23}}}
In case any entry returns nil, its key will be removed
and the deletion will be considered a success.

 pop_in(data, keys)

 @spec pop_in(data, [Access.get_and_update_fun(term(), data) | term(), ...]) ::
 {term(), data}
when data: Access.container()

Pops a key from the given nested structure.
Uses the Access protocol to traverse the structures
according to the given keys, unless the key is a
function. If the key is a function, it will be invoked
as specified in get_and_update_in/3.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> pop_in(users, ["john", :age])
{27, %{"john" => %{}, "meg" => %{age: 23}}}
In case any entry returns nil, its key will be removed
and the deletion will be considered a success.
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> pop_in(users, ["jane", :age])
{nil, %{"john" => %{age: 27}, "meg" => %{age: 23}}}

 put_elem(tuple, index, value)

 @spec put_elem(tuple(), non_neg_integer(), term()) :: tuple()

Puts value at the given zero-based index in tuple.
Inlined by the compiler.
Examples
iex> tuple = {:foo, :bar, 3}
iex> put_elem(tuple, 0, :baz)
{:baz, :bar, 3}

 put_in(path, value)

 (macro)

Puts a value in a nested structure via the given path.
This is similar to put_in/3, except the path is extracted via
a macro rather than passing a list. For example:
put_in(opts[:foo][:bar], :baz)
Is equivalent to:
put_in(opts, [:foo, :bar], :baz)
This also works with nested structs and the struct.path.to.value way to specify
paths:
put_in(struct.foo.bar, :baz)
Note that in order for this macro to work, the complete path must always
be visible by this macro. For more information about the supported path
expressions, please check get_and_update_in/2 docs.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> put_in(users["john"][:age], 28)
%{"john" => %{age: 28}, "meg" => %{age: 23}}

iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> put_in(users["john"].age, 28)
%{"john" => %{age: 28}, "meg" => %{age: 23}}

 put_in(data, keys, value)

 @spec put_in(Access.t(), [term(), ...], term()) :: Access.t()

Puts a value in a nested structure.
Uses the Access module to traverse the structures
according to the given keys, unless the key is a
function. If the key is a function, it will be invoked
as specified in get_and_update_in/3.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> put_in(users, ["john", :age], 28)
%{"john" => %{age: 28}, "meg" => %{age: 23}}
If any of the intermediate values are nil, it will raise:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> put_in(users, ["jane", :age], "oops")
** (ArgumentError) could not put/update key :age on a nil value

 raise(message)

 (macro)

Raises an exception.
If message is a string, it raises a RuntimeError exception with it.
If message is an atom, it just calls raise/2 with the atom as the first
argument and [] as the second one.
If message is an exception struct, it is raised as is.
If message is anything else, raise will fail with an ArgumentError
exception.
Examples
iex> raise "oops"
** (RuntimeError) oops

try do
 1 + :foo
rescue
 x in [ArithmeticError] ->
 IO.puts("that was expected")
 raise x
end

 raise(exception, attributes)

 (macro)

Raises an exception.
Calls the exception/1 function on the given argument (which has to be a
module name like ArgumentError or RuntimeError) passing attributes
in order to retrieve the exception struct.
Any module that contains a call to the defexception/1 macro automatically
implements the Exception.exception/1 callback expected by raise/2.
For more information, see defexception/1.
Examples
iex> raise(ArgumentError, "Sample")
** (ArgumentError) Sample

 reraise(message, stacktrace)

 (macro)

Raises an exception preserving a previous stacktrace.
Works like raise/1 but does not generate a new stacktrace.
Note that __STACKTRACE__ can be used inside catch/rescue
to retrieve the current stacktrace.
Examples
iex> try do
...> raise "oops"
...> rescue
...> exception ->
...> reraise exception, __STACKTRACE__
...> end
** (RuntimeError) oops

 reraise(exception, attributes, stacktrace)

 (macro)

Raises an exception preserving a previous stacktrace.
reraise/3 works like reraise/2, except it passes arguments to the
exception/1 function as explained in raise/2.
Examples
try do
 raise "oops"
rescue
 exception ->
 reraise WrapperError, [exception: exception], __STACKTRACE__
end

 send(dest, message)

 @spec send(dest :: Process.dest(), message) :: message when message: any()

Sends a message to the given dest and returns the message.
dest may be a remote or local PID, a local port, a locally
registered name, or a tuple in the form of {registered_name, node} for a
registered name at another node.
For additional documentation, see the ! operator Erlang
documentation.
Inlined by the compiler.
Examples
iex> send(self(), :hello)
:hello

 sigil_C(term, modifiers)

 (macro)

Handles the sigil ~C for charlists.
It returns a charlist without interpolations and without escape
characters.
A charlist is a list of integers where all the integers are valid code points.
The three expressions below are equivalent:
~C"foo\n"
[?f, ?o, ?o, ?\\, ?n]
[102, 111, 111, 92, 110]
In practice, charlists are mostly used in specific scenarios such as
interfacing with older Erlang libraries that do not accept binaries as arguments.
Examples
iex> ~C(foo)
~c"foo"

iex> ~C(f#{o}o)
~c"f\#{o}o"

iex> ~C(foo\n)
~c"foo\\n"

 sigil_c(term, modifiers)

 (macro)

Handles the sigil ~c for charlists.
It returns a charlist, unescaping characters and replacing interpolations.
A charlist is a list of integers where all the integers are valid code points.
The three expressions below are equivalent:
~c"foo"
[?f, ?o, ?o]
[102, 111, 111]
In practice, charlists are mostly used in specific scenarios such as
interfacing with older Erlang libraries that do not accept binaries as arguments.
Examples
iex> ~c(foo)
~c"foo"

iex> ~c(f#{:o}o)
~c"foo"

iex> ~c(f\#{:o}o)
~c"f\#{:o}o"
The list is only printed as a ~c sigil if all code points are within the
ASCII range:
iex> ~c"hełło"
[104, 101, 322, 322, 111]

iex> [104, 101, 108, 108, 111]
~c"hello"
See Inspect.Opts for more information.

 sigil_D(date_string, modifiers)

 (macro)

Handles the sigil ~D for dates.
By default, this sigil uses the built-in Calendar.ISO, which
requires dates to be written in the ISO8601 format:
~D[yyyy-mm-dd]
such as:
~D[2015-01-13]
If you are using alternative calendars, any representation can
be used as long as you follow the representation by a single space
and the calendar name:
~D[SOME-REPRESENTATION My.Alternative.Calendar]
The lower case ~d variant does not exist as interpolation
and escape characters are not useful for date sigils.
More information on dates can be found in the Date module.
Examples
iex> ~D[2015-01-13]
~D[2015-01-13]

 sigil_N(naive_datetime_string, modifiers)

 (macro)

Handles the sigil ~N for naive date times.
By default, this sigil uses the built-in Calendar.ISO, which
requires naive date times to be written in the ISO8601 format:
~N[yyyy-mm-dd hh:mm:ss]
~N[yyyy-mm-dd hh:mm:ss.ssssss]
~N[yyyy-mm-ddThh:mm:ss.ssssss]
such as:
~N[2015-01-13 13:00:07]
~N[2015-01-13T13:00:07.123]
If you are using alternative calendars, any representation can
be used as long as you follow the representation by a single space
and the calendar name:
~N[SOME-REPRESENTATION My.Alternative.Calendar]
The lower case ~n variant does not exist as interpolation
and escape characters are not useful for date time sigils.
More information on naive date times can be found in the
NaiveDateTime module.
Examples
iex> ~N[2015-01-13 13:00:07]
~N[2015-01-13 13:00:07]
iex> ~N[2015-01-13T13:00:07.001]
~N[2015-01-13 13:00:07.001]

 sigil_r(term, modifiers)

 (macro)

Handles the sigil ~r for regular expressions.
It returns a regular expression pattern, unescaping characters and replacing
interpolations.
More information on regular expressions can be found in the Regex module.
Examples
iex> Regex.match?(~r/foo/, "foo")
true

iex> Regex.match?(~r/a#{:b}c/, "abc")
true
While the ~r sigil allows parens and brackets to be used as delimiters,
it is preferred to use " or / to avoid escaping conflicts with reserved
regex characters.

 sigil_S(term, modifiers)

 (macro)

Handles the sigil ~S for strings.
It returns a string without interpolations and without escape
characters.
Examples
iex> ~S(foo)
"foo"
iex> ~S(f#{o}o)
"f\#{o}o"
iex> ~S(\o/)
"\\o/"

 sigil_s(term, modifiers)

 (macro)

Handles the sigil ~s for strings.
It returns a string as if it was a double quoted string, unescaping characters
and replacing interpolations.
Examples
iex> ~s(foo)
"foo"

iex> ~s(f#{:o}o)
"foo"

iex> ~s(f\#{:o}o)
"f\#{:o}o"

 sigil_T(time_string, modifiers)

 (macro)

Handles the sigil ~T for times.
By default, this sigil uses the built-in Calendar.ISO, which
requires times to be written in the ISO8601 format:
~T[hh:mm:ss]
~T[hh:mm:ss.ssssss]
such as:
~T[13:00:07]
~T[13:00:07.123]
If you are using alternative calendars, any representation can
be used as long as you follow the representation by a single space
and the calendar name:
~T[SOME-REPRESENTATION My.Alternative.Calendar]
The lower case ~t variant does not exist as interpolation
and escape characters are not useful for time sigils.
More information on times can be found in the Time module.
Examples
iex> ~T[13:00:07]
~T[13:00:07]
iex> ~T[13:00:07.001]
~T[13:00:07.001]

 sigil_U(datetime_string, modifiers)

 (since 1.9.0)

 (macro)

Handles the sigil ~U to create a UTC DateTime.
By default, this sigil uses the built-in Calendar.ISO, which
requires UTC date times to be written in the ISO8601 format:
~U[yyyy-mm-dd hh:mm:ssZ]
~U[yyyy-mm-dd hh:mm:ss.ssssssZ]
~U[yyyy-mm-ddThh:mm:ss.ssssss+00:00]
such as:
~U[2015-01-13 13:00:07Z]
~U[2015-01-13T13:00:07.123+00:00]
If you are using alternative calendars, any representation can
be used as long as you follow the representation by a single space
and the calendar name:
~U[SOME-REPRESENTATION My.Alternative.Calendar]
The given datetime_string must include "Z" or "00:00" offset
which marks it as UTC, otherwise an error is raised.
The lower case ~u variant does not exist as interpolation
and escape characters are not useful for date time sigils.
More information on date times can be found in the DateTime module.
Examples
iex> ~U[2015-01-13 13:00:07Z]
~U[2015-01-13 13:00:07Z]
iex> ~U[2015-01-13T13:00:07.001+00:00]
~U[2015-01-13 13:00:07.001Z]

 sigil_W(term, modifiers)

 (macro)

Handles the sigil ~W for list of words.
It returns a list of "words" split by whitespace without interpolations
and without escape characters.
Modifiers
	s: words in the list are strings (default)
	a: words in the list are atoms
	c: words in the list are charlists

Examples
iex> ~W(foo #{bar} baz)
["foo", "\#{bar}", "baz"]

 sigil_w(term, modifiers)

 (macro)

Handles the sigil ~w for list of words.
It returns a list of "words" split by whitespace. Character unescaping and
interpolation happens for each word.
Modifiers
	s: words in the list are strings (default)
	a: words in the list are atoms
	c: words in the list are charlists

Examples
iex> ~w(foo #{:bar} baz)
["foo", "bar", "baz"]

iex> ~w(foo #{" bar baz "})
["foo", "bar", "baz"]

iex> ~w(--source test/enum_test.exs)
["--source", "test/enum_test.exs"]

iex> ~w(foo bar baz)a
[:foo, :bar, :baz]

iex> ~w(foo bar baz)c
[~c"foo", ~c"bar", ~c"baz"]

 spawn(fun)

 @spec spawn((-> any())) :: pid()

Spawns the given function and returns its PID.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions.
The anonymous function receives 0 arguments, and may return any value.
Inlined by the compiler.
Examples
iex> current = self()
iex> child = spawn(fn -> send(current, {self(), 1 + 2}) end)
iex> receive do
...> {^child, 3} -> :ok
...> end
:ok

 spawn(module, fun, args)

 @spec spawn(module(), atom(), list()) :: pid()

Spawns the given function fun from the given module passing it the given
args and returns its PID.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions.
Inlined by the compiler.
Examples
spawn(SomeModule, :function, [1, 2, 3])

 spawn_link(fun)

 @spec spawn_link((-> any())) :: pid()

Spawns the given function, links it to the current process, and returns its PID.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions. For more
information on linking, check Process.link/1.
The anonymous function receives 0 arguments, and may return any value.
Inlined by the compiler.
Examples
iex> current = self()
iex> child = spawn_link(fn -> send(current, {self(), 1 + 2}) end)
iex> receive do
...> {^child, 3} -> :ok
...> end
:ok

 spawn_link(module, fun, args)

 @spec spawn_link(module(), atom(), list()) :: pid()

Spawns the given function fun from the given module passing it the given
args, links it to the current process, and returns its PID.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions. For more
information on linking, check Process.link/1.
Inlined by the compiler.
Examples
spawn_link(SomeModule, :function, [1, 2, 3])

 spawn_monitor(fun)

 @spec spawn_monitor((-> any())) :: {pid(), reference()}

Spawns the given function, monitors it and returns its PID
and monitoring reference.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions.
The anonymous function receives 0 arguments, and may return any value.
Inlined by the compiler.
Examples
iex> current = self()
iex> {child, _ref} = spawn_monitor(fn -> send(current, {self(), 1 + 2}) end)
iex> receive do
...> {^child, 3} -> :ok
...> end
:ok

 spawn_monitor(module, fun, args)

 @spec spawn_monitor(module(), atom(), list()) :: {pid(), reference()}

Spawns the given module and function passing the given args,
monitors it and returns its PID and monitoring reference.
Typically developers do not use the spawn functions, instead they use
abstractions such as Task, GenServer and Agent, built on top of
spawn, that spawns processes with more conveniences in terms of
introspection and debugging.
Check the Process module for more process-related functions.
Inlined by the compiler.
Examples
spawn_monitor(SomeModule, :function, [1, 2, 3])

 struct(struct, fields \\ [])

 @spec struct(module() | struct(), Enumerable.t()) :: struct()

Creates and updates a struct.
The struct argument may be an atom (which defines defstruct)
or a struct itself. The second argument is any Enumerable that
emits two-element tuples (key-value pairs) during enumeration.
Keys in the Enumerable that don't exist in the struct are automatically
discarded. Note that keys must be atoms, as only atoms are allowed when
defining a struct. If there are duplicate keys in the Enumerable, the last
entry will be taken (same behavior as Map.new/1).
This function is useful for dynamically creating and updating structs, as
well as for converting maps to structs; in the latter case, just inserting
the appropriate :__struct__ field into the map may not be enough and
struct/2 should be used instead.
Examples
defmodule User do
 defstruct name: "john"
end

struct(User)
#=> %User{name: "john"}

opts = [name: "meg"]
user = struct(User, opts)
#=> %User{name: "meg"}

struct(user, unknown: "value")
#=> %User{name: "meg"}

struct(User, %{name: "meg"})
#=> %User{name: "meg"}

String keys are ignored
struct(User, %{"name" => "meg"})
#=> %User{name: "john"}

 struct!(struct, fields \\ [])

 @spec struct!(module() | struct(), Enumerable.t()) :: struct()

Similar to struct/2 but checks for key validity.
The function struct!/2 emulates the compile time behavior
of structs. This means that:
	when building a struct, as in struct!(SomeStruct, key: :value),
it is equivalent to %SomeStruct{key: :value} and therefore this
function will check if every given key-value belongs to the struct.
If the struct is enforcing any key via @enforce_keys, those will
be enforced as well;

	when updating a struct, as in struct!(%SomeStruct{}, key: :value),
it is equivalent to %SomeStruct{struct | key: :value} and therefore this
function will check if every given key-value belongs to the struct.

 tap(value, fun)

 (since 1.12.0)

 (macro)

Pipes the first argument, value, into the second argument, a function fun,
and returns value itself.
Useful for running synchronous side effects in a pipeline, using the |>/2 operator.
Examples
iex> tap(1, fn x -> x + 1 end)
1
Most commonly, this is used in pipelines, using the |>/2 operator.
For example, let's suppose you want to inspect part of a data structure.
You could write:
%{a: 1}
|> Map.update!(:a, & &1 + 2)
|> tap(&IO.inspect(&1.a))
|> Map.update!(:a, & &1 * 2)

 then(value, fun)

 (since 1.12.0)

 (macro)

Pipes the first argument, value, into the second argument, a function fun,
and returns the result of calling fun.
In other words, it invokes the function fun with value as argument,
and returns its result.
This is most commonly used in pipelines, using the |>/2 operator, allowing you
to pipe a value to a function outside of its first argument.
Examples
iex> 1 |> then(fn x -> x * 2 end)
2

iex> 1 |> then(fn x -> Enum.drop(["a", "b", "c"], x) end)
["b", "c"]

 throw(term)

 @spec throw(term()) :: no_return()

A non-local return from a function.
Using throw/1 is generally discouraged, as it allows a function
to escape from its regular execution flow, which can make the code
harder to read. Furthermore, all thrown values must be caught by
try/catch. See try/1 for more information.
Inlined by the compiler.

 to_charlist(term)

 (macro)

Converts the given term to a charlist according to the List.Chars protocol.
Examples
iex> to_charlist(:foo)
~c"foo"

 to_string(term)

 (macro)

Converts the argument to a string according to the
String.Chars protocol.
This is invoked when there is string interpolation.
Examples
iex> to_string(:foo)
"foo"

 to_timeout(duration)

 (since 1.17.0)

 @spec to_timeout([{unit, non_neg_integer()}] | timeout() | Duration.t()) :: timeout()
when unit: :week | :day | :hour | :minute | :second | :millisecond

Constructs a millisecond timeout from the given components, duration, or timeout.
This function is useful for constructing timeouts to use in functions that
expect timeout/0 values (such as Process.send_after/4 and many others).
Argument
The duration argument can be one of a Duration, a timeout/0, or a list
of components. Each of these is described below.
Passing Durations
Duration.t/0 structs can be converted to timeouts. The given duration must have
year and month fields set to 0, since those cannot be reliably converted to
milliseconds (due to the varying number of days in a month and year).
Microseconds in durations are converted to milliseconds (through System.convert_time_unit/3).
Passing components
The duration argument can also be keyword list which can contain the following
keys, each appearing at most once with a non-negative integer value:
	:week - the number of weeks (a week is always 7 days)
	:day - the number of days (a day is always 24 hours)
	:hour - the number of hours
	:minute - the number of minutes
	:second - the number of seconds
	:millisecond - the number of milliseconds

The timeout is calculated as the sum of the components, each multiplied by
the corresponding factor.
Passing timeouts
You can also pass timeouts directly to this functions, that is, milliseconds or
the atom :infinity. In this case, this function just returns the given argument.
Examples
With a keyword list:
iex> to_timeout(hour: 1, minute: 30)
5400000
With a duration:
iex> to_timeout(%Duration{hour: 1, minute: 30})
5400000
With a timeout:
iex> to_timeout(5_400_000)
5400000
iex> to_timeout(:infinity)
:infinity

 unless(condition, clauses)

 (macro)

 This macro is deprecated. Use if/2 instead.

Provides an unless macro.
This macro evaluates and returns the do block passed in as the second
argument if condition evaluates to a falsy value (false or nil).
Otherwise, it returns the value of the else block if present or nil if not.
See also if/2.
Examples
iex> unless(Enum.empty?([]), do: "Hello")
nil

iex> unless(Enum.empty?([1, 2, 3]), do: "Hello")
"Hello"

iex> unless Enum.sum([2, 2]) == 5 do
...> "Math still works"
...> else
...> "Math is broken"
...> end
"Math still works"

 update_in(path, fun)

 (macro)

Updates a nested structure via the given path.
This is similar to update_in/3, except the path is extracted via
a macro rather than passing a list. For example:
update_in(opts[:foo][:bar], &(&1 + 1))
Is equivalent to:
update_in(opts, [:foo, :bar], &(&1 + 1))
This also works with nested structs and the struct.path.to.value way to specify
paths:
update_in(struct.foo.bar, &(&1 + 1))
Note that in order for this macro to work, the complete path must always
be visible by this macro. For more information about the supported path
expressions, please check get_and_update_in/2 docs.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> update_in(users["john"][:age], &(&1 + 1))
%{"john" => %{age: 28}, "meg" => %{age: 23}}

iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> update_in(users["john"].age, &(&1 + 1))
%{"john" => %{age: 28}, "meg" => %{age: 23}}

 update_in(data, keys, fun)

 @spec update_in(Access.t(), [term(), ...], (term() -> term())) :: Access.t()

Updates a key in a nested structure.
Uses the Access module to traverse the structures
according to the given keys, unless the key is a
function. If the key is a function, it will be invoked
as specified in get_and_update_in/3.
data is a nested structure (that is, a map, keyword
list, or struct that implements the Access behaviour).
The fun argument receives the value of key (or nil
if key is not present) and the result replaces the value
in the structure.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> update_in(users, ["john", :age], &(&1 + 1))
%{"john" => %{age: 28}, "meg" => %{age: 23}}
Note the current value given to the anonymous function may be nil.
If any of the intermediate values are nil, it will raise:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> update_in(users, ["jane", :age], & &1 + 1)
** (ArgumentError) could not put/update key :age on a nil value

 use(module, opts \\ [])

 (macro)

Uses the given module in the current context.
When calling:
use MyModule, some: :options
Elixir will invoke MyModule.__using__/1 passing the second argument of
use as its argument. Since __using__/1 is typically a macro, all
the usual macro rules apply, and its return value should be quoted code
that is then inserted where use/2 is called.
Code injection
use MyModule works as a code-injection point in the caller.
Given the caller of use MyModule has little control over how the
code is injected, use/2 should be used with care. If you can,
avoid use in favor of import/2 or alias/2 whenever possible.
Examples
For example, to write test cases using the ExUnit framework provided
with Elixir, a developer should use the ExUnit.Case module:
defmodule AssertionTest do
 use ExUnit.Case, async: true

 test "always pass" do
 assert true
 end
end
In this example, Elixir will call the __using__/1 macro in the
ExUnit.Case module with the keyword list [async: true] as its
argument.
In other words, use/2 translates to:
defmodule AssertionTest do
 require ExUnit.Case
 ExUnit.Case.__using__(async: true)

 test "always pass" do
 assert true
 end
end
where ExUnit.Case defines the __using__/1 macro:
defmodule ExUnit.Case do
 defmacro __using__(opts) do
 # do something with opts
 quote do
 # return some code to inject in the caller
 end
 end
end
Best practices
__using__/1 is typically used when there is a need to set some state
(via module attributes) or callbacks (like @before_compile, see the
documentation for Module for more information) into the caller.
__using__/1 may also be used to alias, require, or import functionality
from different modules:
defmodule MyModule do
 defmacro __using__(_opts) do
 quote do
 import MyModule.Foo
 import MyModule.Bar
 import MyModule.Baz

 alias MyModule.Repo
 end
 end
end
However, do not provide __using__/1 if all it does is to import,
alias or require the module itself. For example, avoid this:
defmodule MyModule do
 defmacro __using__(_opts) do
 quote do
 import MyModule
 end
 end
end
In such cases, developers should instead import or alias the module
directly, so that they can customize those as they wish,
without the indirection behind use/2. Developers must also avoid
defining functions inside __using__/1.
Given use MyModule can generate any code, it may not be easy for
developers to understand the impact of use MyModule.
For this reason, to provide guidance and clarity, we recommend developers
to include an admonition block in their @moduledoc that explains how
use MyModule impacts their code. As an example, the GenServer documentation
outlines:
use GenServer
When you use GenServer, the GenServer module will
set @behaviour GenServer and define a child_spec/1
function, so your module can be used as a child
in a supervision tree.
This provides a quick summary of how using a module impacts the user code.
Keep in mind to only list changes made to the public API of the module.
For example, if use MyModule sets an internal attribute called
@_my_module_info and this attribute is never meant to be public,
it must not be listed.
For convenience, the markup notation to generate the admonition block
above is:
> #### `use GenServer` {: .info}
>
> When you `use GenServer`, the GenServer module will
> set `@behaviour GenServer` and define a `child_spec/1`
> function, so your module can be used as a child
> in a supervision tree.

 var!(var, context \\ nil)

 (macro)

Marks that the given variable should not be hygienized.
This macro expects a variable and it is typically invoked
inside quote/2 to mark that a variable
should not be hygienized. See quote/2 for more information.
Examples
iex> Kernel.var!(example) = 1
1
iex> Kernel.var!(example)
1

 left |> right

 (macro)

Pipe operator.
This operator introduces the expression on the left-hand side as
the first argument to the function call on the right-hand side.
Examples
iex> [1, [2], 3] |> List.flatten()
[1, 2, 3]
The example above is the same as calling List.flatten([1, [2], 3]).
The |>/2 operator is mostly useful when there is a desire to execute a series
of operations resembling a pipeline:
iex> [1, [2], 3] |> List.flatten() |> Enum.map(fn x -> x * 2 end)
[2, 4, 6]
In the example above, the list [1, [2], 3] is passed as the first argument
to the List.flatten/1 function, then the flattened list is passed as the
first argument to the Enum.map/2 function which doubles each element of the
list.
In other words, the expression above simply translates to:
Enum.map(List.flatten([1, [2], 3]), fn x -> x * 2 end)
Pitfalls
There are two common pitfalls when using the pipe operator.
The first one is related to operator precedence. For example,
the following expression:
String.graphemes "Hello" |> Enum.reverse
Translates to:
String.graphemes("Hello" |> Enum.reverse())
which results in an error as the Enumerable protocol is not defined
for binaries. Adding explicit parentheses resolves the ambiguity:
String.graphemes("Hello") |> Enum.reverse()
Or, even better:
"Hello" |> String.graphemes() |> Enum.reverse()
The second limitation is that Elixir always pipes to a function
call. Therefore, to pipe into an anonymous function, you need to
invoke it:
iex> some_fun = &Regex.replace(~r/l/, &1, "L")
iex> "Hello" |> some_fun.()
"HeLLo"
Alternatively, you can use then/2 for the same effect:
iex> some_fun = &Regex.replace(~r/l/, &1, "L")
iex> "Hello" |> then(some_fun)
"HeLLo"
then/2 is most commonly used when you want to pipe to a function
but the value is expected outside of the first argument, such as
above. By replacing some_fun by its value, we get:
iex> "Hello" |> then(&Regex.replace(~r/l/, &1, "L"))
"HeLLo"

 left || right

 (macro)

Boolean "or" operator.
Provides a short-circuit operator that evaluates and returns the second
expression only if the first one does not evaluate to a truthy value (that is,
it is either nil or false). Returns the first expression otherwise.
Not allowed in guard clauses.
Examples
iex> Enum.empty?([1]) || Enum.empty?([1])
false

iex> List.first([]) || true
true

iex> Enum.empty?([1]) || 1
1

iex> Enum.empty?([]) || throw(:bad)
true
Note that, unlike or/2, this operator accepts any expression
as the first argument, not only booleans.

Kernel.SpecialForms

Special forms are the basic building blocks of Elixir, and therefore
cannot be overridden by the developer.
The Kernel.SpecialForms module consists solely of macros that can be
invoked anywhere in Elixir code without the use of the
Kernel.SpecialForms. prefix. This is possible because they all have
been automatically imported, in the same fashion as the functions and
macros from the Kernel module.
These building blocks are defined in this module. Some of these special forms are lexical (such as
alias/2 and case/2). The macros {}/1 and <<>>/1 are also special
forms used to define tuple and binary data structures respectively.
This module also documents macros that return information about Elixir's
compilation environment, such as (__ENV__/0, __MODULE__/0, __DIR__/0,
__STACKTRACE__/0, and __CALLER__/0).
Additionally, it documents two special forms, __block__/1 and
__aliases__/1, which are not intended to be called directly by the
developer but they appear in quoted contents since they are essential
in Elixir's constructs.

 Summary

 Functions

 %struct{}

 Matches on or builds a struct.

 %{}

 Creates a map.

 &expr

 Capture operator. Captures or creates an anonymous function.

 left . right

 Dot operator. Defines a remote call, a call to an anonymous function, or an alias.

 __aliases__(args)

 Internal special form to hold aliases information.

 __block__(args)

 Internal special form for block expressions.

 __CALLER__

 Returns the current calling environment as a Macro.Env struct.

 __cursor__(args)

 Internal special form for cursor position.

 __DIR__

 Returns the absolute path of the directory of the current file as a binary.

 __ENV__

 Returns the current environment information as a Macro.Env struct.

 __MODULE__

 Returns the current module name as an atom or nil otherwise.

 __STACKTRACE__

 Returns the stacktrace for the currently handled exception.

 left :: right

 Type operator. Used by types and bitstrings to specify types.

 <<args>>

 Defines a new bitstring.

 left = right

 Match operator. Matches the value on the right against the pattern on the left.

 alias(module, opts)

 alias/2 is used to set up aliases, often useful with modules' names.

 case(condition, clauses)

 Matches the given expression against the given clauses.

 cond(clauses)

 Evaluates the expression corresponding to the first clause that
evaluates to a truthy value.

 fn(clauses)

 Defines an anonymous function.

 for(args)

 Comprehensions allow you to quickly build a data structure from
an enumerable or a bitstring.

 import(module, opts)

 Imports functions and macros from other modules.

 quote(opts, block)

 Gets the representation of any expression.

 receive(args)

 Consumes the first message matching any of the given clauses in the current
process mailbox.

 require(module, opts)

 Requires a module in order to use its macros.

 super(args)

 Calls the overridden function when overriding it with Kernel.defoverridable/1.

 try(args)

 Evaluates the given expressions and handles any error, exit,
or throw that may have happened.

 unquote(expr)

 Unquotes the given expression inside a quoted expression.

 unquote_splicing(expr)

 Unquotes the given list expanding its arguments.

 with(args)

 Combine matching clauses.

 ^var

 Pin operator. Accesses an already bound variable in match clauses.

 {args}

 Creates a tuple.

 Functions

 %struct{}

 (macro)

Matches on or builds a struct.
A struct is a tagged map that allows developers to provide
default values for keys, tags to be used in polymorphic
dispatches and compile time assertions.
Structs are usually defined with the Kernel.defstruct/1 macro:
defmodule User do
 defstruct name: "john", age: 27
end
Now a struct can be created as follows:
%User{}
Underneath a struct is a map with a :__struct__ key pointing
to the User module, where the keys are validated at compile-time:
%User{} == %{__struct__: User, name: "john", age: 27}
The struct fields can be given when building the struct:
%User{age: 31}
#=> %{__struct__: User, name: "john", age: 31}
Or also on pattern matching to extract values out:
%User{age: age} = user
The advantage of structs is that they validate that the given
keys are part of the defined struct. The example below will fail
because there is no key :full_name in the User struct:
%User{full_name: "john doe"}
The map update syntax can also be used for updating structs:
%{user | age: 28}
Pattern matching on struct names
Besides allowing pattern matching on struct fields, such as:
%User{age: age} = user
Structs also allow pattern matching on the struct name:
%struct_name{} = user
struct_name #=> User
You can also assign the struct name to _ when you want to
check if something is a struct but you are not interested in
its name:
%_{} = user

 %{}

 (macro)

Creates a map.
See the Map module for more information about maps, their syntax, and ways to
access and manipulate them.
AST representation
Regardless of whether => or the keyword syntax is used, key-value pairs in
maps are always represented internally as a list of two-element tuples for
simplicity:
iex> quote do
...> %{"a" => :b, c: :d}
...> end
{:%{}, [], [{"a", :b}, {:c, :d}]}

 &expr

 (macro)

Capture operator. Captures or creates an anonymous function.
Capture
The capture operator is most commonly used to capture a
function with given name and arity from a module:
iex> fun = &Kernel.is_atom/1
iex> fun.(:atom)
true
iex> fun.("string")
false
In the example above, we captured Kernel.is_atom/1 as an
anonymous function and then invoked it.
The capture operator can also be used to capture local functions,
including private ones, and imported functions by omitting the
module name:
&local_function/1
Note that &local_function/1 creates a local capture, but
&__MODULE__.local_function/1 or &imported_function/1 create a remote
capture. For more information, refer to the "Functions" section in the Erlang Reference Manual.
Whether a capture is local or remote has implications when using hot code
reloading: local captures dispatch to the version of the module that existed
at the time they were created, while remote captures dispatch to the current
version of the module.
See also Function.capture/3.
Anonymous functions
The capture operator can also be used to partially apply
functions, where &1, &2 and so on can be used as value
placeholders. For example:
iex> double = &(&1 * 2)
iex> double.(2)
4
In other words, &(&1 * 2) is equivalent to fn x -> x * 2 end.
We can partially apply a remote function with placeholder:
iex> take_five = &Enum.take(&1, 5)
iex> take_five.(1..10)
[1, 2, 3, 4, 5]
Another example while using an imported or local function:
iex> first_elem = &elem(&1, 0)
iex> first_elem.({0, 1})
0
The & operator can be used with more complex expressions:
iex> fun = &(&1 + &2 + &3)
iex> fun.(1, 2, 3)
6
As well as with lists and tuples:
iex> fun = &{&1, &2}
iex> fun.(1, 2)
{1, 2}

iex> fun = &[&1 | &2]
iex> fun.(1, [2, 3])
[1, 2, 3]
The only restrictions when creating anonymous functions is that at
least one placeholder must be present, i.e. it must contain at least
&1, and that block expressions are not supported:
No placeholder, fails to compile.
&(:foo)

Block expression, fails to compile.
&(&1; &2)

 left . right

 (macro)

Dot operator. Defines a remote call, a call to an anonymous function, or an alias.
The dot (.) in Elixir can be used for remote calls:
iex> String.downcase("FOO")
"foo"
In this example above, we have used . to invoke downcase in the
String module, passing "FOO" as argument.
The dot may be used to invoke anonymous functions too:
iex> (fn n -> n end).(7)
7
in which case there is a function on the left hand side.
We can also use the dot for creating aliases:
iex> Hello.World
Hello.World
This time, we have joined two aliases, defining the final alias
Hello.World.
Syntax
The right side of . may be a word starting with an uppercase letter, which represents
an alias, a word starting with lowercase or underscore, any valid language
operator or any name wrapped in single- or double-quotes. Those are all valid
examples:
iex> Kernel.Sample
Kernel.Sample

iex> Kernel.length([1, 2, 3])
3

iex> Kernel.+(1, 2)
3

iex> Kernel."+"(1, 2)
3
Wrapping the function name in single- or double-quotes is always a
remote call. Therefore Kernel."Foo" will attempt to call the function "Foo"
and not return the alias Kernel.Foo. This is done by design as module names
are more strict than function names.
When the dot is used to invoke an anonymous function there is only one
operand, but it is still written using a postfix notation:
iex> negate = fn n -> -n end
iex> negate.(7)
-7
Quoted expression
When . is used, the quoted expression may take two distinct
forms. When the right side starts with a lowercase letter (or
underscore):
iex> quote do
...> String.downcase("FOO")
...> end
{{:., [], [{:__aliases__, [alias: false], [:String]}, :downcase]}, [], ["FOO"]}
Note that we have an inner tuple, containing the atom :. representing
the dot as first element:
{:., [], [{:__aliases__, [alias: false], [:String]}, :downcase]}
This tuple follows the general quoted expression structure in Elixir,
with the name as first argument, some keyword list as metadata as second,
and the list of arguments as third. In this case, the arguments are the
alias String and the atom :downcase. The second argument in a remote call
is always an atom.
In the case of calls to anonymous functions, the inner tuple with the dot
special form has only one argument, reflecting the fact that the operator is
unary:
iex> quote do
...> negate.(0)
...> end
{{:., [], [{:negate, [], __MODULE__}]}, [], [0]}
When the right side is an alias (i.e. starts with uppercase), we get instead:
iex> quote do
...> Hello.World
...> end
{:__aliases__, [alias: false], [:Hello, :World]}
We go into more details about aliases in the __aliases__/1 special form
documentation.
Unquoting
We can also use unquote to generate a remote call in a quoted expression:
iex> x = :downcase
iex> quote do
...> String.unquote(x)("FOO")
...> end
{{:., [], [{:__aliases__, [alias: false], [:String]}, :downcase]}, [], ["FOO"]}
Similar to Kernel."FUNCTION_NAME", unquote(x) will always generate a remote call,
independent of the value of x. To generate an alias via the quoted expression,
one needs to rely on Module.concat/2:
iex> x = Sample
iex> quote do
...> Module.concat(String, unquote(x))
...> end
{{:., [], [{:__aliases__, [alias: false], [:Module]}, :concat]}, [],
 [{:__aliases__, [alias: false], [:String]}, Sample]}

 __aliases__(args)

 (macro)

Internal special form to hold aliases information.
It is usually compiled to an atom:
iex> quote do
...> Foo.Bar
...> end
{:__aliases__, [alias: false], [:Foo, :Bar]}
Elixir represents Foo.Bar as __aliases__ so calls can be
unambiguously identified by the operator :.. For example:
iex> quote do
...> Foo.bar()
...> end
{{:., [], [{:__aliases__, [alias: false], [:Foo]}, :bar]}, [], []}
Whenever an expression iterator sees a :. as the tuple key,
it can be sure that it represents a call and the second argument
in the list is an atom.
On the other hand, aliases hold some properties:
	The head element of aliases can be any term that must expand to
an atom at compilation time.

	The tail elements of aliases are guaranteed to always be atoms.

	When the head element of aliases is the atom :Elixir, no expansion happens.

 __block__(args)

 (macro)

Internal special form for block expressions.
This is the special form used whenever we have a block
of expressions in Elixir. This special form is private
and should not be invoked directly:
iex> quote do
...> 1
...> 2
...> 3
...> end
{:__block__, [], [1, 2, 3]}

 __CALLER__

 (macro)

Returns the current calling environment as a Macro.Env struct.
In the environment you can access the filename, line numbers,
set up aliases, the function and others.

 __cursor__(args)

 (macro)

Internal special form for cursor position.
This is the special form used whenever we need to represent
the cursor position in Elixir's AST. See Code.Fragment for
more information.

 __DIR__

 (macro)

Returns the absolute path of the directory of the current file as a binary.
Although the directory can be accessed as Path.dirname(__ENV__.file),
this macro is a convenient shortcut.

 __ENV__

 (macro)

Returns the current environment information as a Macro.Env struct.
In the environment you can access the current filename,
line numbers, set up aliases, the current function and others.

 __MODULE__

 (macro)

Returns the current module name as an atom or nil otherwise.
Although the module can be accessed in the __ENV__/0, this macro
is a convenient shortcut.

 __STACKTRACE__

 (since 1.7.0)

 (macro)

Returns the stacktrace for the currently handled exception.
It is available only in the catch and rescue clauses of try/1
expressions and function definitions.
To retrieve the stacktrace of the current process, use
Process.info(self(), :current_stacktrace) instead.

 left :: right

 (macro)

Type operator. Used by types and bitstrings to specify types.
This operator is used in two distinct occasions in Elixir.
It is used in typespecs to specify the type of a variable,
function or of a type itself:
@type number :: integer | float
@spec add(number, number) :: number
It may also be used in bit strings to specify the type
of a given bit segment:
<<int::integer-little, rest::bits>> = bits
Read the documentation on the Typespecs page and
<<>>/1 for more information on typespecs and
bitstrings respectively.

 <<args>>

 (macro)

Defines a new bitstring.
Examples
iex> <<1, 2, 3>>
<<1, 2, 3>>
Types
A bitstring is made of many segments and each segment has a
type. There are 9 types used in bitstrings:
	integer
	float
	bits (alias for bitstring)
	bitstring
	binary
	bytes (alias for binary)
	utf8
	utf16
	utf32

When no type is specified, the default is integer:
iex> <<1, 2, 3>>
<<1, 2, 3>>
Elixir also accepts by default the segment to be a literal
string which expands to integers:
iex> <<0, "foo">>
<<0, 102, 111, 111>>
You can use one of utf8 (the default), utf16, and utf32 to
control how the string is encoded:
iex> <<"foo"::utf16>>
<<0, 102, 0, 111, 0, 111>>
Which is equivalent to writing:
iex> <<?f::utf16, ?o::utf16, ?o::utf16>>
<<0, 102, 0, 111, 0, 111>>
At runtime, binaries need to be explicitly tagged as binary:
iex> rest = "oo"
iex> <<102, rest::binary>>
"foo"
Otherwise we get an ArgumentError when constructing the binary:
rest = "oo"
<<102, rest>>
** (ArgumentError) argument error
Options
Many options can be given by using - as separator. Order is
arbitrary, so the following are all equivalent:
<<102::integer-native, rest::binary>>
<<102::native-integer, rest::binary>>
<<102::unsigned-big-integer, rest::binary>>
<<102::unsigned-big-integer-size(8), rest::binary>>
<<102::unsigned-big-integer-8, rest::binary>>
<<102::8-integer-big-unsigned, rest::binary>>
<<102, rest::binary>>
Unit and Size
The length of the match is equal to the unit (a number of bits) times the
size (the number of repeated segments of length unit).
	Type	Default Unit
	integer	1 bit
	float	1 bit
	binary	8 bits

Sizes for types are a bit more nuanced. The default size for integers is 8.
For floats, it is 64. For floats, size * unit must result in 16, 32, or 64,
corresponding to IEEE 754
binary16, binary32, and binary64, respectively.
For binaries, the default is the size of the binary. Only the last binary in a
match can use the default size. All others must have their size specified
explicitly, even if the match is unambiguous. For example:
iex> <<name::binary-size(5), " the ", species::binary>> = <<"Frank the Walrus">>
"Frank the Walrus"
iex> {name, species}
{"Frank", "Walrus"}
The size can be a variable or any valid guard expression:
iex> name_size = 5
iex> <<name::binary-size(^name_size), " the ", species::binary>> = <<"Frank the Walrus">>
iex> {name, species}
{"Frank", "Walrus"}
The size can access prior variables defined in the binary itself:
iex> <<name_size::size(8), name::binary-size(name_size), " the ", species::binary>> = <<5, "Frank the Walrus">>
iex> {name, species}
{"Frank", "Walrus"}
However, it cannot access variables defined in the match outside of the binary/bitstring:
{name_size, <<name::binary-size(name_size), _rest::binary>>} = {5, <<"Frank the Walrus">>}
** (CompileError): undefined variable "name_size" in bitstring segment
Failing to specify the size for the non-last causes compilation to fail:
<<name::binary, " the ", species::binary>> = <<"Frank the Walrus">>
** (CompileError): a binary field without size is only allowed at the end of a binary pattern
Shortcut Syntax
Size and unit can also be specified using a syntax shortcut
when passing integer values:
iex> x = 1
iex> <<x::8>> == <<x::size(8)>>
true
iex> <<x::8*4>> == <<x::size(8)-unit(4)>>
true
This syntax reflects the fact the effective size is given by
multiplying the size by the unit.
Modifiers
Some types have associated modifiers to clear up ambiguity in byte
representation.
	Modifier	Relevant Type(s)
	signed	integer
	unsigned (default)	integer
	little	integer, float, utf16, utf32
	big (default)	integer, float, utf16, utf32
	native	integer, float, utf16, utf32

Sign
Integers can be signed or unsigned, defaulting to unsigned.
iex> <<int::integer>> = <<-100>>
<<156>>
iex> int
156
iex> <<int::integer-signed>> = <<-100>>
<<156>>
iex> int
-100
signed and unsigned are only used for matching binaries (see below) and
are only used for integers.
iex> <<-100::signed, _rest::binary>> = <<-100, "foo">>
<<156, 102, 111, 111>>
Endianness
Elixir has three options for endianness: big, little, and native.
The default is big:
iex> <<number::little-integer-size(16)>> = <<0, 1>>
<<0, 1>>
iex> number
256
iex> <<number::big-integer-size(16)>> = <<0, 1>>
<<0, 1>>
iex> number
1
native is determined by the VM at startup and will depend on the
host operating system.
Binary/Bitstring Matching
Binary matching is a powerful feature in Elixir that is useful for extracting
information from binaries as well as pattern matching.
Binary matching can be used by itself to extract information from binaries:
iex> <<"Hello, ", place::binary>> = "Hello, World"
"Hello, World"
iex> place
"World"
Or as a part of function definitions to pattern match:
defmodule ImageType do
 @png_signature <<137::size(8), 80::size(8), 78::size(8), 71::size(8),
 13::size(8), 10::size(8), 26::size(8), 10::size(8)>>
 @jpg_signature <<255::size(8), 216::size(8)>>

 def type(<<@png_signature, _rest::binary>>), do: :png
 def type(<<@jpg_signature, _rest::binary>>), do: :jpg
 def type(_), do: :unknown
end
Performance & Optimizations
The Erlang compiler can provide a number of optimizations on binary creation
and matching. To see optimization output, set the bin_opt_info compiler
option:
ERL_COMPILER_OPTIONS=bin_opt_info mix compile
To learn more about specific optimizations and performance considerations,
check out the
"Constructing and matching binaries" chapter of the Erlang's Efficiency Guide.

 left = right

 (macro)

Match operator. Matches the value on the right against the pattern on the left.

 alias(module, opts)

 (macro)

alias/2 is used to set up aliases, often useful with modules' names.
Examples
alias/2 can be used to set up an alias for any module:
defmodule Math do
 alias MyKeyword, as: Keyword
end
In the example above, we have set up MyKeyword to be aliased
as Keyword. So now, any reference to Keyword will be
automatically replaced by MyKeyword.
In case one wants to access the original Keyword, it can be done
by accessing Elixir:
Keyword.values #=> uses MyKeyword.values
Elixir.Keyword.values #=> uses Keyword.values
Note that calling alias without the :as option automatically
sets an alias based on the last part of the module. For example:
alias Foo.Bar.Baz
Is the same as:
alias Foo.Bar.Baz, as: Baz
We can also alias multiple modules in one line:
alias Foo.{Bar, Baz, Biz}
Is the same as:
alias Foo.Bar
alias Foo.Baz
alias Foo.Biz
Lexical scope
import/2, require/2 and alias/2 are called directives and all
have lexical scope. This means you can set up aliases inside
specific functions and it won't affect the overall scope.
Warnings
If you alias a module and you don't use the alias, Elixir is
going to issue a warning implying the alias is not being used.
In case the alias is generated automatically by a macro,
Elixir won't emit any warnings though, since the alias
was not explicitly defined.
Both warning behaviors could be changed by explicitly
setting the :warn option to true or false.

 case(condition, clauses)

 (macro)

Matches the given expression against the given clauses.
case/2 relies on pattern matching and guards to choose
which clause to execute. If your logic cannot be expressed
within patterns and guards, consider using if/2 or cond/1
instead.
Examples
iex> string_date = "2015-01-23"
iex> case Date.from_iso8601(string_date) do
...> {:ok, date} -> date
...> {:error, _reason} -> Date.utc_today()
...> end
~D[2015-01-23]
In the example above, we match the result of Date.from_iso8601/1
against each clause "head" and execute the clause "body"
corresponding to the first clause that matches. In our case
string_date contains a string with a valid ISO 8601 representation
of date. The function returns {:ok, ~D[2015-01-23]}, so the
{:ok, date} clause is matched.
If no clause matches, an error is raised. For this reason,
it may be necessary to add a final catch-all clause (like _)
which will always match.
iex> x = 10
iex> case x do
...> 0 -> "This clause won't match"
...> _ -> "This clause would match any value (x = #{x})"
...> end
"This clause would match any value (x = 10)"
If you find yourself nesting case expressions inside
case expressions, consider using with/1.
Variable handling
Note that variables bound in a clause do not leak to the outer context:
iex> case {:ok, 7} do
...> {:ok, value} -> value
...> :error -> nil
...> end

...> value
** (CompileError) undefined variable "value"
Variables in the outer context cannot be overridden either:
iex> value = 7
iex> case 3 > 5 do
...> false ->
...> value = 3
...> value + 2
...> true ->
...> 3
...> end
iex> value
7
In the example above, value is going to be 7 regardless of
which clause matched. The variable value bound in the clause
and the variable value bound in the outer context are two
entirely separate variables.
If you want to pattern match against an existing variable,
you need to use the ^/1 operator:
iex> x = 1
iex> case 10 do
...> ^x -> "Won't match"
...> _ -> "Will match"
...> end
"Will match"
Using guards to match against multiple values
While it is not possible to match against multiple patterns in a single
clause, it's possible to match against multiple values by using guards:
iex> case 2 do
...> value when value in [1, 2] ->
...> "#{value} has been matched"
...> 3 ->
...> "3 has been matched"
...> end
"2 has been matched"

 cond(clauses)

 (macro)

Evaluates the expression corresponding to the first clause that
evaluates to a truthy value.
Examples
The following example has a single clause that always evaluates
to true:
iex> cond do
...> hd([1, 2, 3]) -> "1 is considered as true"
...> end
"1 is considered as true"
If all clauses evaluate to nil or false, cond raises an error.
For this reason, it may be necessary to add a final always-truthy condition
(anything non-false and non-nil), which will always match:
iex> cond do
...> 1 + 1 == 1 -> "This will never match"
...> 2 * 2 != 4 -> "Nor this"
...> true -> "This will"
...> end
"This will"
If your cond has two clauses, and the last one falls back to
true, you may consider using if/2 instead.

 fn(clauses)

 (macro)

Defines an anonymous function.
See Function for more information.
Examples
iex> add = fn a, b -> a + b end
iex> add.(1, 2)
3
Anonymous functions can also have multiple clauses. All clauses
should expect the same number of arguments:
iex> negate = fn
...> true -> false
...> false -> true
...> end
iex> negate.(false)
true

 for(args)

 (macro)

Comprehensions allow you to quickly build a data structure from
an enumerable or a bitstring.
Let's start with an example:
iex> for n <- [1, 2, 3, 4], do: n * 2
[2, 4, 6, 8]
A comprehension accepts many generators and filters. for uses
the <- operator to extract values from the enumerable on its
right side and match them against the pattern on the left.
We call them generators:
A list generator:
iex> for n <- [1, 2, 3, 4], do: n * 2
[2, 4, 6, 8]

A comprehension with two generators
iex> for x <- [1, 2], y <- [2, 3], do: x * y
[2, 3, 4, 6]
Filters can also be given:
A comprehension with a generator and a filter
iex> for n <- [1, 2, 3, 4, 5, 6], rem(n, 2) == 0, do: n
[2, 4, 6]
Filters must evaluate to truthy values (everything but nil
and false). If a filter is falsy, then the current value is
discarded.
Generators can also be used to filter as it removes any value
that doesn't match the pattern on the left side of <-:
iex> users = [user: "john", admin: "meg", guest: "barbara"]
iex> for {type, name} when type != :guest <- users do
...> String.upcase(name)
...> end
["JOHN", "MEG"]
Bitstring generators are also supported and are very useful when you
need to organize bitstring streams:
iex> pixels = <<213, 45, 132, 64, 76, 32, 76, 0, 0, 234, 32, 15>>
iex> for <<r::8, g::8, b::8 <- pixels>>, do: {r, g, b}
[{213, 45, 132}, {64, 76, 32}, {76, 0, 0}, {234, 32, 15}]
Variable assignments inside the comprehension, be it in generators,
filters or inside the block, are not reflected outside of the
comprehension.
Variable assignments inside filters must still return a truthy value,
otherwise values are discarded. Let's see an example. Imagine you have
a keyword list where the key is a programming language and the value
is its direct parent. Then let's try to compute the grandparent of each
language. You could try this:
iex> languages = [elixir: :erlang, erlang: :prolog, prolog: nil]
iex> for {language, parent} <- languages, grandparent = languages[parent], do: {language, grandparent}
[elixir: :prolog]
Given the grandparents of Erlang and Prolog were nil, those values were
filtered out. If you don't want this behavior, a simple option is to
move the filter inside the do-block:
iex> languages = [elixir: :erlang, erlang: :prolog, prolog: nil]
iex> for {language, parent} <- languages do
...> grandparent = languages[parent]
...> {language, grandparent}
...> end
[elixir: :prolog, erlang: nil, prolog: nil]
However, such option is not always available, as you may have further
filters. An alternative is to convert the filter into a generator by
wrapping the right side of = in a list:
iex> languages = [elixir: :erlang, erlang: :prolog, prolog: nil]
iex> for {language, parent} <- languages, grandparent <- [languages[parent]], do: {language, grandparent}
[elixir: :prolog, erlang: nil, prolog: nil]
The :into and :uniq options
In the examples above, the result returned by the comprehension was
always a list. The returned result can be configured by passing an
:into option, that accepts any structure as long as it implements
the Collectable protocol.
For example, we can use bitstring generators with the :into option
to easily remove all spaces in a string:
iex> for <<c <- " hello world ">>, c != ?\s, into: "", do: <<c>>
"helloworld"
The IO module provides streams, that are both Enumerable and
Collectable, here is an upcase echo server using comprehensions:
for line <- IO.stream(), into: IO.stream() do
 String.upcase(line)
end
Similarly, uniq: true can also be given to comprehensions to guarantee
the results are only added to the collection if they were not returned
before. For example:
iex> for x <- [1, 1, 2, 3], uniq: true, do: x * 2
[2, 4, 6]

iex> for <<x <- "abcabc">>, uniq: true, into: "", do: <<x - 32>>
"ABC"
The :reduce option
Available since Elixir v1.8.
While the :into option allows us to customize the comprehension behavior
to a given data type, such as putting all of the values inside a map or inside
a binary, it is not always enough.
For example, imagine that you have a binary with letters where you want to
count how many times each lowercase letter happens, ignoring all uppercase
ones. For instance, for the string "AbCabCABc", we want to return the map
%{"a" => 1, "b" => 2, "c" => 1}.
If we were to use :into, we would need a data type that computes the
frequency of each element it holds. While there is no such data type in
Elixir, you could implement one yourself.
A simpler option would be to use comprehensions for the mapping and
filtering of letters, and then we invoke Enum.reduce/3 to build a map,
for example:
iex> letters = for <<x <- "AbCabCABc">>, x in ?a..?z, do: <<x>>
iex> Enum.reduce(letters, %{}, fn x, acc -> Map.update(acc, x, 1, & &1 + 1) end)
%{"a" => 1, "b" => 2, "c" => 1}
While the above is straight-forward, it has the downside of traversing the
data at least twice. If you are expecting long strings as inputs, this can
be quite expensive.
Luckily, comprehensions also support the :reduce option, which would allow
us to fuse both steps above into a single step:
iex> for <<x <- "AbCabCABc">>, x in ?a..?z, reduce: %{} do
...> acc -> Map.update(acc, <<x>>, 1, & &1 + 1)
...> end
%{"a" => 1, "b" => 2, "c" => 1}
When the :reduce key is given, its value is used as the initial accumulator
and the do block must be changed to use -> clauses, where the left side
of -> receives the accumulated value of the previous iteration and the
expression on the right side must return the new accumulator value. Once there are no more
elements, the final accumulated value is returned. If there are no elements
at all, then the initial accumulator value is returned.

 import(module, opts)

 (macro)

Imports functions and macros from other modules.
import/2 allows one to easily access functions or macros from
other modules without using the qualified name.
Examples
If you are using several functions from a given module, you can
import those functions and reference them as local functions,
for example:
iex> import List
iex> flatten([1, [2], 3])
[1, 2, 3]
Selector
By default, Elixir imports functions and macros from the given
module, except the ones starting with an underscore (which are
usually callbacks):
import List
A developer can filter to import only functions, macros, or sigils
(which can be functions or macros) via the :only option:
import List, only: :functions
import List, only: :macros
import Kernel, only: :sigils
Alternatively, Elixir allows a developer to pass pairs of
name/arities to :only or :except as a fine grained control
on what to import (or not):
import List, only: [flatten: 1]
import String, except: [split: 2]
Importing the same module again will erase the previous imports,
except when the except option is used, which is always exclusive
on a previously declared import/2. If there is no previous import,
then it applies to all functions and macros in the module. For
example:
import List, only: [flatten: 1, keyfind: 4]
import List, except: [flatten: 1]
After the two import calls above, only List.keyfind/4 will be
imported.
Underscore functions
By default functions starting with _ are not imported. If you really want
to import a function starting with _ you must explicitly include it in the
:only selector.
import File.Stream, only: [__build__: 3]
Lexical scope
It is important to note that import/2 is lexical. This means you
can import specific macros inside specific functions:
defmodule Math do
 def some_function do
 # 1) Disable "if/2" from Kernel
 import Kernel, except: [if: 2]

 # 2) Require the new "if/2" macro from MyMacros
 import MyMacros

 # 3) Use the new macro
 if do_something, it_works
 end
end
In the example above, we imported macros from MyMacros,
replacing the original if/2 implementation by our own
within that specific function. All other functions in that
module will still be able to use the original one.
Warnings
If you import a module and you don't use any of the imported
functions or macros from this module, Elixir is going to issue
a warning implying the import is not being used.
In case the import is generated automatically by a macro,
Elixir won't emit any warnings though, since the import
was not explicitly defined.
Both warning behaviors could be changed by explicitly
setting the :warn option to true or false.
Ambiguous function/macro names
If two modules A and B are imported and they both contain
a foo function with an arity of 1, an error is only emitted
if an ambiguous call to foo/1 is actually made; that is, the
errors are emitted lazily, not eagerly.

 quote(opts, block)

 (macro)

Gets the representation of any expression.
Examples
iex> quote do
...> sum(1, 2, 3)
...> end
{:sum, [], [1, 2, 3]}
Elixir's AST (Abstract Syntax Tree)
Any Elixir code can be represented using Elixir data structures.
The building block of Elixir macros is a tuple with three elements,
for example:
{:sum, [], [1, 2, 3]}
The tuple above represents a function call to sum passing 1, 2 and
3 as arguments. The tuple elements are:
	The first element of the tuple is always an atom or
another tuple in the same representation.

	The second element of the tuple represents metadata.

	The third element of the tuple are the arguments for the
function call. The third argument may be an atom, which is
usually a variable (or a local call).

Besides the tuple described above, Elixir has a few literals that
are also part of its AST. Those literals return themselves when
quoted. They are:
:sum #=> Atoms
1 #=> Integers
2.0 #=> Floats
[1, 2] #=> Lists
"strings" #=> Strings
{key, value} #=> Tuples with two elements
Any other value, such as a map or a four-element tuple, must be escaped
(Macro.escape/1) before being introduced into an AST.
Options
	:bind_quoted - passes a binding to the macro. Whenever a binding is
given, unquote/1 is automatically disabled.

	:context - sets the resolution context.

	:generated - marks the given chunk as generated so it does not emit warnings.
It is also useful to prevent the type system or dialyzer from reporting errors
when macros generate unused clauses.

	:file - sets the quoted expressions to have the given file.

	:line - sets the quoted expressions to have the given line.

	:location - when set to :keep, keeps the current line and file from
quote. Read the "Stacktrace information" section below for more information.

	:unquote - when false, disables unquoting. This means any unquote
call will be kept as is in the AST, instead of replaced by the unquote
arguments. For example:
iex> quote do
...> unquote("hello")
...> end
"hello"

iex> quote unquote: false do
...> unquote("hello")
...> end
{:unquote, [], ["hello"]}

Quote and macros
quote/2 is commonly used with macros for code generation. As an exercise,
let's define a macro that multiplies a number by itself (squared). In practice,
there is no reason to define such a macro (and it would actually be
seen as a bad practice), but it is simple enough that it allows us to focus
on the important aspects of quotes and macros:
defmodule Math do
 defmacro squared(x) do
 quote do
 unquote(x) * unquote(x)
 end
 end
end
We can invoke it as:
import Math
IO.puts("Got #{squared(5)}")
At first, there is nothing in this example that actually reveals it is a
macro. But what is happening is that, at compilation time, squared(5)
becomes 5 * 5. The argument 5 is duplicated in the produced code, we
can see this behavior in practice though because our macro actually has
a bug:
import Math
my_number = fn ->
 IO.puts("Returning 5")
 5
end
IO.puts("Got #{squared(my_number.())}")
The example above will print:
Returning 5
Returning 5
Got 25
Notice how "Returning 5" was printed twice, instead of just once. This is
because a macro receives an expression and not a value (which is what we
would expect in a regular function). This means that:
squared(my_number.())
Actually expands to:
my_number.() * my_number.()
Which invokes the function twice, explaining why we get the printed value
twice! In the majority of the cases, this is actually unexpected behavior,
and that's why one of the first things you need to keep in mind when it
comes to macros is to not unquote the same value more than once.
Let's fix our macro:
defmodule Math do
 defmacro squared(x) do
 quote do
 x = unquote(x)
 x * x
 end
 end
end
Now invoking squared(my_number.()) as before will print the value just
once.
In fact, this pattern is so common that most of the times you will want
to use the bind_quoted option with quote/2:
defmodule Math do
 defmacro squared(x) do
 quote bind_quoted: [x: x] do
 x * x
 end
 end
end
:bind_quoted will translate to the same code as the example above.
:bind_quoted can be used in many cases and is seen as good practice,
not only because it helps prevent us from running into common mistakes, but also
because it allows us to leverage other tools exposed by macros, such as
unquote fragments discussed in some sections below.
Before we finish this brief introduction, you will notice that, even though
we defined a variable x inside our quote:
quote do
 x = unquote(x)
 x * x
end
When we call:
import Math
squared(5)
x
** (CompileError) undefined variable "x"
We can see that x did not leak to the user context. This happens
because Elixir macros are hygienic, a topic we will discuss at length
in the next sections as well.
Hygiene in variables
Consider the following example:
defmodule Hygiene do
 defmacro no_interference do
 quote do
 a = 1
 end
 end
end

require Hygiene

a = 10
Hygiene.no_interference()
a
#=> 10
In the example above, a returns 10 even if the macro
is apparently setting it to 1 because variables defined
in the macro do not affect the context the macro is executed in.
If you want to set or get a variable in the caller's context, you
can do it with the help of the var! macro:
defmodule NoHygiene do
 defmacro interference do
 quote do
 var!(a) = 1
 end
 end
end

require NoHygiene

a = 10
NoHygiene.interference()
a
#=> 1
You cannot even access variables defined in the same module unless
you explicitly give it a context:
defmodule Hygiene do
 defmacro write do
 quote do
 a = 1
 end
 end

 defmacro read do
 quote do
 a
 end
 end
end

require Hygiene
Hygiene.write()
Hygiene.read()
** (CompileError) undefined variable "a" (context Hygiene)
For such, you can explicitly pass the current module scope as
argument:
defmodule ContextHygiene do
 defmacro write do
 quote do
 var!(a, ContextHygiene) = 1
 end
 end

 defmacro read do
 quote do
 var!(a, ContextHygiene)
 end
 end
end

require ContextHygiene
ContextHygiene.write()
ContextHygiene.read()
#=> 1
The contexts of a variable is identified by the third element of the tuple.
The default context is nil and quote assigns another context to all
variables within:
quote(do: var)
#=> {:var, [], Elixir}
In case of variables returned by macros, there may also be a :counter key
in the metadata, which is used to further refine its contexts and guarantee
isolation between macro invocations as seen in the previous example.
Hygiene in aliases
Aliases inside quote are hygienic by default.
Consider the following example:
defmodule Hygiene do
 alias Map, as: M

 defmacro no_interference do
 quote do
 M.new()
 end
 end
end

require Hygiene
Hygiene.no_interference()
#=> %{}
Note that, even though the alias M is not available
in the context the macro is expanded, the code above works
because M still expands to Map.
Similarly, even if we defined an alias with the same name
before invoking a macro, it won't affect the macro's result:
defmodule Hygiene do
 alias Map, as: M

 defmacro no_interference do
 quote do
 M.new()
 end
 end
end

require Hygiene
alias SomethingElse, as: M
Hygiene.no_interference()
#=> %{}
In some cases, you want to access an alias or a module defined
in the caller. For such, you can use the alias! macro:
defmodule Hygiene do
 # This will expand to Elixir.Nested.hello()
 defmacro no_interference do
 quote do
 Nested.hello()
 end
 end

 # This will expand to Nested.hello() for
 # whatever is Nested in the caller
 defmacro interference do
 quote do
 alias!(Nested).hello()
 end
 end
end

defmodule Parent do
 defmodule Nested do
 def hello, do: "world"
 end

 require Hygiene
 Hygiene.no_interference()
 ** (UndefinedFunctionError) ...

 Hygiene.interference()
 #=> "world"
end
Hygiene in imports
Similar to aliases, imports in Elixir are hygienic. Consider the
following code:
defmodule Hygiene do
 defmacrop get_length do
 quote do
 length([1, 2, 3])
 end
 end

 def return_length do
 import Kernel, except: [length: 1]
 get_length
 end
end

Hygiene.return_length()
#=> 3
Notice how Hygiene.return_length/0 returns 3 even though the Kernel.length/1
function is not imported. In fact, even if return_length/0
imported a function with the same name and arity from another
module, it wouldn't affect the function result:
def return_length do
 import String, only: [length: 1]
 get_length
end
Calling this new return_length/0 will still return 3 as result.
Elixir is smart enough to delay the resolution to the latest
possible moment. So, if you call length([1, 2, 3]) inside quote,
but no length/1 function is available, it is then expanded in
the caller:
defmodule Lazy do
 defmacrop get_length do
 import Kernel, except: [length: 1]

 quote do
 length("hello")
 end
 end

 def return_length do
 import Kernel, except: [length: 1]
 import String, only: [length: 1]
 get_length
 end
end

Lazy.return_length()
#=> 5
Stacktrace information
When defining functions via macros, developers have the option of
choosing if runtime errors will be reported from the caller or from
inside the quote. Let's see an example:
adder.ex
defmodule Adder do
 @doc "Defines a function that adds two numbers"
 defmacro defadd do
 quote location: :keep do
 def add(a, b), do: a + b
 end
 end
end

sample.ex
defmodule Sample do
 import Adder
 defadd
end

require Sample
Sample.add(:one, :two)
** (ArithmeticError) bad argument in arithmetic expression
 adder.ex:5: Sample.add/2
When using location: :keep and invalid arguments are given to
Sample.add/2, the stacktrace information will point to the file
and line inside the quote. Without location: :keep, the error is
reported to where defadd was invoked. location: :keep affects
only definitions inside the quote.
location: :keep and unquote
Do not use location: :keep if the function definition
also unquotes some of the macro arguments. If you do so, Elixir
will store the file definition of the current location but the
unquoted arguments may contain line information of the macro caller,
leading to erroneous stacktraces.
Binding and unquote fragments
Elixir quote/unquote mechanisms provide a functionality called
unquote fragments. Unquote fragments provide an easy way to generate
functions on the fly. Consider this example:
kv = [foo: 1, bar: 2]
Enum.each(kv, fn {k, v} ->
 def unquote(k)(), do: unquote(v)
end)
In the example above, we have generated the functions foo/0 and
bar/0 dynamically. Note the parentheses in unquote(k)() are important,
otherwise we would try to define a function as def :foo instead of
def foo().
Now, imagine that we want to convert this functionality into a macro:
defmacro defkv(kv) do
 Enum.map(kv, fn {k, v} ->
 quote do
 def unquote(k)(), do: unquote(v)
 end
 end)
end
We can invoke this macro as:
defkv [foo: 1, bar: 2]
However, we can't invoke it as follows:
kv = [foo: 1, bar: 2]
defkv kv
This is because the macro is expecting its arguments to be a
keyword list at compilation time. Since in the example above
we are passing the representation of the variable kv, our
code fails.
This is actually a common pitfall when developing macros. We are
assuming a particular shape at compilation time, within the macro
implementation. One may try to work around it by unquoting the
variable inside the quoted expression:
defmacro defkv(kv) do
 quote do
 Enum.each(unquote(kv), fn {k, v} ->
 def unquote(k)(), do: unquote(v)
 end)
 end
end
If you try to run our new macro, you will notice it won't
even compile, complaining that the variables k and v
do not exist. This is because the two unquotes in the call
above are meant to run at distinct moments: unquote(kv)
applies to the immediate quote, unquote(k) is an unquote
fragment.
One solution to this problem is to disable unquoting in the
macro, however, doing that would make it impossible to inject the
kv representation into the tree. That's when the :bind_quoted
option comes to the rescue (again!). By using :bind_quoted, we
can automatically disable unquoting while still injecting the
desired variables into the tree:
defmacro defkv(kv) do
 quote bind_quoted: [kv: kv] do
 Enum.each(kv, fn {k, v} ->
 def unquote(k)(), do: unquote(v)
 end)
 end
end
In fact, the :bind_quoted option is recommended every time
one desires to inject a value into the quote.

 receive(args)

 (macro)

Consumes the first message matching any of the given clauses in the current
process mailbox.
If there is no matching message, the current process waits until a matching
message arrives or until after a given timeout value.
Any new and existing messages that do not match will remain in the mailbox.
Examples
iex> send(self(), {:selector, 5, :quantity})
iex> receive do
...> {:selector, number, name} when is_integer(number) ->
...> name
...> name when is_atom(name) ->
...> name
...> _ ->
...> IO.puts(:stderr, "Unexpected message received")
...> end
:quantity
An optional after clause can be given in case no matching message is
received during the given timeout period, specified in milliseconds:
iex> receive do
...> {:selector, number, name} when is_integer(number) ->
...> name
...> name when is_atom(name) ->
...> name
...> _ ->
...> IO.puts(:stderr, "Unexpected message received")
...> after
...> 10 ->
...> "No message in 10 milliseconds"
...> end
"No message in 10 milliseconds"
The after clause can be specified even if there are no match clauses.
The timeout value given to after can be any expression evaluating to
one of the allowed values:
	:infinity - the process should wait indefinitely for a matching
message, this is the same as not using the after clause

	0 - if there is no matching message in the mailbox, the timeout
will occur immediately

	positive integer smaller than or equal to 4_294_967_295 (0xFFFFFFFF
in hexadecimal notation) - it should be possible to represent the timeout
value as an unsigned 32-bit integer.

Variable handling
The receive/1 special form handles variables exactly as the case/2
special macro. For more information, check the docs for case/2.

 require(module, opts)

 (macro)

Requires a module in order to use its macros.
Examples
Public functions in modules are globally available, but in order to use
macros, you need to opt-in by requiring the module they are defined in.
Let's suppose you created your own if/2 implementation in the module
MyMacros. If you want to invoke it, you need to first explicitly
require the MyMacros:
defmodule Math do
 require MyMacros
 MyMacros.if do_something, it_works
end
An attempt to call a macro that was not loaded will raise an error.
Alias shortcut
require/2 also accepts :as as an option so it automatically sets
up an alias. Please check alias/2 for more information.

 super(args)

 (macro)

Calls the overridden function when overriding it with Kernel.defoverridable/1.
See Kernel.defoverridable/1 for more information and documentation.

 try(args)

 (macro)

Evaluates the given expressions and handles any error, exit,
or throw that may have happened.
Examples
try do
 do_something_that_may_fail(some_arg)
rescue
 ArgumentError ->
 IO.puts("Invalid argument given")
catch
 value ->
 IO.puts("Caught #{inspect(value)}")
else
 value ->
 IO.puts("Success! The result was #{inspect(value)}")
after
 IO.puts("This is printed regardless if it failed or succeeded")
end
The rescue clause is used to handle exceptions while the catch
clause can be used to catch thrown values and exits.
The else clause can be used to control flow based on the result of
the expression. catch, rescue, and else clauses work based on
pattern matching (similar to the case special form).
Calls inside try/1 are not tail recursive since the VM needs to keep
the stacktrace in case an exception happens. To retrieve the stacktrace,
access __STACKTRACE__/0 inside the rescue or catch clause.
rescue clauses
Besides relying on pattern matching, rescue clauses provide some
conveniences around exceptions that allow one to rescue an
exception by its name. All the following formats are valid patterns
in rescue clauses:
Rescue a single exception without binding the exception to a variable:
iex> try do
...> 1 / 0
...> rescue
...> ArithmeticError -> :rescued
...> end
:rescued
Rescue any of the given exception without binding:
iex> try do
...> 1 / 0
...> rescue
...> [ArithmeticError, ArgumentError] -> :rescued
...> end
:rescued
Rescue and bind the exception to the variable x:
iex> try do
...> 1 / 0
...> rescue
...> x in [ArithmeticError] -> [:rescued, is_exception(x)]
...> end
[:rescued, true]
Rescue different errors with separate clauses:
iex> try do
...> 1 / 0
...> rescue
...> ArgumentError -> :rescued_argument_error
...> ArithmeticError -> :rescued_arithmetic_error
...> end
:rescued_arithmetic_error
Rescue all kinds of exceptions and bind the rescued exception
to the variable x:
iex> try do
...> 1 / 0
...> rescue
...> x -> [:rescued, is_exception(x)]
...> end
[:rescued, true]
Erlang errors
Erlang errors are transformed into Elixir ones when rescuing:
iex> try do
...> :erlang.error(:badarg)
...> rescue
...> ArgumentError -> :rescued
...> end
:rescued
The most common Erlang errors will be transformed into their
Elixir counterpart. Those which are not will be transformed
into the more generic ErlangError:
iex> try do
...> :erlang.error(:unknown)
...> rescue
...> ErlangError -> :rescued
...> end
:rescued
In fact, ErlangError can be used to rescue any error that is
not a proper Elixir error. For example, it can be used to rescue
the earlier :badarg error too, prior to transformation:
iex> try do
...> :erlang.error(:badarg)
...> rescue
...> ErlangError -> :rescued
...> end
:rescued
catch clauses
The catch clause can be used to catch thrown values, exits, and errors.
Catching thrown values
catch can be used to catch values thrown by Kernel.throw/1:
iex> try do
...> throw(:some_value)
...> catch
...> thrown_value ->
...> "Thrown value: #{inspect(thrown_value)}"
...> end
"Thrown value: :some_value"
Catching values of any kind
The catch clause also supports catching exits and errors. To do that, it
allows matching on both the kind of the caught value as well as the value
itself:
iex> try do
...> exit(:shutdown)
...> catch
...> :exit, value ->
...> "Exited with value #{inspect(value)}"
...> end
"Exited with value :shutdown"

iex> try do
...> exit(:shutdown)
...> catch
...> kind, value when kind in [:exit, :throw] ->
...> "Caught exit or throw with value #{inspect(value)}"
...> end
"Caught exit or throw with value :shutdown"
The catch clause also supports :error alongside :exit and :throw as
in Erlang, although this is commonly avoided in favor of raise/rescue control
mechanisms. One reason for this is that when catching :error, the error is
not automatically transformed into an Elixir error:
iex> try do
...> :erlang.error(:badarg)
...> catch
...> :error, :badarg -> :rescued
...> end
:rescued
after clauses
An after clause allows you to define cleanup logic that will be invoked both
when the block of code passed to try/1 succeeds and also when an error is raised. Note
that the process will exit as usual when receiving an exit signal that causes
it to exit abruptly and so the after clause is not guaranteed to be executed.
Luckily, most resources in Elixir (such as open files, ETS tables, ports, sockets,
and so on) are linked to or monitor the owning process and will automatically clean
themselves up if that process exits.
File.write!("tmp/story.txt", "Hello, World")
try do
 do_something_with("tmp/story.txt")
after
 File.rm("tmp/story.txt")
end
Although after clauses are invoked whether or not there was an error, they do not
modify the return value. Both of the following examples print a message to STDOUT
and return :returned:
try do
 :returned
after
 IO.puts("This message will be printed")
 :not_returned
end
#=> :returned

try do
 raise "boom"
rescue
 _ -> :returned
after
 IO.puts("This message will be printed")
 :not_returned
end
#=> :returned
else clauses
else clauses allow the result of the body passed to try/1 to be pattern
matched on:
iex> x = 2
...> try do
...> 1 / x
...> rescue
...> ArithmeticError -> :infinity
...> else
...> y when y < 1 and y > -1 -> :small
...> _ -> :large
...> end
:small
If an else clause is not present and no exceptions are raised,
the result of the expression will be returned:
iex> x = 5
iex> try do
...> 1 / x
...> rescue
...> ArithmeticError -> :infinity
...> end
0.2
However, when an else clause is present but the result of the expression
does not match any of the patterns then an exception will be raised. This
exception will not be caught by a catch or rescue in the same try:
iex> x = 1
iex> try do
...> try do
...> 1 / x
...> rescue
...> # The TryClauseError cannot be rescued here:
...> TryClauseError -> :error_a
...> else
...> 0.5 -> :small
...> end
...> rescue
...> # The TryClauseError is rescued here:
...> TryClauseError -> :error_b
...> end
:error_b
Similarly, an exception inside an else clause is not caught or rescued
inside the same try:
iex> x = 1
iex> try do
...> try do
...> 1 / x
...> catch
...> # The exit(1) call below can not be caught here:
...> :exit, _ -> :exit_a
...> else
...> _ -> exit(1)
...> end
...> catch
...> # The exit is caught here:
...> :exit, _ -> :exit_b
...> end
:exit_b
This means the VM no longer needs to keep the stacktrace once inside
an else clause and so tail recursion is possible when using a try
with a tail call as the final call inside an else clause. The same
is true for rescue and catch clauses.
Only the result of the tried expression falls down to the else clause.
If the try ends up in the rescue or catch clauses, their result
will not fall down to else:
iex> try do
...> throw(:catch_this)
...> catch
...> :throw, :catch_this -> :it_was_caught
...> else
...> # :it_was_caught will not fall down to this "else" clause.
...> other -> {:else, other}
...> end
:it_was_caught
Variable handling
Since an expression inside try may not have been evaluated
due to an exception, any variable created inside try cannot
be accessed externally. For instance:
try do
 x = 1
 do_something_that_may_fail(same_arg)
 :ok
catch
 _, _ -> :failed
end

x
#=> unbound variable "x"
In the example above, x cannot be accessed since it was defined
inside the try clause. A common practice to address this issue
is to return the variables defined inside try:
x =
 try do
 x = 1
 do_something_that_may_fail(same_arg)
 x
 catch
 _, _ -> :failed
 end

 unquote(expr)

 (macro)

Unquotes the given expression inside a quoted expression.
This function expects a valid Elixir AST, also known as
quoted expression, as argument. If you would like to unquote
any value, such as a map or a four-element tuple, you should
call Macro.escape/1 before unquoting.
Examples
Imagine the situation you have a quoted expression and
you want to inject it inside some quote. The first attempt
would be:
value =
 quote do
 13
 end

quote do
 sum(1, value, 3)
end
Which the argument for the :sum function call is not the
expected result:
{:sum, [], [1, {:value, [], Elixir}, 3]}
For this, we use unquote:
iex> value =
...> quote do
...> 13
...> end
iex> quote do
...> sum(1, unquote(value), 3)
...> end
{:sum, [], [1, 13, 3]}
If you want to unquote a value that is not a quoted expression,
such as a map, you need to call Macro.escape/1 before:
iex> value = %{foo: :bar}
iex> quote do
...> process_map(unquote(Macro.escape(value)))
...> end
{:process_map, [], [{:%{}, [], [foo: :bar]}]}
If you forget to escape it, Elixir will raise an error
when compiling the code.

 unquote_splicing(expr)

 (macro)

Unquotes the given list expanding its arguments.
Similar to unquote/1.
Examples
iex> values = [2, 3, 4]
iex> quote do
...> sum(1, unquote_splicing(values), 5)
...> end
{:sum, [], [1, 2, 3, 4, 5]}
Also can be used in block context, outside of function arguments.
Though, it is still required to be wrapped into parentheses.
iex> requires = for module <- [Integer, Logger] do
...> quote do
...> require unquote(module)
...> end
...> end
iex> block = quote do: (unquote_splicing(requires))
iex> Macro.to_string(block)
"require Integer\nrequire Logger"

 with(args)

 (macro)

Combine matching clauses.
One of the ways to understand with is to show which code
patterns it improves. Imagine you have a map where the fields
width and height are optional and you want to compute its
area, as {:ok, area} or return :error. We could implement
this function as:
def area(opts) do
 case Map.fetch(opts, :width) do
 {:ok, width} ->
 case Map.fetch(opts, :height) do
 {:ok, height} -> {:ok, width * height}
 :error -> :error
 end

 :error ->
 :error
 end
end
when called as area(%{width: 10, height: 15}), it should return
{:ok, 150}. If any of the fields are missing, it returns :error.
While the code above works, it is quite verbose. Using with,
we could rewrite it as:
def area(opts) do
 with {:ok, width} <- Map.fetch(opts, :width),
 {:ok, height} <- Map.fetch(opts, :height) do
 {:ok, width * height}
 end
end
Instead of defining nested cases with clauses, we use with
alongside the PATTERN <- EXPRESSION operator to match
expressions on its right side against the pattern on the left.
Consider <- as a sibling to =, except that, while = raises
in case of not matches, <- will simply abort the with chain
and return the non-matched value.
Let's give it a try on IEx:
iex> opts = %{"width" => 10, "height" => 15}
iex> with {:ok, width} <- Map.fetch(opts, "width"),
...> {:ok, height} <- Map.fetch(opts, "height") do
...> {:ok, width * height}
...> end
{:ok, 150}
If all clauses match, the do block is executed, returning its result.
Otherwise the chain is aborted and the non-matched value is returned:
iex> opts = %{"width" => 10}
iex> with {:ok, width} <- Map.fetch(opts, "width"),
...> {:ok, height} <- Map.fetch(opts, "height") do
...> {:ok, width * height}
...> end
:error
As in for/1, variables bound inside with/1 won't be accessible
outside of with/1.
Expressions without <- may also be used in clauses. For instance,
you can perform regular matches with the = operator:
iex> width = nil
iex> opts = %{width: 10, height: 15}
iex> with {:ok, width} <- Map.fetch(opts, :width),
...> double_width = width * 2,
...> {:ok, height} <- Map.fetch(opts, :height) do
...> {:ok, double_width * height}
...> end
{:ok, 300}
iex> width
nil
The behavior of any expression in a clause is the same as if it was
written outside of with. For example, = will raise a MatchError
instead of returning the non-matched value:
with :foo = :bar, do: :ok
** (MatchError) no match of right hand side value: :bar
As with any other function or macro call in Elixir, explicit parens can
also be used around the arguments before the do-end block:
iex> opts = %{width: 10, height: 15}
iex> with(
...> {:ok, width} <- Map.fetch(opts, :width),
...> {:ok, height} <- Map.fetch(opts, :height)
...>) do
...> {:ok, width * height}
...> end
{:ok, 150}
The choice between parens and no parens is a matter of preference.
Else clauses
An else option can be given to modify what is being returned from
with in the case of a failed match:
with {:ok, content} <- File.read(path),
 :ok <- File.write(path, [content, "!"]) do
 :ok
else
 {:error, reason} ->
 Logger.error("could not append ! to #{path} with reason: #{reason}")
 :error
end
The else block works like a case: it can have multiple clauses,
and the first match will be used. Variables bound inside with
(such as content in this example) are not available in the else block.
If an else block is used and there are no matching clauses, a WithClauseError
exception is raised.
Beware!
Keep in mind that, one of potential drawback of with is that all
failure clauses are flattened into a single else block. For example,
take this code that checks if a given path points to an Elixir file
and that it exists before creating a backup copy:
with ".ex" <- Path.extname(path),
 true <- File.exists?(path) do
 backup_path = path <> ".backup"
 File.cp!(path, backup_path)
 {:ok, backup_path}
else
 binary when is_binary(binary) ->
 {:error, :invalid_extension}

 false ->
 {:error, :missing_file}
end
Note how we are having to reconstruct the result types of Path.extname/1
and File.exists?/1 to build error messages. In this case, it is better
to refactor the code so each <- already return the desired format in case
of errors, like this:
with :ok <- validate_extension(path),
 :ok <- validate_exists(path) do
 backup_path = path <> ".backup"
 File.cp!(path, backup_path)
 {:ok, backup_path}
end

defp validate_extension(path) do
 if Path.extname(path) == ".ex", do: :ok, else: {:error, :invalid_extension}
end

defp validate_exists(path) do
 if File.exists?(path), do: :ok, else: {:error, :missing_file}
end
Note how the code above is better organized and clearer once we
make sure each <- in with returns a normalized format.

 ^var

 (macro)

Pin operator. Accesses an already bound variable in match clauses.
Examples
Elixir allows variables to be rebound via static single assignment:
iex> x = 1
iex> x = x + 1
iex> x
2
However, in some situations, it is useful to match against an existing
value, instead of rebinding. This can be done with the ^ special form,
colloquially known as the pin operator:
iex> x = 1
iex> ^x = List.first([1])
iex> ^x = List.first([2])
** (MatchError) no match of right hand side value:
...
Note that ^x always refers to the value of x prior to the match. The
following example will match:
iex> x = 0
iex> {x, ^x} = {1, 0}
iex> x
1

 {args}

 (macro)

Creates a tuple.
More information about the tuple data type and about functions to manipulate
tuples can be found in the Tuple module; some functions for working with
tuples are also available in Kernel (such as Kernel.elem/2 or
Kernel.tuple_size/1).
AST representation
Only two-element tuples are considered literals in Elixir and return themselves
when quoted. Therefore, all other tuples are represented in the AST as calls to
the :{} special form.
iex> quote do
...> {1, 2}
...> end
{1, 2}

iex> quote do
...> {1, 2, 3}
...> end
{:{}, [], [1, 2, 3]}

Atom

Atoms are constants whose values are their own name.
They are often useful to enumerate over distinct values, such as:
iex> :apple
:apple
iex> :orange
:orange
iex> :watermelon
:watermelon
Atoms are equal if their names are equal.
iex> :apple == :apple
true
iex> :apple == :orange
false
Often they are used to express the state of an operation, by using
values such as :ok and :error.
The booleans true and false are also atoms:
iex> true == :true
true
iex> is_atom(false)
true
iex> is_boolean(:false)
true
Elixir allows you to skip the leading : for the atoms false, true,
and nil.
Atoms must be composed of Unicode characters such as letters, numbers,
underscore, and @. If the keyword has a character that does not
belong to the category above, such as spaces, you can wrap it in
quotes:
iex> :"this is an atom with spaces"
:"this is an atom with spaces"

 Summary

 Functions

 to_charlist(atom)

 Converts an atom to a charlist.

 to_string(atom)

 Converts an atom to a string.

 Functions

 to_charlist(atom)

 @spec to_charlist(atom()) :: charlist()

Converts an atom to a charlist.
Inlined by the compiler.
Examples
iex> Atom.to_charlist(:"An atom")
~c"An atom"

 to_string(atom)

 @spec to_string(atom()) :: String.t()

Converts an atom to a string.
Inlined by the compiler.
Examples
iex> Atom.to_string(:foo)
"foo"

Base

This module provides data encoding and decoding functions
according to RFC 4648.
This document defines the commonly used base 16, base 32, and base
64 encoding schemes.
Base 16 alphabet
	Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
	0	0	4	4	8	8	12	C
	1	1	5	5	9	9	13	D
	2	2	6	6	10	A	14	E
	3	3	7	7	11	B	15	F

Base 32 alphabet
	Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
	0	A	9	J	18	S	27	3
	1	B	10	K	19	T	28	4
	2	C	11	L	20	U	29	5
	3	D	12	M	21	V	30	6
	4	E	13	N	22	W	31	7
	5	F	14	O	23	X		
	6	G	15	P	24	Y	(pad)	=
	7	H	16	Q	25	Z		
	8	I	17	R	26	2		

Base 32 (extended hex) alphabet
	Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
	0	0	9	9	18	I	27	R
	1	1	10	A	19	J	28	S
	2	2	11	B	20	K	29	T
	3	3	12	C	21	L	30	U
	4	4	13	D	22	M	31	V
	5	5	14	E	23	N		
	6	6	15	F	24	O	(pad)	=
	7	7	16	G	25	P		
	8	8	17	H	26	Q		

Base 64 alphabet
	Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
	0	A	17	R	34	i	51	z
	1	B	18	S	35	j	52	0
	2	C	19	T	36	k	53	1
	3	D	20	U	37	l	54	2
	4	E	21	V	38	m	55	3
	5	F	22	W	39	n	56	4
	6	G	23	X	40	o	57	5
	7	H	24	Y	41	p	58	6
	8	I	25	Z	42	q	59	7
	9	J	26	a	43	r	60	8
	10	K	27	b	44	s	61	9
	11	L	28	c	45	t	62	+
	12	M	29	d	46	u	63	/
	13	N	30	e	47	v		
	14	O	31	f	48	w	(pad)	=
	15	P	32	g	49	x		
	16	Q	33	h	50	y		

Base 64 (URL and filename safe) alphabet
	Value	Encoding	Value	Encoding	Value	Encoding	Value	Encoding
	0	A	17	R	34	i	51	z
	1	B	18	S	35	j	52	0
	2	C	19	T	36	k	53	1
	3	D	20	U	37	l	54	2
	4	E	21	V	38	m	55	3
	5	F	22	W	39	n	56	4
	6	G	23	X	40	o	57	5
	7	H	24	Y	41	p	58	6
	8	I	25	Z	42	q	59	7
	9	J	26	a	43	r	60	8
	10	K	27	b	44	s	61	9
	11	L	28	c	45	t	62	-
	12	M	29	d	46	u	63	_
	13	N	30	e	47	v		
	14	O	31	f	48	w	(pad)	=
	15	P	32	g	49	x		
	16	Q	33	h	50	y		

 Summary

 Types

 decode_case()

 encode_case()

 Functions

 decode16(string, opts \\ [])

 Decodes a base 16 encoded string into a binary string.

 decode16!(string, opts \\ [])

 Decodes a base 16 encoded string into a binary string.

 decode32(string, opts \\ [])

 Decodes a base 32 encoded string into a binary string.

 decode32!(string, opts \\ [])

 Decodes a base 32 encoded string into a binary string.

 decode64(string, opts \\ [])

 Decodes a base 64 encoded string into a binary string.

 decode64!(string, opts \\ [])

 Decodes a base 64 encoded string into a binary string.

 encode16(data, opts \\ [])

 Encodes a binary string into a base 16 encoded string.

 encode32(data, opts \\ [])

 Encodes a binary string into a base 32 encoded string.

 encode64(data, opts \\ [])

 Encodes a binary string into a base 64 encoded string.

 hex_decode32(string, opts \\ [])

 Decodes a base 32 encoded string with extended hexadecimal alphabet
into a binary string.

 hex_decode32!(string, opts \\ [])

 Decodes a base 32 encoded string with extended hexadecimal alphabet
into a binary string.

 hex_encode32(data, opts \\ [])

 Encodes a binary string into a base 32 encoded string with an
extended hexadecimal alphabet.

 hex_valid32?(string, opts \\ [])

 Checks if a base 32 encoded string with extended hexadecimal alphabet is valid.

 url_decode64(string, opts \\ [])

 Decodes a base 64 encoded string with URL and filename safe alphabet
into a binary string.

 url_decode64!(string, opts \\ [])

 Decodes a base 64 encoded string with URL and filename safe alphabet
into a binary string.

 url_encode64(data, opts \\ [])

 Encodes a binary string into a base 64 encoded string with URL and filename
safe alphabet.

 url_valid64?(string, opts \\ [])

 Validates a base 64 encoded string with URL and filename safe alphabet.

 valid16?(string, opts \\ [])

 Checks if a string is a valid base 16 encoded string.

 valid32?(string, opts \\ [])

 Checks if a base 32 encoded string is valid.

 valid64?(string, opts \\ [])

 Validates a base 64 encoded string.

 Types

 decode_case()

 @type decode_case() :: :upper | :lower | :mixed

 encode_case()

 @type encode_case() :: :upper | :lower

 Functions

 decode16(string, opts \\ [])

 @spec decode16(binary(), [{:case, decode_case()}]) :: {:ok, binary()} | :error

Decodes a base 16 encoded string into a binary string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

Examples
iex> Base.decode16("666F6F626172")
{:ok, "foobar"}

iex> Base.decode16("666f6f626172", case: :lower)
{:ok, "foobar"}

iex> Base.decode16("666f6F626172", case: :mixed)
{:ok, "foobar"}

 decode16!(string, opts \\ [])

 @spec decode16!(binary(), [{:case, decode_case()}]) :: binary()

Decodes a base 16 encoded string into a binary string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

An ArgumentError exception is raised if the padding is incorrect or
a non-alphabet character is present in the string.
Examples
iex> Base.decode16!("666F6F626172")
"foobar"

iex> Base.decode16!("666f6f626172", case: :lower)
"foobar"

iex> Base.decode16!("666f6F626172", case: :mixed)
"foobar"

 decode32(string, opts \\ [])

 @spec decode32(binary(), case: decode_case(), padding: boolean()) ::
 {:ok, binary()} | :error

Decodes a base 32 encoded string into a binary string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding
	:padding - specifies whether to require padding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

The values for :padding can be:
	true - requires the input string to be padded to the nearest multiple of 8 (default)
	false - ignores padding from the input string

Examples
iex> Base.decode32("MZXW6YTBOI======")
{:ok, "foobar"}

iex> Base.decode32("mzxw6ytboi======", case: :lower)
{:ok, "foobar"}

iex> Base.decode32("mzXW6ytBOi======", case: :mixed)
{:ok, "foobar"}

iex> Base.decode32("MZXW6YTBOI", padding: false)
{:ok, "foobar"}

 decode32!(string, opts \\ [])

 @spec decode32!(binary(), case: decode_case(), padding: boolean()) :: binary()

Decodes a base 32 encoded string into a binary string.
An ArgumentError exception is raised if the padding is incorrect or
a non-alphabet character is present in the string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding
	:padding - specifies whether to require padding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

The values for :padding can be:
	true - requires the input string to be padded to the nearest multiple of 8 (default)
	false - ignores padding from the input string

Examples
iex> Base.decode32!("MZXW6YTBOI======")
"foobar"

iex> Base.decode32!("mzxw6ytboi======", case: :lower)
"foobar"

iex> Base.decode32!("mzXW6ytBOi======", case: :mixed)
"foobar"

iex> Base.decode32!("MZXW6YTBOI", padding: false)
"foobar"

 decode64(string, opts \\ [])

 @spec decode64(binary(), ignore: :whitespace, padding: boolean()) ::
 {:ok, binary()} | :error

Decodes a base 64 encoded string into a binary string.
Accepts ignore: :whitespace option which will ignore all the
whitespace characters in the input string.
Accepts padding: false option which will ignore padding from
the input string.
Examples
iex> Base.decode64("Zm9vYmFy")
{:ok, "foobar"}

iex> Base.decode64("Zm9vYmFy\n", ignore: :whitespace)
{:ok, "foobar"}

iex> Base.decode64("Zm9vYg==")
{:ok, "foob"}

iex> Base.decode64("Zm9vYg", padding: false)
{:ok, "foob"}

 decode64!(string, opts \\ [])

 @spec decode64!(binary(), ignore: :whitespace, padding: boolean()) :: binary()

Decodes a base 64 encoded string into a binary string.
Accepts ignore: :whitespace option which will ignore all the
whitespace characters in the input string.
Accepts padding: false option which will ignore padding from
the input string.
An ArgumentError exception is raised if the padding is incorrect or
a non-alphabet character is present in the string.
Examples
iex> Base.decode64!("Zm9vYmFy")
"foobar"

iex> Base.decode64!("Zm9vYmFy\n", ignore: :whitespace)
"foobar"

iex> Base.decode64!("Zm9vYg==")
"foob"

iex> Base.decode64!("Zm9vYg", padding: false)
"foob"

 encode16(data, opts \\ [])

 @spec encode16(binary(), [{:case, encode_case()}]) :: binary()

Encodes a binary string into a base 16 encoded string.
Options
The accepted options are:
	:case - specifies the character case to use when encoding

The values for :case can be:
	:upper - uses upper case characters (default)
	:lower - uses lower case characters

Examples
iex> Base.encode16("foobar")
"666F6F626172"

iex> Base.encode16("foobar", case: :lower)
"666f6f626172"

 encode32(data, opts \\ [])

 @spec encode32(binary(), case: encode_case(), padding: boolean()) :: binary()

Encodes a binary string into a base 32 encoded string.
Options
The accepted options are:
	:case - specifies the character case to use when encoding
	:padding - specifies whether to apply padding

The values for :case can be:
	:upper - uses upper case characters (default)
	:lower - uses lower case characters

The values for :padding can be:
	true - pad the output string to the nearest multiple of 8 (default)
	false - omit padding from the output string

Examples
iex> Base.encode32("foobar")
"MZXW6YTBOI======"

iex> Base.encode32("foobar", case: :lower)
"mzxw6ytboi======"

iex> Base.encode32("foobar", padding: false)
"MZXW6YTBOI"

 encode64(data, opts \\ [])

 @spec encode64(binary(), [{:padding, boolean()}]) :: binary()

Encodes a binary string into a base 64 encoded string.
Accepts padding: false option which will omit padding from
the output string.
Examples
iex> Base.encode64("foobar")
"Zm9vYmFy"

iex> Base.encode64("foob")
"Zm9vYg=="

iex> Base.encode64("foob", padding: false)
"Zm9vYg"

 hex_decode32(string, opts \\ [])

 @spec hex_decode32(binary(), case: decode_case(), padding: boolean()) ::
 {:ok, binary()} | :error

Decodes a base 32 encoded string with extended hexadecimal alphabet
into a binary string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding
	:padding - specifies whether to require padding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

The values for :padding can be:
	true - requires the input string to be padded to the nearest multiple of 8 (default)
	false - ignores padding from the input string

Examples
iex> Base.hex_decode32("CPNMUOJ1E8======")
{:ok, "foobar"}

iex> Base.hex_decode32("cpnmuoj1e8======", case: :lower)
{:ok, "foobar"}

iex> Base.hex_decode32("cpnMuOJ1E8======", case: :mixed)
{:ok, "foobar"}

iex> Base.hex_decode32("CPNMUOJ1E8", padding: false)
{:ok, "foobar"}

 hex_decode32!(string, opts \\ [])

 @spec hex_decode32!(binary(), case: decode_case(), padding: boolean()) :: binary()

Decodes a base 32 encoded string with extended hexadecimal alphabet
into a binary string.
An ArgumentError exception is raised if the padding is incorrect or
a non-alphabet character is present in the string.
Options
The accepted options are:
	:case - specifies the character case to accept when decoding
	:padding - specifies whether to require padding

The values for :case can be:
	:upper - only allows upper case characters (default)
	:lower - only allows lower case characters
	:mixed - allows mixed case characters

The values for :padding can be:
	true - requires the input string to be padded to the nearest multiple of 8 (default)
	false - ignores padding from the input string

Examples
iex> Base.hex_decode32!("CPNMUOJ1E8======")
"foobar"

iex> Base.hex_decode32!("cpnmuoj1e8======", case: :lower)
"foobar"

iex> Base.hex_decode32!("cpnMuOJ1E8======", case: :mixed)
"foobar"

iex> Base.hex_decode32!("CPNMUOJ1E8", padding: false)
"foobar"

 hex_encode32(data, opts \\ [])

 @spec hex_encode32(binary(), case: encode_case(), padding: boolean()) :: binary()

Encodes a binary string into a base 32 encoded string with an
extended hexadecimal alphabet.
Options
The accepted options are:
	:case - specifies the character case to use when encoding
	:padding - specifies whether to apply padding

The values for :case can be:
	:upper - uses upper case characters (default)
	:lower - uses lower case characters

The values for :padding can be:
	true - pad the output string to the nearest multiple of 8 (default)
	false - omit padding from the output string

Examples
iex> Base.hex_encode32("foobar")
"CPNMUOJ1E8======"

iex> Base.hex_encode32("foobar", case: :lower)
"cpnmuoj1e8======"

iex> Base.hex_encode32("foobar", padding: false)
"CPNMUOJ1E8"

 hex_valid32?(string, opts \\ [])

 (since 1.19.0)

 @spec hex_valid32?(binary(), case: decode_case(), padding: boolean()) :: boolean()

Checks if a base 32 encoded string with extended hexadecimal alphabet is valid.
When to use this
Use this function when you just need to validate that a string is
valid (extended hexadecimal) base 32 data, without actually producing
a decoded output string. This function is both more performant and
memory efficient than using hex_decode32/2, checking that the result
is {:ok, ...}, and then discarding the decoded binary.
Options
Accepts the same options as hex_decode32/2.
Examples
iex> Base.hex_valid32?("CPNMUOJ1E8======")
true

iex> Base.hex_valid32?("cpnmuoj1e8======", case: :lower)
true

iex> Base.hex_valid32?("zzz", padding: false)
false

 url_decode64(string, opts \\ [])

 @spec url_decode64(binary(), ignore: :whitespace, padding: boolean()) ::
 {:ok, binary()} | :error

Decodes a base 64 encoded string with URL and filename safe alphabet
into a binary string.
Accepts ignore: :whitespace option which will ignore all the
whitespace characters in the input string.
Accepts padding: false option which will ignore padding from
the input string.
Examples
iex> Base.url_decode64("_3_-_A==")
{:ok, <<255, 127, 254, 252>>}

iex> Base.url_decode64("_3_-_A==\n", ignore: :whitespace)
{:ok, <<255, 127, 254, 252>>}

iex> Base.url_decode64("_3_-_A", padding: false)
{:ok, <<255, 127, 254, 252>>}

 url_decode64!(string, opts \\ [])

 @spec url_decode64!(binary(), ignore: :whitespace, padding: boolean()) :: binary()

Decodes a base 64 encoded string with URL and filename safe alphabet
into a binary string.
Accepts ignore: :whitespace option which will ignore all the
whitespace characters in the input string.
Accepts padding: false option which will ignore padding from
the input string.
An ArgumentError exception is raised if the padding is incorrect or
a non-alphabet character is present in the string.
Examples
iex> Base.url_decode64!("_3_-_A==")
<<255, 127, 254, 252>>

iex> Base.url_decode64!("_3_-_A==\n", ignore: :whitespace)
<<255, 127, 254, 252>>

iex> Base.url_decode64!("_3_-_A", padding: false)
<<255, 127, 254, 252>>

 url_encode64(data, opts \\ [])

 @spec url_encode64(binary(), [{:padding, boolean()}]) :: binary()

Encodes a binary string into a base 64 encoded string with URL and filename
safe alphabet.
Accepts padding: false option which will omit padding from
the output string.
Examples
iex> Base.url_encode64(<<255, 127, 254, 252>>)
"_3_-_A=="

iex> Base.url_encode64(<<255, 127, 254, 252>>, padding: false)
"_3_-_A"

 url_valid64?(string, opts \\ [])

 (since 1.19.0)

 @spec url_valid64?(binary(), ignore: :whitespace, padding: boolean()) :: boolean()

Validates a base 64 encoded string with URL and filename safe alphabet.
When to use this
Use this function when you just need to validate that a string is
valid (URL-safe) base 64 data, without actually producing a decoded
output string. This function is both more performant and memory efficient
than using url_decode64/2, checking that the result is {:ok, ...},
and then discarding the decoded binary.
Options
Accepts the same options as url_decode64/2.
Examples
iex> Base.url_valid64?("_3_-_A==")
true

iex> Base.url_valid64?("_3_-_A==\n", ignore: :whitespace)
true

iex> Base.url_valid64?("_3_-_A", padding: false)
true

 valid16?(string, opts \\ [])

 (since 1.19.0)

 @spec valid16?(binary(), [{:case, decode_case()}]) :: boolean()

Checks if a string is a valid base 16 encoded string.
When to use this
Use this function when you just need to validate that a string is
valid base 16 data, without actually producing a decoded output string.
This function is both more performant and memory efficient than using
decode16/2, checking that the result is {:ok, ...}, and then
discarding the decoded binary.
Options
Accepts the same options as decode16/2.
Examples
iex> Base.valid16?("666F6F626172")
true

iex> Base.valid16?("666f6f626172", case: :lower)
true

iex> Base.valid16?("666f6F626172", case: :mixed)
true

iex> Base.valid16?("ff", case: :upper)
false

 valid32?(string, opts \\ [])

 (since 1.19.0)

 @spec valid32?(binary(), case: decode_case(), padding: boolean()) :: boolean()

Checks if a base 32 encoded string is valid.
When to use this
Use this function when you just need to validate that a string is
valid base 32 data, without actually producing a decoded output string.
This function is both more performant and memory efficient than using
decode32/2, checking that the result is {:ok, ...}, and then
discarding the decoded binary.
Options
Accepts the same options as decode32/2.
Examples
iex> Base.valid32?("MZXW6YTBOI======")
true

iex> Base.valid32?("mzxw6ytboi======", case: :lower)
true

iex> Base.valid32?("zzz")
false

 valid64?(string, opts \\ [])

 (since 1.19.0)

 @spec valid64?(binary(), ignore: :whitespace, padding: boolean()) :: boolean()

Validates a base 64 encoded string.
When to use this
Use this function when you just need to validate that a string is
valid base 64 data, without actually producing a decoded output string.
This function is both more performant and memory efficient than using
decode64/2, checking that the result is {:ok, ...}, and then
discarding the decoded binary.
Options
Accepts the same options as decode64/2.
Examples
iex> Base.valid64?("Zm9vYmFy")
true

iex> Base.valid64?("Zm9vYmFy\n", ignore: :whitespace)
true

iex> Base.valid64?("Zm9vYg==")
true

Bitwise

A set of functions that perform calculations on bits.
All bitwise functions work only on integers, otherwise an
ArithmeticError is raised. The functions band/2,
bor/2, bsl/2, and bsr/2 also have operators,
respectively: &&&/2, |||/2, <<</2, and >>>/2.
Guards
All bitwise functions can be used in guards:
iex> odd? = fn
...> int when Bitwise.band(int, 1) == 1 -> true
...> _ -> false
...> end
iex> odd?.(1)
true
All functions in this module are inlined by the compiler.

 Summary

 Guards

 left &&& right

 Bitwise AND operator.

 left <<< right

 Arithmetic left bitshift operator.

 left >>> right

 Arithmetic right bitshift operator.

 band(left, right)

 Calculates the bitwise AND of its arguments.

 bnot(expr)

 Calculates the bitwise NOT of the argument.

 bor(left, right)

 Calculates the bitwise OR of its arguments.

 bsl(left, right)

 Calculates the result of an arithmetic left bitshift.

 bsr(left, right)

 Calculates the result of an arithmetic right bitshift.

 bxor(left, right)

 Calculates the bitwise XOR of its arguments.

 left ||| right

 Bitwise OR operator.

 Guards

 left &&& right

 @spec integer() &&& integer() :: integer()

Bitwise AND operator.
Calculates the bitwise AND of its arguments.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 9 &&& 3
1

 left <<< right

 @spec integer() <<< integer() :: integer()

Arithmetic left bitshift operator.
Calculates the result of an arithmetic left bitshift.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 <<< 2
4

iex> 1 <<< -2
0

iex> -1 <<< 2
-4

iex> -1 <<< -2
-1

 left >>> right

 @spec integer() >>> integer() :: integer()

Arithmetic right bitshift operator.
Calculates the result of an arithmetic right bitshift.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 1 >>> 2
0

iex> 1 >>> -2
4

iex> -1 >>> 2
-1

iex> -1 >>> -2
-4

 band(left, right)

 @spec band(integer(), integer()) :: integer()

Calculates the bitwise AND of its arguments.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> band(9, 3)
1

 bnot(expr)

 @spec bnot(integer()) :: integer()

Calculates the bitwise NOT of the argument.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bnot(2)
-3

iex> bnot(2) &&& 3
1

 bor(left, right)

 @spec bor(integer(), integer()) :: integer()

Calculates the bitwise OR of its arguments.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bor(9, 3)
11

 bsl(left, right)

 @spec bsl(integer(), integer()) :: integer()

Calculates the result of an arithmetic left bitshift.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bsl(1, 2)
4

iex> bsl(1, -2)
0

iex> bsl(-1, 2)
-4

iex> bsl(-1, -2)
-1

 bsr(left, right)

 @spec bsr(integer(), integer()) :: integer()

Calculates the result of an arithmetic right bitshift.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bsr(1, 2)
0

iex> bsr(1, -2)
4

iex> bsr(-1, 2)
-1

iex> bsr(-1, -2)
-4

 bxor(left, right)

 @spec bxor(integer(), integer()) :: integer()

Calculates the bitwise XOR of its arguments.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> bxor(9, 3)
10

 left ||| right

 @spec integer() ||| integer() :: integer()

Bitwise OR operator.
Calculates the bitwise OR of its arguments.
Allowed in guard tests. Inlined by the compiler.
Examples
iex> 9 ||| 3
11

Date

A Date struct and functions.
The Date struct contains the fields year, month, day and calendar.
New dates can be built with the new/3 function or using the
~D (see sigil_D/2) sigil:
iex> ~D[2000-01-01]
~D[2000-01-01]
Both new/3 and sigil return a struct where the date fields can
be accessed directly:
iex> date = ~D[2000-01-01]
iex> date.year
2000
iex> date.month
1
The functions on this module work with the Date struct as well
as any struct that contains the same fields as the Date struct,
such as NaiveDateTime and DateTime. Such functions expect
Calendar.date/0 in their typespecs (instead of t/0).
Developers should avoid creating the Date structs directly
and instead rely on the functions provided by this module as well
as the ones in third-party calendar libraries.
Comparing dates
Comparisons in Elixir using ==/2, >/2, </2 and similar are structural
and based on the Date struct fields. For proper comparison between
dates, use the compare/2, after?/2 and before?/2 functions.
The existence of the compare/2 function in this module also allows
using Enum.min/2 and Enum.max/2 functions to get the minimum and
maximum date of an Enum. For example:
iex> Enum.min([~D[2017-03-31], ~D[2017-04-01]], Date)
~D[2017-03-31]
Using epochs
The add/2, diff/2 and shift/2 functions can be used for computing dates
or retrieving the number of days between instants. For example, if there
is an interest in computing the number of days from the Unix epoch
(1970-01-01):
iex> Date.diff(~D[2010-04-17], ~D[1970-01-01])
14716

iex> Date.add(~D[1970-01-01], 14_716)
~D[2010-04-17]

iex> Date.shift(~D[1970-01-01], year: 40, month: 3, week: 2, day: 2)
~D[2010-04-17]
Those functions are optimized to deal with common epochs, such
as the Unix Epoch above or the Gregorian Epoch (0000-01-01).

 Summary

 Types

 t()

 Functions

 add(date, days)

 Adds the number of days to the given date.

 after?(date1, date2)

 Returns true if the first date is strictly later than the second.

 before?(date1, date2)

 Returns true if the first date is strictly earlier than the second.

 beginning_of_month(date)

 Calculates a date that is the first day of the month for the given date.

 beginning_of_week(date, starting_on \\ :default)

 Calculates a date that is the first day of the week for the given date.

 compare(date1, date2)

 Compares two date structs.

 convert(date, calendar)

 Converts the given date from its calendar to the given calendar.

 convert!(date, calendar)

 Similar to Date.convert/2, but raises an ArgumentError
if the conversion between the two calendars is not possible.

 day_of_era(date)

 Calculates the day-of-era and era for a given
calendar date.

 day_of_week(date, starting_on \\ :default)

 Calculates the ordinal day of the week of a given date.

 day_of_year(date)

 Calculates the day of the year of a given date.

 days_in_month(date)

 Returns the number of days in the given date month.

 diff(date1, date2)

 Calculates the difference between two dates, in a full number of days.

 end_of_month(date)

 Calculates a date that is the last day of the month for the given date.

 end_of_week(date, starting_on \\ :default)

 Calculates a date that is the last day of the week for the given date.

 from_erl(tuple, calendar \\ Calendar.ISO)

 Converts an Erlang date tuple to a Date struct.

 from_erl!(tuple, calendar \\ Calendar.ISO)

 Converts an Erlang date tuple but raises for invalid dates.

 from_gregorian_days(days, calendar \\ Calendar.ISO)

 Converts a number of gregorian days to a Date struct.

 from_iso8601(string, calendar \\ Calendar.ISO)

 Parses the extended "Dates" format described by
ISO 8601:2019.

 from_iso8601!(string, calendar \\ Calendar.ISO)

 Parses the extended "Dates" format described by
ISO 8601:2019.

 leap_year?(date)

 Returns true if the year in the given date is a leap year.

 months_in_year(date)

 Returns the number of months in the given date year.

 new(year, month, day, calendar \\ Calendar.ISO)

 Builds a new ISO date.

 new!(year, month, day, calendar \\ Calendar.ISO)

 Builds a new ISO date.

 quarter_of_year(date)

 Calculates the quarter of the year of a given date.

 range(first, last)

 Returns a range of dates.

 range(first, last, step)

 Returns a range of dates with a step.

 shift(date, duration)

 Shifts given date by duration according to its calendar.

 to_erl(date)

 Converts the given date to an Erlang date tuple.

 to_gregorian_days(date)

 Converts a date struct to a number of gregorian days.

 to_iso8601(date, format \\ :extended)

 Converts the given date to
ISO 8601:2019.

 to_string(date)

 Converts the given date to a string according to its calendar.

 utc_today(calendar \\ Calendar.ISO)

 Returns the current date in UTC.

 year_of_era(date)

 Calculates the year-of-era and era for a given
calendar year.

 Types

 t()

 @type t() :: %Date{
 calendar: Calendar.calendar(),
 day: Calendar.day(),
 month: Calendar.month(),
 year: Calendar.year()
}

 Functions

 add(date, days)

 (since 1.5.0)

 @spec add(Calendar.date(), integer()) :: t()

Adds the number of days to the given date.
Prefer shift/2
Prefer shift/2 over add/2, as it offers a more ergonomic API.
add/2 always considers a day to be measured according to the
Calendar.ISO.
The days are counted as Gregorian days, independent of the underlying
calendar. The date is returned in the same calendar as it was given in.
Examples
iex> Date.add(~D[2000-01-03], -2)
~D[2000-01-01]
iex> Date.add(~D[2000-01-01], 2)
~D[2000-01-03]
iex> Date.add(~N[2000-01-01 09:00:00], 2)
~D[2000-01-03]
iex> Date.add(~D[-0010-01-01], -2)
~D[-0011-12-30]

 after?(date1, date2)

 (since 1.15.0)

 @spec after?(Calendar.date(), Calendar.date()) :: boolean()

Returns true if the first date is strictly later than the second.
Examples
iex> Date.after?(~D[2022-02-02], ~D[2021-01-01])
true
iex> Date.after?(~D[2021-01-01], ~D[2021-01-01])
false
iex> Date.after?(~D[2021-01-01], ~D[2022-02-02])
false

 before?(date1, date2)

 (since 1.15.0)

 @spec before?(Calendar.date(), Calendar.date()) :: boolean()

Returns true if the first date is strictly earlier than the second.
Examples
iex> Date.before?(~D[2021-01-01], ~D[2022-02-02])
true
iex> Date.before?(~D[2021-01-01], ~D[2021-01-01])
false
iex> Date.before?(~D[2022-02-02], ~D[2021-01-01])
false

 beginning_of_month(date)

 (since 1.11.0)

 @spec beginning_of_month(Calendar.date()) :: t()

Calculates a date that is the first day of the month for the given date.
Examples
iex> Date.beginning_of_month(~D[2000-01-31])
~D[2000-01-01]
iex> Date.beginning_of_month(~D[2000-01-01])
~D[2000-01-01]
iex> Date.beginning_of_month(~N[2000-01-31 01:23:45])
~D[2000-01-01]

 beginning_of_week(date, starting_on \\ :default)

 (since 1.11.0)

 @spec beginning_of_week(Calendar.date(), starting_on :: :default | atom()) :: t()

Calculates a date that is the first day of the week for the given date.
If the day is already the first day of the week, it returns the
day itself. For the built-in ISO calendar, the week starts on Monday.
A weekday rather than :default can be given as starting_on.
Examples
iex> Date.beginning_of_week(~D[2020-07-11])
~D[2020-07-06]
iex> Date.beginning_of_week(~D[2020-07-06])
~D[2020-07-06]
iex> Date.beginning_of_week(~D[2020-07-11], :sunday)
~D[2020-07-05]
iex> Date.beginning_of_week(~D[2020-07-11], :saturday)
~D[2020-07-11]
iex> Date.beginning_of_week(~N[2020-07-11 01:23:45])
~D[2020-07-06]

 compare(date1, date2)

 (since 1.4.0)

 @spec compare(Calendar.date(), Calendar.date()) :: :lt | :eq | :gt

Compares two date structs.
Returns :gt if first date is later than the second
and :lt for vice versa. If the two dates are equal
:eq is returned.
Examples
iex> Date.compare(~D[2016-04-16], ~D[2016-04-28])
:lt
This function can also be used to compare across more
complex calendar types by considering only the date fields:
iex> Date.compare(~D[2016-04-16], ~N[2016-04-28 01:23:45])
:lt
iex> Date.compare(~D[2016-04-16], ~N[2016-04-16 01:23:45])
:eq
iex> Date.compare(~N[2016-04-16 12:34:56], ~N[2016-04-16 01:23:45])
:eq

 convert(date, calendar)

 (since 1.5.0)

 @spec convert(Calendar.date(), Calendar.calendar()) ::
 {:ok, t()} | {:error, :incompatible_calendars}

Converts the given date from its calendar to the given calendar.
Returns {:ok, date} if the calendars are compatible,
or {:error, :incompatible_calendars} if they are not.
See also Calendar.compatible_calendars?/2.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> Date.convert(~D[2000-01-01], Calendar.Holocene)
{:ok, %Date{calendar: Calendar.Holocene, year: 12000, month: 1, day: 1}}

 convert!(date, calendar)

 (since 1.5.0)

 @spec convert!(Calendar.date(), Calendar.calendar()) :: t()

Similar to Date.convert/2, but raises an ArgumentError
if the conversion between the two calendars is not possible.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> Date.convert!(~D[2000-01-01], Calendar.Holocene)
%Date{calendar: Calendar.Holocene, year: 12000, month: 1, day: 1}

 day_of_era(date)

 (since 1.8.0)

 @spec day_of_era(Calendar.date()) :: {Calendar.day(), non_neg_integer()}

Calculates the day-of-era and era for a given
calendar date.
Returns a tuple {day, era} representing the
day within the era and the era number.
Examples
iex> Date.day_of_era(~D[0001-01-01])
{1, 1}

iex> Date.day_of_era(~D[0000-12-31])
{1, 0}

 day_of_week(date, starting_on \\ :default)

 (since 1.4.0)

 @spec day_of_week(Calendar.date(), starting_on :: :default | atom()) ::
 Calendar.day_of_week()

Calculates the ordinal day of the week of a given date.
Returns the day of the week as an integer. For the ISO 8601
calendar (the default), it is an integer from 1 to 7, where
1 is Monday and 7 is Sunday.
An optional starting_on value may be supplied, which
configures the weekday the week starts on. The default value
for it is :default, which translates to :monday for the
built-in ISO 8601 calendar. Any other weekday may be used for
starting_on, in such cases, that weekday will be considered the first
day of the week, and therefore it will be assigned the ordinal number 1.
The other calendars, the value returned is an ordinal day of week.
For example, 1 may mean "first day of the week" and 7 is
defined to mean "seventh day of the week". Custom calendars may
also accept their own variations of the starting_on parameter
with their own meaning.
Examples
2016-10-31 is a Monday and by default Monday is the first day of the week
iex> Date.day_of_week(~D[2016-10-31])
1
iex> Date.day_of_week(~D[2016-11-01])
2
iex> Date.day_of_week(~N[2016-11-01 01:23:45])
2
iex> Date.day_of_week(~D[-0015-10-30])
3

2016-10-31 is a Monday but, as we start the week on Sunday, now it returns 2
iex> Date.day_of_week(~D[2016-10-31], :sunday)
2
iex> Date.day_of_week(~D[2016-11-01], :sunday)
3
iex> Date.day_of_week(~N[2016-11-01 01:23:45], :sunday)
3
iex> Date.day_of_week(~D[-0015-10-30], :sunday)
4

 day_of_year(date)

 (since 1.8.0)

 @spec day_of_year(Calendar.date()) :: Calendar.day()

Calculates the day of the year of a given date.
Returns the day of the year as an integer. For the ISO 8601
calendar (the default), it is an integer from 1 to 366.
Examples
iex> Date.day_of_year(~D[2016-01-01])
1
iex> Date.day_of_year(~D[2016-11-01])
306
iex> Date.day_of_year(~D[-0015-10-30])
303
iex> Date.day_of_year(~D[2004-12-31])
366

 days_in_month(date)

 (since 1.4.0)

 @spec days_in_month(Calendar.date()) :: Calendar.day()

Returns the number of days in the given date month.
Examples
iex> Date.days_in_month(~D[1900-01-13])
31
iex> Date.days_in_month(~D[1900-02-09])
28
iex> Date.days_in_month(~N[2000-02-20 01:23:45])
29

 diff(date1, date2)

 (since 1.5.0)

 @spec diff(Calendar.date(), Calendar.date()) :: integer()

Calculates the difference between two dates, in a full number of days.
It returns the number of Gregorian days between the dates. Only Date
structs that follow the same or compatible calendars can be compared
this way. If two calendars are not compatible, it will raise.
Examples
iex> Date.diff(~D[2000-01-03], ~D[2000-01-01])
2
iex> Date.diff(~D[2000-01-01], ~D[2000-01-03])
-2
iex> Date.diff(~D[0000-01-02], ~D[-0001-12-30])
3
iex> Date.diff(~D[2000-01-01], ~N[2000-01-03 09:00:00])
-2

 end_of_month(date)

 (since 1.11.0)

 @spec end_of_month(Calendar.date()) :: t()

Calculates a date that is the last day of the month for the given date.
Examples
iex> Date.end_of_month(~D[2000-01-01])
~D[2000-01-31]
iex> Date.end_of_month(~D[2000-01-31])
~D[2000-01-31]
iex> Date.end_of_month(~N[2000-01-01 01:23:45])
~D[2000-01-31]

 end_of_week(date, starting_on \\ :default)

 (since 1.11.0)

 @spec end_of_week(Calendar.date(), starting_on :: :default | atom()) :: t()

Calculates a date that is the last day of the week for the given date.
If the day is already the last day of the week, it returns the
day itself. For the built-in ISO calendar, the week ends on Sunday.
A weekday rather than :default can be given as starting_on.
Examples
iex> Date.end_of_week(~D[2020-07-11])
~D[2020-07-12]
iex> Date.end_of_week(~D[2020-07-05])
~D[2020-07-05]
iex> Date.end_of_week(~D[2020-07-06], :sunday)
~D[2020-07-11]
iex> Date.end_of_week(~D[2020-07-06], :saturday)
~D[2020-07-10]
iex> Date.end_of_week(~N[2020-07-11 01:23:45])
~D[2020-07-12]

 from_erl(tuple, calendar \\ Calendar.ISO)

 @spec from_erl(:calendar.date(), Calendar.calendar()) :: {:ok, t()} | {:error, atom()}

Converts an Erlang date tuple to a Date struct.
Only supports converting dates which are in the ISO calendar,
or other calendars in which the days also start at midnight.
Attempting to convert dates from other calendars will return an error tuple.
Examples
iex> Date.from_erl({2000, 1, 1})
{:ok, ~D[2000-01-01]}
iex> Date.from_erl({2000, 13, 1})
{:error, :invalid_date}

 from_erl!(tuple, calendar \\ Calendar.ISO)

 @spec from_erl!(:calendar.date(), Calendar.calendar()) :: t()

Converts an Erlang date tuple but raises for invalid dates.
Examples
iex> Date.from_erl!({2000, 1, 1})
~D[2000-01-01]
iex> Date.from_erl!({2000, 13, 1})
** (ArgumentError) cannot convert {2000, 13, 1} to date, reason: :invalid_date

 from_gregorian_days(days, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec from_gregorian_days(integer(), Calendar.calendar()) :: t()

Converts a number of gregorian days to a Date struct.
Examples
iex> Date.from_gregorian_days(1)
~D[0000-01-02]
iex> Date.from_gregorian_days(730_485)
~D[2000-01-01]
iex> Date.from_gregorian_days(-1)
~D[-0001-12-31]

 from_iso8601(string, calendar \\ Calendar.ISO)

 @spec from_iso8601(String.t(), Calendar.calendar()) :: {:ok, t()} | {:error, atom()}

Parses the extended "Dates" format described by
ISO 8601:2019.
The year parsed by this function is limited to four digits.
Examples
iex> Date.from_iso8601("2015-01-23")
{:ok, ~D[2015-01-23]}

iex> Date.from_iso8601("2015:01:23")
{:error, :invalid_format}

iex> Date.from_iso8601("2015-01-32")
{:error, :invalid_date}

 from_iso8601!(string, calendar \\ Calendar.ISO)

 @spec from_iso8601!(String.t(), Calendar.calendar()) :: t()

Parses the extended "Dates" format described by
ISO 8601:2019.
Raises if the format is invalid.
Examples
iex> Date.from_iso8601!("2015-01-23")
~D[2015-01-23]
iex> Date.from_iso8601!("2015:01:23")
** (ArgumentError) cannot parse "2015:01:23" as date, reason: :invalid_format

 leap_year?(date)

 (since 1.4.0)

 @spec leap_year?(Calendar.date()) :: boolean()

Returns true if the year in the given date is a leap year.
Examples
iex> Date.leap_year?(~D[2000-01-01])
true
iex> Date.leap_year?(~D[2001-01-01])
false
iex> Date.leap_year?(~D[2004-01-01])
true
iex> Date.leap_year?(~D[1900-01-01])
false
iex> Date.leap_year?(~N[2004-01-01 01:23:45])
true

 months_in_year(date)

 (since 1.7.0)

 @spec months_in_year(Calendar.date()) :: Calendar.month()

Returns the number of months in the given date year.
Example
iex> Date.months_in_year(~D[1900-01-13])
12

 new(year, month, day, calendar \\ Calendar.ISO)

 @spec new(Calendar.year(), Calendar.month(), Calendar.day(), Calendar.calendar()) ::
 {:ok, t()} | {:error, atom()}

Builds a new ISO date.
Expects all values to be integers. Returns {:ok, date} if each
entry fits its appropriate range, returns {:error, reason} otherwise.
Examples
iex> Date.new(2000, 1, 1)
{:ok, ~D[2000-01-01]}
iex> Date.new(2000, 13, 1)
{:error, :invalid_date}
iex> Date.new(2000, 2, 29)
{:ok, ~D[2000-02-29]}

iex> Date.new(2000, 2, 30)
{:error, :invalid_date}
iex> Date.new(2001, 2, 29)
{:error, :invalid_date}

 new!(year, month, day, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec new!(Calendar.year(), Calendar.month(), Calendar.day(), Calendar.calendar()) ::
 t()

Builds a new ISO date.
Expects all values to be integers. Returns date if each
entry fits its appropriate range, raises if the date is invalid.
Examples
iex> Date.new!(2000, 1, 1)
~D[2000-01-01]
iex> Date.new!(2000, 13, 1)
** (ArgumentError) cannot build date, reason: :invalid_date
iex> Date.new!(2000, 2, 29)
~D[2000-02-29]

 quarter_of_year(date)

 (since 1.8.0)

 @spec quarter_of_year(Calendar.date()) :: non_neg_integer()

Calculates the quarter of the year of a given date.
Returns the day of the year as an integer. For the ISO 8601
calendar (the default), it is an integer from 1 to 4.
Examples
iex> Date.quarter_of_year(~D[2016-10-31])
4
iex> Date.quarter_of_year(~D[2016-01-01])
1
iex> Date.quarter_of_year(~N[2016-04-01 01:23:45])
2
iex> Date.quarter_of_year(~D[-0015-09-30])
3

 range(first, last)

 (since 1.5.0)

 @spec range(Calendar.date(), Calendar.date()) :: Date.Range.t()

Returns a range of dates.
A range of dates represents a discrete number of dates where
the first and last values are dates with matching calendars.
Ranges of dates can be increasing (first <= last) and are
always inclusive. For a decreasing range, use range/3 with
a step of -1 as first argument.
Examples
iex> Date.range(~D[1999-01-01], ~D[2000-01-01])
Date.range(~D[1999-01-01], ~D[2000-01-01])
A range of dates implements the Enumerable protocol, which means
functions in the Enum module can be used to work with
ranges:
iex> range = Date.range(~D[2001-01-01], ~D[2002-01-01])
iex> range
Date.range(~D[2001-01-01], ~D[2002-01-01])
iex> Enum.count(range)
366
iex> ~D[2001-02-01] in range
true
iex> Enum.take(range, 3)
[~D[2001-01-01], ~D[2001-01-02], ~D[2001-01-03]]

 range(first, last, step)

 (since 1.12.0)

 @spec range(Calendar.date(), Calendar.date(), step :: pos_integer() | neg_integer()) ::
 Date.Range.t()

Returns a range of dates with a step.
Examples
iex> range = Date.range(~D[2001-01-01], ~D[2002-01-01], 2)
iex> range
Date.range(~D[2001-01-01], ~D[2002-01-01], 2)
iex> Enum.count(range)
183
iex> ~D[2001-01-03] in range
true
iex> Enum.take(range, 3)
[~D[2001-01-01], ~D[2001-01-03], ~D[2001-01-05]]

 shift(date, duration)

 (since 1.17.0)

 @spec shift(Calendar.date(), Duration.t() | [unit_pair]) :: t()
when unit_pair:
 {:year, integer()}
 | {:month, integer()}
 | {:week, integer()}
 | {:day, integer()}

Shifts given date by duration according to its calendar.
Allowed units are: :year, :month, :week, :day.
When using the default ISO calendar, durations are collapsed and
applied in the order of months and then days:
	when shifting by 1 year and 2 months the date is actually shifted by 14 months
	when shifting by 2 weeks and 3 days the date is shifted by 17 days

When shifting by month, days are rounded down to the nearest valid date.
Raises an ArgumentError when called with time scale units.
Examples
iex> Date.shift(~D[2016-01-03], month: 2)
~D[2016-03-03]
iex> Date.shift(~D[2016-01-30], month: -1)
~D[2015-12-30]
iex> Date.shift(~D[2016-01-31], year: 4, day: 1)
~D[2020-02-01]
iex> Date.shift(~D[2016-01-03], Duration.new!(month: 2))
~D[2016-03-03]

leap years
iex> Date.shift(~D[2024-02-29], year: 1)
~D[2025-02-28]
iex> Date.shift(~D[2024-02-29], year: 4)
~D[2028-02-29]

rounding down
iex> Date.shift(~D[2015-01-31], month: 1)
~D[2015-02-28]

 to_erl(date)

 @spec to_erl(Calendar.date()) :: :calendar.date()

Converts the given date to an Erlang date tuple.
Only supports converting dates which are in the ISO calendar,
or other calendars in which the days also start at midnight.
Attempting to convert dates from other calendars will raise.
Examples
iex> Date.to_erl(~D[2000-01-01])
{2000, 1, 1}

iex> Date.to_erl(~N[2000-01-01 00:00:00])
{2000, 1, 1}

 to_gregorian_days(date)

 (since 1.11.0)

 @spec to_gregorian_days(Calendar.date()) :: integer()

Converts a date struct to a number of gregorian days.
Examples
iex> Date.to_gregorian_days(~D[0000-01-02])
1
iex> Date.to_gregorian_days(~D[2000-01-01])
730_485
iex> Date.to_gregorian_days(~N[2000-01-01 00:00:00])
730_485

 to_iso8601(date, format \\ :extended)

 @spec to_iso8601(Calendar.date(), :extended | :basic) :: String.t()

Converts the given date to
ISO 8601:2019.
By default, Date.to_iso8601/2 returns dates formatted in the "extended"
format, for human readability. It also supports the "basic" format through passing the :basic option.
Only supports converting dates which are in the ISO calendar,
or other calendars in which the days also start at midnight.
Attempting to convert dates from other calendars will raise an ArgumentError.
Examples
iex> Date.to_iso8601(~D[2000-02-28])
"2000-02-28"

iex> Date.to_iso8601(~D[2000-02-28], :basic)
"20000228"

iex> Date.to_iso8601(~N[2000-02-28 00:00:00])
"2000-02-28"

 to_string(date)

 @spec to_string(Calendar.date()) :: String.t()

Converts the given date to a string according to its calendar.
Examples
iex> Date.to_string(~D[2000-02-28])
"2000-02-28"
iex> Date.to_string(~N[2000-02-28 01:23:45])
"2000-02-28"
iex> Date.to_string(~D[-0100-12-15])
"-0100-12-15"

 utc_today(calendar \\ Calendar.ISO)

 (since 1.4.0)

 @spec utc_today(Calendar.calendar()) :: t()

Returns the current date in UTC.
Examples
iex> date = Date.utc_today()
iex> date.year >= 2016
true

 year_of_era(date)

 (since 1.8.0)

 @spec year_of_era(Calendar.date()) :: {Calendar.year(), non_neg_integer()}

Calculates the year-of-era and era for a given
calendar year.
Returns a tuple {year, era} representing the
year within the era and the era number.
Examples
iex> Date.year_of_era(~D[0001-01-01])
{1, 1}
iex> Date.year_of_era(~D[0000-12-31])
{1, 0}
iex> Date.year_of_era(~D[-0001-01-01])
{2, 0}

DateTime

A datetime implementation with a time zone.
This datetime can be seen as a snapshot of a date and time
at a given time zone. For such purposes, it also includes both
UTC and Standard offsets, as well as the zone abbreviation
field used exclusively for formatting purposes. Note future
datetimes are not necessarily guaranteed to exist, as time
zones may change any time in the future due to geopolitical
reasons. See the "Datetimes as snapshots" section for more
information.
Remember, comparisons in Elixir using ==/2, >/2, </2 and friends
are structural and based on the DateTime struct fields. For proper
comparison between datetimes, use the compare/2, after?/2 and before?/2 functions.
The existence of the compare/2 function in this module also allows
using Enum.min/2 and Enum.max/2 functions to get the minimum and
maximum datetime of an Enum. For example:
iex> Enum.min([~U[2022-01-12 00:01:00.00Z], ~U[2021-01-12 00:01:00.00Z]], DateTime)
~U[2021-01-12 00:01:00.00Z]
Developers should avoid creating the DateTime struct directly
and instead rely on the functions provided by this module as
well as the ones in third-party calendar libraries.
Time zone database
Many functions in this module require a time zone database.
A time zone database is a record of the UTC offsets that its locales have
used at various times in the past, are using, and are expected to use in the
future.
Because those plans can change, it needs to be periodically updated.
By default, DateTime uses the default time zone database returned by
Calendar.get_time_zone_database/0, which defaults to
Calendar.UTCOnlyTimeZoneDatabase which only handles "Etc/UTC"
datetimes and returns {:error, :utc_only_time_zone_database}
for any other time zone.
Other time zone databases can also be configured. Here are some
available options and libraries:
	time_zone_info
	tz
	tzdata
	zoneinfo -
recommended for embedded devices

To use one of them, first make sure it is added as a dependency in mix.exs.
It can then be configured either via configuration:
config :elixir, :time_zone_database, Tz.TimeZoneDatabase
or by calling Calendar.put_time_zone_database/1:
Calendar.put_time_zone_database(Tz.TimeZoneDatabase)
See the proper names in the library installation instructions.
Datetimes as snapshots
In the first section, we described datetimes as a "snapshot of
a date and time at a given time zone". To understand precisely
what we mean, let's see an example.
Imagine someone in Poland who wants to schedule a meeting with someone
in Brazil in the next year. The meeting will happen at 2:30 AM
in the Polish time zone. At what time will the meeting happen in
Brazil?
You can consult the time zone database today, one year before,
using the API in this module and it will give you an answer that
is valid right now. However, this answer may not be valid in the
future. Why? Because both Brazil and Poland may change their timezone
rules, ultimately affecting the result. For example, a country may
choose to enter or abandon "Daylight Saving Time", which is a
process where we adjust the clock one hour forward or one hour
back once per year. Whenever the rules change, the exact instant
that 2:30 AM in Polish time will be in Brazil may change.
In other words, whenever working with future DateTimes, there is
no guarantee the results you get will always be correct, until
the event actually happens. Therefore, when you ask for a future
time, the answers you get are a snapshot that reflects the current
state of the time zone rules. For datetimes in the past, this is
not a problem, because time zone rules do not change for past
events.
To make matters worse, it may be that 2:30 AM in Polish time
does not actually even exist or it is ambiguous. If a certain
time zone observes "Daylight Saving Time", they will move their
clock forward once a year. When this happens, there is a whole
hour that does not exist. Then, when they move the clock back,
there is a certain hour that will happen twice. So if you want to
schedule a meeting when this shift back happens, you would need to
explicitly say which occurrence of 2:30 AM you mean: the one in
"Summer Time", which occurs before the shift, or the one
in "Standard Time", which occurs after it. Applications that are
date and time sensitive need to take these scenarios into account
and correctly communicate them to users.
The good news is: Elixir contains all of the building blocks
necessary to tackle those problems. The default timezone database
used by Elixir, Calendar.UTCOnlyTimeZoneDatabase, only works
with UTC, which does not observe those issues. Once you bring
a proper time zone database, the functions in this module will
query the database and return the relevant information. For
example, look at how DateTime.new/4 returns different results
based on the scenarios described in this section.
Converting between timezones
Bearing in mind the cautions above, and assuming you've brought in a full
timezone database, here are some examples of common shifts between time
zones.
Local time to UTC
new_york = DateTime.from_naive!(~N[2023-06-26T09:30:00], "America/New_York")
#=> #DateTime<2023-06-26 09:30:00-04:00 EDT America/New_York>

utc = DateTime.shift_zone!(new_york, "Etc/UTC")
#=> ~U[2023-06-26 13:30:00Z]

UTC to local time
DateTime.shift_zone!(utc, "Europe/Paris")
#=> #DateTime<2023-06-26 15:30:00+02:00 CEST Europe/Paris>

 Summary

 Types

 t()

 Functions

 add(datetime, amount_to_add, unit \\ :second, time_zone_database \\ Calendar.get_time_zone_database())

 Adds a specified amount of time to a DateTime.

 after?(datetime1, datetime2)

 Returns true if the first datetime is strictly later than the second.

 before?(datetime1, datetime2)

 Returns true if the first datetime is strictly earlier than the second.

 compare(datetime1, datetime2)

 Compares two datetime structs.

 convert(datetime, calendar)

 Converts a given datetime from one calendar to another.

 convert!(datetime, calendar)

 Converts a given datetime from one calendar to another.

 diff(datetime1, datetime2, unit \\ :second)

 Subtracts datetime2 from datetime1.

 from_gregorian_seconds(seconds, arg \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts a number of gregorian seconds to a DateTime struct.

 from_iso8601(string, format_or_calendar \\ Calendar.ISO)

 Parses the extended "Date and time of day" format described by
ISO 8601:2019.

 from_iso8601(string, calendar, format)

 Converts from ISO8601 specifying both a calendar and a mode.

 from_naive(naive_datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Converts the given NaiveDateTime to DateTime.

 from_naive!(naive_datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Converts the given NaiveDateTime to DateTime.

 from_unix(integer, unit \\ :second, calendar \\ Calendar.ISO)

 Converts the given Unix time to DateTime.

 from_unix!(integer, unit \\ :second, calendar \\ Calendar.ISO)

 Converts the given Unix time to DateTime.

 new(date, time, time_zone \\ "Etc/UTC", time_zone_database \\ Calendar.get_time_zone_database())

 Builds a datetime from date and time structs.

 new!(date, time, time_zone \\ "Etc/UTC", time_zone_database \\ Calendar.get_time_zone_database())

 Builds a datetime from date and time structs, raising on errors.

 now(time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Returns the current datetime in the provided time zone.

 now!(time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Returns the current datetime in the provided time zone or raises on errors

 shift(datetime, duration, time_zone_database \\ Calendar.get_time_zone_database())

 Shifts given datetime by duration according to its calendar.

 shift_zone(datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Changes the time zone of a DateTime.

 shift_zone!(datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 Changes the time zone of a DateTime or raises on errors.

 to_date(datetime)

 Converts a DateTime into a Date.

 to_gregorian_seconds(datetime)

 Converts a DateTime struct to a number of gregorian seconds and microseconds.

 to_iso8601(datetime, format \\ :extended, offset \\ nil)

 Converts the given datetime to
ISO 8601:2019 format.

 to_naive(datetime)

 Converts the given datetime into a NaiveDateTime.

 to_string(datetime)

 Converts the given datetime to a string according to its calendar.

 to_time(datetime)

 Converts a DateTime into Time.

 to_unix(datetime, unit \\ :second)

 Converts the given datetime to Unix time.

 truncate(datetime, precision)

 Returns the given datetime with the microsecond field truncated to the given
precision (:microsecond, :millisecond or :second).

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 Returns the current datetime in UTC.

 utc_now(time_unit, calendar)

 Returns the current datetime in UTC, supporting
a specific calendar and precision.

 Types

 t()

 @type t() :: %DateTime{
 calendar: Calendar.calendar(),
 day: Calendar.day(),
 hour: Calendar.hour(),
 microsecond: Calendar.microsecond(),
 minute: Calendar.minute(),
 month: Calendar.month(),
 second: Calendar.second(),
 std_offset: Calendar.std_offset(),
 time_zone: Calendar.time_zone(),
 utc_offset: Calendar.utc_offset(),
 year: Calendar.year(),
 zone_abbr: Calendar.zone_abbr()
}

 Functions

 add(datetime, amount_to_add, unit \\ :second, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.8.0)

 @spec add(
 Calendar.datetime(),
 integer(),
 :day | :hour | :minute | System.time_unit(),
 Calendar.time_zone_database()
) :: t()

Adds a specified amount of time to a DateTime.
Prefer shift/2
Prefer shift/2 over add/3, as it offers a more ergonomic API.
add/3 provides a lower-level API which only supports fixed units
such as :hour and :second, but not :month (as the exact length
of a month depends on the current month). add/3 always considers
the unit to be computed according to the Calendar.ISO.
Accepts an amount_to_add in any unit. unit can be :day,
:hour, :minute, :second or any subsecond precision from
System.time_unit/0 for convenience but ultimately they are
all converted to microseconds. Negative values will move backwards
in time and the default precision is :second.
This function relies on a contiguous representation of time,
ignoring timezone changes. For example, if you add one day when there
are summer time/daylight saving time changes, it will also change the
time forward or backward by one hour, so the elapsed time is precisely
24 hours. Similarly, adding just a few seconds to a datetime just before
"spring forward" can cause wall time to increase by more than an hour.
While this means this function is precise in terms of elapsed time,
its result may be confusing in certain use cases. For example, if a
user requests a meeting to happen every day at 15:00 and you use this
function to compute all future meetings by adding day after day, this
function may change the meeting time to 14:00 or 16:00 if there are
changes to the current timezone.
In case you don't want these changes to happen automatically or you
want to surface time zone conflicts to the user, you can add to
the datetime as a naive datetime and then use from_naive/2:
dt |> NaiveDateTime.add(1, :day) |> DateTime.from_naive(dt.time_zone)
The above will surface time jumps and ambiguous datetimes, allowing you
to deal with them accordingly.
Examples
iex> dt = DateTime.from_naive!(~N[2018-11-15 10:00:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> dt |> DateTime.add(3600, :second, FakeTimeZoneDatabase)
#DateTime<2018-11-15 11:00:00+01:00 CET Europe/Copenhagen>

iex> DateTime.add(~U[2018-11-15 10:00:00Z], 3600, :second)
~U[2018-11-15 11:00:00Z]
When adding 3 seconds just before "spring forward" we go from 1:59:59 to 3:00:02:
iex> dt = DateTime.from_naive!(~N[2019-03-31 01:59:59.123], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> dt |> DateTime.add(3, :second, FakeTimeZoneDatabase)
#DateTime<2019-03-31 03:00:02.123+02:00 CEST Europe/Copenhagen>
When adding 1 day during "spring forward", the hour also changes:
iex> dt = DateTime.from_naive!(~N[2019-03-31 01:00:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> dt |> DateTime.add(1, :day, FakeTimeZoneDatabase)
#DateTime<2019-04-01 02:00:00+02:00 CEST Europe/Copenhagen>
This operation merges the precision of the naive date time with the given unit:
iex> result = DateTime.add(~U[2014-10-02 00:29:10Z], 21, :millisecond)
~U[2014-10-02 00:29:10.021Z]
iex> result.microsecond
{21000, 3}

 after?(datetime1, datetime2)

 (since 1.15.0)

 @spec after?(Calendar.datetime(), Calendar.datetime()) :: boolean()

Returns true if the first datetime is strictly later than the second.
Examples
iex> DateTime.after?(~U[2022-02-02 11:00:00Z], ~U[2021-01-01 11:00:00Z])
true
iex> DateTime.after?(~U[2021-01-01 11:00:00Z], ~U[2021-01-01 11:00:00Z])
false
iex> DateTime.after?(~U[2021-01-01 11:00:00Z], ~U[2022-02-02 11:00:00Z])
false

 before?(datetime1, datetime2)

 (since 1.15.0)

 @spec before?(Calendar.datetime(), Calendar.datetime()) :: boolean()

Returns true if the first datetime is strictly earlier than the second.
Examples
iex> DateTime.before?(~U[2021-01-01 11:00:00Z], ~U[2022-02-02 11:00:00Z])
true
iex> DateTime.before?(~U[2021-01-01 11:00:00Z], ~U[2021-01-01 11:00:00Z])
false
iex> DateTime.before?(~U[2022-02-02 11:00:00Z], ~U[2021-01-01 11:00:00Z])
false

 compare(datetime1, datetime2)

 (since 1.4.0)

 @spec compare(Calendar.datetime(), Calendar.datetime()) :: :lt | :eq | :gt

Compares two datetime structs.
Returns :gt if the first datetime is later than the second
and :lt for vice versa. If the two datetimes are equal
:eq is returned.
Note that both UTC and Standard offsets will be taken into
account when comparison is done.
Examples
iex> dt1 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> dt2 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.compare(dt1, dt2)
:gt

 convert(datetime, calendar)

 (since 1.5.0)

 @spec convert(Calendar.datetime(), Calendar.calendar()) ::
 {:ok, t()} | {:error, :incompatible_calendars}

Converts a given datetime from one calendar to another.
If it is not possible to convert unambiguously between the calendars
(see Calendar.compatible_calendars?/2), an {:error, :incompatible_calendars} tuple
is returned.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> dt1 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.convert(dt1, Calendar.Holocene)
{:ok, %DateTime{calendar: Calendar.Holocene, day: 29, hour: 23,
 microsecond: {0, 0}, minute: 0, month: 2, second: 7, std_offset: 0,
 time_zone: "America/Manaus", utc_offset: -14400, year: 12000,
 zone_abbr: "AMT"}}

 convert!(datetime, calendar)

 (since 1.5.0)

 @spec convert!(Calendar.datetime(), Calendar.calendar()) :: t()

Converts a given datetime from one calendar to another.
If it is not possible to convert unambiguously between the calendars
(see Calendar.compatible_calendars?/2), an ArgumentError is raised.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> dt1 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.convert!(dt1, Calendar.Holocene)
%DateTime{calendar: Calendar.Holocene, day: 29, hour: 23,
 microsecond: {0, 0}, minute: 0, month: 2, second: 7, std_offset: 0,
 time_zone: "America/Manaus", utc_offset: -14400, year: 12000,
 zone_abbr: "AMT"}

 diff(datetime1, datetime2, unit \\ :second)

 (since 1.5.0)

 @spec diff(
 Calendar.datetime(),
 Calendar.datetime(),
 :day | :hour | :minute | System.time_unit()
) :: integer()

Subtracts datetime2 from datetime1.
The answer can be returned in any :day, :hour, :minute, or any unit
available from System.time_unit/0. The unit is measured according to
Calendar.ISO and defaults to :second.
Fractional results are not supported and are truncated.
Examples
iex> DateTime.diff(~U[2024-01-15 10:00:10Z], ~U[2024-01-15 10:00:00Z])
10
This function also considers timezone offsets:
iex> dt1 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> dt2 = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.diff(dt1, dt2)
18000
iex> DateTime.diff(dt2, dt1)
-18000
iex> DateTime.diff(dt1, dt2, :hour)
5
iex> DateTime.diff(dt2, dt1, :hour)
-5

 from_gregorian_seconds(seconds, arg \\ {0, 0}, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec from_gregorian_seconds(integer(), Calendar.microsecond(), Calendar.calendar()) ::
 t()

Converts a number of gregorian seconds to a DateTime struct.
The returned DateTime will have UTC timezone, if you want other timezone, please use
DateTime.shift_zone/3.
Examples
iex> DateTime.from_gregorian_seconds(1)
~U[0000-01-01 00:00:01Z]
iex> DateTime.from_gregorian_seconds(63_755_511_991, {5000, 3})
~U[2020-05-01 00:26:31.005Z]
iex> DateTime.from_gregorian_seconds(-1)
~U[-0001-12-31 23:59:59Z]

 from_iso8601(string, format_or_calendar \\ Calendar.ISO)

 (since 1.4.0)

 @spec from_iso8601(String.t(), Calendar.calendar() | :extended | :basic) ::
 {:ok, t(), Calendar.utc_offset()} | {:error, atom()}

Parses the extended "Date and time of day" format described by
ISO 8601:2019.
Since ISO 8601 does not include the proper time zone, the given
string will be converted to UTC and its offset in seconds will be
returned as part of this function. Therefore offset information
must be present in the string.
As specified in the standard, the separator "T" may be omitted if
desired as there is no ambiguity within this function.
Note leap seconds are not supported by the built-in Calendar.ISO.
Examples
iex> {:ok, datetime, 0} = DateTime.from_iso8601("2015-01-23T23:50:07Z")
iex> datetime
~U[2015-01-23 23:50:07Z]

iex> {:ok, datetime, 9000} = DateTime.from_iso8601("2015-01-23T23:50:07.123+02:30")
iex> datetime
~U[2015-01-23 21:20:07.123Z]

iex> {:ok, datetime, 9000} = DateTime.from_iso8601("2015-01-23T23:50:07,123+02:30")
iex> datetime
~U[2015-01-23 21:20:07.123Z]

iex> {:ok, datetime, 0} = DateTime.from_iso8601("-2015-01-23T23:50:07Z")
iex> datetime
~U[-2015-01-23 23:50:07Z]

iex> {:ok, datetime, 9000} = DateTime.from_iso8601("-2015-01-23T23:50:07,123+02:30")
iex> datetime
~U[-2015-01-23 21:20:07.123Z]

iex> {:ok, datetime, 9000} = DateTime.from_iso8601("20150123T235007.123+0230", :basic)
iex> datetime
~U[2015-01-23 21:20:07.123Z]

iex> DateTime.from_iso8601("2015-01-23P23:50:07")
{:error, :invalid_format}
iex> DateTime.from_iso8601("2015-01-23T23:50:07")
{:error, :missing_offset}
iex> DateTime.from_iso8601("2015-01-23 23:50:61")
{:error, :invalid_time}
iex> DateTime.from_iso8601("2015-01-32 23:50:07")
{:error, :invalid_date}
iex> DateTime.from_iso8601("2015-01-23T23:50:07.123-00:00")
{:error, :invalid_format}

 from_iso8601(string, calendar, format)

 @spec from_iso8601(String.t(), Calendar.calendar(), :extended | :basic) ::
 {:ok, t(), Calendar.utc_offset()} | {:error, atom()}

Converts from ISO8601 specifying both a calendar and a mode.
See from_iso8601/2 for more information.
Examples
iex> {:ok, datetime, 9000} = DateTime.from_iso8601("2015-01-23T23:50:07,123+02:30", Calendar.ISO, :extended)
iex> datetime
~U[2015-01-23 21:20:07.123Z]

iex> {:ok, datetime, 9000} = DateTime.from_iso8601("20150123T235007.123+0230", Calendar.ISO, :basic)
iex> datetime
~U[2015-01-23 21:20:07.123Z]

 from_naive(naive_datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.4.0)

 @spec from_naive(
 Calendar.naive_datetime(),
 Calendar.time_zone(),
 Calendar.time_zone_database()
) ::
 {:ok, t()}
 | {:ambiguous, first_datetime :: t(), second_datetime :: t()}
 | {:gap, t(), t()}
 | {:error,
 :incompatible_calendars
 | :time_zone_not_found
 | :utc_only_time_zone_database}

Converts the given NaiveDateTime to DateTime.
It expects a time zone to put the NaiveDateTime in.
If the time zone is "Etc/UTC", it always succeeds. Otherwise,
the NaiveDateTime is checked against the time zone database
given as time_zone_database. See the "Time zone database"
section in the module documentation.
Examples
iex> DateTime.from_naive(~N[2016-05-24 13:26:08.003], "Etc/UTC")
{:ok, ~U[2016-05-24 13:26:08.003Z]}
When the datetime is ambiguous - for instance during changing from summer
to winter time - the two possible valid datetimes are returned in a tuple.
The first datetime is also the one which comes first chronologically, while
the second one comes last.
iex> {:ambiguous, first_dt, second_dt} = DateTime.from_naive(~N[2018-10-28 02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> first_dt
#DateTime<2018-10-28 02:30:00+02:00 CEST Europe/Copenhagen>
iex> second_dt
#DateTime<2018-10-28 02:30:00+01:00 CET Europe/Copenhagen>
When there is a gap in wall time - for instance in spring when the clocks are
turned forward - the latest valid datetime just before the gap and the first
valid datetime just after the gap.
iex> {:gap, just_before, just_after} = DateTime.from_naive(~N[2019-03-31 02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> just_before
#DateTime<2019-03-31 01:59:59.999999+01:00 CET Europe/Copenhagen>
iex> just_after
#DateTime<2019-03-31 03:00:00+02:00 CEST Europe/Copenhagen>
Most of the time there is one, and just one, valid datetime for a certain
date and time in a certain time zone.
iex> {:ok, datetime} = DateTime.from_naive(~N[2018-07-28 12:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> datetime
#DateTime<2018-07-28 12:30:00+02:00 CEST Europe/Copenhagen>
This function accepts any map or struct that contains at least the same fields as a NaiveDateTime
struct. The most common example of that is a DateTime. In this case the information about the time
zone of that DateTime is completely ignored. This is the same principle as passing a DateTime to
Date.to_iso8601/2. Date.to_iso8601/2 extracts only the date-specific fields (calendar, year,
month and day) of the given structure and ignores all others.
This way if you have a DateTime in one time zone, you can get the same wall time in another time zone.
For instance if you have 2018-08-24 10:00:00 in Copenhagen and want a DateTime for 2018-08-24 10:00:00
in UTC you can do:
iex> cph_datetime = DateTime.from_naive!(~N[2018-08-24 10:00:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> {:ok, utc_datetime} = DateTime.from_naive(cph_datetime, "Etc/UTC", FakeTimeZoneDatabase)
iex> utc_datetime
~U[2018-08-24 10:00:00Z]
If instead you want a DateTime for the same point time in a different time zone see the
DateTime.shift_zone/3 function which would convert 2018-08-24 10:00:00 in Copenhagen
to 2018-08-24 08:00:00 in UTC.

 from_naive!(naive_datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.4.0)

 @spec from_naive!(
 NaiveDateTime.t(),
 Calendar.time_zone(),
 Calendar.time_zone_database()
) :: t()

Converts the given NaiveDateTime to DateTime.
It expects a time zone to put the NaiveDateTime in.
If the time zone is "Etc/UTC", it always succeeds. Otherwise,
the NaiveDateTime is checked against the time zone database
given as time_zone_database. See the "Time zone database"
section in the module documentation.
Examples
iex> DateTime.from_naive!(~N[2016-05-24 13:26:08.003], "Etc/UTC")
~U[2016-05-24 13:26:08.003Z]

iex> DateTime.from_naive!(~N[2018-05-24 13:26:08.003], "Europe/Copenhagen", FakeTimeZoneDatabase)
#DateTime<2018-05-24 13:26:08.003+02:00 CEST Europe/Copenhagen>

 from_unix(integer, unit \\ :second, calendar \\ Calendar.ISO)

 @spec from_unix(integer(), :native | System.time_unit(), Calendar.calendar()) ::
 {:ok, t()} | {:error, atom()}

Converts the given Unix time to DateTime.
The integer can be given in different unit, according to System.convert_time_unit/3,
and it will be converted to microseconds internally, which is the maximum precision
supported by DateTime. In other words, any precision higher than microseconds will
lead to truncation.
Unix times are always in UTC. Therefore the DateTime will be returned in UTC.
Examples
iex> {:ok, datetime} = DateTime.from_unix(1_464_096_368)
iex> datetime
~U[2016-05-24 13:26:08Z]

iex> {:ok, datetime} = DateTime.from_unix(1_432_560_368_868_569, :microsecond)
iex> datetime
~U[2015-05-25 13:26:08.868569Z]

iex> {:ok, datetime} = DateTime.from_unix(253_402_300_799)
iex> datetime
~U[9999-12-31 23:59:59Z]

iex> {:error, :invalid_unix_time} = DateTime.from_unix(253_402_300_800)
The unit can also be an integer as in System.time_unit/0:
iex> {:ok, datetime} = DateTime.from_unix(143_256_036_886_856, 1024)
iex> datetime
~U[6403-03-17 07:05:22.320312Z]
Negative Unix times are supported up to -377705116800 seconds:
iex> {:ok, datetime} = DateTime.from_unix(-377_705_116_800)
iex> datetime
~U[-9999-01-01 00:00:00Z]

iex> {:error, :invalid_unix_time} = DateTime.from_unix(-377_705_116_801)

 from_unix!(integer, unit \\ :second, calendar \\ Calendar.ISO)

 @spec from_unix!(integer(), :native | System.time_unit(), Calendar.calendar()) :: t()

Converts the given Unix time to DateTime.
The integer can be given in different unit
according to System.convert_time_unit/3 and it will
be converted to microseconds internally.
Unix times are always in UTC and therefore the DateTime
will be returned in UTC.
Examples
An easy way to get the Unix epoch is passing 0 to this function
iex> DateTime.from_unix!(0)
~U[1970-01-01 00:00:00Z]

iex> DateTime.from_unix!(1_464_096_368)
~U[2016-05-24 13:26:08Z]

iex> DateTime.from_unix!(1_432_560_368_868_569, :microsecond)
~U[2015-05-25 13:26:08.868569Z]

iex> DateTime.from_unix!(143_256_036_886_856, 1024)
~U[6403-03-17 07:05:22.320312Z]

 new(date, time, time_zone \\ "Etc/UTC", time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.11.0)

 @spec new(Date.t(), Time.t(), Calendar.time_zone(), Calendar.time_zone_database()) ::
 {:ok, t()}
 | {:ambiguous, first_datetime :: t(), second_datetime :: t()}
 | {:gap, t(), t()}
 | {:error,
 :incompatible_calendars
 | :time_zone_not_found
 | :utc_only_time_zone_database}

Builds a datetime from date and time structs.
It expects a time zone to put the DateTime in.
If the time zone is not passed it will default to "Etc/UTC",
which always succeeds. Otherwise, the DateTime is checked against the time zone database
given as time_zone_database. See the "Time zone database"
section in the module documentation.
Examples
iex> DateTime.new(~D[2016-05-24], ~T[13:26:08.003], "Etc/UTC")
{:ok, ~U[2016-05-24 13:26:08.003Z]}
When the datetime is ambiguous - for instance during changing from summer
to winter time - the two possible valid datetimes are returned in a tuple.
The first datetime is also the one which comes first chronologically, while
the second one comes last.
iex> {:ambiguous, first_dt, second_dt} = DateTime.new(~D[2018-10-28], ~T[02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> first_dt
#DateTime<2018-10-28 02:30:00+02:00 CEST Europe/Copenhagen>
iex> second_dt
#DateTime<2018-10-28 02:30:00+01:00 CET Europe/Copenhagen>
When there is a gap in wall time - for instance in spring when the clocks are
turned forward - the latest valid datetime just before the gap and the first
valid datetime just after the gap.
iex> {:gap, just_before, just_after} = DateTime.new(~D[2019-03-31], ~T[02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> just_before
#DateTime<2019-03-31 01:59:59.999999+01:00 CET Europe/Copenhagen>
iex> just_after
#DateTime<2019-03-31 03:00:00+02:00 CEST Europe/Copenhagen>
Most of the time there is one, and just one, valid datetime for a certain
date and time in a certain time zone.
iex> {:ok, datetime} = DateTime.new(~D[2018-07-28], ~T[12:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> datetime
#DateTime<2018-07-28 12:30:00+02:00 CEST Europe/Copenhagen>

 new!(date, time, time_zone \\ "Etc/UTC", time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.11.0)

 @spec new!(Date.t(), Time.t(), Calendar.time_zone(), Calendar.time_zone_database()) ::
 t()

Builds a datetime from date and time structs, raising on errors.
It expects a time zone to put the DateTime in.
If the time zone is not passed it will default to "Etc/UTC",
which always succeeds. Otherwise, the DateTime is checked against the time zone database
given as time_zone_database. See the "Time zone database"
section in the module documentation.
Examples
iex> DateTime.new!(~D[2016-05-24], ~T[13:26:08.003], "Etc/UTC")
~U[2016-05-24 13:26:08.003Z]
When the datetime is ambiguous - for instance during changing from summer
to winter time - an error will be raised.
iex> DateTime.new!(~D[2018-10-28], ~T[02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
** (ArgumentError) cannot build datetime with ~D[2018-10-28] and ~T[02:30:00] because such instant is ambiguous in time zone Europe/Copenhagen as there is an overlap between #DateTime<2018-10-28 02:30:00+02:00 CEST Europe/Copenhagen> and #DateTime<2018-10-28 02:30:00+01:00 CET Europe/Copenhagen>
When there is a gap in wall time - for instance in spring when the clocks are
turned forward - an error will be raised.
iex> DateTime.new!(~D[2019-03-31], ~T[02:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
** (ArgumentError) cannot build datetime with ~D[2019-03-31] and ~T[02:30:00] because such instant does not exist in time zone Europe/Copenhagen as there is a gap between #DateTime<2019-03-31 01:59:59.999999+01:00 CET Europe/Copenhagen> and #DateTime<2019-03-31 03:00:00+02:00 CEST Europe/Copenhagen>
Most of the time there is one, and just one, valid datetime for a certain
date and time in a certain time zone.
iex> datetime = DateTime.new!(~D[2018-07-28], ~T[12:30:00], "Europe/Copenhagen", FakeTimeZoneDatabase)
iex> datetime
#DateTime<2018-07-28 12:30:00+02:00 CEST Europe/Copenhagen>

 now(time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.8.0)

 @spec now(Calendar.time_zone(), Calendar.time_zone_database()) ::
 {:ok, t()} | {:error, :time_zone_not_found | :utc_only_time_zone_database}

Returns the current datetime in the provided time zone.
By default, it uses the default time_zone returned by
Calendar.get_time_zone_database/0, which defaults to
Calendar.UTCOnlyTimeZoneDatabase which only handles "Etc/UTC" datetimes.
Other time zone databases can be passed as argument or set globally.
See the "Time zone database" section in the module docs.
Examples
iex> {:ok, datetime} = DateTime.now("Etc/UTC")
iex> datetime.time_zone
"Etc/UTC"

iex> DateTime.now("Europe/Copenhagen")
{:error, :utc_only_time_zone_database}

iex> DateTime.now("bad timezone", FakeTimeZoneDatabase)
{:error, :time_zone_not_found}

 now!(time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.10.0)

 @spec now!(Calendar.time_zone(), Calendar.time_zone_database()) :: t()

Returns the current datetime in the provided time zone or raises on errors
See now/2 for more information.
Examples
iex> datetime = DateTime.now!("Etc/UTC")
iex> datetime.time_zone
"Etc/UTC"

iex> DateTime.now!("Europe/Copenhagen")
** (ArgumentError) cannot get current datetime in "Europe/Copenhagen" time zone, reason: :utc_only_time_zone_database

iex> DateTime.now!("bad timezone", FakeTimeZoneDatabase)
** (ArgumentError) cannot get current datetime in "bad timezone" time zone, reason: :time_zone_not_found

 shift(datetime, duration, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.17.0)

 @spec shift(Calendar.datetime(), Duration.duration(), Calendar.time_zone_database()) ::
 t()

Shifts given datetime by duration according to its calendar.
Allowed units are: :year, :month, :week, :day, :hour, :minute, :second, :microsecond.
This operation is equivalent to shifting the datetime wall clock
(in other words, the value as someone in that timezone would see
on their watch), then applying the time zone offset to convert it
to UTC, and finally computing the new timezone in case of shifts.
This ensures shift/3 always returns a valid datetime.
Consequently, time zones that observe "Daylight Saving Time"
or other changes, across summer/winter time will add/remove hours
from the resulting datetime:
dt = DateTime.new!(~D[2019-03-31], ~T[01:00:00], "Europe/Copenhagen")
DateTime.shift(dt, hour: 1)
#=> #DateTime<2019-03-31 03:00:00+02:00 CEST Europe/Copenhagen>

dt = DateTime.new!(~D[2018-11-04], ~T[00:00:00], "America/Los_Angeles")
DateTime.shift(dt, hour: 2)
#=> #DateTime<2018-11-04 01:00:00-08:00 PST America/Los_Angeles>
Although the first example shows a difference of 2 hours when
comparing the wall clocks of the given datetime with the returned one,
due to the "spring forward" time jump, the actual elapsed time is
still exactly of 1 hour.
In case you don't want these changes to happen automatically or you
want to surface time zone conflicts to the user, you can shift
the datetime as a naive datetime and then use from_naive/2:
dt |> NaiveDateTime.shift(duration) |> DateTime.from_naive(dt.time_zone)
The above will surface time jumps and ambiguous datetimes, allowing you
to deal with them accordingly.
ISO calendar considerations
When using the default ISO calendar, durations are collapsed and
applied in the order of months, then seconds and microseconds:
	when shifting by 1 year and 2 months the date is actually shifted by 14 months
	weeks, days and smaller units are collapsed into seconds and microseconds

When shifting by month, days are rounded down to the nearest valid date.
Examples
iex> DateTime.shift(~U[2016-01-01 00:00:00Z], month: 2)
~U[2016-03-01 00:00:00Z]
iex> DateTime.shift(~U[2016-01-01 00:00:00Z], year: 1, week: 4)
~U[2017-01-29 00:00:00Z]
iex> DateTime.shift(~U[2016-01-01 00:00:00Z], minute: -25)
~U[2015-12-31 23:35:00Z]
iex> DateTime.shift(~U[2016-01-01 00:00:00Z], minute: 5, microsecond: {500, 4})
~U[2016-01-01 00:05:00.0005Z]

leap years
iex> DateTime.shift(~U[2024-02-29 00:00:00Z], year: 1)
~U[2025-02-28 00:00:00Z]
iex> DateTime.shift(~U[2024-02-29 00:00:00Z], year: 4)
~U[2028-02-29 00:00:00Z]

rounding down
iex> DateTime.shift(~U[2015-01-31 00:00:00Z], month: 1)
~U[2015-02-28 00:00:00Z]

 shift_zone(datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.8.0)

 @spec shift_zone(t(), Calendar.time_zone(), Calendar.time_zone_database()) ::
 {:ok, t()} | {:error, :time_zone_not_found | :utc_only_time_zone_database}

Changes the time zone of a DateTime.
Returns a DateTime for the same point in time, but instead at
the time zone provided. It assumes that DateTime is valid and
exists in the given time zone and calendar.
By default, it uses the default time zone database returned by
Calendar.get_time_zone_database/0, which defaults to
Calendar.UTCOnlyTimeZoneDatabase which only handles "Etc/UTC" datetimes.
Other time zone databases can be passed as argument or set globally.
See the "Time zone database" section in the module docs.
Examples
iex> {:ok, pacific_datetime} = DateTime.shift_zone(~U[2018-07-16 10:00:00Z], "America/Los_Angeles", FakeTimeZoneDatabase)
iex> pacific_datetime
#DateTime<2018-07-16 03:00:00-07:00 PDT America/Los_Angeles>

iex> DateTime.shift_zone(~U[2018-07-16 10:00:00Z], "bad timezone", FakeTimeZoneDatabase)
{:error, :time_zone_not_found}

 shift_zone!(datetime, time_zone, time_zone_database \\ Calendar.get_time_zone_database())

 (since 1.10.0)

 @spec shift_zone!(t(), Calendar.time_zone(), Calendar.time_zone_database()) :: t()

Changes the time zone of a DateTime or raises on errors.
See shift_zone/3 for more information.
Examples
iex> DateTime.shift_zone!(~U[2018-07-16 10:00:00Z], "America/Los_Angeles", FakeTimeZoneDatabase)
#DateTime<2018-07-16 03:00:00-07:00 PDT America/Los_Angeles>

iex> DateTime.shift_zone!(~U[2018-07-16 10:00:00Z], "bad timezone", FakeTimeZoneDatabase)
** (ArgumentError) cannot shift ~U[2018-07-16 10:00:00Z] to "bad timezone" time zone, reason: :time_zone_not_found

 to_date(datetime)

 @spec to_date(Calendar.datetime()) :: Date.t()

Converts a DateTime into a Date.
Because Date does not hold time nor time zone information,
data will be lost during the conversion.
Examples
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_date(dt)
~D[2000-02-29]

 to_gregorian_seconds(datetime)

 (since 1.11.0)

 @spec to_gregorian_seconds(Calendar.datetime()) :: {integer(), non_neg_integer()}

Converts a DateTime struct to a number of gregorian seconds and microseconds.
Examples
iex> dt = %DateTime{year: 0000, month: 1, day: 1, zone_abbr: "UTC",
...> hour: 0, minute: 0, second: 1, microsecond: {0, 0},
...> utc_offset: 0, std_offset: 0, time_zone: "Etc/UTC"}
iex> DateTime.to_gregorian_seconds(dt)
{1, 0}

iex> dt = %DateTime{year: 2020, month: 5, day: 1, zone_abbr: "UTC",
...> hour: 0, minute: 26, second: 31, microsecond: {5000, 0},
...> utc_offset: 0, std_offset: 0, time_zone: "Etc/UTC"}
iex> DateTime.to_gregorian_seconds(dt)
{63_755_511_991, 5000}

iex> dt = %DateTime{year: 2020, month: 5, day: 1, zone_abbr: "CET",
...> hour: 1, minute: 26, second: 31, microsecond: {5000, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_gregorian_seconds(dt)
{63_755_511_991, 5000}

 to_iso8601(datetime, format \\ :extended, offset \\ nil)

 @spec to_iso8601(Calendar.datetime(), :basic | :extended, nil | integer()) ::
 String.t()

Converts the given datetime to
ISO 8601:2019 format.
By default, DateTime.to_iso8601/2 returns datetimes formatted in the "extended"
format, for human readability. It also supports the "basic" format through passing the :basic option.
You can also optionally specify an offset for the formatted string.
If none is given, the one in the given datetime is used.
Only supports converting datetimes which are in the ISO calendar.
If another calendar is given, it is automatically converted to ISO.
It raises if not possible.
WARNING: the ISO 8601 datetime format does not contain the time zone nor
its abbreviation, which means information is lost when converting to such
format.
Examples
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_iso8601(dt)
"2000-02-29T23:00:07+01:00"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "UTC",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 0, std_offset: 0, time_zone: "Etc/UTC"}
iex> DateTime.to_iso8601(dt)
"2000-02-29T23:00:07Z"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.to_iso8601(dt, :extended)
"2000-02-29T23:00:07-04:00"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.to_iso8601(dt, :basic)
"20000229T230007-0400"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.to_iso8601(dt, :extended, 3600)
"2000-03-01T04:00:07+01:00"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.to_iso8601(dt, :extended, 0)
"2000-03-01T03:00:07+00:00"

iex> dt = %DateTime{year: 2000, month: 3, day: 01, zone_abbr: "UTC",
...> hour: 03, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 0, std_offset: 0, time_zone: "Etc/UTC"}
iex> DateTime.to_iso8601(dt, :extended, 0)
"2000-03-01T03:00:07Z"

iex> {:ok, dt, offset} = DateTime.from_iso8601("2000-03-01T03:00:07Z")
iex> "2000-03-01T03:00:07Z" = DateTime.to_iso8601(dt, :extended, offset)

 to_naive(datetime)

 @spec to_naive(Calendar.datetime()) :: NaiveDateTime.t()

Converts the given datetime into a NaiveDateTime.
Because NaiveDateTime does not hold time zone information,
any time zone related data will be lost during the conversion.
Examples
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 1},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_naive(dt)
~N[2000-02-29 23:00:07.0]

 to_string(datetime)

 @spec to_string(Calendar.datetime()) :: String.t()

Converts the given datetime to a string according to its calendar.
Unfortunately, there is no standard that specifies rendering of a
datetime with its complete time zone information, so Elixir uses a
custom (but relatively common) representation which appends the time
zone abbreviation and full name to the datetime.
Examples
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_string(dt)
"2000-02-29 23:00:07+01:00 CET Europe/Warsaw"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "UTC",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 0, std_offset: 0, time_zone: "Etc/UTC"}
iex> DateTime.to_string(dt)
"2000-02-29 23:00:07Z"

iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "AMT",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: -14400, std_offset: 0, time_zone: "America/Manaus"}
iex> DateTime.to_string(dt)
"2000-02-29 23:00:07-04:00 AMT America/Manaus"

iex> dt = %DateTime{year: -100, month: 12, day: 19, zone_abbr: "CET",
...> hour: 3, minute: 20, second: 31, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Stockholm"}
iex> DateTime.to_string(dt)
"-0100-12-19 03:20:31+01:00 CET Europe/Stockholm"

 to_time(datetime)

 @spec to_time(Calendar.datetime()) :: Time.t()

Converts a DateTime into Time.
Because Time does not hold date nor time zone information,
data will be lost during the conversion.
Examples
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 1},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> DateTime.to_time(dt)
~T[23:00:07.0]

 to_unix(datetime, unit \\ :second)

 @spec to_unix(Calendar.datetime(), :native | System.time_unit()) :: integer()

Converts the given datetime to Unix time.
The datetime is expected to be using the ISO calendar
with a year greater than or equal to 0.
It will return the integer with the given unit, according
to System.convert_time_unit/3. If the given unit is different
than microseconds, the returned value will be either truncated
or padded accordingly.
Examples
iex> 1_464_096_368 |> DateTime.from_unix!() |> DateTime.to_unix()
1464096368

iex> dt = %DateTime{calendar: Calendar.ISO, day: 20, hour: 18, microsecond: {273806, 6},
...> minute: 58, month: 11, second: 19, time_zone: "America/Montevideo",
...> utc_offset: -10800, std_offset: 3600, year: 2014, zone_abbr: "UYST"}
iex> DateTime.to_unix(dt)
1416517099

iex> flamel = %DateTime{calendar: Calendar.ISO, day: 22, hour: 8, microsecond: {527771, 6},
...> minute: 2, month: 3, second: 25, std_offset: 0, time_zone: "Etc/UTC",
...> utc_offset: 0, year: 1418, zone_abbr: "UTC"}
iex> DateTime.to_unix(flamel)
-17412508655

 truncate(datetime, precision)

 (since 1.6.0)

 @spec truncate(Calendar.datetime(), :microsecond | :millisecond | :second) :: t()

Returns the given datetime with the microsecond field truncated to the given
precision (:microsecond, :millisecond or :second).
The given datetime is returned unchanged if it already has lower precision than
the given precision.
Examples
iex> dt1 = %DateTime{year: 2017, month: 11, day: 7, zone_abbr: "CET",
...> hour: 11, minute: 45, second: 18, microsecond: {123456, 6},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Paris"}
iex> DateTime.truncate(dt1, :microsecond)
#DateTime<2017-11-07 11:45:18.123456+01:00 CET Europe/Paris>

iex> dt2 = %DateTime{year: 2017, month: 11, day: 7, zone_abbr: "CET",
...> hour: 11, minute: 45, second: 18, microsecond: {123456, 6},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Paris"}
iex> DateTime.truncate(dt2, :millisecond)
#DateTime<2017-11-07 11:45:18.123+01:00 CET Europe/Paris>

iex> dt3 = %DateTime{year: 2017, month: 11, day: 7, zone_abbr: "CET",
...> hour: 11, minute: 45, second: 18, microsecond: {123456, 6},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Paris"}
iex> DateTime.truncate(dt3, :second)
#DateTime<2017-11-07 11:45:18+01:00 CET Europe/Paris>

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 @spec utc_now(Calendar.calendar() | :native | :microsecond | :millisecond | :second) ::
 t()

Returns the current datetime in UTC.
If you want the current time in Unix seconds,
use System.os_time/1 instead.
You can also pass a time unit to automatically
truncate the resulting datetime. This is available
since v1.15.0.
The default unit if none gets passed is :native,
which results on a default resolution of microseconds.
Examples
iex> datetime = DateTime.utc_now()
iex> datetime.time_zone
"Etc/UTC"

iex> datetime = DateTime.utc_now(:second)
iex> datetime.microsecond
{0, 0}

 utc_now(time_unit, calendar)

 (since 1.15.0)

 @spec utc_now(:native | :microsecond | :millisecond | :second, Calendar.calendar()) ::
 t()

Returns the current datetime in UTC, supporting
a specific calendar and precision.
If you want the current time in Unix seconds,
use System.os_time/1 instead.
Examples
iex> datetime = DateTime.utc_now(:microsecond, Calendar.ISO)
iex> datetime.time_zone
"Etc/UTC"

iex> datetime = DateTime.utc_now(:second, Calendar.ISO)
iex> datetime.microsecond
{0, 0}

Duration

Struct and functions for handling durations.
A Duration struct represents a collection of time scale units,
allowing for manipulation and calculation of durations.
Date and time scale units are represented as integers, allowing for
both positive and negative values.
Microseconds are represented using a tuple {microsecond, precision}.
This ensures compatibility with other calendar types implementing time,
such as Time, DateTime, and NaiveDateTime.
Shifting
The most common use of durations in Elixir's standard library is to
"shift" the calendar types.
iex> Date.shift(~D[2016-01-03], month: 2)
~D[2016-03-03]
In the example above, Date.shift/2 automatically converts the units
into a Duration struct, although one can also be given directly:
iex> Date.shift(~D[2016-01-03], Duration.new!(month: 2))
~D[2016-03-03]
It is important to note that shifting is not an arithmetic operation.
For example, adding date + 1 month + 1 month does not yield the same
result as date + 2 months. Let's see an example:
iex> ~D[2016-01-31] |> Date.shift(month: 1) |> Date.shift(month: 1)
~D[2016-03-29]

iex> ~D[2016-01-31] |> Date.shift(month: 2)
~D[2016-03-31]
As you can see above, the results differ, which explains why operations
with durations are called "shift" rather than "add". This happens because,
once we add one month to 2016-01-31, we get 2016-02-29. Then adding
one extra month gives us 2016-03-29 instead of 2016-03-31.
In particular, when applying durations to Calendar.ISO types:
	larger units (such as years and months) are applied before
smaller ones (such as weeks, hours, days, and so on)

	units are collapsed into months (:year and :month),
seconds (:week, :day, :hour, :minute, :second)
and microseconds (:microsecond) before they are applied

	1 year is equivalent to 12 months, 1 week is equivalent to 7 days.
Therefore, 4 weeks are not equivalent to 1 month

	in case of non-existing dates, the results are rounded down to the
nearest valid date

As the shift/2 functions are calendar aware, they are guaranteed to return
valid date/times, considering leap years as well as DST in applicable time zones.
Intervals
Durations in Elixir can be combined with stream operations to build intervals.
For example, to retrieve the next three Wednesdays starting from 17th April, 2024:
iex> ~D[2024-04-17] |> Stream.iterate(&Date.shift(&1, week: 1)) |> Enum.take(3)
[~D[2024-04-17], ~D[2024-04-24], ~D[2024-05-01]]
However, once again, it is important to remember that shifting a duration is not
arithmetic, so you may want to use the functions in this module depending on what
you to achieve. Compare the results of both examples below:
Adding one month after the other
iex> date = ~D[2016-01-31]
iex> duration = Duration.new!(month: 1)
iex> stream = Stream.iterate(date, fn prev_date -> Date.shift(prev_date, duration) end)
iex> Enum.take(stream, 3)
[~D[2016-01-31], ~D[2016-02-29], ~D[2016-03-29]]

Multiplying durations by an index
iex> date = ~D[2016-01-31]
iex> duration = Duration.new!(month: 1)
iex> stream = Stream.from_index(fn i -> Date.shift(date, Duration.multiply(duration, i)) end)
iex> Enum.take(stream, 3)
[~D[2016-01-31], ~D[2016-02-29], ~D[2016-03-31]]
The second example consistently points to the last day of the month,
as it performs operations on the duration, rather than shifting date
after date.
Comparing durations
In order to accurately compare durations, you need to either compare
only certain fields or use a reference time instant. This is because
some fields are relative to others. For example, you may say that
1 month is the same as 30 days, but if you add both of these durations
to ~D[2015-02-01], you would get different results, as that month
has only 28 days.
Therefore, if you wish to compare durations, one option is to use
Date.shift/2 (or DateTime.shift/2 or similar), and then compare
the dates:
iex> date = ~D[2015-02-01]
iex> Date.compare(Date.shift(date, month: 1), Date.shift(date, day: 30))
:lt
Or alternatively convert the durations to a fixed unit by using to_timeout/1,
which supports durations only up to weeks, raising if it has the month or year
fields set.
iex> to_timeout(hour: 24) == to_timeout(day: 1)
true

 Summary

 Types

 duration()

 The duration type specifies a %Duration{} struct or a keyword list of valid duration unit pairs.

 t()

 The duration struct type.

 to_string_opts()

 Options for Duration.to_string/2.

 unit_pair()

 The unit pair type specifies a pair of a valid duration unit key and value.

 Functions

 add(d1, d2)

 Adds units of given durations d1 and d2.

 from_iso8601(string)

 Parses an ISO 8601 formatted duration string to a Duration struct.

 from_iso8601!(string)

 Same as from_iso8601/1 but raises an ArgumentError.

 multiply(duration, integer)

 Multiplies duration units by given integer.

 negate(duration)

 Negates duration units.

 new!(duration)

 Creates a new Duration struct from given unit_pairs.

 subtract(d1, d2)

 Subtracts units of given durations d1 and d2.

 to_iso8601(duration)

 Converts the given duration to an ISO 8601-2:2019 formatted string.

 to_string(duration, opts \\ [])

 Converts the given duration to a human readable representation.

 Types

 duration()

 (since 1.17.0)

 @type duration() :: t() | [unit_pair()]

The duration type specifies a %Duration{} struct or a keyword list of valid duration unit pairs.

 t()

 (since 1.17.0)

 @type t() :: %Duration{
 day: integer(),
 hour: integer(),
 microsecond: Calendar.microsecond(),
 minute: integer(),
 month: integer(),
 second: integer(),
 week: integer(),
 year: integer()
}

The duration struct type.

 to_string_opts()

 (since 1.17.0)

 @type to_string_opts() :: [
 units: [
 year: String.t(),
 month: String.t(),
 week: String.t(),
 day: String.t(),
 hour: String.t(),
 minute: String.t(),
 second: String.t()
],
 separator: String.t()
]

Options for Duration.to_string/2.

 unit_pair()

 (since 1.17.0)

 @type unit_pair() ::
 {:year, integer()}
 | {:month, integer()}
 | {:week, integer()}
 | {:day, integer()}
 | {:hour, integer()}
 | {:minute, integer()}
 | {:second, integer()}
 | {:microsecond, Calendar.microsecond()}

The unit pair type specifies a pair of a valid duration unit key and value.

 Functions

 add(d1, d2)

 (since 1.17.0)

 @spec add(t(), t()) :: t()

Adds units of given durations d1 and d2.
Respects the the highest microsecond precision of the two.
Examples
iex> Duration.add(Duration.new!(week: 2, day: 1), Duration.new!(day: 2))
%Duration{week: 2, day: 3}
iex> Duration.add(Duration.new!(microsecond: {400, 3}), Duration.new!(microsecond: {600, 6}))
%Duration{microsecond: {1000, 6}}

 from_iso8601(string)

 (since 1.17.0)

 @spec from_iso8601(String.t()) :: {:ok, t()} | {:error, atom()}

Parses an ISO 8601 formatted duration string to a Duration struct.
Duration strings, as well as individual units, may be prefixed with plus/minus signs so that:
	-PT6H3M parses as %Duration{hour: -6, minute: -3}
	-PT6H-3M parses as %Duration{hour: -6, minute: 3}
	+PT6H3M parses as %Duration{hour: 6, minute: 3}
	+PT6H-3M parses as %Duration{hour: 6, minute: -3}

Duration designators must be provided in order of magnitude: P[n]Y[n]M[n]W[n]DT[n]H[n]M[n]S.
Only seconds may be specified with a decimal fraction, using either a comma or a full stop: P1DT4,5S.
Examples
iex> Duration.from_iso8601("P1Y2M3DT4H5M6S")
{:ok, %Duration{year: 1, month: 2, day: 3, hour: 4, minute: 5, second: 6}}
iex> Duration.from_iso8601("P3Y-2MT3H")
{:ok, %Duration{year: 3, month: -2, hour: 3}}
iex> Duration.from_iso8601("-PT10H-30M")
{:ok, %Duration{hour: -10, minute: 30}}
iex> Duration.from_iso8601("PT4.650S")
{:ok, %Duration{second: 4, microsecond: {650000, 3}}}

 from_iso8601!(string)

 (since 1.17.0)

 @spec from_iso8601!(String.t()) :: t()

Same as from_iso8601/1 but raises an ArgumentError.
Examples
iex> Duration.from_iso8601!("P1Y2M3DT4H5M6S")
%Duration{year: 1, month: 2, day: 3, hour: 4, minute: 5, second: 6}
iex> Duration.from_iso8601!("P10D")
%Duration{day: 10}

 multiply(duration, integer)

 (since 1.17.0)

 @spec multiply(t(), integer()) :: t()

Multiplies duration units by given integer.
Examples
iex> Duration.multiply(Duration.new!(day: 1, minute: 15, second: -10), 3)
%Duration{day: 3, minute: 45, second: -30}
iex> Duration.multiply(Duration.new!(microsecond: {200, 4}), 3)
%Duration{microsecond: {600, 4}}

 negate(duration)

 (since 1.17.0)

 @spec negate(t()) :: t()

Negates duration units.
Examples
iex> Duration.negate(Duration.new!(day: 1, minute: 15, second: -10))
%Duration{day: -1, minute: -15, second: 10}
iex> Duration.negate(Duration.new!(microsecond: {500000, 4}))
%Duration{microsecond: {-500000, 4}}

 new!(duration)

 (since 1.17.0)

 @spec new!(duration()) :: t()

Creates a new Duration struct from given unit_pairs.
Raises an ArgumentError when called with invalid unit pairs.
Examples
iex> Duration.new!(year: 1, week: 3, hour: 4, second: 1)
%Duration{year: 1, week: 3, hour: 4, second: 1}
iex> Duration.new!(second: 1, microsecond: {1000, 6})
%Duration{second: 1, microsecond: {1000, 6}}
iex> Duration.new!(month: 2)
%Duration{month: 2}

 subtract(d1, d2)

 (since 1.17.0)

 @spec subtract(t(), t()) :: t()

Subtracts units of given durations d1 and d2.
Respects the the highest microsecond precision of the two.
Examples
iex> Duration.subtract(Duration.new!(week: 2, day: 1), Duration.new!(day: 2))
%Duration{week: 2, day: -1}
iex> Duration.subtract(Duration.new!(microsecond: {400, 6}), Duration.new!(microsecond: {600, 3}))
%Duration{microsecond: {-200, 6}}

 to_iso8601(duration)

 (since 1.17.0)

 @spec to_iso8601(t()) :: String.t()

Converts the given duration to an ISO 8601-2:2019 formatted string.
This function implements the extension of ISO 8601:2019, allowing weeks to appear between months and days: P3M3W3D.
Examples
iex> Duration.to_iso8601(Duration.new!(year: 3))
"P3Y"
iex> Duration.to_iso8601(Duration.new!(day: 40, hour: 12, minute: 42, second: 12))
"P40DT12H42M12S"
iex> Duration.to_iso8601(Duration.new!(second: 30))
"PT30S"

iex> Duration.to_iso8601(Duration.new!([]))
"PT0S"

iex> Duration.to_iso8601(Duration.new!(second: 1, microsecond: {2_200, 3}))
"PT1.002S"
iex> Duration.to_iso8601(Duration.new!(second: 1, microsecond: {-1_200_000, 4}))
"PT-0.2000S"

 to_string(duration, opts \\ [])

 (since 1.18.0)

 @spec to_string(t(), to_string_opts()) :: String.t()

Converts the given duration to a human readable representation.
Options
	:units - the units to be used alongside each duration component.
The default units follow the ISO 80000-3 standard:
[
 year: "a",
 month: "mo",
 week: "wk",
 day: "d",
 hour: "h",
 minute: "min",
 second: "s"
]

	:separator - a string used to separate the distinct components. Defaults to " ".

Examples
iex> Duration.to_string(Duration.new!(second: 30))
"30s"
iex> Duration.to_string(Duration.new!(day: 40, hour: 12, minute: 42, second: 12))
"40d 12h 42min 12s"
By default, this function uses ISO 80000-3 units, which uses "a" for years.
But you can customize all units via the units option:
iex> Duration.to_string(Duration.new!(year: 3))
"3a"
iex> Duration.to_string(Duration.new!(year: 3), units: [year: "y"])
"3y"
You may also choose the separator:
iex> Duration.to_string(Duration.new!(day: 40, hour: 12, minute: 42, second: 12), separator: ", ")
"40d, 12h, 42min, 12s"
A duration without components is rendered as "0s":
iex> Duration.to_string(Duration.new!([]))
"0s"
Microseconds are rendered as part of seconds with the appropriate precision:
iex> Duration.to_string(Duration.new!(second: 1, microsecond: {2_200, 3}))
"1.002s"
iex> Duration.to_string(Duration.new!(second: 1, microsecond: {-1_200_000, 4}))
"-0.2000s"

Exception behaviour

Functions for dealing with throw/catch/exit and exceptions.
This module also defines the behaviour required by custom
exceptions. To define your own, see defexception/1.
Formatting functions
Several functions in this module help format exceptions.
Some of these functions expect the stacktrace as argument.
The stacktrace is typically available inside catch and
rescue by using the __STACKTRACE__/0 variable.
Do not rely on the particular format returned by the
functions in this module. They may be changed in future releases
in order to better suit Elixir's tool chain. In other words,
by using the functions in this module it is guaranteed you will
format exceptions as in the current Elixir version being used.

 Summary

 Types

 arity_or_args()

 kind()

 The kind handled by formatting functions

 location()

 non_error_kind()

 stacktrace()

 stacktrace_entry()

 t()

 The exception type

 Callbacks

 blame(t, stacktrace)

 Called from Exception.blame/3 to augment the exception struct.

 exception(term)

 Receives the arguments given to raise/2 and returns the exception struct.

 message(t)

 Receives the exception struct and must return its message.

 Functions

 blame(kind, error, stacktrace)

 Attaches information to throws/errors/exits for extra debugging.

 blame_mfa(module, function, args)

 Blames the invocation of the given module, function and arguments.

 format(kind, payload, stacktrace \\ [])

 Normalizes and formats throws/errors/exits and stacktraces.

 format_banner(kind, exception, stacktrace \\ [])

 Normalizes and formats any throw/error/exit.

 format_exit(reason)

 Formats an exit. It returns a string.

 format_fa(fun, arity)

 Receives an anonymous function and arity and formats it as
shown in stacktraces. The arity may also be a list of arguments.

 format_file_line(file, line, suffix \\ "")

 Formats the given file and line as shown in stacktraces.

 format_file_line_column(file, line, column, suffix \\ "")

 Formats the given file, line, and column as shown in stacktraces.

 format_mfa(module, fun, arity)

 Receives a module, fun and arity and formats it
as shown in stacktraces. The arity may also be a list
of arguments.

 format_stacktrace(trace \\ nil)

 Formats the stacktrace.

 format_stacktrace_entry(entry)

 Receives a stacktrace entry and formats it into a string.

 message(exception)

 Gets the message for an exception.

 normalize(kind, payload, stacktrace \\ [])

 Normalizes an exception, converting Erlang exceptions
to Elixir exceptions.

 Types

 arity_or_args()

 @type arity_or_args() :: non_neg_integer() | list()

 kind()

 @type kind() :: :error | non_error_kind()

The kind handled by formatting functions

 location()

 @type location() :: keyword()

 non_error_kind()

 @type non_error_kind() :: :exit | :throw | {:EXIT, pid()}

 stacktrace()

 @type stacktrace() :: [stacktrace_entry()]

 stacktrace_entry()

 @type stacktrace_entry() ::
 {module(), atom(), arity_or_args(), location()}
 | {(... -> any()), arity_or_args(), location()}

 t()

 @type t() :: %{
 :__struct__ => module(),
 :__exception__ => true,
 optional(atom()) => any()
}

The exception type

 Callbacks

 blame(t, stacktrace)

 (optional)

 @callback blame(t(), stacktrace()) :: {t(), stacktrace()}

Called from Exception.blame/3 to augment the exception struct.
Can be used to collect additional information about the exception
or do some additional expensive computation.

 exception(term)

 @callback exception(term()) :: t()

Receives the arguments given to raise/2 and returns the exception struct.
The default implementation accepts either a set of keyword arguments
that is merged into the struct or a string to be used as the exception's message.

 message(t)

 @callback message(t()) :: String.t()

Receives the exception struct and must return its message.
Many exceptions have a message field which by default is accessed
by this function. However, if an exception does not have a message field,
this function must be explicitly implemented.

 Functions

 blame(kind, error, stacktrace)

 (since 1.5.0)

 @spec blame(:error, any(), stacktrace()) :: {t(), stacktrace()}

 @spec blame(non_error_kind(), payload, stacktrace()) :: {payload, stacktrace()}
when payload: var

Attaches information to throws/errors/exits for extra debugging.
This operation is potentially expensive, as it reads data
from the file system, parses beam files, evaluates code and
so on.
If kind argument is :error and the error is an Erlang exception, this function will
normalize it. If the error argument is an Elixir exception, this function will invoke
the optional blame/2 callback on the exception module if it is implemented.
Unlike message/1, this function will not rescue errors - if the callback raises an exception,
the error will propagate to the caller. It is your choice if you want to rescue and return
the original exception, return a different exception, or let it cascade.

 blame_mfa(module, function, args)

 (since 1.5.0)

 @spec blame_mfa(module(), function :: atom(), args :: [term()]) ::
 {:ok, :def | :defp | :defmacro | :defmacrop,
 [{args :: [term()], guards :: [term()]}]}
 | :error

Blames the invocation of the given module, function and arguments.
This function will retrieve the available clauses from bytecode
and evaluate them against the given arguments. The clauses are
returned as a list of {args, guards} pairs where each argument
and each top-level condition in a guard separated by and/or
is wrapped in a tuple with blame metadata.
This function returns either {:ok, definition, clauses} or :error.
Where definition is :def, :defp, :defmacro or :defmacrop.

 format(kind, payload, stacktrace \\ [])

 @spec format(kind(), any(), stacktrace()) :: String.t()

Normalizes and formats throws/errors/exits and stacktraces.
It relies on format_banner/3 and format_stacktrace/1
to generate the final format.
If kind is {:EXIT, pid}, it does not generate a stacktrace,
as such exits are retrieved as messages without stacktraces.

 format_banner(kind, exception, stacktrace \\ [])

 @spec format_banner(kind(), any(), stacktrace()) :: String.t()

Normalizes and formats any throw/error/exit.
The message is formatted and displayed in the same
format as used by Elixir's CLI.
The third argument is the stacktrace which is used to enrich
a normalized error with more information. It is only used when
the kind is an error.

 format_exit(reason)

 @spec format_exit(any()) :: String.t()

Formats an exit. It returns a string.
Often there are errors/exceptions inside exits. Exits are often
wrapped by the caller and provide stacktraces too. This function
formats exits in a way to nicely show the exit reason, caller
and stacktrace.

 format_fa(fun, arity)

 @spec format_fa(fun(), arity()) :: String.t()

Receives an anonymous function and arity and formats it as
shown in stacktraces. The arity may also be a list of arguments.
Examples
Exception.format_fa(fn -> nil end, 1)
#=> "#Function<...>/1"

 format_file_line(file, line, suffix \\ "")

 @spec format_file_line(String.t() | nil, non_neg_integer() | nil, String.t()) ::
 String.t()

Formats the given file and line as shown in stacktraces.
If any of the values are nil, they are omitted.
Examples
iex> Exception.format_file_line("foo", 1)
"foo:1:"

iex> Exception.format_file_line("foo", nil)
"foo:"

iex> Exception.format_file_line(nil, nil)
""

 format_file_line_column(file, line, column, suffix \\ "")

 @spec format_file_line_column(
 String.t() | nil,
 non_neg_integer() | nil,
 non_neg_integer() | nil,
 String.t()
) :: String.t()

Formats the given file, line, and column as shown in stacktraces.
If any of the values are nil, they are omitted.
Examples
iex> Exception.format_file_line_column("foo", 1, 2)
"foo:1:2:"

iex> Exception.format_file_line_column("foo", 1, nil)
"foo:1:"

iex> Exception.format_file_line_column("foo", nil, nil)
"foo:"

iex> Exception.format_file_line_column("foo", nil, 2)
"foo:"

iex> Exception.format_file_line_column(nil, nil, nil)
""

 format_mfa(module, fun, arity)

 @spec format_mfa(module(), atom(), arity_or_args()) :: String.t()

Receives a module, fun and arity and formats it
as shown in stacktraces. The arity may also be a list
of arguments.
Examples
iex> Exception.format_mfa(Foo, :bar, 1)
"Foo.bar/1"

iex> Exception.format_mfa(Foo, :bar, [])
"Foo.bar()"

iex> Exception.format_mfa(nil, :bar, [])
"nil.bar()"
Anonymous functions are reported as -func/arity-anonfn-count-,
where func is the name of the enclosing function. Convert to
"anonymous fn in func/arity"

 format_stacktrace(trace \\ nil)

 @spec format_stacktrace(stacktrace() | nil) :: String.t()

Formats the stacktrace.
A stacktrace must be given as an argument. If not, the stacktrace
is retrieved from Process.info/2.

 format_stacktrace_entry(entry)

 @spec format_stacktrace_entry(stacktrace_entry()) :: String.t()

Receives a stacktrace entry and formats it into a string.

 message(exception)

 @spec message(t()) :: String.t()

Gets the message for an exception.
This function will invoke the message/1 callback on the exception
module to retrieve the message. If the callback raises an exception or
returns a non-binary value, this function will rescue the error and
return a descriptive error message instead.

 normalize(kind, payload, stacktrace \\ [])

 @spec normalize(:error, any(), stacktrace()) :: t()

 @spec normalize(non_error_kind(), payload, stacktrace()) :: payload when payload: var

Normalizes an exception, converting Erlang exceptions
to Elixir exceptions.
It takes the kind spilled by catch as an argument and
normalizes only :error, returning the untouched payload
for others.
The third argument is the stacktrace which is used to enrich
a normalized error with more information. It is only used when
the kind is an error.

Float

Functions for working with floating-point numbers.
For mathematical operations on top of floating-points,
see Erlang's :math module.
Kernel functions
There are functions related to floating-point numbers on the Kernel module
too. Here is a list of them:
	Kernel.round/1: rounds a number to the nearest integer.
	Kernel.trunc/1: returns the integer part of a number.

Known issues
There are some very well known problems with floating-point numbers
and arithmetic due to the fact most decimal fractions cannot be
represented by a floating-point binary and most operations are not exact,
but operate on approximations. Those issues are not specific
to Elixir, they are a property of floating point representation itself.
For example, the numbers 0.1 and 0.01 are two of them, what means the result
of squaring 0.1 does not give 0.01 neither the closest representable. Here is
what happens in this case:
	The closest representable number to 0.1 is 0.1000000014
	The closest representable number to 0.01 is 0.0099999997
	Doing 0.1 * 0.1 should return 0.01, but because 0.1 is actually 0.1000000014,
the result is 0.010000000000000002, and because this is not the closest
representable number to 0.01, you'll get the wrong result for this operation

There are also other known problems like flooring or rounding numbers. See
round/2 and floor/2 for more details about them.
To learn more about floating-point arithmetic visit:
	0.30000000000000004.com
	What Every Programmer Should Know About Floating-Point Arithmetic

 Summary

 Types

 precision_range()

 Functions

 ceil(number, precision \\ 0)

 Rounds a float to the smallest float greater than or equal to number.

 floor(number, precision \\ 0)

 Rounds a float to the largest float less than or equal to number.

 max_finite()

 Returns the maximum finite value for a float.

 min_finite()

 Returns the minimum finite value for a float.

 parse(binary)

 Parses a binary into a float.

 pow(base, exponent)

 Computes base raised to power of exponent.

 ratio(float)

 Returns a pair of integers whose ratio is exactly equal
to the original float and with a positive denominator.

 round(float, precision \\ 0)

 Rounds a floating-point value to an arbitrary number of fractional
digits (between 0 and 15).

 to_charlist(float)

 Returns a charlist which corresponds to the shortest text representation
of the given float.

 to_string(float)

 Returns a binary which corresponds to the shortest text representation
of the given float.

 Types

 precision_range()

 @type precision_range() :: 0..15

 Functions

 ceil(number, precision \\ 0)

 @spec ceil(float(), precision_range()) :: float()

Rounds a float to the smallest float greater than or equal to number.
ceil/2 also accepts a precision to round a floating-point value down
to an arbitrary number of fractional digits (between 0 and 15).
The operation is performed on the binary floating point, without a
conversion to decimal.
The behavior of ceil/2 for floats can be surprising. For example:
iex> Float.ceil(-12.52, 2)
-12.51
One may have expected it to ceil to -12.52. This is not a bug.
Most decimal fractions cannot be represented as a binary floating point
and therefore the number above is internally represented as -12.51999999,
which explains the behavior above.
This function always returns floats. Kernel.trunc/1 may be used instead to
truncate the result to an integer afterwards.
Examples
iex> Float.ceil(34.25)
35.0
iex> Float.ceil(-56.5)
-56.0
iex> Float.ceil(34.251, 2)
34.26
iex> Float.ceil(-0.01)
-0.0

 floor(number, precision \\ 0)

 @spec floor(float(), precision_range()) :: float()

Rounds a float to the largest float less than or equal to number.
floor/2 also accepts a precision to round a floating-point value down
to an arbitrary number of fractional digits (between 0 and 15).
The operation is performed on the binary floating point, without a
conversion to decimal.
This function always returns a float. Kernel.trunc/1 may be used instead to
truncate the result to an integer afterwards.
Known issues
The behavior of floor/2 for floats can be surprising. For example:
iex> Float.floor(12.52, 2)
12.51
One may have expected it to floor to 12.52. This is not a bug.
Most decimal fractions cannot be represented as a binary floating point
and therefore the number above is internally represented as 12.51999999,
which explains the behavior above.
Examples
iex> Float.floor(34.25)
34.0
iex> Float.floor(-56.5)
-57.0
iex> Float.floor(34.259, 2)
34.25

 max_finite()

 @spec max_finite() :: float()

Returns the maximum finite value for a float.
Examples
iex> Float.max_finite()
1.7976931348623157e308

 min_finite()

 @spec min_finite() :: float()

Returns the minimum finite value for a float.
Examples
iex> Float.min_finite()
-1.7976931348623157e308

 parse(binary)

 @spec parse(binary()) :: {float(), binary()} | :error

Parses a binary into a float.
If successful, returns a tuple in the form of {float, remainder_of_binary};
when the binary cannot be coerced into a valid float, the atom :error is
returned.
If the size of float exceeds the maximum size of 1.7976931348623157e+308,
:error is returned even though the textual representation itself might be
well formed.
If you want to convert a string-formatted float directly to a float,
String.to_float/1 can be used instead.
Examples
iex> Float.parse("34")
{34.0, ""}
iex> Float.parse("34.25")
{34.25, ""}
iex> Float.parse("56.5xyz")
{56.5, "xyz"}

iex> Float.parse(".12")
:error
iex> Float.parse("pi")
:error
iex> Float.parse("1.7976931348623159e+308")
:error

 pow(base, exponent)

 (since 1.12.0)

 @spec pow(float(), number()) :: float()

Computes base raised to power of exponent.
base must be a float and exponent can be any number.
However, if a negative base and a fractional exponent
are given, it raises ArithmeticError.
It always returns a float. See Integer.pow/2 for
exponentiation that returns integers.
Examples
iex> Float.pow(2.0, 0)
1.0
iex> Float.pow(2.0, 1)
2.0
iex> Float.pow(2.0, 10)
1024.0
iex> Float.pow(2.0, -1)
0.5
iex> Float.pow(2.0, -3)
0.125

iex> Float.pow(3.0, 1.5)
5.196152422706632

iex> Float.pow(-2.0, 3)
-8.0
iex> Float.pow(-2.0, 4)
16.0

iex> Float.pow(-1.0, 0.5)
** (ArithmeticError) bad argument in arithmetic expression

 ratio(float)

 (since 1.4.0)

 @spec ratio(float()) :: {integer(), pos_integer()}

Returns a pair of integers whose ratio is exactly equal
to the original float and with a positive denominator.
Examples
iex> Float.ratio(0.0)
{0, 1}
iex> Float.ratio(3.14)
{7070651414971679, 2251799813685248}
iex> Float.ratio(-3.14)
{-7070651414971679, 2251799813685248}
iex> Float.ratio(1.5)
{3, 2}
iex> Float.ratio(-1.5)
{-3, 2}
iex> Float.ratio(16.0)
{16, 1}
iex> Float.ratio(-16.0)
{-16, 1}

 round(float, precision \\ 0)

 @spec round(float(), precision_range()) :: float()

Rounds a floating-point value to an arbitrary number of fractional
digits (between 0 and 15).
The rounding direction always ties to half up. The operation is
performed on the binary floating point, without a conversion to decimal.
This function only accepts floats and always returns a float. Use
Kernel.round/1 if you want a function that accepts both floats
and integers and always returns an integer.
Known issues
The behavior of round/2 for floats can be surprising. For example:
iex> Float.round(5.5675, 3)
5.567
One may have expected it to round to the half up 5.568. This is not a bug.
Most decimal fractions cannot be represented as a binary floating point
and therefore the number above is internally represented as 5.567499999,
which explains the behavior above. If you want exact rounding for decimals,
you must use a decimal library. The behavior above is also in accordance
to reference implementations, such as "Correctly Rounded Binary-Decimal and
Decimal-Binary Conversions" by David M. Gay.
Examples
iex> Float.round(12.5)
13.0
iex> Float.round(5.5674, 3)
5.567
iex> Float.round(5.5675, 3)
5.567
iex> Float.round(-5.5674, 3)
-5.567
iex> Float.round(-5.5675)
-6.0
iex> Float.round(12.341444444444441, 15)
12.341444444444441
iex> Float.round(-0.01)
-0.0

 to_charlist(float)

 @spec to_charlist(float()) :: charlist()

Returns a charlist which corresponds to the shortest text representation
of the given float.
It uses the algorithm presented in "Ryū: fast float-to-string conversion"
in Proceedings of the SIGPLAN '2018 Conference on Programming Language
Design and Implementation.
For a configurable representation, use :erlang.float_to_list/2.
Inlined by the compiler.
Examples
iex> Float.to_charlist(7.0)
~c"7.0"

 to_string(float)

 @spec to_string(float()) :: String.t()

Returns a binary which corresponds to the shortest text representation
of the given float.
The underlying algorithm changes depending on the Erlang/OTP version:
	For OTP >= 24, it uses the algorithm presented in "Ryū: fast
float-to-string conversion" in Proceedings of the SIGPLAN '2018
Conference on Programming Language Design and Implementation.

	For OTP < 24, it uses the algorithm presented in "Printing Floating-Point
Numbers Quickly and Accurately" in Proceedings of the SIGPLAN '1996
Conference on Programming Language Design and Implementation.

For a configurable representation, use :erlang.float_to_binary/2.
Inlined by the compiler.
Examples
iex> Float.to_string(7.0)
"7.0"

Function

A set of functions for working with functions.
Anonymous functions are typically created by using fn:
iex> add = fn a, b -> a + b end
iex> add.(1, 2)
3
Anonymous functions can also have multiple clauses. All clauses
should expect the same number of arguments:
iex> negate = fn
...> true -> false
...> false -> true
...> end
iex> negate.(false)
true
The capture operator
It is also possible to capture public module functions and pass them
around as if they were anonymous functions by using the capture
operator &/1:
iex> add = &Kernel.+/2
iex> add.(1, 2)
3

iex> length = &String.length/1
iex> length.("hello")
5
To capture a definition within the current module, you can skip the
module prefix, such as &my_fun/2. In those cases, the captured
function can be public (def) or private (defp).
The capture operator can also be used to create anonymous functions
that expect at least one argument:
iex> add = &(&1 + &2)
iex> add.(1, 2)
3
In such cases, using the capture operator is no different than using fn.
Internal and external functions
We say that functions that point to definitions residing in modules, such
as &String.length/1, are external functions. All other functions are
local and they are always bound to the file or module that defined them.
Besides the functions in this module to work with functions, Kernel also
has an apply/2 function that invokes a function with a dynamic number of
arguments, as well as is_function/1 and is_function/2, to check
respectively if a given value is a function or a function of a given arity.

 Summary

 Types

 information()

 Functions

 capture(module, function_name, arity)

 Captures the given function.

 identity(value)

 Returns its input value. This function can be passed as an anonymous function
to transformation functions.

 info(fun)

 Returns a keyword list with information about a function.

 info(fun, item)

 Returns a specific information about the function.

 Types

 information()

 @type information() ::
 :arity
 | :env
 | :index
 | :module
 | :name
 | :new_index
 | :new_uniq
 | :pid
 | :type
 | :uniq

 Functions

 capture(module, function_name, arity)

 (since 1.7.0)

 @spec capture(module(), atom(), arity()) :: fun()

Captures the given function.
Inlined by the compiler.
Examples
iex> Function.capture(String, :length, 1)
&String.length/1

 identity(value)

 (since 1.10.0)

 @spec identity(value) :: value when value: var

Returns its input value. This function can be passed as an anonymous function
to transformation functions.
Examples
iex> Function.identity("Hello world!")
"Hello world!"

iex> ~c"abcdaabccc" |> Enum.sort() |> Enum.chunk_by(&Function.identity/1)
[~c"aaa", ~c"bb", ~c"cccc", ~c"d"]

iex> Enum.group_by(~c"abracadabra", &Function.identity/1)
%{97 => ~c"aaaaa", 98 => ~c"bb", 99 => ~c"c", 100 => ~c"d", 114 => ~c"rr"}

iex> Enum.map([1, 2, 3, 4], &Function.identity/1)
[1, 2, 3, 4]

 info(fun)

 (since 1.7.0)

 @spec info(fun()) :: [{information(), term()}]

Returns a keyword list with information about a function.
The returned keys (with the corresponding possible values) for
all types of functions (local and external) are the following:
	:type - :local (for anonymous functions) or :external (for
named functions).

	:module - an atom which is the module where the function is defined when
anonymous or the module which the function refers to when it's a named function.

	:arity - (integer) the number of arguments the function is to be called with.

	:name - (atom) the name of the function.

	:env - a list of the environment or free variables. For named
functions, the returned list is always empty.

When fun is an anonymous function (that is, the type is :local), the following
additional keys are returned:
	:pid - PID of the process that originally created the function.

	:index - (integer) an index into the module function table.

	:new_index - (integer) an index into the module function table.

	:new_uniq - (binary) a unique value for this function. It's
calculated from the compiled code for the entire module.

	:uniq - (integer) a unique value for this function. This integer is
calculated from the compiled code for the entire module.

Note: this function must be used only for debugging purposes.
Inlined by the compiler.
Examples
iex> fun = fn x -> x end
iex> info = Function.info(fun)
iex> Keyword.get(info, :arity)
1
iex> Keyword.get(info, :type)
:local

iex> fun = &String.length/1
iex> info = Function.info(fun)
iex> Keyword.get(info, :type)
:external
iex> Keyword.get(info, :name)
:length

 info(fun, item)

 (since 1.7.0)

 @spec info(fun(), item) :: {item, term()} when item: information()

Returns a specific information about the function.
The returned information is a two-element tuple in the shape of
{info, value}.
For any function, the information asked for can be any of the atoms
:module, :name, :arity, :env, or :type.
For anonymous functions, there is also information about any of the
atoms :index, :new_index, :new_uniq, :uniq, and :pid.
For a named function, the value of any of these items is always the
atom :undefined.
For more information on each of the possible returned values, see
info/1.
Inlined by the compiler.
Examples
iex> f = fn x -> x end
iex> Function.info(f, :arity)
{:arity, 1}
iex> Function.info(f, :type)
{:type, :local}

iex> fun = &String.length/1
iex> Function.info(fun, :name)
{:name, :length}
iex> Function.info(fun, :pid)
{:pid, :undefined}

Integer

Functions for working with integers.
Some functions that work on integers are found in Kernel:
	Kernel.abs/1
	Kernel.div/2
	Kernel.max/2
	Kernel.min/2
	Kernel.rem/2

 Summary

 Guards

 is_even(integer)

 Determines if an integer is even.

 is_odd(integer)

 Determines if integer is odd.

 Functions

 ceil_div(dividend, divisor)

 Performs a ceiled integer division.

 digits(integer, base \\ 10)

 Returns the ordered digits for the given integer.

 extended_gcd(a, b)

 Returns the extended greatest common divisor of the two given integers.

 floor_div(dividend, divisor)

 Performs a floored integer division.

 gcd(integer1, integer2)

 Returns the greatest common divisor of the two given integers.

 mod(dividend, divisor)

 Computes the modulo remainder of an integer division.

 parse(binary, base \\ 10)

 Parses a text representation of an integer.

 pow(base, exponent)

 Computes base raised to power of exponent.

 to_charlist(integer, base \\ 10)

 Returns a charlist which corresponds to the text representation
of integer in the given base.

 to_string(integer, base \\ 10)

 Returns a binary which corresponds to the text representation
of integer in the given base.

 undigits(digits, base \\ 10)

 Returns the integer represented by the ordered digits.

 Guards

 is_even(integer)

 (macro)

Determines if an integer is even.
Returns true if the given integer is an even number,
otherwise it returns false.
Allowed in guard clauses.
Examples
iex> Integer.is_even(10)
true

iex> Integer.is_even(5)
false

iex> Integer.is_even(-10)
true

iex> Integer.is_even(0)
true

 is_odd(integer)

 (macro)

Determines if integer is odd.
Returns true if the given integer is an odd number,
otherwise it returns false.
Allowed in guard clauses.
Examples
iex> Integer.is_odd(5)
true

iex> Integer.is_odd(6)
false

iex> Integer.is_odd(-5)
true

iex> Integer.is_odd(0)
false

 Functions

 ceil_div(dividend, divisor)

 (since 1.20.0)

 @spec ceil_div(integer(), neg_integer() | pos_integer()) :: integer()

Performs a ceiled integer division.
Raises an ArithmeticError exception if one of the arguments is not an
integer, or when the divisor is 0.
This function performs a ceiled integer division, which means that
the result will always be rounded towards positive infinity.
Examples
iex> Integer.ceil_div(5, 2)
3
iex> Integer.ceil_div(6, -4)
-1
iex> Integer.ceil_div(-99, 2)
-49

 digits(integer, base \\ 10)

 @spec digits(integer(), pos_integer()) :: [integer(), ...]

Returns the ordered digits for the given integer.
An optional base value may be provided representing the radix for the returned
digits. This one must be an integer >= 2.
Examples
iex> Integer.digits(123)
[1, 2, 3]

iex> Integer.digits(170, 2)
[1, 0, 1, 0, 1, 0, 1, 0]

iex> Integer.digits(-170, 2)
[-1, 0, -1, 0, -1, 0, -1, 0]

 extended_gcd(a, b)

 (since 1.12.0)

 @spec extended_gcd(integer(), integer()) :: {non_neg_integer(), integer(), integer()}

Returns the extended greatest common divisor of the two given integers.
This function uses the extended Euclidean algorithm to return a three-element tuple with the gcd
and the coefficients m and n of Bézout's identity such that:
gcd(a, b) = m*a + n*b
By convention, extended_gcd(0, 0) returns {0, 0, 0}.
Examples
iex> Integer.extended_gcd(240, 46)
{2, -9, 47}
iex> Integer.extended_gcd(46, 240)
{2, 47, -9}
iex> Integer.extended_gcd(-46, 240)
{2, -47, -9}
iex> Integer.extended_gcd(-46, -240)
{2, -47, 9}

iex> Integer.extended_gcd(14, 21)
{7, -1, 1}

iex> Integer.extended_gcd(10, 0)
{10, 1, 0}
iex> Integer.extended_gcd(0, 10)
{10, 0, 1}
iex> Integer.extended_gcd(0, 0)
{0, 0, 0}

 floor_div(dividend, divisor)

 (since 1.4.0)

 @spec floor_div(integer(), neg_integer() | pos_integer()) :: integer()

Performs a floored integer division.
Raises an ArithmeticError exception if one of the arguments is not an
integer, or when the divisor is 0.
This function performs a floored integer division, which means that
the result will always be rounded towards negative infinity.
If you want to perform truncated integer division (rounding towards zero),
use Kernel.div/2 instead.
Examples
iex> Integer.floor_div(5, 2)
2
iex> Integer.floor_div(6, -4)
-2
iex> Integer.floor_div(-99, 2)
-50

 gcd(integer1, integer2)

 (since 1.5.0)

 @spec gcd(integer(), integer()) :: non_neg_integer()

Returns the greatest common divisor of the two given integers.
The greatest common divisor (GCD) of integer1 and integer2 is the largest positive
integer that divides both integer1 and integer2 without leaving a remainder.
By convention, gcd(0, 0) returns 0.
Examples
iex> Integer.gcd(2, 3)
1

iex> Integer.gcd(8, 12)
4

iex> Integer.gcd(8, -12)
4

iex> Integer.gcd(10, 0)
10

iex> Integer.gcd(7, 7)
7

iex> Integer.gcd(0, 0)
0

 mod(dividend, divisor)

 (since 1.4.0)

 @spec mod(integer(), neg_integer() | pos_integer()) :: integer()

Computes the modulo remainder of an integer division.
This function performs a floored division, which means that
the result will always have the sign of the divisor.
Raises an ArithmeticError exception if one of the arguments is not an
integer, or when the divisor is 0.
Examples
iex> Integer.mod(5, 2)
1
iex> Integer.mod(6, -4)
-2

 parse(binary, base \\ 10)

 @spec parse(binary(), 2..36) :: {integer(), remainder_of_binary :: binary()} | :error

Parses a text representation of an integer.
An optional base to the corresponding integer can be provided.
If base is not given, 10 will be used.
If successful, returns a tuple in the form of {integer, remainder_of_binary}.
Otherwise :error.
Raises an error if base is less than 2 or more than 36.
If you want to convert a string-formatted integer directly to an integer,
String.to_integer/1 or String.to_integer/2 can be used instead.
Examples
iex> Integer.parse("34")
{34, ""}

iex> Integer.parse("34.5")
{34, ".5"}

iex> Integer.parse("three")
:error

iex> Integer.parse("34", 10)
{34, ""}

iex> Integer.parse("f4", 16)
{244, ""}

iex> Integer.parse("Awww++", 36)
{509216, "++"}

iex> Integer.parse("fab", 10)
:error

iex> Integer.parse("a2", 38)
** (ArgumentError) invalid base 38

 pow(base, exponent)

 (since 1.12.0)

 @spec pow(integer(), non_neg_integer()) :: integer()

Computes base raised to power of exponent.
Both base and exponent must be integers.
The exponent must be zero or positive.
See Float.pow/2 for exponentiation of negative
exponents as well as floats.
Examples
iex> Integer.pow(2, 0)
1
iex> Integer.pow(2, 1)
2
iex> Integer.pow(2, 10)
1024
iex> Integer.pow(2, 11)
2048
iex> Integer.pow(2, 64)
0x10000000000000000

iex> Integer.pow(3, 4)
81
iex> Integer.pow(4, 3)
64

iex> Integer.pow(-2, 3)
-8
iex> Integer.pow(-2, 4)
16

iex> Integer.pow(2, -2)
** (ArithmeticError) bad argument in arithmetic expression

 to_charlist(integer, base \\ 10)

 @spec to_charlist(integer(), 2..36) :: charlist()

Returns a charlist which corresponds to the text representation
of integer in the given base.
base can be an integer between 2 and 36. If no base is given,
it defaults to 10.
Inlined by the compiler.
Examples
iex> Integer.to_charlist(123)
~c"123"

iex> Integer.to_charlist(+456)
~c"456"

iex> Integer.to_charlist(-789)
~c"-789"

iex> Integer.to_charlist(0123)
~c"123"

iex> Integer.to_charlist(100, 16)
~c"64"

iex> Integer.to_charlist(-100, 16)
~c"-64"

iex> Integer.to_charlist(882_681_651, 36)
~c"ELIXIR"

 to_string(integer, base \\ 10)

 @spec to_string(integer(), 2..36) :: String.t()

Returns a binary which corresponds to the text representation
of integer in the given base.
base can be an integer between 2 and 36. If no base is given,
it defaults to 10.
Inlined by the compiler.
Examples
iex> Integer.to_string(123)
"123"

iex> Integer.to_string(+456)
"456"

iex> Integer.to_string(-789)
"-789"

iex> Integer.to_string(0123)
"123"

iex> Integer.to_string(100, 16)
"64"

iex> Integer.to_string(-100, 16)
"-64"

iex> Integer.to_string(882_681_651, 36)
"ELIXIR"

 undigits(digits, base \\ 10)

 @spec undigits([integer()], pos_integer()) :: integer()

Returns the integer represented by the ordered digits.
An optional base value may be provided representing the radix for the digits.
Base has to be an integer greater than or equal to 2.
Examples
iex> Integer.undigits([1, 2, 3])
123

iex> Integer.undigits([1, 4], 16)
20

iex> Integer.undigits([])
0

JSON

JSON encoding and decoding.
Both encoder and decoder fully conform to RFC 8259 and
ECMA 404
standards.
Encoding
Elixir primitive types are encoded to JSON as follows:
	Elixir	JSON
	integer() | float()	Number
	true | false	Boolean
	nil	Null
	binary()	String
	atom()	String
	list()	Array
	%{String.Chars.t() => _}	Object

You may also implement the JSON.Encoder protocol for custom data structures.
Some built-in data-structures already derive the JSON.Encoder protocol:
	Elixir	JSON
	Date.t()	ISO 8601 string
	Time.t()	ISO 8601 string
	DateTime.t()	ISO 8601 string
	NaiveDateTime.t()	ISO 8601 string
	Duration.t()	ISO 8601 string

Decoding
Elixir types are decoded from JSON as follows:
	JSON	Elixir
	Number	integer() | float()
	Boolean	true | false
	Null	nil
	String	binary()
	Object	%{binary() => _}

 Summary

 Types

 decode_error_reason()

 decoders()

 Decoders for customizing JSON decoding behavior.

 encoder()

 Functions

 decode(binary)

 Decodes the given JSON.

 decode(binary, acc, decoders)

 Decodes the given JSON with the given decoders.

 decode!(binary)

 Decodes the given JSON but raises an exception in case of errors.

 encode!(term, encoder \\ &protocol_encode/2)

 Encodes the given term to JSON as a binary.

 encode_to_iodata!(term, encoder \\ &protocol_encode/2)

 Encodes the given term to JSON as an iodata.

 protocol_encode(value, encoder)

 This is the default encode implementation passed to encode!/1.

 Types

 decode_error_reason()

 (since 1.18.0)

 @type decode_error_reason() ::
 {:unexpected_end, non_neg_integer()}
 | {:invalid_byte, non_neg_integer(), byte()}
 | {:unexpected_sequence, non_neg_integer(), binary()}

 decoders()

 (since 1.18.0)

 @type decoders() :: [
 array_start: (term() -> term()),
 array_push: (term(), term() -> term()),
 array_finish: (term(), term() -> {term(), term()}),
 object_start: (term() -> term()),
 object_push: (term(), term(), term() -> term()),
 object_finish: (term(), term() -> {term(), term()}),
 float: (String.t() -> term()),
 integer: (String.t() -> term()),
 string: (String.t() -> term()),
 null: term()
]

Decoders for customizing JSON decoding behavior.

 encoder()

 (since 1.18.0)

 @type encoder() :: (term(), encoder() -> iodata())

 Functions

 decode(binary)

 (since 1.18.0)

 @spec decode(binary()) :: {:ok, term()} | {:error, decode_error_reason()}

Decodes the given JSON.
Returns {:ok, decoded} or {:error, reason}.
Examples
iex> JSON.decode("[null,123,\"string\",{\"key\":\"value\"}]")
{:ok, [nil, 123, "string", %{"key" => "value"}]}
Error reasons
The error tuple will have one of the following reasons.
	{:unexpected_end, offset} if binary contains incomplete JSON value
	{:invalid_byte, offset, byte} if binary contains unexpected byte or invalid UTF-8 byte
	{:unexpected_sequence, offset, bytes} if binary contains invalid UTF-8 escape

 decode(binary, acc, decoders)

 (since 1.18.0)

 @spec decode(binary(), term(), decoders()) ::
 {term(), term(), binary()} | {:error, decode_error_reason()}

Decodes the given JSON with the given decoders.
Returns {decoded, acc, rest} or {:error, reason}.
See decode/1 for the error reasons.
Decoders
All decoders are optional. If not provided, they will fall back to
implementations used by the decode/1 function:
	for array_start: fn _ -> [] end
	for array_push: fn elem, acc -> [elem | acc] end

	for array_finish: fn acc, old_acc -> {Enum.reverse(acc), old_acc} end
	for object_start: fn _ -> [] end
	for object_push: fn key, value, acc -> [{key, value} | acc] end

	for object_finish: fn acc, old_acc -> {Map.new(acc), old_acc} end
	for float: &String.to_float/1
	for integer: &String.to_integer/1
	for string: &Function.identity/1
	for null: the atom nil

For streaming decoding, see Erlang's :json module.

 decode!(binary)

 (since 1.18.0)

 @spec decode!(binary()) :: term()

Decodes the given JSON but raises an exception in case of errors.
Returns the decoded content. See decode/1 for possible errors.
Examples
iex> JSON.decode!("[null,123,\"string\",{\"key\":\"value\"}]")
[nil, 123, "string", %{"key" => "value"}]

 encode!(term, encoder \\ &protocol_encode/2)

 (since 1.18.0)

 @spec encode!(term(), encoder()) :: binary()

Encodes the given term to JSON as a binary.
The second argument is a function that is recursively
invoked to encode a term.
IO and performance
If you need to encode data to be sent over the network
or written to the filesystem, consider using the more
efficient encode_to_iodata!/2.
Examples
iex> JSON.encode!([123, "string", %{key: "value"}])
"[123,\"string\",{\"key\":\"value\"}]"

 encode_to_iodata!(term, encoder \\ &protocol_encode/2)

 (since 1.18.0)

 @spec encode_to_iodata!(term(), encoder()) :: iodata()

Encodes the given term to JSON as an iodata.
This is the most efficient format if the JSON is going to be
used for IO purposes.
The second argument is a function that is recursively
invoked to encode a term.
Examples
iex> data = JSON.encode_to_iodata!([123, "string", %{key: "value"}])
iex> IO.iodata_to_binary(data)
"[123,\"string\",{\"key\":\"value\"}]"

 protocol_encode(value, encoder)

 (since 1.18.0)

 @spec protocol_encode(term(), encoder()) :: iodata()

This is the default encode implementation passed to encode!/1.
This function is most typically passed as second argument to
encode!/2 and encode_to_iodata!/2. The default implementation
is an optimized dispatch to the JSON.Encoder protocol.

Module behaviour

Provides functions to deal with modules during compilation time.
It allows a developer to dynamically add, delete and register
attributes, attach documentation and so forth.
After a module is compiled, using many of the functions in
this module will raise errors, since it is out of their scope
to inspect runtime data. Most of the runtime data can be inspected
via the __info__/1 function attached to
each compiled module.
Module attributes
Each module can be decorated with one or more attributes. The following ones
are currently defined by Elixir:
@after_compile
A hook that will be invoked right after the current module is compiled.
Accepts a module or a {module, function_name}. See the "Compile callbacks"
section below.
@after_verify (since v1.14.0)
A hook that will be invoked right after the current module is verified for
undefined functions, deprecations, etc. Accepts a module or a {module, function_name}.
See the "Compile callbacks" section below.
@before_compile
A hook that will be invoked before the module is compiled.
Accepts a module or a {module, function_or_macro_name} tuple.
See the "Compile callbacks" section below.
@behaviour
Note the British spelling!
Behaviours can be referenced by modules to ensure they implement
required specific function signatures defined by @callback.
For example, you could specify a URI.Parser behaviour as follows:
defmodule URI.Parser do
 @doc "Defines a default port"
 @callback default_port() :: integer

 @doc "Parses the given URL"
 @callback parse(uri_info :: URI.t()) :: URI.t()
end
And then a module may use it as:
defmodule URI.HTTP do
 @behaviour URI.Parser
 def default_port(), do: 80
 def parse(info), do: info
end
If the behaviour changes or URI.HTTP does not implement
one of the callbacks, a warning will be raised.
For detailed documentation, see the
behaviour typespec documentation.
@impl (since v1.5.0)
To aid in the correct implementation of behaviours, you may optionally declare
@impl for implemented callbacks of a behaviour. This makes callbacks
explicit and can help you to catch errors in your code. The compiler will warn
in these cases:
	if you mark a function with @impl when that function is not a callback.

	if you don't mark a function with @impl when other functions are marked
with @impl. If you mark one function with @impl, you must mark all
other callbacks for that behaviour as @impl.

@impl works on a per-context basis. If you generate a function through a macro
and mark it with @impl, that won't affect the module where that function is
generated in.
@impl also helps with maintainability by making it clear to other developers
that the function is implementing a callback.
Using @impl, the example above can be rewritten as:
defmodule URI.HTTP do
 @behaviour URI.Parser

 @impl true
 def default_port(), do: 80

 @impl true
 def parse(info), do: info
end
You may pass either false, true, or a specific behaviour to @impl.
defmodule Foo do
 @behaviour Bar
 @behaviour Baz

 # Will warn if neither Bar nor Baz specify a callback named bar/0.
 @impl true
 def bar(), do: :ok

 # Will warn if Baz does not specify a callback named baz/0.
 @impl Baz
 def baz(), do: :ok
end
The code is now more readable, as it is now clear which functions are
part of your API and which ones are callback implementations. To reinforce this
idea, @impl true automatically marks the function as @doc false, disabling
documentation unless @doc is explicitly set.
@compile
Defines options for module compilation. This is used to configure
both Elixir and Erlang compilers, as well as any other compilation pass
added by external tools. For example:
defmodule MyModule do
 @compile {:inline, my_fun: 1}

 def my_fun(arg) do
 to_string(arg)
 end
end
Multiple uses of @compile will accumulate instead of overriding
previous ones. See the "Compile options" section below.
@deprecated (since v1.6.0)
Provides the deprecation reason for a function. For example:
defmodule Keyword do
 @deprecated "Use Kernel.length/1 instead"
 def size(keyword) do
 length(keyword)
 end
end
The Mix compiler automatically looks for calls to deprecated modules
and emit warnings during compilation.
Using the @deprecated attribute will also be reflected in the
documentation of the given function and macro. You can choose between
the @deprecated attribute and the documentation metadata to provide
hard-deprecations (with warnings) and soft-deprecations (without warnings):
This is a soft-deprecation as it simply annotates the documentation
as deprecated:
@doc deprecated: "Use Kernel.length/1 instead"
def size(keyword)
This is a hard-deprecation as it emits warnings and annotates the
documentation as deprecated:
@deprecated "Use Kernel.length/1 instead"
def size(keyword)
Currently @deprecated only supports functions and macros. However
you can use the :deprecated key in the annotation metadata to
annotate the docs of modules, types and callbacks too.
We recommend using this feature with care, especially library authors.
Deprecating code always pushes the burden towards library users. We
also recommend for deprecated functionality to be maintained for long
periods of time, even after deprecation, giving developers plenty of
time to update (except for cases where keeping the deprecated API is
undesired, such as in the presence of security issues).
@doc and @typedoc
Provides documentation for the entity that follows the attribute.
@doc is to be used with a function, macro, callback, or
macrocallback, while @typedoc with a type (public or opaque).
Accepts one of these:
	a string (often a heredoc)
	false, which will make the entity invisible to documentation-extraction
tools like ExDoc
	a keyword list, since Elixir 1.7.0

For example:
defmodule MyModule do
 @typedoc "This type"
 @typedoc since: "1.1.0"
 @type t :: term

 @doc "Hello world"
 @doc since: "1.1.0"
 def hello do
 "world"
 end

 @doc """
 Sums `a` to `b`.
 """
 def sum(a, b) do
 a + b
 end
end
As can be seen in the example above, since Elixir 1.7.0 @doc and @typedoc
also accept a keyword list that serves as a way to provide arbitrary metadata
about the entity. Tools like ExDoc and
IEx may use this information to display annotations. A common use
case is the :since key, which may be used to annotate in which version the
function was introduced.
As illustrated in the example, it is possible to use these attributes
more than once before an entity. However, the compiler will warn if
used twice with binaries as that replaces the documentation text from
the preceding use. Multiple uses with keyword lists will merge the
lists into one.
Note that since the compiler also defines some additional metadata,
there are a few reserved keys that will be ignored and warned if used.
Currently these are: :opaque and :defaults.
Once this module is compiled, this information becomes available via
the Code.fetch_docs/1 function.
@dialyzer
Defines warnings to request or suppress when using :dialyzer.
Accepts an atom, a tuple, or a list of atoms and tuples. For example:
defmodule MyModule do
 @dialyzer {:nowarn_function, [my_fun: 1]}

 def my_fun(arg) do
 M.not_a_function(arg)
 end
end
For the list of supported warnings, see :dialyzer module.
Multiple uses of @dialyzer will accumulate instead of overriding
previous ones.
@external_resource
Specifies an external resource for the current module.
Sometimes a module embeds information from an external file. This
attribute allows the module to annotate which external resources
have been used.
Tools may use this information to ensure the module is recompiled
in case any of the external resources change, see for example:
mix compile.elixir.
The specified file path provided is interpreted as relative to
the folder containing the project's mix.exs, which is the
current working directory, not the file where @external_resource
is declared.
If the external resource does not exist, the module still has
a dependency on it, causing the module to be recompiled as soon
as the file is added.
For more control over when a module is recompiled, see
__mix_recompile__?/0.
@file
Changes the filename used in stacktraces for the function or macro that
follows the attribute, such as:
defmodule MyModule do
 @doc "Hello world"
 @file "hello.ex"
 def hello do
 "world"
 end
end
Note that this is only valid for exceptions/diagnostics that come from the
definition inner scope (which includes its patterns and guards). For example:
defmodule MyModule do # <---- module definition
 @file "hello.ex"
 defp unused(a) do # <---- function definition
 "world" # <---- function scope
 end

 @file "bye.ex"
 def unused(_), do: true
end
If you run this code with the second "unused" definition commented, you will
see that hello.ex is used as the stacktrace when reporting warnings, but if
you uncomment it you'll see that the error will not mention bye.ex, because
it's a module-level error rather than an expression-level error.
@moduledoc
Provides documentation for the current module.
defmodule MyModule do
 @moduledoc """
 A very useful module.
 """
 @moduledoc authors: ["Alice", "Bob"]
end
Accepts a string (often a heredoc) or false where @moduledoc false
will make the module invisible to documentation extraction tools like
ExDoc.
Similarly to @doc also accepts a keyword list to provide metadata
about the module. For more details, see the documentation of @doc
above.
Once this module is compiled, this information becomes available via
the Code.fetch_docs/1 function.
@nifs (since v1.16.0)
A list of functions and their arities which will be overridden
by a native implementation (NIF).
defmodule MyLibrary.MyModule do
 @nifs [foo: 1, bar: 2]

 def foo(arg1), do: :erlang.nif_error(:not_loaded)
 def bar(arg1, arg2), do: :erlang.nif_error(:not_loaded)
end
See the Erlang documentation for more information:
https://www.erlang.org/doc/man/erl_nif
@on_definition
A hook that will be invoked when each function or macro in the current
module is defined. Useful when annotating functions.
Accepts a module or a {module, function_name} tuple. The function
must take 6 arguments:
	the module environment
	the kind of the function/macro: :def, :defp, :defmacro, or :defmacrop
	the function/macro name
	the list of quoted arguments
	the list of quoted guards
	the quoted function body

If the function/macro being defined has multiple clauses, the hook will
be called for each clause.
Unlike other hooks, @on_definition will only invoke functions and
never macros. This is to avoid @on_definition callbacks from
redefining functions that have just been defined in favor of more
explicit approaches.
When just a module is provided, the function is assumed to be
__on_definition__/6.
Example
defmodule Hooks do
 def on_def(_env, kind, name, args, guards, body) do
 IO.puts("Defining #{kind} named #{name} with args:")
 IO.inspect(args)
 IO.puts("and guards")
 IO.inspect(guards)
 IO.puts("and body")
 IO.puts(Macro.to_string(body))
 end
end

defmodule MyModule do
 @on_definition {Hooks, :on_def}

 def hello(arg) when is_binary(arg) or is_list(arg) do
 "Hello" <> to_string(arg)
 end

 def hello(_) do
 :ok
 end
end
@on_load
A hook that will be invoked whenever the module is loaded.
Accepts the function name (as an atom) of a function in the current module.
The function must have an arity of 0 (no arguments). If the function does
not return :ok, the loading of the module will be aborted. Its primary
use case is to load NIFs:
defmodule MyModule do
 @on_load :load_external_code

 def load_external_code do
 :erlang.load_nif(~c"path/to/extension.so_or_dll")
 end
end
The function given to on_load should avoid calling functions from
other modules. This is because, when running a mix release,
on_load runs extremely early, before any application starts running,
and therefore even systems like the Logger and IO are not yet available.
@vsn
Specify the module version. Accepts any valid Elixir value, for example:
defmodule MyModule do
 @vsn "1.0"
end
Struct attributes
	@derive - derives an implementation for the given protocol for the
struct defined in the current module

	@enforce_keys - ensures the given keys are always set when building
the struct defined in the current module

See defstruct/1 for more information on building and using structs.
Typespec attributes
The following attributes are part of typespecs and are also built-in in
Elixir:
	@type - defines a type to be used in @spec
	@typep - defines a private type to be used in @spec
	@opaque - defines an opaque type to be used in @spec
	@spec - provides a specification for a function
	@callback - provides a specification for a behaviour callback (and generates
a behaviour_info/1 function in the module, see below)
	@macrocallback - provides a specification for a macro behaviour callback
	@optional_callbacks - specifies which behaviour callbacks and macro
behaviour callbacks are optional
	@impl - declares an implementation of a callback function or macro

For detailed documentation, see the typespec documentation.
Custom attributes
In addition to the built-in attributes outlined above, custom attributes may
also be added. Custom attributes are expressed using the @/1 operator followed
by a valid variable name. The value given to the custom attribute must be a valid
Elixir value:
defmodule MyModule do
 @custom_attr [some: "stuff"]
end
For more advanced options available when defining custom attributes, see
register_attribute/3.
Compile callbacks
There are three compilation callbacks, invoked in this order:
@before_compile, @after_compile, and @after_verify.
They are described next.
@before_compile
A hook that will be invoked before the module is compiled. This is
often used to change how the current module is being compiled.
Accepts a module or a {module, function_or_macro_name} tuple. The
function/macro must take one argument: the module environment. If
it's a macro, its returned value will be injected at the end of the
module definition before the compilation starts.
When just a module is provided, the function/macro is assumed to be
__before_compile__/1.
Callbacks will run in the order they are registered. Any overridable
definition will be made concrete before the first callback runs.
A definition may be made overridable again in another before compile
callback and it will be made concrete one last time after all callbacks
run.
Note: the callback function/macro must be placed in a separate module
(because when the callback is invoked, the current module does not yet exist).
Example
defmodule A do
 defmacro __before_compile__(_env) do
 quote do
 def hello, do: "world"
 end
 end
end

defmodule B do
 @before_compile A
end

B.hello()
#=> "world"
@after_compile
A hook that will be invoked with the bytecode of the current module.
Although the module has already been compiled, its bytecode may not have
been loaded to memory nor written to disk. For those reasons, prefer to
use @after_verify callbacks or use Code.ensure_compiled!/1 to wait
until the module is fully available for introspection/invocation.
Accepts a module or a {module, function_name} tuple. The function
must take two arguments: the module environment and its bytecode.
When just a module is provided, the function is assumed to be
__after_compile__/2.
Callbacks will run in the order they are registered.
Module functions expecting not yet compiled modules (such as definitions_in/1)
are still available at the time @after_compile is invoked.
Example
defmodule MyModule do
 @after_compile __MODULE__

 def __after_compile__(env, _bytecode) do
 IO.inspect(env)
 end
end
@after_verify
A hook that will be invoked right after the current module is verified for
undefined functions, deprecations, etc. A module is always verified after
it is compiled. In Mix projects, a module is also verified when any of its
runtime dependencies change. Therefore this is useful to perform verification
of the current module while avoiding compile-time dependencies. Given the
callback is invoked under different scenarios, Elixir provides no guarantees
of when in the compilation cycle nor in which process the callback runs.
Furthermore, after verification callbacks are not expected to raise.
Given they run after the code is compiled, artifacts have already been
written to disk, and therefore raising does not effectively halt compilation
and may leave unused artifacts on disk. If you must raise, use @after_compile
or other callback. Given modules have already been compiled, functions in
this module, such as get_attribute/2, which expect modules to not have been
yet compiled, do not work on @after_verify callback.
Accepts a module or a {module, function_name} tuple. The function
must take one argument: the module name. When just a module is provided,
the function is assumed to be __after_verify__/1.
Callbacks will run in the order they are registered.
Example
defmodule MyModule do
 @after_verify __MODULE__

 def __after_verify__(module) do
 IO.inspect(module)
 :ok
 end
end
Compile options
The @compile attribute accepts different options that are used by both
Elixir and Erlang compilers. Some of the common use cases are documented
below:
	@compile :debug_info - includes :debug_info regardless of the
corresponding setting in Code.get_compiler_option/1

	@compile {:debug_info, false} - disables :debug_info regardless
of the corresponding setting in Code.get_compiler_option/1. Note
disabling :debug_info is not recommended as it removes the ability
of the Elixir compiler and other tools to static analyse the code.
If you want to remove the :debug_info while deploying, tools like
mix release already do such by default.

	@compile {:inline, some_fun: 2, other_fun: 3} - inlines the given
name/arity pairs. Inlining is applied locally, calls from another
module are not affected by this option

	@compile {:autoload, true} - configures if modules are automatically
loaded after definition. It defaults to false when compiling modules
to .beam files in disk (as the modules are then lazily loaded from
disk). If modules are not compiled to disk, then they are always loaded,
regardless of this flag

	@compile {:no_warn_undefined, Mod} or
@compile {:no_warn_undefined, {Mod, fun, arity}} - does not warn if
the given module or the given Mod.fun/arity are not defined

Generated functions
Sometimes the compiler will generate public functions within modules. These
are documented below.
behaviour_info/1
This function is generated for modules that define a behaviour, that is,
that have one or more @callback definitions. The signature for this function,
expressed as a spec, is:
@spec behaviour_info(:callbacks) :: [function_info]
 when function_info: {function_name :: atom(), arity :: non_neg_integer()}

@spec behaviour_info(:optional_callbacks) :: [function_info]
 when function_info: {function_name :: atom(), arity :: non_neg_integer()}
behaviour_info(:callbacks) includes optional callbacks.
For example:
iex> Enum.sort(GenServer.behaviour_info(:callbacks))
[
 code_change: 3,
 format_status: 1,
 format_status: 2,
 handle_call: 3,
 handle_cast: 2,
 handle_continue: 2,
 handle_info: 2,
 init: 1,
 terminate: 2
]
module_info/0
This function is generated for all modules. It returns all the attributes
returned by module_info/1 (see below), but as a single keyword list. See also the
Erlang documentation.
module_info/1
This function is generated for all modules and returns
information about the module. The signature for this function,
expressed as a spec, is:
@spec module_info(:module) :: module() # Returns the module itself
@spec module_info(:attributes) :: keyword()
@spec module_info(:compile) :: keyword()
@spec module_info(:md5) :: binary()
@spec module_info(:nifs) :: module()
@spec module_info(:exports) :: [function_info]
 when function_info: {function_name :: atom(), arity :: non_neg_integer()}
@spec module_info(:functions) :: [function_info]
 when function_info: {function_name :: atom(), arity :: non_neg_integer()}
For example:
iex> URI.module_info(:module)
URI
iex> {:decode_www_form, 1} in URI.module_info(:exports)
true
For more information about module_info/1, also check out the Erlang
documentation.
__info__/1
This function is generated for all modules. It's similar to module_info/1 but
includes some additional Elixir-specific information, such as struct and macro
information. For documentation, see Module.__info__/1.

 Summary

 Types

 create_opts()

 def_kind()

 definition()

 get_definition_opts()

 Callbacks

 __info__(atom)

 Provides runtime information about functions, macros, and other information
defined by the module.

 Functions

 attributes_in(module)

 Returns all module attributes names defined in module.

 concat(list)

 Concatenates a list of aliases and returns a new alias.

 concat(left, right)

 Concatenates two aliases and returns a new alias.

 create(module, quoted, opts)

 Creates a module with the given name and defined by
the given quoted expressions.

 defines?(module, tuple)

 Checks if the module defines the given function or macro.

 defines?(module, tuple, def_kind)

 Checks if the module defines a function or macro of the
given kind.

 defines_type?(module, definition)

 Checks if the current module defines the given type (private, opaque or not).

 definitions_in(module)

 Returns all functions and macros defined in module.

 definitions_in(module, kind)

 Returns all functions defined in module, according
to its kind.

 delete_attribute(module, key)

 Deletes the entry (or entries) for the given module attribute.

 delete_definition(module, arg)

 Deletes a definition from a module.

 eval_quoted(module_or_env, quoted, binding \\ [], opts \\ [])

 deprecated

 get_attribute(module, key, default \\ nil)

 Gets the given attribute from a module.

 get_definition(module, arg, options \\ [])

 Returns the definition for the given name-arity pair.

 get_last_attribute(module, key, default \\ nil)

 Gets the last set value of a given attribute from a module.

 has_attribute?(module, key)

 Checks if the given attribute has been defined.

 make_overridable(module, tuples)

 Makes the given functions in module overridable.

 open?(module)

 Checks if a module is open.

 overridable?(module, tuple)

 Returns true if tuple in module was marked as overridable
at some point.

 overridables_in(module)

 Returns all overridable definitions in module.

 put_attribute(module, key, value)

 Puts a module attribute with key and value in the given module.

 register_attribute(module, attribute, options)

 Registers an attribute.

 reserved_attributes()

 Returns information about module attributes used by Elixir.

 safe_concat(list)

 Concatenates a list of aliases and returns a new alias only if the alias
was already referenced.

 safe_concat(left, right)

 Concatenates two aliases and returns a new alias only if the alias was
already referenced.

 spec_to_callback(module, definition)

 Copies the given spec as a callback.

 split(module)

 Splits the given module name into binary parts.

 Types

 create_opts()

 @type create_opts() :: [file: binary(), line: pos_integer(), generated: boolean()]

 def_kind()

 @type def_kind() :: :def | :defp | :defmacro | :defmacrop

 definition()

 @type definition() :: {atom(), arity()}

 get_definition_opts()

 @type get_definition_opts() :: [{:skip_clauses, boolean()}]

 Callbacks

 __info__(atom)

 @callback __info__(:attributes) :: keyword()

 @callback __info__(:compile) :: [term()]

 @callback __info__(:functions) :: keyword()

 @callback __info__(:macros) :: keyword()

 @callback __info__(:md5) :: binary()

 @callback __info__(:module) :: module()

 @callback __info__(:struct) ::
 [
 %{
 :field => atom(),
 optional(:required) => boolean(),
 optional(:default) => term()
 }
]
 | nil

Provides runtime information about functions, macros, and other information
defined by the module.
Each module gets an __info__/1 function when it's compiled. The function
takes one of the following items:
	:attributes - a keyword list with all persisted attributes

	:compile - a list with compiler metadata

	:functions - a keyword list of public functions and their arities

	:macros - a keyword list of public macros and their arities

	:md5 - the MD5 of the module

	:module - the module atom name

	:struct - (since v1.14.0) if the module defines a struct and if so each field in order.
See Macro.struct_info!/2 for more information

 Functions

 attributes_in(module)

 (since 1.13.0)

 @spec attributes_in(module()) :: [atom()]

Returns all module attributes names defined in module.
This function can only be used on modules that have not yet been compiled.
Examples
defmodule Example do
 @foo 1
 Module.register_attribute(__MODULE__, :bar, accumulate: true)

 :foo in Module.attributes_in(__MODULE__)
 #=> true

 :bar in Module.attributes_in(__MODULE__)
 #=> true
end

 concat(list)

 @spec concat([binary() | atom()]) :: atom()

Concatenates a list of aliases and returns a new alias.
It handles binaries and atoms.
Untracked compile-time dependencies {. :warning}
Use this function with care, as dynamically defining
module names at compilation time may lead to
untracked compile-time dependencies.

Examples
iex> Module.concat([Foo, Bar])
Foo.Bar

iex> Module.concat([Foo, "Bar"])
Foo.Bar

 concat(left, right)

 @spec concat(binary() | atom(), binary() | atom()) :: atom()

Concatenates two aliases and returns a new alias.
It handles binaries and atoms. If one of the aliases
is nil, it is discarded.
Untracked compile-time dependencies {. :warning}
Use this function with care, as dynamically defining
module names at compilation time may lead to
untracked compile-time dependencies.

Examples
iex> Module.concat(Foo, Bar)
Foo.Bar

iex> Module.concat(Foo, "Bar")
Foo.Bar

iex> Module.concat(Foo, nil)
Foo

 create(module, quoted, opts)

 @spec create(module(), Macro.t(), Macro.Env.t() | create_opts()) ::
 {:module, module(), binary(), term()}

Creates a module with the given name and defined by
the given quoted expressions.
The line where the module is defined and its file must
be passed as options. See Code.env_for_eval/1 for a complete
list of options.
It returns a tuple of shape {:module, module, binary, term}
where module is the module name, binary is the module
bytecode and term is the result of the last expression in
quoted.
Similar to Kernel.defmodule/2, the binary will only be
written to disk as a .beam file if Module.create/3 is
invoked in a file that is currently being compiled.
Examples
contents =
 quote do
 def world, do: true
 end

Module.create(Hello, contents, Macro.Env.location(__ENV__))

Hello.world()
#=> true
Differences from defmodule
Module.create/3 works similarly to Kernel.defmodule/2
and return the same results. While one could also use
Kernel.defmodule/2 to define modules dynamically, this function
is preferred when the module body is given by a quoted
expression.
Another important distinction is that Module.create/3
allows you to control the environment variables used
when defining the module, while Kernel.defmodule/2
automatically uses the environment it is invoked at.

 defines?(module, tuple)

 @spec defines?(module(), definition()) :: boolean()

Checks if the module defines the given function or macro.
Use defines?/3 to assert for a specific type.
This function can only be used on modules that have not yet been compiled.
Use Kernel.function_exported?/3 and Kernel.macro_exported?/3 to check for
public functions and macros respectively in compiled modules.
Note that defines? returns false for functions and macros that have
been defined but then marked as overridable and no other implementation
has been provided. You can check the overridable status by calling
overridable?/2.
Examples
defmodule Example do
 Module.defines?(__MODULE__, {:version, 0}) #=> false
 def version, do: 1
 Module.defines?(__MODULE__, {:version, 0}) #=> true
end

 defines?(module, tuple, def_kind)

 @spec defines?(module(), definition(), def_kind()) :: boolean()

Checks if the module defines a function or macro of the
given kind.
kind can be any of :def, :defp, :defmacro, or :defmacrop.
This function can only be used on modules that have not yet been compiled.
Use Kernel.function_exported?/3 and Kernel.macro_exported?/3 to check for
public functions and macros respectively in compiled modules.
Examples
defmodule Example do
 Module.defines?(__MODULE__, {:version, 0}, :def) #=> false
 def version, do: 1
 Module.defines?(__MODULE__, {:version, 0}, :def) #=> true
end

 defines_type?(module, definition)

 (since 1.7.0)

 @spec defines_type?(module(), definition()) :: boolean()

Checks if the current module defines the given type (private, opaque or not).
This function is only available for modules being compiled.

 definitions_in(module)

 @spec definitions_in(module()) :: [definition()]

Returns all functions and macros defined in module.
It returns a list with all defined functions and macros, public and private,
in the shape of [{name, arity}, ...].
This function can only be used on modules that have not yet been compiled.
Use the Module.__info__/1 callback to get the public functions and macros in
compiled modules.
Examples
defmodule Example do
 def version, do: 1
 defmacrop test(arg), do: arg
 Module.definitions_in(__MODULE__) #=> [{:version, 0}, {:test, 1}]
end

 definitions_in(module, kind)

 @spec definitions_in(module(), def_kind()) :: [definition()]

Returns all functions defined in module, according
to its kind.
This function can only be used on modules that have not yet been compiled.
Use the Module.__info__/1 callback to get the public functions and macros in
compiled modules.
Examples
defmodule Example do
 def version, do: 1
 Module.definitions_in(__MODULE__, :def) #=> [{:version, 0}]
 Module.definitions_in(__MODULE__, :defp) #=> []
end

 delete_attribute(module, key)

 @spec delete_attribute(module(), atom()) :: term()

Deletes the entry (or entries) for the given module attribute.
It returns the deleted attribute value. If the attribute has not
been set nor configured to accumulate, it returns nil.
If the attribute is set to accumulate, then this function always
returns a list. Deleting the attribute removes existing entries
but the attribute will still accumulate.
Examples
defmodule MyModule do
 Module.put_attribute(__MODULE__, :custom_threshold_for_lib, 10)
 Module.delete_attribute(__MODULE__, :custom_threshold_for_lib)
end

 delete_definition(module, arg)

 (since 1.12.0)

 @spec delete_definition(module(), definition()) :: boolean()

Deletes a definition from a module.
It returns true if the definition exists and it was removed,
otherwise it returns false.

 eval_quoted(module_or_env, quoted, binding \\ [], opts \\ [])

 This function is deprecated. Use Code.eval_quoted/3 instead.

 get_attribute(module, key, default \\ nil)

 @spec get_attribute(module(), atom(), term()) :: term()

Gets the given attribute from a module.
If the attribute was marked with accumulate with
Module.register_attribute/3, a list is always returned.
nil is returned if the attribute has not been marked with
accumulate and has not been set to any value.
The @ macro compiles to a call to this function. For example,
the following code:
@foo
Expands to something akin to:
Module.get_attribute(__MODULE__, :foo)
This function can only be used on modules that have not yet been compiled.
Use the Module.__info__/1 callback to get all persisted attributes, or
Code.fetch_docs/1 to retrieve all documentation related attributes in
compiled modules.
Examples
defmodule Foo do
 Module.put_attribute(__MODULE__, :value, 1)
 Module.get_attribute(__MODULE__, :value) #=> 1

 Module.get_attribute(__MODULE__, :value, :default) #=> 1
 Module.get_attribute(__MODULE__, :not_found, :default) #=> :default

 Module.register_attribute(__MODULE__, :value, accumulate: true)
 Module.put_attribute(__MODULE__, :value, 1)
 Module.get_attribute(__MODULE__, :value) #=> [1]
end

 get_definition(module, arg, options \\ [])

 (since 1.12.0)

 @spec get_definition(module(), definition(), get_definition_opts()) ::
 {:v1, def_kind(), meta :: keyword(),
 [
 {meta :: keyword(), arguments :: [Macro.t()], guards :: [Macro.t()],
 Macro.t()}
]}
 | nil

Returns the definition for the given name-arity pair.
It returns a tuple with the version, the kind,
the definition metadata, and a list with each clause.
Each clause is a four-element tuple with metadata,
the arguments, the guards, and the clause AST.
The clauses are returned in the Elixir AST but a subset
that has already been expanded and normalized. This makes
it useful for analyzing code but it cannot be reinjected
into the module as it will have lost some of its original
context. Given this AST representation is mostly internal,
it is versioned and it may change at any time. Therefore,
use this API with caution.
Options
	:skip_clauses (since v1.14.0) - returns [] instead
of returning the clauses. This is useful when there is
only an interest in fetching the kind and the metadata

 get_last_attribute(module, key, default \\ nil)

 (since 1.15.0)

 @spec get_last_attribute(module(), atom(), term()) :: term()

Gets the last set value of a given attribute from a module.
If the attribute was marked with accumulate with
Module.register_attribute/3, the previous value to have been set will be
returned. If the attribute does not accumulate, this call is the same as
calling Module.get_attribute/3.
This function can only be used on modules that have not yet been compiled.
Use the Module.__info__/1 callback to get all persisted attributes, or
Code.fetch_docs/1 to retrieve all documentation related attributes in
compiled modules.
Examples
defmodule Foo do
 Module.put_attribute(__MODULE__, :value, 1)
 Module.get_last_attribute(__MODULE__, :value) #=> 1

 Module.get_last_attribute(__MODULE__, :not_found, :default) #=> :default

 Module.register_attribute(__MODULE__, :acc, accumulate: true)
 Module.put_attribute(__MODULE__, :acc, 1)
 Module.get_last_attribute(__MODULE__, :acc) #=> 1
 Module.put_attribute(__MODULE__, :acc, 2)
 Module.get_last_attribute(__MODULE__, :acc) #=> 2
end

 has_attribute?(module, key)

 (since 1.10.0)

 @spec has_attribute?(module(), atom()) :: boolean()

Checks if the given attribute has been defined.
An attribute is defined if it has been registered with register_attribute/3
or assigned a value. If an attribute has been deleted with delete_attribute/2
it is no longer considered defined.
This function can only be used on modules that have not yet been compiled.
Examples
defmodule MyModule do
 @value 1
 Module.register_attribute(__MODULE__, :other_value)
 Module.put_attribute(__MODULE__, :another_value, 1)

 Module.has_attribute?(__MODULE__, :value) #=> true
 Module.has_attribute?(__MODULE__, :other_value) #=> true
 Module.has_attribute?(__MODULE__, :another_value) #=> true

 Module.has_attribute?(__MODULE__, :undefined) #=> false

 Module.delete_attribute(__MODULE__, :value)
 Module.has_attribute?(__MODULE__, :value) #=> false
end

 make_overridable(module, tuples)

 @spec make_overridable(module(), [definition()]) :: :ok

 @spec make_overridable(module(), module()) :: :ok

Makes the given functions in module overridable.
An overridable function is lazily defined, allowing a
developer to customize it. See Kernel.defoverridable/1 for
more information and documentation.
Once a function or a macro is marked as overridable, it will
no longer be listed under definitions_in/1 or return true
when given to defines?/2 until another implementation is
given.

 open?(module)

 @spec open?(module()) :: boolean()

Checks if a module is open.
A module is "open" if it is currently being defined and its attributes and
functions can be modified.

 overridable?(module, tuple)

 @spec overridable?(module(), definition()) :: boolean()

Returns true if tuple in module was marked as overridable
at some point.
Note overridable?/2 returns true even if the definition was
already overridden. You can use defines?/2 to see if a definition
exists or one is pending.

 overridables_in(module)

 (since 1.13.0)

 @spec overridables_in(module()) :: [atom()]

Returns all overridable definitions in module.
Note a definition is included even if it was was already overridden.
You can use defines?/2 to see if a definition exists or one is pending.
This function can only be used on modules that have not yet been compiled.
Examples
defmodule Example do
 def foo, do: 1
 def bar, do: 2

 defoverridable foo: 0, bar: 0
 def foo, do: 3

 [bar: 0, foo: 0] = Module.overridables_in(__MODULE__) |> Enum.sort()
end

 put_attribute(module, key, value)

 @spec put_attribute(module(), atom(), term()) :: :ok

Puts a module attribute with key and value in the given module.
Examples
defmodule MyModule do
 Module.put_attribute(__MODULE__, :custom_threshold_for_lib, 10)
end

 register_attribute(module, attribute, options)

 @spec register_attribute(module(), atom(), accumulate: boolean(), persist: boolean()) ::
 :ok

Registers an attribute.
By registering an attribute, a developer is able to customize
how Elixir will store and accumulate the attribute values.
Options
When registering an attribute, two options can be given:
	:accumulate - several calls to the same attribute will
accumulate instead of overriding the previous one. New attributes
are always added to the top of the accumulated list.

	:persist - the attribute will be persisted in the Erlang
Abstract Format. Useful when interfacing with Erlang libraries.

By default, both options are false. Once an attribute has been
set to accumulate or persist, the behaviour cannot be reverted.
Examples
defmodule MyModule do
 Module.register_attribute(__MODULE__, :custom_threshold_for_lib, accumulate: true)

 @custom_threshold_for_lib 10
 @custom_threshold_for_lib 20
 @custom_threshold_for_lib #=> [20, 10]
end

 reserved_attributes()

 (since 1.12.0)

 @spec reserved_attributes() :: map()

Returns information about module attributes used by Elixir.
See the "Module attributes" section in the module documentation for more
information on each attribute.
Examples
iex> map = Module.reserved_attributes()
iex> Map.has_key?(map, :moduledoc)
true
iex> Map.has_key?(map, :doc)
true

 safe_concat(list)

 @spec safe_concat([binary() | atom()]) :: atom()

Concatenates a list of aliases and returns a new alias only if the alias
was already referenced.
If the alias was not referenced yet, fails with ArgumentError.
It handles binaries and atoms.
Untracked compile-time dependencies {. :warning}
Use this function with care, as dynamically defining
module names at compilation time may lead to
untracked compile-time dependencies.

Examples
iex> Module.safe_concat([List, Chars])
List.Chars

 safe_concat(left, right)

 @spec safe_concat(binary() | atom(), binary() | atom()) :: atom()

Concatenates two aliases and returns a new alias only if the alias was
already referenced.
If the alias was not referenced yet, fails with ArgumentError.
It handles binaries and atoms.
Untracked compile-time dependencies {. :warning}
Use this function with care, as dynamically defining
module names at compilation time may lead to
untracked compile-time dependencies.

Examples
iex> Module.safe_concat(List, Chars)
List.Chars

 spec_to_callback(module, definition)

 (since 1.7.0)

 @spec spec_to_callback(module(), definition()) :: boolean()

Copies the given spec as a callback.
Returns true if there is such a spec and it was copied as a callback.
If the function associated to the spec has documentation defined prior to
invoking this function, the docs are copied too.

 split(module)

 @spec split(module() | String.t()) :: [String.t(), ...]

Splits the given module name into binary parts.
module has to be an Elixir module, as split/1 won't work with Erlang-style
modules (for example, split(:lists) raises an error).
split/1 also supports splitting the string representation of Elixir modules
(that is, the result of calling Atom.to_string/1 with the module name).
Examples
iex> Module.split(Very.Long.Module.Name.And.Even.Longer)
["Very", "Long", "Module", "Name", "And", "Even", "Longer"]
iex> Module.split("Elixir.String.Chars")
["String", "Chars"]

NaiveDateTime

A NaiveDateTime struct (without a time zone) and functions.
The NaiveDateTime struct contains the fields year, month, day, hour,
minute, second, microsecond and calendar. New naive datetimes can be
built with the new/2 and new/8 functions or using the
~N (see sigil_N/2) sigil:
iex> ~N[2000-01-01 23:00:07]
~N[2000-01-01 23:00:07]
The date and time fields in the struct can be accessed directly:
iex> naive = ~N[2000-01-01 23:00:07]
iex> naive.year
2000
iex> naive.second
7
We call them "naive" because this datetime representation does not
have a time zone. This means the datetime may not actually exist in
certain areas in the world even though it is valid.
For example, when daylight saving changes are applied by a region,
the clock typically moves forward or backward by one hour. This means
certain datetimes never occur or may occur more than once. Since
NaiveDateTime is not validated against a time zone, such errors
would go unnoticed.
Developers should avoid creating the NaiveDateTime structs directly
and instead, rely on the functions provided by this module as well
as the ones in third-party calendar libraries.
Comparing naive date times
Comparisons in Elixir using ==/2, >/2, </2 and similar are structural
and based on the NaiveDateTime struct fields. For proper comparison
between naive datetimes, use the compare/2, after?/2 and before?/2 functions.
The existence of the compare/2 function in this module also allows
using Enum.min/2 and Enum.max/2 functions to get the minimum and
maximum naive datetime of an Enum. For example:
iex> Enum.min([~N[2020-01-01 23:00:07], ~N[2000-01-01 23:00:07]], NaiveDateTime)
~N[2000-01-01 23:00:07]
Using epochs
The add/3 and diff/3 functions can be used for computing date
times or retrieving the number of seconds between instants.
For example, if there is an interest in computing the number of
seconds from the Unix epoch (1970-01-01 00:00:00):
iex> NaiveDateTime.diff(~N[2010-04-17 14:00:00], ~N[1970-01-01 00:00:00])
1271512800

iex> NaiveDateTime.add(~N[1970-01-01 00:00:00], 1_271_512_800)
~N[2010-04-17 14:00:00]
Those functions are optimized to deal with common epochs, such
as the Unix Epoch above or the Gregorian Epoch (0000-01-01 00:00:00).

 Summary

 Types

 t()

 Functions

 add(naive_datetime, amount_to_add, unit \\ :second)

 Adds a specified amount of time to a NaiveDateTime.

 after?(naive_datetime1, naive_datetime2)

 Returns true if the first NaiveDateTime is strictly later than the second.

 before?(naive_datetime1, naive_datetime2)

 Returns true if the first NaiveDateTime is strictly earlier than the second.

 beginning_of_day(naive_datetime)

 Calculates a NaiveDateTime that is the first moment for the given NaiveDateTime.

 compare(naive_datetime1, naive_datetime2)

 Compares two NaiveDateTime structs.

 convert(ndt, calendar)

 Converts the given naive_datetime from one calendar to another.

 convert!(naive_datetime, calendar)

 Converts the given naive_datetime from one calendar to another.

 diff(naive_datetime1, naive_datetime2, unit \\ :second)

 Subtracts naive_datetime2 from naive_datetime1.

 end_of_day(naive_datetime)

 Calculates a NaiveDateTime that is the last moment for the given NaiveDateTime.

 from_erl(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts an Erlang datetime tuple to a NaiveDateTime struct.

 from_erl!(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts an Erlang datetime tuple to a NaiveDateTime struct.

 from_gregorian_seconds(seconds, microsecond_precision \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts a number of gregorian seconds to a NaiveDateTime struct.

 from_iso8601(string, calendar \\ Calendar.ISO)

 Parses the extended "Date and time of day" format described by
ISO 8601:2019.

 from_iso8601!(string, calendar \\ Calendar.ISO)

 Parses the extended "Date and time of day" format described by
ISO 8601:2019.

 local_now(calendar \\ Calendar.ISO)

 Returns the "local time" for the machine the Elixir program is running on.

 new(date, time)

 Builds a naive datetime from date and time structs.

 new(year, month, day, hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Builds a new ISO naive datetime.

 new!(date, time)

 Builds a naive datetime from date and time structs.

 new!(year, month, day, hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Builds a new ISO naive datetime.

 shift(naive_datetime, duration)

 Shifts given naive_datetime by duration according to its calendar.

 to_date(map)

 Converts a NaiveDateTime into a Date.

 to_erl(naive_datetime)

 Converts a NaiveDateTime struct to an Erlang datetime tuple.

 to_gregorian_seconds(map)

 Converts a NaiveDateTime struct to a number of gregorian seconds and microseconds.

 to_iso8601(naive_datetime, format \\ :extended)

 Converts the given naive datetime to
ISO 8601:2019.

 to_string(naive_datetime)

 Converts the given naive datetime to a string according to its calendar.

 to_time(map)

 Converts a NaiveDateTime into Time.

 truncate(naive_datetime, precision)

 Returns the given naive datetime with the microsecond field truncated to the
given precision (:microsecond, :millisecond or :second).

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 Returns the current naive datetime in UTC.

 utc_now(time_unit, calendar)

 Returns the current naive datetime in UTC, supporting a specific
calendar and precision.

 Types

 t()

 @type t() :: %NaiveDateTime{
 calendar: Calendar.calendar(),
 day: Calendar.day(),
 hour: Calendar.hour(),
 microsecond: Calendar.microsecond(),
 minute: Calendar.minute(),
 month: Calendar.month(),
 second: Calendar.second(),
 year: Calendar.year()
}

 Functions

 add(naive_datetime, amount_to_add, unit \\ :second)

 (since 1.4.0)

 @spec add(
 Calendar.naive_datetime(),
 integer(),
 :day | :hour | :minute | System.time_unit()
) :: t()

Adds a specified amount of time to a NaiveDateTime.
Prefer shift/2
Prefer shift/2 over add/3, as it offers a more ergonomic API.
add/3 provides a lower-level API which only supports fixed units
such as :hour and :second, but not :month (as the exact length
of a month depends on the current month). add/3 always considers
the unit to be computed according to the Calendar.ISO.
Accepts an amount_to_add in any unit. unit can be :day,
:hour, :minute, :second or any subsecond precision from
System.time_unit/0 for convenience but ultimately they are
all converted to microseconds. Negative values will move backwards
in time and the default precision is :second.
Examples
It uses seconds by default:
adds seconds by default
iex> NaiveDateTime.add(~N[2014-10-02 00:29:10], 2)
~N[2014-10-02 00:29:12]

accepts negative offsets
iex> NaiveDateTime.add(~N[2014-10-02 00:29:10], -2)
~N[2014-10-02 00:29:08]
It can also work with subsecond precisions:
iex> NaiveDateTime.add(~N[2014-10-02 00:29:10], 2_000, :millisecond)
~N[2014-10-02 00:29:12.000]
As well as days/hours/minutes:
iex> NaiveDateTime.add(~N[2015-02-28 00:29:10], 2, :day)
~N[2015-03-02 00:29:10]
iex> NaiveDateTime.add(~N[2015-02-28 00:29:10], 36, :hour)
~N[2015-03-01 12:29:10]
iex> NaiveDateTime.add(~N[2015-02-28 00:29:10], 60, :minute)
~N[2015-02-28 01:29:10]
This operation merges the precision of the naive date time with the given unit:
iex> result = NaiveDateTime.add(~N[2014-10-02 00:29:10], 21, :millisecond)
~N[2014-10-02 00:29:10.021]
iex> result.microsecond
{21000, 3}
Operations on top of gregorian seconds or the Unix epoch are optimized:
from Gregorian seconds
iex> NaiveDateTime.add(~N[0000-01-01 00:00:00], 63_579_428_950)
~N[2014-10-02 00:29:10]
Passing a DateTime automatically converts it to NaiveDateTime,
discarding the time zone information:
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> NaiveDateTime.add(dt, 21, :second)
~N[2000-02-29 23:00:28]

 after?(naive_datetime1, naive_datetime2)

 (since 1.15.0)

 @spec after?(Calendar.naive_datetime(), Calendar.naive_datetime()) :: boolean()

Returns true if the first NaiveDateTime is strictly later than the second.
Examples
iex> NaiveDateTime.after?(~N[2022-02-02 11:00:00], ~N[2021-01-01 11:00:00])
true
iex> NaiveDateTime.after?(~N[2021-01-01 11:00:00], ~N[2021-01-01 11:00:00])
false
iex> NaiveDateTime.after?(~N[2021-01-01 11:00:00], ~N[2022-02-02 11:00:00])
false

 before?(naive_datetime1, naive_datetime2)

 (since 1.15.0)

 @spec before?(Calendar.naive_datetime(), Calendar.naive_datetime()) :: boolean()

Returns true if the first NaiveDateTime is strictly earlier than the second.
Examples
iex> NaiveDateTime.before?(~N[2021-01-01 11:00:00], ~N[2022-02-02 11:00:00])
true
iex> NaiveDateTime.before?(~N[2021-01-01 11:00:00], ~N[2021-01-01 11:00:00])
false
iex> NaiveDateTime.before?(~N[2022-02-02 11:00:00], ~N[2021-01-01 11:00:00])
false

 beginning_of_day(naive_datetime)

 (since 1.15.0)

 @spec beginning_of_day(Calendar.naive_datetime()) :: t()

Calculates a NaiveDateTime that is the first moment for the given NaiveDateTime.
To calculate the beginning of day of a DateTime, call this function, then convert back to a DateTime:
datetime
|> NaiveDateTime.beginning_of_day()
|> DateTime.from_naive(datetime.time_zone)
Note that the beginning of the day may not exist or be ambiguous
in a given timezone, so you must handle those cases accordingly.
Examples
iex> NaiveDateTime.beginning_of_day(~N[2000-01-01 23:00:07.123456])
~N[2000-01-01 00:00:00.000000]

 compare(naive_datetime1, naive_datetime2)

 (since 1.4.0)

 @spec compare(Calendar.naive_datetime(), Calendar.naive_datetime()) :: :lt | :eq | :gt

Compares two NaiveDateTime structs.
Returns :gt if first is later than the second
and :lt for vice versa. If the two NaiveDateTime
are equal :eq is returned.
Examples
iex> NaiveDateTime.compare(~N[2016-04-16 13:30:15], ~N[2016-04-28 16:19:25])
:lt
iex> NaiveDateTime.compare(~N[2016-04-16 13:30:15.1], ~N[2016-04-16 13:30:15.01])
:gt
This function can also be used to compare a DateTime without
the time zone information:
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> NaiveDateTime.compare(dt, ~N[2000-02-29 23:00:07])
:eq
iex> NaiveDateTime.compare(dt, ~N[2000-01-29 23:00:07])
:gt
iex> NaiveDateTime.compare(dt, ~N[2000-03-29 23:00:07])
:lt

 convert(ndt, calendar)

 (since 1.5.0)

 @spec convert(Calendar.naive_datetime(), Calendar.calendar()) ::
 {:ok, t()} | {:error, :incompatible_calendars}

Converts the given naive_datetime from one calendar to another.
If it is not possible to convert unambiguously between the calendars
(see Calendar.compatible_calendars?/2), an {:error, :incompatible_calendars} tuple
is returned.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> NaiveDateTime.convert(~N[2000-01-01 13:30:15], Calendar.Holocene)
{:ok, %NaiveDateTime{calendar: Calendar.Holocene, year: 12000, month: 1, day: 1,
 hour: 13, minute: 30, second: 15, microsecond: {0, 0}}}

 convert!(naive_datetime, calendar)

 (since 1.5.0)

 @spec convert!(Calendar.naive_datetime(), Calendar.calendar()) :: t()

Converts the given naive_datetime from one calendar to another.
If it is not possible to convert unambiguously between the calendars
(see Calendar.compatible_calendars?/2), an ArgumentError is raised.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> NaiveDateTime.convert!(~N[2000-01-01 13:30:15], Calendar.Holocene)
%NaiveDateTime{calendar: Calendar.Holocene, year: 12000, month: 1, day: 1,
 hour: 13, minute: 30, second: 15, microsecond: {0, 0}}

 diff(naive_datetime1, naive_datetime2, unit \\ :second)

 (since 1.4.0)

 @spec diff(
 Calendar.naive_datetime(),
 Calendar.naive_datetime(),
 :day | :hour | :minute | System.time_unit()
) :: integer()

Subtracts naive_datetime2 from naive_datetime1.
The answer can be returned in any :day, :hour, :minute, or any unit
available from System.time_unit/0. The unit is measured according to
Calendar.ISO and defaults to :second.
Fractional results are not supported and are truncated.
Examples
iex> NaiveDateTime.diff(~N[2014-10-02 00:29:12], ~N[2014-10-02 00:29:10])
2
iex> NaiveDateTime.diff(~N[2014-10-02 00:29:12], ~N[2014-10-02 00:29:10], :microsecond)
2_000_000

iex> NaiveDateTime.diff(~N[2014-10-02 00:29:10.042], ~N[2014-10-02 00:29:10.021])
0
iex> NaiveDateTime.diff(~N[2014-10-02 00:29:10.042], ~N[2014-10-02 00:29:10.021], :millisecond)
21

iex> NaiveDateTime.diff(~N[2014-10-02 00:29:10], ~N[2014-10-02 00:29:12])
-2
iex> NaiveDateTime.diff(~N[-0001-10-02 00:29:10], ~N[-0001-10-02 00:29:12])
-2
It can also compute the difference in days, hours, or minutes:
iex> NaiveDateTime.diff(~N[2014-10-10 00:29:10], ~N[2014-10-02 00:29:10], :day)
8
iex> NaiveDateTime.diff(~N[2014-10-02 12:29:10], ~N[2014-10-02 00:29:10], :hour)
12
iex> NaiveDateTime.diff(~N[2014-10-02 00:39:10], ~N[2014-10-02 00:29:10], :minute)
10
But it also rounds incomplete days to zero:
iex> NaiveDateTime.diff(~N[2014-10-10 00:29:09], ~N[2014-10-02 00:29:10], :day)
7

 end_of_day(naive_datetime)

 (since 1.15.0)

 @spec end_of_day(Calendar.naive_datetime()) :: t()

Calculates a NaiveDateTime that is the last moment for the given NaiveDateTime.
To calculate the end of day of a DateTime, call this function, then convert back to a DateTime:
datetime
|> NaiveDateTime.end_of_day()
|> DateTime.from_naive(datetime.time_zone)
Note that the end of the day may not exist or be ambiguous
in a given timezone, so you must handle those cases accordingly.
Examples
iex> NaiveDateTime.end_of_day(~N[2000-01-01 23:00:07.123456])
~N[2000-01-01 23:59:59.999999]

 from_erl(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec from_erl(
 :calendar.datetime(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: {:ok, t()} | {:error, atom()}

Converts an Erlang datetime tuple to a NaiveDateTime struct.
Attempting to convert an invalid ISO calendar date will produce an error tuple.
Examples
iex> NaiveDateTime.from_erl({{2000, 1, 1}, {13, 30, 15}})
{:ok, ~N[2000-01-01 13:30:15]}
iex> NaiveDateTime.from_erl({{2000, 1, 1}, {13, 30, 15}}, 5000)
{:ok, ~N[2000-01-01 13:30:15.005000]}
iex> NaiveDateTime.from_erl({{2000, 1, 1}, {13, 30, 15}}, {5000, 3})
{:ok, ~N[2000-01-01 13:30:15.005]}
iex> NaiveDateTime.from_erl({{2000, 13, 1}, {13, 30, 15}})
{:error, :invalid_date}
iex> NaiveDateTime.from_erl({{2000, 13, 1}, {13, 30, 15}})
{:error, :invalid_date}

 from_erl!(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec from_erl!(
 :calendar.datetime(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: t()

Converts an Erlang datetime tuple to a NaiveDateTime struct.
Raises if the datetime is invalid.
Attempting to convert an invalid ISO calendar date will produce an error tuple.
Examples
iex> NaiveDateTime.from_erl!({{2000, 1, 1}, {13, 30, 15}})
~N[2000-01-01 13:30:15]
iex> NaiveDateTime.from_erl!({{2000, 1, 1}, {13, 30, 15}}, 5000)
~N[2000-01-01 13:30:15.005000]
iex> NaiveDateTime.from_erl!({{2000, 1, 1}, {13, 30, 15}}, {5000, 3})
~N[2000-01-01 13:30:15.005]
iex> NaiveDateTime.from_erl!({{2000, 13, 1}, {13, 30, 15}})
** (ArgumentError) cannot convert {{2000, 13, 1}, {13, 30, 15}} to naive datetime, reason: :invalid_date

 from_gregorian_seconds(seconds, microsecond_precision \\ {0, 0}, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec from_gregorian_seconds(integer(), Calendar.microsecond(), Calendar.calendar()) ::
 t()

Converts a number of gregorian seconds to a NaiveDateTime struct.
Examples
iex> NaiveDateTime.from_gregorian_seconds(1)
~N[0000-01-01 00:00:01]
iex> NaiveDateTime.from_gregorian_seconds(63_755_511_991, {5000, 3})
~N[2020-05-01 00:26:31.005]
iex> NaiveDateTime.from_gregorian_seconds(-1)
~N[-0001-12-31 23:59:59]

 from_iso8601(string, calendar \\ Calendar.ISO)

 @spec from_iso8601(String.t(), Calendar.calendar()) :: {:ok, t()} | {:error, atom()}

Parses the extended "Date and time of day" format described by
ISO 8601:2019.
Time zone offset may be included in the string but they will be
simply discarded as such information is not included in naive date
times.
As specified in the standard, the separator "T" may be omitted if
desired as there is no ambiguity within this function.
Note leap seconds are not supported by the built-in Calendar.ISO.
Examples
iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:07")
{:ok, ~N[2015-01-23 23:50:07]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07")
{:ok, ~N[2015-01-23 23:50:07]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07Z")
{:ok, ~N[2015-01-23 23:50:07]}

iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:07.0")
{:ok, ~N[2015-01-23 23:50:07.0]}
iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:07,0123456")
{:ok, ~N[2015-01-23 23:50:07.012345]}
iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:07.0123456")
{:ok, ~N[2015-01-23 23:50:07.012345]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123Z")
{:ok, ~N[2015-01-23 23:50:07.123]}

iex> NaiveDateTime.from_iso8601("2015-01-23P23:50:07")
{:error, :invalid_format}
iex> NaiveDateTime.from_iso8601("2015:01:23 23-50-07")
{:error, :invalid_format}
iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:07A")
{:error, :invalid_format}
iex> NaiveDateTime.from_iso8601("2015-01-23 23:50:61")
{:error, :invalid_time}
iex> NaiveDateTime.from_iso8601("2015-01-32 23:50:07")
{:error, :invalid_date}

iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123+02:30")
{:ok, ~N[2015-01-23 23:50:07.123]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123+00:00")
{:ok, ~N[2015-01-23 23:50:07.123]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123-02:30")
{:ok, ~N[2015-01-23 23:50:07.123]}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123-00:00")
{:error, :invalid_format}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123-00:60")
{:error, :invalid_format}
iex> NaiveDateTime.from_iso8601("2015-01-23T23:50:07.123-24:00")
{:error, :invalid_format}

 from_iso8601!(string, calendar \\ Calendar.ISO)

 @spec from_iso8601!(String.t(), Calendar.calendar()) :: t()

Parses the extended "Date and time of day" format described by
ISO 8601:2019.
Raises if the format is invalid.
Examples
iex> NaiveDateTime.from_iso8601!("2015-01-23T23:50:07.123Z")
~N[2015-01-23 23:50:07.123]
iex> NaiveDateTime.from_iso8601!("2015-01-23T23:50:07,123Z")
~N[2015-01-23 23:50:07.123]
iex> NaiveDateTime.from_iso8601!("2015-01-23P23:50:07")
** (ArgumentError) cannot parse "2015-01-23P23:50:07" as naive datetime, reason: :invalid_format

 local_now(calendar \\ Calendar.ISO)

 (since 1.10.0)

 @spec local_now(Calendar.calendar()) :: t()

Returns the "local time" for the machine the Elixir program is running on.
WARNING: This function can cause insidious bugs. It depends on the time zone
configuration at run time. This can changed and be set to a time zone that has
daylight saving jumps (spring forward or fall back).
This function can be used to display what the time is right now for the time
zone configuration that the machine happens to have. An example would be a
desktop program displaying a clock to the user. For any other uses it is
probably a bad idea to use this function.
For most cases, use DateTime.now/2 or DateTime.utc_now/1 instead.
Does not include fractional seconds.
Examples
iex> naive_datetime = NaiveDateTime.local_now()
iex> naive_datetime.year >= 2019
true

 new(date, time)

 @spec new(Date.t(), Time.t()) :: {:ok, t()}

Builds a naive datetime from date and time structs.
Examples
iex> NaiveDateTime.new(~D[2010-01-13], ~T[23:00:07.005])
{:ok, ~N[2010-01-13 23:00:07.005]}

 new(year, month, day, hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec new(
 Calendar.year(),
 Calendar.month(),
 Calendar.day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: {:ok, t()} | {:error, atom()}

Builds a new ISO naive datetime.
Expects all values to be integers. Returns {:ok, naive_datetime}
if each entry fits its appropriate range, returns {:error, reason}
otherwise.
Examples
iex> NaiveDateTime.new(2000, 1, 1, 0, 0, 0)
{:ok, ~N[2000-01-01 00:00:00]}
iex> NaiveDateTime.new(2000, 13, 1, 0, 0, 0)
{:error, :invalid_date}
iex> NaiveDateTime.new(2000, 2, 29, 0, 0, 0)
{:ok, ~N[2000-02-29 00:00:00]}
iex> NaiveDateTime.new(2000, 2, 30, 0, 0, 0)
{:error, :invalid_date}
iex> NaiveDateTime.new(2001, 2, 29, 0, 0, 0)
{:error, :invalid_date}

iex> NaiveDateTime.new(2000, 1, 1, 23, 59, 59, {0, 1})
{:ok, ~N[2000-01-01 23:59:59.0]}
iex> NaiveDateTime.new(2000, 1, 1, 23, 59, 59, 999_999)
{:ok, ~N[2000-01-01 23:59:59.999999]}
iex> NaiveDateTime.new(2000, 1, 1, 24, 59, 59, 999_999)
{:error, :invalid_time}
iex> NaiveDateTime.new(2000, 1, 1, 23, 60, 59, 999_999)
{:error, :invalid_time}
iex> NaiveDateTime.new(2000, 1, 1, 23, 59, 60, 999_999)
{:error, :invalid_time}
iex> NaiveDateTime.new(2000, 1, 1, 23, 59, 59, 1_000_000)
{:error, :invalid_time}

iex> NaiveDateTime.new(2000, 1, 1, 23, 59, 59, {0, 1}, Calendar.ISO)
{:ok, ~N[2000-01-01 23:59:59.0]}

 new!(date, time)

 (since 1.11.0)

 @spec new!(Date.t(), Time.t()) :: t()

Builds a naive datetime from date and time structs.
Examples
iex> NaiveDateTime.new!(~D[2010-01-13], ~T[23:00:07.005])
~N[2010-01-13 23:00:07.005]

 new!(year, month, day, hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec new!(
 Calendar.year(),
 Calendar.month(),
 Calendar.day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: t()

Builds a new ISO naive datetime.
Expects all values to be integers. Returns naive_datetime
if each entry fits its appropriate range, raises if
time or date is invalid.
Examples
iex> NaiveDateTime.new!(2000, 1, 1, 0, 0, 0)
~N[2000-01-01 00:00:00]
iex> NaiveDateTime.new!(2000, 2, 29, 0, 0, 0)
~N[2000-02-29 00:00:00]
iex> NaiveDateTime.new!(2000, 1, 1, 23, 59, 59, {0, 1})
~N[2000-01-01 23:59:59.0]
iex> NaiveDateTime.new!(2000, 1, 1, 23, 59, 59, 999_999)
~N[2000-01-01 23:59:59.999999]
iex> NaiveDateTime.new!(2000, 1, 1, 23, 59, 59, {0, 1}, Calendar.ISO)
~N[2000-01-01 23:59:59.0]
iex> NaiveDateTime.new!(2000, 1, 1, 24, 59, 59, 999_999)
** (ArgumentError) cannot build naive datetime, reason: :invalid_time

 shift(naive_datetime, duration)

 (since 1.17.0)

 @spec shift(Calendar.naive_datetime(), Duration.duration()) :: t()

Shifts given naive_datetime by duration according to its calendar.
Allowed units are: :year, :month, :week, :day, :hour, :minute, :second, :microsecond.
When using the default ISO calendar, durations are collapsed and
applied in the order of months, then seconds and microseconds:
	when shifting by 1 year and 2 months the date is actually shifted by 14 months
	weeks, days and smaller units are collapsed into seconds and microseconds

When shifting by month, days are rounded down to the nearest valid date.
Examples
iex> NaiveDateTime.shift(~N[2016-01-31 00:00:00], month: 1)
~N[2016-02-29 00:00:00]
iex> NaiveDateTime.shift(~N[2016-01-31 00:00:00], year: 4, day: 1)
~N[2020-02-01 00:00:00]
iex> NaiveDateTime.shift(~N[2016-01-31 00:00:00], year: -2, day: 1)
~N[2014-02-01 00:00:00]
iex> NaiveDateTime.shift(~N[2016-01-31 00:00:00], second: 45)
~N[2016-01-31 00:00:45]
iex> NaiveDateTime.shift(~N[2016-01-31 00:00:00], microsecond: {100, 6})
~N[2016-01-31 00:00:00.000100]

leap years
iex> NaiveDateTime.shift(~N[2024-02-29 00:00:00], year: 1)
~N[2025-02-28 00:00:00]
iex> NaiveDateTime.shift(~N[2024-02-29 00:00:00], year: 4)
~N[2028-02-29 00:00:00]

rounding down
iex> NaiveDateTime.shift(~N[2015-01-31 00:00:00], month: 1)
~N[2015-02-28 00:00:00]

 to_date(map)

 @spec to_date(Calendar.naive_datetime()) :: Date.t()

Converts a NaiveDateTime into a Date.
Because Date does not hold time information,
data will be lost during the conversion.
Examples
iex> NaiveDateTime.to_date(~N[2002-01-13 23:00:07])
~D[2002-01-13]

 to_erl(naive_datetime)

 @spec to_erl(Calendar.naive_datetime()) :: :calendar.datetime()

Converts a NaiveDateTime struct to an Erlang datetime tuple.
Only supports converting naive datetimes which are in the ISO calendar,
attempting to convert naive datetimes from other calendars will raise.
WARNING: Loss of precision may occur, as Erlang time tuples only store
hour/minute/second.
Examples
iex> NaiveDateTime.to_erl(~N[2000-01-01 13:30:15])
{{2000, 1, 1}, {13, 30, 15}}
This function can also be used to convert a DateTime to an Erlang
datetime tuple without the time zone information:
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> NaiveDateTime.to_erl(dt)
{{2000, 2, 29}, {23, 00, 07}}

 to_gregorian_seconds(map)

 (since 1.11.0)

 @spec to_gregorian_seconds(Calendar.naive_datetime()) ::
 {integer(), non_neg_integer()}

Converts a NaiveDateTime struct to a number of gregorian seconds and microseconds.
Examples
iex> NaiveDateTime.to_gregorian_seconds(~N[0000-01-01 00:00:01])
{1, 0}
iex> NaiveDateTime.to_gregorian_seconds(~N[2020-05-01 00:26:31.005])
{63_755_511_991, 5000}

 to_iso8601(naive_datetime, format \\ :extended)

 @spec to_iso8601(Calendar.naive_datetime(), :basic | :extended) :: String.t()

Converts the given naive datetime to
ISO 8601:2019.
By default, NaiveDateTime.to_iso8601/2 returns naive datetimes formatted in the "extended"
format, for human readability. It also supports the "basic" format through passing the :basic option.
Only supports converting naive datetimes which are in the ISO calendar,
attempting to convert naive datetimes from other calendars will raise.
Examples
iex> NaiveDateTime.to_iso8601(~N[2000-02-28 23:00:13])
"2000-02-28T23:00:13"

iex> NaiveDateTime.to_iso8601(~N[2000-02-28 23:00:13.001])
"2000-02-28T23:00:13.001"

iex> NaiveDateTime.to_iso8601(~N[2000-02-28 23:00:13.001], :basic)
"20000228T230013.001"
This function can also be used to convert a DateTime to ISO 8601 without
the time zone information:
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> NaiveDateTime.to_iso8601(dt)
"2000-02-29T23:00:07"

 to_string(naive_datetime)

 @spec to_string(Calendar.naive_datetime()) :: String.t()

Converts the given naive datetime to a string according to its calendar.
For readability, this function follows the RFC3339 suggestion of removing
the "T" separator between the date and time components.
Examples
iex> NaiveDateTime.to_string(~N[2000-02-28 23:00:13])
"2000-02-28 23:00:13"
iex> NaiveDateTime.to_string(~N[2000-02-28 23:00:13.001])
"2000-02-28 23:00:13.001"
iex> NaiveDateTime.to_string(~N[-0100-12-15 03:20:31])
"-0100-12-15 03:20:31"
This function can also be used to convert a DateTime to a string without
the time zone information:
iex> dt = %DateTime{year: 2000, month: 2, day: 29, zone_abbr: "CET",
...> hour: 23, minute: 0, second: 7, microsecond: {0, 0},
...> utc_offset: 3600, std_offset: 0, time_zone: "Europe/Warsaw"}
iex> NaiveDateTime.to_string(dt)
"2000-02-29 23:00:07"

 to_time(map)

 @spec to_time(Calendar.naive_datetime()) :: Time.t()

Converts a NaiveDateTime into Time.
Because Time does not hold date information,
data will be lost during the conversion.
Examples
iex> NaiveDateTime.to_time(~N[2002-01-13 23:00:07])
~T[23:00:07]

 truncate(naive_datetime, precision)

 (since 1.6.0)

 @spec truncate(t(), :microsecond | :millisecond | :second) :: t()

Returns the given naive datetime with the microsecond field truncated to the
given precision (:microsecond, :millisecond or :second).
The given naive datetime is returned unchanged if it already has lower precision
than the given precision.
Examples
iex> NaiveDateTime.truncate(~N[2017-11-06 00:23:51.123456], :microsecond)
~N[2017-11-06 00:23:51.123456]

iex> NaiveDateTime.truncate(~N[2017-11-06 00:23:51.123456], :millisecond)
~N[2017-11-06 00:23:51.123]

iex> NaiveDateTime.truncate(~N[2017-11-06 00:23:51.123456], :second)
~N[2017-11-06 00:23:51]

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 (since 1.4.0)

 @spec utc_now(Calendar.calendar() | :native | :microsecond | :millisecond | :second) ::
 t()

Returns the current naive datetime in UTC.
Prefer using DateTime.utc_now/0 when possible as, opposite
to NaiveDateTime, it will keep the time zone information.
You can also provide a time unit to automatically truncate
the naive datetime. This is available since v1.15.0.
Examples
iex> naive_datetime = NaiveDateTime.utc_now()
iex> naive_datetime.year >= 2016
true

iex> naive_datetime = NaiveDateTime.utc_now(:second)
iex> naive_datetime.microsecond
{0, 0}

 utc_now(time_unit, calendar)

 (since 1.15.0)

 @spec utc_now(:native | :microsecond | :millisecond | :second, Calendar.calendar()) ::
 t()

Returns the current naive datetime in UTC, supporting a specific
calendar and precision.
Prefer using DateTime.utc_now/2 when possible as, opposite
to NaiveDateTime, it will keep the time zone information.
Examples
iex> naive_datetime = NaiveDateTime.utc_now(:second, Calendar.ISO)
iex> naive_datetime.year >= 2016
true

iex> naive_datetime = NaiveDateTime.utc_now(:second, Calendar.ISO)
iex> naive_datetime.microsecond
{0, 0}

Record

Module to work with, define, and import records.
Records are simply tuples where the first element is an atom:
iex> Record.is_record({User, "john", 27})
true
This module provides conveniences for working with records at
compilation time, where compile-time field names are used to
manipulate the tuples, providing fast operations on top of
the tuples' compact structure.
In Elixir, records are used mostly in two situations:
	to work with short, internal data
	to interface with Erlang records

The macros defrecord/3 and defrecordp/3 can be used to create records
while extract/2 and extract_all/1 can be used to extract records from
Erlang files.
Types
Types can be defined for tuples with the record/2 construct (which is only
available in typespecs), with the record name as an atom and a keyword list
of fields and their types as argument:
defmodule MyModule do
 require Record
 Record.defrecord(:user, name: "john", age: 25)

 @type user :: record(:user, name: String.t(), age: integer)
 # expands to: "@type user :: {:user, String.t(), integer}"
end
Reflection
The record tag and its fields are stored as metadata in the "Docs" chunk
of the record definition macro. You can retrieve the documentation for
a module by calling Code.fetch_docs/1.

 Summary

 Guards

 is_record(data)

 Checks if the given data is a record.

 is_record(data, kind)

 Checks if the given data is a record of kind kind.

 Types

 extract_opts()

 Functions

 defrecord(name, tag \\ nil, kv)

 Defines a set of macros to create, access, and pattern match
on a record.

 defrecordp(name, tag \\ nil, kv)

 Same as defrecord/3 but generates private macros.

 extract(name, opts)

 Extracts record information from an Erlang file.

 extract_all(opts)

 Extracts all records information from an Erlang file.

 Guards

 is_record(data)

 (macro)

Checks if the given data is a record.
This is implemented as a macro so it can be used in guard clauses.
Examples
Record.is_record({User, "john", 27})
#=> true

Record.is_record({})
#=> false

 is_record(data, kind)

 (macro)

Checks if the given data is a record of kind kind.
This is implemented as a macro so it can be used in guard clauses.
Examples
iex> record = {User, "john", 27}
iex> Record.is_record(record, User)
true

 Types

 extract_opts()

 @type extract_opts() :: [
 from: binary(),
 from_lib: binary(),
 includes: [binary()],
 macros: keyword()
]

 Functions

 defrecord(name, tag \\ nil, kv)

 (macro)

Defines a set of macros to create, access, and pattern match
on a record.
The name of the generated macros will be name (which has to be an
atom). tag is also an atom and is used as the "tag" for the record (i.e.,
the first element of the record tuple); by default (if nil), it's the same
as name. kv is a keyword list of name: default_value fields for the
new record.
The following macros are generated:
	name/0 to create a new record with default values for all fields
	name/1 to create a new record with the given fields and values,
to get the zero-based index of the given field in a record or to
convert the given record to a keyword list
	name/2 to update an existing record with the given fields and values
or to access a given field in a given record

All these macros are public macros (as defined by defmacro).
See the "Examples" section for examples on how to use these macros.
Examples
defmodule User do
 require Record
 Record.defrecord(:user, name: "meg", age: "25")
end
In the example above, a set of macros named user but with different
arities will be defined to manipulate the underlying record.
Import the module to make the user macros locally available
import User

To create records
record = user() #=> {:user, "meg", 25}
record = user(age: 26) #=> {:user, "meg", 26}

To get a field from the record
user(record, :name) #=> "meg"

To update the record
user(record, age: 26) #=> {:user, "meg", 26}

To get the zero-based index of the field in record tuple
(index 0 is occupied by the record "tag")
user(:name) #=> 1

Convert a record to a keyword list
user(record) #=> [name: "meg", age: 26]
The generated macros can also be used in order to pattern match on records and
to bind variables during the match:
record = user() #=> {:user, "meg", 25}

user(name: name) = record
name #=> "meg"
By default, Elixir uses the record name as the first element of the tuple (the "tag").
However, a different tag can be specified when defining a record,
as in the following example, in which we use Customer as the second argument of defrecord/3:
defmodule User do
 require Record
 Record.defrecord(:user, Customer, name: nil)
end

require User
User.user() #=> {Customer, nil}
Defining extracted records with anonymous functions in the values
If a record defines an anonymous function in the default values, an
ArgumentError will be raised. This can happen unintentionally when defining
a record after extracting it from an Erlang library that uses anonymous
functions for defaults.
Record.defrecord(:my_rec, Record.extract(...))
** (ArgumentError) invalid value for record field fun_field,
 cannot escape #Function<12.90072148/2 in :erl_eval.expr/5>.
To work around this error, redefine the field with your own &M.f/a function,
like so:
defmodule MyRec do
 require Record
 Record.defrecord(:my_rec, Record.extract(...) |> Keyword.merge(fun_field: &__MODULE__.foo/2))
 def foo(bar, baz), do: IO.inspect({bar, baz})
end

 defrecordp(name, tag \\ nil, kv)

 (macro)

Same as defrecord/3 but generates private macros.

 extract(name, opts)

 @spec extract(name :: atom(), extract_opts()) :: keyword()

Extracts record information from an Erlang file.
Returns a quoted expression containing the fields as a list
of tuples.
name, which is the name of the extracted record, is expected to be an atom
at compile time.
Options
This function requires one of the following options, which are exclusive to each
other (i.e., only one of them can be used in the same call):
	:from - (binary representing a path to a file) path to the Erlang file
that contains the record definition to extract; with this option, this
function uses the same path lookup used by the -include attribute used in
Erlang modules.

	:from_lib - (binary representing a path to a file) path to the Erlang
file that contains the record definition to extract; with this option,
this function uses the same path lookup used by the -include_lib
attribute used in Erlang modules.

It additionally accepts the following optional, non-exclusive options:
	:includes - (a list of directories as binaries) if the record being
extracted depends on relative includes, this option allows developers
to specify the directory where those relative includes exist.

	:macros - (keyword list of macro names and values) if the record
being extracted depends on the values of macros, this option allows
the value of those macros to be set.

These options are expected to be literals (including the binary values) at
compile time.
Examples
iex> Record.extract(:file_info, from_lib: "kernel/include/file.hrl")
[
 size: :undefined,
 type: :undefined,
 access: :undefined,
 atime: :undefined,
 mtime: :undefined,
 ctime: :undefined,
 mode: :undefined,
 links: :undefined,
 major_device: :undefined,
 minor_device: :undefined,
 inode: :undefined,
 uid: :undefined,
 gid: :undefined
]

 extract_all(opts)

 @spec extract_all(extract_opts()) :: [{name :: atom(), keyword()}]

Extracts all records information from an Erlang file.
Returns a keyword list of {record_name, fields} tuples where record_name
is the name of an extracted record and fields is a list of {field, value}
tuples representing the fields for that record.
Options
Accepts the same options as listed for Record.extract/2.

Regex

Provides regular expressions for Elixir.
Regex is based on PCRE (Perl Compatible Regular Expressions) and
built on top of Erlang's :re module. More information can be found
in the :re module documentation.
Regular expressions in Elixir can be created using the sigils
~r (see sigil_r/2):
A simple regular expression that matches foo anywhere in the string
~r/foo/

A regular expression with case insensitive and Unicode options
~r/foo/iu
A Regex is represented internally as the Regex struct. Therefore,
%Regex{} can be used whenever there is a need to match on them.
Keep in mind that all of the structs fields are private. And since
regexes are compiled, there is no guarantee two regular expressions
from the same source are equal, for example:
~r/(?<foo>.)(?<bar>.)/ == ~r/(?<foo>.)(?<bar>.)/
may return true or false depending on your machine, endianness,
available optimizations and others. You can, however, retrieve the source
of a compiled regular expression by accessing the source field, and then
compare those directly:
~r/(?<foo>.)(?<bar>.)/.source == ~r/(?<foo>.)(?<bar>.)/.source
Escapes
Escape sequences are split into two categories.
Non-printing characters
	\a - Alarm, that is, the BEL character (hex 07)
	\e - Escape (hex 1B)
	\f - Form feed (hex 0C)
	\n - Line feed (hex 0A)
	\r - Carriage return (hex 0D)
	\t - Tab (hex 09)
	\xhh - Character with hex code hh
	\x{hhh..} - Character with hex code hhh..

\u and \U are not supported. Other escape sequences, such as \ddd
for octals, are supported but discouraged.
Generic character types
	\d - Any decimal digit
	\D - Any character that is not a decimal digit
	\h - Any horizontal whitespace character
	\H - Any character that is not a horizontal whitespace character
	\s - Any whitespace character
	\S - Any character that is not a whitespace character
	\v - Any vertical whitespace character
	\V - Any character that is not a vertical whitespace character
	\w - Any "word" character
	\W - Any "non-word" character

Modifiers
The modifiers available when creating a Regex are:
	:unicode (u) - enables Unicode specific patterns like \p and causes
character classes like \w, \W, \s, and the like to also match on Unicode
(see examples below in "Character classes"). It expects valid Unicode
strings to be given on match

	:caseless (i) - adds case insensitivity

	:dotall (s) - causes dot to match newlines and also sets newline to
(*ANYCRLF).
The new line setting, as described in the :re documentation,
can be overridden by starting the regular expression pattern with:
	(*CR) - carriage return
	(*LF) - line feed
	(*CRLF) - carriage return, followed by line feed
	(*ANYCRLF) - any of the three above
	(*ANY) - all Unicode newline sequences
	Starting from Erlang/OTP 28, (*NUL) - the NUL character (binary zero)

	:multiline (m) - causes ^ and $ to mark the beginning and end of
each line; use \A and \z to match the end or beginning of the string

	:extended (x) - whitespace characters are ignored except when escaped
or within [..], and allow # to delimit comments

	:firstline (f) - forces the unanchored pattern to match before or at the
first newline, though the matched text may continue over the newline

	:ungreedy (U) - inverts the "greediness" of the regexp
(the previous r option is deprecated in favor of U)

	:export (E) (since Elixir 1.19.3) - uses an exported pattern
which can be shared across nodes or passed through config, at the cost of a runtime
overhead to re-import it every time it is executed.
This modifier only has an effect starting on Erlang/OTP 28, and it is ignored
on older versions (i.e. ~r/foo/E == ~r/foo/). This is because patterns cannot
and do not need to be exported in order to be shared in these versions.

Captures
Many functions in this module handle what to capture in a regex
match via the :capture option. The supported values are:
	:all - all captured subpatterns including the complete matching string
(this is the default)

	:first - only the first captured subpattern, which is always the
complete matching part of the string; all explicitly captured subpatterns
are discarded

	:all_but_first - all but the first matching subpattern, i.e. all
explicitly captured subpatterns, but not the complete matching part of
the string

	:none - does not return matching subpatterns at all

	:all_names - captures all named subpattern matches in the Regex as a list
ordered alphabetically by the names of the subpatterns

	list(binary | atom) - a list of named captures to capture

Character classes
Regex supports several built in named character classes. These are used by
enclosing the class name in [: :] inside a group. For example:
iex> String.match?("123", ~r/^[[:alnum:]]+$/)
true
iex> String.match?("123 456", ~r/^[[:alnum:][:blank:]]+$/)
true
The supported class names are:
	alnum - Letters and digits
	alpha - Letters
	blank - Space or tab only
	cntrl - Control characters
	digit - Decimal digits (same as \d)
	graph - Printing characters, excluding space
	lower - Lowercase letters
	print - Printing characters, including space
	punct - Printing characters, excluding letters, digits, and space
	space - Whitespace (the same as \s from PCRE 8.34)
	upper - Uppercase letters
	word - "Word" characters (same as \w)
	xdigit - Hexadecimal digits

There is another character class, ascii, that erroneously matches
Latin-1 characters instead of the 0-127 range specified by POSIX. This
cannot be fixed without altering the behavior of other classes, so we
recommend matching the range with [\\0-\x7f] instead.
Note the behavior of those classes may change according to the Unicode
and other modifiers:
iex> String.match?("josé", ~r/^[[:lower:]]+$/)
false
iex> String.match?("josé", ~r/^[[:lower:]]+$/u)
true
iex> Regex.replace(~r/\s/, "Unicode\u00A0spaces", "-")
"Unicode spaces"
iex> Regex.replace(~r/\s/u, "Unicode\u00A0spaces", "-")
"Unicode-spaces"

 Summary

 Types

 capture_opts()

 Options for regex functions that capture matches.

 named_captures_opts()

 split_opts()

 Options for split/3.

 t()

 Functions

 compile(source, opts \\ "")

 Compiles the regular expression.

 compile!(source, options \\ "")

 Compiles the regular expression and raises Regex.CompileError in case of errors.

 escape(string)

 Escapes a string to be literally matched in a regex.

 import(regex)

 Imports a regex that has been exported, otherwise returns the regex unchanged.

 match?(regex, string)

 Returns a boolean indicating whether there was a match or not.

 named_captures(regex, string, options \\ [])

 Returns the given captures as a map or nil if no captures are found.

 names(regex)

 Returns a list of names in the regex.

 opts(regex)

 Returns the regex options.

 re_pattern(regex)

 Returns the underlying re_pattern in the regular expression.

 recompile(regex)

 deprecated

 Recompiles the existing regular expression if necessary.

 recompile!(regex)

 deprecated

 Recompiles the existing regular expression and raises Regex.CompileError in case of errors.

 replace(regex, string, replacement, options \\ [])

 Receives a regex, a binary and a replacement, returns a new
binary where all matches are replaced by the replacement.

 run(regex, string, options \\ [])

 Runs the regular expression against the given string until the first match.
It returns a list with all captures or nil if no match occurred.

 scan(regex, string, options \\ [])

 Same as run/3 but returns all non-overlapping matches of the regular expression.

 source(regex)

 Returns the regex source as a binary.

 split(regex, string, options \\ [])

 Splits the given target based on the given pattern and in the given number of
parts.

 to_embed(regex, embed_opts \\ [])

 Returns the pattern as an embeddable string.

 version()

 deprecated

 Returns the version of the underlying Regex engine.

 Types

 capture_opts()

 @type capture_opts() :: [
 return: :binary | :index,
 capture:
 :all | :first | :all_but_first | :none | :all_names | [binary() | atom()],
 offset: non_neg_integer()
]

Options for regex functions that capture matches.

 named_captures_opts()

 @type named_captures_opts() :: [return: :binary | :index, offset: non_neg_integer()]

 split_opts()

 @type split_opts() :: [
 parts: pos_integer() | :infinity,
 trim: boolean(),
 on:
 :first | :all | :all_but_first | :none | :all_names | [atom() | integer()],
 include_captures: boolean()
]

Options for split/3.

 t()

 @type t() :: %Regex{opts: [term()], re_pattern: term(), source: binary()}

 Functions

 compile(source, opts \\ "")

 @spec compile(binary(), binary() | [term()]) :: {:ok, t()} | {:error, term()}

Compiles the regular expression.
The given options can either be a binary with the characters
representing the same regex options given to the
~r (see sigil_r/2) sigil, or a list of options, as
expected by the Erlang's :re module.
It returns {:ok, regex} in case of success,
{:error, reason} otherwise.
Examples
Regex.compile("foo")
#=> {:ok, ~r/foo/}

Regex.compile("foo", "i")
#=> {:ok, ~r/foo/i}

Regex.compile("*foo")
#=> {:error, {~c"quantifier does not follow a repeatable item", 0}}

 compile!(source, options \\ "")

 @spec compile!(binary(), binary() | [term()]) :: t()

Compiles the regular expression and raises Regex.CompileError in case of errors.

 escape(string)

 @spec escape(String.t()) :: String.t()

Escapes a string to be literally matched in a regex.
Examples
iex> Regex.escape(".")
"\\."

iex> Regex.escape("\\what if")
"\\\\what\\ if"

 import(regex)

 (since 1.20.0)

 @spec import(t()) :: t()

Imports a regex that has been exported, otherwise returns the regex unchanged.
This means it will lose the ability to be sent across nodes or passed through config,
but will be faster since it won't need to be imported on the fly every time it is executed.
Exported regexes only exist on OTP 28, so this has no effect on older versions.
Examples
Regex.import(~r/foo/E)
~r/foo/

Regex.import(~r/foo/)
~r/foo/

 match?(regex, string)

 @spec match?(t(), String.t()) :: boolean()

Returns a boolean indicating whether there was a match or not.
Examples
iex> Regex.match?(~r/foo/, "foo")
true

iex> Regex.match?(~r/foo/, "bar")
false
Elixir also provides text-based match operator =~/2 and function String.match?/2 as
an alternative to test strings against regular expressions and
strings.

 named_captures(regex, string, options \\ [])

 @spec named_captures(t(), String.t(), named_captures_opts()) :: map() | nil

Returns the given captures as a map or nil if no captures are found.
Options
	:return - when set to :index, returns byte index and match length.
Defaults to :binary.
	:offset - (since v1.12.0) specifies the starting offset to match in the given string.
Defaults to 0.

Examples
iex> Regex.named_captures(~r/c(?<foo>d)/, "abcd")
%{"foo" => "d"}

iex> Regex.named_captures(~r/a(?<foo>b)c(?<bar>d)/, "abcd")
%{"bar" => "d", "foo" => "b"}

iex> Regex.named_captures(~r/a(?<foo>b)c(?<bar>d)/, "efgh")
nil
You can also retrieve indexes from the named captures. This is particularly
useful if you want to know if a named capture matched or not:
iex> Regex.named_captures(~r/a(?<foo>b)c(?<bar>d)?/, "abc", return: :index)
%{"bar" => {-1, 0}, "foo" => {1, 1}}
You can then use binary_part/3 to fetch the relevant part from the given string.

 names(regex)

 @spec names(t()) :: [String.t()]

Returns a list of names in the regex.
Examples
iex> Regex.names(~r/(?<foo>bar)/)
["foo"]

 opts(regex)

 @spec opts(t()) :: [term()]

Returns the regex options.
See the documentation of Regex.compile/2 for more information.
Examples
iex> Regex.opts(~r/foo/m)
[:multiline]

iex> Regex.opts(Regex.compile!("foo", [:caseless]))
[:caseless]

 re_pattern(regex)

 @spec re_pattern(t()) :: term()

Returns the underlying re_pattern in the regular expression.

 recompile(regex)

 (since 1.4.0)

 This function is deprecated. It can be removed and it has no effect.

Recompiles the existing regular expression if necessary.
This checks the version stored in the regular expression
and recompiles the regex in case of version mismatch.

 recompile!(regex)

 (since 1.4.0)

 This function is deprecated. It can be removed and it has no effect.

Recompiles the existing regular expression and raises Regex.CompileError in case of errors.

 replace(regex, string, replacement, options \\ [])

 @spec replace(t(), String.t(), String.t() | (... -> String.t()), [
 {:global, boolean()}
]) :: String.t()

Receives a regex, a binary and a replacement, returns a new
binary where all matches are replaced by the replacement.
The replacement can be either a string or a function that returns a string.
The resulting string is used as a replacement for every match.
When the replacement is a string, it allows specific captures of the match
using brackets at the regex expression and accessing them in the replacement
via \N or \g{N}, where N is the number of the capture. In case \0 is
used, the whole match is inserted. Note that in regexes the backslash needs
to be escaped, hence in practice you'll need to use \\N and \\g{N}.
When the replacement is a function, it allows specific captures too.
The function may have arity N where each argument maps to a capture,
with the first argument being the whole match. If the function expects more
arguments than captures found, the remaining arguments will receive "".
Options
	:global - when false, replaces only the first occurrence
(defaults to true)

Examples
iex> Regex.replace(~r/d/, "abc", "d")
"abc"

iex> Regex.replace(~r/b/, "abc", "d")
"adc"

iex> Regex.replace(~r/b/, "abc", "[\\0]")
"a[b]c"

iex> Regex.replace(~r/a(b|d)c/, "abcadc", "[\\1]")
"[b][d]"

iex> Regex.replace(~r/\.(\d)$/, "500.5", ".\\g{1}0")
"500.50"

iex> Regex.replace(~r/a(b|d)c/, "abcadc", fn _, x -> "[#{x}]" end)
"[b][d]"

iex> Regex.replace(~r/(\w+)@(\w+).(\w+)/, "abc@def.com", fn _full, _c1, _c2, c3 -> "TLD: #{c3}" end)
"TLD: com"

iex> Regex.replace(~r/a/, "abcadc", "A", global: false)
"Abcadc"

 run(regex, string, options \\ [])

 @spec run(t(), binary(), capture_opts()) ::
 nil | [binary()] | [{integer(), integer()}]

Runs the regular expression against the given string until the first match.
It returns a list with all captures or nil if no match occurred.
Options
	:return - when set to :index, returns byte index and match length.
Defaults to :binary.
	:capture - what to capture in the result. See the "Captures" section
to see the possible capture values.
	:offset - (since v1.12.0) specifies the starting offset to match in the given string.
Defaults to 0.

Examples
iex> Regex.run(~r/c(d)/, "abcd")
["cd", "d"]

iex> Regex.run(~r/e/, "abcd")
nil

iex> Regex.run(~r/c(d)/, "abcd", return: :index)
[{2, 2}, {3, 1}]

iex> Regex.run(~r/c(d)/, "abcd", capture: :first)
["cd"]

iex> Regex.run(~r/c(?<foo>d)/, "abcd", capture: ["foo", "bar"])
["d", ""]

 scan(regex, string, options \\ [])

 @spec scan(t(), String.t(), capture_opts()) ::
 [[String.t()]] | [[{integer(), integer()}]]

Same as run/3 but returns all non-overlapping matches of the regular expression.
A list of lists is returned, where each entry in the primary list represents a
match and each entry in the secondary list represents the captured contents.
Options
	:return - when set to :index, returns byte index and match length.
Defaults to :binary.
	:capture - what to capture in the result. See the "Captures" section
to see the possible capture values.
	:offset - (since v1.12.0) specifies the starting offset to match in the given string.
Defaults to 0.

Examples
iex> Regex.scan(~r/c(d|e)/, "abcd abce")
[["cd", "d"], ["ce", "e"]]

iex> Regex.scan(~r/c(?:d|e)/, "abcd abce")
[["cd"], ["ce"]]

iex> Regex.scan(~r/e/, "abcd")
[]

iex> Regex.scan(~r/ab|bc|cd/, "abcd")
[["ab"], ["cd"]]

iex> Regex.scan(~r/ab|bc|cd/, "abbccd")
[["ab"], ["bc"], ["cd"]]

iex> Regex.scan(~r/\p{Sc}/u, "$, £, and €")
[["$"], ["£"], ["€"]]

iex> Regex.scan(~r/=+/, "=ü†ƒ8===", return: :index)
[[{0, 1}], [{9, 3}]]

iex> Regex.scan(~r/c(d|e)/, "abcd abce", capture: :first)
[["cd"], ["ce"]]

 source(regex)

 @spec source(t()) :: String.t()

Returns the regex source as a binary.
Examples
iex> Regex.source(~r/foo/)
"foo"

 split(regex, string, options \\ [])

 @spec split(t(), String.t(), split_opts()) :: [String.t()]

Splits the given target based on the given pattern and in the given number of
parts.
Options
	:parts - when specified, splits the string into the given number of
parts. If not specified, :parts defaults to :infinity, which will
split the string into the maximum number of parts possible based on the
given pattern.

	:trim - when true, removes empty strings ("") from the result.
Defaults to false.

	:on - specifies which captures to split the string on, and in what
order. Defaults to :first which means captures inside the regex do not
affect the splitting process. See the "Captures" section
to see the possible capture values.

	:include_captures - when true, includes in the result the matches of
the regular expression. The matches are not counted towards the maximum
number of parts if combined with the :parts option. Defaults to false.

Examples
iex> Regex.split(~r/-/, "a-b-c")
["a", "b", "c"]

iex> Regex.split(~r/-/, "a-b-c", parts: 2)
["a", "b-c"]

iex> Regex.split(~r/-/, "abc")
["abc"]

iex> Regex.split(~r//, "abc")
["", "a", "b", "c", ""]

iex> Regex.split(~r/a(?<second>b)c/, "abc")
["", ""]

iex> Regex.split(~r/a(?<second>b)c/, "abc", on: [:second])
["a", "c"]

iex> Regex.split(~r/(x)/, "Elixir", include_captures: true)
["Eli", "x", "ir"]

iex> Regex.split(~r/a(?<second>b)c/, "abc", on: [:second], include_captures: true)
["a", "b", "c"]

iex> Regex.split(~r/-/, "-a-b--c", trim: true)
["a", "b", "c"]

 to_embed(regex, embed_opts \\ [])

 (since 1.19.0)

 @spec to_embed(t(), [{:strict, boolean()}]) :: String.t()

Returns the pattern as an embeddable string.
If the pattern was compiled with an option which cannot be represented
as an embeddable modifier in the current version of PCRE and strict is true
(the default) then an ArgumentError exception will be raised.
When the :strict option is false the pattern will be returned as though
any offending options had not be used and the function will not raise any
exceptions.
Embeddable modifiers/options are currently:
	'i' - :caseless
	'm' - :multiline
	's' - :dotall, {:newline, :anycrlf}
	'x' - :extended

Unembeddable modifiers are:
	'f' - :firstline
	'U' - :ungreedy
	'u' - :unicode, :ucp

Any other regex compilation option not listed here is considered unembeddable
and will raise an exception unless the :strict option is false.
Examples
iex> Regex.to_embed(~r/foo/)
"(?-imsx:foo)"

iex> Regex.to_embed(~r/^foo/m)
"(?m-isx:^foo)"

iex> Regex.to_embed(~r/foo # comment/ix)
"(?ix-ms:foo # comment\n)"

iex> Regex.to_embed(~r/foo/iu)
** (ArgumentError) regex compiled with options [:ucp, :unicode] which cannot be represented as an embedded pattern in this version of PCRE

iex> Regex.to_embed(~r/foo/imsxu, strict: false)
"(?imsx:foo\n)"

 version()

 (since 1.4.0)

 This function is deprecated. Use :re.version() instead.

Returns the version of the underlying Regex engine.

String

Strings in Elixir are UTF-8 encoded binaries.
Strings in Elixir are a sequence of Unicode characters,
typically written between double quoted strings, such
as "hello" and "héllò".
In case a string must have a double-quote in itself,
the double quotes must be escaped with a backslash,
for example: "this is a string with \"double quotes\"".
You can concatenate two strings with the <>/2 operator:
iex> "hello" <> " " <> "world"
"hello world"
The functions in this module act according to
The Unicode Standard, Version 17.0.0.
Interpolation
Strings in Elixir also support interpolation. This allows
you to place some value in the middle of a string by using
the #{} syntax:
iex> name = "joe"
iex> "hello #{name}"
"hello joe"
Any Elixir expression is valid inside the interpolation.
If a string is given, the string is interpolated as is.
If any other value is given, Elixir will attempt to convert
it to a string using the String.Chars protocol. This
allows, for example, to output an integer from the interpolation:
iex> "2 + 2 = #{2 + 2}"
"2 + 2 = 4"
In case the value you want to interpolate cannot be
converted to a string, because it doesn't have a human
textual representation, a protocol error will be raised.
Escape characters
Besides allowing double-quotes to be escaped with a backslash,
strings also support the following escape characters:
	\0 - Null byte
	\a - Bell
	\b - Backspace
	\t - Horizontal tab
	\n - Line feed (New lines)
	\v - Vertical tab
	\f - Form feed
	\r - Carriage return
	\e - Command Escape
	\s - Space
	\# - Returns the # character itself, skipping interpolation
	\\ - Single backslash
	\xNN - A byte represented by the hexadecimal NN
	\uNNNN - A Unicode code point represented by NNNN
	\u{NNNNNN} - A Unicode code point represented by NNNNNN

Note it is generally not advised to use \xNN in Elixir
strings, as introducing an invalid byte sequence would
make the string invalid. If you have to introduce a
character by its hexadecimal representation, it is best
to work with Unicode code points, such as \uNNNN. In fact,
understanding Unicode code points can be essential when doing
low-level manipulations of string, so let's explore them in
detail next.
Unicode and code points
In order to facilitate meaningful communication between computers
across multiple languages, a standard is required so that the ones
and zeros on one machine mean the same thing when they are transmitted
to another. The Unicode Standard acts as an official registry of
virtually all the characters we know: this includes characters from
classical and historical texts, emoji, and formatting and control
characters as well.
Unicode organizes all of the characters in its repertoire into code
charts, and each character is given a unique numerical index. This
numerical index is known as a Code Point.
In Elixir you can use a ? in front of a character literal to reveal
its code point:
iex> ?a
97
iex> ?ł
322
Note that most Unicode code charts will refer to a code point by its
hexadecimal (hex) representation, e.g. 97 translates to 0061 in hex,
and we can represent any Unicode character in an Elixir string by
using the \u escape character followed by its code point number:
iex> "\u0061" === "a"
true
iex> 0x0061 = 97 = ?a
97
The hex representation will also help you look up information about a
code point, e.g. https://codepoints.net/U+0061
has a data sheet all about the lower case a, a.k.a. code point 97.
Remember you can get the hex presentation of a number by calling
Integer.to_string/2:
iex> Integer.to_string(?a, 16)
"61"
UTF-8 encoded and encodings
Now that we understand what the Unicode standard is and what code points
are, we can finally talk about encodings. Whereas the code point is what
we store, an encoding deals with how we store it: encoding is an
implementation. In other words, we need a mechanism to convert the code
point numbers into bytes so they can be stored in memory, written to disk, and such.
Elixir uses UTF-8 to encode its strings, which means that code points are
encoded as a series of 8-bit bytes. UTF-8 is a variable width character
encoding that uses one to four bytes to store each code point. It is capable
of encoding all valid Unicode code points. Let's see an example:
iex> string = "héllo"
"héllo"
iex> String.length(string)
5
iex> byte_size(string)
6
Although the string above has 5 characters, it uses 6 bytes, as two bytes
are used to represent the character é.
Grapheme clusters
This module also works with the concept of grapheme cluster
(from now on referenced as graphemes). Graphemes can consist
of multiple code points that may be perceived as a single character
by readers. For example, "é" can be represented either as a single
"e with acute" code point, as seen above in the string "héllo",
or as the letter "e" followed by a "combining acute accent"
(two code points):
iex> string = "\u0065\u0301"
"é"
iex> byte_size(string)
3
iex> String.length(string)
1
iex> String.codepoints(string)
["e", "́"]
iex> String.graphemes(string)
["é"]
Although it looks visually the same as before, the example above
is made of two characters, it is perceived by users as one.
Graphemes can also be two characters that are interpreted as one
by some languages. For example, some languages may consider "ch"
as a single character. However, since this information depends on
the locale, it is not taken into account by this module.
In general, the functions in this module rely on the Unicode
Standard, but do not contain any of the locale specific behavior.
More information about graphemes can be found in the Unicode
Standard Annex #29.
For converting a binary to a different encoding and for Unicode
normalization mechanisms, see Erlang's :unicode module.
String and binary operations
To act according to the Unicode Standard, many functions
in this module run in linear time, as they need to traverse
the whole string considering the proper Unicode code points.
For example, String.length/1 will take longer as
the input grows. On the other hand, Kernel.byte_size/1 always runs
in constant time (i.e. regardless of the input size).
This means often there are performance costs in using the
functions in this module, compared to the more low-level
operations that work directly with binaries:
	Kernel.binary_part/3 - retrieves part of the binary
	Kernel.bit_size/1 and Kernel.byte_size/1 - size related functions
	Kernel.is_bitstring/1 and Kernel.is_binary/1 - type-check function
	Plus a number of functions for working with binaries (bytes)
in the :binary module

A utf8 modifier is also available inside the binary syntax <<>>.
It can be used to match code points out of a binary/string:
iex> <<eacute::utf8>> = "é"
iex> eacute
233
See the Patterns and Guards guide and the documentation for
<<>> for more information on binary pattern matching.
You can also fully convert a string into a list of integer code points,
known as "charlists" in Elixir, by calling String.to_charlist/1:
iex> String.to_charlist("héllo")
[104, 233, 108, 108, 111]
If you would rather see the underlying bytes of a string, instead of
its codepoints, a common trick is to concatenate the null byte <<0>>
to it:
iex> "héllo" <> <<0>>
<<104, 195, 169, 108, 108, 111, 0>>
Alternatively, you can view a string's binary representation by
passing an option to IO.inspect/2:
IO.inspect("héllo", binaries: :as_binaries)
#=> <<104, 195, 169, 108, 108, 111>>
Self-synchronization
The UTF-8 encoding is self-synchronizing. This means that
if malformed data (i.e., data that is not possible according
to the definition of the encoding) is encountered, only one
code point needs to be rejected.
This module relies on this behavior to ignore such invalid
characters. For example, length/1 will return
a correct result even if an invalid code point is fed into it.
In other words, this module expects invalid data to be detected
elsewhere, usually when retrieving data from the external source.
For example, a driver that reads strings from a database will be
responsible to check the validity of the encoding. String.chunk/2
can be used for breaking a string into valid and invalid parts.
Compile binary patterns
Many functions in this module work with patterns. For example,
String.split/3 can split a string into multiple strings given
a pattern. This pattern can be a string, a list of strings or
a compiled pattern:
iex> String.split("foo bar", " ")
["foo", "bar"]

iex> String.split("foo bar!", [" ", "!"])
["foo", "bar", ""]

iex> pattern = :binary.compile_pattern([" ", "!"])
iex> String.split("foo bar!", pattern)
["foo", "bar", ""]
The compiled pattern is useful when the same match will
be done over and over again. Note though that the compiled
pattern cannot be stored in a module attribute as the pattern
is generated at runtime and does not survive compile time.

 Summary

 Types

 codepoint()

 A single Unicode code point encoded in UTF-8. It may be one or more bytes.

 grapheme()

 Multiple code points that may be perceived as a single character by readers

 pattern()

 Pattern used in functions like replace/4 and split/3.

 replace_opts()

 split_opts()

 splitter_opts()

 t()

 A UTF-8 encoded binary.

 Functions

 at(string, position)

 Returns the grapheme at the position of the given UTF-8 string.
If position is greater than string length, then it returns nil.

 bag_distance(string1, string2)

 Computes the bag distance between two strings.

 byte_slice(string, start_bytes, size_bytes)

 Returns a substring starting at (or after) start_bytes and of at most
the given size_bytes.

 capitalize(string, mode \\ :default)

 Converts the first character in the given string to
uppercase and the remainder to lowercase according to mode.

 chunk(string, trait)

 Splits the string into chunks of characters that share a common trait.

 codepoints(string)

 Returns a list of code points encoded as strings.

 contains?(string, contents)

 Searches if string contains any of the given contents.

 count(string, pattern)

 Counts the number of non-overlapping occurrences of a pattern in a string.

 downcase(string, mode \\ :default)

 Converts all characters in the given string to lowercase according to mode.

 duplicate(subject, n)

 Returns a string subject repeated n times.

 ends_with?(string, suffix)

 Returns true if string ends with any of the suffixes given.

 equivalent?(string1, string2)

 Returns true if string1 is canonically equivalent to string2.

 first(string)

 Returns the first grapheme from a UTF-8 string,
nil if the string is empty.

 graphemes(string)

 Returns Unicode graphemes in the string as per Extended Grapheme
Cluster algorithm.

 jaro_distance(string1, string2)

 Computes the Jaro distance (similarity) between two strings.

 last(string)

 Returns the last grapheme from a UTF-8 string,
nil if the string is empty.

 length(string)

 Returns the number of Unicode graphemes in a UTF-8 string.

 match?(string, regex)

 Checks if string matches the given regular expression.

 myers_difference(string1, string2)

 Returns a keyword list that represents an edit script.

 next_codepoint(arg)

 Returns the next code point in a string.

 next_grapheme(string)

 Returns the next grapheme in a string.

 next_grapheme_size(string)

 Returns the size (in bytes) of the next grapheme.

 normalize(string, form)

 Converts all characters in string to Unicode normalization
form identified by form.

 pad_leading(string, count, padding \\ [" "])

 Returns a new string padded with a leading filler
which is made of elements from the padding.

 pad_trailing(string, count, padding \\ [" "])

 Returns a new string padded with a trailing filler
which is made of elements from the padding.

 printable?(string, character_limit \\ :infinity)

 Checks if a string contains only printable characters up to character_limit.

 replace(subject, pattern, replacement, options \\ [])

 Returns a new string created by replacing occurrences of pattern in
subject with replacement.

 replace_invalid(bytes, replacement \\ "�")

 Returns a new string created by replacing all invalid bytes with replacement ("�" by default).

 replace_leading(string, match, replacement)

 Replaces all leading occurrences of match by replacement of match in string.

 replace_prefix(string, match, replacement)

 Replaces prefix in string by replacement if it matches match.

 replace_suffix(string, match, replacement)

 Replaces suffix in string by replacement if it matches match.

 replace_trailing(string, match, replacement)

 Replaces all trailing occurrences of match by replacement in string.

 reverse(string)

 Reverses the graphemes in given string.

 slice(string, range)

 Returns a substring from the offset given by the start of the
range to the offset given by the end of the range.

 slice(string, start, length)

 Returns a substring starting at the offset start, and of the given length.

 split(binary)

 Divides a string into substrings at each Unicode whitespace
occurrence with leading and trailing whitespace ignored.

 split(string, pattern, options \\ [])

 Divides a string into parts based on a pattern.

 split_at(string, position)

 Splits a string into two at the specified offset. When the offset given is
negative, location is counted from the end of the string.

 splitter(string, pattern, options \\ [])

 Returns an enumerable that splits a string on demand.

 starts_with?(string, prefix)

 Returns true if string starts with any of the prefixes given.

 to_atom(string)

 Converts a string to an existing atom or creates a new one.

 to_charlist(string)

 Converts a string into a charlist.

 to_existing_atom(string)

 Converts a string to an existing atom or raises if
the atom does not exist.

 to_float(string)

 Returns a float whose text representation is string.

 to_integer(string)

 Returns an integer whose text representation is string.

 to_integer(string, base)

 Returns an integer whose text representation is string in base base.

 trim(string)

 Returns a string where all leading and trailing Unicode whitespaces
have been removed.

 trim(string, to_trim)

 Returns a string where all leading and trailing to_trim characters have been
removed.

 trim_leading(string)

 Returns a string where all leading Unicode whitespaces
have been removed.

 trim_leading(string, to_trim)

 Returns a string where all leading to_trim characters have been removed.

 trim_trailing(string)

 Returns a string where all trailing Unicode whitespaces
have been removed.

 trim_trailing(string, to_trim)

 Returns a string where all trailing to_trim characters have been removed.

 upcase(string, mode \\ :default)

 Converts all characters in the given string to uppercase according to mode.

 valid?(string, algorithm \\ :default)

 Checks whether string contains only valid characters.

 Types

 codepoint()

 @type codepoint() :: t()

A single Unicode code point encoded in UTF-8. It may be one or more bytes.

 grapheme()

 @type grapheme() :: t()

Multiple code points that may be perceived as a single character by readers

 pattern()

 @type pattern() ::
 t() | [nonempty_binary()] | (compiled_search_pattern :: :binary.cp())

Pattern used in functions like replace/4 and split/3.
It must be one of:
	a string
	an empty list
	a list containing non-empty strings
	a compiled search pattern created by :binary.compile_pattern/1

 replace_opts()

 @type replace_opts() :: [{:global, boolean()}]

 split_opts()

 @type split_opts() :: [parts: pos_integer() | :infinity, trim: boolean()]

 splitter_opts()

 @type splitter_opts() :: [{:trim, boolean()}]

 t()

 @type t() :: binary()

A UTF-8 encoded binary.
The types String.t() and binary() are equivalent to analysis tools.
Although, for those reading the documentation, String.t() implies
it is a UTF-8 encoded binary.

 Functions

 at(string, position)

 @spec at(t(), integer()) :: grapheme() | nil

Returns the grapheme at the position of the given UTF-8 string.
If position is greater than string length, then it returns nil.
Linear Access
This function has to linearly traverse the string.
If you want to access a string or a binary in constant time based on the
number of bytes, use Kernel.binary_slice/3 or :binary.at/2 instead.
Examples
iex> String.at("elixir", 0)
"e"

iex> String.at("elixir", 1)
"l"

iex> String.at("elixir", 10)
nil

iex> String.at("elixir", -1)
"r"

iex> String.at("elixir", -10)
nil

 bag_distance(string1, string2)

 (since 1.8.0)

 @spec bag_distance(t(), t()) :: float()

Computes the bag distance between two strings.
Returns a float value between 0 and 1 representing the bag
distance between string1 and string2.
The bag distance is meant to be an efficient approximation
of the distance between two strings to quickly rule out strings
that are largely different.
The algorithm is outlined in the "String Matching with Metric
Trees Using an Approximate Distance" paper by Ilaria Bartolini,
Paolo Ciaccia, and Marco Patella.
Examples
iex> String.bag_distance("abc", "")
0.0
iex> String.bag_distance("abcd", "a")
0.25
iex> String.bag_distance("abcd", "ab")
0.5
iex> String.bag_distance("abcd", "abc")
0.75
iex> String.bag_distance("abcd", "abcd")
1.0

 byte_slice(string, start_bytes, size_bytes)

 (since 1.17.0)

 @spec byte_slice(t(), integer(), non_neg_integer()) :: t()

Returns a substring starting at (or after) start_bytes and of at most
the given size_bytes.
This function works on bytes and then adjusts the string to eliminate
truncated codepoints. This is useful when you have a string and you need
to guarantee it does not exceed a certain amount of bytes.
If the offset is greater than the number of bytes in the string, then it
returns "". Similar to String.slice/2, a negative start_bytes
will be adjusted to the end of the string (but in bytes).
This function does not guarantee the string won't have invalid codepoints,
it only guarantees to remove truncated codepoints immediately at the beginning
or the end of the slice.
Examples
Consider the string "héllo". Let's see its representation:
iex> inspect("héllo", binaries: :as_binaries)
"<<104, 195, 169, 108, 108, 111>>"
Although the string has 5 characters, it is made of 6 bytes. Now imagine
we want to get only the first two bytes. To do so, let's use binary_slice/3,
which is unaware of codepoints:
iex> binary_slice("héllo", 0, 2)
<<104, 195>>
As you can see, this operation is unsafe and returns an invalid string.
That's because we cut the string in the middle of the bytes representing
"é". On the other hand, we could use String.slice/3:
iex> String.slice("héllo", 0, 2)
"hé"
While the above is correct, it has 3 bytes. If you have a requirement where
you need at most 2 bytes, the result would also be invalid. In such scenarios,
you can use this function, which will slice the given bytes, but clean up
the truncated codepoints:
iex> String.byte_slice("héllo", 0, 2)
"h"
Truncated codepoints at the beginning are also cleaned up:
iex> String.byte_slice("héllo", 2, 3)
"llo"
Note that, if you want to work on raw bytes, then you must use binary_slice/3
instead.

 capitalize(string, mode \\ :default)

 @spec capitalize(t(), :default | :ascii | :greek | :turkic) :: t()

Converts the first character in the given string to
uppercase and the remainder to lowercase according to mode.
mode may be :default, :ascii, :greek or :turkic. The :default mode
considers all non-conditional transformations outlined in the Unicode standard.
:ascii capitalizes only the letters A to Z. :greek includes the context
sensitive mappings found in Greek. :turkic properly handles the letter i
with the dotless variant.
Also see upcase/2 and capitalize/2 for other conversions. If you want
a variation of this function that does not lowercase the rest of string,
see Erlang's :string.titlecase/1.
Examples
iex> String.capitalize("abcd")
"Abcd"
iex> String.capitalize("ABCD")
"Abcd"

iex> String.capitalize("ﬁn")
"Fin"
iex> String.capitalize("olá")
"Olá"

 chunk(string, trait)

 @spec chunk(t(), :valid | :printable) :: [t()]

Splits the string into chunks of characters that share a common trait.
The trait can be one of two options:
	:valid - the string is split into chunks of valid and invalid
character sequences

	:printable - the string is split into chunks of printable and
non-printable character sequences

Returns a list of binaries each of which contains only one kind of
characters.
If the given string is empty, an empty list is returned.
Examples
iex> String.chunk(<<?a, ?b, ?c, 0>>, :valid)
[<<97, 98, 99, 0>>]

iex> String.chunk(<<?a, ?b, ?c, 0, 0xFFFF::utf16>>, :valid)
[<<97, 98, 99, 0>>, <<255, 255>>]

iex> String.chunk(<<?a, ?b, ?c, 0, 0x0FFFF::utf8>>, :printable)
["abc", <<0, 239, 191, 191>>]

 codepoints(string)

 @spec codepoints(t()) :: [codepoint()]

Returns a list of code points encoded as strings.
To retrieve code points in their natural integer
representation, see to_charlist/1. For details about
code points and graphemes, see the String module
documentation.
Examples
iex> String.codepoints("olá")
["o", "l", "á"]

iex> String.codepoints("оптимі зації")
["о", "п", "т", "и", "м", "і", " ", "з", "а", "ц", "і", "ї"]

iex> String.codepoints("ἅἪῼ")
["ἅ", "Ἢ", "ῼ"]

iex> String.codepoints("\u00e9")
["é"]

iex> String.codepoints("\u0065\u0301")
["e", "́"]

 contains?(string, contents)

 @spec contains?(t(), [t()] | pattern()) :: boolean()

Searches if string contains any of the given contents.
contents can be either a string, a list of strings,
or a compiled pattern. If contents is a list, this
function will search if any of the strings in contents
are part of string.
Searching for a string in a list
If you want to check if string is listed in contents,
where contents is a list, use Enum.member?(contents, string)
instead.
Examples
iex> String.contains?("elixir of life", "of")
true
iex> String.contains?("elixir of life", ["life", "death"])
true
iex> String.contains?("elixir of life", ["death", "mercury"])
false
The argument can also be a compiled pattern:
iex> pattern = :binary.compile_pattern(["life", "death"])
iex> String.contains?("elixir of life", pattern)
true
An empty string will always match:
iex> String.contains?("elixir of life", "")
true
iex> String.contains?("elixir of life", ["", "other"])
true
An empty list will never match:
iex> String.contains?("elixir of life", [])
false

iex> String.contains?("", [])
false
Be aware that this function can match within or across grapheme boundaries.
For example, take the grapheme "é" which is made of the characters
"e" and the acute accent. The following returns true:
iex> String.contains?(String.normalize("é", :nfd), "e")
true
However, if "é" is represented by the single character "e with acute"
accent, then it will return false:
iex> String.contains?(String.normalize("é", :nfc), "e")
false

 count(string, pattern)

 (since 1.19.0)

 @spec count(t(), pattern() | Regex.t()) :: non_neg_integer()

Counts the number of non-overlapping occurrences of a pattern in a string.
In case the pattern is an empty string, the function returns 1 + the number of graphemes
in the string.
Examples
iex> String.count("hello world", "o")
2

iex> String.count("hello world", "l")
3

iex> String.count("hello world", "x")
0

iex> String.count("hello world", ~r/o/)
2

iex> String.count("Hellooo", "oo")
1

iex> String.count("hello world", "")
12
The pattern can also be a compiled pattern:
iex> pattern = :binary.compile_pattern([" ", "!"])
iex> String.count("foo bar baz!!", pattern)
4

 downcase(string, mode \\ :default)

 @spec downcase(t(), :default | :ascii | :greek | :turkic) :: t()

Converts all characters in the given string to lowercase according to mode.
mode may be :default, :ascii, :greek or :turkic. The :default mode considers
all non-conditional transformations outlined in the Unicode standard. :ascii
lowercases only the letters A to Z. :greek includes the context sensitive
mappings found in Greek. :turkic properly handles the letter i with the dotless variant.
Also see upcase/2 and capitalize/2 for other conversions.
Examples
iex> String.downcase("ABCD")
"abcd"

iex> String.downcase("AB 123 XPTO")
"ab 123 xpto"

iex> String.downcase("OLÁ")
"olá"
The :ascii mode ignores Unicode characters and provides a more
performant implementation when you know the string contains only
ASCII characters:
iex> String.downcase("OLÁ", :ascii)
"olÁ"
The :greek mode properly handles the context sensitive sigma in Greek:
iex> String.downcase("ΣΣ")
"σσ"

iex> String.downcase("ΣΣ", :greek)
"σς"
And :turkic properly handles the letter i with the dotless variant:
iex> String.downcase("Iİ")
"ii̇"

iex> String.downcase("Iİ", :turkic)
"ıi"

 duplicate(subject, n)

 @spec duplicate(t(), non_neg_integer()) :: t()

Returns a string subject repeated n times.
Inlined by the compiler.
Examples
iex> String.duplicate("abc", 0)
""

iex> String.duplicate("abc", 1)
"abc"

iex> String.duplicate("abc", 2)
"abcabc"

 ends_with?(string, suffix)

 @spec ends_with?(t(), t() | [t()]) :: boolean()

Returns true if string ends with any of the suffixes given.
suffixes can be either a single suffix or a list of suffixes.
Examples
iex> String.ends_with?("language", "age")
true
iex> String.ends_with?("language", ["youth", "age"])
true
iex> String.ends_with?("language", ["youth", "elixir"])
false
An empty suffix will always match:
iex> String.ends_with?("language", "")
true
iex> String.ends_with?("language", ["", "other"])
true

 equivalent?(string1, string2)

 @spec equivalent?(t(), t()) :: boolean()

Returns true if string1 is canonically equivalent to string2.
It performs Normalization Form Canonical Decomposition (NFD) on the
strings before comparing them. This function is equivalent to:
String.normalize(string1, :nfd) == String.normalize(string2, :nfd)
If you plan to compare multiple strings, multiple times in a row, you
may normalize them upfront and compare them directly to avoid multiple
normalization passes.
Examples
iex> String.equivalent?("abc", "abc")
true

iex> String.equivalent?("man\u0303ana", "mañana")
true

iex> String.equivalent?("abc", "ABC")
false

iex> String.equivalent?("nø", "nó")
false

 first(string)

 @spec first(t()) :: grapheme() | nil

Returns the first grapheme from a UTF-8 string,
nil if the string is empty.
Examples
iex> String.first("elixir")
"e"

iex> String.first("եոգլի")
"ե"

iex> String.first("")
nil

 graphemes(string)

 @spec graphemes(t()) :: [grapheme()]

Returns Unicode graphemes in the string as per Extended Grapheme
Cluster algorithm.
The algorithm is outlined in the Unicode Standard Annex #29,
Unicode Text Segmentation.
For details about code points and graphemes, see the String module documentation.
Examples
iex> String.graphemes("Ńaïve")
["Ń", "a", "ï", "v", "e"]

iex> String.graphemes("\u00e9")
["é"]

iex> String.graphemes("\u0065\u0301")
["é"]

 jaro_distance(string1, string2)

 @spec jaro_distance(t(), t()) :: float()

Computes the Jaro distance (similarity) between two strings.
Returns a float value between 0.0 (equates to no similarity) and 1.0
(is an exact match) representing Jaro
distance between string1 and string2.
The Jaro distance metric is designed and best suited for short
strings such as person names. Elixir itself uses this function
to provide the "did you mean?" functionality. For instance, when you
are calling a function in a module and you have a typo in the
function name, we attempt to suggest the most similar function
name available, if any, based on the jaro_distance/2 score.
Examples
iex> String.jaro_distance("Dwayne", "Duane")
0.8222222222222223
iex> String.jaro_distance("even", "odd")
0.0
iex> String.jaro_distance("same", "same")
1.0

 last(string)

 @spec last(t()) :: grapheme() | nil

Returns the last grapheme from a UTF-8 string,
nil if the string is empty.
It traverses the whole string to find its last grapheme.
Examples
iex> String.last("")
nil

iex> String.last("elixir")
"r"

iex> String.last("եոգլի")
"ի"

 length(string)

 @spec length(t()) :: non_neg_integer()

Returns the number of Unicode graphemes in a UTF-8 string.
Examples
iex> String.length("elixir")
6

iex> String.length("եոգլի")
5

 match?(string, regex)

 @spec match?(t(), Regex.t()) :: boolean()

Checks if string matches the given regular expression.
Examples
iex> String.match?("foo", ~r/foo/)
true

iex> String.match?("bar", ~r/foo/)
false
Elixir also provides text-based match operator =~/2 and function Regex.match?/2 as
alternatives to test strings against regular expressions.

 myers_difference(string1, string2)

 (since 1.3.0)

 @spec myers_difference(t(), t()) :: [{:eq | :ins | :del, t()}]

Returns a keyword list that represents an edit script.
Check List.myers_difference/2 for more information.
Examples
iex> string1 = "fox hops over the dog"
iex> string2 = "fox jumps over the lazy cat"
iex> String.myers_difference(string1, string2)
[eq: "fox ", del: "ho", ins: "jum", eq: "ps over the ", del: "dog", ins: "lazy cat"]

 next_codepoint(arg)

 @spec next_codepoint(t()) :: {codepoint(), t()} | nil

Returns the next code point in a string.
The result is a tuple with the code point and the
remainder of the string or nil in case
the string reached its end.
As with other functions in the String module, next_codepoint/1
works with binaries that are invalid UTF-8. If the string starts
with a sequence of bytes that is not valid in UTF-8 encoding, the
first element of the returned tuple is a binary with the first byte.
Examples
iex> String.next_codepoint("olá")
{"o", "lá"}

iex> invalid = "\x80\x80OK" # first two bytes are invalid in UTF-8
iex> {_, rest} = String.next_codepoint(invalid)
{<<128>>, <<128, 79, 75>>}
iex> String.next_codepoint(rest)
{<<128>>, "OK"}
Comparison with binary pattern matching
Binary pattern matching provides a similar way to decompose
a string:
iex> <<codepoint::utf8, rest::binary>> = "Elixir"
"Elixir"
iex> codepoint
69
iex> rest
"lixir"
though not entirely equivalent because codepoint comes as
an integer, and the pattern won't match invalid UTF-8.
Binary pattern matching, however, is simpler and more efficient,
so pick the option that better suits your use case.

 next_grapheme(string)

 @spec next_grapheme(t()) :: {grapheme(), t()} | nil

Returns the next grapheme in a string.
The result is a tuple with the grapheme and the
remainder of the string or nil in case
the String reached its end.
Examples
iex> String.next_grapheme("olá")
{"o", "lá"}

iex> String.next_grapheme("")
nil

 next_grapheme_size(string)

 @spec next_grapheme_size(t()) :: {pos_integer(), t()} | nil

Returns the size (in bytes) of the next grapheme.
The result is a tuple with the next grapheme size in bytes and
the remainder of the string or nil in case the string
reached its end.
Examples
iex> String.next_grapheme_size("olá")
{1, "lá"}

iex> String.next_grapheme_size("")
nil

 normalize(string, form)

 @spec normalize(t(), :nfd | :nfc | :nfkd | :nfkc) :: t()

Converts all characters in string to Unicode normalization
form identified by form.
Invalid Unicode codepoints are skipped and the remaining of
the string is converted. If you want the algorithm to stop
and return on invalid codepoint, use :unicode.characters_to_nfd_binary/1,
:unicode.characters_to_nfc_binary/1, :unicode.characters_to_nfkd_binary/1,
and :unicode.characters_to_nfkc_binary/1 instead.
Normalization forms :nfkc and :nfkd should not be blindly applied
to arbitrary text. Because they erase many formatting distinctions,
they will prevent round-trip conversion to and from many legacy
character sets.
Forms
The supported forms are:
	:nfd - Normalization Form Canonical Decomposition.
Characters are decomposed by canonical equivalence, and
multiple combining characters are arranged in a specific
order.

	:nfc - Normalization Form Canonical Composition.
Characters are decomposed and then recomposed by canonical equivalence.

	:nfkd - Normalization Form Compatibility Decomposition.
Characters are decomposed by compatibility equivalence, and
multiple combining characters are arranged in a specific
order.

	:nfkc - Normalization Form Compatibility Composition.
Characters are decomposed and then recomposed by compatibility equivalence.

Examples
iex> String.normalize("yêṩ", :nfd)
"yêṩ"

iex> String.normalize("leña", :nfc)
"leña"

iex> String.normalize("ﬁ", :nfkd)
"fi"

iex> String.normalize("fi", :nfkc)
"fi"

 pad_leading(string, count, padding \\ [" "])

 @spec pad_leading(t(), non_neg_integer(), t() | [t()]) :: t()

Returns a new string padded with a leading filler
which is made of elements from the padding.
Passing a list of strings as padding will take one element of the list
for every missing entry. If the list is shorter than the number of inserts,
the filling will start again from the beginning of the list.
Passing a string padding is equivalent to passing the list of graphemes in it.
If no padding is given, it defaults to whitespace.
When count is less than or equal to the length of string,
given string is returned.
Raises ArgumentError if the given padding contains a non-string element.
Examples
iex> String.pad_leading("abc", 5)
" abc"

iex> String.pad_leading("abc", 4, "12")
"1abc"

iex> String.pad_leading("abc", 6, "12")
"121abc"

iex> String.pad_leading("abc", 5, ["1", "23"])
"123abc"

 pad_trailing(string, count, padding \\ [" "])

 @spec pad_trailing(t(), non_neg_integer(), t() | [t()]) :: t()

Returns a new string padded with a trailing filler
which is made of elements from the padding.
Passing a list of strings as padding will take one element of the list
for every missing entry. If the list is shorter than the number of inserts,
the filling will start again from the beginning of the list.
Passing a string padding is equivalent to passing the list of graphemes in it.
If no padding is given, it defaults to whitespace.
When count is less than or equal to the length of string,
given string is returned.
Raises ArgumentError if the given padding contains a non-string element.
Examples
iex> String.pad_trailing("abc", 5)
"abc "

iex> String.pad_trailing("abc", 4, "12")
"abc1"

iex> String.pad_trailing("abc", 6, "12")
"abc121"

iex> String.pad_trailing("abc", 5, ["1", "23"])
"abc123"

 printable?(string, character_limit \\ :infinity)

 @spec printable?(t(), 0) :: true

 @spec printable?(t(), pos_integer() | :infinity) :: boolean()

Checks if a string contains only printable characters up to character_limit.
Takes an optional character_limit as a second argument. If character_limit is 0, this
function will return true.
Examples
iex> String.printable?("abc")
true

iex> String.printable?("abc" <> <<0>>)
false

iex> String.printable?("abc" <> <<0>>, 2)
true

iex> String.printable?("abc" <> <<0>>, 0)
true

 replace(subject, pattern, replacement, options \\ [])

 @spec replace(
 t(),
 pattern() | Regex.t(),
 t() | (t() -> t() | iodata()),
 replace_opts()
) :: t()

Returns a new string created by replacing occurrences of pattern in
subject with replacement.
The subject is always a string.
The pattern may be a string, a list of strings, a regular expression, or a
compiled pattern.
The replacement may be a string or a function that receives the matched
pattern and must return the replacement as a string or iodata.
By default it replaces all occurrences but this behavior can be controlled
through the :global option; see the "Options" section below.
Options
	:global - (boolean) if true, all occurrences of pattern are replaced
with replacement, otherwise only the first occurrence is
replaced. Defaults to true

Examples
iex> String.replace("a,b,c", ",", "-")
"a-b-c"

iex> String.replace("a,b,c", ",", "-", global: false)
"a-b,c"
The pattern may also be a list of strings and the replacement may also
be a function that receives the matches:
iex> String.replace("a,b,c", ["a", "c"], fn <<char>> -> <<char + 1>> end)
"b,b,d"
When the pattern is a regular expression, one can give \N or
\g{N} in the replacement string to access a specific capture in the
regular expression:
iex> String.replace("a,b,c", ~r/,(.)/, ",\\1\\g{1}")
"a,bb,cc"
Note that we had to escape the backslash escape character (i.e., we used \\N
instead of just \N to escape the backslash; same thing for \\g{N}). By
giving \0, one can inject the whole match in the replacement string.
A compiled pattern can also be given:
iex> pattern = :binary.compile_pattern(",")
iex> String.replace("a,b,c", pattern, "[]")
"a[]b[]c"
When an empty string is provided as a pattern, the function will treat it as
an implicit empty string between each grapheme and the string will be
interspersed. If an empty string is provided as replacement the subject
will be returned:
iex> String.replace("ELIXIR", "", ".")
".E.L.I.X.I.R."

iex> String.replace("ELIXIR", "", "")
"ELIXIR"
Be aware that this function can replace within or across grapheme boundaries.
For example, take the grapheme "é" which is made of the characters
"e" and the acute accent. The following will replace only the letter "e",
moving the accent to the letter "o":
iex> String.replace(String.normalize("é", :nfd), "e", "o")
"ó"
However, if "é" is represented by the single character "e with acute"
accent, then it won't be replaced at all:
iex> String.replace(String.normalize("é", :nfc), "e", "o")
"é"

 replace_invalid(bytes, replacement \\ "�")

 (since 1.16.0)

 @spec replace_invalid(binary(), t()) :: t()

Returns a new string created by replacing all invalid bytes with replacement ("�" by default).
Examples
iex> String.replace_invalid("asd" <> <<0xFF::8>>)
"asd�"

iex> String.replace_invalid("nem rán bề bề")
"nem rán bề bề"

iex> String.replace_invalid("nem rán b" <> <<225, 187>> <> " bề")
"nem rán b� bề"

iex> String.replace_invalid("nem rán b" <> <<225, 187>> <> " bề", "ERROR!")
"nem rán bERROR! bề"

 replace_leading(string, match, replacement)

 @spec replace_leading(t(), t(), t()) :: t()

Replaces all leading occurrences of match by replacement of match in string.
Returns the string untouched if there are no occurrences.
If match is "", this function raises an ArgumentError exception: this
happens because this function replaces all the occurrences of match at
the beginning of string, and it's impossible to replace "multiple"
occurrences of "".
Examples
iex> String.replace_leading("hello world", "hello ", "")
"world"
iex> String.replace_leading("hello hello world", "hello ", "")
"world"

iex> String.replace_leading("hello world", "hello ", "ola ")
"ola world"
iex> String.replace_leading("hello hello world", "hello ", "ola ")
"ola ola world"
This function can replace across grapheme boundaries. See replace/3
for more information and examples.

 replace_prefix(string, match, replacement)

 @spec replace_prefix(t(), t(), t()) :: t()

Replaces prefix in string by replacement if it matches match.
Returns the string untouched if there is no match. If match is an empty
string (""), replacement is just prepended to string.
Examples
iex> String.replace_prefix("world", "hello ", "")
"world"
iex> String.replace_prefix("hello world", "hello ", "")
"world"
iex> String.replace_prefix("hello hello world", "hello ", "")
"hello world"

iex> String.replace_prefix("world", "hello ", "ola ")
"world"
iex> String.replace_prefix("hello world", "hello ", "ola ")
"ola world"
iex> String.replace_prefix("hello hello world", "hello ", "ola ")
"ola hello world"

iex> String.replace_prefix("world", "", "hello ")
"hello world"
This function can replace across grapheme boundaries. See replace/3
for more information and examples.

 replace_suffix(string, match, replacement)

 @spec replace_suffix(t(), t(), t()) :: t()

Replaces suffix in string by replacement if it matches match.
Returns the string untouched if there is no match. If match is an empty
string (""), replacement is just appended to string.
Examples
iex> String.replace_suffix("hello", " world", "")
"hello"
iex> String.replace_suffix("hello world", " world", "")
"hello"
iex> String.replace_suffix("hello world world", " world", "")
"hello world"

iex> String.replace_suffix("hello", " world", " mundo")
"hello"
iex> String.replace_suffix("hello world", " world", " mundo")
"hello mundo"
iex> String.replace_suffix("hello world world", " world", " mundo")
"hello world mundo"

iex> String.replace_suffix("hello", "", " world")
"hello world"
This function can replace across grapheme boundaries. See replace/3
for more information and examples.

 replace_trailing(string, match, replacement)

 @spec replace_trailing(t(), t(), t()) :: t()

Replaces all trailing occurrences of match by replacement in string.
Returns the string untouched if there are no occurrences.
If match is "", this function raises an ArgumentError exception: this
happens because this function replaces all the occurrences of match at
the end of string, and it's impossible to replace "multiple" occurrences of
"".
Examples
iex> String.replace_trailing("hello world", " world", "")
"hello"
iex> String.replace_trailing("hello world world", " world", "")
"hello"

iex> String.replace_trailing("hello world", " world", " mundo")
"hello mundo"
iex> String.replace_trailing("hello world world", " world", " mundo")
"hello mundo mundo"
This function can replace across grapheme boundaries. See replace/3
for more information and examples.

 reverse(string)

 @spec reverse(t()) :: t()

Reverses the graphemes in given string.
Examples
iex> String.reverse("abcd")
"dcba"

iex> String.reverse("hello world")
"dlrow olleh"

iex> String.reverse("hello ∂og")
"go∂ olleh"
Keep in mind reversing the same string twice does
not necessarily yield the original string:
iex> "̀e"
"̀e"
iex> String.reverse("̀e")
"è"
iex> String.reverse(String.reverse("̀e"))
"è"
In the first example the accent is before the vowel, so
it is considered two graphemes. However, when you reverse
it once, you have the vowel followed by the accent, which
becomes one grapheme. Reversing it again will keep it as
one single grapheme.

 slice(string, range)

 @spec slice(t(), Range.t()) :: t()

Returns a substring from the offset given by the start of the
range to the offset given by the end of the range.
This function works on Unicode graphemes. For example, slicing the first
three characters of the string "héllo" will return "hél", which internally
is represented by more than three bytes. Use String.byte_slice/3 if you
want to slice by a given number of bytes, while respecting the codepoint
boundaries. If you want to work on raw bytes, check Kernel.binary_part/3
or Kernel.binary_slice/3 instead.
If the start of the range is not a valid offset for the given
string or if the range is in reverse order, returns "".
If the start or end of the range is negative, the whole string
is traversed first in order to convert the negative indices into
positive ones.
Examples
iex> String.slice("elixir", 1..3)
"lix"
iex> String.slice("elixir", 1..10)
"lixir"

iex> String.slice("elixir", -4..-1)
"ixir"
iex> String.slice("elixir", -4..6)
"ixir"
iex> String.slice("elixir", -100..100)
"elixir"
For ranges where start > stop, you need to explicitly
mark them as increasing:
iex> String.slice("elixir", 2..-1//1)
"ixir"
iex> String.slice("elixir", 1..-2//1)
"lixi"
You can use ../0 as a shortcut for 0..-1//1, which returns
the whole string as is:
iex> String.slice("elixir", ..)
"elixir"
The step can be any positive number. For example, to
get every 2 characters of the string:
iex> String.slice("elixir", 0..-1//2)
"eii"
If the first position is after the string ends or after
the last position of the range, it returns an empty string:
iex> String.slice("elixir", 10..3//1)
""
iex> String.slice("a", 1..1500)
""

 slice(string, start, length)

 @spec slice(t(), integer(), non_neg_integer()) :: grapheme()

Returns a substring starting at the offset start, and of the given length.
This function works on Unicode graphemes. For example, slicing the first
three characters of the string "héllo" will return "hél", which internally
is represented by more than three bytes. Use String.byte_slice/3 if you
want to slice by a given number of bytes, while respecting the codepoint
boundaries. If you want to work on raw bytes, check Kernel.binary_part/3
or Kernel.binary_slice/3 instead.
If the offset is greater than string length, then it returns "".
Examples
iex> String.slice("elixir", 1, 3)
"lix"

iex> String.slice("elixir", 1, 10)
"lixir"

iex> String.slice("elixir", 10, 3)
""
If the start position is negative, it is normalized
against the string length and clamped to 0:
iex> String.slice("elixir", -4, 4)
"ixir"

iex> String.slice("elixir", -10, 3)
"eli"
If start is more than the string length, an empty
string is returned:
iex> String.slice("elixir", 10, 1500)
""

 split(binary)

 @spec split(t()) :: [t()]

Divides a string into substrings at each Unicode whitespace
occurrence with leading and trailing whitespace ignored.
Groups of whitespace are treated as a single occurrence.
Divisions do not occur on non-breaking whitespace.
Examples
iex> String.split("foo bar")
["foo", "bar"]

iex> String.split("foo" <> <<194, 133>> <> "bar")
["foo", "bar"]

iex> String.split(" foo bar ")
["foo", "bar"]

iex> String.split("no\u00a0break")
["no\u00a0break"]
Removes empty strings, like when using trim: true in String.split/3.
iex> String.split(" ")
[]

 split(string, pattern, options \\ [])

 @spec split(t(), pattern(), split_opts()) :: [t()]

 @spec split(t(), Regex.t(), Regex.split_opts()) :: [t()]

Divides a string into parts based on a pattern.
Returns a list of these parts.
The pattern may be a string, a list of strings, a regular expression, or a
compiled pattern.
The string is split into as many parts as possible by
default, but can be controlled via the :parts option.
Empty strings are only removed from the result if the
:trim option is set to true.
When the pattern used is a regular expression, the string is
split using Regex.split/3.
If the pattern cannot be found, a list containing the original
string will be returned.
Options
	:parts (positive integer or :infinity) - the string
is split into at most as many parts as this option specifies.
If :infinity, the string will be split into all possible
parts. Defaults to :infinity.

	:trim (boolean) - if true, empty strings are removed from
the resulting list.

This function also accepts all options accepted by Regex.split/3
if pattern is a regular expression.
Examples
Splitting with a string pattern:
iex> String.split("a,b,c", ",")
["a", "b", "c"]

iex> String.split("a,b,c", ",", parts: 2)
["a", "b,c"]

iex> String.split(" a b c ", " ", trim: true)
["a", "b", "c"]
A list of patterns:
iex> String.split("1,2 3,4", [" ", ","])
["1", "2", "3", "4"]
A regular expression:
iex> String.split("a,b,c", ~r{,})
["a", "b", "c"]

iex> String.split("a,b,c", ~r{,}, parts: 2)
["a", "b,c"]

iex> String.split(" a b c ", ~r{\s}, trim: true)
["a", "b", "c"]

iex> String.split("abc", ~r{b}, include_captures: true)
["a", "b", "c"]
A compiled pattern:
iex> pattern = :binary.compile_pattern([" ", ","])
iex> String.split("1,2 3,4", pattern)
["1", "2", "3", "4"]
Splitting on empty string returns graphemes:
iex> String.split("abc", "")
["", "a", "b", "c", ""]

iex> String.split("abc", "", trim: true)
["a", "b", "c"]

iex> String.split("abc", "", parts: 1)
["abc"]

iex> String.split("abc", "", parts: 3)
["", "a", "bc"]
Splitting on an non-existing pattern returns the original string:
iex> String.split("abc", ",")
["abc"]
Be aware that this function can split within or across grapheme boundaries.
For example, take the grapheme "é" which is made of the characters
"e" and the acute accent. The following will split the string into two parts:
iex> String.split(String.normalize("é", :nfd), "e")
["", "́"]
However, if "é" is represented by the single character "e with acute"
accent, then it will split the string into just one part:
iex> String.split(String.normalize("é", :nfc), "e")
["é"]
When using both the :trim and the :parts option, the empty values
are removed as the parts are computed (if any). No trimming happens
after all parts are computed:
iex> String.split(" a b c ", " ", trim: true, parts: 2)
["a", " b c "]
iex> String.split(" a b c ", " ", trim: true, parts: 3)
["a", "b", " c "]

 split_at(string, position)

 @spec split_at(t(), integer()) :: {t(), t()}

Splits a string into two at the specified offset. When the offset given is
negative, location is counted from the end of the string.
The offset is capped to the length of the string. Returns a tuple with
two elements.
Linear Access
This function splits on graphemes and for such it has to linearly traverse
the string.
If you want to split a string or a binary based on the number of bytes,
use Kernel.binary_part/3 instead.
Examples
iex> String.split_at("sweetelixir", 5)
{"sweet", "elixir"}

iex> String.split_at("sweetelixir", -6)
{"sweet", "elixir"}

iex> String.split_at("abc", 0)
{"", "abc"}

iex> String.split_at("abc", 1000)
{"abc", ""}

iex> String.split_at("abc", -1000)
{"", "abc"}

 splitter(string, pattern, options \\ [])

 @spec splitter(t(), pattern(), splitter_opts()) :: Enumerable.t()

Returns an enumerable that splits a string on demand.
This is in contrast to split/3 which splits the
entire string upfront.
This function does not support regular expressions
by design. When using regular expressions, it is often
more efficient to have the regular expressions traverse
the string at once than in parts, like this function does.
Options
	:trim - when true, does not emit empty patterns

Examples
iex> String.splitter("1,2 3,4 5,6 7,8,...,99999", [" ", ","]) |> Enum.take(4)
["1", "2", "3", "4"]

iex> String.splitter("abcd", "") |> Enum.take(10)
["", "a", "b", "c", "d", ""]

iex> String.splitter("abcd", "", trim: true) |> Enum.take(10)
["a", "b", "c", "d"]
A compiled pattern can also be given:
iex> pattern = :binary.compile_pattern([" ", ","])
iex> String.splitter("1,2 3,4 5,6 7,8,...,99999", pattern) |> Enum.take(4)
["1", "2", "3", "4"]

 starts_with?(string, prefix)

 @spec starts_with?(t(), t() | [t()]) :: boolean()

Returns true if string starts with any of the prefixes given.
prefix can be either a string, a list of strings, or a compiled
pattern.
Examples
iex> String.starts_with?("elixir", "eli")
true
iex> String.starts_with?("elixir", ["erlang", "elixir"])
true
iex> String.starts_with?("elixir", ["erlang", "ruby"])
false
An empty string will always match:
iex> String.starts_with?("elixir", "")
true
iex> String.starts_with?("elixir", ["", "other"])
true
An empty list will never match:
iex> String.starts_with?("elixir", [])
false

iex> String.starts_with?("", [])
false

 to_atom(string)

 @spec to_atom(t()) :: atom()

Converts a string to an existing atom or creates a new one.
Warning: this function creates atoms dynamically and atoms are
not garbage-collected. Therefore, string should not be an
untrusted value, such as input received from a socket or during
a web request. Consider using to_existing_atom/1 instead.
By default, the maximum number of atoms is 1_048_576. This limit
can be raised or lowered using the VM option +t.
The maximum atom size is of 255 Unicode code points.
Inlined by the compiler.
Examples
iex> String.to_atom("my_atom")
:my_atom

 to_charlist(string)

 @spec to_charlist(t()) :: charlist()

Converts a string into a charlist.
Specifically, this function takes a UTF-8 encoded binary and returns a list of its integer
code points. It is similar to codepoints/1 except that the latter returns a list of code points as
strings.
In case you need to work with bytes, take a look at the
:binary module.
Examples
iex> String.to_charlist("foo")
~c"foo"

 to_existing_atom(string)

 @spec to_existing_atom(t()) :: atom()

Converts a string to an existing atom or raises if
the atom does not exist.
The maximum atom size is of 255 Unicode code points.
Raises an ArgumentError if the atom does not exist.
Inlined by the compiler.
Atoms and modules
Since Elixir is a compiled language, the atoms defined in a module
will only exist after said module is loaded, which typically happens
whenever a function in the module is executed. Therefore, it is
generally recommended to call String.to_existing_atom/1 only to
convert atoms defined within the module making the function call
to to_existing_atom/1.
To create a module name itself from a string safely,
it is recommended to use Module.safe_concat/1.
Examples
iex> _ = :my_atom
iex> String.to_existing_atom("my_atom")
:my_atom

 to_float(string)

 @spec to_float(t()) :: float()

Returns a float whose text representation is string.
string must be the string representation of a float including leading digits and a decimal
point. To parse a string without decimal point as a float, refer to Float.parse/1. Otherwise,
an ArgumentError will be raised.
Inlined by the compiler.
Examples
iex> String.to_float("2.2017764e+0")
2.2017764

iex> String.to_float("3.0")
3.0

String.to_float("3")
** (ArgumentError) argument error

String.to_float(".3")
** (ArgumentError) argument error

 to_integer(string)

 @spec to_integer(t()) :: integer()

Returns an integer whose text representation is string.
string must be the string representation of an integer.
Otherwise, an ArgumentError will be raised. If you want
to parse a string that may contain an ill-formatted integer,
use Integer.parse/1.
Inlined by the compiler.
Examples
iex> String.to_integer("123")
123
Passing a string that does not represent an integer leads to an error:
String.to_integer("invalid data")
** (ArgumentError) argument error

 to_integer(string, base)

 @spec to_integer(t(), 2..36) :: integer()

Returns an integer whose text representation is string in base base.
Inlined by the compiler.
Examples
iex> String.to_integer("3FF", 16)
1023

 trim(string)

 @spec trim(t()) :: t()

Returns a string where all leading and trailing Unicode whitespaces
have been removed.
Examples
iex> String.trim("\n abc\n ")
"abc"

 trim(string, to_trim)

 @spec trim(t(), t()) :: t()

Returns a string where all leading and trailing to_trim characters have been
removed.
Examples
iex> String.trim("a abc a", "a")
" abc "

 trim_leading(string)

 @spec trim_leading(t()) :: t()

Returns a string where all leading Unicode whitespaces
have been removed.
Examples
iex> String.trim_leading("\n abc ")
"abc "

 trim_leading(string, to_trim)

 @spec trim_leading(t(), t()) :: t()

Returns a string where all leading to_trim characters have been removed.
Examples
iex> String.trim_leading("__ abc _", "_")
" abc _"

iex> String.trim_leading("1 abc", "11")
"1 abc"

 trim_trailing(string)

 @spec trim_trailing(t()) :: t()

Returns a string where all trailing Unicode whitespaces
have been removed.
Examples
iex> String.trim_trailing(" abc\n ")
" abc"

 trim_trailing(string, to_trim)

 @spec trim_trailing(t(), t()) :: t()

Returns a string where all trailing to_trim characters have been removed.
Examples
iex> String.trim_trailing("_ abc __", "_")
"_ abc "

iex> String.trim_trailing("abc 1", "11")
"abc 1"

 upcase(string, mode \\ :default)

 @spec upcase(t(), :default | :ascii | :greek | :turkic) :: t()

Converts all characters in the given string to uppercase according to mode.
mode may be :default, :ascii, :greek or :turkic. The :default mode considers
all non-conditional transformations outlined in the Unicode standard. :ascii
uppercases only the letters a to z. :greek includes the context sensitive
mappings found in Greek. :turkic properly handles the letter i with the dotless variant.
Examples
iex> String.upcase("abcd")
"ABCD"

iex> String.upcase("ab 123 xpto")
"AB 123 XPTO"

iex> String.upcase("olá")
"OLÁ"
The :ascii mode ignores Unicode characters and provides a more
performant implementation when you know the string contains only
ASCII characters:
iex> String.upcase("olá", :ascii)
"OLá"
And :turkic properly handles the letter i with the dotless variant:
iex> String.upcase("ıi")
"II"

iex> String.upcase("ıi", :turkic)
"Iİ"
Also see downcase/2 and capitalize/2 for other conversions.

 valid?(string, algorithm \\ :default)

 @spec valid?(t(), :default | :fast_ascii) :: boolean()

Checks whether string contains only valid characters.
algorithm may be :default or :fast_ascii. Both algorithms are equivalent
from a validation perspective (they will always produce the same output), but
:fast_ascii can yield significant performance benefits in specific scenarios.
If anything else but a string is given as argument, it raises.
Fast ASCII
If all of the following conditions are true, you may want to experiment with
the :fast_ascii algorithm to see if it yields performance benefits in your
specific scenario:
	You expect most of your strings to be longer than ~64 bytes
	You expect most of your strings to contain mostly ASCII codepoints

Note that the :fast_ascii algorithm does not affect correctness, you can
expect the output of String.valid?/2 to be the same regardless of algorithm.
The only difference to be expected is one of performance, which can be
expected to improve roughly linearly in string length compared to the
:default algorithm.
Examples
iex> String.valid?("a")
true

iex> String.valid?("ø")
true

iex> String.valid?(<<0xFFFF::16>>)
false

iex> String.valid?(<<0xEF, 0xB7, 0x90>>)
true

iex> String.valid?("asd" <> <<0xFFFF::16>>)
false

iex> String.valid?("a", :fast_ascii)
true

Time

A Time struct and functions.
The Time struct contains the fields hour, minute, second and microseconds.
New times can be built with the new/4 function or using the
~T (see sigil_T/2) sigil:
iex> ~T[23:00:07.001]
~T[23:00:07.001]
Both new/4 and sigil return a struct where the time fields can
be accessed directly:
iex> time = ~T[23:00:07.001]
iex> time.hour
23
iex> time.microsecond
{1000, 3}
The functions on this module work with the Time struct as well
as any struct that contains the same fields as the Time struct,
such as NaiveDateTime and DateTime. Such functions expect
Calendar.time/0 in their typespecs (instead of t/0).
Developers should avoid creating the Time structs directly
and instead rely on the functions provided by this module as well
as the ones in third-party calendar libraries.
Comparing times
Comparisons in Elixir using ==/2, >/2, </2 and similar are structural
and based on the Time struct fields. For proper comparison between
times, use the compare/2, after?/2 and before?/2 functions.
The existence of the compare/2 function in this module also allows
using Enum.min/2 and Enum.max/2 functions to get the minimum and
maximum time of an Enum. For example:
iex> Enum.min([~T[23:00:07.001], ~T[10:00:07.001]], Time)
~T[10:00:07.001]

 Summary

 Types

 t()

 Functions

 add(time, amount_to_add, unit \\ :second)

 Adds the amount_to_add of units to the given time.

 after?(time1, time2)

 Returns true if the first time is strictly later than the second.

 before?(time1, time2)

 Returns true if the first time is strictly earlier than the second.

 compare(time1, time2)

 Compares two time structs.

 convert(time, calendar)

 Converts given time to a different calendar.

 convert!(time, calendar)

 Similar to Time.convert/2, but raises an ArgumentError
if the conversion between the two calendars is not possible.

 diff(time1, time2, unit \\ :second)

 Returns the difference between two times, considering only the hour, minute,
second and microsecond.

 from_erl(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts an Erlang time tuple to a Time struct.

 from_erl!(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts an Erlang time tuple to a Time struct.

 from_iso8601(string, calendar \\ Calendar.ISO)

 Parses the extended "Local time" format described by
ISO 8601:2019.

 from_iso8601!(string, calendar \\ Calendar.ISO)

 Parses the extended "Local time" format described by
ISO 8601:2019.

 from_seconds_after_midnight(seconds, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Converts a number of seconds after midnight to a Time struct.

 new(hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Builds a new time.

 new!(hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 Builds a new time.

 shift(time, duration)

 Shifts given time by duration according to its calendar.

 to_erl(time)

 Converts given time to an Erlang time tuple.

 to_iso8601(time, format \\ :extended)

 Converts the given time to
ISO 8601:2019.

 to_seconds_after_midnight(time)

 Converts a Time struct to a number of seconds after midnight.

 to_string(time)

 Converts the given time to a string.

 truncate(time, precision)

 Returns the given time with the microsecond field truncated to the given
precision (:microsecond, millisecond or :second).

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 Returns the current time in UTC.

 utc_now(time_unit, calendar)

 Returns the current time in UTC, supporting a precision and a specific calendar.

 Types

 t()

 @type t() :: %Time{
 calendar: Calendar.calendar(),
 hour: Calendar.hour(),
 microsecond: Calendar.microsecond(),
 minute: Calendar.minute(),
 second: Calendar.second()
}

 Functions

 add(time, amount_to_add, unit \\ :second)

 (since 1.6.0)

 @spec add(Calendar.time(), integer(), :hour | :minute | System.time_unit()) :: t()

Adds the amount_to_add of units to the given time.
Prefer shift/2
Prefer shift/2 over add/3, as it offers a more ergonomic API.
add/3 always considers the unit to be computed according to
the Calendar.ISO.
Accepts an amount_to_add in any unit. unit can be
:hour, :minute, :second or any subsecond precision from
System.time_unit/0 for convenience but ultimately they are
all converted to microseconds. Negative values will move backwards
in time and the default precision is :second.
Note the result value represents the time of day, meaning that it is cyclic,
for instance, it will never go over 24 hours for the ISO calendar.
Examples
iex> Time.add(~T[10:00:00], 27000)
~T[17:30:00]
iex> Time.add(~T[11:00:00.005], 2400)
~T[11:40:00.005]
iex> Time.add(~T[00:00:00.000], 86_399_999, :millisecond)
~T[23:59:59.999]
Negative values are allowed:
iex> Time.add(~T[23:00:00], -60)
~T[22:59:00]
Note that the time is cyclic:
iex> Time.add(~T[17:10:05], 86400)
~T[17:10:05]
Hours and minutes are also supported:
iex> Time.add(~T[17:10:05], 2, :hour)
~T[19:10:05]
iex> Time.add(~T[17:10:05], 30, :minute)
~T[17:40:05]
This operation merges the precision of the time with the given unit:
iex> result = Time.add(~T[00:29:10], 21, :millisecond)
~T[00:29:10.021]
iex> result.microsecond
{21000, 3}

 after?(time1, time2)

 (since 1.15.0)

 @spec after?(Calendar.time(), Calendar.time()) :: boolean()

Returns true if the first time is strictly later than the second.
Examples
iex> Time.after?(~T[16:04:28], ~T[16:04:16])
true
iex> Time.after?(~T[16:04:16], ~T[16:04:16])
false
iex> Time.after?(~T[16:04:16.001], ~T[16:04:16.01])
false

 before?(time1, time2)

 (since 1.15.0)

 @spec before?(Calendar.time(), Calendar.time()) :: boolean()

Returns true if the first time is strictly earlier than the second.
Examples
iex> Time.before?(~T[16:04:16], ~T[16:04:28])
true
iex> Time.before?(~T[16:04:16], ~T[16:04:16])
false
iex> Time.before?(~T[16:04:16.01], ~T[16:04:16.001])
false

 compare(time1, time2)

 (since 1.4.0)

 @spec compare(Calendar.time(), Calendar.time()) :: :lt | :eq | :gt

Compares two time structs.
Returns :gt if first time is later than the second
and :lt for vice versa. If the two times are equal
:eq is returned.
Examples
iex> Time.compare(~T[16:04:16], ~T[16:04:28])
:lt
iex> Time.compare(~T[16:04:16], ~T[16:04:16])
:eq
iex> Time.compare(~T[16:04:16.01], ~T[16:04:16.001])
:gt
This function can also be used to compare across more
complex calendar types by considering only the time fields:
iex> Time.compare(~N[1900-01-01 16:04:16], ~N[2015-01-01 16:04:16])
:eq
iex> Time.compare(~N[2015-01-01 16:04:16], ~N[2015-01-01 16:04:28])
:lt
iex> Time.compare(~N[2015-01-01 16:04:16.01], ~N[2000-01-01 16:04:16.001])
:gt

 convert(time, calendar)

 (since 1.5.0)

 @spec convert(Calendar.time(), Calendar.calendar()) :: {:ok, t()} | {:error, atom()}

Converts given time to a different calendar.
Returns {:ok, time} if the conversion was successful,
or {:error, reason} if it was not, for some reason.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> Time.convert(~T[13:30:15], Calendar.Holocene)
{:ok, %Time{calendar: Calendar.Holocene, hour: 13, minute: 30, second: 15, microsecond: {0, 0}}}

 convert!(time, calendar)

 (since 1.5.0)

 @spec convert!(Calendar.time(), Calendar.calendar()) :: t()

Similar to Time.convert/2, but raises an ArgumentError
if the conversion between the two calendars is not possible.
Examples
Imagine someone implements Calendar.Holocene, a calendar based on the
Gregorian calendar that adds exactly 10 000 years to the current Gregorian
year:
iex> Time.convert!(~T[13:30:15], Calendar.Holocene)
%Time{calendar: Calendar.Holocene, hour: 13, minute: 30, second: 15, microsecond: {0, 0}}

 diff(time1, time2, unit \\ :second)

 (since 1.5.0)

 @spec diff(Calendar.time(), Calendar.time(), :hour | :minute | System.time_unit()) ::
 integer()

Returns the difference between two times, considering only the hour, minute,
second and microsecond.
As with the compare/2 function both Time structs and other structures
containing time can be used. If for instance a NaiveDateTime or DateTime
is passed, only the hour, minute, second, and microsecond is considered. Any
additional information about a date or time zone is ignored when calculating
the difference.
The answer can be returned in any :hour, :minute, :second or any
subsecond unit available from System.time_unit/0. If the first time
value is earlier than the second, a negative number is returned.
The unit is measured according to Calendar.ISO and defaults to :second.
Fractional results are not supported and are truncated.
Examples
iex> Time.diff(~T[00:29:12], ~T[00:29:10])
2

When passing a `NaiveDateTime` the date part is ignored.
iex> Time.diff(~N[2017-01-01 00:29:12], ~T[00:29:10])
2

Two `NaiveDateTime` structs could have big differences in the date
but only the time part is considered.
iex> Time.diff(~N[2017-01-01 00:29:12], ~N[1900-02-03 00:29:10])
2

iex> Time.diff(~T[00:29:12], ~T[00:29:10], :microsecond)
2_000_000
iex> Time.diff(~T[00:29:10], ~T[00:29:12], :microsecond)
-2_000_000

iex> Time.diff(~T[02:29:10], ~T[00:29:10], :hour)
2
iex> Time.diff(~T[02:29:10], ~T[00:29:11], :hour)
1

 from_erl(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec from_erl(
 :calendar.time(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: {:ok, t()} | {:error, atom()}

Converts an Erlang time tuple to a Time struct.
Examples
iex> Time.from_erl({23, 30, 15})
{:ok, ~T[23:30:15]}
iex> Time.from_erl({23, 30, 15}, 5000)
{:ok, ~T[23:30:15.005000]}
iex> Time.from_erl({23, 30, 15}, {5000, 3})
{:ok, ~T[23:30:15.005]}
iex> Time.from_erl({24, 30, 15})
{:error, :invalid_time}

 from_erl!(tuple, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec from_erl!(:calendar.time(), Calendar.microsecond(), Calendar.calendar()) :: t()

Converts an Erlang time tuple to a Time struct.
Examples
iex> Time.from_erl!({23, 30, 15})
~T[23:30:15]
iex> Time.from_erl!({23, 30, 15}, 5000)
~T[23:30:15.005000]
iex> Time.from_erl!({23, 30, 15}, {5000, 3})
~T[23:30:15.005]
iex> Time.from_erl!({24, 30, 15})
** (ArgumentError) cannot convert {24, 30, 15} to time, reason: :invalid_time

 from_iso8601(string, calendar \\ Calendar.ISO)

 @spec from_iso8601(String.t(), Calendar.calendar()) :: {:ok, t()} | {:error, atom()}

Parses the extended "Local time" format described by
ISO 8601:2019.
Time zone offset may be included in the string but they will be
simply discarded as such information is not included in times.
As specified in the standard, the separator "T" may be omitted if
desired as there is no ambiguity within this function.
Examples
iex> Time.from_iso8601("23:50:07")
{:ok, ~T[23:50:07]}
iex> Time.from_iso8601("23:50:07Z")
{:ok, ~T[23:50:07]}
iex> Time.from_iso8601("T23:50:07Z")
{:ok, ~T[23:50:07]}

iex> Time.from_iso8601("23:50:07,0123456")
{:ok, ~T[23:50:07.012345]}
iex> Time.from_iso8601("23:50:07.0123456")
{:ok, ~T[23:50:07.012345]}
iex> Time.from_iso8601("23:50:07.123Z")
{:ok, ~T[23:50:07.123]}

iex> Time.from_iso8601("2015:01:23 23-50-07")
{:error, :invalid_format}
iex> Time.from_iso8601("23:50:07A")
{:error, :invalid_format}
iex> Time.from_iso8601("23:50:07.")
{:error, :invalid_format}
iex> Time.from_iso8601("23:50:61")
{:error, :invalid_time}

 from_iso8601!(string, calendar \\ Calendar.ISO)

 @spec from_iso8601!(String.t(), Calendar.calendar()) :: t()

Parses the extended "Local time" format described by
ISO 8601:2019.
Raises if the format is invalid.
Examples
iex> Time.from_iso8601!("23:50:07,123Z")
~T[23:50:07.123]
iex> Time.from_iso8601!("23:50:07.123Z")
~T[23:50:07.123]
iex> Time.from_iso8601!("2015:01:23 23-50-07")
** (ArgumentError) cannot parse "2015:01:23 23-50-07" as time, reason: :invalid_format

 from_seconds_after_midnight(seconds, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec from_seconds_after_midnight(
 integer(),
 Calendar.microsecond(),
 Calendar.calendar()
) :: t()

Converts a number of seconds after midnight to a Time struct.
Examples
iex> Time.from_seconds_after_midnight(10_000)
~T[02:46:40]
iex> Time.from_seconds_after_midnight(30_000, {5000, 3})
~T[08:20:00.005]
iex> Time.from_seconds_after_midnight(-1)
~T[23:59:59]
iex> Time.from_seconds_after_midnight(100_000)
~T[03:46:40]

 new(hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 @spec new(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: {:ok, t()} | {:error, atom()}

Builds a new time.
Expects all values to be integers. Returns {:ok, time} if each
entry fits its appropriate range, returns {:error, reason} otherwise.
Microseconds can also be given with a precision, which must be an
integer between 0 and 6.
The built-in calendar does not support leap seconds.
Examples
iex> Time.new(0, 0, 0, 0)
{:ok, ~T[00:00:00.000000]}
iex> Time.new(23, 59, 59, 999_999)
{:ok, ~T[23:59:59.999999]}

iex> Time.new(24, 59, 59, 999_999)
{:error, :invalid_time}
iex> Time.new(23, 60, 59, 999_999)
{:error, :invalid_time}
iex> Time.new(23, 59, 60, 999_999)
{:error, :invalid_time}
iex> Time.new(23, 59, 59, 1_000_000)
{:error, :invalid_time}

Invalid precision
Time.new(23, 59, 59, {999_999, 10})
{:error, :invalid_time}

 new!(hour, minute, second, microsecond \\ {0, 0}, calendar \\ Calendar.ISO)

 (since 1.11.0)

 @spec new!(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond() | non_neg_integer(),
 Calendar.calendar()
) :: t()

Builds a new time.
Expects all values to be integers. Returns time if each
entry fits its appropriate range, raises if the time is invalid.
Microseconds can also be given with a precision, which must be an
integer between 0 and 6.
The built-in calendar does not support leap seconds.
Examples
iex> Time.new!(0, 0, 0, 0)
~T[00:00:00.000000]
iex> Time.new!(23, 59, 59, 999_999)
~T[23:59:59.999999]
iex> Time.new!(24, 59, 59, 999_999)
** (ArgumentError) cannot build time, reason: :invalid_time

 shift(time, duration)

 (since 1.17.0)

 @spec shift(Calendar.time(), Duration.t() | [unit_pair]) :: t()
when unit_pair:
 {:hour, integer()}
 | {:minute, integer()}
 | {:second, integer()}
 | {:microsecond, {integer(), 0..6}}

Shifts given time by duration according to its calendar.
Available duration units are: :hour, :minute, :second, :microsecond.
When using the default ISO calendar, durations are collapsed to seconds and
microseconds before they are applied.
Raises an ArgumentError when called with date scale units.
Examples
iex> Time.shift(~T[01:00:15], hour: 12)
~T[13:00:15]
iex> Time.shift(~T[01:35:00], hour: 6, minute: -15)
~T[07:20:00]
iex> Time.shift(~T[01:15:00], second: 125)
~T[01:17:05]
iex> Time.shift(~T[01:00:15], microsecond: {100, 6})
~T[01:00:15.000100]
iex> Time.shift(~T[01:15:00], Duration.new!(second: 65))
~T[01:16:05]

 to_erl(time)

 @spec to_erl(Calendar.time()) :: :calendar.time()

Converts given time to an Erlang time tuple.
WARNING: Loss of precision may occur, as Erlang time tuples
only contain hours/minutes/seconds.
Examples
iex> Time.to_erl(~T[23:30:15.999])
{23, 30, 15}

iex> Time.to_erl(~N[2010-04-17 23:30:15.999])
{23, 30, 15}

 to_iso8601(time, format \\ :extended)

 @spec to_iso8601(Calendar.time(), :extended | :basic) :: String.t()

Converts the given time to
ISO 8601:2019.
By default, Time.to_iso8601/2 returns times formatted in the "extended"
format, for human readability. It also supports the "basic" format through
passing the :basic option.
Examples
iex> Time.to_iso8601(~T[23:00:13])
"23:00:13"

iex> Time.to_iso8601(~T[23:00:13.001])
"23:00:13.001"

iex> Time.to_iso8601(~T[23:00:13.001], :basic)
"230013.001"

iex> Time.to_iso8601(~N[2010-04-17 23:00:13])
"23:00:13"

 to_seconds_after_midnight(time)

 (since 1.11.0)

 @spec to_seconds_after_midnight(Calendar.time()) :: {integer(), non_neg_integer()}

Converts a Time struct to a number of seconds after midnight.
The returned value is a two-element tuple with the number of seconds and microseconds.
Examples
iex> Time.to_seconds_after_midnight(~T[23:30:15])
{84615, 0}
iex> Time.to_seconds_after_midnight(~N[2010-04-17 23:30:15.999])
{84615, 999000}

 to_string(time)

 @spec to_string(Calendar.time()) :: String.t()

Converts the given time to a string.
Examples
iex> Time.to_string(~T[23:00:00])
"23:00:00"
iex> Time.to_string(~T[23:00:00.001])
"23:00:00.001"
iex> Time.to_string(~T[23:00:00.123456])
"23:00:00.123456"

iex> Time.to_string(~N[2015-01-01 23:00:00.001])
"23:00:00.001"
iex> Time.to_string(~N[2015-01-01 23:00:00.123456])
"23:00:00.123456"

 truncate(time, precision)

 (since 1.6.0)

 @spec truncate(t(), :microsecond | :millisecond | :second) :: t()

Returns the given time with the microsecond field truncated to the given
precision (:microsecond, millisecond or :second).
The given time is returned unchanged if it already has lower precision than
the given precision.
Examples
iex> Time.truncate(~T[01:01:01.123456], :microsecond)
~T[01:01:01.123456]

iex> Time.truncate(~T[01:01:01.123456], :millisecond)
~T[01:01:01.123]

iex> Time.truncate(~T[01:01:01.123456], :second)
~T[01:01:01]

 utc_now(calendar_or_time_unit \\ Calendar.ISO)

 (since 1.4.0)

 @spec utc_now(Calendar.calendar() | :native | :microsecond | :millisecond | :second) ::
 t()

Returns the current time in UTC.
You can pass a time unit to automatically truncate the resulting time.
The default unit if none gets passed is :native which results on a default resolution of microseconds.
Examples
iex> time = Time.utc_now()
iex> time.hour >= 0
true

iex> time = Time.utc_now(:second)
iex> time.microsecond
{0, 0}

 utc_now(time_unit, calendar)

 (since 1.19.0)

 @spec utc_now(:native | :microsecond | :millisecond | :second, Calendar.calendar()) ::
 t()

Returns the current time in UTC, supporting a precision and a specific calendar.
Examples
iex> time = Time.utc_now(:microsecond, Calendar.ISO)
iex> time.hour >= 0
true

iex> time = Time.utc_now(:second, Calendar.ISO)
iex> time.microsecond
{0, 0}

Tuple

Functions for working with tuples.
Please note the following functions for tuples are found in Kernel:
	elem/2 - accesses a tuple by index
	put_elem/3 - inserts a value into a tuple by index
	tuple_size/1 - gets the number of elements in a tuple

Tuples are intended as fixed-size containers for multiple elements.
To manipulate a collection of elements, use a list instead. Enum
functions do not work on tuples.
Tuples are denoted with curly braces:
iex> {}
{}
iex> {1, :two, "three"}
{1, :two, "three"}
A tuple may contain elements of different types, which are stored
contiguously in memory. Accessing any element takes constant time,
but modifying a tuple, which produces a shallow copy, takes linear time.
Tuples are good for reading data while lists are better for traversals.
Tuples are typically used either when a function has multiple return values
or for error handling. File.read/1 returns {:ok, contents} if reading
the given file is successful, or else {:error, reason} such as when
the file does not exist.
The functions in this module that add and remove elements from tuples are
rarely used in practice, as they typically imply tuples are being used as
collections. To append to a tuple, it is preferable to extract the elements
from the old tuple with pattern matching, and then create a new tuple:
tuple = {:ok, :example}

Avoid
result = Tuple.insert_at(tuple, 2, %{})

Prefer
{:ok, atom} = tuple
result = {:ok, atom, %{}}

 Summary

 Functions

 delete_at(tuple, index)

 Removes an element from a tuple.

 duplicate(data, size)

 Creates a new tuple.

 insert_at(tuple, index, value)

 Inserts an element into a tuple.

 product(tuple)

 Computes a product of tuple elements.

 sum(tuple)

 Computes a sum of tuple elements.

 to_list(tuple)

 Converts a tuple to a list.

 Functions

 delete_at(tuple, index)

 @spec delete_at(tuple(), non_neg_integer()) :: tuple()

Removes an element from a tuple.
Deletes the element at the given index from tuple.
Raises an ArgumentError if index is negative or greater than
or equal to the length of tuple. Index is zero-based.
Inlined by the compiler.
Examples
iex> tuple = {:foo, :bar, :baz}
iex> Tuple.delete_at(tuple, 0)
{:bar, :baz}

 duplicate(data, size)

 @spec duplicate(term(), non_neg_integer()) :: tuple()

Creates a new tuple.
Creates a tuple of size containing the
given data at every position.
Inlined by the compiler.
Examples
iex> Tuple.duplicate(:hello, 3)
{:hello, :hello, :hello}

 insert_at(tuple, index, value)

 @spec insert_at(tuple(), non_neg_integer(), term()) :: tuple()

Inserts an element into a tuple.
Inserts value into tuple at the given index.
Raises an ArgumentError if index is negative or greater than the
length of tuple. Index is zero-based.
Inlined by the compiler.
Examples
iex> tuple = {:bar, :baz}
iex> Tuple.insert_at(tuple, 0, :foo)
{:foo, :bar, :baz}
iex> Tuple.insert_at(tuple, 2, :bong)
{:bar, :baz, :bong}

 product(tuple)

 (since 1.12.0)

 @spec product(tuple()) :: number()

Computes a product of tuple elements.
Examples
iex> Tuple.product({255, 255})
65025
iex> Tuple.product({255, 1.0})
255.0
iex> Tuple.product({})
1

 sum(tuple)

 (since 1.12.0)

 @spec sum(tuple()) :: number()

Computes a sum of tuple elements.
Examples
iex> Tuple.sum({255, 255})
510
iex> Tuple.sum({255, 0.0})
255.0
iex> Tuple.sum({})
0

 to_list(tuple)

 @spec to_list(tuple()) :: list()

Converts a tuple to a list.
Returns a new list with all the tuple elements.
Inlined by the compiler.
Examples
iex> tuple = {:foo, :bar, :baz}
iex> Tuple.to_list(tuple)
[:foo, :bar, :baz]

URI

Utilities for working with URIs.
This module provides functions for working with URIs (for example, parsing
URIs or encoding query strings). The functions in this module are implemented
according to RFC 3986 and it also
provides additional functionality for handling "application/x-www-form-urlencoded"
segments.
Additionally, the Erlang :uri_string module provides additional
functionality such as RFC 3986 compliant URI normalization.

 Summary

 Types

 authority()

 deprecated

 t()

 Functions

 %URI{}

 The URI struct.

 append_path(uri, path)

 Appends path to the given uri.

 append_query(uri, query)

 Appends query to the given uri.

 char_reserved?(character)

 Checks if character is a reserved one in a URI.

 char_unescaped?(character)

 Checks if character is allowed unescaped in a URI.

 char_unreserved?(character)

 Checks if character is an unreserved one in a URI.

 decode(uri)

 Percent-unescapes a URI.

 decode_query(query, map \\ %{}, encoding \\ :www_form)

 Decodes query into a map.

 decode_www_form(string)

 Decodes string as "x-www-form-urlencoded".

 default_port(scheme)

 Returns the default port for a given scheme.

 default_port(scheme, port)

 Registers the default port for the given scheme.

 encode(string, predicate \\ &char_unescaped?/1)

 Percent-encodes all characters that require escaping in string.

 encode_query(enumerable, encoding \\ :www_form)

 Encodes enumerable into a query string using encoding.

 encode_www_form(string)

 Encodes string as "x-www-form-urlencoded".

 merge(uri, rel)

 Merges two URIs.

 new(uri)

 Creates a new URI struct by parsing and validating a string or from an existing URI.

 new!(uri)

 Similar to new/1 but raises URI.Error if an invalid string is given.

 parse(uri)

 Parses a URI into its components, without further validation.

 query_decoder(query, encoding \\ :www_form)

 Returns a stream of two-element tuples representing key-value pairs in the
given query.

 to_string(uri)

 Returns the string representation of the given URI struct.

 Types

 authority()

 This opaque is deprecated. The authority field is deprecated.

 @opaque authority()

 t()

 @type t() :: %URI{
 authority: authority(),
 fragment: nil | binary(),
 host: nil | binary(),
 path: nil | binary(),
 port: nil | :inet.port_number(),
 query: nil | binary(),
 scheme: nil | binary(),
 userinfo: nil | binary()
}

 Functions

 %URI{}

 (struct)

The URI struct.
The fields are defined to match the following URI representation
(with field names between brackets):
[scheme]://[userinfo]@[host]:[port][path]?[query]#[fragment]
Note the authority field is deprecated. parse/1 will still
populate it for backwards compatibility but you should generally
avoid setting or getting it.

 append_path(uri, path)

 (since 1.15.0)

 @spec append_path(t(), String.t()) :: t()

Appends path to the given uri.
Path must start with / and cannot contain additional URL components like
fragments or query strings. This function further assumes the path is valid and
it does not contain a query string or fragment parts.
Examples
iex> URI.append_path(URI.parse("http://example.com/foo/?x=1"), "/my-path") |> URI.to_string()
"http://example.com/foo/my-path?x=1"

iex> URI.append_path(URI.parse("http://example.com"), "my-path")
** (ArgumentError) path must start with "/", got: "my-path"

 append_query(uri, query)

 (since 1.14.0)

 @spec append_query(t(), binary()) :: t()

Appends query to the given uri.
The given query is not automatically encoded, use encode/2 or encode_www_form/1.
Examples
iex> URI.append_query(URI.parse("http://example.com/"), "x=1") |> URI.to_string()
"http://example.com/?x=1"

iex> URI.append_query(URI.parse("http://example.com/?x=1"), "y=2") |> URI.to_string()
"http://example.com/?x=1&y=2"

iex> URI.append_query(URI.parse("http://example.com/?x=1"), "x=2") |> URI.to_string()
"http://example.com/?x=1&x=2"

 char_reserved?(character)

 @spec char_reserved?(byte()) :: boolean()

Checks if character is a reserved one in a URI.
As specified in RFC 3986, section 2.2,
the following characters are reserved: :, /, ?, #, [,], @, !, $, &, ', (,), *, +, ,, ;, =
Examples
iex> URI.char_reserved?(?+)
true

 char_unescaped?(character)

 @spec char_unescaped?(byte()) :: boolean()

Checks if character is allowed unescaped in a URI.
This is the default used by URI.encode/2 where both
reserved and unreserved characters
are kept unescaped.
Examples
iex> URI.char_unescaped?(?{)
false

 char_unreserved?(character)

 @spec char_unreserved?(byte()) :: boolean()

Checks if character is an unreserved one in a URI.
As specified in RFC 3986, section 2.3,
the following characters are unreserved:
	Alphanumeric characters: A-Z, a-z, 0-9
	~, _, -, .

Examples
iex> URI.char_unreserved?(?_)
true

 decode(uri)

 @spec decode(binary()) :: binary()

Percent-unescapes a URI.
Examples
iex> URI.decode("https%3A%2F%2Felixir-lang.org")
"https://elixir-lang.org"

 decode_query(query, map \\ %{}, encoding \\ :www_form)

 @spec decode_query(binary(), %{optional(binary()) => binary()}, :rfc3986 | :www_form) ::
 %{
 optional(binary()) => binary()
 }

Decodes query into a map.
Given a query string in the form of key1=value1&key2=value2..., this
function inserts each key-value pair in the query string as one entry in the
given map. Keys and values in the resulting map will be binaries. Keys and
values will be percent-unescaped.
You can specify one of the following encoding options:
	:www_form - (default, since v1.12.0) keys and values are decoded as per
decode_www_form/1. This is the format typically used by browsers on
query strings and form data. It decodes "+" as " ".

	:rfc3986 - (since v1.12.0) keys and values are decoded as per
decode/1. The result is the same as :www_form except for leaving "+"
as is in line with RFC 3986.

Encoding defaults to :www_form for backward compatibility.
Use query_decoder/1 if you want to iterate over each value manually.
Examples
iex> URI.decode_query("foo=1&bar=2")
%{"bar" => "2", "foo" => "1"}

iex> URI.decode_query("percent=oh+yes%21", %{"starting" => "map"})
%{"percent" => "oh yes!", "starting" => "map"}

iex> URI.decode_query("percent=oh+yes%21", %{}, :rfc3986)
%{"percent" => "oh+yes!"}

 decode_www_form(string)

 @spec decode_www_form(binary()) :: binary()

Decodes string as "x-www-form-urlencoded".
Note "x-www-form-urlencoded" is not specified as part of
RFC 3986. However, it is a commonly used format to encode
query strings and form data by browsers.
Examples
iex> URI.decode_www_form("%3Call+in%2F")
"<all in/"

 default_port(scheme)

 @spec default_port(binary()) :: nil | non_neg_integer()

Returns the default port for a given scheme.
If the scheme is unknown to the URI module, this function returns
nil. The default port for any scheme can be configured globally
via default_port/2.
Examples
iex> URI.default_port("ftp")
21

iex> URI.default_port("ponzi")
nil

 default_port(scheme, port)

 @spec default_port(binary(), non_neg_integer()) :: :ok

Registers the default port for the given scheme.
After this function is called, port will be returned by
default_port/1 for the given scheme scheme. Note that this function
changes the default port for the given scheme globally, meaning for
every application.
It is recommended for this function to be invoked in your
application's start callback in case you want to register
new URIs.

 encode(string, predicate \\ &char_unescaped?/1)

 @spec encode(binary(), (byte() -> as_boolean(term()))) :: binary()

Percent-encodes all characters that require escaping in string.
The optional predicate argument specifies a function used to detect whether
a byte in the string should be escaped:
	if the function returns a truthy value, the byte should be kept as-is.
	if the function returns a falsy value, the byte should be escaped.

The predicate argument can use some built-in functions:
	URI.char_unescaped?/1 (default) - reserved characters (such as :
and /) or unreserved (such as letters and numbers) are kept as-is.
It's typically used to encode the whole URI.
	URI.char_unreserved?/1 - unreserved characters (such as letters and
numbers) are kept as-is. It's typically used to encode components in
a URI, such as query or fragment.
	URI.char_reserved?/1 - Reserved characters (such as : and /) are
kept as-is.

And, you can also use custom functions.
See encode_www_form/1 if you are interested in encoding string as
"x-www-form-urlencoded".
Examples
iex> URI.encode("ftp://s-ite.tld/?value=put it+й")
"ftp://s-ite.tld/?value=put%20it+%D0%B9"

iex> URI.encode("a string", &(&1 != ?i))
"a str%69ng"

 encode_query(enumerable, encoding \\ :www_form)

 @spec encode_query(Enumerable.t(), :rfc3986 | :www_form) :: binary()

Encodes enumerable into a query string using encoding.
Takes an enumerable that enumerates as a list of two-element
tuples (for instance, a map or a keyword list) and returns a string
in the form of key1=value1&key2=value2....
Keys and values can be any term that implements the String.Chars
protocol with the exception of lists, which are explicitly forbidden.
You can specify one of the following encoding strategies:
	:www_form - (default, since v1.12.0) keys and values are URL encoded as
per encode_www_form/1. This is the format typically used by browsers on
query strings and form data. It encodes " " as "+".

	:rfc3986 - (since v1.12.0) the same as :www_form except it encodes
" " as "%20" according RFC 3986.
This is the best option if you are encoding in a non-browser situation,
since encoding spaces as "+" can be ambiguous to URI parsers. This can
inadvertently lead to spaces being interpreted as literal plus signs.

Encoding defaults to :www_form for backward compatibility.
Examples
iex> query = %{"foo" => 1, "bar" => 2}
iex> URI.encode_query(query)
"bar=2&foo=1"

iex> query = %{"key" => "value with spaces"}
iex> URI.encode_query(query)
"key=value+with+spaces"

iex> query = %{"key" => "value with spaces"}
iex> URI.encode_query(query, :rfc3986)
"key=value%20with%20spaces"

iex> URI.encode_query(%{key: [:a, :list]})
** (ArgumentError) encode_query/2 values cannot be lists, got: [:a, :list]

 encode_www_form(string)

 @spec encode_www_form(binary()) :: binary()

Encodes string as "x-www-form-urlencoded".
Note "x-www-form-urlencoded" is not specified as part of
RFC 3986. However, it is a commonly used format to encode
query strings and form data by browsers.
Example
iex> URI.encode_www_form("put: it+й")
"put%3A+it%2B%D0%B9"

 merge(uri, rel)

 @spec merge(t() | binary(), t() | binary()) :: t()

Merges two URIs.
This function merges two URIs as per
RFC 3986, section 5.2.
Examples
iex> URI.merge(URI.parse("http://google.com"), "/query") |> to_string()
"http://google.com/query"

iex> URI.merge("http://example.com", "http://google.com") |> to_string()
"http://google.com"

 new(uri)

 (since 1.13.0)

 @spec new(t() | String.t()) :: {:ok, t()} | {:error, String.t()}

Creates a new URI struct by parsing and validating a string or from an existing URI.
If a %URI{} struct is given, it returns {:ok, uri} as is. If a string is
given, it will parse and validate it. If the string is valid, it returns
{:ok, uri}, otherwise it returns {:error, part} with the invalid part
of the URI. For parsing URIs without further validation, see parse/1.
This function can parse both absolute and relative URLs. You can check
if a URI is absolute or relative by checking if the scheme field is
nil or not.
When a URI is given without a port, the value returned by URI.default_port/1
for the URI's scheme is used for the :port field. The scheme is also
normalized to lowercase.
Examples
iex> URI.new("https://elixir-lang.org/")
{:ok, %URI{
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: 443,
 query: nil,
 scheme: "https",
 userinfo: nil
}}

iex> URI.new("//elixir-lang.org/")
{:ok, %URI{
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}}

iex> URI.new("/foo/bar")
{:ok, %URI{
 fragment: nil,
 host: nil,
 path: "/foo/bar",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}}

iex> URI.new("foo/bar")
{:ok, %URI{
 fragment: nil,
 host: nil,
 path: "foo/bar",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}}

iex> URI.new("//[fe80::]/")
{:ok, %URI{
 fragment: nil,
 host: "fe80::",
 path: "/",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}}

iex> URI.new("https:?query")
{:ok, %URI{
 fragment: nil,
 host: nil,
 path: nil,
 port: 443,
 query: "query",
 scheme: "https",
 userinfo: nil
}}

iex> URI.new("/invalid_greater_than_in_path/>")
{:error, ">"}
Giving an existing URI simply returns it wrapped in a tuple:
iex> {:ok, uri} = URI.new("https://elixir-lang.org/")
iex> URI.new(uri)
{:ok, %URI{
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: 443,
 query: nil,
 scheme: "https",
 userinfo: nil
}}

 new!(uri)

 (since 1.13.0)

 @spec new!(t() | String.t()) :: t()

Similar to new/1 but raises URI.Error if an invalid string is given.
Examples
iex> URI.new!("https://elixir-lang.org/")
%URI{
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: 443,
 query: nil,
 scheme: "https",
 userinfo: nil
}

iex> URI.new!("/invalid_greater_than_in_path/>")
** (URI.Error) cannot parse due to reason invalid_uri: ">"
Giving an existing URI simply returns it:
iex> uri = URI.new!("https://elixir-lang.org/")
iex> URI.new!(uri)
%URI{
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: 443,
 query: nil,
 scheme: "https",
 userinfo: nil
}

 parse(uri)

 @spec parse(t() | binary()) :: t()

Parses a URI into its components, without further validation.
This function can parse both absolute and relative URLs. You can check
if a URI is absolute or relative by checking if the scheme field is
nil or not. Furthermore, this function expects both absolute and
relative URIs to be well-formed and does not perform any validation.
See the "Examples" section below. Use new/1 if you want to validate
the URI fields after parsing.
When a URI is given without a port, the value returned by URI.default_port/1
for the URI's scheme is used for the :port field. The scheme is also
normalized to lowercase.
If a %URI{} struct is given to this function, this function returns it
unmodified.
:authority field
This function sets the deprecated field :authority for backwards-compatibility reasons.
Examples
iex> URI.parse("https://elixir-lang.org/")
%URI{
 authority: "elixir-lang.org",
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: 443,
 query: nil,
 scheme: "https",
 userinfo: nil
}

iex> URI.parse("//elixir-lang.org/")
%URI{
 authority: "elixir-lang.org",
 fragment: nil,
 host: "elixir-lang.org",
 path: "/",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}

iex> URI.parse("/foo/bar")
%URI{
 fragment: nil,
 host: nil,
 path: "/foo/bar",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}

iex> URI.parse("foo/bar")
%URI{
 fragment: nil,
 host: nil,
 path: "foo/bar",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}
In contrast to URI.new/1, this function will parse poorly-formed
URIs, for example:
iex> URI.parse("/invalid_greater_than_in_path/>")
%URI{
 fragment: nil,
 host: nil,
 path: "/invalid_greater_than_in_path/>",
 port: nil,
 query: nil,
 scheme: nil,
 userinfo: nil
}
Another example is a URI with brackets in query strings. It is accepted
by parse/1, it is commonly accepted by browsers, but it will be refused
by new/1:
iex> URI.parse("/?foo[bar]=baz")
%URI{
 fragment: nil,
 host: nil,
 path: "/",
 port: nil,
 query: "foo[bar]=baz",
 scheme: nil,
 userinfo: nil
}

 query_decoder(query, encoding \\ :www_form)

 @spec query_decoder(binary(), :rfc3986 | :www_form) :: Enumerable.t()

Returns a stream of two-element tuples representing key-value pairs in the
given query.
Key and value in each tuple will be binaries and will be percent-unescaped.
You can specify one of the following encoding options:
	:www_form - (default, since v1.12.0) keys and values are decoded as per
decode_www_form/1. This is the format typically used by browsers on
query strings and form data. It decodes "+" as " ".

	:rfc3986 - (since v1.12.0) keys and values are decoded as per
decode/1. The result is the same as :www_form except for leaving "+"
as is in line with RFC 3986.

Encoding defaults to :www_form for backward compatibility.
Examples
iex> URI.query_decoder("foo=1&bar=2") |> Enum.to_list()
[{"foo", "1"}, {"bar", "2"}]

iex> URI.query_decoder("food=bread%26butter&drinks=tap%20water+please") |> Enum.to_list()
[{"food", "bread&butter"}, {"drinks", "tap water please"}]

iex> URI.query_decoder("food=bread%26butter&drinks=tap%20water+please", :rfc3986) |> Enum.to_list()
[{"food", "bread&butter"}, {"drinks", "tap water+please"}]

 to_string(uri)

 @spec to_string(t()) :: binary()

Returns the string representation of the given URI struct.
Examples
iex> uri = URI.parse("http://google.com")
iex> URI.to_string(uri)
"http://google.com"

iex> uri = URI.parse("foo://bar.baz")
iex> URI.to_string(uri)
"foo://bar.baz"

Version

Functions for parsing and matching versions against requirements.
A version is a string in a specific format or a Version
generated after parsing via Version.parse/1.
Although Elixir projects are not required to follow SemVer,
they must follow the format outlined on SemVer 2.0 schema.
Versions
In a nutshell, a version is represented by three numbers:
MAJOR.MINOR.PATCH
Pre-releases are supported by optionally appending a hyphen and a series of
period-separated identifiers immediately following the patch version.
Identifiers consist of only ASCII alphanumeric characters and hyphens ([0-9A-Za-z-]):
"1.0.0-alpha.3"
Build information can be added by appending a plus sign and a series of
dot-separated identifiers immediately following the patch or pre-release version.
Identifiers consist of only ASCII alphanumeric characters and hyphens ([0-9A-Za-z-]):
"1.0.0-alpha.3+20130417140000.amd64"
Requirements
Requirements allow you to specify which versions of a given
dependency you are willing to work against. Requirements support the common
comparison operators such as >, >=, <, <=, and == that work as one
would expect, and additionally the special operator ~> described in detail
further below.
Only version 2.0.0
"== 2.0.0"

Anything later than 2.0.0
"> 2.0.0"
You can skip the operator, which is equivalent to ==:
Only version 2.0.0
"2.0.0"
Requirements also support and and or for complex conditions:
2.0.0 and later until 2.1.0
">= 2.0.0 and < 2.1.0"
Since the example above is such a common requirement, it can
be expressed as:
"~> 2.0.0"
~> will never include pre-release versions of its upper bound,
regardless of the usage of the :allow_pre option, or whether the operand
is a pre-release version. It can also be used to set an upper bound on only the major
version part. See the table below for ~> requirements and
their corresponding translations.
	~>	Translation
	~> 2.0.0	>= 2.0.0 and < 2.1.0
	~> 2.1.2	>= 2.1.2 and < 2.2.0
	~> 2.1.3-dev	>= 2.1.3-dev and < 2.2.0
	~> 2.0	>= 2.0.0 and < 3.0.0
	~> 2.1	>= 2.1.0 and < 3.0.0

The requirement operand after the ~> is allowed to omit the patch version,
allowing us to express ~> 2.1 or ~> 2.1-dev, something that wouldn't be allowed
when using the common comparison operators.
When the :allow_pre option is set false in Version.match?/3, the requirement
will not match a pre-release version unless the operand is a pre-release version.
The default is to always allow pre-releases but note that in
Hex :allow_pre is set to false. See the table below for examples.
	Requirement	Version	:allow_pre	Matches
	~> 2.0	2.1.0	true or false	true
	~> 2.0	3.0.0	true or false	false
	~> 2.0.0	2.0.5	true or false	true
	~> 2.0.0	2.1.0	true or false	false
	~> 2.1.2	2.1.6-dev	true	true
	~> 2.1.2	2.1.6-dev	false	false
	~> 2.1-dev	2.2.0-dev	true or false	true
	~> 2.1.2-dev	2.1.6-dev	true or false	true
	>= 2.1.0	2.2.0-dev	true	true
	>= 2.1.0	2.2.0-dev	false	false
	>= 2.1.0-dev	2.2.6-dev	true or false	true

 Summary

 Types

 build()

 major()

 match_opts()

 minor()

 patch()

 pre()

 requirement()

 t()

 version()

 Functions

 %Version{}

 The Version struct.

 compare(version1, version2)

 Compares two versions.

 compile_requirement(requirement)

 Compiles a requirement to an internal representation that may optimize matching.

 match?(version, requirement, opts \\ [])

 Checks if the given version matches the specification.

 parse(string)

 Parses a version string into a Version struct.

 parse!(string)

 Parses a version string into a Version.

 parse_requirement(string)

 Parses a version requirement string into a Version.Requirement struct.

 parse_requirement!(string)

 Parses a version requirement string into a Version.Requirement struct.

 to_string(version)

 Converts the given version to a string.

 Types

 build()

 @type build() :: String.t() | nil

 major()

 @type major() :: non_neg_integer()

 match_opts()

 @type match_opts() :: [{:allow_pre, boolean()}]

 minor()

 @type minor() :: non_neg_integer()

 patch()

 @type patch() :: non_neg_integer()

 pre()

 @type pre() :: [String.t() | non_neg_integer()]

 requirement()

 @type requirement() :: String.t() | Version.Requirement.t()

 t()

 @type t() :: %Version{
 build: build(),
 major: major(),
 minor: minor(),
 patch: patch(),
 pre: pre()
}

 version()

 @type version() :: String.t() | t()

 Functions

 %Version{}

 (struct)

The Version struct.
It contains the fields :major, :minor, :patch, :pre, and
:build according to SemVer 2.0, where :pre is a list.
You can read those fields but you should not create a new Version
directly via the struct syntax. Instead use the functions in this
module.

 compare(version1, version2)

 @spec compare(version(), version()) :: :gt | :eq | :lt

Compares two versions.
Returns :gt if the first version is greater than the second one, and :lt
for vice versa. If the two versions are equal, :eq is returned.
Pre-releases are strictly less than their corresponding release versions.
Patch segments are compared lexicographically if they are alphanumeric, and
numerically otherwise.
Build segments are ignored: if two versions differ only in their build segment
they are considered to be equal.
Raises a Version.InvalidVersionError exception if any of the two given
versions are not parsable. If given an already parsed version this function
won't raise.
Examples
iex> Version.compare("2.0.1-alpha1", "2.0.0")
:gt

iex> Version.compare("1.0.0-beta", "1.0.0-rc1")
:lt

iex> Version.compare("1.0.0-10", "1.0.0-2")
:gt

iex> Version.compare("2.0.1+build0", "2.0.1")
:eq

iex> Version.compare("invalid", "2.0.1")
** (Version.InvalidVersionError) invalid version: "invalid"

 compile_requirement(requirement)

 @spec compile_requirement(Version.Requirement.t()) :: Version.Requirement.t()

Compiles a requirement to an internal representation that may optimize matching.
The internal representation is opaque.

 match?(version, requirement, opts \\ [])

 @spec match?(version(), requirement(), match_opts()) :: boolean()

Checks if the given version matches the specification.
Returns true if version satisfies requirement, false otherwise.
Raises a Version.InvalidRequirementError exception if requirement is not
parsable, or a Version.InvalidVersionError exception if version is not parsable.
If given an already parsed version and requirement this function won't
raise.
Options
	:allow_pre (boolean) - when false, pre-release versions will not match
unless the operand is a pre-release version. Defaults to true.
For examples, please refer to the table above under the "Requirements" section.

Examples
iex> Version.match?("2.0.0", "> 1.0.0")
true

iex> Version.match?("2.0.0", "== 1.0.0")
false

iex> Version.match?("2.1.6-dev", "~> 2.1.2")
true

iex> Version.match?("2.1.6-dev", "~> 2.1.2", allow_pre: false)
false

iex> Version.match?("foo", "== 1.0.0")
** (Version.InvalidVersionError) invalid version: "foo"

iex> Version.match?("2.0.0", "== == 1.0.0")
** (Version.InvalidRequirementError) invalid requirement: "== == 1.0.0"

 parse(string)

 @spec parse(String.t()) :: {:ok, t()} | :error

Parses a version string into a Version struct.
Examples
iex> Version.parse("2.0.1-alpha1")
{:ok, %Version{major: 2, minor: 0, patch: 1, pre: ["alpha1"]}}

iex> Version.parse("2.0-alpha1")
:error

 parse!(string)

 @spec parse!(String.t()) :: t()

Parses a version string into a Version.
If string is an invalid version, a Version.InvalidVersionError is raised.
Examples
iex> Version.parse!("2.0.1-alpha1")
%Version{major: 2, minor: 0, patch: 1, pre: ["alpha1"]}

iex> Version.parse!("2.0-alpha1")
** (Version.InvalidVersionError) invalid version: "2.0-alpha1"

 parse_requirement(string)

 @spec parse_requirement(String.t()) :: {:ok, Version.Requirement.t()} | :error

Parses a version requirement string into a Version.Requirement struct.
Examples
iex> {:ok, requirement} = Version.parse_requirement("== 2.0.1")
iex> requirement
Version.parse_requirement!("== 2.0.1")

iex> Version.parse_requirement("== == 2.0.1")
:error

 parse_requirement!(string)

 (since 1.8.0)

 @spec parse_requirement!(String.t()) :: Version.Requirement.t()

Parses a version requirement string into a Version.Requirement struct.
If string is an invalid requirement, a Version.InvalidRequirementError is raised.
Examples
iex> Version.parse_requirement!("== 2.0.1")
Version.parse_requirement!("== 2.0.1")

iex> Version.parse_requirement!("== == 2.0.1")
** (Version.InvalidRequirementError) invalid requirement: "== == 2.0.1"

 to_string(version)

 (since 1.14.0)

 @spec to_string(t()) :: String.t()

Converts the given version to a string.
Examples
iex> Version.to_string(%Version{major: 1, minor: 2, patch: 3})
"1.2.3"
iex> Version.to_string(Version.parse!("1.14.0-rc.0+build0"))
"1.14.0-rc.0+build0"

Version.Requirement

A struct that holds version requirement information.
The struct fields are private and should not be accessed.
See the "Requirements" section in the Version module
for more information.

 Summary

 Types

 t()

 Types

 t()

 @opaque t()

Access behaviour

Key-based access to data structures.
The Access module defines a behaviour for dynamically accessing
keys of any type in a data structure via the data[key] syntax.
Access supports keyword lists (Keyword) and maps (Map) out
of the box. Keywords supports only atoms keys, keys for maps can
be of any type. Both return nil if the key does not exist:
iex> keywords = [a: 1, b: 2]
iex> keywords[:a]
1
iex> keywords[:c]
nil

iex> map = %{a: 1, b: 2}
iex> map[:a]
1

iex> star_ratings = %{1.0 => "★", 1.5 => "★☆", 2.0 => "★★"}
iex> star_ratings[1.5]
"★☆"
This syntax is very convenient as it can be nested arbitrarily:
iex> keywords = [a: 1, b: 2]
iex> keywords[:c][:unknown]
nil
This works because accessing anything on a nil value, returns
nil itself:
iex> nil[:a]
nil
Maps and structs
While the access syntax is allowed in maps via map[key],
if your map is made of predefined atom keys, you should prefer
to access those atom keys with map.key instead of map[key],
as map.key will raise if the key is missing (which is not
supposed to happen if the keys are predefined) or if map is
nil.
Similarly, since structs are maps and structs have predefined
keys, they only allow the struct.key syntax and they do not
allow the struct[key] access syntax.
In other words, the map[key] syntax is loose, returning nil
for missing keys, while the map.key syntax is strict, raising
for both nil values and missing keys.
To bridge this gap, Elixir provides the get_in/1 and get_in/2
functions, which are capable of traversing nested data structures,
even in the presence of nils:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_in(users["john"].age)
27
iex> get_in(users["unknown"].age)
nil
Notice how, even if no user was found, get_in/1 returned nil.
Outside of get_in/1, trying to access the field .age on nil
would raise.
The get_in/2 function takes one step further by allowing
different accessors to be mixed in. For example, given a user
map with the :name and :languages keys, here is how to
access the name of all programming languages:
 iex> languages = [
 ...> %{name: "elixir", type: :functional},
 ...> %{name: "c", type: :procedural}
 ...>]
 iex> user = %{name: "john", languages: languages}
 iex> get_in(user, [:languages, Access.all(), :name])
 ["elixir", "c"]
This module provides convenience functions for traversing other
structures, like tuples and lists. As we will see next, they can
even be used to update nested data structures.
If you want to learn more about the dual nature of maps in Elixir,
as they can be either for structured data or as a key-value store,
see the Map module.
Updating nested data structures
The access syntax can also be used with the Kernel.put_in/2,
Kernel.update_in/2, Kernel.get_and_update_in/2, and Kernel.pop_in/1
macros to further manipulate values in nested data structures:
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> put_in(users["john"].age, 28)
%{"john" => %{age: 28}, "meg" => %{age: 23}}
As shown in the previous section, you can also use the
Kernel.put_in/3, Kernel.update_in/3, Kernel.pop_in/2, and
Kernel.get_and_update_in/3 functions to provide nested
custom accessors. For instance, given a user map with the
:name and :languages keys, here is how to deeply traverse
the map and convert all language names to uppercase:
iex> languages = [
...> %{name: "elixir", type: :functional},
...> %{name: "c", type: :procedural}
...>]
iex> user = %{name: "john", languages: languages}
iex> update_in(user, [:languages, Access.all(), :name], &String.upcase/1)
%{
 name: "john",
 languages: [
 %{name: "ELIXIR", type: :functional},
 %{name: "C", type: :procedural}
]
}
See the functions key/1, key!/1, elem/1, and all/0 for
some of the available accessors.

 Summary

 Types

 access_fun(data, current_value)

 container()

 get_and_update_fun(data, current_value)

 get_fun(data)

 key()

 nil_container()

 t()

 value()

 Callbacks

 fetch(term, key)

 Invoked in order to access the value stored under key in the given term term.

 get_and_update(data, key, function)

 Invoked in order to access the value under key and update it at the same time.

 pop(data, key)

 Invoked to "pop" the value under key out of the given data structure.

 Functions

 all()

 Returns a function that accesses all the elements in a list.

 at(index)

 Returns a function that accesses the element at index (zero based) of a list.

 at!(index)

 Same as at/1 except that it raises Enum.OutOfBoundsError
if the given index is out of bounds.

 elem(index)

 Returns a function that accesses the element at the given index in a tuple.

 fetch(container, key)

 Fetches the value for the given key in a container (a map, keyword
list, or struct that implements the Access behaviour).

 fetch!(container, key)

 Same as fetch/2 but returns the value directly,
or raises a KeyError exception if key is not found.

 filter(func)

 Returns a function that accesses all elements of a list that match the provided predicate.

 find(predicate)

 Returns a function that accesses the first element of a list that matches the provided predicate.

 get(container, key, default \\ nil)

 Gets the value for the given key in a container (a map, keyword
list, or struct that implements the Access behaviour).

 get_and_update(container, key, fun)

 Gets and updates the given key in a container (a map, a keyword list,
a struct that implements the Access behaviour).

 key(key, default \\ nil)

 Returns a function that accesses the given key in a map/struct.

 key!(key)

 Returns a function that accesses the given key in a map/struct.

 pop(container, key)

 Removes the entry with a given key from a container (a map, keyword
list, or struct that implements the Access behaviour).

 slice(range)

 Returns a function that accesses all items of a list that are within the provided range.

 values()

 Returns a function that accesses all values in a map or a keyword list.

 Types

 access_fun(data, current_value)

 @type access_fun(data, current_value) ::
 get_fun(data) | get_and_update_fun(data, current_value)

 container()

 @type container() :: keyword() | struct() | map()

 get_and_update_fun(data, current_value)

 @type get_and_update_fun(data, current_value) :: (:get_and_update,
 data,
 (term() -> term()) ->
 {current_value,
 new_data :: container()}
 | :pop)

 get_fun(data)

 @type get_fun(data) :: (:get, data, (term() -> term()) -> new_data :: container())

 key()

 @type key() :: any()

 nil_container()

 @type nil_container() :: nil

 t()

 @type t() :: container() | nil_container() | any()

 value()

 @type value() :: any()

 Callbacks

 fetch(term, key)

 @callback fetch(term :: t(), key()) :: {:ok, value()} | :error

Invoked in order to access the value stored under key in the given term term.
This function should return {:ok, value} where value is the value under
key if the key exists in the term, or :error if the key does not exist in
the term.
Many of the functions defined in the Access module internally call this
function. This function is also used when the square-brackets access syntax
(structure[key]) is used: the fetch/2 callback implemented by the module
that defines the structure struct is invoked and if it returns {:ok, value} then value is returned, or if it returns :error then nil is
returned.
See the Map.fetch/2 and Keyword.fetch/2 implementations for examples of
how to implement this callback.

 get_and_update(data, key, function)

 @callback get_and_update(data, key(), (value() | nil ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, new_data :: data}
when current_value: value(), data: container()

Invoked in order to access the value under key and update it at the same time.
The implementation of this callback should invoke fun with the value under
key in the passed structure data, or with nil if key is not present in it.
This function must return either {current_value, new_value} or :pop.
If the passed function returns {current_value, new_value},
the return value of this callback should be {current_value, new_data}, where:
	current_value is the retrieved value (which can be operated on before being returned)

	new_value is the new value to be stored under key

	new_data is data after updating the value of key with new_value.

If the passed function returns :pop, the return value of this callback
must be {value, new_data} where value is the value under key
(or nil if not present) and new_data is data without key.
See the implementations of Map.get_and_update/3 or Keyword.get_and_update/3
for more examples.

 pop(data, key)

 @callback pop(data, key()) :: {value(), data} when data: container()

Invoked to "pop" the value under key out of the given data structure.
When key exists in the given structure data, the implementation should
return a {value, new_data} tuple where value is the value that was under
key and new_data is term without key.
When key is not present in the given structure, a tuple {value, data}
should be returned, where value is implementation-defined.
See the implementations for Map.pop/3 or Keyword.pop/3 for more examples.

 Functions

 all()

 @spec all() :: access_fun(data :: list(), current_value :: list())

Returns a function that accesses all the elements in a list.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> list = [%{name: "john"}, %{name: "mary"}]
iex> get_in(list, [Access.all(), :name])
["john", "mary"]
iex> get_and_update_in(list, [Access.all(), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{["john", "mary"], [%{name: "JOHN"}, %{name: "MARY"}]}
iex> pop_in(list, [Access.all(), :name])
{["john", "mary"], [%{}, %{}]}
Here is an example that traverses the list dropping even
numbers and multiplying odd numbers by 2:
iex> require Integer
iex> get_and_update_in([1, 2, 3, 4, 5], [Access.all()], fn num ->
...> if Integer.is_even(num), do: :pop, else: {num, num * 2}
...> end)
{[1, 2, 3, 4, 5], [2, 6, 10]}
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Access.all()])
** (RuntimeError) Access.all/0 expected a list, got: %{}

 at(index)

 @spec at(integer()) :: access_fun(data :: list(), current_value :: term())

Returns a function that accesses the element at index (zero based) of a list.
Keep in mind that index lookups in lists take linear time: the larger the list,
the longer it will take to access its index. Therefore index-based operations
are generally avoided in favor of other functions in the Enum module.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> list = [%{name: "john"}, %{name: "mary"}]
iex> get_in(list, [Access.at(1), :name])
"mary"
iex> get_in(list, [Access.at(-1), :name])
"mary"
iex> get_and_update_in(list, [Access.at(0), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", [%{name: "JOHN"}, %{name: "mary"}]}
iex> get_and_update_in(list, [Access.at(-1), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"mary", [%{name: "john"}, %{name: "MARY"}]}
at/1 can also be used to pop elements out of a list or
a key inside of a list:
iex> list = [%{name: "john"}, %{name: "mary"}]
iex> pop_in(list, [Access.at(0)])
{%{name: "john"}, [%{name: "mary"}]}
iex> pop_in(list, [Access.at(0), :name])
{"john", [%{}, %{name: "mary"}]}
When the index is out of bounds, nil is returned and the update function is never called:
iex> list = [%{name: "john"}, %{name: "mary"}]
iex> get_in(list, [Access.at(10), :name])
nil
iex> get_and_update_in(list, [Access.at(10), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{nil, [%{name: "john"}, %{name: "mary"}]}
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Access.at(1)])
** (RuntimeError) Access.at/1 expected a list, got: %{}

 at!(index)

 (since 1.11.0)

 @spec at!(integer()) :: access_fun(data :: list(), current_value :: term())

Same as at/1 except that it raises Enum.OutOfBoundsError
if the given index is out of bounds.
Examples
iex> get_in([:a, :b, :c], [Access.at!(2)])
:c
iex> get_in([:a, :b, :c], [Access.at!(3)])
** (Enum.OutOfBoundsError) out of bounds error at position 3 when traversing enumerable [:a, :b, :c]

 elem(index)

 @spec elem(non_neg_integer()) :: access_fun(data :: tuple(), current_value :: term())

Returns a function that accesses the element at the given index in a tuple.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
The returned function raises if index is out of bounds.
Note that popping elements out of tuples is not possible and raises an
error.
Examples
iex> map = %{user: {"john", 27}}
iex> get_in(map, [:user, Access.elem(0)])
"john"
iex> get_and_update_in(map, [:user, Access.elem(0)], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", %{user: {"JOHN", 27}}}
iex> pop_in(map, [:user, Access.elem(0)])
** (RuntimeError) cannot pop data from a tuple
An error is raised if the accessed structure is not a tuple:
iex> get_in(%{}, [Access.elem(0)])
** (RuntimeError) Access.elem/1 expected a tuple, got: %{}

 fetch(container, key)

 @spec fetch(container(), term()) :: {:ok, term()} | :error

 @spec fetch(nil_container(), any()) :: :error

Fetches the value for the given key in a container (a map, keyword
list, or struct that implements the Access behaviour).
Returns {:ok, value} where value is the value under key if there is such
a key, or :error if key is not found.
Examples
iex> Access.fetch(%{name: "meg", age: 26}, :name)
{:ok, "meg"}

iex> Access.fetch([ordered: true, on_timeout: :exit], :timeout)
:error

 fetch!(container, key)

 (since 1.10.0)

 @spec fetch!(container(), term()) :: term()

Same as fetch/2 but returns the value directly,
or raises a KeyError exception if key is not found.
Examples
iex> Access.fetch!(%{name: "meg", age: 26}, :name)
"meg"

 filter(func)

 (since 1.6.0)

 @spec filter((term() -> boolean())) ::
 access_fun(data :: list(), current_value :: list())

Returns a function that accesses all elements of a list that match the provided predicate.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Access.filter(&(&1.salary > 20)), :name])
["francine"]
iex> get_and_update_in(list, [Access.filter(&(&1.salary <= 20)), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{["john"], [%{name: "JOHN", salary: 10}, %{name: "francine", salary: 30}]}
filter/1 can also be used to pop elements out of a list or
a key inside of a list:
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> pop_in(list, [Access.filter(&(&1.salary >= 20))])
{[%{name: "francine", salary: 30}], [%{name: "john", salary: 10}]}
iex> pop_in(list, [Access.filter(&(&1.salary >= 20)), :name])
{["francine"], [%{name: "john", salary: 10}, %{salary: 30}]}
When no match is found, an empty list is returned and the update function is never called
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Access.filter(&(&1.salary >= 50)), :name])
[]
iex> get_and_update_in(list, [Access.filter(&(&1.salary >= 50)), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{[], [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]}
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Access.filter(fn a -> a == 10 end)])
** (RuntimeError) Access.filter/1 expected a list, got: %{}

 find(predicate)

 (since 1.17.0)

 @spec find((term() -> as_boolean(term()))) ::
 access_fun(data :: list(), current_value :: term())

Returns a function that accesses the first element of a list that matches the provided predicate.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Access.find(&(&1.salary > 20)), :name])
"francine"
iex> get_and_update_in(list, [Access.find(&(&1.salary <= 40)), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", [%{name: "JOHN", salary: 10}, %{name: "francine", salary: 30}]}
find/1 can also be used to pop the first found element out of a list or
a key inside of a list:
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> pop_in(list, [Access.find(&(&1.salary <= 40))])
{%{name: "john", salary: 10}, [%{name: "francine", salary: 30}]}
When no match is found, nil is returned and the update function is never called
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Access.find(&(&1.salary >= 50)), :name])
nil
iex> get_and_update_in(list, [Access.find(&(&1.salary >= 50)), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{nil, [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]}
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Access.find(fn a -> a == 10 end)])
** (RuntimeError) Access.find/1 expected a list, got: %{}

 get(container, key, default \\ nil)

 @spec get(container(), term(), term()) :: term()

 @spec get(nil_container(), any(), default) :: default when default: var

Gets the value for the given key in a container (a map, keyword
list, or struct that implements the Access behaviour).
Returns the value under key if there is such a key, or default if key is
not found.
Examples
iex> Access.get(%{name: "john"}, :name, "default name")
"john"
iex> Access.get(%{name: "john"}, :age, 25)
25

iex> Access.get([ordered: true], :timeout)
nil

 get_and_update(container, key, fun)

 @spec get_and_update(data, key(), (value() | nil ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, new_data :: data}
when data: container(), current_value: var

Gets and updates the given key in a container (a map, a keyword list,
a struct that implements the Access behaviour).
The fun argument receives the value of key (or nil if key is not
present in container) and must return a two-element tuple {current_value, new_value}:
the "get" value current_value (the retrieved value, which can be operated on before
being returned) and the new value to be stored under key (new_value).
fun may also return :pop, which means the current value
should be removed from the container and returned.
The returned value is a two-element tuple with the "get" value returned by
fun and a new container with the updated value under key.
Examples
iex> Access.get_and_update([a: 1], :a, fn current_value ->
...> {current_value, current_value + 1}
...> end)
{1, [a: 2]}

 key(key, default \\ nil)

 @spec key(key(), term()) ::
 access_fun(data :: struct() | map(), current_value :: term())

Returns a function that accesses the given key in a map/struct.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
The returned function uses the default value if the key does not exist.
This can be used to specify defaults and safely traverse missing keys:
iex> get_in(%{}, [Access.key(:user, %{}), Access.key(:name, "meg")])
"meg"
Such is also useful when using update functions, allowing us to introduce
values as we traverse the data structure for updates:
iex> put_in(%{}, [Access.key(:user, %{}), Access.key(:name)], "Mary")
%{user: %{name: "Mary"}}
Examples
iex> map = %{user: %{name: "john"}}
iex> get_in(map, [Access.key(:unknown, %{}), Access.key(:name, "john")])
"john"
iex> get_and_update_in(map, [Access.key(:user), Access.key(:name)], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", %{user: %{name: "JOHN"}}}
iex> pop_in(map, [Access.key(:user), Access.key(:name)])
{"john", %{user: %{}}}
An error is raised if the accessed structure is not a map or a struct:
iex> get_in([], [Access.key(:foo)])
** (BadMapError) expected a map, got:
...

 key!(key)

 @spec key!(key()) :: access_fun(data :: struct() | map(), current_value :: term())

Returns a function that accesses the given key in a map/struct.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Similar to key/2, but the returned function raises if the key does not exist.
Examples
iex> map = %{user: %{name: "john"}}
iex> get_in(map, [Access.key!(:user), Access.key!(:name)])
"john"
iex> get_and_update_in(map, [Access.key!(:user), Access.key!(:name)], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", %{user: %{name: "JOHN"}}}
iex> pop_in(map, [Access.key!(:user), Access.key!(:name)])
{"john", %{user: %{}}}
iex> get_in(map, [Access.key!(:user), Access.key!(:unknown)])
** (KeyError) key :unknown not found in:
...
The examples above could be partially written as:
iex> map = %{user: %{name: "john"}}
iex> map.user.name
"john"
iex> get_and_update_in(map.user.name, fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{"john", %{user: %{name: "JOHN"}}}
However, it is not possible to remove fields using the dot notation,
as it is implied those fields must also be present. In any case,
Access.key!/1 is useful when the key is not known in advance
and must be accessed dynamically.
An error is raised if the accessed structure is not a map/struct:
iex> get_in([], [Access.key!(:foo)])
** (RuntimeError) Access.key!/1 expected a map/struct, got: []

 pop(container, key)

 @spec pop(data, key()) :: {value(), data} when data: container()

Removes the entry with a given key from a container (a map, keyword
list, or struct that implements the Access behaviour).
Returns a tuple containing the value associated with the key and the
updated container. nil is returned for the value if the key isn't
in the container.
Examples
With a map:
iex> Access.pop(%{name: "Elixir", creator: "Valim"}, :name)
{"Elixir", %{creator: "Valim"}}
A keyword list:
iex> Access.pop([name: "Elixir", creator: "Valim"], :name)
{"Elixir", [creator: "Valim"]}
An unknown key:
iex> Access.pop(%{name: "Elixir", creator: "Valim"}, :year)
{nil, %{creator: "Valim", name: "Elixir"}}

 slice(range)

 (since 1.14)

 @spec slice(Range.t()) :: access_fun(data :: list(), current_value :: list())

Returns a function that accesses all items of a list that are within the provided range.
The range will be normalized following the same rules from Enum.slice/2.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}, %{name: "vitor", salary: 25}]
iex> get_in(list, [Access.slice(1..2), :name])
["francine", "vitor"]
iex> get_and_update_in(list, [Access.slice(1..3//2), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{["francine"], [%{name: "john", salary: 10}, %{name: "FRANCINE", salary: 30}, %{name: "vitor", salary: 25}]}
slice/1 can also be used to pop elements out of a list or
a key inside of a list:
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}, %{name: "vitor", salary: 25}]
iex> pop_in(list, [Access.slice(-2..-1)])
{[%{name: "francine", salary: 30}, %{name: "vitor", salary: 25}], [%{name: "john", salary: 10}]}
iex> pop_in(list, [Access.slice(-2..-1), :name])
{["francine", "vitor"], [%{name: "john", salary: 10}, %{salary: 30}, %{salary: 25}]}
When no match is found, an empty list is returned and the update function is never called
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}, %{name: "vitor", salary: 25}]
iex> get_in(list, [Access.slice(5..10//2), :name])
[]
iex> get_and_update_in(list, [Access.slice(5..10//2), :name], fn prev ->
...> {prev, String.upcase(prev)}
...> end)
{[], [%{name: "john", salary: 10}, %{name: "francine", salary: 30}, %{name: "vitor", salary: 25}]}
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Access.slice(2..10//3)])
** (ArgumentError) Access.slice/1 expected a list, got: %{}
An error is raised if the step of the range is negative:
iex> get_in([], [Access.slice(2..10//-1)])
** (ArgumentError) Access.slice/1 does not accept ranges with negative steps, got: 2..10//-1

 values()

 (since 1.19.0)

 @spec values() :: access_fun(data :: map() | keyword(), current_value :: list())

Returns a function that accesses all values in a map or a keyword list.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Examples
iex> users = %{"john" => %{age: 27}, "meg" => %{age: 23}}
iex> get_in(users, [Access.values(), :age]) |> Enum.sort()
[23, 27]
iex> update_in(users, [Access.values(), :age], fn age -> age + 1 end)
%{"john" => %{age: 28}, "meg" => %{age: 24}}
iex> put_in(users, [Access.values(), :planet], "Earth")
%{"john" => %{age: 27, planet: "Earth"}, "meg" => %{age: 23, planet: "Earth"}}
Values in keyword lists can be accessed as well:
iex> users = [john: %{age: 27}, meg: %{age: 23}]
iex> get_and_update_in(users, [Access.values(), :age], fn age -> {age, age + 1} end)
{[27, 23], [john: %{age: 28}, meg: %{age: 24}]}
By returning :pop from an accessor function, you can remove the accessed key and value
from the map or keyword list:
iex> require Integer
iex> numbers = [one: 1, two: 2, three: 3, four: 4]
iex> get_and_update_in(numbers, [Access.values()], fn num ->
...> if Integer.is_even(num), do: :pop, else: {num, to_string(num)}
...> end)
{[1, 2, 3, 4], [one: "1", three: "3"]}
An error is raised if the accessed structure is not a map nor a keyword list:
iex> get_in([1, 2, 3], [Access.values()])
** (RuntimeError) Access.values/0 expected a map or a keyword list, got: [1, 2, 3]

Date.Range

Returns an inclusive range between dates.
Ranges must be created with the Date.range/2 or Date.range/3 function.
The following fields are public:
	:first - the initial date on the range
	:last - the last date on the range
	:step - (since v1.12.0) the step

The remaining fields are private and should not be accessed.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Date.Range{
 first: Date.t(),
 first_in_iso_days: days(),
 last: Date.t(),
 last_in_iso_days: days(),
 step: pos_integer() | neg_integer()
}

Enum

Functions for working with collections (known as enumerables).
In Elixir, an enumerable is any data type that implements the
Enumerable protocol. Lists ([1, 2, 3]), Maps (%{foo: 1, bar: 2})
and Ranges (1..3) are common data types used as enumerables:
iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]

iex> Enum.sum([1, 2, 3])
6

iex> Enum.map(1..3, fn x -> x * 2 end)
[2, 4, 6]

iex> Enum.sum(1..3)
6

iex> map = %{"a" => 1, "b" => 2}
iex> Enum.map(map, fn {k, v} -> {k, v * 2} end)
[{"a", 2}, {"b", 4}]
Many other enumerables exist in the language, such as MapSets
and the data type returned by File.stream!/3 which allows a file to be
traversed as if it was an enumerable.
For a general overview of all functions in the Enum module, see
the Enum cheatsheet.
The functions in this module work in linear time. This means that, the
time it takes to perform an operation grows at the same rate as the length
of the enumerable. This is expected on operations such as Enum.map/2.
After all, if we want to traverse every element on a list, the longer the
list, the more elements we need to traverse, and the longer it will take.
This linear behavior should also be expected on operations like count/1,
member?/2, at/2 and similar. While Elixir does allow data types to
provide performant variants for such operations, you should not expect it
to always be available, since the Enum module is meant to work with a
large variety of data types and not all data types can provide optimized
behavior.
Finally, note the functions in the Enum module are eager: they will
traverse the enumerable as soon as they are invoked. This is particularly
dangerous when working with infinite enumerables. In such cases, you should
use the Stream module, which allows you to lazily express computations,
without traversing collections, and work with possibly infinite collections.
See the Stream module for examples and documentation.

 Summary

 Types

 acc()

 default()

 element()

 index()

 Zero-based index. It can also be a negative integer.

 t()

 Functions

 all?(enumerable)

 Returns true if all elements in enumerable are truthy.

 all?(enumerable, fun)

 Returns true if fun.(element) is truthy for all elements in enumerable.

 any?(enumerable)

 Returns true if at least one element in enumerable is truthy.

 any?(enumerable, fun)

 Returns true if fun.(element) is truthy for at least one element in enumerable.

 at(enumerable, index, default \\ nil)

 Finds the element at the given index (zero-based).

 chunk_by(enumerable, fun)

 Splits enumerable on every element for which fun returns a new
value.

 chunk_every(enumerable, count)

 Shortcut to chunk_every(enumerable, count, count).

 chunk_every(enumerable, count, step, leftover \\ [])

 Returns list of lists containing count elements each, where
each new chunk starts step elements into the enumerable.

 chunk_while(enumerable, acc, chunk_fun, after_fun)

 Chunks the enumerable with fine grained control when every chunk is emitted.

 concat(enumerables)

 Given an enumerable of enumerables, concatenates the enumerables into
a single list.

 concat(left, right)

 Concatenates the enumerable on the right with the enumerable on the
left.

 count(enumerable)

 Returns the size of the enumerable.

 count(enumerable, fun)

 Returns the count of elements in the enumerable for which fun returns
a truthy value.

 count_until(enumerable, limit)

 Counts the enumerable stopping at limit.

 count_until(enumerable, fun, limit)

 Counts the elements in the enumerable for which fun returns a truthy value, stopping at limit.

 dedup(enumerable)

 Enumerates the enumerable, returning a list where all consecutive
duplicate elements are collapsed to a single element.

 dedup_by(enumerable, fun)

 Enumerates the enumerable, returning a list where all consecutive
duplicate elements are collapsed to a single element.

 drop(enumerable, amount)

 Drops the amount of elements from the enumerable.

 drop_every(enumerable, nth)

 Returns a list of every nth element in the enumerable dropped,
starting with the first element.

 drop_while(enumerable, fun)

 Drops elements at the beginning of the enumerable while fun returns a
truthy value.

 each(enumerable, fun)

 Invokes the given fun for each element in the enumerable.

 empty?(enumerable)

 Determines if the enumerable is empty.

 fetch(enumerable, index)

 Finds the element at the given index (zero-based).

 fetch!(enumerable, index)

 Finds the element at the given index (zero-based).

 filter(enumerable, fun)

 Filters the enumerable, i.e. returns only those elements
for which fun returns a truthy value.

 find(enumerable, default \\ nil, fun)

 Returns the first element for which fun returns a truthy value.
If no such element is found, returns default.

 find_index(enumerable, fun)

 Similar to find/3, but returns the index (zero-based)
of the element instead of the element itself.

 find_value(enumerable, default \\ nil, fun)

 Similar to find/3, but returns the value of the function
invocation instead of the element itself.

 flat_map(enumerable, fun)

 Maps the given fun over enumerable and flattens the result only one level deep.

 flat_map_reduce(enumerable, acc, fun)

 Maps and reduces an enumerable, flattening the results only one level deep.

 frequencies(enumerable)

 Returns a map with keys as unique elements of enumerable and values
as the count of every element.

 frequencies_by(enumerable, key_fun)

 Returns a map with keys as unique elements given by key_fun and values
as the count of every element.

 group_by(enumerable, key_fun, value_fun \\ fn x -> x end)

 Splits the enumerable into groups based on key_fun.

 intersperse(enumerable, separator)

 Intersperses separator between each element of the enumeration.

 into(enumerable, collectable)

 Inserts the given enumerable into a collectable.

 into(enumerable, collectable, transform)

 Inserts the given enumerable into a collectable according to the
transformation function.

 join(enumerable, joiner \\ "")

 Joins the given enumerable into a string using joiner as a
separator.

 map(enumerable, fun)

 Returns a list where each element is the result of invoking
fun on each corresponding element of enumerable.

 map_every(enumerable, nth, fun)

 Returns a list of results of invoking fun on every nth
element of enumerable, starting with the first element.

 map_intersperse(enumerable, separator, mapper)

 Maps and intersperses the given enumerable in one pass.

 map_join(enumerable, joiner \\ "", mapper)

 Maps and joins the given enumerable in one pass.

 map_reduce(enumerable, acc, fun)

 Invokes the given function to each element in the enumerable to reduce
it to a single element, while keeping an accumulator.

 max(enumerable, sorter \\ &>=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns the maximal element in the enumerable according
to Erlang's term ordering.

 max_by(enumerable, fun, sorter \\ &>=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns the maximal element in the enumerable as calculated
by the given fun.

 member?(enumerable, element)

 Checks if element exists within the enumerable.

 min(enumerable, sorter \\ &<=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns the minimal element in the enumerable according
to Erlang's term ordering.

 min_by(enumerable, fun, sorter \\ &<=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns the minimal element in the enumerable as calculated
by the given fun.

 min_max(enumerable, sorter_or_empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns a tuple with the minimal and the maximal elements in the
enumerable.

 min_max(enumerable, sorter, empty_fallback)

 min_max_by(enumerable, fun, sorter_or_empty_fallback \\ &</2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 Returns a tuple with the minimal and the maximal elements in the
enumerable as calculated by the given function.

 product(enumerable)

 Returns the product of all elements.

 product_by(enumerable, mapper)

 Maps and computes the product of the given enumerable in one pass.

 random(enumerable)

 Returns a random element of an enumerable.

 reduce(enumerable, fun)

 Invokes fun for each element in the enumerable with the
accumulator.

 reduce(enumerable, acc, fun)

 Invokes fun for each element in the enumerable with the accumulator.

 reduce_while(enumerable, acc, fun)

 Reduces enumerable until fun returns {:halt, term}.

 reject(enumerable, fun)

 Returns a list of elements in enumerable excluding those for which the function fun returns
a truthy value.

 reverse(enumerable)

 Returns a list of elements in enumerable in reverse order.

 reverse(enumerable, tail)

 Reverses the elements in enumerable, appends the tail, and returns
it as a list.

 reverse_slice(enumerable, start_index, count)

 Reverses the enumerable in the range from initial start_index
through count elements.

 scan(enumerable, fun)

 Passes each element from enumerable to the fun as the first argument,
stores the fun result in a list and passes the result as the second argument
for the next computation.

 scan(enumerable, acc, fun)

 Passes each element from enumerable to the fun as the first argument,
stores the fun result in a list and passes the result as the second argument
for the next computation.

 shuffle(enumerable)

 Returns a list with the elements of enumerable shuffled.

 slice(enumerable, index_range)

 Returns a subset list of the given enumerable by index_range.

 slice(enumerable, start_index, amount)

 Returns a subset list of the given enumerable, from start_index (zero-based)
with amount number of elements if available.

 slide(enumerable, range_or_single_index, insertion_index)

 Slides a single or multiple elements given by range_or_single_index from enumerable
to insertion_index.

 sort(enumerable)

 Sorts the enumerable according to Erlang's term ordering.

 sort(enumerable, sorter)

 Sorts the enumerable by the given function.

 sort_by(enumerable, mapper, sorter \\ :asc)

 Sorts the mapped results of the enumerable according to the provided sorter
function.

 split(enumerable, count)

 Splits the enumerable into two enumerables, leaving count
elements in the first one.

 split_while(enumerable, fun)

 Splits enumerable in two at the position of the element for which
fun returns a falsy value (false or nil) for the first time.

 split_with(enumerable, fun)

 Splits the enumerable in two lists according to the given function fun.

 sum(enumerable)

 Returns the sum of all elements.

 sum_by(enumerable, mapper)

 Maps and sums the given enumerable in one pass.

 take(enumerable, amount)

 Takes an amount of elements from the beginning or the end of the enumerable.

 take_every(enumerable, nth)

 Returns a list of every nth element in the enumerable,
starting with the first element.

 take_random(enumerable, count)

 Takes count random elements from enumerable.

 take_while(enumerable, fun)

 Takes the elements from the beginning of the enumerable while fun returns
a truthy value.

 to_list(enumerable)

 Converts enumerable to a list.

 uniq(enumerable)

 Enumerates the enumerable, removing all duplicate elements.

 uniq_by(enumerable, fun)

 Enumerates the enumerable, by removing the elements for which
function fun returned duplicate elements.

 unzip(enumerable)

 Opposite of zip/2. Extracts two-element tuples from the
given enumerable and groups them together.

 with_index(enumerable, fun_or_offset \\ 0)

 Returns the enumerable with each element wrapped in a tuple
alongside its index or according to a given function.

 zip(enumerables)

 Zips corresponding elements from a finite collection of enumerables
into a list of tuples.

 zip(enumerable1, enumerable2)

 Zips corresponding elements from two enumerables into a list
of tuples.

 zip_reduce(enumerables, acc, reducer)

 Reduces over all of the given enumerables, halting as soon as any enumerable is
empty.

 zip_reduce(left, right, acc, reducer)

 Reduces over two enumerables halting as soon as either enumerable is empty.

 zip_with(enumerables, zip_fun)

 Zips corresponding elements from a finite collection of enumerables
into list, transforming them with the zip_fun function as it goes.

 zip_with(enumerable1, enumerable2, zip_fun)

 Zips corresponding elements from two enumerables into a list, transforming them with
the zip_fun function as it goes.

 Types

 acc()

 @type acc() :: any()

 default()

 @type default() :: any()

 element()

 @type element() :: any()

 index()

 @type index() :: integer()

Zero-based index. It can also be a negative integer.

 t()

 @type t() :: Enumerable.t()

 Functions

 all?(enumerable)

 @spec all?(t()) :: boolean()

Returns true if all elements in enumerable are truthy.
When an element has a falsy value (false or nil) iteration stops immediately
and false is returned. In all other cases true is returned.
Examples
iex> Enum.all?([1, 2, 3])
true

iex> Enum.all?([1, nil, 3])
false

iex> Enum.all?([])
true

 all?(enumerable, fun)

 @spec all?(t(), (element() -> as_boolean(term()))) :: boolean()

Returns true if fun.(element) is truthy for all elements in enumerable.
Iterates over enumerable and invokes fun on each element. If fun ever
returns a falsy value (false or nil), iteration stops immediately and
false is returned. Otherwise, true is returned.
Examples
iex> Enum.all?([2, 4, 6], fn x -> rem(x, 2) == 0 end)
true

iex> Enum.all?([2, 3, 4], fn x -> rem(x, 2) == 0 end)
false

iex> Enum.all?([], fn _ -> nil end)
true
As the last example shows, Enum.all?/2 returns true if enumerable is
empty, regardless of fun. In an empty enumerable there is no element for
which fun returns a falsy value, so the result must be true. This is a
well-defined logical argument for empty collections.

 any?(enumerable)

 @spec any?(t()) :: boolean()

Returns true if at least one element in enumerable is truthy.
When an element has a truthy value (neither false nor nil) iteration stops
immediately and true is returned. In all other cases false is returned.
Examples
iex> Enum.any?([false, false, false])
false

iex> Enum.any?([false, true, false])
true

iex> Enum.any?([])
false

 any?(enumerable, fun)

 @spec any?(t(), (element() -> as_boolean(term()))) :: boolean()

Returns true if fun.(element) is truthy for at least one element in enumerable.
Iterates over the enumerable and invokes fun on each element. When an invocation
of fun returns a truthy value (neither false nor nil) iteration stops
immediately and true is returned. In all other cases false is returned.
Examples
iex> Enum.any?([2, 4, 6], fn x -> rem(x, 2) == 1 end)
false

iex> Enum.any?([2, 3, 4], fn x -> rem(x, 2) == 1 end)
true

iex> Enum.any?([], fn x -> x > 0 end)
false

 at(enumerable, index, default \\ nil)

 @spec at(t(), index(), default()) :: element() | default()

Finds the element at the given index (zero-based).
Returns default if index is out of bounds.
A negative index can be passed, which means the enumerable is
enumerated once and the index is counted from the end (for example,
-1 finds the last element).
Examples
iex> Enum.at([2, 4, 6], 0)
2

iex> Enum.at([2, 4, 6], 2)
6

iex> Enum.at([2, 4, 6], 4)
nil

iex> Enum.at([2, 4, 6], 4, :none)
:none

 chunk_by(enumerable, fun)

 @spec chunk_by(t(), (element() -> any())) :: [list()]

Splits enumerable on every element for which fun returns a new
value.
Returns a list of lists.
Examples
iex> Enum.chunk_by([1, 2, 2, 3, 4, 4, 6, 7, 7], &(rem(&1, 2) == 1))
[[1], [2, 2], [3], [4, 4, 6], [7, 7]]

 chunk_every(enumerable, count)

 (since 1.5.0)

 @spec chunk_every(t(), pos_integer()) :: [list()]

Shortcut to chunk_every(enumerable, count, count).

 chunk_every(enumerable, count, step, leftover \\ [])

 (since 1.5.0)

 @spec chunk_every(t(), pos_integer(), pos_integer(), t() | :discard) :: [list()]

Returns list of lists containing count elements each, where
each new chunk starts step elements into the enumerable.
step is optional and, if not passed, defaults to count, i.e.
chunks do not overlap. Chunking will stop as soon as the collection
ends or when we emit an incomplete chunk.
If the last chunk does not have count elements to fill the chunk,
elements are taken from leftover to fill in the chunk. If leftover
does not have enough elements to fill the chunk, then a partial chunk
is returned with less than count elements.
If :discard is given in leftover, the last chunk is discarded
unless it has exactly count elements.
Examples
iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 2)
[[1, 2], [3, 4], [5, 6]]

iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, :discard)
[[1, 2, 3], [3, 4, 5]]

iex> Enum.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, [7])
[[1, 2, 3], [3, 4, 5], [5, 6, 7]]

iex> Enum.chunk_every([1, 2, 3, 4], 3, 3, [])
[[1, 2, 3], [4]]

iex> Enum.chunk_every([1, 2, 3, 4], 10)
[[1, 2, 3, 4]]

iex> Enum.chunk_every([1, 2, 3, 4, 5], 2, 3, [])
[[1, 2], [4, 5]]

iex> Enum.chunk_every([1, 2, 3, 4], 3, 3, Stream.cycle([0]))
[[1, 2, 3], [4, 0, 0]]

 chunk_while(enumerable, acc, chunk_fun, after_fun)

 (since 1.5.0)

 @spec chunk_while(
 t(),
 acc(),
 (element(), acc() -> {:cont, chunk, acc()} | {:cont, acc()} | {:halt, acc()}),
 (acc() -> {:cont, chunk, acc()} | {:cont, acc()})
) :: Enumerable.t()
when chunk: any()

Chunks the enumerable with fine grained control when every chunk is emitted.
chunk_fun receives the current element and the accumulator and must return:
	{:cont, chunk, acc} to emit a chunk and continue with the accumulator
	{:cont, acc} to not emit any chunk and continue with the accumulator
	{:halt, acc} to halt chunking over the enumerable.

after_fun is invoked with the final accumulator when iteration is
finished (or halted) to handle any trailing elements that were returned
as part of an accumulator, but were not emitted as a chunk by chunk_fun.
It must return:
	{:cont, chunk, acc} to emit a chunk. The chunk will be appended to the
list of already emitted chunks.
	{:cont, acc} to not emit a chunk

The acc in after_fun is required in order to mirror the tuple format
from chunk_fun but it will be discarded since the traversal is complete.
Returns a list of emitted chunks.
Examples
iex> chunk_fun = fn element, acc ->
...> if rem(element, 2) == 0 do
...> {:cont, Enum.reverse([element | acc]), []}
...> else
...> {:cont, [element | acc]}
...> end
...> end
iex> after_fun = fn
...> [] -> {:cont, []}
...> acc -> {:cont, Enum.reverse(acc), []}
...> end
iex> Enum.chunk_while(1..10, [], chunk_fun, after_fun)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
iex> Enum.chunk_while([1, 2, 3, 5, 7], [], chunk_fun, after_fun)
[[1, 2], [3, 5, 7]]

 concat(enumerables)

 @spec concat(t()) :: t()

Given an enumerable of enumerables, concatenates the enumerables into
a single list.
Examples
iex> Enum.concat([1..3, 4..6, 7..9])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

iex> Enum.concat([[1, [2], 3], [4], [5, 6]])
[1, [2], 3, 4, 5, 6]

 concat(left, right)

 @spec concat(t(), t()) :: t()

Concatenates the enumerable on the right with the enumerable on the
left.
This function produces the same result as the ++/2 operator
for lists.
Examples
iex> Enum.concat(1..3, 4..6)
[1, 2, 3, 4, 5, 6]

iex> Enum.concat([1, 2, 3], [4, 5, 6])
[1, 2, 3, 4, 5, 6]

 count(enumerable)

 @spec count(t()) :: non_neg_integer()

Returns the size of the enumerable.
Examples
iex> Enum.count([1, 2, 3])
3

 count(enumerable, fun)

 @spec count(t(), (element() -> as_boolean(term()))) :: non_neg_integer()

Returns the count of elements in the enumerable for which fun returns
a truthy value.
Examples
iex> Enum.count([1, 2, 3, 4, 5], fn x -> rem(x, 2) == 0 end)
2

 count_until(enumerable, limit)

 (since 1.12.0)

 @spec count_until(t(), pos_integer()) :: non_neg_integer()

Counts the enumerable stopping at limit.
This is useful for checking certain properties of the count of an enumerable
without having to actually count the entire enumerable. For example, if you
wanted to check that the count was exactly, at least, or more than a value.
If the enumerable implements Enumerable.count/1, the enumerable is
not traversed and we return the lower of the two numbers. To force
enumeration, use count_until/3 with fn _ -> true end as the second
argument.
Examples
iex> Enum.count_until(1..20, 5)
5
iex> Enum.count_until(1..20, 50)
20
iex> Enum.count_until(1..10, 10) == 10 # At least 10
true
iex> Enum.count_until(1..11, 10 + 1) > 10 # More than 10
true
iex> Enum.count_until(1..5, 10) < 10 # Less than 10
true
iex> Enum.count_until(1..10, 10 + 1) == 10 # Exactly ten
true

 count_until(enumerable, fun, limit)

 (since 1.12.0)

 @spec count_until(t(), (element() -> as_boolean(term())), pos_integer()) ::
 non_neg_integer()

Counts the elements in the enumerable for which fun returns a truthy value, stopping at limit.
See count/2 and count_until/2 for more information.
Examples
iex> Enum.count_until(1..20, fn x -> rem(x, 2) == 0 end, 7)
7
iex> Enum.count_until(1..20, fn x -> rem(x, 2) == 0 end, 11)
10

 dedup(enumerable)

 @spec dedup(t()) :: list()

Enumerates the enumerable, returning a list where all consecutive
duplicate elements are collapsed to a single element.
Elements are compared using ===/2.
If you want to remove all duplicate elements, regardless of order,
see uniq/1.
Examples
iex> Enum.dedup([1, 2, 3, 3, 2, 1])
[1, 2, 3, 2, 1]

iex> Enum.dedup([1, 1, 2, 2.0, :three, :three])
[1, 2, 2.0, :three]

 dedup_by(enumerable, fun)

 @spec dedup_by(t(), (element() -> term())) :: list()

Enumerates the enumerable, returning a list where all consecutive
duplicate elements are collapsed to a single element.
The function fun maps every element to a term which is used to
determine if two elements are duplicates.
Examples
iex> Enum.dedup_by([{1, :a}, {2, :b}, {2, :c}, {1, :a}], fn {x, _} -> x end)
[{1, :a}, {2, :b}, {1, :a}]

iex> Enum.dedup_by([5, 1, 2, 3, 2, 1], fn x -> x > 2 end)
[5, 1, 3, 2]

 drop(enumerable, amount)

 @spec drop(t(), integer()) :: list()

Drops the amount of elements from the enumerable.
If a negative amount is given, the amount of last values will be dropped.
The enumerable will be enumerated once to retrieve the proper index and
the remaining calculation is performed from the end.
Examples
iex> Enum.drop([1, 2, 3], 2)
[3]

iex> Enum.drop([1, 2, 3], 10)
[]

iex> Enum.drop([1, 2, 3], 0)
[1, 2, 3]

iex> Enum.drop([1, 2, 3], -1)
[1, 2]

 drop_every(enumerable, nth)

 @spec drop_every(t(), non_neg_integer()) :: list()

Returns a list of every nth element in the enumerable dropped,
starting with the first element.
The first element is always dropped, unless nth is 0.
The second argument specifying every nth element must be a non-negative
integer.
Examples
iex> Enum.drop_every(1..10, 2)
[2, 4, 6, 8, 10]

iex> Enum.drop_every(1..10, 0)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

iex> Enum.drop_every([1, 2, 3], 1)
[]

 drop_while(enumerable, fun)

 @spec drop_while(t(), (element() -> as_boolean(term()))) :: list()

Drops elements at the beginning of the enumerable while fun returns a
truthy value.
Examples
iex> Enum.drop_while([1, 2, 3, 2, 1], fn x -> x < 3 end)
[3, 2, 1]

 each(enumerable, fun)

 @spec each(t(), (element() -> any())) :: :ok

Invokes the given fun for each element in the enumerable.
Returns :ok.
Examples
Enum.each(["some", "example"], fn x -> IO.puts(x) end)
some
example
#=> :ok

 empty?(enumerable)

 @spec empty?(t()) :: boolean()

Determines if the enumerable is empty.
Returns true if enumerable is empty, otherwise false.
Examples
iex> Enum.empty?([])
true

iex> Enum.empty?([1, 2, 3])
false

 fetch(enumerable, index)

 @spec fetch(t(), index()) :: {:ok, element()} | :error

Finds the element at the given index (zero-based).
Returns {:ok, element} if found, otherwise :error.
A negative index can be passed, which means the enumerable is
enumerated once and the index is counted from the end (for example,
-1 fetches the last element).
Examples
iex> Enum.fetch([2, 4, 6], 0)
{:ok, 2}

iex> Enum.fetch([2, 4, 6], -3)
{:ok, 2}

iex> Enum.fetch([2, 4, 6], 2)
{:ok, 6}

iex> Enum.fetch([2, 4, 6], 4)
:error

 fetch!(enumerable, index)

 @spec fetch!(t(), index()) :: element()

Finds the element at the given index (zero-based).
Raises OutOfBoundsError if the given index is outside the range of
the enumerable.
Examples
iex> Enum.fetch!([2, 4, 6], 0)
2

iex> Enum.fetch!([2, 4, 6], 2)
6

iex> Enum.fetch!([2, 4, 6], 4)
** (Enum.OutOfBoundsError) out of bounds error at position 4 when traversing enumerable [2, 4, 6]

 filter(enumerable, fun)

 @spec filter(t(), (element() -> as_boolean(term()))) :: list()

Filters the enumerable, i.e. returns only those elements
for which fun returns a truthy value.
See also reject/2 which discards all elements where the
function returns a truthy value.
Examples
iex> Enum.filter([1, 2, 3], fn x -> rem(x, 2) == 0 end)
[2]
iex> Enum.filter(["apple", "pear", "banana"], fn fruit -> String.contains?(fruit, "a") end)
["apple", "pear", "banana"]
iex> Enum.filter([4, 21, 24, 904], fn seconds -> seconds > 1000 end)
[]
Keep in mind that filter is not capable of filtering and
transforming an element at the same time. If you would like
to do so, consider using flat_map/2. For example, if you
want to convert all strings that represent an integer and
discard the invalid one in one pass:
strings = ["1234", "abc", "12ab"]

Enum.flat_map(strings, fn string ->
 case Integer.parse(string) do
 # transform to integer
 {int, _rest} -> [int]
 # skip the value
 :error -> []
 end
end)

 find(enumerable, default \\ nil, fun)

 @spec find(t(), default(), (element() -> any())) :: element() | default()

Returns the first element for which fun returns a truthy value.
If no such element is found, returns default.
Examples
iex> Enum.find([2, 3, 4], fn x -> rem(x, 2) == 1 end)
3

iex> Enum.find([2, 4, 6], fn x -> rem(x, 2) == 1 end)
nil
iex> Enum.find([2, 4, 6], 0, fn x -> rem(x, 2) == 1 end)
0

 find_index(enumerable, fun)

 @spec find_index(t(), (element() -> any())) :: non_neg_integer() | nil

Similar to find/3, but returns the index (zero-based)
of the element instead of the element itself.
Examples
iex> Enum.find_index([2, 4, 6], fn x -> rem(x, 2) == 1 end)
nil

iex> Enum.find_index([2, 3, 4], fn x -> rem(x, 2) == 1 end)
1

 find_value(enumerable, default \\ nil, fun)

 @spec find_value(t(), default(), (element() -> found_value)) ::
 found_value | default()
when found_value: term()

Similar to find/3, but returns the value of the function
invocation instead of the element itself.
The return value is considered to be found when the result is truthy
(neither nil nor false).
Examples
iex> Enum.find_value([2, 3, 4], fn x ->
...> if x > 2, do: x * x
...> end)
9

iex> Enum.find_value([2, 4, 6], fn x -> rem(x, 2) == 1 end)
nil

iex> Enum.find_value([2, 3, 4], fn x -> rem(x, 2) == 1 end)
true

iex> Enum.find_value([1, 2, 3], "no bools!", &is_boolean/1)
"no bools!"

 flat_map(enumerable, fun)

 @spec flat_map(t(), (element() -> t())) :: list()

Maps the given fun over enumerable and flattens the result only one level deep.
This function returns a new enumerable built by appending the result of invoking fun
on each element of enumerable together; conceptually, this is similar to a
combination of map/2 and concat/1.
Examples
iex> Enum.flat_map([:a, :b, :c], fn x -> [x, x] end)
[:a, :a, :b, :b, :c, :c]

iex> Enum.flat_map([{1, 3}, {4, 6}], fn {x, y} -> x..y end)
[1, 2, 3, 4, 5, 6]

iex> Enum.flat_map([:a, :b, :c], fn x -> [[x]] end)
[[:a], [:b], [:c]]
This is frequently used to to transform and filter in one pass, returning empty
lists to exclude results:
iex> Enum.flat_map([4, 0, 2, 0], fn x ->
...> if x != 0, do: [1 / x], else: []
...> end)
[0.25, 0.5]

 flat_map_reduce(enumerable, acc, fun)

 @spec flat_map_reduce(t(), acc(), fun) :: {[any()], acc()}
when fun: (element(), acc() -> {t(), acc()} | {:halt, acc()})

Maps and reduces an enumerable, flattening the results only one level deep.
It expects an accumulator and a function that receives each enumerable
element, and must return a tuple containing a new enumerable (often a list)
with the new accumulator or a tuple with :halt as first element and
the accumulator as second.
Returns a 2-element tuple where the first element is the results flattened one level deep and
the second element is the last accumulator.
Examples
iex> enumerable = 1..100
iex> n = 3
iex> Enum.flat_map_reduce(enumerable, 0, fn x, acc ->
...> if acc < n, do: {[x], acc + 1}, else: {:halt, acc}
...> end)
{[1, 2, 3], 3}

iex> Enum.flat_map_reduce(1..5, 0, fn x, acc -> {[[x]], acc + x} end)
{[[1], [2], [3], [4], [5]], 15}

 frequencies(enumerable)

 (since 1.10.0)

 @spec frequencies(t()) :: map()

Returns a map with keys as unique elements of enumerable and values
as the count of every element.
Examples
iex> Enum.frequencies(~w{ant buffalo ant ant buffalo dingo})
%{"ant" => 3, "buffalo" => 2, "dingo" => 1}

 frequencies_by(enumerable, key_fun)

 (since 1.10.0)

 @spec frequencies_by(t(), (element() -> any())) :: map()

Returns a map with keys as unique elements given by key_fun and values
as the count of every element.
Examples
iex> Enum.frequencies_by(~w{aa aA bb cc}, &String.downcase/1)
%{"aa" => 2, "bb" => 1, "cc" => 1}

iex> Enum.frequencies_by(~w{aaa aA bbb cc c}, &String.length/1)
%{3 => 2, 2 => 2, 1 => 1}

 group_by(enumerable, key_fun, value_fun \\ fn x -> x end)

 @spec group_by(t(), (element() -> any()), (element() -> any())) :: map()

Splits the enumerable into groups based on key_fun.
The result is a map where each key is given by key_fun
and each value is a list of elements given by value_fun.
The order of elements within each list is preserved from the enumerable.
However, like all maps, the resulting map is unordered.
Examples
iex> Enum.group_by(~w{ant buffalo cat dingo}, &String.length/1)
%{3 => ["ant", "cat"], 5 => ["dingo"], 7 => ["buffalo"]}

iex> Enum.group_by(~w{ant buffalo cat dingo}, &String.length/1, &String.first/1)
%{3 => ["a", "c"], 5 => ["d"], 7 => ["b"]}
The key can be any Elixir value. For example, you may use a tuple
to group by multiple keys:
iex> collection = [
...> %{id: 1, lang: "Elixir", seq: 1},
...> %{id: 1, lang: "Java", seq: 1},
...> %{id: 1, lang: "Ruby", seq: 2},
...> %{id: 2, lang: "Python", seq: 1},
...> %{id: 2, lang: "C#", seq: 2},
...> %{id: 2, lang: "Haskell", seq: 2},
...>]
iex> Enum.group_by(collection, &{&1.id, &1.seq})
%{
 {1, 1} => [%{id: 1, lang: "Elixir", seq: 1}, %{id: 1, lang: "Java", seq: 1}],
 {1, 2} => [%{id: 1, lang: "Ruby", seq: 2}],
 {2, 1} => [%{id: 2, lang: "Python", seq: 1}],
 {2, 2} => [%{id: 2, lang: "C#", seq: 2}, %{id: 2, lang: "Haskell", seq: 2}]
}
iex> Enum.group_by(collection, &{&1.id, &1.seq}, &{&1.id, &1.lang})
%{
 {1, 1} => [{1, "Elixir"}, {1, "Java"}],
 {1, 2} => [{1, "Ruby"}],
 {2, 1} => [{2, "Python"}],
 {2, 2} => [{2, "C#"}, {2, "Haskell"}]
}

 intersperse(enumerable, separator)

 @spec intersperse(t(), element()) :: list()

Intersperses separator between each element of the enumeration.
Examples
iex> Enum.intersperse([1, 2, 3], 0)
[1, 0, 2, 0, 3]

iex> Enum.intersperse([1], 0)
[1]

iex> Enum.intersperse([], 0)
[]

 into(enumerable, collectable)

 @spec into(Enumerable.t(), Collectable.t()) :: Collectable.t()

Inserts the given enumerable into a collectable.
Note that passing a non-empty list as the collectable is deprecated.
If you're collecting into a non-empty keyword list, consider using
Keyword.merge(collectable, Enum.to_list(enumerable)). If you're collecting
into a non-empty list, consider something like Enum.to_list(enumerable) ++ collectable.
Examples
iex> Enum.into([1, 2], [])
[1, 2]

iex> Enum.into([a: 1, b: 2], %{})
%{a: 1, b: 2}

iex> Enum.into(%{a: 1}, %{b: 2})
%{a: 1, b: 2}

iex> Enum.into([a: 1, a: 2], %{})
%{a: 2}

iex> Enum.into([a: 2], %{a: 1, b: 3})
%{a: 2, b: 3}

 into(enumerable, collectable, transform)

 @spec into(Enumerable.t(), Collectable.t(), (term() -> term())) :: Collectable.t()

Inserts the given enumerable into a collectable according to the
transformation function.
Examples
iex> Enum.into([1, 2, 3], [], fn x -> x * 3 end)
[3, 6, 9]

iex> Enum.into(%{a: 1, b: 2}, %{c: 3}, fn {k, v} -> {k, v * 2} end)
%{a: 2, b: 4, c: 3}

 join(enumerable, joiner \\ "")

 @spec join(t(), binary()) :: binary()

Joins the given enumerable into a string using joiner as a
separator.
If joiner is not passed at all, it defaults to an empty string.
All elements in the enumerable must be convertible to a string
or be a binary, otherwise an error is raised.
Examples
iex> Enum.join([1, 2, 3])
"123"

iex> Enum.join([1, 2, 3], " = ")
"1 = 2 = 3"

iex> Enum.join([["a", "b"], ["c", "d", "e", ["f", "g"]], "h", "i"], " ")
"ab cdefg h i"

 map(enumerable, fun)

 @spec map(t(), (element() -> any())) :: list()

Returns a list where each element is the result of invoking
fun on each corresponding element of enumerable.
For maps, the function expects a key-value tuple.
Examples
iex> Enum.map([1, 2, 3], fn x -> x * 2 end)
[2, 4, 6]

iex> Enum.map([a: 1, b: 2], fn {k, v} -> {k, -v} end)
[a: -1, b: -2]

 map_every(enumerable, nth, fun)

 (since 1.4.0)

 @spec map_every(t(), non_neg_integer(), (element() -> any())) :: list()

Returns a list of results of invoking fun on every nth
element of enumerable, starting with the first element.
The first element is always passed to the given function, unless nth is 0.
The second argument specifying every nth element must be a non-negative
integer.
If nth is 0, then enumerable is directly converted to a list,
without fun being ever applied.
Examples
iex> Enum.map_every(1..10, 2, fn x -> x + 1000 end)
[1001, 2, 1003, 4, 1005, 6, 1007, 8, 1009, 10]

iex> Enum.map_every(1..10, 3, fn x -> x + 1000 end)
[1001, 2, 3, 1004, 5, 6, 1007, 8, 9, 1010]

iex> Enum.map_every(1..5, 0, fn x -> x + 1000 end)
[1, 2, 3, 4, 5]

iex> Enum.map_every([1, 2, 3], 1, fn x -> x + 1000 end)
[1001, 1002, 1003]

 map_intersperse(enumerable, separator, mapper)

 (since 1.10.0)

 @spec map_intersperse(t(), element(), (element() -> any())) :: list()

Maps and intersperses the given enumerable in one pass.
Examples
iex> Enum.map_intersperse([1, 2, 3], :a, &(&1 * 2))
[2, :a, 4, :a, 6]

 map_join(enumerable, joiner \\ "", mapper)

 @spec map_join(t(), String.t(), (element() -> String.Chars.t())) :: String.t()

Maps and joins the given enumerable in one pass.
If joiner is not passed at all, it defaults to an empty string.
All elements returned from invoking the mapper must be convertible to
a string, otherwise an error is raised.
Examples
iex> Enum.map_join([1, 2, 3], &(&1 * 2))
"246"

iex> Enum.map_join([1, 2, 3], " = ", &(&1 * 2))
"2 = 4 = 6"

 map_reduce(enumerable, acc, fun)

 @spec map_reduce(t(), acc(), (element(), acc() -> {element(), acc()})) ::
 {list(), acc()}

Invokes the given function to each element in the enumerable to reduce
it to a single element, while keeping an accumulator.
Returns a tuple where the first element is the mapped enumerable and
the second one is the final accumulator.
The function, fun, receives two arguments: the first one is the
element, and the second one is the accumulator. fun must return
a tuple with two elements in the form of {result, accumulator}.
For maps, the first tuple element must be a {key, value} tuple.
Examples
iex> Enum.map_reduce([1, 2, 3], 0, fn x, acc -> {x * 2, x + acc} end)
{[2, 4, 6], 6}

 max(enumerable, sorter \\ &>=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec max(t(), (element(), element() -> boolean()) | module(), (-> empty_result)) ::
 element() | empty_result
when empty_result: any()

Returns the maximal element in the enumerable according
to Erlang's term ordering.
By default, the comparison is done with the >= sorter function.
If multiple elements are considered maximal, the first one that
was found is returned. If you want the last element considered
maximal to be returned, the sorter function should not return true
for equal elements.
If the enumerable is empty, the provided empty_fallback is called.
The default empty_fallback raises Enum.EmptyError.
Examples
iex> Enum.max([1, 2, 3])
3
The fact this function uses Erlang's term ordering means that the comparison
is structural and not semantic. For example:
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]])
~D[2017-03-31]
In the example above, max/2 returned March 31st instead of April 1st
because the structural comparison compares the day before the year.
For this reason, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> Enum.max([~D[2017-03-31], ~D[2017-04-01]], Date)
~D[2017-04-01]
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.max([], &>=/2, fn -> 0 end)
0

 max_by(enumerable, fun, sorter \\ &>=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec max_by(
 t(),
 (element() -> any()),
 (element(), element() -> boolean()) | module(),
 (-> empty_result)
) :: element() | empty_result
when empty_result: any()

Returns the maximal element in the enumerable as calculated
by the given fun.
By default, the comparison is done with the >= sorter function.
If multiple elements are considered maximal, the first one that
was found is returned. If you want the last element considered
maximal to be returned, the sorter function should not return true
for equal elements.
Calls the provided empty_fallback function and returns its value if
enumerable is empty. The default empty_fallback raises Enum.EmptyError.
Examples
iex> Enum.max_by(["a", "aa", "aaa"], fn x -> String.length(x) end)
"aaa"

iex> Enum.max_by(["a", "aa", "aaa", "b", "bbb"], &String.length/1)
"aaa"
The fact this function uses Erlang's term ordering means that the
comparison is structural and not semantic. Therefore, if you want
to compare structs, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> users = [
...> %{name: "Ellis", birthday: ~D[1943-05-11]},
...> %{name: "Lovelace", birthday: ~D[1815-12-10]},
...> %{name: "Turing", birthday: ~D[1912-06-23]}
...>]
iex> Enum.max_by(users, &(&1.birthday), Date)
%{name: "Ellis", birthday: ~D[1943-05-11]}
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.max_by([], &String.length/1, fn -> nil end)
nil

 member?(enumerable, element)

 @spec member?(t(), element()) :: boolean()

Checks if element exists within the enumerable.
Membership is tested with the match (===/2) operator.
Examples
iex> Enum.member?(1..10, 5)
true
iex> Enum.member?(1..10, 5.0)
false

iex> Enum.member?([1.0, 2.0, 3.0], 2)
false
iex> Enum.member?([1.0, 2.0, 3.0], 2.000)
true

iex> Enum.member?([:a, :b, :c], :d)
false
When called outside guards, the in and not in
operators work by using this function.

 min(enumerable, sorter \\ &<=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec min(t(), (element(), element() -> boolean()) | module(), (-> empty_result)) ::
 element() | empty_result
when empty_result: any()

Returns the minimal element in the enumerable according
to Erlang's term ordering.
By default, the comparison is done with the <= sorter function.
If multiple elements are considered minimal, the first one that
was found is returned. If you want the last element considered
minimal to be returned, the sorter function should not return true
for equal elements.
If the enumerable is empty, the provided empty_fallback is called.
The default empty_fallback raises Enum.EmptyError.
Examples
iex> Enum.min([1, 2, 3])
1
The fact this function uses Erlang's term ordering means that the comparison
is structural and not semantic. For example:
iex> Enum.min([~D[2017-03-31], ~D[2017-04-01]])
~D[2017-04-01]
In the example above, min/2 returned April 1st instead of March 31st
because the structural comparison compares the day before the year.
For this reason, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> Enum.min([~D[2017-03-31], ~D[2017-04-01]], Date)
~D[2017-03-31]
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.min([], fn -> 0 end)
0

 min_by(enumerable, fun, sorter \\ &<=/2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec min_by(
 t(),
 (element() -> any()),
 (element(), element() -> boolean()) | module(),
 (-> empty_result)
) :: element() | empty_result
when empty_result: any()

Returns the minimal element in the enumerable as calculated
by the given fun.
By default, the comparison is done with the <= sorter function.
If multiple elements are considered minimal, the first one that
was found is returned. If you want the last element considered
minimal to be returned, the sorter function should not return true
for equal elements.
Calls the provided empty_fallback function and returns its value if
enumerable is empty. The default empty_fallback raises Enum.EmptyError.
Examples
iex> Enum.min_by(["a", "aa", "aaa"], fn x -> String.length(x) end)
"a"

iex> Enum.min_by(["a", "aa", "aaa", "b", "bbb"], &String.length/1)
"a"
The fact this function uses Erlang's term ordering means that the
comparison is structural and not semantic. Therefore, if you want
to compare structs, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> users = [
...> %{name: "Ellis", birthday: ~D[1943-05-11]},
...> %{name: "Lovelace", birthday: ~D[1815-12-10]},
...> %{name: "Turing", birthday: ~D[1912-06-23]}
...>]
iex> Enum.min_by(users, &(&1.birthday), Date)
%{name: "Lovelace", birthday: ~D[1815-12-10]}
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.min_by([], &String.length/1, fn -> nil end)
nil

 min_max(enumerable, sorter_or_empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec min_max(t(), (element(), element() -> boolean()) | module()) ::
 {element(), element()}

 @spec min_max(t(), (-> empty_result)) :: {element(), element()} | empty_result
when empty_result: any()

Returns a tuple with the minimal and the maximal elements in the
enumerable.
By default, the comparison is done with the < sorter function,
as the function must not return true for equal elements.
Examples
iex> Enum.min_max([2, 3, 1])
{1, 3}

iex> Enum.min_max(["foo", "bar", "baz"])
{"bar", "foo"}

iex> Enum.min_max([], fn -> {nil, nil} end)
{nil, nil}
The fact this function uses Erlang's term ordering means that the
comparison is structural and not semantic. Therefore, if you want
to compare structs, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> dates = [
...> ~D[2019-01-01],
...> ~D[2020-01-01],
...> ~D[2018-01-01]
...>]
iex> Enum.min_max(dates, Date)
{~D[2018-01-01], ~D[2020-01-01]}
You can also pass a custom sorting function:
iex> Enum.min_max([2, 3, 1], &>/2)
{3, 1}
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.min_max([], fn -> nil end)
nil

 min_max(enumerable, sorter, empty_fallback)

 @spec min_max(t(), (element(), element() -> boolean()) | module(), (-> empty_result)) ::
 {element(), element()} | empty_result
when empty_result: any()

 min_max_by(enumerable, fun, sorter_or_empty_fallback \\ &</2, empty_fallback \\ fn -> raise Enum.EmptyError end)

 @spec min_max_by(
 t(),
 (element() -> any()),
 (element(), element() -> boolean()) | module(),
 (-> empty_result)
) :: {element(), element()} | empty_result
when empty_result: any()

Returns a tuple with the minimal and the maximal elements in the
enumerable as calculated by the given function.
By default, the comparison is done with the < sorter function,
as the function must not return true for equal elements.
Examples
iex> Enum.min_max_by(["aaa", "bb", "c"], fn x -> String.length(x) end)
{"c", "aaa"}

iex> Enum.min_max_by(["aaa", "a", "bb", "c", "ccc"], &String.length/1)
{"a", "aaa"}

iex> Enum.min_max_by([], &String.length/1, fn -> {nil, nil} end)
{nil, nil}
The fact this function uses Erlang's term ordering means that the
comparison is structural and not semantic. Therefore, if you want
to compare structs, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> users = [
...> %{name: "Ellis", birthday: ~D[1943-05-11]},
...> %{name: "Lovelace", birthday: ~D[1815-12-10]},
...> %{name: "Turing", birthday: ~D[1912-06-23]}
...>]
iex> Enum.min_max_by(users, &(&1.birthday), Date)
{
 %{name: "Lovelace", birthday: ~D[1815-12-10]},
 %{name: "Ellis", birthday: ~D[1943-05-11]}
}
Finally, if you don't want to raise on empty enumerables, you can pass
the empty fallback:
iex> Enum.min_max_by([], &String.length/1, fn -> nil end)
nil

 product(enumerable)

 (since 1.12.0)

 @spec product(t()) :: number()

Returns the product of all elements.
Raises ArithmeticError if enumerable contains a non-numeric value.
If you need to apply a transformation first, consider using Enum.product_by/2 instead.
Examples
iex> Enum.product([])
1
iex> Enum.product([2, 3, 4])
24
iex> Enum.product([2.0, 3.0, 4.0])
24.0

 product_by(enumerable, mapper)

 (since 1.18.0)

 @spec product_by(t(), (element() -> number())) :: number()

Maps and computes the product of the given enumerable in one pass.
Raises ArithmeticError if mapper returns a non-numeric value.
Examples
iex> Enum.product_by([%{count: 2}, %{count: 4}, %{count: 3}], fn x -> x.count end)
24

iex> Enum.product_by(1..3, fn x -> x ** 2 end)
36

iex> Enum.product_by([], fn x -> x.count end)
1
Filtering can be achieved by returning 1 to ignore elements:
iex> Enum.product_by([2, -1, 3], fn x -> if x > 0, do: x, else: 1 end)
6

 random(enumerable)

 @spec random(t()) :: element()

Returns a random element of an enumerable.
Raises Enum.EmptyError if enumerable is empty.
This function uses Erlang's :rand module to calculate
the random value. Check its documentation for setting a
different random algorithm or a different seed.
If a range is passed into the function, this function will pick a
random value between the range limits, without traversing the whole
range (thus executing in constant time and constant memory).
Examples
The examples below use the :exsss pseudorandom algorithm since it's
the default from Erlang/OTP 22:
Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {100, 101, 102})
iex> Enum.random([1, 2, 3])
2
iex> Enum.random([1, 2, 3])
1
iex> Enum.random(1..1_000)
309
Implementation
The random functions in this module implement reservoir sampling,
which allows them to sample infinite collections. In particular,
we implement Algorithm L, as described in by Kim-Hung Li in
"Reservoir-Sampling Algorithms of Time Complexity O(n(1+log(N/n)))".

 reduce(enumerable, fun)

 @spec reduce(t(), (element(), acc() -> acc())) :: acc()

Invokes fun for each element in the enumerable with the
accumulator.
Raises Enum.EmptyError if enumerable is empty.
The first element of the enumerable is used as the initial value
of the accumulator. Then, the function is invoked with the next
element and the accumulator. The result returned by the function
is used as the accumulator for the next iteration, recursively.
When the enumerable is done, the last accumulator is returned.
Since the first element of the enumerable is used as the initial
value of the accumulator, fun will only be executed n - 1 times
where n is the length of the enumerable. This function won't call
the specified function for enumerables that are one-element long.
If you wish to use another value for the accumulator, use
Enum.reduce/3.
Examples
iex> Enum.reduce([1, 2, 3, 4], fn x, acc -> x * acc end)
24

 reduce(enumerable, acc, fun)

 @spec reduce(t(), acc(), (element(), acc() -> acc())) :: acc()

Invokes fun for each element in the enumerable with the accumulator.
The initial value of the accumulator is acc. The function is invoked for
each element in the enumerable with the accumulator. The result returned
by the function is used as the accumulator for the next iteration.
The function returns the last accumulator.
Examples
iex> Enum.reduce([1, 2, 3], 0, fn x, acc -> x + acc end)
6

iex> Enum.reduce(%{a: 2, b: 3, c: 4}, 0, fn {_key, val}, acc -> acc + val end)
9
Reduce as a building block
Reduce (sometimes called fold) is a basic building block in functional
programming. Almost all of the functions in the Enum module can be
implemented on top of reduce. Those functions often rely on other operations,
such as Enum.reverse/1, which are optimized by the runtime.
For example, we could implement map/2 in terms of reduce/3 as follows:
def my_map(enumerable, fun) do
 enumerable
 |> Enum.reduce([], fn x, acc -> [fun.(x) | acc] end)
 |> Enum.reverse()
end
In the example above, Enum.reduce/3 accumulates the result of each call
to fun into a list in reverse order, which is correctly ordered at the
end by calling Enum.reverse/1.
Implementing functions like map/2, filter/2 and others are a good
exercise for understanding the power behind Enum.reduce/3. When an
operation cannot be expressed by any of the functions in the Enum
module, developers will most likely resort to reduce/3.

 reduce_while(enumerable, acc, fun)

 @spec reduce_while(t(), any(), (element(), any() -> {:cont, any()} | {:halt, any()})) ::
 any()

Reduces enumerable until fun returns {:halt, term}.
The return value for fun is expected to be
	{:cont, acc} to continue the reduction with acc as the new
accumulator or
	{:halt, acc} to halt the reduction

If fun returns {:halt, acc} the reduction is halted and the function
returns acc. Otherwise, if the enumerable is exhausted, the function returns
the accumulator of the last {:cont, acc}.
Examples
iex> Enum.reduce_while(1..100, 0, fn x, acc ->
...> if x < 5 do
...> {:cont, acc + x}
...> else
...> {:halt, acc}
...> end
...> end)
10
iex> Enum.reduce_while(1..100, 0, fn x, acc ->
...> if x > 0 do
...> {:cont, acc + x}
...> else
...> {:halt, acc}
...> end
...> end)
5050

 reject(enumerable, fun)

 @spec reject(t(), (element() -> as_boolean(term()))) :: list()

Returns a list of elements in enumerable excluding those for which the function fun returns
a truthy value.
See also filter/2.
Examples
iex> Enum.reject([1, 2, 3], fn x -> rem(x, 2) == 0 end)
[1, 3]

 reverse(enumerable)

 @spec reverse(t()) :: list()

Returns a list of elements in enumerable in reverse order.
Examples
iex> Enum.reverse([1, 2, 3])
[3, 2, 1]

 reverse(enumerable, tail)

 @spec reverse(t(), t()) :: list()

Reverses the elements in enumerable, appends the tail, and returns
it as a list.
This is an optimization for
enumerable |> Enum.reverse() |> Enum.concat(tail).
Examples
iex> Enum.reverse([1, 2, 3], [4, 5, 6])
[3, 2, 1, 4, 5, 6]

 reverse_slice(enumerable, start_index, count)

 @spec reverse_slice(t(), non_neg_integer(), non_neg_integer()) :: list()

Reverses the enumerable in the range from initial start_index
through count elements.
If count is greater than the size of the rest of the enumerable,
then this function will reverse the rest of the enumerable.
Examples
iex> Enum.reverse_slice([1, 2, 3, 4, 5, 6], 2, 4)
[1, 2, 6, 5, 4, 3]

 scan(enumerable, fun)

 @spec scan(t(), (element(), any() -> any())) :: list()

Passes each element from enumerable to the fun as the first argument,
stores the fun result in a list and passes the result as the second argument
for the next computation.
The fun isn't applied for the first element of the enumerable,
the element is taken as it is.
Examples
iex> Enum.scan(["a", "b", "c", "d", "e"], fn element, acc -> element <> String.first(acc) end)
["a", "ba", "cb", "dc", "ed"]

iex> Enum.scan(1..5, fn element, acc -> element + acc end)
[1, 3, 6, 10, 15]

 scan(enumerable, acc, fun)

 @spec scan(t(), any(), (element(), any() -> any())) :: list()

Passes each element from enumerable to the fun as the first argument,
stores the fun result in a list and passes the result as the second argument
for the next computation.
Passes the given acc as the second argument for the fun with the first element.
Examples
iex> Enum.scan(["a", "b", "c", "d", "e"], "_", fn element, acc -> element <> String.first(acc) end)
["a_", "ba", "cb", "dc", "ed"]

iex> Enum.scan(1..5, 0, fn element, acc -> element + acc end)
[1, 3, 6, 10, 15]

 shuffle(enumerable)

 @spec shuffle(t()) :: list()

Returns a list with the elements of enumerable shuffled.
This function uses Erlang's :rand module to calculate
the random value. Check its documentation for setting a
different random algorithm or a different seed.
Examples
The examples below use the :exsss pseudorandom algorithm since it's
the default from Erlang/OTP 22:
Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {11, 22, 33})
iex> Enum.shuffle([1, 2, 3])
[2, 1, 3]
iex> Enum.shuffle([1, 2, 3])
[2, 3, 1]

 slice(enumerable, index_range)

 (since 1.6.0)

 @spec slice(t(), Range.t()) :: list()

Returns a subset list of the given enumerable by index_range.
index_range must be a Range. Given an enumerable, it drops
elements before index_range.first (zero-base), then it takes elements
until element index_range.last (inclusively).
Indexes are normalized, meaning that negative indexes will be counted
from the end (for example, -1 means the last element of the enumerable).
If index_range.last is out of bounds, then it is assigned as the index
of the last element.
If the normalized index_range.first is out of bounds of the given
enumerable, or this one is greater than the normalized index_range.last,
then [] is returned.
If a step n (other than 1) is used in index_range, then it takes
every nth element from index_range.first to index_range.last
(according to the same rules described above).
Examples
iex> Enum.slice([1, 2, 3, 4, 5], 1..3)
[2, 3, 4]

iex> Enum.slice([1, 2, 3, 4, 5], 3..10)
[4, 5]

Last three elements (negative indexes)
iex> Enum.slice([1, 2, 3, 4, 5], -3..-1)
[3, 4, 5]
For ranges where start > stop, you need to explicit
mark them as increasing:
iex> Enum.slice([1, 2, 3, 4, 5], 1..-2//1)
[2, 3, 4]
The step can be any positive number. For example, to
get every 2 elements of the collection:
iex> Enum.slice([1, 2, 3, 4, 5], 0..-1//2)
[1, 3, 5]
To get every third element of the first ten elements:
iex> integers = Enum.to_list(1..20)
iex> Enum.slice(integers, 0..9//3)
[1, 4, 7, 10]
If the first position is after the end of the enumerable
or after the last position of the range, it returns an
empty list:
iex> Enum.slice([1, 2, 3, 4, 5], 6..10)
[]

first is greater than last
iex> Enum.slice([1, 2, 3, 4, 5], 6..5//1)
[]

 slice(enumerable, start_index, amount)

 @spec slice(t(), index(), non_neg_integer()) :: list()

Returns a subset list of the given enumerable, from start_index (zero-based)
with amount number of elements if available.
Given an enumerable, it drops elements right before element start_index;
then, it takes amount of elements, returning as many elements as possible if
there are not enough elements.
A negative start_index can be passed, which means the enumerable is
enumerated once and the index is counted from the end (for example,
-1 starts slicing from the last element).
It returns [] if amount is 0 or if start_index is out of bounds.
Examples
iex> Enum.slice(1..100, 5, 10)
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

amount to take is greater than the number of elements
iex> Enum.slice(1..10, 5, 100)
[6, 7, 8, 9, 10]

iex> Enum.slice(1..10, 5, 0)
[]

using a negative start index
iex> Enum.slice(1..10, -6, 3)
[5, 6, 7]
iex> Enum.slice(1..10, -11, 5)
[1, 2, 3, 4, 5]

out of bound start index
iex> Enum.slice(1..10, 10, 5)
[]

 slide(enumerable, range_or_single_index, insertion_index)

 (since 1.13.0)

 @spec slide(t(), Range.t() | index(), index()) :: list()

Slides a single or multiple elements given by range_or_single_index from enumerable
to insertion_index.
The semantics of the range to be moved match the semantics of Enum.slice/2.
Specifically, that means:
	Indices are normalized, meaning that negative indexes will be counted from the end
 (for example, -1 means the last element of the enumerable). This will result in two
 traversals of your enumerable on types like lists that don't provide a constant-time count.

	If the normalized index range's last is out of bounds, the range is truncated to the last element.

	If the normalized index range's first is out of bounds, the selected range for sliding
will be empty, so you'll get back your input list.

	Decreasing ranges (such as 5..0//1) also select an empty range to be moved,
so you'll get back your input list.

	Ranges with any step but 1 will raise an error.

Examples
Slide a single element
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], 5, 1)
[:a, :f, :b, :c, :d, :e, :g]

Slide a range of elements towards the head of the list
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], 3..5, 1)
[:a, :d, :e, :f, :b, :c, :g]

Slide a range of elements towards the tail of the list
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], 1..3, 5)
[:a, :e, :f, :b, :c, :d, :g]

Slide with negative indices (counting from the end)
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], 3..-1//1, 2)
[:a, :b, :d, :e, :f, :g, :c]
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], -4..-2, 1)
[:a, :d, :e, :f, :b, :c, :g]

Insert at negative indices (counting from the end)
iex> Enum.slide([:a, :b, :c, :d, :e, :f, :g], 3, -1)
[:a, :b, :c, :e, :f, :g, :d]

 sort(enumerable)

 @spec sort(t()) :: list()

Sorts the enumerable according to Erlang's term ordering.
This function uses the merge sort algorithm. Do not use this
function to sort structs, see sort/2 for more information.
Examples
iex> Enum.sort([3, 2, 1])
[1, 2, 3]

 sort(enumerable, sorter)

 @spec sort(
 t(),
 (element(), element() -> boolean())
 | :asc
 | :desc
 | module()
 | {:asc | :desc, module()}
) :: list()

Sorts the enumerable by the given function.
This function uses the merge sort algorithm. The given function should compare
two arguments, and return true if the first argument precedes or is in the
same place as the second one.
Examples
iex> Enum.sort([1, 2, 3], &(&1 >= &2))
[3, 2, 1]
The sorting algorithm will be stable as long as the given function
returns true for values considered equal:
iex> Enum.sort(["some", "kind", "of", "monster"], &(byte_size(&1) <= byte_size(&2)))
["of", "some", "kind", "monster"]
If the function does not return true for equal values, the sorting
is not stable and the order of equal terms may be shuffled.
For example:
iex> Enum.sort(["some", "kind", "of", "monster"], &(byte_size(&1) < byte_size(&2)))
["of", "kind", "some", "monster"]
Ascending and descending (since v1.10.0)
sort/2 allows a developer to pass :asc or :desc as the sorter, which is a convenience for
&<=/2 and &>=/2 respectively.
iex> Enum.sort([2, 3, 1], :asc)
[1, 2, 3]
iex> Enum.sort([2, 3, 1], :desc)
[3, 2, 1]
Sorting structs
Do not use </2, <=/2, >/2, >=/2 and friends when sorting structs.
That's because the built-in operators above perform structural comparison
and not a semantic one. Imagine we sort the following list of dates:
iex> dates = [~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates)
[~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
Note that the returned result is incorrect, because sort/1 by default uses
<=/2, which will compare their structure. When comparing structures, the
fields are compared in alphabetical order, which means the dates above will
be compared by day, month and then year, which is the opposite of what
we want.
For this reason, most structs provide a "compare" function, such as
Date.compare/2, which receives two structs and returns :lt (less-than),
:eq (equal to), and :gt (greater-than). If you pass a module as the
sorting function, Elixir will automatically use the compare/2 function
of said module:
iex> dates = [~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates, Date)
[~D[2019-01-01], ~D[2019-06-06], ~D[2020-03-02]]
To retrieve all dates in descending order, you can wrap the module in
a tuple with :asc or :desc as first element:
iex> dates = [~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates, {:asc, Date})
[~D[2019-01-01], ~D[2019-06-06], ~D[2020-03-02]]
iex> dates = [~D[2019-01-01], ~D[2020-03-02], ~D[2019-06-06]]
iex> Enum.sort(dates, {:desc, Date})
[~D[2020-03-02], ~D[2019-06-06], ~D[2019-01-01]]

 sort_by(enumerable, mapper, sorter \\ :asc)

 @spec sort_by(
 t(),
 (element() -> mapped_element),
 (element(), element() -> boolean())
 | :asc
 | :desc
 | module()
 | {:asc | :desc, module()}
) :: list()
when mapped_element: element()

Sorts the mapped results of the enumerable according to the provided sorter
function.
This function maps each element of the enumerable using the
provided mapper function. The enumerable is then sorted by
the mapped elements using the sorter, which defaults to :asc
and sorts the elements ascendingly.
sort_by/3 differs from sort/2 in that it only calculates the
comparison value for each element in the enumerable once instead of
once for each element in each comparison. If the same function is
being called on both elements, it's more efficient to use sort_by/3.
Ascending and descending (since v1.10.0)
sort_by/3 allows a developer to pass :asc or :desc as the sorter,
which is a convenience for &<=/2 and &>=/2 respectively:
iex> Enum.sort_by([2, 3, 1], &(&1), :asc)
[1, 2, 3]

iex> Enum.sort_by([2, 3, 1], &(&1), :desc)
[3, 2, 1]
Examples
Using the default sorter of :asc :
iex> Enum.sort_by(["some", "kind", "of", "monster"], &byte_size/1)
["of", "some", "kind", "monster"]
Sorting by multiple properties - first by size, then by first letter
(this takes advantage of the fact that tuples are compared element-by-element):
iex> Enum.sort_by(["some", "kind", "of", "monster"], &{byte_size(&1), String.first(&1)})
["of", "kind", "some", "monster"]
Similar to sort/2, you can pass a custom sorter:
iex> Enum.sort_by(["some", "kind", "of", "monster"], &byte_size/1, :desc)
["monster", "some", "kind", "of"]
As in sort/2, avoid using the default sorting function to sort
structs, as by default it performs structural comparison instead of
a semantic one. In such cases, you shall pass a sorting function as
third element or any module that implements a compare/2 function.
For example, to sort users by their birthday in both ascending and
descending order respectively:
iex> users = [
...> %{name: "Ellis", birthday: ~D[1943-05-11]},
...> %{name: "Lovelace", birthday: ~D[1815-12-10]},
...> %{name: "Turing", birthday: ~D[1912-06-23]}
...>]
iex> Enum.sort_by(users, &(&1.birthday), Date)
[
 %{name: "Lovelace", birthday: ~D[1815-12-10]},
 %{name: "Turing", birthday: ~D[1912-06-23]},
 %{name: "Ellis", birthday: ~D[1943-05-11]}
]
iex> Enum.sort_by(users, &(&1.birthday), {:desc, Date})
[
 %{name: "Ellis", birthday: ~D[1943-05-11]},
 %{name: "Turing", birthday: ~D[1912-06-23]},
 %{name: "Lovelace", birthday: ~D[1815-12-10]}
]
Performance characteristics
As detailed in the initial section, sort_by/3 calculates the comparison
value for each element in the enumerable once instead of once for each
element in each comparison. This implies sort_by/3 must do an initial
pass on the data to compute those values.
However, if those values are cheap to compute, for example, you have
already extracted the field you want to sort by into a tuple, then those
extra passes become overhead. In such cases, consider using List.keysort/3
instead.
Let's see an example. Imagine you have a list of products and you have a
list of IDs. You want to keep all products that are in the given IDs and
return their names sorted by their price. You could write it like this:
for(
 product <- products,
 product.id in ids,
 do: product
)
|> Enum.sort_by(& &1.price)
|> Enum.map(& &1.name)
However, you could also write it like this:
for(
 product <- products,
 product.id in ids,
 do: {product.name, product.price}
)
|> List.keysort(1)
|> Enum.map(&elem(&1, 0))
Using List.keysort/3 will be a better choice for performance sensitive
code as it avoids additional traversals.

 split(enumerable, count)

 @spec split(t(), integer()) :: {list(), list()}

Splits the enumerable into two enumerables, leaving count
elements in the first one.
If count is a negative number, it starts counting from the
back to the beginning of the enumerable.
Be aware that a negative count implies the enumerable
will be enumerated twice: once to calculate the position, and
a second time to do the actual splitting.
Examples
iex> Enum.split([1, 2, 3], 2)
{[1, 2], [3]}

iex> Enum.split([1, 2, 3], 10)
{[1, 2, 3], []}

iex> Enum.split([1, 2, 3], 0)
{[], [1, 2, 3]}

iex> Enum.split([1, 2, 3], -1)
{[1, 2], [3]}

iex> Enum.split([1, 2, 3], -5)
{[], [1, 2, 3]}

 split_while(enumerable, fun)

 @spec split_while(t(), (element() -> as_boolean(term()))) :: {list(), list()}

Splits enumerable in two at the position of the element for which
fun returns a falsy value (false or nil) for the first time.
It returns a two-element tuple with two lists of elements.
The element that triggered the split is part of the second list.
Examples
iex> Enum.split_while([1, 2, 3, 4], fn x -> x < 3 end)
{[1, 2], [3, 4]}

iex> Enum.split_while([1, 2, 3, 4], fn x -> x < 0 end)
{[], [1, 2, 3, 4]}

iex> Enum.split_while([1, 2, 3, 4], fn x -> x > 0 end)
{[1, 2, 3, 4], []}

 split_with(enumerable, fun)

 (since 1.4.0)

 @spec split_with(t(), (element() -> as_boolean(term()))) :: {list(), list()}

Splits the enumerable in two lists according to the given function fun.
Splits the given enumerable in two lists by calling fun with each element
in the enumerable as its only argument. Returns a tuple with the first list
containing all the elements in enumerable for which applying fun returned
a truthy value, and a second list with all the elements for which applying
fun returned a falsy value (false or nil).
The elements in both the returned lists are in the same relative order as they
were in the original enumerable (if such enumerable was ordered, like a
list). See the examples below.
Examples
iex> Enum.split_with([5, 4, 3, 2, 1, 0], fn x -> rem(x, 2) == 0 end)
{[4, 2, 0], [5, 3, 1]}

iex> Enum.split_with([a: 1, b: -2, c: 1, d: -3], fn {_k, v} -> v < 0 end)
{[b: -2, d: -3], [a: 1, c: 1]}

iex> Enum.split_with([a: 1, b: -2, c: 1, d: -3], fn {_k, v} -> v > 50 end)
{[], [a: 1, b: -2, c: 1, d: -3]}

iex> Enum.split_with([], fn {_k, v} -> v > 50 end)
{[], []}

 sum(enumerable)

 @spec sum(t()) :: number()

Returns the sum of all elements.
Raises ArithmeticError if enumerable contains a non-numeric value.
If you need to apply a transformation first, consider using Enum.sum_by/2 instead.
Examples
iex> Enum.sum([1, 2, 3])
6

iex> Enum.sum(1..10)
55

iex> Enum.sum(1..10//2)
25

 sum_by(enumerable, mapper)

 (since 1.18.0)

 @spec sum_by(t(), (element() -> number())) :: number()

Maps and sums the given enumerable in one pass.
Raises ArithmeticError if mapper returns a non-numeric value.
Examples
iex> Enum.sum_by([%{count: 1}, %{count: 2}, %{count: 3}], fn x -> x.count end)
6

iex> Enum.sum_by(1..3, fn x -> x ** 2 end)
14

iex> Enum.sum_by([], fn x -> x.count end)
0
Filtering can be achieved by returning 0 to ignore elements:
iex> Enum.sum_by([1, -2, 3], fn x -> if x > 0, do: x, else: 0 end)
4

 take(enumerable, amount)

 @spec take(t(), integer()) :: list()

Takes an amount of elements from the beginning or the end of the enumerable.
If a positive amount is given, it takes the amount elements from the
beginning of the enumerable.
If a negative amount is given, the amount of elements will be taken from the end.
The enumerable will be enumerated once to retrieve the proper index and
the remaining calculation is performed from the end.
If amount is 0, it returns [].
Examples
iex> Enum.take([1, 2, 3], 2)
[1, 2]

iex> Enum.take([1, 2, 3], 10)
[1, 2, 3]

iex> Enum.take([1, 2, 3], 0)
[]

iex> Enum.take([1, 2, 3], -1)
[3]

 take_every(enumerable, nth)

 @spec take_every(t(), non_neg_integer()) :: list()

Returns a list of every nth element in the enumerable,
starting with the first element.
The first element is always included, unless nth is 0.
The second argument specifying every nth element must be a non-negative
integer.
Examples
iex> Enum.take_every(1..10, 2)
[1, 3, 5, 7, 9]

iex> Enum.take_every(1..10, 0)
[]

iex> Enum.take_every([1, 2, 3], 1)
[1, 2, 3]

 take_random(enumerable, count)

 @spec take_random(t(), non_neg_integer()) :: list()

Takes count random elements from enumerable.
Note that this function will traverse the whole enumerable to
get the random sublist.
See random/1 for notes on implementation and random seed.
Examples
Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {1, 2, 3})
iex> Enum.take_random(1..10, 2)
[6, 1]
iex> Enum.take_random(?a..?z, 5)
~c"bkzmt"

 take_while(enumerable, fun)

 @spec take_while(t(), (element() -> as_boolean(term()))) :: list()

Takes the elements from the beginning of the enumerable while fun returns
a truthy value.
Examples
iex> Enum.take_while([1, 2, 3], fn x -> x < 3 end)
[1, 2]

 to_list(enumerable)

 @spec to_list(t()) :: [element()]

Converts enumerable to a list.
Examples
iex> Enum.to_list(1..3)
[1, 2, 3]

 uniq(enumerable)

 @spec uniq(t()) :: list()

Enumerates the enumerable, removing all duplicate elements.
The first occurrence of each element is kept and all following
duplicates are removed. The overall order is preserved.
Examples
iex> Enum.uniq([1, 2, 3, 3, 2, 1])
[1, 2, 3]

 uniq_by(enumerable, fun)

 @spec uniq_by(t(), (element() -> term())) :: list()

Enumerates the enumerable, by removing the elements for which
function fun returned duplicate elements.
The function fun maps every element to a term. Two elements are
considered duplicates if the return value of fun is equal for
both of them.
The first occurrence of each element is kept and all following
duplicates are removed. The overall order is preserved.
Example
iex> Enum.uniq_by([{1, :x}, {2, :y}, {1, :z}], fn {x, _} -> x end)
[{1, :x}, {2, :y}]

iex> Enum.uniq_by([a: {:tea, 2}, b: {:tea, 2}, c: {:coffee, 1}], fn {_, y} -> y end)
[a: {:tea, 2}, c: {:coffee, 1}]

 unzip(enumerable)

 @spec unzip(t()) :: {[element()], [element()]}

Opposite of zip/2. Extracts two-element tuples from the
given enumerable and groups them together.
It takes an enumerable with elements being two-element tuples and returns
a tuple with two lists, each of which is formed by the first and
second element of each tuple, respectively.
This function fails unless enumerable is or can be converted into a
list of tuples with exactly two elements in each tuple.
Examples
iex> Enum.unzip([{:a, 1}, {:b, 2}, {:c, 3}])
{[:a, :b, :c], [1, 2, 3]}

 with_index(enumerable, fun_or_offset \\ 0)

 @spec with_index(t(), integer()) :: [{term(), integer()}]

 @spec with_index(t(), (element(), index() -> value)) :: [value] when value: any()

Returns the enumerable with each element wrapped in a tuple
alongside its index or according to a given function.
If an integer offset is given as fun_or_offset, it will index from the given
offset instead of from zero.
If a 2-arity function is given as fun_or_offset, the function will be invoked
for each element in enumerable as the first argument and with a zero-based
index as the second. with_index/2 returns a list with the result of each invocation.
Examples
iex> Enum.with_index([:a, :b, :c])
[a: 0, b: 1, c: 2]

iex> Enum.with_index([:a, :b, :c], 3)
[a: 3, b: 4, c: 5]

iex> Enum.with_index([:a, :b, :c], fn element, index -> {index, element} end)
[{0, :a}, {1, :b}, {2, :c}]

 zip(enumerables)

 (since 1.4.0)

 @spec zip(enumerables) :: [tuple()] when enumerables: [t()] | t()

Zips corresponding elements from a finite collection of enumerables
into a list of tuples.
The zipping finishes as soon as any enumerable in the given collection completes.
Examples
iex> Enum.zip([[1, 2, 3], [:a, :b, :c], ["foo", "bar", "baz"]])
[{1, :a, "foo"}, {2, :b, "bar"}, {3, :c, "baz"}]

iex> Enum.zip([[1, 2, 3, 4, 5], [:a, :b, :c]])
[{1, :a}, {2, :b}, {3, :c}]

 zip(enumerable1, enumerable2)

 @spec zip(t(), t()) :: [{any(), any()}]

Zips corresponding elements from two enumerables into a list
of tuples.
Because a list of two-element tuples with atoms as the first
tuple element is a keyword list (Keyword), zipping a first list
of atoms with a second list of any kind creates a keyword list.
The zipping finishes as soon as either enumerable completes.
Examples
iex> Enum.zip([1, 2, 3], [:a, :b, :c])
[{1, :a}, {2, :b}, {3, :c}]

iex> Enum.zip([:a, :b, :c], [1, 2, 3])
[a: 1, b: 2, c: 3]

iex> Enum.zip([1, 2, 3, 4, 5], [:a, :b, :c])
[{1, :a}, {2, :b}, {3, :c}]

 zip_reduce(enumerables, acc, reducer)

 (since 1.12.0)

 @spec zip_reduce(t(), acc, ([term()], acc -> acc)) :: acc when acc: term()

Reduces over all of the given enumerables, halting as soon as any enumerable is
empty.
The reducer will receive 2 args: a list of elements (one from each enum) and the
accumulator.
In practice, the behavior provided by this function can be achieved with:
Enum.reduce(Stream.zip(enums), acc, reducer)
But zip_reduce/3 exists for convenience purposes.
Examples
iex> enums = [[1, 1], [2, 2], [3, 3]]
...> Enum.zip_reduce(enums, [], fn elements, acc ->
...> [List.to_tuple(elements) | acc]
...> end)
[{1, 2, 3}, {1, 2, 3}]
If one of the lists has more entries than the others,
those entries are discarded:
iex> enums = [[1, 2], [a: 3, b: 4], [5, 6, 7]]
...> Enum.zip_reduce(enums, [], fn elements, acc ->
...> [List.to_tuple(elements) | acc]
...> end)
[{2, {:b, 4}, 6}, {1, {:a, 3}, 5}]

 zip_reduce(left, right, acc, reducer)

 (since 1.12.0)

 @spec zip_reduce(t(), t(), acc, (enum1_elem :: term(), enum2_elem :: term(), acc ->
 acc)) :: acc
when acc: term()

Reduces over two enumerables halting as soon as either enumerable is empty.
In practice, the behavior provided by this function can be achieved with:
Enum.reduce(Stream.zip(left, right), acc, reducer)
But zip_reduce/4 exists for convenience purposes.
Examples
iex> Enum.zip_reduce([1, 2], [3, 4], 0, fn x, y, acc -> x + y + acc end)
10
If one of the lists has more entries than the others,
those entries are discarded:
iex> Enum.zip_reduce([1, 2, 3], [4, 5], [], fn x, y, acc -> [x + y | acc] end)
[7, 5]

 zip_with(enumerables, zip_fun)

 (since 1.12.0)

 @spec zip_with(t(), ([term()] -> term())) :: [term()]

Zips corresponding elements from a finite collection of enumerables
into list, transforming them with the zip_fun function as it goes.
The first element from each of the enums in enumerables will be put
into a list which is then passed to the one-arity zip_fun function.
Then, the second elements from each of the enums are put into a list
and passed to zip_fun, and so on until any one of the enums in
enumerables runs out of elements.
Returns a list with all the results of calling zip_fun.
Examples
iex> Enum.zip_with([[1, 2], [3, 4], [5, 6]], fn [x, y, z] -> x + y + z end)
[9, 12]

iex> Enum.zip_with([[1, 2], [3, 4]], fn [x, y] -> x + y end)
[4, 6]
zip_with/2 can be used to transpose lists of lists:
iex> Enum.zip_with([[1, 2,], [3, 4]], & &1)
[[1, 3], [2, 4]]

 zip_with(enumerable1, enumerable2, zip_fun)

 (since 1.12.0)

 @spec zip_with(t(), t(), (enum1_elem :: term(), enum2_elem :: term() -> term())) :: [
 term()
]

Zips corresponding elements from two enumerables into a list, transforming them with
the zip_fun function as it goes.
The corresponding elements from each collection are passed to the provided two-arity zip_fun
function in turn. Returns a list that contains the result of calling zip_fun for each pair of
elements.
The zipping finishes as soon as either enumerable runs out of elements.
Zipping Maps
It's important to remember that zipping inherently relies on order.
If you zip two lists you get the element at the index from each list in turn.
If we zip two maps together it's tempting to think that you will get the given
key in the left map and the matching key in the right map, but there is no such
guarantee because map keys are not ordered! Consider the following:
left = %{:a => 1, 1 => 3}
right = %{:a => 1, :b => :c}
Enum.zip(left, right)
#=> [{{1, 3}, {:a, 1}}, {{:a, 1}, {:b, :c}}]
As you can see :a does not get paired with :a. If this is what you want,
you should use Map.merge/3.
Examples
iex> Enum.zip_with([1, 2], [3, 4], fn x, y -> x + y end)
[4, 6]

iex> Enum.zip_with([1, 2], [3, 4, 5, 6], fn x, y -> x + y end)
[4, 6]

iex> Enum.zip_with([1, 2, 5, 6], [3, 4], fn x, y -> x + y end)
[4, 6]

Keyword

A keyword list is a list that consists exclusively of two-element tuples.
The first element of these tuples is known as the key, and it must be an atom.
The second element, known as the value, can be any term.
Keywords are mostly used to work with optional values. For a general introduction
to keywords and how they compare with maps, see our Keyword and Maps
guide.
Examples
For example, the following is a keyword list:
[{:exit_on_close, true}, {:active, :once}, {:packet_size, 1024}]
Elixir provides a special and more concise syntax for keyword lists:
[exit_on_close: true, active: :once, packet_size: 1024]
The two syntaxes return the exact same value.
A key can be any atom, consisting of Unicode letters, numbers,
an underscore or the @ sign. If the key should have any other
characters, such as spaces, you can wrap it in quotes:
iex> ["exit on close": true]
["exit on close": true]
Wrapping an atom in quotes does not make it a string. Keyword list
keys are always atoms. Quotes should only be used when necessary
or Elixir will issue a warning.
Duplicate keys and ordering
A keyword may have duplicate keys so it is not strictly a key-value
data type. However, most of the functions in this module work on a
key-value structure and behave similar to the functions you would
find in the Map module. For example, Keyword.get/3 will get the first
entry matching the given key, regardless if duplicate entries exist.
Similarly, Keyword.put/3 and Keyword.delete/2 ensure all duplicate
entries for a given key are removed when invoked. Note, however, that
keyword list operations need to traverse the whole list in order to find
keys, so these operations are slower than their map counterparts.
A handful of functions exist to handle duplicate keys, for example,
get_values/2 returns all values for a given key and delete_first/2
deletes just the first entry of the existing ones.
Even though lists preserve the existing order, the functions in
Keyword do not guarantee any ordering. For example, if you invoke
Keyword.put(opts, new_key, new_value), there is no guarantee for
where new_key will be added to (the front, the end or anywhere else).
Given ordering is not guaranteed, it is not recommended to pattern
match on keyword lists either. For example, a function such as:
def my_function([some_key: value, another_key: another_value])
will match
my_function([some_key: :foo, another_key: :bar])
but it won't match
my_function([another_key: :bar, some_key: :foo])
Most of the functions in this module work in linear time. This means
that the time it takes to perform an operation grows at the same
rate as the length of the list.
Call syntax
When keyword lists are passed as the last argument to a function,
the square brackets around the keyword list can be omitted. For
example, the keyword list syntax:
String.split("1-0", "-", [trim: true, parts: 2])
can be written without the enclosing brackets whenever it is the last
argument of a function call:
String.split("1-0", "-", trim: true, parts: 2)
Since tuples, lists and maps are treated similarly to function
arguments in Elixir syntax, this property is also available to them:
iex> {1, 2, foo: :bar}
{1, 2, [{:foo, :bar}]}

iex> [1, 2, foo: :bar]
[1, 2, {:foo, :bar}]

iex> %{1 => 2, foo: :bar}
%{1 => 2, :foo => :bar}

 Summary

 Types

 default()

 key()

 t()

 t(value)

 value()

 Functions

 delete(keywords, key)

 Deletes the entries in the keyword list under a specific key.

 delete_first(keywords, key)

 Deletes the first entry in the keyword list under a specific key.

 drop(keywords, keys)

 Drops the given keys from the keyword list.

 equal?(left, right)

 Checks if two keywords are equal.

 fetch(keywords, key)

 Fetches the value for a specific key and returns it in a tuple.

 fetch!(keywords, key)

 Fetches the value for specific key.

 filter(keywords, fun)

 Returns a keyword list containing only the entries from keywords
for which the function fun returns a truthy value.

 from_keys(keys, value)

 Builds a keyword from the given keys and the fixed value.

 get(keywords, key, default \\ nil)

 Gets the value under the given key.

 get_and_update(keywords, key, fun)

 Gets the value for key and updates it in one pass, deleting duplicate keys.

 get_and_update!(keywords, key, fun)

 Gets the value for key and updates it in one pass, deleting duplicate keys,
raising if key can't be found in keywords.

 get_lazy(keywords, key, fun)

 Gets the value under the given key.

 get_values(keywords, key)

 Gets all values under a specific key.

 has_key?(keywords, key)

 Returns whether a given key exists in the given keywords.

 intersect(keyword1, keyword2, fun \\ fn _key, _v1, v2 -> v2 end)

 Intersects two keyword lists, returning a keyword with the common keys.

 keys(keywords)

 Returns all keys from the keyword list.

 keyword?(term)

 Returns true if term is a keyword list, otherwise false.

 merge(keywords1, keywords2)

 Merges two keyword lists into one.

 merge(keywords1, keywords2, fun)

 Merges two keyword lists into one.

 new()

 Returns an empty keyword list, i.e. an empty list.

 new(pairs)

 Creates a keyword list from an enumerable.

 new(pairs, transform)

 Creates a keyword list from an enumerable via the transformation function.

 pop(keywords, key, default \\ nil)

 Returns the first value for key and removes all associated entries in the keyword list.

 pop!(keywords, key)

 Returns the first value for key and removes all associated entries in the keyword list,
raising if key is not present.

 pop_first(keywords, key, default \\ nil)

 Returns and removes the first value associated with key in the keyword list.

 pop_lazy(keywords, key, fun)

 Lazily returns and removes all values associated with key in the keyword list.

 pop_values(keywords, key)

 Returns all values for key and removes all associated entries in the keyword list.

 put(keywords, key, value)

 Puts the given value under the specified key.

 put_new(keywords, key, value)

 Puts the given value under key, unless the entry key already exists.

 put_new_lazy(keywords, key, fun)

 Evaluates fun and puts the result under key
in keyword list unless key is already present.

 reject(keywords, fun)

 Returns a keyword list excluding the entries from keywords
for which the function fun returns a truthy value.

 replace(keywords, key, value)

 Puts a value under key only if the key already exists in keywords.

 replace!(keywords, key, value)

 Puts a value under key only if the key already exists in keywords.

 replace_lazy(keywords, key, fun)

 Replaces the value under key using the given function only if
key already exists in keywords.

 split(keywords, keys)

 Takes all entries corresponding to the given keys and extracts them into a
separate keyword list.

 split_with(keywords, fun)

 Splits the keywords into two keyword lists according to the given function
fun.

 take(keywords, keys)

 Takes all entries corresponding to the given keys and returns them as a new
keyword list.

 to_list(keywords)

 Returns the keyword list itself.

 update(keywords, key, default, fun)

 Updates the value under key in keywords using the given function.

 update!(keywords, key, fun)

 Updates the value under key using the given function.

 validate(keyword, values)

 Ensures the given keyword has only the keys given in values.

 validate!(keyword, values)

 Similar to validate/2 but returns the keyword or raises an error.

 values(keywords)

 Returns all values from the keyword list.

 Types

 default()

 (since 1.17.0)

 @type default() :: any()

 key()

 @type key() :: atom()

 t()

 @type t() :: [{key(), value()}]

 t(value)

 @type t(value) :: [{key(), value}]

 value()

 @type value() :: any()

 Functions

 delete(keywords, key)

 @spec delete(t(), key()) :: t()

Deletes the entries in the keyword list under a specific key.
If the key does not exist, it returns the keyword list unchanged.
Use delete_first/2 to delete just the first entry in case of
duplicate keys.
Examples
iex> Keyword.delete([a: 1, b: 2], :a)
[b: 2]
iex> Keyword.delete([a: 1, b: 2, a: 3], :a)
[b: 2]
iex> Keyword.delete([b: 2], :a)
[b: 2]

 delete_first(keywords, key)

 @spec delete_first(t(), key()) :: t()

Deletes the first entry in the keyword list under a specific key.
If the key does not exist, it returns the keyword list unchanged.
Examples
iex> Keyword.delete_first([a: 1, b: 2, a: 3], :a)
[b: 2, a: 3]

iex> Keyword.delete_first([a: 1, b: 2, b: 3], :b)
[a: 1, b: 3]

iex> Keyword.delete_first([b: 2], :a)
[b: 2]

 drop(keywords, keys)

 @spec drop(t(), [key()]) :: t()

Drops the given keys from the keyword list.
Removes duplicate keys from the new keyword list.
Examples
iex> Keyword.drop([a: 1, a: 2], [:a])
[]
iex> Keyword.drop([a: 1, b: 2, c: 3], [:b, :d])
[a: 1, c: 3]
iex> Keyword.drop([a: 1, b: 2, b: 3, c: 3, a: 5], [:b, :d])
[a: 1, c: 3, a: 5]

 equal?(left, right)

 @spec equal?(t(), t()) :: boolean()

Checks if two keywords are equal.
Considers two keywords to be equal if they contain
the same keys and those keys contain the same values.
Examples
iex> Keyword.equal?([a: 1, b: 2], [b: 2, a: 1])
true
iex> Keyword.equal?([a: 1, b: 2], [b: 1, a: 2])
false
iex> Keyword.equal?([a: 1, b: 2, a: 3], [b: 2, a: 3, a: 1])
true
Comparison between values is done with ===/3,
which means integers are not equivalent to floats:
iex> Keyword.equal?([a: 1.0], [a: 1])
false

 fetch(keywords, key)

 @spec fetch(t(), key()) :: {:ok, value()} | :error

Fetches the value for a specific key and returns it in a tuple.
If the key does not exist, it returns :error.
Examples
iex> Keyword.fetch([a: 1], :a)
{:ok, 1}
iex> Keyword.fetch([a: 1], :b)
:error

 fetch!(keywords, key)

 @spec fetch!(t(), key()) :: value()

Fetches the value for specific key.
If the key does not exist, it raises a KeyError.
Examples
iex> Keyword.fetch!([a: 1], :a)
1
iex> Keyword.fetch!([a: 1], :b)
** (KeyError) key :b not found in:
...

 filter(keywords, fun)

 (since 1.13.0)

 @spec filter(t(), ({key(), value()} -> as_boolean(term()))) :: t()

Returns a keyword list containing only the entries from keywords
for which the function fun returns a truthy value.
See also reject/2 which discards all entries where the function
returns a truthy value.
Examples
iex> Keyword.filter([one: 1, two: 2, three: 3], fn {_key, val} -> rem(val, 2) == 1 end)
[one: 1, three: 3]

 from_keys(keys, value)

 (since 1.14.0)

 @spec from_keys([key()], value()) :: t(value())

Builds a keyword from the given keys and the fixed value.
Examples
iex> Keyword.from_keys([:foo, :bar, :baz], :atom)
[foo: :atom, bar: :atom, baz: :atom]
iex> Keyword.from_keys([], :atom)
[]

 get(keywords, key, default \\ nil)

 @spec get(t(), key(), default()) :: value() | default()

Gets the value under the given key.
Returns the default value if key does not exist
(nil if no default value is provided).
If duplicate entries exist, it returns the first one.
Use get_values/2 to retrieve all entries.
Examples
iex> Keyword.get([], :a)
nil
iex> Keyword.get([a: 1], :a)
1
iex> Keyword.get([a: 1], :b)
nil
iex> Keyword.get([a: 1], :b, 3)
3
With duplicate keys:
iex> Keyword.get([a: 1, a: 2], :a, 3)
1
iex> Keyword.get([a: 1, a: 2], :b, 3)
3

 get_and_update(keywords, key, fun)

 @spec get_and_update(t(), key(), (value() | nil ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, new_keywords :: t()}
when current_value: value()

Gets the value for key and updates it in one pass, deleting duplicate keys.
The fun argument receives the value of key (or nil if key
is not present) and must return a two-element tuple: the current value
(the retrieved value, which can be operated on before being returned)
and the new value to be stored under key. The fun may also
return :pop, implying the current value shall be removed from the
keyword list and returned.
Returns a tuple that contains the current value returned by
fun and a new keyword list with the updated value under key.
Examples
iex> Keyword.get_and_update([a: 1], :a, fn current_value ->
...> {current_value, "new value!"}
...> end)
{1, [a: "new value!"]}

iex> Keyword.get_and_update([a: 1], :b, fn current_value ->
...> {current_value, "new value!"}
...> end)
{nil, [b: "new value!", a: 1]}

iex> Keyword.get_and_update([a: 2], :a, fn number ->
...> {2 * number, 3 * number}
...> end)
{4, [a: 6]}

iex> Keyword.get_and_update([a: 1], :a, fn _ -> :pop end)
{1, []}

iex> Keyword.get_and_update([a: 1], :b, fn _ -> :pop end)
{nil, [a: 1]}

 get_and_update!(keywords, key, fun)

 @spec get_and_update!(t(), key(), (value() ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, new_keywords :: t()}
when current_value: value()

Gets the value for key and updates it in one pass, deleting duplicate keys,
raising if key can't be found in keywords.
The fun argument receives the value under key and must return a
two-element tuple: the current value (the retrieved value, which can be
operated on before being returned) and the new value to be stored under
key.
Returns a tuple that contains the current value returned by
fun and a new keyword list with the updated value under key.
Examples
iex> Keyword.get_and_update!([a: 1], :a, fn current_value ->
...> {current_value, "new value!"}
...> end)
{1, [a: "new value!"]}

iex> Keyword.get_and_update!([a: 1], :b, fn current_value ->
...> {current_value, "new value!"}
...> end)
** (KeyError) key :b not found in:
...

iex> Keyword.get_and_update!([a: 1], :a, fn _ ->
...> :pop
...> end)
{1, []}

 get_lazy(keywords, key, fun)

 @spec get_lazy(t(), key(), (-> value())) :: value()

Gets the value under the given key.
If key does not exist, lazily evaluates fun and returns its result.
This is useful if the default value is very expensive to calculate or
generally difficult to set up and tear down again.
If duplicate entries exist, it returns the first one.
Use get_values/2 to retrieve all entries.
Examples
iex> keyword = [a: 1]
iex> fun = fn ->
...> # some expensive operation here
...> 13
...> end
iex> Keyword.get_lazy(keyword, :a, fun)
1
iex> Keyword.get_lazy(keyword, :b, fun)
13

 get_values(keywords, key)

 @spec get_values(t(), key()) :: [value()]

Gets all values under a specific key.
Examples
iex> Keyword.get_values([], :a)
[]
iex> Keyword.get_values([a: 1], :a)
[1]
iex> Keyword.get_values([a: 1, a: 2], :a)
[1, 2]

 has_key?(keywords, key)

 @spec has_key?(t(), key()) :: boolean()

Returns whether a given key exists in the given keywords.
Examples
iex> Keyword.has_key?([a: 1], :a)
true
iex> Keyword.has_key?([a: 1], :b)
false

 intersect(keyword1, keyword2, fun \\ fn _key, _v1, v2 -> v2 end)

 (since 1.17.0)

 @spec intersect(keyword(), keyword(), (key(), value(), value() -> value())) ::
 keyword()

Intersects two keyword lists, returning a keyword with the common keys.
By default, it returns the values of the intersected keys in keyword2.
The keys are returned in the order found in keyword1.
Examples
iex> Keyword.intersect([a: 1, b: 2], [b: "b", c: "c"])
[b: "b"]

iex> Keyword.intersect([a: 1, b: 2], [b: 2, c: 3], fn _k, v1, v2 ->
...> v1 + v2
...> end)
[b: 4]

 keys(keywords)

 @spec keys(t()) :: [key()]

Returns all keys from the keyword list.
Keeps duplicate keys in the resulting list of keys.
Examples
iex> Keyword.keys(a: 1, b: 2)
[:a, :b]

iex> Keyword.keys(a: 1, b: 2, a: 3)
[:a, :b, :a]

iex> Keyword.keys([{:a, 1}, {"b", 2}, {:c, 3}])
** (ArgumentError) expected a keyword list, but an entry in the list is not a two-element tuple with an atom as its first element, got: {"b", 2}

 keyword?(term)

 @spec keyword?(term()) :: boolean()

Returns true if term is a keyword list, otherwise false.
When term is a list it is traversed to the end.
Examples
iex> Keyword.keyword?([])
true
iex> Keyword.keyword?(a: 1)
true
iex> Keyword.keyword?([{Foo, 1}])
true
iex> Keyword.keyword?([{}])
false
iex> Keyword.keyword?([:key])
false
iex> Keyword.keyword?(%{})
false

 merge(keywords1, keywords2)

 @spec merge(t(), t()) :: t()

Merges two keyword lists into one.
Adds all keys, including duplicate keys, given in keywords2
to keywords1, overriding any existing ones.
There are no guarantees about the order of the keys in the returned keyword.
Examples
iex> Keyword.merge([a: 1, b: 2], [a: 3, d: 4])
[b: 2, a: 3, d: 4]

iex> Keyword.merge([a: 1, b: 2], [a: 3, d: 4, a: 5])
[b: 2, a: 3, d: 4, a: 5]

iex> Keyword.merge([a: 1], [2, 3])
** (ArgumentError) expected a keyword list as the second argument, got: [2, 3]

 merge(keywords1, keywords2, fun)

 @spec merge(t(), t(), (key(), value(), value() -> value())) :: t()

Merges two keyword lists into one.
Adds all keys, including duplicate keys, given in keywords2
to keywords1. Invokes the given function to solve conflicts.
If keywords2 has duplicate keys, it invokes the given function
for each matching pair in keywords1.
There are no guarantees about the order of the keys in the returned keyword.
Examples
iex> Keyword.merge([a: 1, b: 2], [a: 3, d: 4], fn _k, v1, v2 ->
...> v1 + v2
...> end)
[b: 2, a: 4, d: 4]

iex> Keyword.merge([a: 1, b: 2], [a: 3, d: 4, a: 5], fn :a, v1, v2 ->
...> v1 + v2
...> end)
[b: 2, a: 4, d: 4, a: 5]

iex> Keyword.merge([a: 1, b: 2, a: 3], [a: 3, d: 4, a: 5], fn :a, v1, v2 ->
...> v1 + v2
...> end)
[b: 2, a: 4, d: 4, a: 8]

iex> Keyword.merge([a: 1, b: 2], [:a, :b], fn :a, v1, v2 ->
...> v1 + v2
...> end)
** (ArgumentError) expected a keyword list as the second argument, got: [:a, :b]

 new()

 @spec new() :: []

Returns an empty keyword list, i.e. an empty list.
Examples
iex> Keyword.new()
[]

 new(pairs)

 @spec new(Enumerable.t()) :: t()

Creates a keyword list from an enumerable.
Removes duplicate entries and the last one prevails.
Unlike Enum.into(enumerable, []), Keyword.new(enumerable)
guarantees the keys are unique.
Examples
iex> Keyword.new([{:b, 1}, {:a, 2}])
[b: 1, a: 2]

iex> Keyword.new([{:a, 1}, {:a, 2}, {:a, 3}])
[a: 3]

 new(pairs, transform)

 @spec new(Enumerable.t(), (term() -> {key(), value()})) :: t()

Creates a keyword list from an enumerable via the transformation function.
Removes duplicate entries and the last one prevails.
Unlike Enum.into(enumerable, [], fun),
Keyword.new(enumerable, fun) guarantees the keys are unique.
Examples
iex> Keyword.new([:a, :b], fn x -> {x, x} end)
[a: :a, b: :b]

 pop(keywords, key, default \\ nil)

 @spec pop(t(), key(), default()) :: {value() | default(), t()}

Returns the first value for key and removes all associated entries in the keyword list.
It returns a tuple where the first element is the first value for key and the
second element is a keyword list with all entries associated with key removed.
If the key is not present in the keyword list, it returns {default, keyword_list}.
If you don't want to remove all the entries associated with key use pop_first/3
instead, which will remove only the first entry.
Examples
iex> Keyword.pop([a: 1], :a)
{1, []}
iex> Keyword.pop([a: 1], :b)
{nil, [a: 1]}
iex> Keyword.pop([a: 1], :b, 3)
{3, [a: 1]}
iex> Keyword.pop([a: 1, a: 2], :a)
{1, []}

 pop!(keywords, key)

 (since 1.10.0)

 @spec pop!(t(), key()) :: {value(), t()}

Returns the first value for key and removes all associated entries in the keyword list,
raising if key is not present.
This function behaves like pop/3, but raises in case the key is not present in the
given keywords.
Examples
iex> Keyword.pop!([a: 1], :a)
{1, []}
iex> Keyword.pop!([a: 1, a: 2], :a)
{1, []}
iex> Keyword.pop!([a: 1], :b)
** (KeyError) key :b not found in:
...

 pop_first(keywords, key, default \\ nil)

 @spec pop_first(t(), key(), default()) :: {value() | default(), t()}

Returns and removes the first value associated with key in the keyword list.
Keeps duplicate keys in the resulting keyword list.
Examples
iex> Keyword.pop_first([a: 1], :a)
{1, []}
iex> Keyword.pop_first([a: 1], :b)
{nil, [a: 1]}
iex> Keyword.pop_first([a: 1], :b, 3)
{3, [a: 1]}
iex> Keyword.pop_first([a: 1, a: 2], :a)
{1, [a: 2]}

 pop_lazy(keywords, key, fun)

 @spec pop_lazy(t(), key(), (-> value())) :: {value(), t()}

Lazily returns and removes all values associated with key in the keyword list.
This is useful if the default value is very expensive to calculate or
generally difficult to set up and tear down again.
Removes all duplicate keys. See pop_first/3 for removing only the first entry.
Examples
iex> keyword = [a: 1]
iex> fun = fn ->
...> # some expensive operation here
...> 13
...> end
iex> Keyword.pop_lazy(keyword, :a, fun)
{1, []}
iex> Keyword.pop_lazy(keyword, :b, fun)
{13, [a: 1]}

 pop_values(keywords, key)

 (since 1.10.0)

 @spec pop_values(t(), key()) :: {[value()], t()}

Returns all values for key and removes all associated entries in the keyword list.
It returns a tuple where the first element is a list of values for key and the
second element is a keyword list with all entries associated with key removed.
If the key is not present in the keyword list, it returns {[], keyword_list}.
If you don't want to remove all the entries associated with key use pop_first/3
instead, which will remove only the first entry.
Examples
iex> Keyword.pop_values([a: 1], :a)
{[1], []}
iex> Keyword.pop_values([a: 1], :b)
{[], [a: 1]}
iex> Keyword.pop_values([a: 1, a: 2], :a)
{[1, 2], []}

 put(keywords, key, value)

 @spec put(t(), key(), value()) :: t()

Puts the given value under the specified key.
If a value under key already exists, it overrides the value
and removes all duplicate entries.
Examples
iex> Keyword.put([a: 1], :b, 2)
[b: 2, a: 1]
iex> Keyword.put([a: 1, b: 2], :a, 3)
[a: 3, b: 2]
iex> Keyword.put([a: 1, b: 2, a: 4], :a, 3)
[a: 3, b: 2]

 put_new(keywords, key, value)

 @spec put_new(t(), key(), value()) :: t()

Puts the given value under key, unless the entry key already exists.
Examples
iex> Keyword.put_new([a: 1], :b, 2)
[b: 2, a: 1]
iex> Keyword.put_new([a: 1, b: 2], :a, 3)
[a: 1, b: 2]

 put_new_lazy(keywords, key, fun)

 @spec put_new_lazy(t(), key(), (-> value())) :: t()

Evaluates fun and puts the result under key
in keyword list unless key is already present.
This is useful if the value is very expensive to calculate or
generally difficult to set up and tear down again.
Examples
iex> keyword = [a: 1]
iex> fun = fn ->
...> # some expensive operation here
...> 13
...> end
iex> Keyword.put_new_lazy(keyword, :a, fun)
[a: 1]
iex> Keyword.put_new_lazy(keyword, :b, fun)
[b: 13, a: 1]

 reject(keywords, fun)

 (since 1.13.0)

 @spec reject(t(), ({key(), value()} -> as_boolean(term()))) :: t()

Returns a keyword list excluding the entries from keywords
for which the function fun returns a truthy value.
See also filter/2.
Examples
iex> Keyword.reject([one: 1, two: 2, three: 3], fn {_key, val} -> rem(val, 2) == 1 end)
[two: 2]

 replace(keywords, key, value)

 (since 1.11.0)

 @spec replace(t(), key(), value()) :: t()

Puts a value under key only if the key already exists in keywords.
In case a key exists multiple times in the keyword list,
it removes later occurrences.
Examples
iex> Keyword.replace([a: 1, b: 2, a: 4], :a, 3)
[a: 3, b: 2]

iex> Keyword.replace([a: 1], :b, 2)
[a: 1]

 replace!(keywords, key, value)

 (since 1.5.0)

 @spec replace!(t(), key(), value()) :: t()

Puts a value under key only if the key already exists in keywords.
If key is not present in keywords, it raises a KeyError.
Examples
iex> Keyword.replace!([a: 1, b: 2, a: 3], :a, :new)
[a: :new, b: 2]
iex> Keyword.replace!([a: 1, b: 2, c: 3, b: 4], :b, :new)
[a: 1, b: :new, c: 3]

iex> Keyword.replace!([a: 1], :b, 2)
** (KeyError) key :b not found in:
...

 replace_lazy(keywords, key, fun)

 (since 1.14.0)

 @spec replace_lazy(t(), key(), (existing_value :: value() -> new_value :: value())) ::
 t()

Replaces the value under key using the given function only if
key already exists in keywords.
In comparison to replace/3, this can be useful when it's expensive to calculate the value.
If key does not exist, the original keyword list is returned unchanged.
Examples
iex> Keyword.replace_lazy([a: 1, b: 2], :a, fn v -> v * 4 end)
[a: 4, b: 2]

iex> Keyword.replace_lazy([a: 2, b: 2, a: 1], :a, fn v -> v * 4 end)
[a: 8, b: 2]

iex> Keyword.replace_lazy([a: 1, b: 2], :c, fn v -> v * 4 end)
[a: 1, b: 2]

 split(keywords, keys)

 @spec split(t(), [key()]) :: {t(), t()}

Takes all entries corresponding to the given keys and extracts them into a
separate keyword list.
Returns a tuple with the new list and the old list with removed keys.
Ignores keys for which there are no entries in the keyword list.
Entries with duplicate keys end up in the same keyword list.
Examples
iex> Keyword.split([a: 1, b: 2, c: 3], [:a, :c, :e])
{[a: 1, c: 3], [b: 2]}
iex> Keyword.split([a: 1, b: 2, c: 3, a: 4], [:a, :c, :e])
{[a: 1, c: 3, a: 4], [b: 2]}

 split_with(keywords, fun)

 (since 1.15.0)

 @spec split_with(t(), ({key(), value()} -> as_boolean(term()))) :: {t(), t()}

Splits the keywords into two keyword lists according to the given function
fun.
The provided fun receives each {key, value} pair in the keywords as its only
argument. Returns a tuple with the first keyword list containing all the
elements in keywords for which applying fun returned a truthy value, and
a second keyword list with all the elements for which applying fun returned
a falsy value (false or nil).
Examples
iex> Keyword.split_with([a: 1, b: 2, c: 3], fn {_k, v} -> rem(v, 2) == 0 end)
{[b: 2], [a: 1, c: 3]}

iex> Keyword.split_with([a: 1, b: 2, c: 3, b: 4], fn {_k, v} -> rem(v, 2) == 0 end)
{[b: 2, b: 4], [a: 1, c: 3]}

iex> Keyword.split_with([a: 1, b: 2, c: 3, b: 4], fn {k, v} -> k in [:a, :c] and rem(v, 2) == 0 end)
{[], [a: 1, b: 2, c: 3, b: 4]}

iex> Keyword.split_with([], fn {_k, v} -> rem(v, 2) == 0 end)
{[], []}

 take(keywords, keys)

 @spec take(t(), [key()]) :: t()

Takes all entries corresponding to the given keys and returns them as a new
keyword list.
Preserves duplicate keys in the new keyword list.
Examples
iex> Keyword.take([a: 1, b: 2, c: 3], [:a, :c, :e])
[a: 1, c: 3]
iex> Keyword.take([a: 1, b: 2, c: 3, a: 5], [:a, :c, :e])
[a: 1, c: 3, a: 5]

 to_list(keywords)

 @spec to_list(t()) :: t()

Returns the keyword list itself.
Examples
iex> Keyword.to_list(a: 1)
[a: 1]

 update(keywords, key, default, fun)

 @spec update(t(), key(), default :: value(), (existing_value :: value() ->
 new_value :: value())) :: t()

Updates the value under key in keywords using the given function.
If the key does not exist, it inserts the given default value.
Does not pass the default value through the update function.
Removes all duplicate keys and only updates the first one.
Examples
iex> Keyword.update([a: 1], :a, 13, fn existing_value -> existing_value * 2 end)
[a: 2]

iex> Keyword.update([a: 1, a: 2], :a, 13, fn existing_value -> existing_value * 2 end)
[a: 2]

iex> Keyword.update([a: 1], :b, 11, fn existing_value -> existing_value * 2 end)
[a: 1, b: 11]

 update!(keywords, key, fun)

 @spec update!(t(), key(), (current_value :: value() -> new_value :: value())) :: t()

Updates the value under key using the given function.
Raises KeyError if the key does not exist.
Removes all duplicate keys and only updates the first one.
Examples
iex> Keyword.update!([a: 1, b: 2, a: 3], :a, &(&1 * 2))
[a: 2, b: 2]
iex> Keyword.update!([a: 1, b: 2, c: 3], :b, &(&1 * 2))
[a: 1, b: 4, c: 3]

iex> Keyword.update!([a: 1], :b, &(&1 * 2))
** (KeyError) key :b not found in:
...

 validate(keyword, values)

 (since 1.13.0)

 @spec validate(
 keyword(),
 values :: [atom() | {atom(), term()}]
) :: {:ok, keyword()} | {:error, [atom()]}

Ensures the given keyword has only the keys given in values.
The second argument must be a list of atoms, specifying
a given key, or tuples specifying a key and a default value.
If the keyword list has only the given keys, it returns
{:ok, keyword} with default values applied. Otherwise it
returns {:error, invalid_keys} with invalid keys.
See also: validate!/2.
Examples
iex> {:ok, result} = Keyword.validate([], [one: 1, two: 2])
iex> Enum.sort(result)
[one: 1, two: 2]

iex> {:ok, result} = Keyword.validate([two: 3], [one: 1, two: 2])
iex> Enum.sort(result)
[one: 1, two: 3]
If atoms are given, they are supported as keys but do not
provide a default value:
iex> {:ok, result} = Keyword.validate([], [:one, two: 2])
iex> Enum.sort(result)
[two: 2]

iex> {:ok, result} = Keyword.validate([one: 1], [:one, two: 2])
iex> Enum.sort(result)
[one: 1, two: 2]
Passing unknown keys returns an error:
iex> Keyword.validate([three: 3, four: 4], [one: 1, two: 2])
{:error, [:four, :three]}
Passing the same key multiple times also errors:
iex> Keyword.validate([one: 1, two: 2, one: 1], [:one, :two])
{:error, [:one]}

 validate!(keyword, values)

 (since 1.13.0)

 @spec validate!(
 keyword(),
 values :: [atom() | {atom(), term()}]
) :: keyword()

Similar to validate/2 but returns the keyword or raises an error.
Examples
iex> Keyword.validate!([], [one: 1, two: 2]) |> Enum.sort()
[one: 1, two: 2]
iex> Keyword.validate!([two: 3], [one: 1, two: 2]) |> Enum.sort()
[one: 1, two: 3]
If atoms are given, they are supported as keys but do not
provide a default value:
iex> Keyword.validate!([], [:one, two: 2]) |> Enum.sort()
[two: 2]
iex> Keyword.validate!([one: 1], [:one, two: 2]) |> Enum.sort()
[one: 1, two: 2]
Passing unknown keys raises an error:
iex> Keyword.validate!([three: 3], [one: 1, two: 2])
** (ArgumentError) unknown keys [:three] in [three: 3], the allowed keys are: [:one, :two]
Passing the same key multiple times also errors:
iex> Keyword.validate!([one: 1, two: 2, one: 1], [:one, :two])
** (ArgumentError) duplicate keys [:one] in [one: 1, two: 2, one: 1]

 values(keywords)

 @spec values(t()) :: [value()]

Returns all values from the keyword list.
Keeps values from duplicate keys in the resulting list of values.
Examples
iex> Keyword.values(a: 1, b: 2)
[1, 2]
iex> Keyword.values(a: 1, b: 2, a: 3)
[1, 2, 3]

List

Linked lists hold zero, one, or more elements in the chosen order.
Lists in Elixir are specified between square brackets:
iex> [1, "two", 3, :four]
[1, "two", 3, :four]
Two lists can be concatenated and subtracted using the
++/2 and --/2 operators:
iex> [1, 2, 3] ++ [4, 5, 6]
[1, 2, 3, 4, 5, 6]
iex> [1, true, 2, false, 3, true] -- [true, false]
[1, 2, 3, true]
An element can be prepended to a list using |:
iex> new = 0
iex> list = [1, 2, 3]
iex> [new | list]
[0, 1, 2, 3]
Lists in Elixir are effectively linked lists, which means
they are internally represented in pairs containing the
head and the tail of a list:
iex> [head | tail] = [1, 2, 3]
iex> head
1
iex> tail
[2, 3]
Similarly, we could write the list [1, 2, 3] using only
such pairs (called cons cells):
iex> [1 | [2 | [3 | []]]]
[1, 2, 3]
Some lists, called improper lists, do not have an empty list as
the second element in the last cons cell:
iex> [1 | [2 | [3 | 4]]]
[1, 2, 3 | 4]
Although improper lists are generally avoided, they are used in some
special circumstances like iodata and chardata entities (see the IO module).
Due to their cons cell based representation, prepending an element
to a list is always fast (constant time), while appending becomes
slower as the list grows in size (linear time):
iex> list = [1, 2, 3]
iex> [0 | list] # fast
[0, 1, 2, 3]
iex> list ++ [4] # slow
[1, 2, 3, 4]
Most of the functions in this module work in linear time. This means that
the time it takes to perform an operation grows at the same rate as the
length of the list. For example length/1 and last/1 will run in linear
time because they need to iterate through every element of the list, but
first/1 will run in constant time because it only needs the first element.
Lists also implement the Enumerable protocol, so many functions to work with
lists are found in the Enum module. Additionally, the following functions and
operators for lists are found in Kernel:
	++/2
	--/2
	hd/1
	tl/1
	in/2
	length/1

Charlists
If a list is made of non-negative integers, where each integer represents a
Unicode code point, the list can also be called a charlist. These integers
must:
	be within the range 0..0x10FFFF (0..1_114_111);
	and be out of the range 0xD800..0xDFFF (55_296..57_343), which is
reserved in Unicode for UTF-16 surrogate pairs.

Elixir uses the ~c sigil to define charlists:
iex> ~c"héllo"
[104, 233, 108, 108, 111]
In particular, charlists will be printed back by default with the ~c
sigil if they contain only printable ASCII characters:
iex> ~c"abc"
~c"abc"
Even though the representation changed, the raw data does remain a list of
integers, which can be handled as such:
iex> inspect(~c"abc", charlists: :as_list)
"[97, 98, 99]"
iex> Enum.map(~c"abc", fn num -> 1000 + num end)
[1097, 1098, 1099]
You can use the IEx.Helpers.i/1 helper to get a condensed rundown on
charlists in IEx when you encounter them, which shows you the type, description
and also the raw representation in one single summary.
The rationale behind this behavior is to better support
Erlang libraries which may return text as charlists
instead of Elixir strings. In Erlang, charlists are the default
way of handling strings, while in Elixir it's binaries. One
example of such functions is Application.loaded_applications/0:
Application.loaded_applications()
#=> [
#=> {:stdlib, ~c"ERTS CXC 138 10", ~c"2.6"},
#=> {:compiler, ~c"ERTS CXC 138 10", ~c"6.0.1"},
#=> {:elixir, ~c"elixir", ~c"1.0.0"},
#=> {:kernel, ~c"ERTS CXC 138 10", ~c"4.1"},
#=> {:logger, ~c"logger", ~c"1.0.0"}
#=>]
A list can be checked if it is made of only printable ASCII
characters with ascii_printable?/2.
Improper lists are never deemed as charlists.

 Summary

 Functions

 ascii_printable?(list, limit \\ :infinity)

 Checks if list is a charlist made only of printable ASCII characters.

 delete(list, element)

 Deletes the given element from the list. Returns a new list without
the element.

 delete_at(list, index)

 Produces a new list by removing the value at the specified index.

 duplicate(elem, n)

 Duplicates the given element n times in a list.

 ends_with?(list, suffix)

 Returns true if list ends with the given suffix list, otherwise returns false.

 first(list, default \\ nil)

 Returns the first element in list or default if list is empty.

 flatten(list)

 Flattens the given list of nested lists.

 flatten(list, tail)

 Flattens the given list of nested lists.
The list tail will be added at the end of
the flattened list.

 foldl(list, acc, fun)

 Folds (reduces) the given list from the left with
a function. Requires an accumulator, which can be any value.

 foldr(list, acc, fun)

 Folds (reduces) the given list from the right with
a function. Requires an accumulator, which can be any value.

 improper?(list)

 Returns true if list is an improper list. Otherwise returns false.

 insert_at(list, index, value)

 Returns a list with value inserted at the specified index.

 keydelete(list, key, position)

 Receives a list of tuples and deletes the first tuple
where the element at position matches the
given key. Returns the new list.

 keyfind(list, key, position, default \\ nil)

 Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key.

 keyfind!(list, key, position)

 Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key.

 keymember?(list, key, position)

 Receives a list of tuples and returns true if there is
a tuple where the element at position in the tuple matches
the given key.

 keyreplace(list, key, position, new_tuple)

 Receives a list of tuples and if the identified element by key at position
exists, it is replaced with new_tuple.

 keysort(list, position, sorter \\ :asc)

 Receives a list of tuples and sorts the elements
at position of the tuples.

 keystore(list, key, position, new_tuple)

 Receives a list of tuples and replaces the element
identified by key at position with new_tuple.

 keytake(list, key, position)

 Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key, as well as the list without found tuple.

 last(list, default \\ nil)

 Returns the last element in list or default if list is empty.

 myers_difference(list1, list2)

 Returns a keyword list that represents an edit script.

 myers_difference(list1, list2, diff_script)

 Returns a keyword list that represents an edit script with nested diffs.

 pop_at(list, index, default \\ nil)

 Returns and removes the value at the specified index in the list.

 replace_at(list, index, value)

 Returns a list with a replaced value at the specified index.

 starts_with?(list, prefix)

 Returns true if list starts with the given prefix list, otherwise returns false.

 to_atom(charlist)

 Converts a charlist to an atom.

 to_charlist(list)

 Converts a list of integers representing Unicode code points, lists or
strings into a charlist.

 to_existing_atom(charlist)

 Converts a charlist to an existing atom.

 to_float(charlist)

 Returns the float whose text representation is charlist.

 to_integer(charlist)

 Returns an integer whose text representation is charlist.

 to_integer(charlist, base)

 Returns an integer whose text representation is charlist in base base.

 to_string(list)

 Converts a list of integers representing code points, lists or
strings into a string.

 to_tuple(list)

 Converts a list to a tuple.

 update_at(list, index, fun)

 Returns a list with an updated value at the specified index.

 wrap(term)

 Wraps term in a list if this is not list.

 zip(list_of_lists)

 deprecated

 Functions

 ascii_printable?(list, limit \\ :infinity)

 (since 1.6.0)

 @spec ascii_printable?(list(), 0) :: true

 @spec ascii_printable?([], limit) :: true when limit: :infinity | pos_integer()

 @spec ascii_printable?([...], limit) :: boolean()
when limit: :infinity | pos_integer()

Checks if list is a charlist made only of printable ASCII characters.
Takes an optional limit as a second argument. ascii_printable?/2 only
checks the printability of the list up to the limit.
A printable charlist in Elixir contains only the printable characters in the
standard seven-bit ASCII character encoding, which are characters ranging from
32 to 126 in decimal notation, plus the following control characters:
	?\a - Bell
	?\b - Backspace
	?\t - Horizontal tab
	?\n - Line feed
	?\v - Vertical tab
	?\f - Form feed
	?\r - Carriage return
	?\e - Escape

For more information read the Character groups
section in the Wikipedia article of the ASCII standard.
Examples
iex> List.ascii_printable?(~c"abc")
true

iex> List.ascii_printable?(~c"abc" ++ [0])
false

iex> List.ascii_printable?(~c"abc" ++ [0], 2)
true
Improper lists are not printable, even if made only of ASCII characters:
iex> List.ascii_printable?(~c"abc" ++ ?d)
false

 delete(list, element)

 @spec delete([], any()) :: []

 @spec delete([...], any()) :: list()

Deletes the given element from the list. Returns a new list without
the element.
If the element occurs more than once in the list, just
the first occurrence is removed.
Examples
iex> List.delete([:a, :b, :c], :a)
[:b, :c]

iex> List.delete([:a, :b, :c], :d)
[:a, :b, :c]

iex> List.delete([:a, :b, :b, :c], :b)
[:a, :b, :c]

iex> List.delete([], :b)
[]

 delete_at(list, index)

 @spec delete_at(list(), integer()) :: list()

Produces a new list by removing the value at the specified index.
Negative indices indicate an offset from the end of the list.
If index is out of bounds, the original list is returned.
Examples
iex> List.delete_at([1, 2, 3], 0)
[2, 3]

iex> List.delete_at([1, 2, 3], 10)
[1, 2, 3]

iex> List.delete_at([1, 2, 3], -1)
[1, 2]

 duplicate(elem, n)

 @spec duplicate(any(), 0) :: []

 @spec duplicate(elem, pos_integer()) :: [elem, ...] when elem: var

Duplicates the given element n times in a list.
n is an integer greater than or equal to 0.
If n is 0, an empty list is returned.
Examples
iex> List.duplicate("hello", 0)
[]

iex> List.duplicate("hi", 1)
["hi"]

iex> List.duplicate("bye", 2)
["bye", "bye"]

iex> List.duplicate([1, 2], 3)
[[1, 2], [1, 2], [1, 2]]

 ends_with?(list, suffix)

 (since 1.18.0)

 @spec ends_with?([...], [...]) :: boolean()

 @spec ends_with?(list(), []) :: true

 @spec ends_with?([], [...]) :: false

Returns true if list ends with the given suffix list, otherwise returns false.
If suffix is an empty list, it returns true.
Examples
iex> List.ends_with?([1, 2, 3], [2, 3])
true

iex> List.ends_with?([1, 2], [1, 2, 3])
false

iex> List.ends_with?([:alpha], [])
true

iex> List.ends_with?([], [:alpha])
false

 first(list, default \\ nil)

 @spec first([], any()) :: any()

 @spec first([elem, ...], any()) :: elem when elem: var

Returns the first element in list or default if list is empty.
first/2 has been introduced in Elixir v1.12.0, while first/1 has been available since v1.0.0.
Examples
iex> List.first([])
nil

iex> List.first([], 1)
1

iex> List.first([1])
1

iex> List.first([1, 2, 3])
1

 flatten(list)

 @spec flatten(deep_list) :: list() when deep_list: [any() | deep_list]

Flattens the given list of nested lists.
Empty list elements are discarded.
Examples
iex> List.flatten([1, [[2], 3]])
[1, 2, 3]

iex> List.flatten([[], [[], []]])
[]

 flatten(list, tail)

 @spec flatten(deep_list, [elem]) :: [elem]
when deep_list: [elem | deep_list], elem: var

Flattens the given list of nested lists.
The list tail will be added at the end of
the flattened list.
Empty list elements from list are discarded,
but not the ones from tail.
Examples
iex> List.flatten([1, [[2], 3]], [4, 5])
[1, 2, 3, 4, 5]

iex> List.flatten([1, [], 2], [3, [], 4])
[1, 2, 3, [], 4]

 foldl(list, acc, fun)

 @spec foldl([elem], acc, (elem, acc -> acc)) :: acc when elem: var, acc: var

Folds (reduces) the given list from the left with
a function. Requires an accumulator, which can be any value.
Examples
iex> List.foldl([5, 5], 10, fn x, acc -> x + acc end)
20

iex> List.foldl([1, 2, 3, 4], 0, fn x, acc -> x - acc end)
2

iex> List.foldl([1, 2, 3], {0, 0}, fn x, {a1, a2} -> {a1 + x, a2 - x} end)
{6, -6}

 foldr(list, acc, fun)

 @spec foldr([elem], acc, (elem, acc -> acc)) :: acc when elem: var, acc: var

Folds (reduces) the given list from the right with
a function. Requires an accumulator, which can be any value.
Examples
iex> List.foldr([1, 2, 3, 4], 0, fn x, acc -> x - acc end)
-2

iex> List.foldr([1, 2, 3, 4], %{sum: 0, product: 1}, fn x, %{sum: a1, product: a2} -> %{sum: a1 + x, product: a2 * x} end)
%{product: 24, sum: 10}

 improper?(list)

 (since 1.8.0)

 @spec improper?(maybe_improper_list()) :: boolean()

Returns true if list is an improper list. Otherwise returns false.
Examples
iex> List.improper?([1, 2 | 3])
true

iex> List.improper?([1, 2, 3])
false

 insert_at(list, index, value)

 @spec insert_at(list(), integer(), any()) :: list()

Returns a list with value inserted at the specified index.
Note that index is capped at the list length. Negative indices
indicate an offset from the end of the list.
Examples
iex> List.insert_at([1, 2, 3, 4], 2, 0)
[1, 2, 0, 3, 4]

iex> List.insert_at([1, 2, 3], 10, 0)
[1, 2, 3, 0]

iex> List.insert_at([1, 2, 3], -1, 0)
[1, 2, 3, 0]

iex> List.insert_at([1, 2, 3], -10, 0)
[0, 1, 2, 3]

 keydelete(list, key, position)

 @spec keydelete([tuple()], any(), non_neg_integer()) :: [tuple()]

Receives a list of tuples and deletes the first tuple
where the element at position matches the
given key. Returns the new list.
Examples
iex> List.keydelete([a: 1, b: 2], :a, 0)
[b: 2]

iex> List.keydelete([a: 1, b: 2], 2, 1)
[a: 1]

iex> List.keydelete([a: 1, b: 2], :c, 0)
[a: 1, b: 2]
This function works for any list of tuples:
iex> List.keydelete([{22, "SSH"}, {80, "HTTP"}], 80, 0)
[{22, "SSH"}]

 keyfind(list, key, position, default \\ nil)

 @spec keyfind([tuple()], any(), non_neg_integer(), any()) :: any()

Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key.
If no matching tuple is found, default is returned.
Examples
iex> List.keyfind([a: 1, b: 2], :a, 0)
{:a, 1}

iex> List.keyfind([a: 1, b: 2], 2, 1)
{:b, 2}

iex> List.keyfind([a: 1, b: 2], :c, 0)
nil
This function works for any list of tuples:
iex> List.keyfind([{22, "SSH"}, {80, "HTTP"}], 22, 0)
{22, "SSH"}

 keyfind!(list, key, position)

 (since 1.13.0)

 @spec keyfind!([tuple()], any(), non_neg_integer()) :: any()

Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key.
If no matching tuple is found, an error is raised.
Examples
iex> List.keyfind!([a: 1, b: 2], :a, 0)
{:a, 1}

iex> List.keyfind!([a: 1, b: 2], 2, 1)
{:b, 2}

iex> List.keyfind!([a: 1, b: 2], :c, 0)
** (KeyError) key :c at position 0 not found in: [a: 1, b: 2]
This function works for any list of tuples:
iex> List.keyfind!([{22, "SSH"}, {80, "HTTP"}], 22, 0)
{22, "SSH"}

 keymember?(list, key, position)

 @spec keymember?([tuple()], any(), non_neg_integer()) :: boolean()

Receives a list of tuples and returns true if there is
a tuple where the element at position in the tuple matches
the given key.
Examples
iex> List.keymember?([a: 1, b: 2], :a, 0)
true

iex> List.keymember?([a: 1, b: 2], 2, 1)
true

iex> List.keymember?([a: 1, b: 2], :c, 0)
false
This function works for any list of tuples:
iex> List.keymember?([{22, "SSH"}, {80, "HTTP"}], 22, 0)
true

 keyreplace(list, key, position, new_tuple)

 @spec keyreplace([tuple()], any(), non_neg_integer(), tuple()) :: [tuple()]

Receives a list of tuples and if the identified element by key at position
exists, it is replaced with new_tuple.
Examples
iex> List.keyreplace([a: 1, b: 2], :a, 0, {:a, 3})
[a: 3, b: 2]

iex> List.keyreplace([a: 1, b: 2], :a, 1, {:a, 3})
[a: 1, b: 2]
This function works for any list of tuples:
iex> List.keyreplace([{22, "SSH"}, {80, "HTTP"}], 22, 0, {22, "Secure Shell"})
[{22, "Secure Shell"}, {80, "HTTP"}]

 keysort(list, position, sorter \\ :asc)

 (since 1.14.0)

 @spec keysort(
 [tuple()],
 non_neg_integer(),
 (any(), any() -> boolean())
 | :asc
 | :desc
 | module()
 | {:asc | :desc, module()}
) :: [tuple()]

Receives a list of tuples and sorts the elements
at position of the tuples.
The sort is stable.
A sorter argument is available since Elixir v1.14.0. Similar to
Enum.sort/2, the sorter can be an anonymous function, the atoms
:asc or :desc, or module that implements a compare function.
Examples
iex> List.keysort([a: 5, b: 1, c: 3], 1)
[b: 1, c: 3, a: 5]

iex> List.keysort([a: 5, c: 1, b: 3], 0)
[a: 5, b: 3, c: 1]
To sort in descending order:
iex> List.keysort([a: 5, c: 1, b: 3], 0, :desc)
[c: 1, b: 3, a: 5]
As in Enum.sort/2, avoid using the default sorting function to sort
structs, as by default it performs structural comparison instead of a
semantic one. In such cases, you shall pass a sorting function as third
element or any module that implements a compare/2 function. For example,
if you have tuples with user names and their birthday, and you want to
sort on their birthday, in both ascending and descending order, you should
do:
iex> users = [
...> {"Ellis", ~D[1943-05-11]},
...> {"Lovelace", ~D[1815-12-10]},
...> {"Turing", ~D[1912-06-23]}
...>]
iex> List.keysort(users, 1, Date)
[
 {"Lovelace", ~D[1815-12-10]},
 {"Turing", ~D[1912-06-23]},
 {"Ellis", ~D[1943-05-11]}
]
iex> List.keysort(users, 1, {:desc, Date})
[
 {"Ellis", ~D[1943-05-11]},
 {"Turing", ~D[1912-06-23]},
 {"Lovelace", ~D[1815-12-10]}
]

 keystore(list, key, position, new_tuple)

 @spec keystore([tuple()], any(), non_neg_integer(), tuple()) :: [tuple(), ...]

Receives a list of tuples and replaces the element
identified by key at position with new_tuple.
If the element does not exist, it is added to the end of the list.
Examples
iex> List.keystore([a: 1, b: 2], :a, 0, {:a, 3})
[a: 3, b: 2]

iex> List.keystore([a: 1, b: 2], :c, 0, {:c, 3})
[a: 1, b: 2, c: 3]
This function works for any list of tuples:
iex> List.keystore([{22, "SSH"}], 80, 0, {80, "HTTP"})
[{22, "SSH"}, {80, "HTTP"}]

 keytake(list, key, position)

 @spec keytake([tuple()], any(), non_neg_integer()) :: {tuple(), [tuple()]} | nil

Receives a list of tuples and returns the first tuple
where the element at position in the tuple matches the
given key, as well as the list without found tuple.
If such a tuple is not found, nil will be returned.
Examples
iex> List.keytake([a: 1, b: 2], :a, 0)
{{:a, 1}, [b: 2]}

iex> List.keytake([a: 1, b: 2], 2, 1)
{{:b, 2}, [a: 1]}

iex> List.keytake([a: 1, b: 2], :c, 0)
nil
This function works for any list of tuples:
iex> List.keytake([{22, "SSH"}, {80, "HTTP"}], 80, 0)
{{80, "HTTP"}, [{22, "SSH"}]}

 last(list, default \\ nil)

 @spec last([], any()) :: any()

 @spec last([elem, ...], any()) :: elem when elem: var

Returns the last element in list or default if list is empty.
last/2 has been introduced in Elixir v1.12.0, while last/1 has been available since v1.0.0.
Examples
iex> List.last([])
nil

iex> List.last([], 1)
1

iex> List.last([1])
1

iex> List.last([1, 2, 3])
3

 myers_difference(list1, list2)

 (since 1.4.0)

 @spec myers_difference(list(), list()) :: [{:eq | :ins | :del, list()}]

Returns a keyword list that represents an edit script.
The algorithm is outlined in the
"An O(ND) Difference Algorithm and Its Variations" paper by E. Myers.
An edit script is a keyword list. Each key describes the "editing action" to
take in order to bring list1 closer to being equal to list2; a key can be
:eq, :ins, or :del. Each value is a sublist of either list1 or list2
that should be inserted (if the corresponding key is :ins), deleted (if the
corresponding key is :del), or left alone (if the corresponding key is
:eq) in list1 in order to be closer to list2.
See myers_difference/3 if you want to handle nesting in the diff scripts.
Examples
iex> List.myers_difference([1, 4, 2, 3], [1, 2, 3, 4])
[eq: [1], del: [4], eq: [2, 3], ins: [4]]

 myers_difference(list1, list2, diff_script)

 (since 1.8.0)

 @spec myers_difference(list(), list(), (term(), term() -> script | nil)) :: script
when script: [{:eq | :ins | :del | :diff, list()}]

Returns a keyword list that represents an edit script with nested diffs.
This is an extension of myers_difference/2 where a diff_script function
can be given in case it is desired to compute nested differences. The function
may return a list with the inner edit script or nil in case there is no
such script. The returned inner edit script will be under the :diff key.
Examples
iex> List.myers_difference(["a", "db", "c"], ["a", "bc"], &String.myers_difference/2)
[eq: ["a"], diff: [del: "d", eq: "b", ins: "c"], del: ["c"]]

 pop_at(list, index, default \\ nil)

 (since 1.4.0)

 @spec pop_at(list(), integer(), any()) :: {any(), list()}

Returns and removes the value at the specified index in the list.
Negative indices indicate an offset from the end of the list.
If index is out of bounds, the original list is returned.
Examples
iex> List.pop_at([1, 2, 3], 0)
{1, [2, 3]}
iex> List.pop_at([1, 2, 3], 5)
{nil, [1, 2, 3]}
iex> List.pop_at([1, 2, 3], 5, 10)
{10, [1, 2, 3]}
iex> List.pop_at([1, 2, 3], -1)
{3, [1, 2]}

 replace_at(list, index, value)

 @spec replace_at(list(), integer(), any()) :: list()

Returns a list with a replaced value at the specified index.
Negative indices indicate an offset from the end of the list.
If index is out of bounds, the original list is returned.
Examples
iex> List.replace_at([1, 2, 3], 0, 0)
[0, 2, 3]

iex> List.replace_at([1, 2, 3], 10, 0)
[1, 2, 3]

iex> List.replace_at([1, 2, 3], -1, 0)
[1, 2, 0]

iex> List.replace_at([1, 2, 3], -10, 0)
[1, 2, 3]

 starts_with?(list, prefix)

 (since 1.5.0)

 @spec starts_with?([...], [...]) :: boolean()

 @spec starts_with?(list(), []) :: true

 @spec starts_with?([], [...]) :: false

Returns true if list starts with the given prefix list, otherwise returns false.
If prefix is an empty list, it returns true.
Examples
iex> List.starts_with?([1, 2, 3], [1, 2])
true

iex> List.starts_with?([1, 2], [1, 2, 3])
false

iex> List.starts_with?([:alpha], [])
true

iex> List.starts_with?([], [:alpha])
false

 to_atom(charlist)

 @spec to_atom(charlist()) :: atom()

Converts a charlist to an atom.
Elixir supports conversions from charlists which contain any Unicode
code point.
Inlined by the compiler.
Examples
iex> List.to_atom(~c"Elixir")
:Elixir

iex> List.to_atom(~c"🌢 Elixir")
:"🌢 Elixir"

 to_charlist(list)

 (since 1.8.0)

 @spec to_charlist(:unicode.charlist()) :: charlist()

Converts a list of integers representing Unicode code points, lists or
strings into a charlist.
Note that this function expects a list of integers representing
Unicode code points. If you have a list of bytes, you must instead use
the :binary module.
Examples
iex> ~c"æß" = List.to_charlist([0x00E6, 0x00DF])
[230, 223]

iex> List.to_charlist([0x0061, "bc"])
~c"abc"

iex> List.to_charlist([0x0064, "ee", [~c"p"]])
~c"deep"

 to_existing_atom(charlist)

 @spec to_existing_atom(charlist()) :: atom()

Converts a charlist to an existing atom.
Elixir supports conversions from charlists which contain any Unicode
code point. Raises an ArgumentError if the atom does not exist.
Inlined by the compiler.
Atoms and modules
Since Elixir is a compiled language, the atoms defined in a module
will only exist after said module is loaded, which typically happens
whenever a function in the module is executed. Therefore, it is
generally recommended to call List.to_existing_atom/1 only to
convert atoms defined within the module making the function call
to to_existing_atom/1.
Examples
iex> _ = :my_atom
iex> List.to_existing_atom(~c"my_atom")
:my_atom

iex> _ = :"🌢 Elixir"
iex> List.to_existing_atom(~c"🌢 Elixir")
:"🌢 Elixir"

 to_float(charlist)

 @spec to_float(charlist()) :: float()

Returns the float whose text representation is charlist.
Inlined by the compiler.
Examples
iex> List.to_float(~c"2.2017764e+0")
2.2017764

 to_integer(charlist)

 @spec to_integer(charlist()) :: integer()

Returns an integer whose text representation is charlist.
Inlined by the compiler.
Examples
iex> List.to_integer(~c"123")
123

 to_integer(charlist, base)

 @spec to_integer(
 charlist(),
 2..36
) :: integer()

Returns an integer whose text representation is charlist in base base.
Inlined by the compiler.
The base needs to be between 2 and 36.
Examples
iex> List.to_integer(~c"3FF", 16)
1023

 to_string(list)

 @spec to_string(:unicode.charlist()) :: String.t()

Converts a list of integers representing code points, lists or
strings into a string.
To be converted to a string, a list must either be empty or only
contain the following elements:
	strings
	integers representing Unicode code points
	a list containing one of these three elements

Note that this function expects a list of integers representing
Unicode code points. If you have a list of bytes, you must instead use
the :binary module.
Examples
iex> List.to_string([0x00E6, 0x00DF])
"æß"

iex> List.to_string([0x0061, "bc"])
"abc"

iex> List.to_string([0x0064, "ee", [~c"p"]])
"deep"

iex> List.to_string([])
""

 to_tuple(list)

 @spec to_tuple(list()) :: tuple()

Converts a list to a tuple.
Inlined by the compiler.
Examples
iex> List.to_tuple([:share, [:elixir, 163]])
{:share, [:elixir, 163]}

 update_at(list, index, fun)

 @spec update_at([elem], integer(), (elem -> any())) :: list() when elem: var

Returns a list with an updated value at the specified index.
Negative indices indicate an offset from the end of the list.
If index is out of bounds, the original list is returned.
Examples
iex> List.update_at([1, 2, 3], 0, &(&1 + 10))
[11, 2, 3]

iex> List.update_at([1, 2, 3], 10, &(&1 + 10))
[1, 2, 3]

iex> List.update_at([1, 2, 3], -1, &(&1 + 10))
[1, 2, 13]

iex> List.update_at([1, 2, 3], -10, &(&1 + 10))
[1, 2, 3]

 wrap(term)

 @spec wrap(term()) :: maybe_improper_list()

Wraps term in a list if this is not list.
If term is already a list, it returns the list.
If term is nil, it returns an empty list.
Examples
iex> List.wrap("hello")
["hello"]

iex> List.wrap([1, 2, 3])
[1, 2, 3]

iex> List.wrap(nil)
[]

 zip(list_of_lists)

 This function is deprecated. Use Enum.zip/1 instead.

Map

Maps are the "go to" key-value data structure in Elixir.
Maps can be created with the %{} syntax, and key-value pairs can be
expressed as key => value:
iex> %{}
%{}
iex> %{"one" => :two, 3 => "four"}
%{3 => "four", "one" => :two}
Key-value pairs in a map do not follow any order (that's why the printed map
in the example above has a different order than the map that was created).
Maps do not impose any restriction on the key type: anything can be a key in a
map. As a key-value structure, maps do not allow duplicate keys. Keys are
compared using the exact-equality operator (===/2). If colliding keys are defined
in a map literal, the last one prevails.
When the key in a key-value pair is an atom, the key: value shorthand syntax
can be used (as in many other special forms):
iex> %{a: 1, b: 2}
%{a: 1, b: 2}
If you want to mix the shorthand syntax with =>, the shorthand syntax must come
at the end:
iex> %{"hello" => "world", a: 1, b: 2}
%{:a => 1, :b => 2, "hello" => "world"}
Keys in maps can be accessed through some of the functions in this module
(such as Map.get/3 or Map.fetch/2) or through the map[] syntax provided
by the Access module:
iex> map = %{a: 1, b: 2}
iex> Map.fetch(map, :a)
{:ok, 1}
iex> map[:b]
2
iex> map["non_existing_key"]
nil
To access atom keys, one may also use the map.key notation. Note that map.key
will raise a KeyError if the map doesn't contain the key :key, compared to
map[:key], that would return nil.
map = %{foo: "bar", baz: "bong"}
map.foo
#=> "bar"
map.non_existing_key
** (KeyError) key :non_existing_key not found in:
...
Avoid parentheses
Do not add parentheses when accessing fields, such as in data.key().
If parentheses are used, Elixir will expect data to be an atom representing
a module and attempt to call the function key/0 in it.
The two syntaxes for accessing keys reveal the dual nature of maps. The map[key]
syntax is used for dynamically created maps that may have any key, of any type.
map.key is used with maps that hold a predetermined set of atoms keys, which are
expected to always be present. Structs, defined via defstruct/1, are one example
of such "static maps", where the keys can also be checked during compile time.
Maps can be pattern matched on. When a map is on the left-hand side of a
pattern match, it will match if the map on the right-hand side contains the
keys on the left-hand side and their values match the ones on the left-hand
side. This means that an empty map matches every map.
iex> %{} = %{foo: "bar"}
%{foo: "bar"}
iex> %{a: a} = %{:a => 1, "b" => 2, [:c, :e, :e] => 3}
iex> a
1
But this will raise a MatchError exception:
%{:c => 3} = %{:a => 1, 2 => :b}
Variables can be used as map keys both when writing map literals as well as
when matching:
iex> n = 1
1
iex> %{n => :one}
%{1 => :one}
iex> %{^n => :one} = %{1 => :one, 2 => :two, 3 => :three}
%{1 => :one, 2 => :two, 3 => :three}
Maps also support a specific update syntax to update the value stored under
existing keys. You can update using the atom keys syntax:
iex> map = %{one: 1, two: 2}
iex> %{map | one: "one"}
%{one: "one", two: 2}
Or any other keys:
iex> other_map = %{"three" => 3, "four" => 4, "five" => 5}
iex> %{other_map | "three" => "three", "four" => "four"}
%{"five" => 5, "four" => "four", "three" => "three"}
When a key that does not exist in the map is updated a KeyError exception will be raised:
%{map | three: 3}
The functions in this module that need to find a specific key work in logarithmic time.
This means that the time it takes to find keys grows as the map grows, but it's not
directly proportional to the map size. In comparison to finding an element in a list,
it performs better because lists have a linear time complexity. Some functions,
such as keys/1 and values/1, run in linear time because they need to get to every
element in the map.
Maps also implement the Enumerable protocol, so many functions to work with maps
are found in the Enum module. Additionally, the following functions for maps are
found in Kernel:
	map_size/1

 Summary

 Types

 key()

 value()

 Functions

 delete(map, key)

 Deletes the entry in map for a specific key.

 drop(map, keys)

 Drops the given keys from map.

 equal?(map1, map2)

 Checks if two maps are equal.

 fetch(map, key)

 Fetches the value for a specific key in the given map.

 fetch!(map, key)

 Fetches the value for a specific key in the given map, erroring out if
map doesn't contain key.

 filter(map, fun)

 Returns a map containing only those pairs from map
for which fun returns a truthy value.

 from_keys(keys, value)

 Builds a map from the given keys and the fixed value.

 from_struct(struct)

 Converts a struct to map.

 get(map, key, default \\ nil)

 Gets the value for a specific key in map.

 get_and_update(map, key, fun)

 Gets the value from key and updates it, all in one pass.

 get_and_update!(map, key, fun)

 Gets the value from key and updates it, all in one pass. Raises if there is no key.

 get_lazy(map, key, fun)

 Gets the value for a specific key in map.

 has_key?(map, key)

 Returns whether the given key exists in the given map.

 intersect(map1, map2)

 Intersects two maps, returning a map with the common keys.

 intersect(map1, map2, fun)

 Intersects two maps, returning a map with the common keys and resolving conflicts through a function.

 keys(map)

 Returns all keys from map.

 merge(map1, map2)

 Merges two maps into one.

 merge(map1, map2, fun)

 Merges two maps into one, resolving conflicts through the given fun.

 new()

 Returns a new empty map.

 new(enumerable)

 Creates a map from an enumerable.

 new(enumerable, transform)

 Creates a map from an enumerable via the given transformation function.

 pop(map, key, default \\ nil)

 Removes the value associated with key in map and returns the value and the updated map.

 pop!(map, key)

 Removes and returns the value associated with key in map alongside
the updated map, or raises if key is not present.

 pop_lazy(map, key, fun)

 Lazily returns and removes the value associated with key in map.

 put(map, key, value)

 Puts the given value under key in map.

 put_new(map, key, value)

 Puts the given value under key unless the entry key
already exists in map.

 put_new_lazy(map, key, fun)

 Evaluates fun and puts the result under key
in map unless key is already present.

 reject(map, fun)

 Returns map excluding the pairs from map for which fun returns
a truthy value.

 replace(map, key, value)

 Puts a value under key only if the key already exists in map.

 replace!(map, key, value)

 Puts a value under key only if the key already exists in map.

 replace_lazy(map, key, fun)

 Replaces the value under key using the given function only if
key already exists in map.

 split(map, keys)

 Takes all entries corresponding to the given keys in map and extracts
them into a separate map.

 split_with(map, fun)

 Splits the map into two maps according to the given function fun.

 take(map, keys)

 Returns a new map with all the key-value pairs in map where the key
is in keys.

 to_list(map)

 Converts map to a list.

 update(map, key, default, fun)

 Updates the key in map with the given function.

 update!(map, key, fun)

 Updates key with the given function.

 values(map)

 Returns all values from map.

 Types

 key()

 @type key() :: any()

 value()

 @type value() :: any()

 Functions

 delete(map, key)

 @spec delete(map(), key()) :: map()

Deletes the entry in map for a specific key.
If the key does not exist, returns map unchanged.
Inlined by the compiler.
Examples
iex> Map.delete(%{a: 1, b: 2}, :a)
%{b: 2}
iex> Map.delete(%{b: 2}, :a)
%{b: 2}

 drop(map, keys)

 @spec drop(map(), [key()]) :: map()

Drops the given keys from map.
If keys contains keys that are not in map, they're simply ignored.
Examples
iex> Map.drop(%{a: 1, b: 2, c: 3}, [:b, :d])
%{a: 1, c: 3}

 equal?(map1, map2)

 @spec equal?(map(), map()) :: boolean()

Checks if two maps are equal.
Two maps are considered to be equal if they contain
the same keys and those keys contain the same values.
Note this function exists for completeness so the Map
and Keyword modules provide similar APIs. In practice,
developers often compare maps using ==/2 or ===/2
directly.
Examples
iex> Map.equal?(%{a: 1, b: 2}, %{b: 2, a: 1})
true
iex> Map.equal?(%{a: 1, b: 2}, %{b: 1, a: 2})
false
Comparison between keys and values is done with ===/3,
which means integers are not equivalent to floats:
iex> Map.equal?(%{a: 1.0}, %{a: 1})
false

 fetch(map, key)

 @spec fetch(map(), key()) :: {:ok, value()} | :error

Fetches the value for a specific key in the given map.
If map contains the given key then its value is returned
in the shape of {:ok, value}. If map doesn't contain key,
:error is returned.
If the type system can verify :error is always returned
(which means key is never available in the map), it will emit
an error.
Inlined by the compiler.
Examples
iex> Map.fetch(%{a: 1}, :a)
{:ok, 1}
iex> Map.fetch(%{"foo" => "bar"}, "unknown")
:error

 fetch!(map, key)

 @spec fetch!(map(), key()) :: value()

Fetches the value for a specific key in the given map, erroring out if
map doesn't contain key.
The exclamation mark (!) implies this function can raise a KeyError
exception at runtime if map doesn't contain key. If the type system
can verify this function will always raise (which means the key is never
available), then it will emit a warning at compile-time. See the "Type
checking" section below.
Inlined by the compiler.
Examples
iex> Map.fetch!(%{a: 1}, :a)
1
When the key is missing, an exception is raised:
Map.fetch!(%{a: 1}, :b)
** (KeyError) key :b not found in: %{a: 1}
Type checking
The compiler will emit a warning if it can verify that
none of the keys given are available in the map.
When the key is an atom, because only single key is given,
a warning will be emitted in case the type system proves
the key is not present.
However, this behaviour matters when the type of the key
represents multiple values. For example:
key = returns_foo_or_bar() #=> :foo or :bar
Map.fetch!(%{foo: 123}, key)
Although the key can be :foo or :bar, there is no
warning emitted, as :foo will succeed. This is by design:
the exclamation mark in Elixir denotes precisely that a
runtime exception may be raised.
In case you are looking up multiple keys and you don't know
if they may be present, you can use Map.fetch/2 instead
and deal with the error case accordingly:
case Map.fetch(%{foo: 123}, key) do
 {:ok, value} -> ...
 :error -> ...
end
Both Map.fetch!/2 and Map.fetch/2 will emit a warning if
it proves that both :foo or :bar are absent in the map.
Alternatively, if you want to statically prove that all of keys
are in the map, you can match on the possible values and access
them directly:
case returns_foo_or_bar() do
 :foo -> map.foo
 :bar -> map.bar
end

 filter(map, fun)

 (since 1.13.0)

 @spec filter(map(), ({key(), value()} -> as_boolean(term()))) :: map()

Returns a map containing only those pairs from map
for which fun returns a truthy value.
fun receives the key and value of each of the
elements in the map as a key-value pair.
See also reject/2 which discards all elements where the
function returns a truthy value.
Performance considerations
If you find yourself doing multiple calls to Map.filter/2
and Map.reject/2 in a pipeline, it is likely more efficient
to use Enum.map/2 and Enum.filter/2 instead and convert to
a map at the end using Map.new/1.
Examples
iex> Map.filter(%{one: 1, two: 2, three: 3}, fn {_key, val} -> rem(val, 2) == 1 end)
%{one: 1, three: 3}

 from_keys(keys, value)

 (since 1.14.0)

 @spec from_keys([key()], value()) :: map()

Builds a map from the given keys and the fixed value.
Inlined by the compiler.
Examples
iex> Map.from_keys([1, 2, 3], :number)
%{1 => :number, 2 => :number, 3 => :number}

 from_struct(struct)

 @spec from_struct(atom() | struct()) :: map()

Converts a struct to map.
It accepts a struct and simply removes the __struct__ field
from the given struct.
Example
defmodule User do
 defstruct [:name]
end

Map.from_struct(%User{name: "john"})
#=> %{name: "john"}

 get(map, key, default \\ nil)

 @spec get(map(), key(), value()) :: value()

Gets the value for a specific key in map.
If key is present in map then its value value is
returned. Otherwise, default is returned.
If default is not provided, nil is used.
Examples
iex> Map.get(%{"a" => 1}, "a")
1
iex> Map.get(%{"a" => 1}, "b")
nil
iex> Map.get(%{"a" => 1}, "b", 3)
3
iex> Map.get(%{"a" => nil}, "a", 1)
nil

 get_and_update(map, key, fun)

 @spec get_and_update(map(), key(), (value() | nil ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, new_map :: map()}
when current_value: value()

Gets the value from key and updates it, all in one pass.
fun is called with the current value under key in map (or nil if key
is not present in map) and must return a two-element tuple: the current value
(the retrieved value, which can be operated on before being returned) and the
new value to be stored under key in the resulting new map. fun may also
return :pop, which means the current value shall be removed from map and
returned (making this function behave like Map.pop(map, key)).
The returned value is a two-element tuple with the current value returned by
fun and a new map with the updated value under key.
Examples
iex> Map.get_and_update(%{a: 1}, :a, fn current_value ->
...> {current_value, "new value!"}
...> end)
{1, %{a: "new value!"}}

iex> Map.get_and_update(%{a: 1}, :b, fn current_value ->
...> {current_value, "new value!"}
...> end)
{nil, %{a: 1, b: "new value!"}}

iex> Map.get_and_update(%{a: 1}, :a, fn _ -> :pop end)
{1, %{}}

iex> Map.get_and_update(%{a: 1}, :b, fn _ -> :pop end)
{nil, %{a: 1}}

 get_and_update!(map, key, fun)

 @spec get_and_update!(map(), key(), (value() ->
 {current_value, new_value :: value()} | :pop)) ::
 {current_value, map()}
when current_value: value()

Gets the value from key and updates it, all in one pass. Raises if there is no key.
Behaves exactly like get_and_update/3, but raises a KeyError exception if
key is not present in map.
Examples
iex> Map.get_and_update!(%{a: 1}, :a, fn current_value ->
...> {current_value, "new value!"}
...> end)
{1, %{a: "new value!"}}

iex> Map.get_and_update!(%{a: 1}, :b, fn current_value ->
...> {current_value, "new value!"}
...> end)
** (KeyError) key :b not found in:
...

iex> Map.get_and_update!(%{a: 1}, :a, fn _ ->
...> :pop
...> end)
{1, %{}}

 get_lazy(map, key, fun)

 @spec get_lazy(map(), key(), (-> value())) :: value()

Gets the value for a specific key in map.
If key is present in map then its value value is
returned. Otherwise, fun is evaluated and its result is returned.
This is useful if the default value is very expensive to calculate or
generally difficult to setup and teardown again.
Examples
iex> Map.get_lazy(%{a: 1}, :a, fn -> :expensive_value end)
1

iex> Map.get_lazy(%{"a" => 1}, "b", fn -> :expensive_value end)
:expensive_value

 has_key?(map, key)

 @spec has_key?(map(), key()) :: boolean()

Returns whether the given key exists in the given map.
Inlined by the compiler.
Examples
iex> Map.has_key?(%{a: 1}, :a)
true
iex> Map.has_key?(%{a: 1}, :b)
false

 intersect(map1, map2)

 (since 1.15.0)

 @spec intersect(map(), map()) :: map()

Intersects two maps, returning a map with the common keys.
The values in the returned map are the values of the intersected keys in map2.
Inlined by the compiler.
Examples
iex> Map.intersect(%{a: 1, b: 2}, %{b: "b", c: "c"})
%{b: "b"}

 intersect(map1, map2, fun)

 (since 1.15.0)

 @spec intersect(map(), map(), (key(), value(), value() -> value())) :: map()

Intersects two maps, returning a map with the common keys and resolving conflicts through a function.
The given function will be invoked when there are duplicate keys; its
arguments are key (the duplicate key), value1 (the value of key in
map1), and value2 (the value of key in map2). The value returned by
fun is used as the value under key in the resulting map.
Examples
iex> Map.intersect(%{a: 1, b: 2}, %{b: 2, c: 3}, fn _k, v1, v2 ->
...> v1 + v2
...> end)
%{b: 4}

 keys(map)

 @spec keys(map()) :: [key()]

Returns all keys from map.
Inlined by the compiler.
Examples
Map.keys(%{a: 1, b: 2})
[:a, :b]

 merge(map1, map2)

 @spec merge(map(), map()) :: map()

Merges two maps into one.
All keys in map2 will be added to map1, overriding any existing one
(i.e., the keys in map2 "have precedence" over the ones in map1).
If you have a struct and you would like to merge a set of keys into the
struct, do not use this function, as it would merge all keys on the right
side into the struct, even if the key is not part of the struct. Instead,
use struct/2.
Inlined by the compiler.
Examples
iex> Map.merge(%{a: 1, b: 2}, %{a: 3, d: 4})
%{a: 3, b: 2, d: 4}

 merge(map1, map2, fun)

 @spec merge(map(), map(), (key(), value(), value() -> value())) :: map()

Merges two maps into one, resolving conflicts through the given fun.
All keys in map2 will be added to map1. The given function will be invoked
when there are duplicate keys; its arguments are key (the duplicate key),
value1 (the value of key in map1), and value2 (the value of key in
map2). The value returned by fun is used as the value under key in
the resulting map.
Examples
iex> Map.merge(%{a: 1, b: 2}, %{a: 3, d: 4}, fn _k, v1, v2 ->
...> v1 + v2
...> end)
%{a: 4, b: 2, d: 4}

 new()

 @spec new() :: map()

Returns a new empty map.
Examples
iex> Map.new()
%{}

 new(enumerable)

 @spec new(Enumerable.t()) :: map()

Creates a map from an enumerable.
Duplicated keys are removed; the latest one prevails.
Examples
iex> Map.new([{:b, 1}, {:a, 2}])
%{a: 2, b: 1}
iex> Map.new(a: 1, a: 2, a: 3)
%{a: 3}

 new(enumerable, transform)

 @spec new(Enumerable.t(), (term() -> {key(), value()})) :: map()

Creates a map from an enumerable via the given transformation function.
Duplicated keys are removed; the latest one prevails.
Examples
iex> Map.new([:a, :b], fn x -> {x, x} end)
%{a: :a, b: :b}

iex> Map.new(%{a: 2, b: 3, c: 4}, fn {key, val} -> {key, val * 2} end)
%{a: 4, b: 6, c: 8}

 pop(map, key, default \\ nil)

 @spec pop(map(), key(), default) :: {value(), updated_map :: map()} | {default, map()}
when default: value()

Removes the value associated with key in map and returns the value and the updated map.
If key is present in map, it returns {value, updated_map} where value is the value of
the key and updated_map is the result of removing key from map. If key
is not present in map, {default, map} is returned.
Examples
iex> Map.pop(%{a: 1}, :a)
{1, %{}}
iex> Map.pop(%{"a" => 1}, "b")
{nil, %{"a" => 1}}
iex> Map.pop(%{"a" => 1}, "b", 3)
{3, %{"a" => 1}}

 pop!(map, key)

 (since 1.10.0)

 @spec pop!(map(), key()) :: {value(), updated_map :: map()}

Removes and returns the value associated with key in map alongside
the updated map, or raises if key is not present.
Behaves the same as pop/3 but raises a KeyError exception if key is not present in map.
Examples
iex> Map.pop!(%{a: 1}, :a)
{1, %{}}
iex> Map.pop!(%{a: 1, b: 2}, :a)
{1, %{b: 2}}
iex> Map.pop!(%{"a" => 1}, "b")
** (KeyError) key "b" not found in:
...

 pop_lazy(map, key, fun)

 @spec pop_lazy(map(), key(), (-> value())) :: {value(), map()}

Lazily returns and removes the value associated with key in map.
If key is present in map, it returns {value, new_map} where value is the value of
the key and new_map is the result of removing key from map. If key
is not present in map, {fun_result, map} is returned, where fun_result
is the result of applying fun.
This is useful if the default value is very expensive to calculate or
generally difficult to setup and teardown again.
Examples
iex> Map.pop_lazy(%{a: 1}, :a, fn -> :expensive_value end)
{1, %{}}

iex> Map.pop_lazy(%{"a" => 1}, "b", fn -> :expensive_value end)
{:expensive_value, %{"a" => 1}}

 put(map, key, value)

 @spec put(map(), key(), value()) :: map()

Puts the given value under key in map.
Inlined by the compiler.
Examples
iex> Map.put(%{a: 1}, :b, 2)
%{a: 1, b: 2}
iex> Map.put(%{a: 1, b: 2}, :a, 3)
%{a: 3, b: 2}

 put_new(map, key, value)

 @spec put_new(map(), key(), value()) :: map()

Puts the given value under key unless the entry key
already exists in map.
Examples
iex> Map.put_new(%{a: 1}, :b, 2)
%{a: 1, b: 2}
iex> Map.put_new(%{a: 1, b: 2}, :a, 3)
%{a: 1, b: 2}

 put_new_lazy(map, key, fun)

 @spec put_new_lazy(map(), key(), (-> value())) :: map()

Evaluates fun and puts the result under key
in map unless key is already present.
This function is useful in case you want to compute the value to put under
key only if key is not already present, as for example, when the value is expensive to
calculate or generally difficult to setup and teardown again.
Examples
iex> map = %{a: 1}
iex> fun = fn ->
...> # some expensive operation here
...> 3
...> end
iex> Map.put_new_lazy(map, :a, fun)
%{a: 1}
iex> Map.put_new_lazy(map, :b, fun)
%{a: 1, b: 3}

 reject(map, fun)

 (since 1.13.0)

 @spec reject(map(), ({key(), value()} -> as_boolean(term()))) :: map()

Returns map excluding the pairs from map for which fun returns
a truthy value.
See also filter/2.
Examples
iex> Map.reject(%{one: 1, two: 2, three: 3}, fn {_key, val} -> rem(val, 2) == 1 end)
%{two: 2}

 replace(map, key, value)

 (since 1.11.0)

 @spec replace(map(), key(), value()) :: map()

Puts a value under key only if the key already exists in map.
Examples
iex> Map.replace(%{a: 1, b: 2}, :a, 3)
%{a: 3, b: 2}

iex> Map.replace(%{"a" => 1}, "b", 2)
%{"a" => 1}

 replace!(map, key, value)

 (since 1.5.0)

 @spec replace!(map(), key(), value()) :: map()

Puts a value under key only if the key already exists in map.
The exclamation mark (!) implies this function can raise a KeyError
exception at runtime if map doesn't contain key. If the type system
can verify this function will always raise (which means the key is never
available), then it will emit a warning at compile-time. See the "Type
checking" section in Map.fetch!/2 for more information.
Inlined by the compiler.
Examples
iex> Map.replace!(%{a: 1, b: 2}, :a, 3)
%{a: 3, b: 2}

iex> Map.replace!(%{"foo" => "bar"}, "unknown", "new_bar")
** (KeyError) key "unknown" not found in:
...

 replace_lazy(map, key, fun)

 (since 1.14.0)

 @spec replace_lazy(map(), key(), (existing_value :: value() -> new_value :: value())) ::
 map()

Replaces the value under key using the given function only if
key already exists in map.
In comparison to replace/3, this can be useful when it's expensive to calculate the value.
If key does not exist, the original map is returned unchanged.
Examples
iex> Map.replace_lazy(%{a: 1, b: 2}, :a, fn v -> v * 4 end)
%{a: 4, b: 2}

iex> Map.replace_lazy(%{"a" => 1, "b" => 2}, "c", fn v -> v * 4 end)
%{"a" => 1, "b" => 2}

 split(map, keys)

 @spec split(map(), [key()]) :: {map(), map()}

Takes all entries corresponding to the given keys in map and extracts
them into a separate map.
Returns a tuple with the new map and the old map with removed keys.
Keys for which there are no entries in map are ignored.
Examples
iex> Map.split(%{a: 1, b: 2, c: 3}, [:a, :c, :e])
{%{a: 1, c: 3}, %{b: 2}}

 split_with(map, fun)

 (since 1.15.0)

 @spec split_with(map(), ({key(), value()} -> as_boolean(term()))) :: {map(), map()}

Splits the map into two maps according to the given function fun.
fun receives each {key, value} pair in the map as its only argument. Returns
a tuple with the first map containing all the elements in map for which
applying fun returned a truthy value, and a second map with all the elements
for which applying fun returned a falsy value (false or nil).
Examples
iex> Map.split_with(%{a: 1, b: 2, c: 3, d: 4}, fn {_k, v} -> rem(v, 2) == 0 end)
{%{b: 2, d: 4}, %{a: 1, c: 3}}

iex> Map.split_with(%{a: 1, b: -2, c: 1, d: -3}, fn {k, _v} -> k in [:b, :d] end)
{%{b: -2, d: -3}, %{a: 1, c: 1}}

iex> Map.split_with(%{a: 1, b: -2, c: 1, d: -3}, fn {_k, v} -> v > 50 end)
{%{}, %{a: 1, b: -2, c: 1, d: -3}}

iex> Map.split_with(%{}, fn {_k, v} -> v > 50 end)
{%{}, %{}}

 take(map, keys)

 @spec take(map(), [key()]) :: map()

Returns a new map with all the key-value pairs in map where the key
is in keys.
If keys contains keys that are not in map, they're simply ignored.
Examples
iex> Map.take(%{a: 1, b: 2, c: 3}, [:a, :c, :e])
%{a: 1, c: 3}

 to_list(map)

 @spec to_list(map()) :: [{term(), term()}]

Converts map to a list.
Each key-value pair in the map is converted to a two-element tuple {key, value} in the resulting list.
Inlined by the compiler.
Examples
iex> Map.to_list(%{a: 1})
[a: 1]
iex> Map.to_list(%{1 => 2})
[{1, 2}]

 update(map, key, default, fun)

 @spec update(map(), key(), default :: value(), (existing_value :: value() ->
 new_value :: value())) ::
 map()

Updates the key in map with the given function.
If key is present in map then the existing value is passed to fun and its result is
used as the updated value of key. If key is
not present in map, default is inserted as the value of key. The default
value will not be passed through the update function.
Examples
iex> Map.update(%{a: 1}, :a, 13, fn existing_value -> existing_value * 2 end)
%{a: 2}
iex> Map.update(%{a: 1}, :b, 11, fn existing_value -> existing_value * 2 end)
%{a: 1, b: 11}

 update!(map, key, fun)

 @spec update!(map(), key(), (existing_value :: value() -> new_value :: value())) ::
 map()

Updates key with the given function.
If key is present in map then the existing value is passed to fun and its result is
used as the updated value of key. If key is
not present in map, a KeyError exception is raised.
Examples
iex> Map.update!(%{a: 1}, :a, &(&1 * 2))
%{a: 2}

iex> Map.update!(%{"a" => 1}, "b", &(&1 * 2))
** (KeyError) key "b" not found in:
...

 values(map)

 @spec values(map()) :: [value()]

Returns all values from map.
Inlined by the compiler.
Examples
Map.values(%{a: 1, b: 2})
[1, 2]

MapSet

Functions that work on sets.
A set is a data structure that can contain unique elements of any kind,
without any particular order. MapSet is the "go to" set data structure in Elixir.
A set can be constructed using MapSet.new/0:
iex> MapSet.new()
MapSet.new([])
Elements in a set don't have to be of the same type and they can be
populated from an enumerable using MapSet.new/1:
iex> MapSet.new([1, :two, {"three"}])
MapSet.new([1, :two, {"three"}])
Elements can be inserted using MapSet.put/2:
iex> MapSet.new([2]) |> MapSet.put(4) |> MapSet.put(0)
MapSet.new([0, 2, 4])
By definition, sets can't contain duplicate elements: when
inserting an element in a set where it's already present, the insertion is
simply a no-op.
iex> map_set = MapSet.new()
iex> MapSet.put(map_set, "foo")
MapSet.new(["foo"])
iex> map_set |> MapSet.put("foo") |> MapSet.put("foo")
MapSet.new(["foo"])
A MapSet is represented internally using the %MapSet{} struct. This struct
can be used whenever there's a need to pattern match on something being a MapSet:
iex> match?(%MapSet{}, MapSet.new())
true
Note that, however, the struct fields are private and must not be accessed
directly; use the functions in this module to perform operations on sets.
MapSets can also be constructed starting from other collection-type data
structures: for example, see MapSet.new/1 or Enum.into/2.
MapSet is built on top of Erlang's :sets (version 2). This means
that they share many properties, including logarithmic time complexity. Erlang
:sets (version 2) are implemented on top of maps, so see the documentation
for Map for more information on its execution time complexity.

 Summary

 Types

 internal(value)

 t()

 t(value)

 value()

 Functions

 delete(map_set, value)

 Deletes value from map_set.

 difference(map_set1, map_set2)

 Returns a set that is map_set1 without the members of map_set2.

 disjoint?(map_set1, map_set2)

 Checks if map_set1 and map_set2 have no members in common.

 equal?(map_set1, map_set2)

 Checks if two sets are equal.

 filter(map_set, fun)

 Filters the set by returning only the elements from map_set for which invoking
fun returns a truthy value.

 intersection(map_set1, map_set2)

 Returns a set containing only members that map_set1 and map_set2 have in common.

 member?(map_set, value)

 Checks if map_set contains value.

 new()

 Returns a new set.

 new(enumerable)

 Creates a set from an enumerable.

 new(enumerable, transform)

 Creates a set from an enumerable via the transformation function.

 put(map_set, value)

 Inserts value into map_set if map_set doesn't already contain it.

 reject(map_set, fun)

 Returns a set by excluding the elements from map_set for which invoking fun
returns a truthy value.

 size(map_set)

 Returns the number of elements in map_set.

 split_with(map_set, fun)

 Splits the map_set into two MapSets according to the given function fun.

 subset?(map_set1, map_set2)

 Checks if map_set1's members are all contained in map_set2.

 symmetric_difference(map_set1, map_set2)

 Returns a set with elements that are present in only one but not both sets.

 to_list(map_set)

 Converts map_set to a list.

 union(map_set1, map_set2)

 Returns a set containing all members of map_set1 and map_set2.

 Types

 internal(value)

 @opaque internal(value)

 t()

 @type t() :: t(term())

 t(value)

 @type t(value) :: %MapSet{map: internal(value)}

 value()

 @type value() :: term()

 Functions

 delete(map_set, value)

 @spec delete(t(val1), val2) :: t(val1) when val1: value(), val2: value()

Deletes value from map_set.
Returns a new set which is a copy of map_set but without value.
Examples
iex> map_set = MapSet.new([1, 2, 3])
iex> MapSet.delete(map_set, 4)
MapSet.new([1, 2, 3])
iex> MapSet.delete(map_set, 2)
MapSet.new([1, 3])

 difference(map_set1, map_set2)

 @spec difference(t(val1), t(val2)) :: t(val1) when val1: value(), val2: value()

Returns a set that is map_set1 without the members of map_set2.
Examples
iex> MapSet.difference(MapSet.new([1, 2]), MapSet.new([2, 3, 4]))
MapSet.new([1])

 disjoint?(map_set1, map_set2)

 @spec disjoint?(t(), t()) :: boolean()

Checks if map_set1 and map_set2 have no members in common.
Examples
iex> MapSet.disjoint?(MapSet.new([1, 2]), MapSet.new([3, 4]))
true
iex> MapSet.disjoint?(MapSet.new([1, 2]), MapSet.new([2, 3]))
false

 equal?(map_set1, map_set2)

 @spec equal?(t(), t()) :: boolean()

Checks if two sets are equal.
The comparison between elements is done using ===/2,
which a set with 1 is not equivalent to a set with
1.0.
Examples
iex> MapSet.equal?(MapSet.new([1, 2]), MapSet.new([2, 1, 1]))
true
iex> MapSet.equal?(MapSet.new([1, 2]), MapSet.new([3, 4]))
false
iex> MapSet.equal?(MapSet.new([1]), MapSet.new([1.0]))
false

 filter(map_set, fun)

 (since 1.14.0)

 @spec filter(t(a), (a -> as_boolean(term()))) :: t(a) when a: value()

Filters the set by returning only the elements from map_set for which invoking
fun returns a truthy value.
Also see reject/2 which discards all elements where the function returns
a truthy value.
Performance considerations
If you find yourself doing multiple calls to MapSet.filter/2
and MapSet.reject/2 in a pipeline, it is likely more efficient
to use Enum.map/2 and Enum.filter/2 instead and convert to
a map at the end using MapSet.new/1.
Examples
iex> MapSet.filter(MapSet.new(1..5), fn x -> x > 3 end)
MapSet.new([4, 5])

iex> MapSet.filter(MapSet.new(["a", :b, "c"]), &is_atom/1)
MapSet.new([:b])

 intersection(map_set1, map_set2)

 @spec intersection(t(val), t(val)) :: t(val) when val: value()

Returns a set containing only members that map_set1 and map_set2 have in common.
Examples
iex> MapSet.intersection(MapSet.new([1, 2]), MapSet.new([2, 3, 4]))
MapSet.new([2])

iex> MapSet.intersection(MapSet.new([1, 2]), MapSet.new([3, 4]))
MapSet.new([])

 member?(map_set, value)

 @spec member?(t(), value()) :: boolean()

Checks if map_set contains value.
Examples
iex> MapSet.member?(MapSet.new([1, 2, 3]), 2)
true
iex> MapSet.member?(MapSet.new([1, 2, 3]), 4)
false

 new()

 @spec new() :: t()

Returns a new set.
Examples
iex> MapSet.new()
MapSet.new([])

 new(enumerable)

 @spec new(Enumerable.t()) :: t()

Creates a set from an enumerable.
Examples
iex> MapSet.new([:b, :a, 3])
MapSet.new([3, :a, :b])
iex> MapSet.new([3, 3, 3, 2, 2, 1])
MapSet.new([1, 2, 3])

 new(enumerable, transform)

 @spec new(Enumerable.t(), (term() -> val)) :: t(val) when val: value()

Creates a set from an enumerable via the transformation function.
Examples
iex> MapSet.new([1, 2, 1], fn x -> 2 * x end)
MapSet.new([2, 4])

 put(map_set, value)

 @spec put(t(val), new_val) :: t(val | new_val) when val: value(), new_val: value()

Inserts value into map_set if map_set doesn't already contain it.
Examples
iex> MapSet.put(MapSet.new([1, 2, 3]), 3)
MapSet.new([1, 2, 3])
iex> MapSet.put(MapSet.new([1, 2, 3]), 4)
MapSet.new([1, 2, 3, 4])

 reject(map_set, fun)

 (since 1.14.0)

 @spec reject(t(a), (a -> as_boolean(term()))) :: t(a) when a: value()

Returns a set by excluding the elements from map_set for which invoking fun
returns a truthy value.
See also filter/2.
Examples
iex> MapSet.reject(MapSet.new(1..5), fn x -> rem(x, 2) != 0 end)
MapSet.new([2, 4])

iex> MapSet.reject(MapSet.new(["a", :b, "c"]), &is_atom/1)
MapSet.new(["a", "c"])

 size(map_set)

 @spec size(t()) :: non_neg_integer()

Returns the number of elements in map_set.
Examples
iex> MapSet.size(MapSet.new([1, 2, 3]))
3

 split_with(map_set, fun)

 (since 1.15.0)

 @spec split_with(t(), (term() -> as_boolean(term()))) :: {t(), t()}

Splits the map_set into two MapSets according to the given function fun.
fun receives each element in the map_set as its only argument. Returns
a tuple with the first MapSet containing all the elements in map_set for which
applying fun returned a truthy value, and a second MapSet with all the elements
for which applying fun returned a falsy value (false or nil).
Examples
iex> {while_true, while_false} = MapSet.split_with(MapSet.new([1, 2, 3, 4]), fn v -> rem(v, 2) == 0 end)
iex> while_true
MapSet.new([2, 4])
iex> while_false
MapSet.new([1, 3])

iex> {while_true, while_false} = MapSet.split_with(MapSet.new(), fn {_k, v} -> v > 50 end)
iex> while_true
MapSet.new([])
iex> while_false
MapSet.new([])

 subset?(map_set1, map_set2)

 @spec subset?(t(), t()) :: boolean()

Checks if map_set1's members are all contained in map_set2.
This function checks if map_set1 is a subset of map_set2.
Examples
iex> MapSet.subset?(MapSet.new([1, 2]), MapSet.new([1, 2, 3]))
true
iex> MapSet.subset?(MapSet.new([1, 2, 3]), MapSet.new([1, 2]))
false

 symmetric_difference(map_set1, map_set2)

 (since 1.14.0)

 @spec symmetric_difference(t(val1), t(val2)) :: t(val1 | val2)
when val1: value(), val2: value()

Returns a set with elements that are present in only one but not both sets.
Examples
iex> MapSet.symmetric_difference(MapSet.new([1, 2, 3]), MapSet.new([2, 3, 4]))
MapSet.new([1, 4])

 to_list(map_set)

 @spec to_list(t(val)) :: [val] when val: value()

Converts map_set to a list.
Examples
iex> MapSet.to_list(MapSet.new([1, 2, 3]))
[1, 2, 3]

 union(map_set1, map_set2)

 @spec union(t(val1), t(val2)) :: t(val1 | val2) when val1: value(), val2: value()

Returns a set containing all members of map_set1 and map_set2.
Examples
iex> MapSet.union(MapSet.new([1, 2]), MapSet.new([2, 3, 4]))
MapSet.new([1, 2, 3, 4])

Range

Ranges represent a sequence of zero, one or many, ascending
or descending integers with a common difference called step.
The most common form of creating and matching on ranges is
via the first..last and first..last//step
notations, auto-imported from Kernel:
iex> 1 in 1..10
true
iex> 5 in 1..10
true
iex> 10 in 1..10
true
Ranges are always inclusive in Elixir. When a step is defined,
integers will only belong to the range if they match the step:
iex> 5 in 1..10//2
true
iex> 4 in 1..10//2
false
When defining a range without a step, the step will be
defined based on the first and last position of the
range, If last >= first, it will be an increasing range
with a step of 1. Otherwise, it is a decreasing range.
Note, however, implicit decreasing ranges are deprecated.
Therefore, if you need a decreasing range from 3 to 1,
prefer to write 3..1//-1 instead.
../0 can also be used as a shortcut to create the range 0..-1//1,
also known as the full-slice range:
iex> ..
0..-1//1
Use cases
Ranges typically have two uses in Elixir: as a collection or
to represent a slice of another data structure.
Ranges as collections
Ranges in Elixir are enumerables and therefore can be used
with the Enum module:
iex> Enum.to_list(1..3)
[1, 2, 3]
iex> Enum.to_list(3..1//-1)
[3, 2, 1]
iex> Enum.to_list(1..5//2)
[1, 3, 5]
Ranges may also have a single element:
iex> Enum.to_list(1..1)
[1]
iex> Enum.to_list(1..1//2)
[1]
Or even no elements at all:
iex> Enum.to_list(10..0//1)
[]
iex> Enum.to_list(0..10//-1)
[]
The full-slice range, returned by ../0, is an empty collection:
iex> Enum.to_list(..)
[]
Ranges as slices
Ranges are also frequently used to slice collections.
You can slice strings or any enumerable:
iex> String.slice("elixir", 1..4)
"lixi"
iex> Enum.slice([0, 1, 2, 3, 4, 5], 1..4)
[1, 2, 3, 4]
In those cases, the first and last values of the range
are mapped to positions in the collections.
If a negative number is given, it maps to a position
from the back:
iex> String.slice("elixir", 1..-2//1)
"lixi"
iex> Enum.slice([0, 1, 2, 3, 4, 5], 1..-2//1)
[1, 2, 3, 4]
The range 0..-1//1, returned by ../0, returns the
collection as is, which is why it is called the full-slice
range:
iex> String.slice("elixir", ..)
"elixir"
iex> Enum.slice([0, 1, 2, 3, 4, 5], ..)
[0, 1, 2, 3, 4, 5]
Definition
An increasing range first..last//step is a range from first
to last increasing by step where step must be a positive
integer and all values v must be first <= v and v <= last.
Therefore, a range 10..0//1 is an empty range because there
is no value v that is 10 <= v and v <= 0.
Similarly, a decreasing range first..last//step is a range
from first to last decreasing by step where step must
be a negative integer and values v must be first >= v and v >= last.
Therefore, a range 0..10//-1 is an empty range because there
is no value v that is 0 >= v and v >= 10.
Representation
Internally, ranges are represented as structs:
iex> range = 1..9//2
1..9//2
iex> first..last//step = range
iex> first
1
iex> last
9
iex> step
2
iex> range.step
2
You can access the range fields (first, last, and step)
directly but you should not modify nor create ranges by hand.
Instead use the proper operators or new/2 and new/3.
Ranges implement the Enumerable protocol with memory
efficient versions of all Enumerable callbacks:
iex> range = 1..10
1..10
iex> Enum.reduce(range, 0, fn i, acc -> i * i + acc end)
385
iex> Enum.count(range)
10
iex> Enum.member?(range, 11)
false
iex> Enum.member?(range, 8)
true
Such function calls are efficient memory-wise no matter the
size of the range. The implementation of the Enumerable
protocol uses logic based solely on the endpoints and does
not materialize the whole list of integers.

 Summary

 Types

 limit()

 step()

 t()

 t(first, last)

 Functions

 disjoint?(range1, range2)

 Checks if two ranges are disjoint.

 new(first, last)

 Creates a new range.

 new(first, last, step)

 Creates a new range with step.

 shift(range, steps_to_shift)

 Shifts a range by the given number of steps.

 size(range)

 Returns the size of range.

 split(range, split)

 Splits a range in two.

 to_list(arg1)

 Converts a range to a list.

 Types

 limit()

 @type limit() :: integer()

 step()

 @type step() :: pos_integer() | neg_integer()

 t()

 @type t() :: %Range{first: limit(), last: limit(), step: step()}

 t(first, last)

 @type t(first, last) :: %Range{first: first, last: last, step: step()}

 Functions

 disjoint?(range1, range2)

 (since 1.8.0)

 @spec disjoint?(t(), t()) :: boolean()

Checks if two ranges are disjoint.
Examples
iex> Range.disjoint?(1..5, 6..9)
true
iex> Range.disjoint?(5..1//-1, 6..9)
true
iex> Range.disjoint?(1..5, 5..9)
false
iex> Range.disjoint?(1..5, 2..7)
false
Steps are also considered when computing the ranges to be disjoint:
iex> Range.disjoint?(1..10//2, 2..10//2)
true

First element in common is 29
iex> Range.disjoint?(1..100//14, 8..100//21)
false
iex> Range.disjoint?(57..-1//-14, 8..100//21)
false
iex> Range.disjoint?(1..100//14, 50..8//-21)
false
iex> Range.disjoint?(1..28//14, 8..28//21)
true

First element in common is 14
iex> Range.disjoint?(2..28//3, 9..28//5)
false
iex> Range.disjoint?(26..2//-3, 29..9//-5)
false

Starting from the back without alignment
iex> Range.disjoint?(27..11//-3, 30..0//-7)
true

 new(first, last)

 @spec new(limit(), limit()) :: t()

Creates a new range.
If first is less than last, the range will be increasing from
first to last. If first is equal to last, the range will contain
one element, which is the number itself.
If first is greater than last, the range will be decreasing from first
to last, albeit this behavior is deprecated. Therefore, it is advised to
explicitly list the step with new/3.
Examples
iex> Range.new(-100, 100)
-100..100

 new(first, last, step)

 (since 1.12.0)

 @spec new(limit(), limit(), step()) :: t()

Creates a new range with step.
Examples
iex> Range.new(-100, 100, 2)
-100..100//2

 shift(range, steps_to_shift)

 (since 1.14.0)

 @spec shift(t(), integer()) :: t()

Shifts a range by the given number of steps.
Examples
iex> Range.shift(0..10, 1)
1..11
iex> Range.shift(0..10, 2)
2..12

iex> Range.shift(0..10//2, 2)
4..14//2
iex> Range.shift(10..0//-2, 2)
6..-4//-2

 size(range)

 (since 1.12.0)

 @spec size(t()) :: non_neg_integer()

Returns the size of range.
Examples
iex> Range.size(1..10)
10
iex> Range.size(1..10//2)
5
iex> Range.size(1..10//3)
4
iex> Range.size(1..10//-1)
0

iex> Range.size(10..1//-1)
10
iex> Range.size(10..1//-2)
5
iex> Range.size(10..1//-3)
4
iex> Range.size(10..1//1)
0

 split(range, split)

 (since 1.15.0)

 @spec split(t(), integer()) :: {t(), t()}

Splits a range in two.
It returns a tuple of two elements.
If split is less than the number of elements in the range, the first
element in the range will have split entries and the second will have
all remaining entries.
If split is more than the number of elements in the range, the second
range in the tuple will emit zero elements.
Examples
Increasing ranges:
iex> Range.split(1..5, 2)
{1..2, 3..5}

iex> Range.split(1..5//2, 2)
{1..3//2, 5..5//2}

iex> Range.split(1..5//2, 0)
{1..-1//2, 1..5//2}

iex> Range.split(1..5//2, 10)
{1..5//2, 7..5//2}
Decreasing ranges can also be split:
iex> Range.split(5..1//-1, 2)
{5..4//-1, 3..1//-1}

iex> Range.split(5..1//-2, 2)
{5..3//-2, 1..1//-2}

iex> Range.split(5..1//-2, 0)
{5..7//-2, 5..1//-2}

iex> Range.split(5..1//-2, 10)
{5..1//-2, -1..1//-2}
Empty ranges preserve their property but still return empty ranges:
iex> Range.split(2..5//-1, 2)
{2..3//-1, 4..5//-1}

iex> Range.split(2..5//-1, 10)
{2..3//-1, 4..5//-1}

iex> Range.split(5..2//1, 2)
{5..4//1, 3..2//1}

iex> Range.split(5..2//1, 10)
{5..4//1, 3..2//1}
If the number to split is negative, it splits from the back:
iex> Range.split(1..5, -2)
{1..3, 4..5}

iex> Range.split(5..1//-1, -2)
{5..3//-1, 2..1//-1}
If it is negative and greater than the elements in the range,
the first element of the tuple will be an empty range:
iex> Range.split(1..5, -10)
{1..0//1, 1..5}

iex> Range.split(5..1//-1, -10)
{5..6//-1, 5..1//-1}
Properties
When a range is split, the following properties are observed.
Given split(input) returns {left, right}, we have:
assert input.first == left.first
assert input.last == right.last
assert input.step == left.step
assert input.step == right.step
assert Range.size(input) == Range.size(left) + Range.size(right)

 to_list(arg1)

 (since 1.15.0)

 @spec to_list(t()) :: [integer()]

Converts a range to a list.
Examples
iex> Range.to_list(0..5)
[0, 1, 2, 3, 4, 5]
iex> Range.to_list(-3..0)
[-3, -2, -1, 0]

Stream

Functions for creating and composing streams.
Streams are composable, lazy enumerables (for an introduction on
enumerables, see the Enum module). Any enumerable that generates
elements one by one during enumeration is called a stream. For example,
Elixir's Range is a stream:
iex> range = 1..5
1..5
iex> Enum.map(range, &(&1 * 2))
[2, 4, 6, 8, 10]
In the example above, as we mapped over the range, the elements being
enumerated were created one by one, during enumeration. The Stream
module allows us to map the range, without triggering its enumeration:
iex> range = 1..3
iex> stream = Stream.map(range, &(&1 * 2))
iex> Enum.map(stream, &(&1 + 1))
[3, 5, 7]
Note that we started with a range and then we created a stream that is
meant to multiply each element in the range by 2. At this point, no
computation was done. Only when Enum.map/2 is called we actually
enumerate over each element in the range, multiplying it by 2 and adding 1.
We say the functions in Stream are lazy and the functions in Enum
are eager.
Due to their laziness, streams are useful when working with large
(or even infinite) collections. When chaining many operations with Enum,
intermediate lists are created, while Stream creates a recipe of
computations that are executed at a later moment. Then when the
stream is consumed later on, most commonly by using a function in
the Enum module, the stream will emit its elements one by one.
Let's see another example:
1..3
|> Enum.map(&IO.inspect(&1))
|> Enum.map(&(&1 * 2))
|> Enum.map(&IO.inspect(&1))
1
2
3
2
4
6
#=> [2, 4, 6]
Note that we first printed each element in the list, then multiplied each
element by 2 and finally printed each new value. In this example, the list
was enumerated three times. Let's see an example with streams:
stream = 1..3
|> Stream.map(&IO.inspect(&1))
|> Stream.map(&(&1 * 2))
|> Stream.map(&IO.inspect(&1))
Enum.to_list(stream)
1
2
2
4
3
6
#=> [2, 4, 6]
Although the end result is the same, the order in which the elements were
printed changed! With streams, we print the first element and then print
its double. In this example, the list was enumerated just once!
That's what we meant when we said earlier that streams are composable,
lazy enumerables. Note that we could call Stream.map/2 multiple times,
effectively composing the streams and keeping them lazy. The computations
are only performed when you call a function from the Enum module.
Like with Enum, the functions in this module work in linear time. This
means that, the time it takes to perform an operation grows at the same
rate as the length of the list. This is expected on operations such as
Stream.map/2. After all, if we want to traverse every element on a
stream, the longer the stream, the more elements we need to traverse,
and the longer it will take.
Creating Streams
There are many functions in Elixir's standard library that return
streams, some examples are:
	IO.stream/2 - streams input lines, one by one
	URI.query_decoder/1 - decodes a query string, pair by pair

This module also provides many convenience functions for creating streams,
like Stream.cycle/1, Stream.unfold/2, Stream.resource/3 and more.
Do not check for Stream structs
While some functions in this module may return the Stream struct,
you must never explicitly check for the Stream struct, as streams
may come in several shapes, such as IO.Stream, File.Stream, or
even Ranges.
The functions in this module only guarantee to return enumerables
and their implementation (structs, anonymous functions, etc) may
change at any time. For example, a function that returns an anonymous
function today may return a struct in future releases.
Instead of checking for a particular type, you must instead write
assertive code that assumes you have an enumerable, using the functions
in the Enum or Stream module accordingly.

 Summary

 Types

 acc()

 default()

 element()

 index()

 Zero-based index.

 timer()

 Functions

 chunk_by(enum, fun)

 Chunks the enum by buffering elements for which fun returns the same value.

 chunk_every(enum, count)

 Shortcut to chunk_every(enum, count, count).

 chunk_every(enum, count, step, leftover \\ [])

 Streams the enumerable in chunks, containing count elements each,
where each new chunk starts step elements into the enumerable.

 chunk_while(enum, acc, chunk_fun, after_fun)

 Chunks the enum with fine grained control when every chunk is emitted.

 concat(enumerables)

 Creates a stream that enumerates each enumerable in an enumerable.

 concat(first, second)

 Creates a stream that enumerates the first argument, followed by the second.

 cycle(enumerable)

 Creates a stream that cycles through the given enumerable,
infinitely.

 dedup(enum)

 Creates a stream that only emits elements if they are different from the last emitted element.

 dedup_by(enum, fun)

 Creates a stream that only emits elements if the result of calling fun on the element is
different from the (stored) result of calling fun on the last emitted element.

 drop(enum, n)

 Lazily drops the next n elements from the enumerable.

 drop_every(enum, nth)

 Creates a stream that drops every nth element from the enumerable.

 drop_while(enum, fun)

 Lazily drops elements of the enumerable while the given
function returns a truthy value.

 duplicate(value, n)

 Duplicates the given element n times in a stream.

 each(enum, fun)

 Executes the given function for each element.

 filter(enum, fun)

 Creates a stream that filters elements according to
the given function on enumeration.

 flat_map(enum, mapper)

 Maps the given fun over enumerable and flattens the result.

 from_index(fun_or_offset \\ 0)

 Builds a stream from an index, either starting from offset, or given by function.

 intersperse(enumerable, intersperse_element)

 Lazily intersperses intersperse_element between each element of the enumeration.

 interval(n)

 Creates a stream that emits a value after the given period n
in milliseconds.

 into(enum, collectable, transform \\ fn x -> x end)

 Injects the stream values into the given collectable as a side-effect.

 iterate(start_value, next_fun)

 Emits a sequence of values, starting with start_value.

 map(enum, fun)

 Creates a stream that will apply the given function on
enumeration.

 map_every(enum, nth, fun)

 Creates a stream that will apply the given function on
every nth element from the enumerable.

 reject(enum, fun)

 Creates a stream that will reject elements according to
the given function on enumeration.

 repeatedly(generator_fun)

 Returns a stream generated by calling generator_fun repeatedly.

 resource(start_fun, next_fun, after_fun)

 Emits a sequence of values for the given resource.

 run(stream)

 Runs the given stream.

 scan(enum, fun)

 Creates a stream that applies the given function to each
element, emits the result and uses the same result as the accumulator
for the next computation. Uses the first element in the enumerable
as the starting value.

 scan(enum, acc, fun)

 Creates a stream that applies the given function to each
element, emits the result and uses the same result as the accumulator
for the next computation. Uses the given acc as the starting value.

 take(enum, count)

 Lazily takes the next count elements from the enumerable and stops
enumeration.

 take_every(enum, nth)

 Creates a stream that takes every nth element from the enumerable.

 take_while(enum, fun)

 Lazily takes elements of the enumerable while the given
function returns a truthy value.

 timer(n)

 Creates a stream that emits a single value after n milliseconds.

 transform(enum, acc, reducer)

 Transforms an existing stream.

 transform(enum, start_fun, reducer, after_fun)

 Similar to Stream.transform/5, except last_fun is not supplied.

 transform(enum, start_fun, reducer, last_fun, after_fun)

 Transforms an existing stream with function-based start, last, and after
callbacks.

 unfold(next_acc, next_fun)

 Emits a sequence of values for the given accumulator.

 uniq(enum)

 Creates a stream that only emits elements if they are unique.

 uniq_by(enum, fun)

 Creates a stream that only emits elements if they are unique, by removing the
elements for which function fun returned duplicate elements.

 with_index(enum, fun_or_offset \\ 0)

 Creates a stream where each element in the enumerable will
be wrapped in a tuple alongside its index or according to a given function.

 zip(enumerables)

 Zips corresponding elements from a finite collection of enumerables
into one stream of tuples.

 zip(enumerable1, enumerable2)

 Zips two enumerables together, lazily.

 zip_with(enumerables, zip_fun)

 Lazily zips corresponding elements from a finite collection of enumerables into a new
enumerable, transforming them with the zip_fun function as it goes.

 zip_with(enumerable1, enumerable2, zip_fun)

 Lazily zips corresponding elements from two enumerables into a new one, transforming them with
the zip_fun function as it goes.

 Types

 acc()

 @type acc() :: any()

 default()

 @type default() :: any()

 element()

 @type element() :: any()

 index()

 @type index() :: non_neg_integer()

Zero-based index.

 timer()

 @type timer() :: non_neg_integer() | :infinity

 Functions

 chunk_by(enum, fun)

 @spec chunk_by(Enumerable.t(), (element() -> any())) :: Enumerable.t()

Chunks the enum by buffering elements for which fun returns the same value.
Elements are only emitted when fun returns a new value or the enum finishes.
Examples
iex> stream = Stream.chunk_by([1, 2, 2, 3, 4, 4, 6, 7, 7], &(rem(&1, 2) == 1))
iex> Enum.to_list(stream)
[[1], [2, 2], [3], [4, 4, 6], [7, 7]]

 chunk_every(enum, count)

 (since 1.5.0)

 @spec chunk_every(Enumerable.t(), pos_integer()) :: Enumerable.t()

Shortcut to chunk_every(enum, count, count).

 chunk_every(enum, count, step, leftover \\ [])

 (since 1.5.0)

 @spec chunk_every(
 Enumerable.t(),
 pos_integer(),
 pos_integer(),
 Enumerable.t() | :discard
) ::
 Enumerable.t()

Streams the enumerable in chunks, containing count elements each,
where each new chunk starts step elements into the enumerable.
step is optional and, if not passed, defaults to count, i.e.
chunks do not overlap. Chunking will stop as soon as the collection
ends or when we emit an incomplete chunk.
If the last chunk does not have count elements to fill the chunk,
elements are taken from leftover to fill in the chunk. If leftover
does not have enough elements to fill the chunk, then a partial chunk
is returned with less than count elements.
If :discard is given in leftover, the last chunk is discarded
unless it has exactly count elements.
Examples
iex> Stream.chunk_every([1, 2, 3, 4, 5, 6], 2) |> Enum.to_list()
[[1, 2], [3, 4], [5, 6]]

iex> Stream.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, :discard) |> Enum.to_list()
[[1, 2, 3], [3, 4, 5]]

iex> Stream.chunk_every([1, 2, 3, 4, 5, 6], 3, 2, [7]) |> Enum.to_list()
[[1, 2, 3], [3, 4, 5], [5, 6, 7]]

iex> Stream.chunk_every([1, 2, 3, 4, 5, 6], 3, 3, []) |> Enum.to_list()
[[1, 2, 3], [4, 5, 6]]

iex> Stream.chunk_every([1, 2, 3, 4], 3, 3, Stream.cycle([0])) |> Enum.to_list()
[[1, 2, 3], [4, 0, 0]]

 chunk_while(enum, acc, chunk_fun, after_fun)

 (since 1.5.0)

 @spec chunk_while(
 Enumerable.t(),
 acc(),
 (element(), acc() -> {:cont, chunk, acc()} | {:cont, acc()} | {:halt, acc()}),
 (acc() -> {:cont, chunk, acc()} | {:cont, acc()})
) :: Enumerable.t()
when chunk: any()

Chunks the enum with fine grained control when every chunk is emitted.
chunk_fun receives the current element and the accumulator and
must return {:cont, element, acc} to emit the given chunk and
continue with accumulator or {:cont, acc} to not emit any chunk
and continue with the return accumulator.
after_fun is invoked when iteration is done and must also return
{:cont, element, acc} or {:cont, acc}.
Examples
iex> chunk_fun = fn element, acc ->
...> if rem(element, 2) == 0 do
...> {:cont, Enum.reverse([element | acc]), []}
...> else
...> {:cont, [element | acc]}
...> end
...> end
iex> after_fun = fn
...> [] -> {:cont, []}
...> acc -> {:cont, Enum.reverse(acc), []}
...> end
iex> stream = Stream.chunk_while(1..10, [], chunk_fun, after_fun)
iex> Enum.to_list(stream)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]

 concat(enumerables)

 @spec concat(Enumerable.t()) :: Enumerable.t()

Creates a stream that enumerates each enumerable in an enumerable.
Examples
iex> stream = Stream.concat([1..3, 4..6, 7..9])
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

 concat(first, second)

 @spec concat(Enumerable.t(), Enumerable.t()) :: Enumerable.t()

Creates a stream that enumerates the first argument, followed by the second.
Examples
iex> stream = Stream.concat(1..3, 4..6)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5, 6]

iex> stream1 = Stream.cycle([1, 2, 3])
iex> stream2 = Stream.cycle([4, 5, 6])
iex> stream = Stream.concat(stream1, stream2)
iex> Enum.take(stream, 6)
[1, 2, 3, 1, 2, 3]

 cycle(enumerable)

 @spec cycle(Enumerable.t()) :: Enumerable.t()

Creates a stream that cycles through the given enumerable,
infinitely.
Examples
iex> stream = Stream.cycle([1, 2, 3])
iex> Enum.take(stream, 5)
[1, 2, 3, 1, 2]

 dedup(enum)

 @spec dedup(Enumerable.t()) :: Enumerable.t()

Creates a stream that only emits elements if they are different from the last emitted element.
This function only ever needs to store the last emitted element.
Elements are compared using ===/2.
Examples
iex> Stream.dedup([1, 2, 3, 3, 2, 1]) |> Enum.to_list()
[1, 2, 3, 2, 1]

 dedup_by(enum, fun)

 @spec dedup_by(Enumerable.t(), (element() -> term())) :: Enumerable.t()

Creates a stream that only emits elements if the result of calling fun on the element is
different from the (stored) result of calling fun on the last emitted element.
Examples
iex> Stream.dedup_by([{1, :x}, {2, :y}, {2, :z}, {1, :x}], fn {x, _} -> x end) |> Enum.to_list()
[{1, :x}, {2, :y}, {1, :x}]

 drop(enum, n)

 @spec drop(Enumerable.t(), integer()) :: Enumerable.t()

Lazily drops the next n elements from the enumerable.
If a negative n is given, it will drop the last n elements from
the collection. Note that the mechanism by which this is implemented
will delay the emission of any element until n additional elements have
been emitted by the enum.
Examples
iex> stream = Stream.drop(1..10, 5)
iex> Enum.to_list(stream)
[6, 7, 8, 9, 10]

iex> stream = Stream.drop(1..10, -5)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

 drop_every(enum, nth)

 @spec drop_every(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Creates a stream that drops every nth element from the enumerable.
The first element is always dropped, unless nth is 0.
nth must be a non-negative integer.
Examples
iex> stream = Stream.drop_every(1..10, 2)
iex> Enum.to_list(stream)
[2, 4, 6, 8, 10]

iex> stream = Stream.drop_every(1..1000, 1)
iex> Enum.to_list(stream)
[]

iex> stream = Stream.drop_every([1, 2, 3, 4, 5], 0)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

 drop_while(enum, fun)

 @spec drop_while(Enumerable.t(), (element() -> as_boolean(term()))) :: Enumerable.t()

Lazily drops elements of the enumerable while the given
function returns a truthy value.
Examples
iex> stream = Stream.drop_while(1..10, &(&1 <= 5))
iex> Enum.to_list(stream)
[6, 7, 8, 9, 10]

 duplicate(value, n)

 (since 1.14.0)

 @spec duplicate(any(), non_neg_integer()) :: Enumerable.t()

Duplicates the given element n times in a stream.
n is an integer greater than or equal to 0.
If n is 0, an empty stream is returned.
Examples
iex> stream = Stream.duplicate("hello", 0)
iex> Enum.to_list(stream)
[]

iex> stream = Stream.duplicate("hi", 1)
iex> Enum.to_list(stream)
["hi"]

iex> stream = Stream.duplicate("bye", 2)
iex> Enum.to_list(stream)
["bye", "bye"]

iex> stream = Stream.duplicate([1, 2], 3)
iex> Enum.to_list(stream)
[[1, 2], [1, 2], [1, 2]]

 each(enum, fun)

 @spec each(Enumerable.t(), (element() -> term())) :: Enumerable.t()

Executes the given function for each element.
The values in the stream do not change, therefore this
function is useful for adding side effects (like printing)
to a stream. See map/2 if producing a different stream
is desired.
Examples
iex> stream = Stream.each([1, 2, 3], fn x -> send(self(), x) end)
iex> Enum.to_list(stream)
iex> receive do: (x when is_integer(x) -> x)
1
iex> receive do: (x when is_integer(x) -> x)
2
iex> receive do: (x when is_integer(x) -> x)
3

 filter(enum, fun)

 @spec filter(Enumerable.t(), (element() -> as_boolean(term()))) :: Enumerable.t()

Creates a stream that filters elements according to
the given function on enumeration.
Examples
iex> stream = Stream.filter([1, 2, 3], fn x -> rem(x, 2) == 0 end)
iex> Enum.to_list(stream)
[2]

 flat_map(enum, mapper)

 @spec flat_map(Enumerable.t(), (element() -> Enumerable.t())) :: Enumerable.t()

Maps the given fun over enumerable and flattens the result.
This function returns a new stream built by appending the result of invoking fun
on each element of enumerable together.
Examples
iex> stream = Stream.flat_map([1, 2, 3], fn x -> [x, x * 2] end)
iex> Enum.to_list(stream)
[1, 2, 2, 4, 3, 6]

iex> stream = Stream.flat_map([1, 2, 3], fn x -> [[x]] end)
iex> Enum.to_list(stream)
[[1], [2], [3]]

 from_index(fun_or_offset \\ 0)

 (since 1.17.0)

 @spec from_index(integer()) :: Enumerable.t(integer())

 @spec from_index((integer() -> return_value)) :: Enumerable.t(return_value)
when return_value: term()

Builds a stream from an index, either starting from offset, or given by function.
May receive a function or an integer offset.
If an offset is given, it will emit elements from offset.
If a function is given, it will invoke the function with
elements from offset.
Examples
iex> Stream.from_index() |> Enum.take(3)
[0, 1, 2]

iex> Stream.from_index(1) |> Enum.take(3)
[1, 2, 3]

iex> Stream.from_index(fn x -> x * 10 end) |> Enum.take(3)
[0, 10, 20]

 intersperse(enumerable, intersperse_element)

 (since 1.6.0)

 @spec intersperse(Enumerable.t(), any()) :: Enumerable.t()

Lazily intersperses intersperse_element between each element of the enumeration.
Examples
iex> Stream.intersperse([1, 2, 3], 0) |> Enum.to_list()
[1, 0, 2, 0, 3]

iex> Stream.intersperse([1], 0) |> Enum.to_list()
[1]

iex> Stream.intersperse([], 0) |> Enum.to_list()
[]

 interval(n)

 @spec interval(timer()) :: Enumerable.t()

Creates a stream that emits a value after the given period n
in milliseconds.
The values emitted are an increasing counter starting at 0.
This operation will block the caller by the given interval
every time a new element is streamed.
Do not use this function to generate a sequence of numbers.
If blocking the caller process is not necessary, use
Stream.iterate(0, & &1 + 1) instead.
Examples
iex> Stream.interval(10) |> Enum.take(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 into(enum, collectable, transform \\ fn x -> x end)

 @spec into(Enumerable.t(), Collectable.t(), (term() -> term())) :: Enumerable.t()

Injects the stream values into the given collectable as a side-effect.
This function is often used with run/1 since any evaluation
is delayed until the stream is executed. See run/1 for an example.

 iterate(start_value, next_fun)

 @spec iterate(element(), (element() -> element())) :: Enumerable.t()

Emits a sequence of values, starting with start_value.
Successive values are generated by calling next_fun
on the previous value.
Examples
iex> Stream.iterate(1, &(&1 * 2)) |> Enum.take(5)
[1, 2, 4, 8, 16]

 map(enum, fun)

 @spec map(Enumerable.t(), (element() -> any())) :: Enumerable.t()

Creates a stream that will apply the given function on
enumeration.
Examples
iex> stream = Stream.map([1, 2, 3], fn x -> x * 2 end)
iex> Enum.to_list(stream)
[2, 4, 6]

 map_every(enum, nth, fun)

 (since 1.4.0)

 @spec map_every(Enumerable.t(), non_neg_integer(), (element() -> any())) ::
 Enumerable.t()

Creates a stream that will apply the given function on
every nth element from the enumerable.
The first element is always passed to the given function.
nth must be a non-negative integer.
Examples
iex> stream = Stream.map_every(1..10, 2, fn x -> x * 2 end)
iex> Enum.to_list(stream)
[2, 2, 6, 4, 10, 6, 14, 8, 18, 10]

iex> stream = Stream.map_every([1, 2, 3, 4, 5], 1, fn x -> x * 2 end)
iex> Enum.to_list(stream)
[2, 4, 6, 8, 10]

iex> stream = Stream.map_every(1..5, 0, fn x -> x * 2 end)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

 reject(enum, fun)

 @spec reject(Enumerable.t(), (element() -> as_boolean(term()))) :: Enumerable.t()

Creates a stream that will reject elements according to
the given function on enumeration.
Examples
iex> stream = Stream.reject([1, 2, 3], fn x -> rem(x, 2) == 0 end)
iex> Enum.to_list(stream)
[1, 3]

 repeatedly(generator_fun)

 @spec repeatedly((-> element())) :: Enumerable.t()

Returns a stream generated by calling generator_fun repeatedly.
Examples
Although not necessary, let's seed the random algorithm
iex> :rand.seed(:exsss, {1, 2, 3})
iex> Stream.repeatedly(&:rand.uniform/0) |> Enum.take(3)
[0.5455598952593053, 0.6039309974353404, 0.6684893034823949]

 resource(start_fun, next_fun, after_fun)

 @spec resource((-> acc()), (acc() -> {[element()], acc()} | {:halt, acc()}), (acc() ->
 term())) ::
 Enumerable.t()

Emits a sequence of values for the given resource.
Similar to transform/3 but the initial accumulated value is
computed lazily via start_fun and executes an after_fun at
the end of enumeration (both in cases of success and failure).
Successive values are generated by calling next_fun with the
previous accumulator (the initial value being the result returned
by start_fun) and it must return a tuple containing a list
of elements to be emitted and the next accumulator. The enumeration
finishes if it returns {:halt, acc}.
As the function name suggests, this function is useful to stream values from
resources.
Examples
Stream.resource(
 fn -> File.open!("sample") end,
 fn file ->
 case IO.read(file, :line) do
 data when is_binary(data) -> {[data], file}
 _ -> {:halt, file}
 end
 end,
 fn file -> File.close(file) end
)

iex> Stream.resource(
...> fn ->
...> {:ok, pid} = StringIO.open("string")
...> pid
...> end,
...> fn pid ->
...> case IO.getn(pid, "", 1) do
...> :eof -> {:halt, pid}
...> char -> {[char], pid}
...> end
...> end,
...> fn pid -> StringIO.close(pid) end
...>) |> Enum.to_list()
["s", "t", "r", "i", "n", "g"]

 run(stream)

 @spec run(Enumerable.t()) :: :ok

Runs the given stream.
This is useful when a stream needs to be run, for side effects,
and there is no interest in its return result.
Examples
Open up a file, replace all # by % and stream to another file
without loading the whole file in memory:
File.stream!("/path/to/file")
|> Stream.map(&String.replace(&1, "#", "%"))
|> Stream.into(File.stream!("/path/to/other/file"))
|> Stream.run()
No computation will be done until we call one of the Enum functions
or run/1.

 scan(enum, fun)

 @spec scan(Enumerable.t(), (element(), acc() -> any())) :: Enumerable.t()

Creates a stream that applies the given function to each
element, emits the result and uses the same result as the accumulator
for the next computation. Uses the first element in the enumerable
as the starting value.
Examples
iex> stream = Stream.scan(1..5, &(&1 + &2))
iex> Enum.to_list(stream)
[1, 3, 6, 10, 15]

 scan(enum, acc, fun)

 @spec scan(Enumerable.t(), acc(), (element(), acc() -> any())) :: Enumerable.t()

Creates a stream that applies the given function to each
element, emits the result and uses the same result as the accumulator
for the next computation. Uses the given acc as the starting value.
Examples
iex> stream = Stream.scan(1..5, 0, &(&1 + &2))
iex> Enum.to_list(stream)
[1, 3, 6, 10, 15]

 take(enum, count)

 @spec take(Enumerable.t(), integer()) :: Enumerable.t()

Lazily takes the next count elements from the enumerable and stops
enumeration.
If a negative count is given, the last count values will be taken.
For such, the collection is fully enumerated keeping up to 2 * count
elements in memory. Once the end of the collection is reached,
the last count elements will be executed. Therefore, using
a negative count on an infinite collection will never return.
Examples
iex> stream = Stream.take(1..100, 5)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

iex> stream = Stream.take(1..100, -5)
iex> Enum.to_list(stream)
[96, 97, 98, 99, 100]

iex> stream = Stream.cycle([1, 2, 3]) |> Stream.take(5)
iex> Enum.to_list(stream)
[1, 2, 3, 1, 2]

 take_every(enum, nth)

 @spec take_every(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Creates a stream that takes every nth element from the enumerable.
The first element is always included, unless nth is 0.
nth must be a non-negative integer.
Examples
iex> stream = Stream.take_every(1..10, 2)
iex> Enum.to_list(stream)
[1, 3, 5, 7, 9]

iex> stream = Stream.take_every([1, 2, 3, 4, 5], 1)
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

iex> stream = Stream.take_every(1..1000, 0)
iex> Enum.to_list(stream)
[]

 take_while(enum, fun)

 @spec take_while(Enumerable.t(), (element() -> as_boolean(term()))) :: Enumerable.t()

Lazily takes elements of the enumerable while the given
function returns a truthy value.
Examples
iex> stream = Stream.take_while(1..100, &(&1 <= 5))
iex> Enum.to_list(stream)
[1, 2, 3, 4, 5]

 timer(n)

 @spec timer(timer()) :: Enumerable.t()

Creates a stream that emits a single value after n milliseconds.
The value emitted is 0. This operation will block the caller by
the given time until the element is streamed.
Examples
iex> Stream.timer(10) |> Enum.to_list()
[0]

 transform(enum, acc, reducer)

 @spec transform(Enumerable.t(), acc, fun) :: Enumerable.t()
when fun: (element(), acc -> {Enumerable.t(), acc} | {:halt, acc}), acc: term()

Transforms an existing stream.
It expects an accumulator and a function that receives two arguments,
the stream element and the updated accumulator. It must return a tuple,
where the first element is a new stream (often a list) or the atom :halt,
and the second element is the accumulator to be used by the next element.
Note: this function is equivalent to Enum.flat_map_reduce/3, except this
function does not return the accumulator once the stream is processed.
Examples
Stream.transform/3 is useful as it can be used as the basis to implement
many of the functions defined in this module. For example, we can implement
Stream.take(enum, n) as follows:
iex> enum = 1001..9999
iex> n = 3
iex> stream = Stream.transform(enum, 0, fn i, acc ->
...> if acc < n, do: {[i], acc + 1}, else: {:halt, acc}
...> end)
iex> Enum.to_list(stream)
[1001, 1002, 1003]
Stream.transform/5 further generalizes this function to allow wrapping
around resources.

 transform(enum, start_fun, reducer, after_fun)

 @spec transform(Enumerable.t(), start_fun, reducer, after_fun) :: Enumerable.t()
when start_fun: (-> acc),
 reducer: (element(), acc -> {Enumerable.t(), acc} | {:halt, acc}),
 after_fun: (acc -> term()),
 acc: term()

Similar to Stream.transform/5, except last_fun is not supplied.
This function can be seen as a combination of Stream.resource/3 with
Stream.transform/3.

 transform(enum, start_fun, reducer, last_fun, after_fun)

 (since 1.14.0)

 @spec transform(Enumerable.t(), start_fun, reducer, last_fun, after_fun) ::
 Enumerable.t()
when start_fun: (-> acc),
 reducer: (element(), acc -> {Enumerable.t(), acc} | {:halt, acc}),
 last_fun: (acc -> {Enumerable.t(), acc} | {:halt, acc}),
 after_fun: (acc -> term()),
 acc: term()

Transforms an existing stream with function-based start, last, and after
callbacks.
Once transformation starts, start_fun is invoked to compute the initial
accumulator. Then, for each element in the enumerable, the reducer function
is invoked with the element and the accumulator, returning new elements and a
new accumulator, as in transform/3.
Once the collection is done, last_fun is invoked with the accumulator to
emit any remaining items. Then after_fun is invoked, to close any resource,
but not emitting any new items. last_fun is only invoked if the given
enumerable terminates successfully (either because it is done or it halted
itself). after_fun is always invoked, therefore after_fun must be the
one used for closing resources.

 unfold(next_acc, next_fun)

 @spec unfold(acc(), (acc() -> {element(), acc()} | nil)) :: Enumerable.t()

Emits a sequence of values for the given accumulator.
Successive values are generated by calling next_fun with the previous
accumulator and it must return a tuple with the current value and next
accumulator. The enumeration finishes if it returns nil.
Examples
To create a stream that counts down and stops before zero:
iex> Stream.unfold(5, fn
...> 0 -> nil
...> n -> {n, n - 1}
...> end) |> Enum.to_list()
[5, 4, 3, 2, 1]
If next_fun never returns nil, the returned stream is infinite:
iex> Stream.unfold(0, fn
...> n -> {n, n + 1}
...> end) |> Enum.take(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

iex> Stream.unfold(1, fn
...> n -> {n, n * 2}
...> end) |> Enum.take(10)
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 uniq(enum)

 @spec uniq(Enumerable.t()) :: Enumerable.t()

Creates a stream that only emits elements if they are unique.
Keep in mind that, in order to know if an element is unique
or not, this function needs to store all unique values emitted
by the stream. Therefore, if the stream is infinite, the number
of elements stored will grow infinitely, never being garbage-collected.
Examples
iex> Stream.uniq([1, 2, 3, 3, 2, 1]) |> Enum.to_list()
[1, 2, 3]

 uniq_by(enum, fun)

 @spec uniq_by(Enumerable.t(), (element() -> term())) :: Enumerable.t()

Creates a stream that only emits elements if they are unique, by removing the
elements for which function fun returned duplicate elements.
The function fun maps every element to a term which is used to
determine if two elements are duplicates.
Keep in mind that, in order to know if an element is unique
or not, this function needs to store all unique values emitted
by the stream. Therefore, if the stream is infinite, the number
of elements stored will grow infinitely, never being garbage-collected.
Example
iex> Stream.uniq_by([{1, :x}, {2, :y}, {1, :z}], fn {x, _} -> x end) |> Enum.to_list()
[{1, :x}, {2, :y}]

iex> Stream.uniq_by([a: {:tea, 2}, b: {:tea, 2}, c: {:coffee, 1}], fn {_, y} -> y end) |> Enum.to_list()
[a: {:tea, 2}, c: {:coffee, 1}]

 with_index(enum, fun_or_offset \\ 0)

 @spec with_index(Enumerable.t(), integer()) :: Enumerable.t({element(), integer()})

 @spec with_index(Enumerable.t(), (element(), index() -> return_value)) ::
 Enumerable.t(return_value)
when return_value: term()

Creates a stream where each element in the enumerable will
be wrapped in a tuple alongside its index or according to a given function.
May receive a function or an integer offset.
If an offset is given, it will index from the given offset instead of from
zero.
If a function is given, it will index by invoking the function for each
element and index (zero-based) of the enumerable.
Examples
iex> stream = Stream.with_index([1, 2, 3])
iex> Enum.to_list(stream)
[{1, 0}, {2, 1}, {3, 2}]

iex> stream = Stream.with_index([1, 2, 3], 3)
iex> Enum.to_list(stream)
[{1, 3}, {2, 4}, {3, 5}]

iex> stream = Stream.with_index([1, 2, 3], fn x, index -> x + index end)
iex> Enum.to_list(stream)
[1, 3, 5]

 zip(enumerables)

 (since 1.4.0)

 @spec zip(enumerables) :: Enumerable.t()
when enumerables: [Enumerable.t()] | Enumerable.t()

Zips corresponding elements from a finite collection of enumerables
into one stream of tuples.
The zipping finishes as soon as any enumerable in the given collection completes.
Examples
iex> concat = Stream.concat(1..3, 4..6)
iex> cycle = Stream.cycle(["foo", "bar", "baz"])
iex> Stream.zip([concat, [:a, :b, :c], cycle]) |> Enum.to_list()
[{1, :a, "foo"}, {2, :b, "bar"}, {3, :c, "baz"}]

 zip(enumerable1, enumerable2)

 @spec zip(Enumerable.t(), Enumerable.t()) :: Enumerable.t()

Zips two enumerables together, lazily.
Because a list of two-element tuples with atoms as the first
tuple element is a keyword list (Keyword), zipping a first Stream
of atoms with a second Stream of any kind creates a Stream
that generates a keyword list.
The zipping finishes as soon as either enumerable completes.
Examples
iex> concat = Stream.concat(1..3, 4..6)
iex> cycle = Stream.cycle([:a, :b, :c])
iex> Stream.zip(concat, cycle) |> Enum.to_list()
[{1, :a}, {2, :b}, {3, :c}, {4, :a}, {5, :b}, {6, :c}]
iex> Stream.zip(cycle, concat) |> Enum.to_list()
[a: 1, b: 2, c: 3, a: 4, b: 5, c: 6]

 zip_with(enumerables, zip_fun)

 (since 1.12.0)

 @spec zip_with(enumerables, (Enumerable.t() -> term())) :: Enumerable.t()
when enumerables: [Enumerable.t()] | Enumerable.t()

Lazily zips corresponding elements from a finite collection of enumerables into a new
enumerable, transforming them with the zip_fun function as it goes.
The first element from each of the enums in enumerables will be put into a list which is then passed to
the one-arity zip_fun function. Then, the second elements from each of the enums are put into a list and passed to
zip_fun, and so on until any one of the enums in enumerables completes.
Returns a new enumerable with the results of calling zip_fun.
Examples
iex> concat = Stream.concat(1..3, 4..6)
iex> Stream.zip_with([concat, concat], fn [a, b] -> a + b end) |> Enum.to_list()
[2, 4, 6, 8, 10, 12]

iex> concat = Stream.concat(1..3, 4..6)
iex> Stream.zip_with([concat, concat, 1..3], fn [a, b, c] -> a + b + c end) |> Enum.to_list()
[3, 6, 9]

 zip_with(enumerable1, enumerable2, zip_fun)

 (since 1.12.0)

 @spec zip_with(Enumerable.t(), Enumerable.t(), (term(), term() -> term())) ::
 Enumerable.t()

Lazily zips corresponding elements from two enumerables into a new one, transforming them with
the zip_fun function as it goes.
The zip_fun will be called with the first element from enumerable1 and the first
element from enumerable2, then with the second element from each, and so on until
either one of the enumerables completes.
Examples
iex> concat = Stream.concat(1..3, 4..6)
iex> Stream.zip_with(concat, concat, fn a, b -> a + b end) |> Enum.to_list()
[2, 4, 6, 8, 10, 12]

File

This module contains functions to manipulate files.
Some of those functions are low-level, allowing the user
to interact with files or IO devices, like open/2,
copy/3 and others. This module also provides higher
level functions that work with filenames and have their naming
based on Unix variants. For example, one can copy a file
via cp/3 and remove files and directories recursively
via rm_rf/1.
Paths given to functions in this module can be either relative to the
current working directory (as returned by File.cwd/0), or absolute
paths. Shell conventions like ~ are not expanded automatically.
To use paths like ~/Downloads, you can use Path.expand/1 or
Path.expand/2 to expand your path to an absolute path.
Encoding
In order to write and read files, one must use the functions
in the IO module. By default, a file is opened in binary mode,
which requires the functions IO.binread/2 and IO.binwrite/2
to interact with the file. A developer may pass :utf8 as an
option when opening the file, then the slower IO.read/2 and
IO.write/2 functions must be used as they are responsible for
doing the proper conversions and providing the proper data guarantees.
Note that filenames when given as charlists in Elixir are
always treated as UTF-8. In particular, we expect that the
shell and the operating system are configured to use UTF-8
encoding. Binary filenames are considered raw and passed
to the operating system as is.
API
Most of the functions in this module return :ok or
{:ok, result} in case of success, {:error, reason}
otherwise. Those functions also have a variant
that ends with ! which returns the result (instead of the
{:ok, result} tuple) in case of success or raises an
exception in case it fails. For example:
File.read("hello.txt")
#=> {:ok, "World"}

File.read("invalid.txt")
#=> {:error, :enoent}

File.read!("hello.txt")
#=> "World"

File.read!("invalid.txt")
#=> raises File.Error
In general, a developer should use the former in case they want
to react if the file does not exist. The latter should be used
when the developer expects their software to fail in case the
file cannot be read (i.e. it is literally an exception).
Processes and raw files
Every time a file is opened, Elixir spawns a new process. Writing
to a file is equivalent to sending messages to the process that
writes to the file descriptor.
This means files can be passed between nodes and message passing
guarantees they can write to the same file in a network.
However, you may not always want to pay the price for this abstraction.
In such cases, a file can be opened in :raw mode. The options :read_ahead
and :delayed_write are also useful when operating on large files or
working with files in tight loops.
Check :file.open/2 for more information about such options and
other performance considerations.
Seeking within a file
You may also use any of the functions from the :file
module to interact with files returned by Elixir. For example,
to read from a specific position in a file, use :file.pread/3:
File.write!("example.txt", "Eats, Shoots & Leaves")
file = File.open!("example.txt")
:file.pread(file, 15, 6)
#=> {:ok, "Leaves"}
Alternatively, if you need to keep track of the current position,
use :file.position/2 and :file.read/2:
:file.position(file, 6)
#=> {:ok, 6}
:file.read(file, 6)
#=> {:ok, "Shoots"}
:file.position(file, {:cur, -12})
#=> {:ok, 0}
:file.read(file, 4)
#=> {:ok, "Eats"}

 Summary

 Types

 encoding_mode()

 erlang_time()

 file_descriptor()

 io_device()

 mode()

 on_conflict_callback()

 posix()

 posix_time()

 read_offset_mode()

 stat_options()

 stream_mode()

 Functions

 cd(path)

 Sets the current working directory.

 cd!(path)

 The same as cd/1, but raises a File.Error exception if it fails.

 cd!(path, function)

 Changes the current directory to the given path,
executes the given function and then reverts back
to the previous path regardless of whether there is an exception.

 chgrp(path, gid)

 Changes the group given by the group ID gid
for a given file. Returns :ok on success, or
{:error, reason} on failure.

 chgrp!(path, gid)

 Same as chgrp/2, but raises a File.Error exception in case of failure.
Otherwise :ok.

 chmod(path, mode)

 Changes the mode for a given file.

 chmod!(path, mode)

 Same as chmod/2, but raises a File.Error exception in case of failure.
Otherwise :ok.

 chown(path, uid)

 Changes the owner given by the user ID uid
for a given file. Returns :ok on success,
or {:error, reason} on failure.

 chown!(path, uid)

 Same as chown/2, but raises a File.Error exception in case of failure.
Otherwise :ok.

 close(io_device)

 Closes the file referenced by io_device. It mostly returns :ok, except
for some severe errors such as out of memory.

 copy(source, destination, bytes_count \\ :infinity)

 Copies the contents of source to destination.

 copy!(source, destination, bytes_count \\ :infinity)

 The same as copy/3 but raises a File.CopyError exception if it fails.
Returns the bytes_copied otherwise.

 cp(source_file, destination_file, options \\ [])

 Copies the contents of source_file to destination_file preserving its modes.

 cp!(source_file, destination_file, options \\ [])

 The same as cp/3, but raises a File.CopyError exception if it fails.
Returns :ok otherwise.

 cp_r(source, destination, options \\ [])

 Copies the contents in source to destination recursively, maintaining the
source directory structure and modes.

 cp_r!(source, destination, options \\ [])

 The same as cp_r/3, but raises a File.CopyError exception if it fails.
Returns the list of copied files otherwise.

 cwd()

 Gets the current working directory.

 cwd!()

 The same as cwd/0, but raises a File.Error exception if it fails.

 dir?(path, opts \\ [])

 Returns true if the given path is a directory.

 exists?(path, opts \\ [])

 Returns true if the given path exists.

 ln(existing, new)

 Creates a hard link new to the file existing.

 ln!(existing, new)

 Same as ln/2 but raises a File.LinkError exception if it fails.
Returns :ok otherwise.

 ln_s(existing, new)

 Creates a symbolic link new to the file or directory existing.

 ln_s!(existing, new)

 Same as ln_s/2 but raises a File.LinkError exception if it fails.
Returns :ok otherwise.

 ls(path \\ ".")

 Returns the list of files in the given directory.

 ls!(path \\ ".")

 The same as ls/1 but raises a File.Error exception in case of an error.

 lstat(path, opts \\ [])

 Returns information about the path. If the file is a symlink, sets
the type to :symlink and returns a File.Stat struct for the link. For any
other file, returns exactly the same values as stat/2.

 lstat!(path, opts \\ [])

 Same as lstat/2 but returns the File.Stat struct directly,
or raises a File.Error exception if an error is returned.

 mkdir(path)

 Tries to create the directory path.

 mkdir!(path)

 Same as mkdir/1, but raises a File.Error exception in case of failure.
Otherwise :ok.

 mkdir_p(path)

 Tries to create the directory path.

 mkdir_p!(path)

 Same as mkdir_p/1, but raises a File.Error exception in case of failure.
Otherwise :ok.

 open(path, modes_or_function \\ [])

 Opens the given path.

 open(path, modes, function)

 Similar to open/2 but expects a function as its last argument.

 open!(path, modes_or_function \\ [])

 Similar to open/2 but raises a File.Error exception if the file
could not be opened. Returns the IO device otherwise.

 open!(path, modes, function)

 Similar to open/3 but raises a File.Error exception if the file
could not be opened.

 read(path)

 Returns {:ok, binary}, where binary is a binary data object that contains the contents
of path, or {:error, reason} if an error occurs.

 read!(path)

 Returns a binary with the contents of the given filename,
or raises a File.Error exception if an error occurs.

 read_link(path)

 Reads the symbolic link at path.

 read_link!(path)

 Same as read_link/1 but returns the target directly,
or raises a File.Error exception if an error is returned.

 regular?(path, opts \\ [])

 Returns true if the path is a regular file.

 rename(source, destination)

 Renames the source file to destination file. It can be used to move files
(and directories) between directories. If moving a file, you must fully
specify the destination filename, it is not sufficient to simply specify
its directory.

 rename!(source, destination)

 The same as rename/2 but raises a File.RenameError exception if it fails.
Returns :ok otherwise.

 rm(path)

 Tries to delete the file path.

 rm!(path)

 Same as rm/1, but raises a File.Error exception in case of failure.
Otherwise :ok.

 rm_rf(path)

 Removes files and directories recursively at the given path.
Symlinks are not followed but simply removed, non-existing
files are simply ignored (i.e. doesn't make this function fail).

 rm_rf!(path)

 Same as rm_rf/1 but raises a File.Error exception in case of failures,
otherwise returns the list of files or directories removed.

 rmdir(path)

 Tries to delete the dir at path.

 rmdir!(path)

 Same as rmdir/1, but raises a File.Error exception in case of failure.
Otherwise :ok.

 stat(path, opts \\ [])

 Returns information about the path. If it exists, it
returns a {:ok, info} tuple, where info is a
File.Stat struct. Returns {:error, reason} with
the same reasons as read/1 if a failure occurs.

 stat!(path, opts \\ [])

 Same as stat/2 but returns the File.Stat directly,
or raises a File.Error exception if an error is returned.

 stream!(path, line_or_bytes_modes \\ [])

 Shortcut for File.stream!/3.

 stream!(path, line_or_bytes, modes)

 Returns a File.Stream for the given path with the given modes.

 touch(path, time \\ System.os_time(:second))

 Updates modification time (mtime) and access time (atime) of
the given file.

 touch!(path, time \\ System.os_time(:second))

 Same as touch/2 but raises a File.Error exception if it fails.
Returns :ok otherwise.

 write(path, content, modes \\ [])

 Writes content to the file path.

 write!(path, content, modes \\ [])

 Same as write/3 but raises a File.Error exception if it fails.
Returns :ok otherwise.

 write_stat(path, stat, opts \\ [])

 Writes the given File.Stat back to the file system at the given
path. Returns :ok or {:error, reason}.

 write_stat!(path, stat, opts \\ [])

 Same as write_stat/3 but raises a File.Error exception if it fails.
Returns :ok otherwise.

 Types

 encoding_mode()

 @type encoding_mode() ::
 :utf8
 | {:encoding,
 :latin1
 | :unicode
 | :utf8
 | :utf16
 | :utf32
 | {:utf16, :big | :little}
 | {:utf32, :big | :little}}

 erlang_time()

 @type erlang_time() ::
 {{year :: non_neg_integer(), month :: 1..12, day :: 1..31},
 {hour :: 0..23, minute :: 0..59, second :: 0..59}}

 file_descriptor()

 @type file_descriptor() :: :file.fd()

 io_device()

 @type io_device() :: :file.io_device()

 mode()

 @type mode() ::
 :append
 | :binary
 | :charlist
 | :compressed
 | :delayed_write
 | :exclusive
 | :raw
 | :read
 | :read_ahead
 | :sync
 | :write
 | {:read_ahead, pos_integer()}
 | {:delayed_write, non_neg_integer(), non_neg_integer()}
 | encoding_mode()

 on_conflict_callback()

 @type on_conflict_callback() :: (Path.t(), Path.t() -> boolean())

 posix()

 @type posix() :: :file.posix()

 posix_time()

 @type posix_time() :: integer()

 read_offset_mode()

 @type read_offset_mode() :: {:read_offset, non_neg_integer()}

 stat_options()

 @type stat_options() :: [{:time, :local | :universal | :posix}]

 stream_mode()

 @type stream_mode() ::
 encoding_mode()
 | read_offset_mode()
 | :append
 | :compressed
 | :delayed_write
 | :trim_bom
 | {:read_ahead, pos_integer() | false}
 | {:delayed_write, non_neg_integer(), non_neg_integer()}

 Functions

 cd(path)

 @spec cd(Path.t()) :: :ok | {:error, posix() | :badarg | :no_translation}

Sets the current working directory.
The current working directory is set for the BEAM globally. This can lead to
race conditions if multiple processes are changing the current working
directory concurrently. To run an external command in a given directory
without changing the global current working directory, use the :cd option
of System.cmd/3 and Port.open/2.
Returns :ok if successful, {:error, reason} otherwise.
Examples
File.cd("bin")
#=> :ok

File.cd("non_existing_dir")
#=> {:error, :enoent}

 cd!(path)

 @spec cd!(Path.t()) :: :ok

The same as cd/1, but raises a File.Error exception if it fails.
Examples
File.cd!("bin")
#=> :ok

File.cd!("non_existing_dir")
** (File.Error) could not set current working directory to "non_existing_dir": no such file or directory

 cd!(path, function)

 @spec cd!(Path.t(), (-> res)) :: res when res: var

Changes the current directory to the given path,
executes the given function and then reverts back
to the previous path regardless of whether there is an exception.
The current working directory is temporarily set for the BEAM globally. This
can lead to race conditions if multiple processes are changing the current
working directory concurrently. To run an external command in a given
directory without changing the global current working directory, use the
:cd option of System.cmd/3 and Port.open/2.
Raises an error if retrieving or changing the current
directory fails.
Examples
File.cd!("bin", fn -> do_something() end)
#=> :result_of_do_something

File.cd!("non_existing_dir", fn -> do_something() end)
** (File.Error) could not set current working directory to "non_existing_dir": no such file or directory

 chgrp(path, gid)

 @spec chgrp(Path.t(), non_neg_integer()) :: :ok | {:error, posix() | :badarg}

Changes the group given by the group ID gid
for a given file. Returns :ok on success, or
{:error, reason} on failure.
Examples
File.chgrp("hello.txt", 10)
#=> :ok

File.chgrp("non_existing.txt", 10)
#=> {:error, :enoent}

 chgrp!(path, gid)

 @spec chgrp!(Path.t(), non_neg_integer()) :: :ok

Same as chgrp/2, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
 File.chgrp!("hello.txt", 10)
 #=> :ok
 File.chgrp!("non_existing.txt", 10)
 ** (File.Error) could not change group for "non_existing.txt": no such file or directory

 chmod(path, mode)

 @spec chmod(Path.t(), non_neg_integer()) :: :ok | {:error, posix() | :badarg}

Changes the mode for a given file.
Returns :ok on success, or {:error, reason} on failure.
Permissions
File permissions are specified by adding together the following octal modes:
	0o400 - read permission: owner

	0o200 - write permission: owner

	0o100 - execute permission: owner

	0o040 - read permission: group

	0o020 - write permission: group

	0o010 - execute permission: group

	0o004 - read permission: other

	0o002 - write permission: other

	0o001 - execute permission: other

For example, setting the mode 0o755 gives it
write, read and execute permission to the owner
and both read and execute permission to group
and others.
Examples
File.chmod("hello.txt", 0o755)
#=> :ok

File.chmod("non_existing.txt", 0o755)
#=> {:error, :enoent}

 chmod!(path, mode)

 @spec chmod!(Path.t(), non_neg_integer()) :: :ok

Same as chmod/2, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.chmod!("hello.txt", 0o755)
#=> :ok

File.chmod!("non_existing.txt", 0o755)
** (File.Error) could not change mode for "non_existing.txt": no such file or directory

 chown(path, uid)

 @spec chown(Path.t(), non_neg_integer()) :: :ok | {:error, posix() | :badarg}

Changes the owner given by the user ID uid
for a given file. Returns :ok on success,
or {:error, reason} on failure.
Examples
File.chown("hello.txt", 15)
#=> :ok

File.chown("secret.txt", 15)
#=> {:error, :eperm}

 chown!(path, uid)

 @spec chown!(Path.t(), non_neg_integer()) :: :ok

Same as chown/2, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.chown!("hello.txt", 15)
#=> :ok

File.chown!("secret.txt", 15)
** (File.Error) could not change owner for "secret.txt": not owner

 close(io_device)

 @spec close(io_device()) :: :ok | {:error, posix() | :badarg | :terminated}

Closes the file referenced by io_device. It mostly returns :ok, except
for some severe errors such as out of memory.
Note that if the option :delayed_write was used when opening the file,
close/1 might return an old write error and not even try to close the file.
See open/2 for more information.
Examples
{:ok, file} = File.open("hello.txt")
File.close(file)
#=> :ok

File.close(:not_an_io_device)
#=> {:error, :badarg}

 copy(source, destination, bytes_count \\ :infinity)

 @spec copy(Path.t() | io_device(), Path.t() | io_device(), pos_integer() | :infinity) ::
 {:ok, non_neg_integer()} | {:error, posix() | :badarg | :terminated}

Copies the contents of source to destination.
Both parameters can be a filename or an IO device opened
with open/2. bytes_count specifies the number of
bytes to copy, the default being :infinity.
If file destination already exists, it is overwritten
by the contents in source.
Returns {:ok, bytes_copied} if successful,
{:error, reason} otherwise.
Compared to the cp/3, this function is more low-level,
allowing a copy from device to device limited by a number of
bytes. On the other hand, cp/3 performs more extensive
checks on both source and destination and it also preserves
the file mode after copy.
Typical error reasons are the same as in open/2,
read/1 and write/3.
Examples
File.copy("hello.txt", "hello_copy.txt")
#=> {:ok, 6}

File.copy("non_existing.txt", "copy.txt")
#=> {:error, :enoent}

 copy!(source, destination, bytes_count \\ :infinity)

 @spec copy!(Path.t() | io_device(), Path.t() | io_device(), pos_integer() | :infinity) ::
 non_neg_integer()

The same as copy/3 but raises a File.CopyError exception if it fails.
Returns the bytes_copied otherwise.
Examples
File.copy!("hello.txt", "hello_copy.txt")
#=> 6

File.copy!("non_existing.txt", "copy.txt")
** (File.CopyError) could not copy from "non_existing.txt" to "copy.txt": no such file or directory

 cp(source_file, destination_file, options \\ [])

 @spec cp(Path.t(), Path.t(), [{:on_conflict, on_conflict_callback()}]) ::
 :ok | {:error, posix() | :badarg | :terminated}

Copies the contents of source_file to destination_file preserving its modes.
source_file must be a file or a symbolic link to one. destination_file must
be a path to a non-existent file. If either is a directory, {:error, :eisdir}
will be returned.
The function returns :ok in case of success. Otherwise, it returns
{:error, reason}.
If you want to copy contents from an IO device to another device
or do a straight copy from a source to a destination without
preserving modes, check copy/3 instead.
Note: The command cp in Unix-like systems behaves differently depending on
whether the destination is an existing directory or not. We have chosen to
explicitly disallow copying to a destination which is a directory,
and an error will be returned if tried.
Options
	:on_conflict - (since v1.14.0) Invoked when a file already exists in the destination.
The function receives arguments for source_file and destination_file. It should
return true if the existing file should be overwritten, false if otherwise.
The default callback returns true. On earlier versions, this callback could be
given as third argument, but such behavior is now deprecated.

Examples
File.cp("hello.txt", "hello_copy.txt")
#=> :ok

File.cp("hello.txt", "hello_copy.txt", on_conflict: fn source, destination ->
 IO.gets("Overwriting #{destination} by #{source}. Type y to confirm. ") == "y\n"
end)
#=> :ok

File.cp("non_existing.txt", "copy.txt")
#=> {:error, :enoent}

 cp!(source_file, destination_file, options \\ [])

 @spec cp!(Path.t(), Path.t(), [{:on_conflict, on_conflict_callback()}]) :: :ok

The same as cp/3, but raises a File.CopyError exception if it fails.
Returns :ok otherwise.
Examples
File.cp!("hello.txt", "hello_copy.txt")
#=> :ok

File.cp!("hello.txt", "hello_copy.txt", on_conflict: fn source, destination ->
 IO.gets("Overwriting #{destination} by #{source}. Type y to confirm. ") == "y\n"
end)
#=> :ok

File.cp!("non_existing.txt", "copy.txt")
** (File.CopyError) could not copy from "non_existing.txt" to "copy.txt": no such file or directory

 cp_r(source, destination, options \\ [])

 @spec cp_r(Path.t(), Path.t(),
 on_conflict: on_conflict_callback(),
 dereference_symlinks: boolean()
) ::
 {:ok, [binary()]} | {:error, posix() | :badarg | :terminated, binary()}

Copies the contents in source to destination recursively, maintaining the
source directory structure and modes.
If source is a file or a symbolic link to it, destination must be a path
to an existent file, a symbolic link to one, or a path to a non-existent file.
If source is a directory, or a symbolic link to it, then destination must
be an existent directory or a symbolic link to one, or a path to a non-existent directory.
If the source is a file, it copies source to destination. If the source
is a directory, it copies the contents inside source into the destination directory.
If a file already exists in the destination, it invokes the optional on_conflict
callback given as an option. See "Options" for more information.
This function may fail while copying files, in such cases, it will leave the
destination directory in a dirty state, where file which have already been
copied won't be removed.
The function returns {:ok, files_and_directories} in case of
success, files_and_directories lists all files and directories copied in no
specific order. It returns {:error, reason, file} otherwise.
Note: The command cp in Unix-like systems behaves differently depending on
whether destination is an existing directory or not. We have chosen to
explicitly disallow this behavior. If source is a file and destination
is a directory, {:error, :eisdir} will be returned.
Special files such as device files, sockets, and named pipes are not copied.
Options
	:on_conflict - (since v1.14.0) Invoked when a file already exists in the destination.
The function receives arguments for source and destination. It should return
true if the existing file should be overwritten, false if otherwise. The default
callback returns true. On earlier versions, this callback could be given as third
argument, but such behavior is now deprecated.

	:dereference_symlinks - (since v1.14.0) By default, this function will copy symlinks
by creating symlinks that point to the same location. This option forces symlinks to be
dereferenced and have their contents copied instead when set to true. If the dereferenced
files do not exist, than the operation fails. The default is false.

Examples
Copies file "a.txt" to "b.txt"
File.cp_r("a.txt", "b.txt")
#=> {:ok, ["b.txt"]}

Copies all files in "samples" to "tmp"
File.cp_r("samples", "tmp")
#=> {:ok, ["z.txt", "y.txt", "x.txt]}

Same as before, but asks the user how to proceed in case of conflicts
File.cp_r("samples", "tmp", on_conflict: fn source, destination ->
 IO.gets("Overwriting #{destination} by #{source}. Type y to confirm. ") == "y\n"
end)
#=> {:ok, ["z.txt", "y.txt", "x.txt]}

File.cp_r("non_existing.txt", "copy.txt")
#=> {:error, :enoent}

 cp_r!(source, destination, options \\ [])

 @spec cp_r!(Path.t(), Path.t(),
 on_conflict: on_conflict_callback(),
 dereference_symlinks: boolean()
) ::
 [binary()]

The same as cp_r/3, but raises a File.CopyError exception if it fails.
Returns the list of copied files otherwise.
Examples
File.cp_r!("a.txt", "b.txt")
#=> ["b.txt"]

File.cp_r!("samples", "tmp")
#=> ["z.txt", "y.txt", "x.txt]

File.cp_r!("non_existing.txt", "copy.txt")
** (File.CopyError) could not copy recursively from "non_existing.txt" to "copy.txt". non_existing.txt: no such file or directory

 cwd()

 @spec cwd() :: {:ok, binary()} | {:error, posix() | :badarg}

Gets the current working directory.
In rare circumstances, this function can fail on Unix-like systems. It may happen
if read permissions do not exist for the parent directories of the
current directory. For this reason, returns {:ok, cwd} in case
of success, {:error, reason} otherwise.
Examples
File.cwd()
#=> {:ok, "/Users/user/elixir/elixir_lang"}

Missing read permission for one of the parents of the current directory
File.cwd()
#=> {:error, :eacces}

 cwd!()

 @spec cwd!() :: binary()

The same as cwd/0, but raises a File.Error exception if it fails.
Examples
File.cwd!()
#=> "/Users/user/elixir/elixir_lang"

 dir?(path, opts \\ [])

 @spec dir?(Path.t(), [dir_option]) :: boolean() when dir_option: :raw

Returns true if the given path is a directory.
This function follows symbolic links, so if a symbolic link points to a
directory, true is returned.
Options
The supported options are:
	:raw - a single atom to bypass the file server and only check
for the file locally

Examples
File.dir?("./test")
#=> true

File.dir?("test")
#=> true

File.dir?("/usr/bin")
#=> true

File.dir?("~/Downloads")
#=> false

"~/Downloads" |> Path.expand() |> File.dir?()
#=> true

 exists?(path, opts \\ [])

 @spec exists?(Path.t(), [exists_option]) :: boolean() when exists_option: :raw

Returns true if the given path exists.
It can be a regular file, directory, socket, symbolic link, named pipe, or device file.
Returns false for symbolic links pointing to non-existing targets.
Options
The supported options are:
	:raw - a single atom to bypass the file server and only check
for the file locally

Examples
File.exists?("test/")
#=> true

File.exists?("missing.txt")
#=> false

File.exists?("/dev/null")
#=> true

 ln(existing, new)

 (since 1.5.0)

 @spec ln(Path.t(), Path.t()) :: :ok | {:error, posix() | :badarg}

Creates a hard link new to the file existing.
Returns :ok if successful, {:error, reason} otherwise.
If the operating system does not support hard links, returns
{:error, :enotsup}.
Examples
File.ln("hello.txt", "hard_link_to_hello")
#=> :ok

File.ln("non_existing.txt", "link")
#=> {:error, :enoent}

 ln!(existing, new)

 (since 1.5.0)

 @spec ln!(Path.t(), Path.t()) :: :ok

Same as ln/2 but raises a File.LinkError exception if it fails.
Returns :ok otherwise.
Examples
File.ln!("hello.txt", "hard_link_to_hello")
#=> :ok

File.ln!("non_existing.txt", "link")
** (File.LinkError) could not create hard link from "non_existing.txt" to "link": no such file or directory

 ln_s(existing, new)

 (since 1.5.0)

 @spec ln_s(Path.t(), Path.t()) :: :ok | {:error, posix() | :badarg}

Creates a symbolic link new to the file or directory existing.
Returns :ok if successful, {:error, reason} otherwise.
If the operating system does not support symlinks, returns
{:error, :enotsup}.
Creates a symlink even if the existing target actually doesn't exist
Examples
File.ln_s("hello.txt", "link_to_hello")
#=> :ok

File.ln_s("non_existing.txt", "link")
#=> :ok

Returns error if `new` file exists
File.ln_s("non_existing.txt", "existed_link")
#=> {:error, :eexist}

 ln_s!(existing, new)

 @spec ln_s!(Path.t(), Path.t()) :: :ok

Same as ln_s/2 but raises a File.LinkError exception if it fails.
Returns :ok otherwise.
Examples
File.ln_s!("hello.txt", "link_to_hello")
#=> :ok

Raises if `new` file exists
File.ln_s!("non_existing.txt", "existed_link")
** (File.LinkError) could not create symlink from "non_existing.txt" to "existed_link": file already exists

 ls(path \\ ".")

 @spec ls(Path.t()) ::
 {:ok, [binary()]} | {:error, posix() | :badarg | {:no_translation, binary()}}

Returns the list of files in the given directory.
Hidden files are not ignored and the results are not sorted.
Since directories are considered files by the file system,
they are also included in the returned value.
Returns {:ok, files} in case of success,
{:error, reason} otherwise.
Examples
File.ls("bin")
#=> {:ok, ["iex", "elixir"]}

File.ls("non_existing_dir")
#=> {:error, :enoent}

 ls!(path \\ ".")

 @spec ls!(Path.t()) :: [binary()]

The same as ls/1 but raises a File.Error exception in case of an error.
Examples
File.ls!("bin")
#=> ["iex", "elixir"]

File.ls!("non_existing_dir")
** (File.Error) could not list directory "non_existing_dir": no such file or directory

 lstat(path, opts \\ [])

 @spec lstat(Path.t(), stat_options()) ::
 {:ok, File.Stat.t()} | {:error, posix() | :badarg}

Returns information about the path. If the file is a symlink, sets
the type to :symlink and returns a File.Stat struct for the link. For any
other file, returns exactly the same values as stat/2.
For more details, see :file.read_link_info/2.
Options
The accepted options are:
	:time - configures how the file timestamps are returned

The values for :time can be:
	:universal - returns a {date, time} tuple in UTC (default)
	:local - returns a {date, time} tuple using the machine time
	:posix - returns the time as integer seconds since epoch

Note: Since file times are stored in POSIX time format on most operating systems,
it is faster to retrieve file information with the time: :posix option.
Examples
File.lstat("link_to_hello")
#=> {:ok, %File.Stat{type: :symlink, ...}}

File.lstat("non_existing.txt", time: :posix)
#=> {:error, :enoent}

 lstat!(path, opts \\ [])

 @spec lstat!(Path.t(), stat_options()) :: File.Stat.t()

Same as lstat/2 but returns the File.Stat struct directly,
or raises a File.Error exception if an error is returned.
Examples
File.lstat!("link_to_hello")
#=> %File.Stat{type: :symlink, ...}

File.lstat!("non_existing.txt", time: :posix)
** (File.Error) could not read file stats "non_existing.txt": no such file or directory

 mkdir(path)

 @spec mkdir(Path.t()) :: :ok | {:error, posix() | :badarg}

Tries to create the directory path.
Missing parent directories are not created.
Returns :ok if successful, or {:error, reason} if an error occurs.
Typical error reasons are:
	:eacces - missing search or write permissions for the parent
directories of path
	:eexist - there is already a file or directory named path
	:enoent - a component of path does not exist
	:enospc - there is no space left on the device
	:enotdir - a component of path is not a directory;
on some platforms, :enoent is returned instead

Examples
File.mkdir("test/unit")
#=> :ok

File.mkdir("non/existing")
#=> {:error, :enoent}

 mkdir!(path)

 @spec mkdir!(Path.t()) :: :ok

Same as mkdir/1, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.mkdir!("test/unit")
#=> :ok

File.mkdir!("non/existing")
** (File.Error) could not make directory "non/existing": no such file or directory

 mkdir_p(path)

 @spec mkdir_p(Path.t()) :: :ok | {:error, posix() | :badarg}

Tries to create the directory path.
Missing parent directories are created. Returns :ok if successful, or
{:error, reason} if an error occurs.
Typical error reasons are:
	:eacces - missing search or write permissions for the parent
directories of path
	:enospc - there is no space left on the device
	:enotdir - a component of path is not a directory
	:eperm - missed required permissions

Examples
File.mkdir_p("non/existing/parents")
#=> :ok

File.mkdir_p("/usr/sbin/temp")
#=> {:error, :eperm}

 mkdir_p!(path)

 @spec mkdir_p!(Path.t()) :: :ok

Same as mkdir_p/1, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.mkdir_p!("non/existing/parents")
#=> :ok

File.mkdir_p!("/usr/sbin/temp")
** (File.Error) could not make directory (with -p) "/usr/sbin/temp": not owner

 open(path, modes_or_function \\ [])

 @spec open(Path.t(), [mode() | :ram]) ::
 {:ok, io_device() | file_descriptor()}
 | {:error, posix() | :badarg | :system_limit}

 @spec open(Path.t(), (io_device() | file_descriptor() -> res)) ::
 {:ok, res} | {:error, posix() | :badarg | :system_limit}
when res: var

Opens the given path.
modes_or_function can either be a list of modes or a function. If it's a
list, it's considered to be a list of modes (that are documented below). If
it's a function, then it's equivalent to calling open(path, [], modes_or_function). See the documentation for open/3 for more information
on this function.
The allowed modes:
	:binary - opens the file in binary mode, disabling special handling of
Unicode sequences (default mode).

	:read - the file, which must exist, is opened for reading.

	:write - the file is opened for writing. It is created if it does not
exist.
If the file does exist, and if write is not combined with read, the file
will be truncated.

	:append - the file will be opened for writing, and it will be created
if it does not exist. Every write operation to a file opened with append
will take place at the end of the file.

	:exclusive - the file, when opened for writing, is created if it does
not exist. If the file exists, open will return {:error, :eexist}.

	:charlist - when this term is given, read operations on the file will
return charlists rather than binaries.

	:compressed - makes it possible to read or write gzip compressed files.
The compressed option must be combined with either read or write, but not
both. Note that the file size obtained with stat/1 will most probably
not match the number of bytes that can be read from a compressed file.

	:utf8 - this option denotes how data is actually stored in the disk
file and makes the file perform automatic translation of characters to
and from UTF-8.
If data is sent to a file in a format that cannot be converted to the
UTF-8 or if data is read by a function that returns data in a format that
cannot cope with the character range of the data, an error occurs and the
file will be closed.

	:delayed_write, :raw, :ram, :read_ahead, :sync, {:encoding, ...},
{:read_ahead, pos_integer}, {:delayed_write, non_neg_integer, non_neg_integer} -
for more information about these options see :file.open/2.

This function returns:
	{:ok, io_device | file_descriptor} - the file has been opened in
the requested mode. We explore the differences between these two results
in the following section

	{:error, reason} - the file could not be opened due to reason.

IO devices
By default, this function returns an IO device. An io_device is
a process which handles the file and you can interact with it using
the functions in the IO module. By default, a file is opened in
:binary mode, which requires the functions IO.binread/2 and
IO.binwrite/2 to interact with the file. A developer may pass :utf8
as a mode when opening the file and then all other functions from
IO are available, since they work directly with Unicode data.
Given the IO device is a file, if the owner process terminates,
the file is closed and the process itself terminates too. If any
process to which the io_device is linked terminates, the file
will be closed and the process itself will be terminated.
File descriptors
When the :raw or :ram modes are given, this function returns
a low-level file descriptors. This avoids creating a process but
requires using the functions in the :file module to
interact with it.
Examples
{:ok, file} = File.open("foo.tar.gz", [:read, :compressed])
IO.read(file, :line)
File.close(file)

 open(path, modes, function)

 @spec open(Path.t(), [mode() | :ram], (io_device() | file_descriptor() -> res)) ::
 {:ok, res} | {:error, posix() | :badarg | :system_limit}
when res: var

Similar to open/2 but expects a function as its last argument.
The file is opened, given to the function as an argument and
automatically closed after the function returns, regardless
if there was an error when executing the function.
Returns {:ok, function_result} in case of success,
{:error, reason} otherwise.
This function expects the file to be closed with success,
which is usually the case unless the :delayed_write option
is given. For this reason, we do not recommend passing
:delayed_write to this function.
See open/2 for the list of available modes.
Examples
File.open("file.txt", [:read, :write], fn file ->
 IO.read(file, :line)
end)
#=> {:ok, "file content"}

 open!(path, modes_or_function \\ [])

 @spec open!(Path.t(), [mode() | :ram]) :: io_device() | file_descriptor()

 @spec open!(Path.t(), (io_device() | file_descriptor() -> res)) :: res when res: var

Similar to open/2 but raises a File.Error exception if the file
could not be opened. Returns the IO device otherwise.
See open/2 for the list of available modes.
Examples
File.open!("file.txt", fn file ->
 IO.read(file, :line)
end)
#=> "file content"

 open!(path, modes, function)

 @spec open!(Path.t(), [mode() | :ram], (io_device() | file_descriptor() -> res)) ::
 res
when res: var

Similar to open/3 but raises a File.Error exception if the file
could not be opened.
If it succeeds opening the file, it returns the function result on the IO device.
See open/2 for the list of available modes.
Examples
File.open!("file.txt", [:read, :write], fn file ->
 IO.read(file, :line)
end)
#=> "file content"

 read(path)

 @spec read(Path.t()) ::
 {:ok, binary()} | {:error, posix() | :badarg | :terminated | :system_limit}

Returns {:ok, binary}, where binary is a binary data object that contains the contents
of path, or {:error, reason} if an error occurs.
Typical error reasons:
	:enoent - the file does not exist
	:eacces - missing permission for reading the file,
or for searching one of the parent directories
	:eisdir - the named file is a directory
	:enotdir - a component of the file name is not a directory;
on some platforms, :enoent is returned instead
	:enomem - there is not enough memory for the contents of the file

You can use :file.format_error/1 to get a descriptive string of the error.
Examples
File.read("hello.txt")
#=> {:ok, "world"}

File.read("non_existing.txt")
#=> {:error, :enoent}

 read!(path)

 @spec read!(Path.t()) :: binary()

Returns a binary with the contents of the given filename,
or raises a File.Error exception if an error occurs.
Examples
File.read!("hello.txt")
#=> "world"

File.read!("non_existing.txt")
** (File.Error) could not read file "non_existing.txt": no such file or directory

 read_link(path)

 (since 1.5.0)

 @spec read_link(Path.t()) :: {:ok, binary()} | {:error, posix() | :badarg}

Reads the symbolic link at path.
If path exists and is a symlink, returns {:ok, target}, otherwise returns
{:error, reason}.
For more details, see :file.read_link/1.
Typical error reasons are:
	:einval - path is not a symbolic link
	:enoent - path does not exist
	:enotsup - symbolic links are not supported on the current platform

Examples
File.read_link("link_to_hello")
#=> {:ok, "hello.txt"}

File.read_link("hello.txt")
#=> {:error, :einval}

 read_link!(path)

 (since 1.5.0)

 @spec read_link!(Path.t()) :: binary()

Same as read_link/1 but returns the target directly,
or raises a File.Error exception if an error is returned.
Examples
File.read_link!("link_to_hello")
#=> "hello.txt"

File.read_link!("hello.txt")
** (File.Error) could not read link "hello.txt": invalid argument

 regular?(path, opts \\ [])

 @spec regular?(Path.t(), [regular_option]) :: boolean() when regular_option: :raw

Returns true if the path is a regular file.
This function follows symbolic links, so if a symbolic link points to a
regular file, true is returned.
Options
The supported options are:
	:raw - a single atom to bypass the file server and only check
for the file locally

Examples
File.regular?(__ENV__.file)
#=> true

 rename(source, destination)

 (since 1.1.0)

 @spec rename(Path.t(), Path.t()) :: :ok | {:error, posix() | :badarg}

Renames the source file to destination file. It can be used to move files
(and directories) between directories. If moving a file, you must fully
specify the destination filename, it is not sufficient to simply specify
its directory.
Returns :ok in case of success, {:error, reason} otherwise.
Note: The command mv in Unix-like systems behaves differently depending on
whether source is a file and the destination is an existing directory.
We have chosen to explicitly disallow this behavior.
Examples
Rename file "a.txt" to "b.txt"
File.rename("a.txt", "b.txt")
#=> :ok

Rename directory "samples" to "tmp"
File.rename("samples", "tmp")
#=> :ok

File.rename("non_existing.txt", "existing.txt")
#=> {:error, :enoent}

 rename!(source, destination)

 (since 1.9.0)

 @spec rename!(Path.t(), Path.t()) :: :ok

The same as rename/2 but raises a File.RenameError exception if it fails.
Returns :ok otherwise.
Examples
File.rename!("samples", "tmp")
#=> :ok

File.rename!("non_existing.txt", "existing.txt")
** (File.RenameError) could not rename from "non_existing.txt" to "existing.txt": no such file or directory

 rm(path)

 @spec rm(Path.t()) :: :ok | {:error, posix() | :badarg}

Tries to delete the file path.
Returns :ok if successful, or {:error, reason} if an error occurs.
Note the file is deleted even if in read-only mode.
Typical error reasons are:
	:enoent - the file does not exist
	:eacces - missing permission for the file or one of its parents
	:eperm - the file is a directory and user is not super-user
	:enotdir - a component of the file name is not a directory;
on some platforms, :enoent is returned instead
	:einval - filename had an improper type, such as tuple

Examples
File.rm("file.txt")
#=> :ok

File.rm("tmp_dir/")
#=> {:error, :eperm}

 rm!(path)

 @spec rm!(Path.t()) :: :ok

Same as rm/1, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.rm!("file.txt")
#=> :ok

File.rm!("non_existing/")
** (File.Error) could not remove file "non_existing/": no such file or directory

 rm_rf(path)

 @spec rm_rf(Path.t()) :: {:ok, [binary()]} | {:error, posix() | :badarg, binary()}

Removes files and directories recursively at the given path.
Symlinks are not followed but simply removed, non-existing
files are simply ignored (i.e. doesn't make this function fail).
Returns {:ok, files_and_directories} with all files and
directories removed in no specific order, {:error, reason, file}
otherwise.
Examples
File.rm_rf("samples")
#=> {:ok, ["samples", "samples/1.txt"]}

File.rm_rf("unknown")
#=> {:ok, []}

File.rm_rf("/tmp")
#=> {:error, :eperm, "/tmp"}

 rm_rf!(path)

 @spec rm_rf!(Path.t()) :: [binary()]

Same as rm_rf/1 but raises a File.Error exception in case of failures,
otherwise returns the list of files or directories removed.
Examples
File.rm_rf!("samples")
#=> ["samples", "samples/1.txt"]

File.rm_rf!("unknown")
#=> []

File.rm_rf!("/tmp")
** (File.Error) could not remove files and directories recursively from "/tmp": not owner

 rmdir(path)

 @spec rmdir(Path.t()) :: :ok | {:error, posix() | :badarg}

Tries to delete the dir at path.
Returns :ok if successful, or {:error, reason} if an error occurs.
It returns {:error, :eexist} if the directory is not empty.
Examples
File.rmdir("tmp_dir")
#=> :ok

File.rmdir("non_empty_dir")
#=> {:error, :eexist}

File.rmdir("file.txt")
#=> {:error, :enotdir}

 rmdir!(path)

 @spec rmdir!(Path.t()) :: :ok

Same as rmdir/1, but raises a File.Error exception in case of failure.
Otherwise :ok.
Examples
File.rmdir!("tmp_dir")
#=> :ok

File.rmdir!("non_empty_dir")
** (File.Error) could not remove directory "non_empty_dir": directory is not empty

File.rmdir!("file.txt")
** (File.Error) could not remove directory "file.txt": not a directory

 stat(path, opts \\ [])

 @spec stat(Path.t(), stat_options()) ::
 {:ok, File.Stat.t()} | {:error, posix() | :badarg}

Returns information about the path. If it exists, it
returns a {:ok, info} tuple, where info is a
File.Stat struct. Returns {:error, reason} with
the same reasons as read/1 if a failure occurs.
Options
The accepted options are:
	:time - configures how the file timestamps are returned

The values for :time can be:
	:universal - returns a {date, time} tuple in UTC (default)
	:local - returns a {date, time} tuple using the same time zone as the
machine
	:posix - returns the time as integer seconds since epoch

Note: Since file times are stored in POSIX time format on most operating systems,
it is faster to retrieve file information with the time: :posix option.
Examples
File.stat("hello.txt")
#=> {:ok, %File.Stat{...}}

File.stat("non_existing.txt", time: :posix)
#=> {:error, :enoent}

 stat!(path, opts \\ [])

 @spec stat!(Path.t(), stat_options()) :: File.Stat.t()

Same as stat/2 but returns the File.Stat directly,
or raises a File.Error exception if an error is returned.
Examples
File.stat!("hello.txt")
#=> %File.Stat{...}

File.stat!("non_existing.txt", time: :posix)
** (File.Error) could not read file stats "non_existing.txt": no such file or directory

 stream!(path, line_or_bytes_modes \\ [])

 @spec stream!(Path.t(), :line | pos_integer() | [stream_mode()]) :: File.Stream.t()

Shortcut for File.stream!/3.

 stream!(path, line_or_bytes, modes)

 @spec stream!(Path.t(), :line | pos_integer(), [stream_mode()]) :: File.Stream.t()

Returns a File.Stream for the given path with the given modes.
The stream implements both Enumerable and Collectable protocols,
which means it can be used both for read and write.
The line_or_bytes argument configures how the file is read when
streaming, by :line (default) or by a given number of bytes. When
using the :line option, CRLF line breaks ("\r\n") are normalized
to LF ("\n").
Similar to other file operations, a stream can be created in one node
and forwarded to another node. Once the stream is opened in another node,
a request will be sent to the creator node to spawn a process for file
streaming.
Operating the stream can fail on open for the same reasons as
File.open!/2. Note that the file is automatically opened each time streaming
begins. There is no need to pass :read and :write modes, as those are
automatically set by Elixir.
Raw files
Since Elixir controls when the streamed file is opened, the underlying
device cannot be shared and as such it is convenient to open the file
in raw mode for performance reasons. Therefore, Elixir will open
streams in :raw mode with the :read_ahead option if the stream is
open in the same node as it is created and no encoding has been specified.
This means any data streamed into the file must be converted to iodata/0
type. If you pass, for example, [encoding: :utf8] or
[encoding: {:utf16, :little}] in the modes parameter, the underlying stream
will use IO.write/2 and the String.Chars protocol to convert the data.
See IO.binwrite/2 and IO.write/2 .
One may also consider passing the :delayed_write option if the stream
is meant to be written to under a tight loop.
Byte order marks and read offset
If you pass :trim_bom in the modes parameter, the stream will
trim UTF-8, UTF-16 and UTF-32 byte order marks when reading from file.
Note that this function does not try to discover the file encoding
based on BOM. From Elixir v1.16.0, you may also pass a :read_offset
that is skipped whenever enumerating the stream (if both :read_offset
and :trim_bom are given, the offset is skipped after the BOM).
See Stream.run/1 for an example of streaming into a file.
Examples
Read a utf8 text file which may include BOM
File.stream!("./test/test.txt", [:trim_bom, encoding: :utf8])
#=> %File.Stream{path: "./test/test.txt", ...}

Read in 2048 byte chunks rather than lines
File.stream!("./test/test.data", 2048)
#=> %File.Stream{path: "./test/test.data", ...}

 touch(path, time \\ System.os_time(:second))

 @spec touch(Path.t(), erlang_time() | posix_time()) ::
 :ok | {:error, posix() | :badarg | :terminated | :system_limit}

Updates modification time (mtime) and access time (atime) of
the given file.
The file is created if it doesn't exist. Requires datetime in UTC
(as returned by :erlang.universaltime()) or an integer
representing the POSIX timestamp (as returned by System.os_time(:second)).
In Unix-like systems, changing the modification time may require
you to be either root or the owner of the file. Having write
access may not be enough. In those cases, touching the file the
first time (to create it) will succeed, but touching an existing
file with fail with {:error, :eperm}.
Examples
File.touch("/tmp/a.txt", {{2018, 1, 30}, {13, 59, 59}})
#=> :ok
File.touch("/fakedir/b.txt", {{2018, 1, 30}, {13, 59, 59}})
{:error, :enoent}

File.touch("/tmp/a.txt", 1_544_519_753)
#=> :ok

 touch!(path, time \\ System.os_time(:second))

 @spec touch!(Path.t(), erlang_time() | posix_time()) :: :ok

Same as touch/2 but raises a File.Error exception if it fails.
Returns :ok otherwise.
The file is created if it doesn't exist. Requires datetime in UTC
(as returned by :erlang.universaltime()) or an integer
representing the POSIX timestamp (as returned by System.os_time(:second)).
Examples
File.touch!("/tmp/a.txt", {{2018, 1, 30}, {13, 59, 59}})
#=> :ok
File.touch!("/fakedir/b.txt", {{2018, 1, 30}, {13, 59, 59}})
** (File.Error) could not touch "/fakedir/b.txt": no such file or directory

File.touch!("/tmp/a.txt", 1_544_519_753)

 write(path, content, modes \\ [])

 @spec write(Path.t(), iodata(), [mode()]) ::
 :ok | {:error, posix() | :badarg | :terminated | :system_limit}

Writes content to the file path.
The file is created if it does not exist. If it exists, the previous
contents are overwritten. Returns :ok if successful, or {:error, reason}
if an error occurs.
content must be iodata (a list of bytes or a binary). Setting the
encoding for this function has no effect.
Warning: Every time this function is invoked, a file descriptor is opened
and a new process is spawned to write to the file. For this reason, if you are
doing multiple writes in a loop, opening the file via File.open/2 and using
the functions in IO to write to the file will yield much better performance
than calling this function multiple times.
Typical error reasons are:
	:enoent - a component of the file name does not exist
	:enotdir - a component of the file name is not a directory;
on some platforms, :enoent is returned instead
	:enospc - there is no space left on the device
	:eacces - missing permission for writing the file or searching one of
the parent directories
	:eisdir - the named file is a directory

Check File.open/2 for the list of available modes.
Examples
File.write("hello.txt", "world!")
#=> :ok

File.write("temp", "world!")
#=> {:error, :eisdir}

 write!(path, content, modes \\ [])

 @spec write!(Path.t(), iodata(), [mode()]) :: :ok

Same as write/3 but raises a File.Error exception if it fails.
Returns :ok otherwise.
Examples
File.write!("hello.txt", "world!")
#=> :ok

File.write!("temp", "world!")
** (File.Error) could not write to file "temp": illegal operation on a directory

 write_stat(path, stat, opts \\ [])

 @spec write_stat(Path.t(), File.Stat.t(), stat_options()) ::
 :ok | {:error, posix() | :badarg}

Writes the given File.Stat back to the file system at the given
path. Returns :ok or {:error, reason}.
Examples
File.write_stat("hello.txt", new_stat)
#=> :ok

File.write_stat("non_existing.txt", new_stat)
#=> {:error, :enoent}

 write_stat!(path, stat, opts \\ [])

 @spec write_stat!(Path.t(), File.Stat.t(), stat_options()) :: :ok

Same as write_stat/3 but raises a File.Error exception if it fails.
Returns :ok otherwise.
Examples
File.write_stat!("hello.txt", new_stat)
#=> :ok

File.write_stat!("non_existing.txt", new_stat)
** (File.Error) could not write file stats "non_existing.txt": no such file or directory

File.Stat

A struct that holds file information.
In Erlang, this struct is represented by a :file_info record.
Therefore this module also provides functions for converting
between the Erlang record and the Elixir struct.
Its fields are:
	size - size of file in bytes.

	type - :device | :directory | :regular | :other | :symlink; the type of the
file.

	access - :read | :write | :read_write | :none; the current system
access to the file.

	atime - the last time the file was read.

	mtime - the last time the file was written.

	ctime - the interpretation of this time field depends on the operating
system. On Unix-like operating systems, it is the last time the file or the inode was changed.
In Windows, it is the time of creation.

	mode - the file permissions.

	links - the number of links to this file. This is always 1 for file
systems which have no concept of links.

	major_device - identifies the file system where the file is located.
In Windows, the number indicates a drive as follows: 0 means A:, 1 means
B:, and so on.

	minor_device - only valid for character devices on Unix-like systems. In all other
cases, this field is zero.

	inode - gives the inode number. On non-Unix-like file systems, this field
will be zero.

	uid - indicates the owner of the file. Will be zero for non-Unix-like file
systems.

	gid - indicates the group that owns the file. Will be zero for
non-Unix-like file systems.

The time type returned in atime, mtime, and ctime is dependent on the
time type set in options. {:time, type} where type can be :local,
:universal, or :posix. Default is :universal.

 Summary

 Types

 t()

 Functions

 from_record(file_info)

 Converts a :file_info record into a File.Stat.

 to_record(stat)

 Converts a File.Stat struct to a :file_info record.

 Types

 t()

 @type t() :: %File.Stat{
 access: :read | :write | :read_write | :none | :undefined,
 atime: :calendar.datetime() | integer() | :undefined,
 ctime: :calendar.datetime() | integer() | :undefined,
 gid: non_neg_integer() | :undefined,
 inode: non_neg_integer() | :undefined,
 links: non_neg_integer() | :undefined,
 major_device: non_neg_integer() | :undefined,
 minor_device: non_neg_integer() | :undefined,
 mode: non_neg_integer() | :undefined,
 mtime: :calendar.datetime() | integer() | :undefined,
 size: non_neg_integer() | :undefined,
 type: :device | :directory | :regular | :other | :symlink | :undefined,
 uid: non_neg_integer() | :undefined
}

 Functions

 from_record(file_info)

 @spec from_record(:file.file_info()) :: t()

Converts a :file_info record into a File.Stat.

 to_record(stat)

 @spec to_record(t()) :: :file.file_info()

Converts a File.Stat struct to a :file_info record.

File.Stream

Defines a File.Stream struct returned by File.stream!/3.
The following fields are public:
	path - the file path
	modes - the file modes
	raw - a boolean indicating if bin functions should be used
	line_or_bytes - if reading should read lines or a given number of bytes
	node - the node the file belongs to

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %File.Stream{
 line_or_bytes: term(),
 modes: term(),
 node: term(),
 path: term(),
 raw: term()
}

IO

Functions handling input/output (IO).
Many functions in this module expect an IO device as an argument.
An IO device must be a PID or an atom representing a process.
For convenience, Elixir provides :stdio and :stderr as
shortcuts to Erlang's :standard_io and :standard_error.
The majority of the functions expect chardata. In case another type is given,
functions will convert those types to string via the String.Chars protocol
(as shown in typespecs). For more information on chardata, see the
"IO data" section below.
The functions of this module use UNIX-style naming where possible.
IO devices
An IO device may be an atom or a PID. In case it is an atom,
the atom must be the name of a registered process. In addition,
Elixir provides two shortcuts:
	:stdio - a shortcut for :standard_io, which maps to
the current Process.group_leader/0 in Erlang

	:stderr - a shortcut for the named process :standard_error
provided in Erlang

IO devices maintain their position, which means subsequent calls to any
reading or writing functions will start from the place where the device
was last accessed. The position of files can be changed using the
:file.position/2 function.
IO data
IO data is a data type that can be used as a more efficient alternative to binaries
in certain situations.
A term of type IO data is a binary or a list containing bytes (integers within the 0..255 range)
or nested IO data. The type is recursive. Let's see an example of one of
the possible IO data representing the binary "hello":
[?h, "el", ["l", [?o]]]
The built-in iodata/0 type is defined in terms of iolist/0. An IO list is
the same as IO data but it doesn't allow for a binary at the top level (but binaries
are still allowed in the list itself).
Use cases for IO data
IO data exists because often you need to do many append operations
on smaller chunks of binaries in order to create a bigger binary. However, in
Erlang and Elixir concatenating binaries will copy the concatenated binaries
into a new binary.
def email(username, domain) do
 username <> "@" <> domain
end
In this function, creating the email address will copy the username and domain
binaries. Now imagine you want to use the resulting email inside another binary:
def welcome_message(name, username, domain) do
 "Welcome #{name}, your email is: #{email(username, domain)}"
end

IO.puts(welcome_message("Meg", "meg", "example.com"))
#=> "Welcome Meg, your email is: meg@example.com"
Every time you concatenate binaries or use interpolation (#{}) you are making
copies of those binaries. However, in many cases you don't need the complete
binary while you create it, but only at the end to print it out or send it
somewhere. In such cases, you can construct the binary by creating IO data:
def email(username, domain) do
 [username, ?@, domain]
end

def welcome_message(name, username, domain) do
 ["Welcome ", name, ", your email is: ", email(username, domain)]
end

IO.puts(welcome_message("Meg", "meg", "example.com"))
#=> "Welcome Meg, your email is: meg@example.com"
Building IO data is cheaper than concatenating binaries. Concatenating multiple
pieces of IO data just means putting them together inside a list since IO data
can be arbitrarily nested, and that's a cheap and efficient operation. Most of
the IO-based APIs, such as :gen_tcp and IO, receive IO data and write it
to the socket directly without converting it to binary.
One drawback of IO data is that you can't do things like pattern match on the
first part of a piece of IO data like you can with a binary, because you usually
don't know the shape of the IO data. In those cases, you may need to convert it
to a binary by calling iodata_to_binary/1, which is reasonably efficient
since it's implemented natively in C. Other functionality, like computing the
length of IO data, can be computed directly on the iodata by calling iodata_length/1.
Chardata
Erlang and Elixir also have the idea of chardata/0. Chardata is very
similar to IO data: the only difference is that integers in IO data represent
bytes while integers in chardata represent Unicode code points. Bytes
(byte/0) are integers within the 0..255 range, while Unicode code points
(char/0) are integers within the 0..0x10FFFF range. The IO module provides
the chardata_to_string/1 function for chardata as the "counter-part" of the
iodata_to_binary/1 function for IO data.
If you try to use iodata_to_binary/1 on chardata, it will result in an
argument error. For example, let's try to put a code point that is not
representable with one byte, like ?π, inside IO data:
IO.iodata_to_binary(["The symbol for pi is: ", ?π])
#=> ** (ArgumentError) argument error
If we use chardata instead, it will work as expected:
iex> IO.chardata_to_string(["The symbol for pi is: ", ?π])
"The symbol for pi is: π"

 Summary

 Types

 chardata()

 device()

 inspect_opts()

 nodata()

 warn_stacktrace_opts()

 Stacktrace information as keyword options for warn/2.

 Functions

 binread(device \\ :stdio, line_or_chars)

 Reads from the IO device. The operation is Unicode unsafe.

 binstream()

 Returns a raw, line-based IO.Stream on :stdio. The operation is Unicode unsafe.

 binstream(device \\ :stdio, line_or_bytes)

 Converts the IO device into an IO.Stream. The operation is Unicode unsafe.

 binwrite(device \\ :stdio, iodata)

 Writes iodata to the given device.

 chardata_to_string(chardata)

 Converts chardata into a string.

 getn(prompt, count \\ 1)

 Gets a number of bytes from IO device :stdio.

 getn(device, prompt, count)

 Gets a number of bytes from the IO device.

 gets(device \\ :stdio, prompt)

 Reads a line from the IO device.

 inspect(item, opts \\ [])

 Inspects and writes the given item to the standard output.

 inspect(device, item, opts)

 Inspects item according to the given options using the IO device.

 iodata_empty?(arg1)

 Checks if an IO data (the length is zero).

 iodata_length(iodata)

 Returns the size of an IO data.

 iodata_to_binary(iodata)

 Converts IO data into a binary

 puts(device \\ :stdio, item)

 Writes item to the given device, similar to write/2,
but adds a newline at the end.

 read(device \\ :stdio, line_or_chars)

 Reads from the IO device.

 stream()

 Returns a line-based IO.Stream on :stdio.

 stream(device \\ :stdio, line_or_codepoints)

 Converts the IO device into an IO.Stream.

 warn(message)

 Writes a message to stderr, along with the current stacktrace.

 warn(message, stacktrace_info)

 Writes a message to stderr, along with the given stacktrace_info.

 write(device \\ :stdio, chardata)

 Writes chardata to the given device.

 Types

 chardata()

 @type chardata() ::
 String.t() | maybe_improper_list(char() | chardata(), String.t() | [])

 device()

 @type device() :: atom() | pid()

 inspect_opts()

 @type inspect_opts() :: [Inspect.Opts.new_opt() | {:label, term()}]

 nodata()

 @type nodata() :: {:error, term()} | :eof

 warn_stacktrace_opts()

 @type warn_stacktrace_opts() :: [
 file: String.t(),
 line: pos_integer(),
 column: pos_integer(),
 module: module(),
 function: {atom(), arity()}
]

Stacktrace information as keyword options for warn/2.
At least :file is required. Other options are optional and used
to provide more precise location information.

 Functions

 binread(device \\ :stdio, line_or_chars)

 @spec binread(device(), :eof | :line | non_neg_integer()) :: iodata() | nodata()

Reads from the IO device. The operation is Unicode unsafe.
The device is iterated as specified by the line_or_chars argument:
	if line_or_chars is an integer, it represents a number of bytes. The device is
iterated by that number of bytes. This should be the preferred mode for reading
non-textual inputs.

	if line_or_chars is :line, the device is iterated line by line.
CRLF newlines ("\r\n") are automatically normalized to "\n".

	if line_or_chars is :eof (since v1.13), the device is iterated until :eof.
If the device is already at the end, it returns :eof itself.

It returns:
	data - the output bytes

	:eof - end of file was encountered

	{:error, reason} - other (rare) error condition;
for instance, {:error, :estale} if reading from an
NFS volume

Note: do not use this function on IO devices in Unicode mode
as it will return the wrong result.

 binstream()

 (since 1.12.0)

 @spec binstream() :: Enumerable.t(binary())

Returns a raw, line-based IO.Stream on :stdio. The operation is Unicode unsafe.
This is equivalent to:
IO.binstream(:stdio, :line)

 binstream(device \\ :stdio, line_or_bytes)

 @spec binstream(device(), :line | pos_integer()) :: Enumerable.t()

Converts the IO device into an IO.Stream. The operation is Unicode unsafe.
An IO.Stream implements both Enumerable and
Collectable, allowing it to be used for both read
and write.
The device is iterated by the given number of bytes or line
by line if :line is given. In case :line is given, "\r\n"
is automatically normalized to "\n". Passing the number of bytes
should be the preferred mode for reading non-textual inputs.
Note that an IO stream has side effects and every time
you go over the stream you may get different results.
This reads from the IO device as a raw binary. Therefore,
do not use this function on IO devices in Unicode mode as
it will return the wrong result.
binstream/0 has been introduced in Elixir v1.12.0,
while binstream/2 has been available since v1.0.0.

 binwrite(device \\ :stdio, iodata)

 @spec binwrite(device(), iodata()) :: :ok

Writes iodata to the given device.
This operation is meant to be used with "raw" devices
that are started without an encoding. The given iodata
is written as is to the device, without conversion. For
more information on IO data, see the "IO data" section in
the module documentation.
Use write/2 for devices with encoding.
Important: do not use this function on IO devices in
Unicode mode as it will write the wrong data. In particular,
the standard IO device is set to Unicode by default, so writing
to stdio with this function will likely result in the wrong data
being sent down the wire.

 chardata_to_string(chardata)

 @spec chardata_to_string(chardata()) :: String.t()

Converts chardata into a string.
For more information about chardata, see the "Chardata"
section in the module documentation.
In case the conversion fails, it raises an UnicodeConversionError.
If a string is given, it returns the string itself.
Examples
iex> IO.chardata_to_string([0x00E6, 0x00DF])
"æß"

iex> IO.chardata_to_string([0x0061, "bc"])
"abc"

iex> IO.chardata_to_string("string")
"string"

 getn(prompt, count \\ 1)

 @spec getn(
 device() | chardata() | String.Chars.t(),
 pos_integer() | :eof | chardata() | String.Chars.t()
) :: chardata() | nodata()

Gets a number of bytes from IO device :stdio.
If :stdio is a Unicode device, count implies
the number of Unicode code points to be retrieved.
Otherwise, count is the number of raw bytes to be retrieved.
See IO.getn/3 for a description of return values.

 getn(device, prompt, count)

 @spec getn(device(), chardata() | String.Chars.t(), pos_integer() | :eof) ::
 chardata() | nodata()

Gets a number of bytes from the IO device.
If the IO device is a Unicode device, count implies
the number of Unicode code points to be retrieved.
Otherwise, count is the number of raw bytes to be retrieved.
It returns:
	data - the input characters

	:eof - end of file was encountered

	{:error, reason} - other (rare) error condition;
for instance, {:error, :estale} if reading from an
NFS volume

 gets(device \\ :stdio, prompt)

 @spec gets(device(), chardata() | String.Chars.t()) :: chardata() | nodata()

Reads a line from the IO device.
It returns:
	data - the characters in the line terminated
by a line-feed (LF) or end of file (EOF)

	:eof - end of file was encountered

	{:error, reason} - other (rare) error condition;
for instance, {:error, :estale} if reading from an
NFS volume

Trivia: gets is shorthand for get string.
Examples
To display "What is your name?" as a prompt and await user input:
IO.gets("What is your name?\n")

 inspect(item, opts \\ [])

 @spec inspect(item, inspect_opts()) :: item when item: var

Inspects and writes the given item to the standard output.
It's important to note that it returns the given item unchanged.
This makes it possible to "spy" on values by inserting an
IO.inspect/2 call almost anywhere in your code, for example,
in the middle of a pipeline.
It enables pretty printing by default with width of
80 characters. The width can be changed by explicitly
passing the :width option.
The output can be decorated with a label, by providing the :label
option to easily distinguish it from other IO.inspect/2 calls.
The label will be printed before the inspected item.
See Inspect.Opts for a full list of remaining formatting options.
To print to other IO devices, see IO.inspect/3
Examples
The following code:
IO.inspect(<<0, 1, 2>>, width: 40)
Prints:
<<0, 1, 2>>
You can use the :label option to decorate the output:
IO.inspect(1..100, label: "a wonderful range")
Prints:
a wonderful range: 1..100
Inspect truncates large inputs by default. The :printable_limit controls
the limit for strings and other string-like constructs (such as charlists):
"abc"
|> String.duplicate(9001)
|> IO.inspect(printable_limit: :infinity)
For containers such as lists, maps, and tuples, the number of entries
is managed by the :limit option:
1..100
|> Enum.map(& {&1, &1})
|> Enum.into(%{})
|> IO.inspect(limit: :infinity)

 inspect(device, item, opts)

 @spec inspect(device(), item, inspect_opts()) :: item when item: var

Inspects item according to the given options using the IO device.
See inspect/2 for a full list of options.

 iodata_empty?(arg1)

 (since 1.20.0)

 @spec iodata_empty?(iodata()) :: boolean()

Checks if an IO data (the length is zero).
For more information about IO data, see the "IO data"
section in the module documentation.
Examples
iex> IO.iodata_empty?([])
true
iex> IO.iodata_empty?([""])
true
iex> IO.iodata_empty?([1, 2 | <<3, 4>>])
false

 iodata_length(iodata)

 @spec iodata_length(iodata()) :: non_neg_integer()

Returns the size of an IO data.
For more information about IO data, see the "IO data"
section in the module documentation.
Inlined by the compiler.
Examples
iex> IO.iodata_length([1, 2 | <<3, 4>>])
4

 iodata_to_binary(iodata)

 @spec iodata_to_binary(iodata()) :: binary()

Converts IO data into a binary
The operation is Unicode unsafe.
Note that this function treats integers in the given IO data as
raw bytes and does not perform any kind of encoding conversion.
If you want to convert from a charlist to a UTF-8-encoded string,
use chardata_to_string/1 instead. For more information about
IO data and chardata, see the "IO data" section in the
module documentation.
If this function receives a binary, the same binary is returned.
Inlined by the compiler.
Examples
iex> bin1 = <<1, 2, 3>>
iex> bin2 = <<4, 5>>
iex> bin3 = <<6>>
iex> IO.iodata_to_binary([bin1, 1, [2, 3, bin2], 4 | bin3])
<<1, 2, 3, 1, 2, 3, 4, 5, 4, 6>>

iex> bin = <<1, 2, 3>>
iex> IO.iodata_to_binary(bin)
<<1, 2, 3>>

 puts(device \\ :stdio, item)

 @spec puts(device(), chardata() | String.Chars.t()) :: :ok

Writes item to the given device, similar to write/2,
but adds a newline at the end.
By default, the device is the standard output. It returns :ok
if it succeeds.
Trivia: puts is shorthand for put string.
Examples
IO.puts("Hello World!")
#=> Hello World!

IO.puts(:stderr, "error")
#=> error

 read(device \\ :stdio, line_or_chars)

 @spec read(device(), :eof | :line | non_neg_integer()) :: chardata() | nodata()

Reads from the IO device.
The device is iterated as specified by the line_or_chars argument:
	if line_or_chars is an integer, it represents a number of bytes. The device is
iterated by that number of bytes. This should be the preferred mode for reading
non-textual inputs.

	if line_or_chars is :line, the device is iterated line by line.
CRLF newlines ("\r\n") are automatically normalized to "\n".

	if line_or_chars is :eof (since v1.13), the device is iterated until :eof.
If the device is already at the end, it returns :eof itself.

It returns:
	data - the output characters

	:eof - end of file was encountered

	{:error, reason} - other (rare) error condition;
for instance, {:error, :estale} if reading from an
NFS volume

 stream()

 (since 1.12.0)

 @spec stream() :: Enumerable.t(String.t())

Returns a line-based IO.Stream on :stdio.
This is equivalent to:
IO.stream(:stdio, :line)

 stream(device \\ :stdio, line_or_codepoints)

 @spec stream(device(), :line | pos_integer()) :: Enumerable.t()

Converts the IO device into an IO.Stream.
An IO.Stream implements both Enumerable and
Collectable, allowing it to be used for both read
and write.
The device is iterated by the given number of characters
or line by line if :line is given. In case :line is given,
"\r\n" is automatically normalized to "\n".
This reads from the IO as UTF-8. Check out
IO.binstream/2 to handle the IO as a raw binary.
Note that an IO stream has side effects and every time
you go over the stream you may get different results.
stream/0 has been introduced in Elixir v1.12.0,
while stream/2 has been available since v1.0.0.
Examples
Here is an example on how we mimic an echo server
from the command line:
Enum.each(IO.stream(:stdio, :line), &IO.write(&1))
Another example where you might want to collect a user input
every new line and break on an empty line, followed by removing
redundant new line characters ("\n"):
IO.stream(:stdio, :line)
|> Enum.take_while(&(&1 != "\n"))
|> Enum.map(&String.replace(&1, "\n", ""))

 warn(message)

 @spec warn(chardata() | String.Chars.t()) :: :ok

Writes a message to stderr, along with the current stacktrace.
It returns :ok if it succeeds.
Do not call this function at the tail of another function. Due to tail
call optimization, a stacktrace entry would not be added and the
stacktrace would be incorrectly trimmed. Therefore make sure at least
one expression (or an atom such as :ok) follows the IO.warn/1 call.
Examples
IO.warn("variable bar is unused")
#=> warning: variable bar is unused
#=> (iex) evaluator.ex:108: IEx.Evaluator.eval/4

 warn(message, stacktrace_info)

 @spec warn(
 chardata() | String.Chars.t(),
 Exception.stacktrace() | warn_stacktrace_opts() | Macro.Env.t()
) :: :ok

Writes a message to stderr, along with the given stacktrace_info.
The stacktrace_info must be one of:
	a __STACKTRACE__, where all entries in the stacktrace will be
included in the error message

	a Macro.Env structure (since v1.14.0), where a single stacktrace
entry from the compilation environment will be used

	a keyword list with at least the :file option representing
a single stacktrace entry (since v1.14.0). The :line, :column,
:module, and :function options are also supported

This function notifies the compiler a warning was printed
and emits a compiler diagnostic (Code.diagnostic/1).
The diagnostic will include precise file and location information
if a Macro.Env is given or those values have been passed as
keyword list, but not for stacktraces, as they are often imprecise.
It returns :ok if it succeeds.
Examples
IO.warn("variable bar is unused", module: MyApp, function: {:main, 1}, line: 4, file: "my_app.ex")
#=> warning: variable bar is unused
#=> my_app.ex:4: MyApp.main/1

 write(device \\ :stdio, chardata)

 @spec write(device(), chardata() | String.Chars.t()) :: :ok

Writes chardata to the given device.
By default, the device is the standard output.
Examples
IO.write("sample")
#=> sample

IO.write(:stderr, "error")
#=> error

IO.ANSI

Functionality to render ANSI escape sequences.
ANSI escape sequences
are characters embedded in text used to control formatting, color, and
other output options on video text terminals.
ANSI escapes are typically enabled on all Unix terminals. They are also
available on Windows consoles from Windows 10, although it must be
explicitly enabled for the current user in the registry by running the
following command:
reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1
After running the command above, you must restart your current console.
Examples
Because the ANSI escape sequences are embedded in text, the normal usage of
these functions is to concatenate their output with text.
formatted_text = IO.ANSI.blue_background() <> "Example" <> IO.ANSI.reset()
IO.puts(formatted_text)
A higher level and more convenient API is also available via IO.ANSI.format/1,
where you use atoms to represent each ANSI escape sequence and by default
checks if ANSI is enabled:
IO.puts(IO.ANSI.format([:blue_background, "Example"]))
In case ANSI is disabled, the ANSI escape sequences are simply discarded.

 Summary

 Types

 ansicode()

 ansidata()

 ansilist()

 Functions

 black()

 Sets foreground color to black.

 black_background()

 Sets background color to black.

 blink_off()

 Blink: off.

 blink_rapid()

 Blink: rapid. MS-DOS ANSI.SYS; 150 per minute or more; not widely supported.

 blink_slow()

 Blink: slow. Less than 150 per minute.

 blue()

 Sets foreground color to blue.

 blue_background()

 Sets background color to blue.

 bright()

 Bright (increased intensity) or bold.

 clear()

 Clears screen.

 clear_line()

 Clears line.

 color(code)

 Sets foreground color.

 color(r, g, b)

 Sets the foreground color from individual RGB values.

 color_background(code)

 Sets background color.

 color_background(r, g, b)

 Sets the background color from individual RGB values.

 conceal()

 Conceal. Not widely supported.

 crossed_out()

 Crossed-out. Characters legible, but marked for deletion. Not widely supported.

 cursor(line, column)

 Sends cursor to the absolute position specified by line and column.

 cursor_down(lines \\ 1)

 Sends cursor lines down.

 cursor_left(columns \\ 1)

 Sends cursor columns to the left.

 cursor_right(columns \\ 1)

 Sends cursor columns to the right.

 cursor_up(lines \\ 1)

 Sends cursor lines up.

 cyan()

 Sets foreground color to cyan.

 cyan_background()

 Sets background color to cyan.

 default_background()

 Default background color.

 default_color()

 Default text color.

 enabled?()

 Checks if ANSI coloring is supported and enabled on this machine.

 encircled()

 Encircled.

 faint()

 Faint (decreased intensity). Not widely supported.

 font_1()

 Sets alternative font 1.

 font_2()

 Sets alternative font 2.

 font_3()

 Sets alternative font 3.

 font_4()

 Sets alternative font 4.

 font_5()

 Sets alternative font 5.

 font_6()

 Sets alternative font 6.

 font_7()

 Sets alternative font 7.

 font_8()

 Sets alternative font 8.

 font_9()

 Sets alternative font 9.

 format(ansidata, emit? \\ enabled?())

 Formats a chardata-like argument by converting named ANSI sequences into actual
ANSI codes.

 format_fragment(ansidata, emit? \\ enabled?())

 Formats a chardata-like argument by converting named ANSI sequences into actual
ANSI codes.

 framed()

 Framed.

 green()

 Sets foreground color to green.

 green_background()

 Sets background color to green.

 home()

 Sends cursor home.

 inverse()

 Image: negative. Swap foreground and background.

 inverse_off()

 Image: positive. Normal foreground and background.

 italic()

 Italic: on. Not widely supported. Sometimes treated as inverse.

 light_black()

 Sets foreground color to light black.

 light_black_background()

 Sets background color to light black.

 light_blue()

 Sets foreground color to light blue.

 light_blue_background()

 Sets background color to light blue.

 light_cyan()

 Sets foreground color to light cyan.

 light_cyan_background()

 Sets background color to light cyan.

 light_green()

 Sets foreground color to light green.

 light_green_background()

 Sets background color to light green.

 light_magenta()

 Sets foreground color to light magenta.

 light_magenta_background()

 Sets background color to light magenta.

 light_red()

 Sets foreground color to light red.

 light_red_background()

 Sets background color to light red.

 light_white()

 Sets foreground color to light white.

 light_white_background()

 Sets background color to light white.

 light_yellow()

 Sets foreground color to light yellow.

 light_yellow_background()

 Sets background color to light yellow.

 magenta()

 Sets foreground color to magenta.

 magenta_background()

 Sets background color to magenta.

 no_underline()

 Underline: none.

 normal()

 Normal color or intensity.

 not_crossed_out()

 Not crossed-out.

 not_framed_encircled()

 Not framed or encircled.

 not_italic()

 Not italic.

 not_overlined()

 Not overlined.

 overlined()

 Overlined.

 primary_font()

 Sets primary (default) font.

 red()

 Sets foreground color to red.

 red_background()

 Sets background color to red.

 reset()

 Resets all attributes.

 reveal()

 Reveal: Not concealed.

 reverse()

 Image: negative. Swap foreground and background.

 reverse_off()

 Image: positive. Normal foreground and background.

 syntax_colors()

 Syntax colors to be used by Inspect.

 underline()

 Underline: single.

 white()

 Sets foreground color to white.

 white_background()

 Sets background color to white.

 yellow()

 Sets foreground color to yellow.

 yellow_background()

 Sets background color to yellow.

 Types

 ansicode()

 @type ansicode() :: atom()

 ansidata()

 @type ansidata() :: ansilist() | ansicode() | binary()

 ansilist()

 @type ansilist() ::
 maybe_improper_list(
 char() | ansicode() | binary() | ansilist(),
 binary() | ansicode() | []
)

 Functions

 black()

 @spec black() :: String.t()

Sets foreground color to black.

 black_background()

 @spec black_background() :: String.t()

Sets background color to black.

 blink_off()

 @spec blink_off() :: String.t()

Blink: off.

 blink_rapid()

 @spec blink_rapid() :: String.t()

Blink: rapid. MS-DOS ANSI.SYS; 150 per minute or more; not widely supported.

 blink_slow()

 @spec blink_slow() :: String.t()

Blink: slow. Less than 150 per minute.

 blue()

 @spec blue() :: String.t()

Sets foreground color to blue.

 blue_background()

 @spec blue_background() :: String.t()

Sets background color to blue.

 bright()

 @spec bright() :: String.t()

Bright (increased intensity) or bold.

 clear()

 @spec clear() :: String.t()

Clears screen.

 clear_line()

 @spec clear_line() :: String.t()

Clears line.

 color(code)

 @spec color(0..255) :: String.t()

Sets foreground color.

 color(r, g, b)

 @spec color(0..5, 0..5, 0..5) :: String.t()

Sets the foreground color from individual RGB values.
Valid values for each color are in the range 0 to 5.

 color_background(code)

 @spec color_background(0..255) :: String.t()

Sets background color.

 color_background(r, g, b)

 @spec color_background(0..5, 0..5, 0..5) :: String.t()

Sets the background color from individual RGB values.
Valid values for each color are in the range 0 to 5.

 conceal()

 @spec conceal() :: String.t()

Conceal. Not widely supported.

 crossed_out()

 @spec crossed_out() :: String.t()

Crossed-out. Characters legible, but marked for deletion. Not widely supported.

 cursor(line, column)

 @spec cursor(non_neg_integer(), non_neg_integer()) :: String.t()

Sends cursor to the absolute position specified by line and column.
Line 0 and column 0 would mean the top left corner.

 cursor_down(lines \\ 1)

 @spec cursor_down(pos_integer()) :: String.t()

Sends cursor lines down.

 cursor_left(columns \\ 1)

 @spec cursor_left(pos_integer()) :: String.t()

Sends cursor columns to the left.

 cursor_right(columns \\ 1)

 @spec cursor_right(pos_integer()) :: String.t()

Sends cursor columns to the right.

 cursor_up(lines \\ 1)

 @spec cursor_up(pos_integer()) :: String.t()

Sends cursor lines up.

 cyan()

 @spec cyan() :: String.t()

Sets foreground color to cyan.

 cyan_background()

 @spec cyan_background() :: String.t()

Sets background color to cyan.

 default_background()

 @spec default_background() :: String.t()

Default background color.

 default_color()

 @spec default_color() :: String.t()

Default text color.

 enabled?()

 @spec enabled?() :: boolean()

Checks if ANSI coloring is supported and enabled on this machine.
This function simply reads the configuration value for
:ansi_enabled in the :elixir application. The value is by
default false unless Elixir can detect during startup that
both stdout and stderr are terminals.

 encircled()

 @spec encircled() :: String.t()

Encircled.

 faint()

 @spec faint() :: String.t()

Faint (decreased intensity). Not widely supported.

 font_1()

 @spec font_1() :: String.t()

Sets alternative font 1.

 font_2()

 @spec font_2() :: String.t()

Sets alternative font 2.

 font_3()

 @spec font_3() :: String.t()

Sets alternative font 3.

 font_4()

 @spec font_4() :: String.t()

Sets alternative font 4.

 font_5()

 @spec font_5() :: String.t()

Sets alternative font 5.

 font_6()

 @spec font_6() :: String.t()

Sets alternative font 6.

 font_7()

 @spec font_7() :: String.t()

Sets alternative font 7.

 font_8()

 @spec font_8() :: String.t()

Sets alternative font 8.

 font_9()

 @spec font_9() :: String.t()

Sets alternative font 9.

 format(ansidata, emit? \\ enabled?())

 @spec format(ansidata(), boolean()) :: IO.chardata()

Formats a chardata-like argument by converting named ANSI sequences into actual
ANSI codes.
The named sequences are represented by atoms.
It will also append an IO.ANSI.reset/0 to the chardata when a conversion is
performed. If you don't want this behavior, use format_fragment/2.
An optional boolean parameter can be passed to enable or disable
emitting actual ANSI codes. When false, no ANSI codes will be emitted.
By default checks if ANSI is enabled using the enabled?/0 function.
An ArgumentError will be raised if an invalid ANSI code is provided.
Examples
iex> IO.ANSI.format(["Hello, ", :red, :bright, "world!"], true)
[[[[[[], "Hello, "] | "\e[31m"] | "\e[1m"], "world!"] | "\e[0m"]

 format_fragment(ansidata, emit? \\ enabled?())

 @spec format_fragment(ansidata(), boolean()) :: IO.chardata()

Formats a chardata-like argument by converting named ANSI sequences into actual
ANSI codes.
The named sequences are represented by atoms.
An optional boolean parameter can be passed to enable or disable
emitting actual ANSI codes. When false, no ANSI codes will be emitted.
By default checks if ANSI is enabled using the enabled?/0 function.
Examples
iex> IO.ANSI.format_fragment([:bright, ~c"Word"], true)
[[[[[[] | "\e[1m"], 87], 111], 114], 100]

 framed()

 @spec framed() :: String.t()

Framed.

 green()

 @spec green() :: String.t()

Sets foreground color to green.

 green_background()

 @spec green_background() :: String.t()

Sets background color to green.

 home()

 @spec home() :: String.t()

Sends cursor home.

 inverse()

 @spec inverse() :: String.t()

Image: negative. Swap foreground and background.

 inverse_off()

 @spec inverse_off() :: String.t()

Image: positive. Normal foreground and background.

 italic()

 @spec italic() :: String.t()

Italic: on. Not widely supported. Sometimes treated as inverse.

 light_black()

 @spec light_black() :: String.t()

Sets foreground color to light black.

 light_black_background()

 @spec light_black_background() :: String.t()

Sets background color to light black.

 light_blue()

 @spec light_blue() :: String.t()

Sets foreground color to light blue.

 light_blue_background()

 @spec light_blue_background() :: String.t()

Sets background color to light blue.

 light_cyan()

 @spec light_cyan() :: String.t()

Sets foreground color to light cyan.

 light_cyan_background()

 @spec light_cyan_background() :: String.t()

Sets background color to light cyan.

 light_green()

 @spec light_green() :: String.t()

Sets foreground color to light green.

 light_green_background()

 @spec light_green_background() :: String.t()

Sets background color to light green.

 light_magenta()

 @spec light_magenta() :: String.t()

Sets foreground color to light magenta.

 light_magenta_background()

 @spec light_magenta_background() :: String.t()

Sets background color to light magenta.

 light_red()

 @spec light_red() :: String.t()

Sets foreground color to light red.

 light_red_background()

 @spec light_red_background() :: String.t()

Sets background color to light red.

 light_white()

 @spec light_white() :: String.t()

Sets foreground color to light white.

 light_white_background()

 @spec light_white_background() :: String.t()

Sets background color to light white.

 light_yellow()

 @spec light_yellow() :: String.t()

Sets foreground color to light yellow.

 light_yellow_background()

 @spec light_yellow_background() :: String.t()

Sets background color to light yellow.

 magenta()

 @spec magenta() :: String.t()

Sets foreground color to magenta.

 magenta_background()

 @spec magenta_background() :: String.t()

Sets background color to magenta.

 no_underline()

 @spec no_underline() :: String.t()

Underline: none.

 normal()

 @spec normal() :: String.t()

Normal color or intensity.

 not_crossed_out()

 @spec not_crossed_out() :: String.t()

Not crossed-out.

 not_framed_encircled()

 @spec not_framed_encircled() :: String.t()

Not framed or encircled.

 not_italic()

 @spec not_italic() :: String.t()

Not italic.

 not_overlined()

 @spec not_overlined() :: String.t()

Not overlined.

 overlined()

 @spec overlined() :: String.t()

Overlined.

 primary_font()

 @spec primary_font() :: String.t()

Sets primary (default) font.

 red()

 @spec red() :: String.t()

Sets foreground color to red.

 red_background()

 @spec red_background() :: String.t()

Sets background color to red.

 reset()

 @spec reset() :: String.t()

Resets all attributes.

 reveal()

 @spec reveal() :: String.t()

Reveal: Not concealed.

 reverse()

 @spec reverse() :: String.t()

Image: negative. Swap foreground and background.

 reverse_off()

 @spec reverse_off() :: String.t()

Image: positive. Normal foreground and background.

 syntax_colors()

 (since 1.14.0)

 @spec syntax_colors() :: Keyword.t(ansidata())

Syntax colors to be used by Inspect.
Those colors are used throughout Elixir's standard library,
such as dbg/2 and IEx.
The colors can be changed by setting the :ansi_syntax_colors
in the :elixir application configuration. Configuration for
most built-in data types are supported: :atom, :binary,
:boolean, :charlist, :list, :map, :nil, :number,
:string, and :tuple. The default is:
[
 atom: :cyan
 boolean: :magenta,
 charlist: :yellow,
 nil: :magenta,
 number: :yellow,
 string: :green
]

 underline()

 @spec underline() :: String.t()

Underline: single.

 white()

 @spec white() :: String.t()

Sets foreground color to white.

 white_background()

 @spec white_background() :: String.t()

Sets background color to white.

 yellow()

 @spec yellow() :: String.t()

Sets foreground color to yellow.

 yellow_background()

 @spec yellow_background() :: String.t()

Sets background color to yellow.

IO.Stream

Defines an IO.Stream struct returned by IO.stream/2 and IO.binstream/2.
The following fields are public:
	device - the IO device
	raw - a boolean indicating if bin functions should be used
	line_or_bytes - if reading should read lines or a given number of bytes

It is worth noting that an IO stream has side effects and every time you go
over the stream you may get different results.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %IO.Stream{
 device: IO.device(),
 line_or_bytes: :line | non_neg_integer(),
 raw: boolean()
}

OptionParser

Functions for parsing command line arguments.
When calling a command, it's possible to pass command line options
to modify what the command does. In this documentation, those are
called "switches", in other situations they may be called "flags"
or simply "options". A switch can be given a value, also called an
"argument".
The main function in this module is parse/2, which parses a list
of command line options and arguments into a keyword list:
iex> OptionParser.parse(["--debug"], strict: [debug: :boolean])
{[debug: true], [], []}
OptionParser provides some conveniences out of the box,
such as aliases and automatic handling of negation switches.
The parse_head/2 function is an alternative to parse/2
which stops parsing as soon as it finds a value that is not
a switch nor a value for a previous switch.
This module also provides low-level functions, such as next/2,
for parsing switches manually, as well as split/1 and to_argv/1
for parsing from and converting switches to strings.

 Summary

 Types

 argv()

 errors()

 options()

 parsed()

 Functions

 next(argv, opts \\ [])

 Low-level function that parses one option.

 parse(argv, opts \\ [])

 Parses argv into a keyword list.

 parse!(argv, opts \\ [])

 The same as parse/2 but raises an OptionParser.ParseError
exception if any invalid options are given.

 parse_head(argv, opts \\ [])

 Similar to parse/2 but only parses the head of argv;
as soon as it finds a non-switch, it stops parsing.

 parse_head!(argv, opts \\ [])

 The same as parse_head/2 but raises an OptionParser.ParseError
exception if any invalid options are given.

 split(string)

 Splits a string into argv/0 chunks.

 to_argv(enum, options \\ [])

 Receives a key-value enumerable and converts it to argv/0.

 Types

 argv()

 @type argv() :: [String.t()]

 errors()

 @type errors() :: [{String.t(), String.t() | nil}]

 options()

 @type options() :: [
 switches: keyword(),
 strict: keyword(),
 aliases: keyword(),
 allow_nonexistent_atoms: boolean(),
 return_separator: boolean()
]

 parsed()

 @type parsed() :: keyword()

 Functions

 next(argv, opts \\ [])

 @spec next(argv(), options()) ::
 {:ok, key :: atom(), value :: term(), argv()}
 | {:invalid, String.t(), String.t() | nil, argv()}
 | {:undefined, String.t(), String.t() | nil, argv()}
 | {:error, argv()}

Low-level function that parses one option.
It accepts the same options as parse/2 and parse_head/2
as both functions are built on top of this function. This function
may return:
	{:ok, key, value, rest} - the option key with value was
successfully parsed

	{:invalid, key, value, rest} - the option key is invalid with value
(returned when the value cannot be parsed according to the switch type)

	{:undefined, key, value, rest} - the option key is undefined
(returned in strict mode when the switch is unknown or on nonexistent atoms)

	{:error, rest} - there are no switches at the head of the given argv

 parse(argv, opts \\ [])

 @spec parse(argv(), options()) :: {parsed(), argv(), errors()}

Parses argv into a keyword list.
It returns a three-element tuple with the form {parsed, args, invalid}, where:
	parsed is a keyword list of parsed switches with {switch_name, value}
tuples in it; switch_name is the atom representing the switch name while
value is the value for that switch parsed according to opts (see the
"Examples" section for more information)
	args is a list of the remaining arguments in argv as strings
	invalid is a list of invalid options as {option_name, value} where
option_name is the raw option and value is nil if the option wasn't
expected or the string value if the value didn't have the expected type for
the corresponding option

Elixir converts switches to underscored atoms, so --source-path becomes
:source_path. This is done to better suit Elixir conventions. However, this
means that switches can't contain underscores and switches that do contain
underscores are always returned in the list of invalid switches.
When parsing, it is common to list switches and their expected types:
iex> OptionParser.parse(["--debug"], strict: [debug: :boolean])
{[debug: true], [], []}

iex> OptionParser.parse(["--source", "lib"], strict: [source: :string])
{[source: "lib"], [], []}

iex> OptionParser.parse(
...> ["--source-path", "lib", "test/enum_test.exs", "--verbose"],
...> strict: [source_path: :string, verbose: :boolean]
...>)
{[source_path: "lib", verbose: true], ["test/enum_test.exs"], []}
We will explore the valid switches and operation modes of option parser below.
Options
The following options are supported:
	:switches or :strict - see the "Switch definitions" section below
	:allow_nonexistent_atoms - see the "Parsing unknown switches" section below
	:aliases - see the "Aliases" section below
	:return_separator - see the "Return separator" section below

Switch definitions
Switches can be specified via one of two options:
	:strict - defines strict switches and their types. Any switch
in argv that is not specified in the list is returned in the
invalid options list. This is the preferred way to parse options.

	:switches - defines switches and their types. This function
still attempts to parse switches that are not in this list.

Both these options accept a keyword list where the key is an atom
defining the name of the switch and value is the type of the
switch (see the "Types" section below for more information).
Note that you should only supply the :switches or the :strict option.
If you supply both, an ArgumentError exception will be raised.
Types
Switches parsed by OptionParser may take zero or one arguments.
The following switches types take no arguments:
	:boolean - sets the value to true when given (see also the
"Negation switches" section below)
	:count - counts the number of times the switch is given

The following switches take one argument:
	:integer - parses the value as an integer
	:float - parses the value as a float
	:string - parses the value as a string
	:regex - parses the value as a regular expression with Unicode support

If a switch can't be parsed according to the given type, it is
returned in the invalid options list.
Modifiers
Switches can be specified with modifiers, which change how
they behave. The following modifiers are supported:
	:keep - keeps duplicate elements instead of overriding them;
works with all types except :count. Specifying switch_name: :keep
assumes the type of :switch_name will be :string.

To use :keep with a type other than :string, use a list as the type
for the switch. For example: [foo: [:integer, :keep]].
Negation switches
In case a switch SWITCH is specified to have type :boolean, it may be
passed as --no-SWITCH as well which will set the option to false:
iex> OptionParser.parse(["--no-op", "path/to/file"], switches: [op: :boolean])
{[op: false], ["path/to/file"], []}
Parsing unknown switches
When the :switches option is given, OptionParser will attempt to parse
unknown switches.
Switches without an argument will be set to true:
iex> OptionParser.parse(["--debug"], switches: [key: :string])
{[debug: true], [], []}
Even though we haven't specified --debug in the list of switches, it is part
of the returned options. The same happens for switches followed by another switch:
iex> OptionParser.parse(["--debug", "--ok"], switches: [])
{[debug: true, ok: true], [], []}
Switches followed by a value will be assigned the value, as a string:
iex> OptionParser.parse(["--debug", "value"], switches: [key: :string])
{[debug: "value"], [], []}
Since we cannot assert the type of the switch value, it is preferred to use the
:strict option that accepts only known switches and always verify their types.
If you do want to parse unknown switches, remember that Elixir converts switches
to atoms. Since atoms are not garbage-collected, to avoid creating new ones,
OptionParser by default only parses switches that translate to existing atoms.
The code below discards the --option-parser-example switch because the
:option_parser_example atom is never used anywhere:
iex> OptionParser.parse(["--option-parser-example"], switches: [])
{[], [], []}
If a switch corresponds to an existing Elixir atom, whether from your
code, a dependency or from Elixir itself, it will be accepted. However,
it is best to not rely on external code, and always define the atoms
you want to parse in the same module that calls OptionParser itself,
as direct arguments to the :switches or :strict options.
If you would like to parse all switches, regardless if they exist or not,
you can force creation of atoms by passing allow_nonexistent_atoms: true
as option. Use this option with care. It is only useful when you are building
command-line applications that receive dynamically-named arguments and must
be avoided in long-running systems.
Aliases
A set of aliases can be specified in the :aliases option:
iex> OptionParser.parse(["-d"], aliases: [d: :debug], strict: [debug: :boolean])
{[debug: true], [], []}
Examples
Here are some examples of working with different types and modifiers:
iex> OptionParser.parse(["--unlock", "path/to/file"], strict: [unlock: :boolean])
{[unlock: true], ["path/to/file"], []}

iex> OptionParser.parse(
...> ["--unlock", "--limit", "0", "path/to/file"],
...> strict: [unlock: :boolean, limit: :integer]
...>)
{[unlock: true, limit: 0], ["path/to/file"], []}

iex> OptionParser.parse(["--limit", "3"], strict: [limit: :integer])
{[limit: 3], [], []}

iex> OptionParser.parse(["--limit", "xyz"], strict: [limit: :integer])
{[], [], [{"--limit", "xyz"}]}

iex> OptionParser.parse(["--verbose"], switches: [verbose: :count])
{[verbose: 1], [], []}

iex> OptionParser.parse(["-v", "-v"], aliases: [v: :verbose], strict: [verbose: :count])
{[verbose: 2], [], []}

iex> OptionParser.parse(["--unknown", "xyz"], strict: [])
{[], ["xyz"], [{"--unknown", nil}]}

iex> OptionParser.parse(
...> ["--limit", "3", "--unknown", "xyz"],
...> switches: [limit: :integer]
...>)
{[limit: 3, unknown: "xyz"], [], []}

iex> OptionParser.parse(
...> ["--unlock", "path/to/file", "--unlock", "path/to/another/file"],
...> strict: [unlock: :keep]
...>)
{[unlock: "path/to/file", unlock: "path/to/another/file"], [], []}
Return separator
The separator -- implies options should no longer be processed.
By default, the separator is not returned as parts of the arguments,
but that can be changed via the :return_separator option:
iex> OptionParser.parse(["--", "lib"], return_separator: true, strict: [])
{[], ["--", "lib"], []}

iex> OptionParser.parse(["--no-halt", "--", "lib"], return_separator: true, switches: [halt: :boolean])
{[halt: false], ["--", "lib"], []}

iex> OptionParser.parse(["script.exs", "--no-halt", "--", "foo"], return_separator: true, switches: [halt: :boolean])
{[{:halt, false}], ["script.exs", "--", "foo"], []}

 parse!(argv, opts \\ [])

 @spec parse!(argv(), options()) :: {parsed(), argv()}

The same as parse/2 but raises an OptionParser.ParseError
exception if any invalid options are given.
If there are no errors, returns a {parsed, rest} tuple where:
	parsed is the list of parsed switches (same as in parse/2)
	rest is the list of arguments (same as in parse/2)

Examples
iex> OptionParser.parse!(["--debug", "path/to/file"], strict: [debug: :boolean])
{[debug: true], ["path/to/file"]}

iex> OptionParser.parse!(["--limit", "xyz"], strict: [limit: :integer])
** (OptionParser.ParseError) 1 error found!
--limit : Expected type integer, got "xyz"...

iex> OptionParser.parse!(["--unknown", "xyz"], strict: [])
** (OptionParser.ParseError) 1 error found!
--unknown : Unknown option...

iex> OptionParser.parse!(
...> ["-l", "xyz", "-f", "bar"],
...> switches: [limit: :integer, foo: :integer],
...> aliases: [l: :limit, f: :foo]
...>)
** (OptionParser.ParseError) 2 errors found!
-l : Expected type integer, got "xyz"
-f : Expected type integer, got "bar"...

 parse_head(argv, opts \\ [])

 @spec parse_head(argv(), options()) :: {parsed(), argv(), errors()}

Similar to parse/2 but only parses the head of argv;
as soon as it finds a non-switch, it stops parsing.
See parse/2 for more information.
Example
iex> OptionParser.parse_head(
...> ["--source", "lib", "test/enum_test.exs", "--verbose"],
...> switches: [source: :string, verbose: :boolean]
...>)
{[source: "lib"], ["test/enum_test.exs", "--verbose"], []}

iex> OptionParser.parse_head(
...> ["--verbose", "--source", "lib", "test/enum_test.exs", "--unlock"],
...> switches: [source: :string, verbose: :boolean, unlock: :boolean]
...>)
{[verbose: true, source: "lib"], ["test/enum_test.exs", "--unlock"], []}

 parse_head!(argv, opts \\ [])

 @spec parse_head!(argv(), options()) :: {parsed(), argv()}

The same as parse_head/2 but raises an OptionParser.ParseError
exception if any invalid options are given.
If there are no errors, returns a {parsed, rest} tuple where:
	parsed is the list of parsed switches (same as in parse_head/2)
	rest is the list of arguments (same as in parse_head/2)

Examples
iex> OptionParser.parse_head!(
...> ["--source", "lib", "path/to/file", "--verbose"],
...> switches: [source: :string, verbose: :boolean]
...>)
{[source: "lib"], ["path/to/file", "--verbose"]}

iex> OptionParser.parse_head!(
...> ["--number", "lib", "test/enum_test.exs", "--verbose"],
...> strict: [number: :integer]
...>)
** (OptionParser.ParseError) 1 error found!
--number : Expected type integer, got "lib"...

iex> OptionParser.parse_head!(
...> ["--verbose", "--source", "lib", "test/enum_test.exs", "--unlock"],
...> strict: [verbose: :integer, source: :integer]
...>)
** (OptionParser.ParseError) 2 errors found!
--verbose : Missing argument of type integer
--source : Expected type integer, got "lib"...

 split(string)

 @spec split(String.t()) :: argv()

Splits a string into argv/0 chunks.
This function splits the given string into a list of strings in a similar
way to many shells.
Examples
iex> OptionParser.split("foo bar")
["foo", "bar"]

iex> OptionParser.split("foo \"bar baz\"")
["foo", "bar baz"]

 to_argv(enum, options \\ [])

 @spec to_argv(Enumerable.t(), options()) :: argv()

Receives a key-value enumerable and converts it to argv/0.
Keys must be atoms. Keys with nil value are discarded,
boolean values are converted to --key or --no-key
(if the value is true or false, respectively),
and all other values are converted using to_string/1.
It is advised to pass to to_argv/2 the same set of options
given to parse/2. Some switches can only be reconstructed
correctly with the :switches information in hand.
Examples
iex> OptionParser.to_argv(foo_bar: "baz")
["--foo-bar", "baz"]
iex> OptionParser.to_argv(bool: true, bool: false, discarded: nil)
["--bool", "--no-bool"]
Some switches will output different values based on the switches
types:
iex> OptionParser.to_argv([number: 2], switches: [])
["--number", "2"]
iex> OptionParser.to_argv([number: 2], switches: [number: :count])
["--number", "--number"]

Path

This module provides conveniences for manipulating or
retrieving file system paths.
The functions in this module may receive chardata as
arguments and will always return a string encoded in UTF-8. Chardata
is a string or a list of characters and strings, see IO.chardata/0.
If a binary is given, in whatever encoding, its encoding will be kept.
The majority of the functions in this module do not
interact with the file system, except for a few functions
that require it (like wildcard/2 and expand/1).

 Summary

 Types

 relative_to_opts()

 t()

 A path.

 Functions

 absname(path)

 Converts the given path to an absolute one.

 absname(path, relative_to)

 Builds a path from relative_to to path.

 basename(path)

 Returns the last component of the path or the path
itself if it does not contain any directory separators.

 basename(path, extension)

 Returns the last component of path with the extension
stripped.

 dirname(path)

 Returns the directory component of path.

 expand(path)

 Converts the path to an absolute one, expanding
any . and .. components and a leading ~.

 expand(path, relative_to)

 Expands the path relative to the path given as the second argument
expanding any . and .. characters.

 extname(path)

 Returns the extension of the last component of path.

 join(list)

 Joins a list of paths.

 join(left, right)

 Joins two paths.

 relative(name)

 Forces the path to be a relative path.

 relative_to(path, cwd, opts \\ [])

 Returns the direct relative path from path in relation to cwd.

 relative_to_cwd(path, opts \\ [])

 Convenience to get the path relative to the current working
directory.

 rootname(path)

 Returns the path with the extension stripped.

 rootname(path, extension)

 Returns the path with the extension stripped.

 safe_relative(path, relative_to \\ File.cwd!())

 Returns a relative path that is protected from directory-traversal attacks.

 safe_relative_to(path, cwd)

 deprecated

 Returns a relative path that is protected from directory-traversal attacks.

 split(path)

 Splits the path into a list at the path separator.

 type(name)

 Returns the path type.

 wildcard(glob, opts \\ [])

 Traverses paths according to the given glob expression and returns a
list of matches.

 Types

 relative_to_opts()

 @type relative_to_opts() :: [{:force, boolean()}]

 t()

 @type t() :: IO.chardata()

A path.

 Functions

 absname(path)

 @spec absname(t()) :: binary()

Converts the given path to an absolute one.
Unlike expand/1, no attempt is made to resolve .., ., or ~.
Examples
Unix-like operating systems
Path.absname("foo")
#=> "/usr/local/foo"

Path.absname("../x")
#=> "/usr/local/../x"
Windows
Path.absname("foo")
#=> "D:/usr/local/foo"

Path.absname("../x")
#=> "D:/usr/local/../x"

 absname(path, relative_to)

 @spec absname(t(), t() | (-> t())) :: binary()

Builds a path from relative_to to path.
If path is already an absolute path, relative_to is ignored. See also
relative_to/3. relative_to is either a path or an anonymous function,
which is invoked only when necessary, that returns a path.
Unlike expand/2, no attempt is made to resolve .., . or ~.
Examples
iex> Path.absname("foo", "bar")
"bar/foo"

iex> Path.absname("../x", "bar")
"bar/../x"

iex> Path.absname("foo", fn -> "lazy" end)
"lazy/foo"

 basename(path)

 @spec basename(t()) :: binary()

Returns the last component of the path or the path
itself if it does not contain any directory separators.
Examples
iex> Path.basename("foo")
"foo"

iex> Path.basename("foo/bar")
"bar"

iex> Path.basename("lib/module/submodule.ex")
"submodule.ex"

iex> Path.basename("/")
""

 basename(path, extension)

 @spec basename(t(), t()) :: binary()

Returns the last component of path with the extension
stripped.
This function should be used to remove a specific
extension which may or may not be there.
Examples
iex> Path.basename("~/foo/bar.ex", ".ex")
"bar"

iex> Path.basename("~/foo/bar.exs", ".ex")
"bar.exs"

iex> Path.basename("~/foo/bar.old.ex", ".ex")
"bar.old"

 dirname(path)

 @spec dirname(t()) :: binary()

Returns the directory component of path.
Examples
iex> Path.dirname("/foo/bar.ex")
"/foo"

iex> Path.dirname("/foo/bar/baz.ex")
"/foo/bar"

iex> Path.dirname("/foo/bar/")
"/foo/bar"

iex> Path.dirname("bar.ex")
"."

 expand(path)

 @spec expand(t()) :: binary()

Converts the path to an absolute one, expanding
any . and .. components and a leading ~.
If a relative path is provided it is expanded relatively to
the current working directory.
Examples
Path.expand("/foo/bar/../baz")
#=> "/foo/baz"

Path.expand("foo/bar/../baz")
#=> "$PWD/foo/baz"

 expand(path, relative_to)

 @spec expand(t(), t()) :: binary()

Expands the path relative to the path given as the second argument
expanding any . and .. characters.
If the path is already an absolute path, relative_to is ignored.
Note that this function treats a path with a leading ~ as
an absolute one.
The second argument is first expanded to an absolute path.
Examples
Assuming that the absolute path to baz is /quux/baz
Path.expand("foo/bar/../bar", "baz")
#=> "/quux/baz/foo/bar"

Path.expand("foo/bar/../bar", "/baz")
#=> "/baz/foo/bar"

Path.expand("/foo/bar/../bar", "/baz")
#=> "/foo/bar"

 extname(path)

 @spec extname(t()) :: binary()

Returns the extension of the last component of path.
For filenames starting with a dot and without an extension, it returns
an empty string.
See basename/1 and rootname/1 for related functions to extract
information from paths.
Examples
iex> Path.extname("foo.erl")
".erl"

iex> Path.extname("~/foo/bar")
""

iex> Path.extname(".gitignore")
""

 join(list)

 @spec join([t(), ...]) :: binary()

Joins a list of paths.
This function should be used to convert a list of paths to a path.
Note that any trailing slash is removed when joining.
Raises an error if the given list of paths is empty.
Examples
iex> Path.join(["~", "foo"])
"~/foo"

iex> Path.join(["foo"])
"foo"

iex> Path.join(["/", "foo", "bar/"])
"/foo/bar"

 join(left, right)

 @spec join(t(), t()) :: binary()

Joins two paths.
The right path will always be expanded to its relative format
and any trailing slash will be removed when joining.
Examples
iex> Path.join("foo", "bar")
"foo/bar"

iex> Path.join("/foo", "/bar/")
"/foo/bar"
The functions in this module support chardata, so giving a list will
treat it as a single entity:
iex> Path.join("foo", ["bar", "fiz"])
"foo/barfiz"

iex> Path.join(["foo", "bar"], "fiz")
"foobar/fiz"
Use join/1 if you need to join a list of paths instead.

 relative(name)

 @spec relative(t()) :: binary()

Forces the path to be a relative path.
If an absolute path is given, it is stripped from its root component.
Examples
Unix-like operating systems
Path.relative("/usr/local/bin") #=> "usr/local/bin"
Path.relative("usr/local/bin") #=> "usr/local/bin"
Path.relative("../usr/local/bin") #=> "../usr/local/bin"
Windows
Path.relative("D:/usr/local/bin") #=> "usr/local/bin"
Path.relative("usr/local/bin") #=> "usr/local/bin"
Path.relative("D:bar.ex") #=> "bar.ex"
Path.relative("/bar/foo.ex") #=> "bar/foo.ex"

 relative_to(path, cwd, opts \\ [])

 @spec relative_to(t(), t(), relative_to_opts()) :: binary()

Returns the direct relative path from path in relation to cwd.
In other words, this function attempts to return a path such that
Path.expand(result, cwd) points to path. This function aims
to return a relative path whenever possible, but that's not guaranteed:
	If both paths are relative, a relative path is always returned

	If both paths are absolute, a relative path may be returned if
they share a common prefix. You can pass the :force option to
force this function to traverse up, but even then a relative
path is not guaranteed (for example, if the absolute paths
belong to different drives on Windows)

	If a mixture of paths are given, the result will always match
the given path (the first argument)

This function expands . and .. entries without traversing the
file system, so it assumes no symlinks between the paths. See
safe_relative_to/2 for a safer alternative.
Options
	:force - (boolean since v1.16.0) if true forces a relative
path to be returned by traversing the path up. Except if the paths
are in different volumes on Windows. Defaults to false.

Examples
With relative cwd
If both paths are relative, a minimum path is computed:
Path.relative_to("tmp/foo/bar", "tmp") #=> "foo/bar"
Path.relative_to("tmp/foo/bar", "tmp/foo") #=> "bar"
Path.relative_to("tmp/foo/bar", "tmp/bat") #=> "../foo/bar"
If an absolute path is given with relative cwd, it is returned as:
Path.relative_to("/usr/foo/bar", "tmp/bat") #=> "/usr/foo/bar"
With absolute cwd
If both paths are absolute, a relative is computed if possible,
without traversing up:
Path.relative_to("/usr/local/foo", "/usr/local") #=> "foo"
Path.relative_to("/usr/local/foo", "/") #=> "usr/local/foo"
Path.relative_to("/usr/local/foo", "/etc") #=> "/usr/local/foo"
Path.relative_to("/usr/local/foo", "/usr/local/foo") #=> "."
Path.relative_to("/usr/local/../foo", "/usr/foo") #=> "."
Path.relative_to("/usr/local/../foo/bar", "/usr/foo") #=> "bar"
If :force is set to true paths are traversed up:
Path.relative_to("/usr", "/usr/local", force: true) #=> ".."
Path.relative_to("/usr/foo", "/usr/local", force: true) #=> "../foo"
Path.relative_to("/usr/../foo/bar", "/etc/foo", force: true) #=> "../../foo/bar"
If a relative path is given, it is assumed to be relative to the
given path, so the path is returned with "." and ".." expanded:
Path.relative_to(".", "/usr/local") #=> "."
Path.relative_to("foo", "/usr/local") #=> "foo"
Path.relative_to("foo/../bar", "/usr/local") #=> "bar"
Path.relative_to("foo/..", "/usr/local") #=> "."
Path.relative_to("../foo", "/usr/local") #=> "../foo"

 relative_to_cwd(path, opts \\ [])

 @spec relative_to_cwd(t(), relative_to_opts()) :: binary()

Convenience to get the path relative to the current working
directory.
If, for some reason, the current working directory
cannot be retrieved, this function returns the given path.
Check relative_to/3 for the supported options.

 rootname(path)

 @spec rootname(t()) :: binary()

Returns the path with the extension stripped.
Examples
iex> Path.rootname("/foo/bar")
"/foo/bar"

iex> Path.rootname("/foo/bar.ex")
"/foo/bar"

 rootname(path, extension)

 @spec rootname(t(), t()) :: binary()

Returns the path with the extension stripped.
This function should be used to remove a specific extension which may
or may not be there.
Examples
iex> Path.rootname("/foo/bar.erl", ".erl")
"/foo/bar"

iex> Path.rootname("/foo/bar.erl", ".ex")
"/foo/bar.erl"

 safe_relative(path, relative_to \\ File.cwd!())

 (since 1.14.0)

 @spec safe_relative(t(), t()) :: {:ok, binary()} | :error

Returns a relative path that is protected from directory-traversal attacks.
The given relative path is sanitized by eliminating .. and . components.
This function checks that, after expanding those components, the path is still "safe".
Paths are considered unsafe if either of these is true:
	The path is not relative, such as "/foo/bar".

	A .. component would make it so that the path would traverse up above
the root of relative_to.

	A symbolic link in the path points to something above the root of relative_to.

Examples
iex> Path.safe_relative("foo")
{:ok, "foo"}

iex> Path.safe_relative("deps/my_dep/app.beam")
{:ok, "deps/my_dep/app.beam"}

iex> Path.safe_relative("deps/my_dep/./build/../app.beam", File.cwd!())
{:ok, "deps/my_dep/app.beam"}

iex> Path.safe_relative("my_dep/../..")
:error

iex> Path.safe_relative("/usr/local", File.cwd!())
:error

 safe_relative_to(path, cwd)

 (since 1.14.0)

 This function is deprecated. Use safe_relative/2 instead.

 @spec safe_relative_to(t(), t()) :: {:ok, binary()} | :error

Returns a relative path that is protected from directory-traversal attacks.
See safe_relative/2 for a non-deprecated version of this API.

 split(path)

 @spec split(t()) :: [binary()]

Splits the path into a list at the path separator.
If an empty string is given, returns an empty list.
On Windows, path is split on both "\" and "/" separators
and the driver letter, if there is one, is always returned
in lowercase.
Examples
iex> Path.split("")
[]

iex> Path.split("foo")
["foo"]

iex> Path.split("/foo/bar")
["/", "foo", "bar"]

 type(name)

 @spec type(t()) :: :absolute | :relative | :volumerelative

Returns the path type.
Examples
Unix-like operating systems
Path.type("/") #=> :absolute
Path.type("/usr/local/bin") #=> :absolute
Path.type("usr/local/bin") #=> :relative
Path.type("../usr/local/bin") #=> :relative
Path.type("~/file") #=> :relative
Windows
Path.type("D:/usr/local/bin") #=> :absolute
Path.type("usr/local/bin") #=> :relative
Path.type("D:bar.ex") #=> :volumerelative
Path.type("/bar/foo.ex") #=> :volumerelative

 wildcard(glob, opts \\ [])

 @spec wildcard(t(), [{:match_dot, boolean()}]) :: [binary()]

Traverses paths according to the given glob expression and returns a
list of matches.
The wildcard looks like an ordinary path, except that the following
"wildcard characters" are interpreted in a special way:
	? - matches one character.

	* - matches any number of characters up to the end of the filename, the
next dot, or the next slash.

	** - two adjacent *'s used as a single pattern will match all
files and zero or more directories and subdirectories.

	[char1,char2,...] - matches any of the characters listed; two
characters separated by a hyphen will match a range of characters.
Do not add spaces before and after the comma as it would then match
paths containing the space character itself.

	{item1,item2,...} - matches one of the alternatives.
Do not add spaces before and after the comma as it would then match
paths containing the space character itself.

Other characters represent themselves. Only paths that have
exactly the same character in the same position will match. Note
that matching is case-sensitive: "a" will not match "A".
Directory separators must always be written as /, even on Windows.
You may call Path.expand/1 to normalize the path before invoking
this function.
A character preceded by \\ loses its special meaning.
Note that \\ must be written as \\\\ in a string literal.
For example, "\\\\?*" will match any filename starting with ?..
By default, the patterns * and ? do not match files starting
with a dot .. See the :match_dot option in the "Options" section
below.
Options
	:match_dot - (boolean) if false, the special wildcard characters * and ?
will not match files starting with a dot (.). If true, files starting with
a . will not be treated specially. Defaults to false.

Examples
Imagine you have a directory called projects with three Elixir projects
inside of it: elixir, ex_doc, and plug. You can find all .beam files
inside the ebin directory of each project as follows:
Path.wildcard("projects/*/ebin/**/*.beam")
If you want to search for both .beam and .app files, you could do:
Path.wildcard("projects/*/ebin/**/*.{beam,app}")

Port

Functions for interacting with the external world through ports.
Ports provide a mechanism to start operating system processes external
to the Erlang VM and communicate with them via message passing.
Example
iex> port = Port.open({:spawn, "cat"}, [:binary])
iex> send(port, {self(), {:command, "hello"}})
iex> send(port, {self(), {:command, "world"}})
iex> flush()
{#Port<0.1444>, {:data, "hello"}}
{#Port<0.1444>, {:data, "world"}}
iex> send(port, {self(), :close})
:ok
iex> flush()
{#Port<0.1444>, :closed}
:ok
In the example above, we have created a new port that executes the
program cat. cat is a program available on Unix-like operating systems that
receives data from multiple inputs and concatenates them in the output.
After the port was created, we sent it two commands in the form of
messages using send/2. The first command has the binary payload
of "hello" and the second has "world".
After sending those two messages, we invoked the IEx helper flush(),
which printed all messages received from the port, in this case we got
"hello" and "world" back. Note that the messages are in binary because we
passed the :binary option when opening the port in Port.open/2. Without
such option, it would have yielded a list of bytes.
Once everything was done, we closed the port.
Elixir provides many conveniences for working with ports and some drawbacks.
We will explore those below.
Message and function APIs
There are two APIs for working with ports. It can be either asynchronous via
message passing, as in the example above, or by calling the functions on this
module.
The messages supported by ports and their counterpart function APIs are
listed below:
	{pid, {:command, binary}} - sends the given data to the port.
See command/3.

	{pid, :close} - closes the port. Unless the port is already closed,
the port will reply with {port, :closed} message once it has flushed
its buffers and effectively closed. See close/1.

	{pid, {:connect, new_pid}} - sets the new_pid as the new owner of
the port. Once a port is opened, the port is linked and connected to the
caller process and communication to the port only happens through the
connected process. This message makes new_pid the new connected processes.
Unless the port is dead, the port will reply to the old owner with
{port, :connected}. See connect/2.

On its turn, the port will send the connected process the following messages:
	{port, {:data, data}} - data sent by the port
	{port, :closed} - reply to the {pid, :close} message
	{port, :connected} - reply to the {pid, {:connect, new_pid}} message
	{:EXIT, port, reason} - exit signals in case the port crashes. If reason
is not :normal, this message will only be received if the owner process
is trapping exits

Open mechanisms
The port can be opened through four main mechanisms.
As a short summary, prefer to use the :spawn and :spawn_executable
options mentioned below. The other two options, :spawn_driver and :fd
are for advanced usage within the VM. Also consider using System.cmd/3
if all you want is to execute a program and retrieve its return value.
Windows argument splitting and untrusted arguments
On Unix systems, arguments are passed to a new operating system
process as an array of strings but on Windows it is up to the child
process to parse them and some Windows programs may apply their own
rules, which are inconsistent with the standard C runtime argv parsing
This is particularly troublesome when invoking .bat or .com files
as these run implicitly through cmd.exe, whose argument parsing is
vulnerable to malicious input and can be used to run arbitrary shell
commands.
Therefore, if you are running on Windows and you execute batch
files or .com applications, you must not pass untrusted input as
arguments to the program. You may avoid accidentally executing them
by explicitly passing the extension of the program you want to run,
such as .exe, and double check the program is indeed not a batch
file or .com application.
This affects both spawn and spawn_executable.
spawn
The :spawn tuple receives a binary that is going to be executed as a
full invocation. For example, we can use it to invoke "echo hello" directly:
iex> port = Port.open({:spawn, "echo hello"}, [:binary])
iex> flush()
{#Port<0.1444>, {:data, "hello\n"}}
:spawn will retrieve the program name from the argument and traverse your
operating system $PATH environment variable looking for a matching program.
Although the above is handy, it means it is impossible to invoke an executable
that has whitespaces on its name or in any of its arguments. For those reasons,
most times it is preferable to execute :spawn_executable.
spawn_executable
Spawn executable is a more restricted and explicit version of spawn. It expects
full file paths to the executable you want to execute. If they are in your $PATH,
they can be retrieved by calling System.find_executable/1:
iex> path = System.find_executable("echo")
iex> port = Port.open({:spawn_executable, path}, [:binary, args: ["hello world"]])
iex> flush()
{#Port<0.1380>, {:data, "hello world\n"}}
When using :spawn_executable, the list of arguments can be passed via
the :args option as done above. For the full list of options, see the
documentation for the Erlang function :erlang.open_port/2.
fd
The :fd name option allows developers to access in and out file
descriptors used by the Erlang VM. You would use those only if you are
reimplementing core part of the Runtime System, such as the :user and
:shell processes.
Orphan operating system processes
A port can be closed via the close/1 function or by sending a {pid, :close}
message. However, if the VM crashes, a long-running program started by the port
will have its stdin and stdout channels closed but it won't be automatically
terminated.
While some Unix command line tools will exit once its parent process
terminates, not all command line applications will do so. You can easily check
this by starting the port and then shutting down the VM and inspecting your
operating system to see if the port process is still running.
We do not always have control over how third-party software terminates.
If necessary, one workaround is to wrap the child application in a script that
checks whether stdin has been closed. Here is such a script that has been
verified to work on bash shells:
#!/usr/bin/env bash

Start the program in the background
exec "$@" &
pid1=$!

Silence warnings from here on
exec >/dev/null 2>&1

Read from stdin in the background and
kill running program when stdin closes
exec 0<&0 $(
 while read; do :; done
 kill -KILL $pid1
) &
pid2=$!

Clean up
wait $pid1
ret=$?
kill -KILL $pid2
exit $ret
Note the program above hijacks stdin, so you won't be able to communicate
with the underlying software via stdin (on the positive side, software that
reads from stdin typically terminates when stdin closes).
Now instead of:
Port.open(
 {:spawn_executable, "/path/to/program"},
 args: ["a", "b", "c"]
)
You may invoke:
Port.open(
 {:spawn_executable, "/path/to/wrapper"},
 args: ["/path/to/program", "a", "b", "c"]
)

 Summary

 Types

 name()

 Functions

 close(port)

 Closes the port.

 command(port, data, options \\ [])

 Sends data to the port driver port.

 connect(port, pid)

 Associates the port identifier with a pid.

 demonitor(monitor_ref, options \\ [])

 Demonitors the monitor identified by the given reference.

 info(port)

 Returns information about the port (or nil if the port is closed).

 info(port, spec)

 Returns information about a specific field within
the port (or nil if the port is closed).

 list()

 Returns a list of all ports in the current node.

 monitor(port)

 Starts monitoring the given port from the calling process.

 open(name, options)

 Opens a port given a tuple name and a list of options.

 Types

 name()

 @type name() ::
 {:spawn, charlist() | binary()}
 | {:spawn_driver, charlist() | binary()}
 | {:spawn_executable, :file.name_all()}
 | {:fd, non_neg_integer(), non_neg_integer()}

 Functions

 close(port)

 @spec close(port()) :: true

Closes the port.
For more information, see :erlang.port_close/1.
Inlined by the compiler.

 command(port, data, options \\ [])

 @spec command(port(), iodata(), [:force | :nosuspend]) :: boolean()

Sends data to the port driver port.
For more information, see :erlang.port_command/3.
Inlined by the compiler.

 connect(port, pid)

 @spec connect(port(), pid()) :: true

Associates the port identifier with a pid.
For more information, see :erlang.port_connect/2.
Inlined by the compiler.

 demonitor(monitor_ref, options \\ [])

 (since 1.6.0)

 @spec demonitor(reference(), options :: [:flush | :info]) :: boolean()

Demonitors the monitor identified by the given reference.
If monitor_ref is a reference which the calling process
obtained by calling monitor/1, that monitoring is turned off.
If the monitoring is already turned off, nothing happens.
See :erlang.demonitor/2 for more information.
Inlined by the compiler.

 info(port)

 @spec info(port()) :: keyword() | nil

Returns information about the port (or nil if the port is closed).
For more information, see :erlang.port_info/1.

 info(port, spec)

 @spec info(port(), atom()) :: {atom(), term()} | nil

Returns information about a specific field within
the port (or nil if the port is closed).
For more information, see :erlang.port_info/2.

 list()

 @spec list() :: [port()]

Returns a list of all ports in the current node.
Inlined by the compiler.

 monitor(port)

 (since 1.6.0)

 @spec monitor(port() | {name, node()} | name) :: reference() when name: atom()

Starts monitoring the given port from the calling process.
Once the monitored port process dies, a message is delivered to the
monitoring process in the shape of:
{:DOWN, ref, :port, object, reason}
where:
	ref is a monitor reference returned by this function;
	object is either the port being monitored (when monitoring by port ID)
or {name, node} (when monitoring by a port name);
	reason is the exit reason.

See :erlang.monitor/2 for more information.
Inlined by the compiler.

 open(name, options)

 @spec open(name(), list()) :: port()

Opens a port given a tuple name and a list of options.
The module documentation above contains documentation and examples
for the supported name values, summarized below:
	{:spawn, command} - runs an external program. command must contain
the program name and optionally a list of arguments separated by space.
If passing programs or arguments with space in their name, use the next option.
	{:spawn_executable, filename} - runs the executable given by the absolute
file name filename. Arguments can be passed via the :args option.
	{:spawn_driver, command} - spawns so-called port drivers.
	{:fd, fd_in, fd_out} - accesses file descriptors, fd_in and fd_out
opened by the VM.

For more information and the list of options, see :erlang.open_port/2.
Inlined by the compiler.

StringIO

Controls an IO device process that wraps a string.
A StringIO IO device can be passed as a "device" to
most of the functions in the IO module.
Examples
iex> {:ok, pid} = StringIO.open("foo")
iex> IO.read(pid, 2)
"fo"

 Summary

 Types

 open_opts()

 Functions

 close(pid)

 Stops the IO device and returns the remaining input/output
buffers.

 contents(pid)

 Returns the current input/output buffers for the given IO
device.

 flush(pid)

 Flushes the output buffer and returns its current contents.

 open(string, options_or_function \\ [])

 Creates an IO device.

 open(string, options, function)

 Creates an IO device.

 Types

 open_opts()

 @type open_opts() :: [capture_prompt: boolean(), encoding: :unicode | :latin1]

 Functions

 close(pid)

 @spec close(pid()) :: {:ok, {binary(), binary()}}

Stops the IO device and returns the remaining input/output
buffers.
Examples
iex> {:ok, pid} = StringIO.open("in")
iex> IO.write(pid, "out")
iex> StringIO.close(pid)
{:ok, {"in", "out"}}

 contents(pid)

 @spec contents(pid()) :: {binary(), binary()}

Returns the current input/output buffers for the given IO
device.
Examples
iex> {:ok, pid} = StringIO.open("in")
iex> IO.write(pid, "out")
iex> StringIO.contents(pid)
{"in", "out"}

 flush(pid)

 @spec flush(pid()) :: binary()

Flushes the output buffer and returns its current contents.
Examples
iex> {:ok, pid} = StringIO.open("in")
iex> IO.write(pid, "out")
iex> StringIO.flush(pid)
"out"
iex> StringIO.contents(pid)
{"in", ""}

 open(string, options_or_function \\ [])

 @spec open(binary(), open_opts()) :: {:ok, pid()}

 @spec open(binary(), (pid() -> res)) :: {:ok, res} when res: var

Creates an IO device.
string will be the initial input of the newly created
device.
options_or_function can be a keyword list of options or
a function.
If options are provided, the result will be {:ok, pid}, returning the
IO device created. The option :capture_prompt, when set to true, causes
prompts (which are specified as arguments to IO.get* functions) to be
included in the device's output. See options/3 for the list of supported
options.
If a function is provided, the device will be created and sent to the
function. When the function returns, the device will be closed. The final
result will be a tuple with :ok and the result of the function.
Examples
iex> {:ok, pid} = StringIO.open("foo")
iex> IO.gets(pid, ">")
"foo"
iex> StringIO.contents(pid)
{"", ""}

iex> {:ok, pid} = StringIO.open("foo", capture_prompt: true)
iex> IO.gets(pid, ">")
"foo"
iex> StringIO.contents(pid)
{"", ">"}

iex> StringIO.open("foo", fn pid ->
...> input = IO.gets(pid, ">")
...> IO.write(pid, "The input was #{input}")
...> StringIO.contents(pid)
...> end)
{:ok, {"", "The input was foo"}}

 open(string, options, function)

 (since 1.7.0)

 @spec open(binary(), open_opts(), (pid() -> res)) :: {:ok, res} when res: var

Creates an IO device.
string will be the initial input of the newly created
device.
The device will be created and sent to the function given.
When the function returns, the device will be closed. The final
result will be a tuple with :ok and the result of the function.
Options
	:capture_prompt - if set to true, prompts (specified as
arguments to IO.get* functions) are captured in the output.
Defaults to false.

	:encoding (since v1.10.0) - encoding of the IO device. Allowed
values are :unicode (default) and :latin1.

Examples
iex> StringIO.open("foo", [], fn pid ->
...> input = IO.gets(pid, ">")
...> IO.write(pid, "The input was #{input}")
...> StringIO.contents(pid)
...> end)
{:ok, {"", "The input was foo"}}

iex> StringIO.open("foo", [capture_prompt: true], fn pid ->
...> input = IO.gets(pid, ">")
...> IO.write(pid, "The input was #{input}")
...> StringIO.contents(pid)
...> end)
{:ok, {"", ">The input was foo"}}

System

The System module provides functions that interact directly
with the VM or the host system.
Time
The System module also provides functions that work with time,
returning different times kept by the system with support for
different time units.
One of the complexities in relying on system times is that they
may be adjusted. For example, when you enter and leave daylight
saving time, the system clock will be adjusted, often adding
or removing one hour. We call such changes "time warps". In
order to understand how such changes may be harmful, imagine
the following code:
DO NOT DO THIS
prev = System.os_time()
... execute some code ...
next = System.os_time()
diff = next - prev
If, while the code is executing, the system clock changes,
some code that executed in 1 second may be reported as taking
over 1 hour! To address such concerns, the VM provides a
monotonic time via System.monotonic_time/0 which never
decreases and does not leap:
DO THIS
prev = System.monotonic_time()
... execute some code ...
next = System.monotonic_time()
diff = next - prev
Generally speaking, the VM provides three time measurements:
	os_time/0 - the time reported by the operating system (OS). This time may be
adjusted forwards or backwards in time with no limitation;

	system_time/0 - the VM view of the os_time/0. The system time and operating
system time may not match in case of time warps although the VM works towards
aligning them. This time is not monotonic (i.e., it may decrease)
as its behavior is configured by the VM time warp
mode;

	monotonic_time/0 - a monotonically increasing time provided
by the Erlang VM. This is not strictly monotonically increasing. Multiple
sequential calls of the function may return the same value.

The time functions in this module work in the :native unit
(unless specified otherwise), which is operating system dependent. Most of
the time, all calculations are done in the :native unit, to
avoid loss of precision, with convert_time_unit/3 being
invoked at the end to convert to a specific time unit like
:millisecond or :microsecond. See the time_unit/0 type for
more information.
For a more complete rundown on the VM support for different
times, see the chapter on time and time
correction
in the Erlang docs.

 Summary

 Types

 cmd_opts()

 shell_opts()

 signal()

 time_unit()

 The time unit to be passed to functions like monotonic_time/1 and others.

 Functions

 argv()

 Lists command line arguments.

 argv(args)

 Modifies command line arguments.

 at_exit(fun)

 Registers a program exit handler function.

 build_info()

 Elixir build information.

 cmd(command, args, opts \\ [])

 Executes the given command with args.

 compiled_endianness()

 Returns the endianness the system was compiled with.

 convert_time_unit(time, from_unit, to_unit)

 Converts time from time unit from_unit to time unit to_unit.

 cwd()

 deprecated

 Current working directory.

 cwd!()

 deprecated

 Current working directory, exception on error.

 delete_env(varname)

 Deletes an environment variable.

 endianness()

 Returns the endianness.

 fetch_env(varname)

 Returns the value of the given environment variable or :error if not found.

 fetch_env!(varname)

 Returns the value of the given environment variable or raises if not found.

 find_executable(program)

 Locates an executable on the system.

 get_env()

 Returns all system environment variables.

 get_env(varname, default \\ nil)

 Returns the value of the given environment variable.

 get_pid()

 deprecated

 Erlang VM process identifier.

 halt(status \\ 0)

 Immediately halts the Erlang runtime system.

 monotonic_time()

 Returns the current monotonic time in the :native time unit.

 monotonic_time(unit)

 Returns the current monotonic time in the given time unit.

 no_halt()

 Checks if the system will halt or not at the end of ARGV processing.

 no_halt(boolean)

 Marks if the system should halt or not at the end of ARGV processing.

 os_time()

 Returns the current operating system (OS) time.

 os_time(unit)

 Returns the current operating system (OS) time in the given time unit.

 otp_release()

 Returns the Erlang/OTP release number.

 pid()

 Returns the operating system PID for the current Erlang runtime system instance.

 put_env(enum)

 Sets multiple environment variables.

 put_env(varname, value)

 Sets an environment variable value.

 restart()

 Restarts all applications in the Erlang runtime system.

 schedulers()

 Returns the number of schedulers in the VM.

 schedulers_online()

 Returns the number of schedulers online in the VM.

 shell(command, opts \\ [])

 Executes the given command in the OS shell.

 stacktrace()

 deprecated

 Deprecated mechanism to retrieve the last exception stacktrace.

 stop(status \\ 0)

 Asynchronously and carefully stops the Erlang runtime system.

 system_time()

 Returns the current system time in the :native time unit.

 system_time(unit)

 Returns the current system time in the given time unit.

 time_offset()

 Returns the current time offset between the Erlang VM monotonic
time and the Erlang VM system time.

 time_offset(unit)

 Returns the current time offset between the Erlang VM monotonic
time and the Erlang VM system time.

 tmp_dir()

 Writable temporary directory.

 tmp_dir!()

 Writable temporary directory, exception on error.

 trap_signal(signal, id \\ make_ref(), fun)

 Traps the given signal to execute the fun.

 unique_integer(modifiers \\ [])

 Generates and returns an integer that is unique in the current runtime
instance.

 untrap_signal(signal, id)

 Removes a previously registered signal with id.

 user_home()

 User home directory.

 user_home!()

 User home directory, exception on error.

 version()

 Elixir version information.

 Types

 cmd_opts()

 @type cmd_opts() :: [
 into: Collectable.t(),
 lines: pos_integer(),
 cd: Path.t(),
 env: [{binary(), binary() | nil}],
 arg0: binary(),
 stderr_to_stdout: boolean(),
 use_stdio: boolean(),
 parallelism: boolean()
]

 shell_opts()

 @type shell_opts() :: [
 into: Collectable.t(),
 lines: pos_integer(),
 cd: Path.t(),
 env: [{binary(), binary() | nil}],
 stderr_to_stdout: boolean(),
 use_stdio: boolean(),
 parallelism: boolean(),
 close_stdin: boolean()
]

 signal()

 @type signal() ::
 :sigabrt
 | :sigalrm
 | :sigchld
 | :sighup
 | :sigquit
 | :sigstop
 | :sigterm
 | :sigtstp
 | :sigusr1
 | :sigusr2

 time_unit()

 @type time_unit() ::
 :second | :millisecond | :microsecond | :nanosecond | pos_integer()

The time unit to be passed to functions like monotonic_time/1 and others.
The :second, :millisecond, :microsecond and :nanosecond time
units controls the return value of the functions that accept a time unit.
A time unit can also be a strictly positive integer. In this case, it
represents the "parts per second": the time will be returned in 1 / parts_per_second seconds. For example, using the :millisecond time unit
is equivalent to using 1000 as the time unit (as the time will be returned
in 1/1000 seconds - milliseconds).

 Functions

 argv()

 @spec argv() :: [String.t()]

Lists command line arguments.
Returns the list of command line arguments passed to the program.

 argv(args)

 @spec argv([String.t()]) :: :ok

Modifies command line arguments.
Changes the list of command line arguments. Use it with caution,
as it destroys any previous argv information.

 at_exit(fun)

 @spec at_exit((non_neg_integer() -> any())) :: :ok

Registers a program exit handler function.
Registers a function that will be invoked at the end of an Elixir script.
A script is typically started via the command line via the elixir and
mix executables.
The handler always executes in a different process from the one it was
registered in. As a consequence, any resources managed by the calling process
(ETS tables, open files, and others) won't be available by the time the handler
function is invoked.
The function must receive the exit status code as an argument.
If the VM terminates programmatically, via System.stop/1, System.halt/1,
or exit signals, the at_exit/1 callbacks are not guaranteed to be executed.

 build_info()

 @spec build_info() :: %{
 build: String.t(),
 date: String.t(),
 revision: String.t(),
 version: String.t(),
 otp_release: String.t()
}

Elixir build information.
Returns a map with the Elixir version, the Erlang/OTP release it was compiled
with, a short Git revision hash and the date and time it was built.
Every value in the map is a string, and these are:
	:build - the Elixir version, short Git revision hash and
Erlang/OTP release it was compiled with
	:date - a string representation of the ISO8601 date and time it was built
	:otp_release - OTP release it was compiled with
	:revision - short Git revision hash. If Git was not available at building
time, it is set to ""
	:version - the Elixir version

One should not rely on the specific formats returned by each of those fields.
Instead one should use specialized functions, such as version/0 to retrieve
the Elixir version and otp_release/0 to retrieve the Erlang/OTP release.
Examples
iex> System.build_info()
%{
 build: "1.9.0-dev (772a00a0c) (compiled with Erlang/OTP 21)",
 date: "2018-12-24T01:09:21Z",
 otp_release: "21",
 revision: "772a00a0c",
 version: "1.9.0-dev"
}

 cmd(command, args, opts \\ [])

 @spec cmd(binary(), [binary()], cmd_opts()) ::
 {Collectable.t(), exit_status :: non_neg_integer()}

Executes the given command with args.
command is expected to be an executable available in PATH
unless an absolute path is given.
args must be a list of binaries which the executable will receive
as its arguments as is. This means that:
	environment variables will not be interpolated
	wildcard expansion will not happen (unless Path.wildcard/2 is used
explicitly)
	arguments do not need to be escaped or quoted for shell safety

This function returns a tuple containing the collected result
and the command exit status.
Internally, this function uses a Port for interacting with the
outside world. However, if you plan to run a long-running program,
ports guarantee stdin/stdout devices will be closed but it does not
automatically terminate the program. The documentation for the
Port module describes this problem and possible solutions under
the "Orphan operating system processes" section.
Windows argument splitting and untrusted arguments
On Unix systems, arguments are passed to a new operating system
process as an array of strings but on Windows it is up to the child
process to parse them and some Windows programs may apply their own
rules, which are inconsistent with the standard C runtime argv parsing
This is particularly troublesome when invoking .bat or .com files
as these run implicitly through cmd.exe, whose argument parsing is
vulnerable to malicious input and can be used to run arbitrary shell
commands.
Therefore, if you are running on Windows and you execute batch
files or .com applications, you must not pass untrusted input as
arguments to the program. You may avoid accidentally executing them
by explicitly passing the extension of the program you want to run,
such as .exe, and double check the program is indeed not a batch
file or .com application.
Options
	:into - injects the result into the given collectable, defaults to ""

	:lines - (since v1.15.0) reads the output by lines instead of in bytes. It expects a
number of maximum bytes to buffer internally (1024 is a reasonable default).
The collectable will be called with each finished line (regardless of buffer
size) and without the EOL character

	:cd - the directory to run the command in

	:env - an enumerable of tuples containing environment key-value as
binary. The child process inherits all environment variables from its
parent process, the Elixir application, except those overwritten or
cleared using this option. Specify a value of nil to clear (unset) an
environment variable, which is useful for preventing credentials passed
to the application from leaking into child processes

	:arg0 - sets the command arg0

	:stderr_to_stdout - redirects stderr to stdout when true, no effect
if use_stdio is false.

	:use_stdio - true by default, setting it to false allows direct
interaction with the terminal from the callee

	:parallelism - when true, the VM will schedule port tasks to improve
parallelism in the system. If set to false, the VM will try to perform
commands immediately, improving latency at the expense of parallelism.
The default is false, and can be set on system startup by passing the
+spp flag to --erl.
Use :erlang.system_info(:port_parallelism) to check if enabled.

Error reasons
If invalid arguments are given, ArgumentError is raised by
System.cmd/3. System.cmd/3 also expects a strict set of
options and will raise if unknown or invalid options are given.
Furthermore, System.cmd/3 may fail with one of the POSIX reasons
detailed below:
	:system_limit - all available ports in the Erlang emulator are in use

	:enomem - there was not enough memory to create the port

	:eagain - there are no more available operating system processes

	:enametoolong - the external command given was too long

	:emfile - there are no more available file descriptors
(for the operating system process that the Erlang emulator runs in)

	:enfile - the file table is full (for the entire operating system)

	:eacces - the command does not point to an executable file

	:enoent - the command does not point to an existing file

Shell commands
If you desire to execute a trusted command inside a shell, with pipes,
redirecting and so on, please check shell/2.
Examples
iex> System.cmd("echo", ["hello"])
{"hello\n", 0}

iex> System.cmd("echo", ["hello"], env: [{"MIX_ENV", "test"}])
{"hello\n", 0}
If you want to stream the output to Standard IO as it arrives:
iex> System.cmd("echo", ["hello"], into: IO.stream())
hello
{%IO.Stream{}, 0}
If you want to read lines:
iex> System.cmd("echo", ["hello\nworld"], into: [], lines: 1024)
{["hello", "world"], 0}

 compiled_endianness()

 @spec compiled_endianness() :: :little | :big

Returns the endianness the system was compiled with.

 convert_time_unit(time, from_unit, to_unit)

 @spec convert_time_unit(integer(), time_unit() | :native, time_unit() | :native) ::
 integer()

Converts time from time unit from_unit to time unit to_unit.
The result is rounded via the floor function.
convert_time_unit/3 accepts an additional time unit (other than the
ones in the time_unit/0 type) called :native. :native is the time
unit used by the Erlang runtime system. It's determined when the runtime
starts and stays the same until the runtime is stopped, but could differ
the next time the runtime is started on the same machine. For this reason,
you should use this function to convert :native time units to a predictable
unit before you display them to humans.
To determine how many seconds the :native unit represents in your current
runtime, you can call this function to convert 1 second to the :native
time unit: System.convert_time_unit(1, :second, :native).

 cwd()

 This function is deprecated. Use File.cwd/0 instead.

 @spec cwd() :: String.t() | nil

Current working directory.
Returns the current working directory or nil if one
is not available.

 cwd!()

 This function is deprecated. Use File.cwd!/0 instead.

 @spec cwd!() :: String.t()

Current working directory, exception on error.
Returns the current working directory or raises RuntimeError.

 delete_env(varname)

 @spec delete_env(String.t()) :: :ok

Deletes an environment variable.
Removes the variable varname from the environment.

 endianness()

 @spec endianness() :: :little | :big

Returns the endianness.

 fetch_env(varname)

 (since 1.9.0)

 @spec fetch_env(String.t()) :: {:ok, String.t()} | :error

Returns the value of the given environment variable or :error if not found.
If the environment variable varname is set, then {:ok, value} is returned
where value is a string. If varname is not set, :error is returned.
Examples
iex> System.fetch_env("PORT")
{:ok, "4000"}

iex> System.fetch_env("NOT_SET")
:error

 fetch_env!(varname)

 (since 1.9.0)

 @spec fetch_env!(String.t()) :: String.t()

Returns the value of the given environment variable or raises if not found.
Same as get_env/1 but raises instead of returning nil when the variable is
not set.
Examples
iex> System.fetch_env!("PORT")
"4000"

iex> System.fetch_env!("NOT_SET")
** (System.EnvError) could not fetch environment variable "NOT_SET" because it is not set

 find_executable(program)

 @spec find_executable(binary()) :: binary() | nil

Locates an executable on the system.
This function looks up an executable program given
its name using the environment variable PATH on Windows and Unix-like
operating systems. It also considers the proper executable
extension for each operating system, so for Windows it will try to
lookup files with .com, .cmd or similar extensions.

 get_env()

 @spec get_env() :: %{optional(String.t()) => String.t()}

Returns all system environment variables.
The returned value is a map containing name-value pairs.
Variable names and their values are strings.

 get_env(varname, default \\ nil)

 (since 1.9.0)

 @spec get_env(String.t(), String.t()) :: String.t()

 @spec get_env(String.t(), nil) :: String.t() | nil

Returns the value of the given environment variable.
The returned value of the environment variable
varname is a string. If the environment variable
is not set, returns the string specified in default or
nil if none is specified.
Examples
iex> System.get_env("PORT")
"4000"

iex> System.get_env("NOT_SET")
nil

iex> System.get_env("NOT_SET", "4001")
"4001"

 get_pid()

 This function is deprecated. Use System.pid/0 instead.

 @spec get_pid() :: binary()

Erlang VM process identifier.
Returns the process identifier of the current Erlang emulator
in the format most commonly used by the operating system environment.
For more information, see :os.getpid/0.

 halt(status \\ 0)

 @spec halt(non_neg_integer() | binary() | :abort) :: no_return()

Immediately halts the Erlang runtime system.
Terminates the Erlang runtime system without properly shutting down
applications and ports. Please see stop/1 for a careful shutdown of the
system.
status must be a non-negative integer, the atom :abort or a binary.
	If an integer, the runtime system exits with the integer value which
is returned to the operating system.

	If :abort, the runtime system aborts producing a core dump, if that is
enabled in the operating system.

	If a string, an Erlang crash dump is produced with status as slogan,
and then the runtime system exits with status code 1.

Note that on many platforms, only the status codes 0-255 are supported
by the operating system.
For more information, see :erlang.halt/1.
Examples
System.halt(0)
System.halt(1)
System.halt(:abort)

 monotonic_time()

 @spec monotonic_time() :: integer()

Returns the current monotonic time in the :native time unit.
This time is monotonically increasing and starts in an unspecified
point in time. This is not strictly monotonically increasing. Multiple
sequential calls of the function may return the same value.
Inlined by the compiler.

 monotonic_time(unit)

 @spec monotonic_time(time_unit() | :native) :: integer()

Returns the current monotonic time in the given time unit.
This time is monotonically increasing and starts in an unspecified
point in time.

 no_halt()

 (since 1.9.0)

 @spec no_halt() :: boolean()

Checks if the system will halt or not at the end of ARGV processing.

 no_halt(boolean)

 (since 1.9.0)

 @spec no_halt(boolean()) :: :ok

Marks if the system should halt or not at the end of ARGV processing.

 os_time()

 (since 1.3.0)

 @spec os_time() :: integer()

Returns the current operating system (OS) time.
The result is returned in the :native time unit.
This time may be adjusted forwards or backwards in time
with no limitation and is not monotonic.
Inlined by the compiler.

 os_time(unit)

 (since 1.3.0)

 @spec os_time(time_unit() | :native) :: integer()

Returns the current operating system (OS) time in the given time unit.
This time may be adjusted forwards or backwards in time
with no limitation and is not monotonic.

 otp_release()

 (since 1.3.0)

 @spec otp_release() :: String.t()

Returns the Erlang/OTP release number.

 pid()

 (since 1.9.0)

 @spec pid() :: String.t()

Returns the operating system PID for the current Erlang runtime system instance.
Returns a string containing the (usually) numerical identifier for a process.
On Unix-like operating systems, this is typically the return value of the getpid() system call.
On Windows, the process ID as returned by the GetCurrentProcessId() system
call is used.
Examples
System.pid()

 put_env(enum)

 @spec put_env(Enumerable.t()) :: :ok

Sets multiple environment variables.
Sets a new value for each environment variable corresponding
to each {key, value} pair in enum. Keys and non-nil values
are automatically converted to charlists. nil values erase
the given keys.
Overall, this is a convenience wrapper around put_env/2 and
delete_env/2 with support for different key and value formats.

 put_env(varname, value)

 @spec put_env(binary(), binary()) :: :ok

Sets an environment variable value.
Sets a new value for the environment variable varname.

 restart()

 (since 1.9.0)

 @spec restart() :: :ok

Restarts all applications in the Erlang runtime system.
All applications are taken down smoothly, all code is unloaded, and all ports
are closed before the system starts all applications once again.
Examples
System.restart()

 schedulers()

 (since 1.3.0)

 @spec schedulers() :: pos_integer()

Returns the number of schedulers in the VM.

 schedulers_online()

 (since 1.3.0)

 @spec schedulers_online() :: pos_integer()

Returns the number of schedulers online in the VM.

 shell(command, opts \\ [])

 (since 1.12.0)

 @spec shell(binary(), shell_opts()) ::
 {Collectable.t(), exit_status :: non_neg_integer()}

Executes the given command in the OS shell.
It uses sh for Unix-like systems and cmd for Windows.
Watch out
Use this function with care. In particular, never
pass untrusted user input to this function, as the user would be
able to perform "command injection attacks" by executing any code
directly on the machine. Generally speaking, prefer to use cmd/3
over this function.
Examples
iex> System.shell("echo hello")
{"hello\n", 0}
If you want to stream the output to Standard IO as it arrives:
iex> System.shell("echo hello", into: IO.stream())
hello
{%IO.Stream{}, 0}
Options
It accepts the same options as cmd/3 (except for arg0).
It also accepts the following exclusive options:
	:close_stdin (since v1.14.1) - if the stdin should be closed
on Unix systems, forcing any command that waits on stdin to
immediately terminate. Defaults to false.

 stacktrace()

 This function is deprecated. Use __STACKTRACE__ instead.

Deprecated mechanism to retrieve the last exception stacktrace.
It always return an empty list.

 stop(status \\ 0)

 (since 1.5.0)

 @spec stop(non_neg_integer() | binary()) :: :ok

Asynchronously and carefully stops the Erlang runtime system.
All applications are taken down smoothly, all code is unloaded, and all ports
are closed before the system terminates by calling halt/1.
status must be a non-negative integer or a binary.
	If an integer, the runtime system exits with the integer value which is
returned to the operating system. On many platforms, only the status codes
0-255 are supported by the operating system.

	If a binary, an Erlang crash dump is produced with status as slogan, and
then the runtime system exits with status code 1.

Note this function is asynchronous and the current process will continue
executing after this function is invoked. In case you want to block the
current process until the system effectively shuts down, you can invoke
Process.sleep(:infinity).
Examples
System.stop(0)
System.stop(1)

 system_time()

 @spec system_time() :: integer()

Returns the current system time in the :native time unit.
It is the VM view of the os_time/0. They may not match in
case of time warps although the VM works towards aligning
them. This time is not monotonic.
Inlined by the compiler.

 system_time(unit)

 @spec system_time(time_unit() | :native) :: integer()

Returns the current system time in the given time unit.
It is the VM view of the os_time/0. They may not match in
case of time warps although the VM works towards aligning
them. This time is not monotonic.

 time_offset()

 @spec time_offset() :: integer()

Returns the current time offset between the Erlang VM monotonic
time and the Erlang VM system time.
The result is returned in the :native time unit.
See time_offset/1 for more information.
Inlined by the compiler.

 time_offset(unit)

 @spec time_offset(time_unit() | :native) :: integer()

Returns the current time offset between the Erlang VM monotonic
time and the Erlang VM system time.
The result is returned in the given time unit unit. The returned
offset, added to an Erlang monotonic time (for instance, one obtained with
monotonic_time/1), gives the Erlang system time that corresponds
to that monotonic time.

 tmp_dir()

 @spec tmp_dir() :: String.t() | nil

Writable temporary directory.
Returns a writable temporary directory.
Searches for directories in the following order:
	the directory named by the TMPDIR environment variable
	the directory named by the TEMP environment variable
	the directory named by the TMP environment variable
	C:\TMP on Windows or /tmp on Unix-like operating systems
	as a last resort, the current working directory

Returns nil if none of the above are writable.

 tmp_dir!()

 @spec tmp_dir!() :: String.t()

Writable temporary directory, exception on error.
Same as tmp_dir/0 but raises RuntimeError
instead of returning nil if no temp dir is set.

 trap_signal(signal, id \\ make_ref(), fun)

 (since 1.12.0)

 @spec trap_signal(signal(), id, (-> :ok)) ::
 {:ok, id} | {:error, :already_registered} | {:error, :not_sup}
when id: term()

Traps the given signal to execute the fun.
Avoid setting traps in libraries
Trapping signals may have strong implications
on how a system shuts down and behaves in production and
therefore it is extremely discouraged for libraries to
set their own traps. Instead, they should redirect users
to configure them themselves. The only cases where it is
acceptable for libraries to set their own traps is when
using Elixir in script mode, such as in .exs files and
via Mix tasks.
An optional id that uniquely identifies the function
can be given, otherwise a unique one is automatically
generated. If a previously registered id is given,
this function returns an error tuple. The id can be
used to remove a registered signal by calling
untrap_signal/2.
The given fun receives no arguments and it must return
:ok.
It returns {:ok, id} in case of success,
{:error, :already_registered} in case the id has already
been registered for the given signal, or {:error, :not_sup}
in case trapping exists is not supported by the current OS.
The first time a signal is trapped, it will override the
default behavior from the operating system. If the same
signal is trapped multiple times, subsequent functions
given to trap_signal will execute first. In other
words, you can consider each function is prepended to
the signal handler.
By default, the Erlang VM register traps to the three
signals:
	:sigstop - gracefully shuts down the VM with stop/0
	:sigquit - halts the VM via halt/0
	:sigusr1 - halts the VM via status code of 1

Therefore, if you add traps to the signals above, the
default behavior above will be executed after all user
signals.
Implementation notes
All signals run from a single process. Therefore, blocking the
fun will block subsequent traps. It is also not possible to add
or remove traps from within a trap itself.
Internally, this functionality is built on top of :os.set_signal/2.
When you register a trap, Elixir automatically sets it to :handle
and it reverts it back to :default once all traps are removed
(except for :sigquit, :sigterm, and :sigusr1 which are always
handled). If you or a library call :os.set_signal/2 directly,
it may disable Elixir traps (or Elixir may override your configuration).

 unique_integer(modifiers \\ [])

 @spec unique_integer([:positive | :monotonic]) :: integer()

Generates and returns an integer that is unique in the current runtime
instance.
"Unique" means that this function, called with the same list of modifiers,
will never return the same integer more than once on the current runtime
instance.
If modifiers is [], then a unique integer (that can be positive or negative) is returned.
Other modifiers can be passed to change the properties of the returned integer:
	:positive - the returned integer is guaranteed to be positive.
	:monotonic - the returned integer is monotonically increasing. This
means that, on the same runtime instance (but even on different
processes), integers returned using the :monotonic modifier will always
be strictly less than integers returned by successive calls with the
:monotonic modifier.

All modifiers listed above can be combined; repeated modifiers in modifiers
will be ignored.
Inlined by the compiler.

 untrap_signal(signal, id)

 (since 1.12.0)

 @spec untrap_signal(signal(), id) :: :ok | {:error, :not_found} when id: term()

Removes a previously registered signal with id.

 user_home()

 @spec user_home() :: String.t() | nil

User home directory.
Returns the user home directory (platform independent).

 user_home!()

 @spec user_home!() :: String.t()

User home directory, exception on error.
Same as user_home/0 but raises RuntimeError
instead of returning nil if no user home is set.

 version()

 @spec version() :: String.t()

Elixir version information.
Returns Elixir's version as binary.

Calendar behaviour

This module defines the responsibilities for working with
calendars, dates, times and datetimes in Elixir.
It defines types and the minimal implementation
for a calendar behaviour in Elixir. The goal of the calendar
features in Elixir is to provide a base for interoperability
rather than a full-featured datetime API.
For the actual date, time and datetime structs, see Date,
Time, NaiveDateTime, and DateTime.
Types for year, month, day, and more are overspecified.
For example, the month/0 type is specified as an integer
instead of 1..12. This is because different calendars may
have a different number of days per month.

 Summary

 Types

 calendar()

 A calendar implementation.

 date()

 Any map or struct that contains the date fields.

 datetime()

 Any map or struct that contains the datetime fields.

 day()

 day_fraction()

 The internal time format is used when converting between calendars.

 day_of_era()

 A tuple representing the day and the era.

 day_of_week()

 era()

 hour()

 iso_days()

 The internal date format that is used when converting between calendars.

 microsecond()

 Microseconds with stored precision.

 minute()

 month()

 naive_datetime()

 Any map or struct that contains the naive datetime fields.

 second()

 std_offset()

 The time zone standard offset in ISO seconds (typically not zero in summer times).

 strftime_opts()

 Options for formatting dates and times with strftime/3.

 time()

 Any map or struct that contains the time fields.

 time_zone()

 The time zone ID according to the IANA tz database (for example, Europe/Zurich).

 time_zone_database()

 Specifies the time zone database for calendar operations.

 utc_offset()

 The time zone UTC offset in ISO seconds for standard time.

 week()

 year()

 zone_abbr()

 The time zone abbreviation (for example, CET or CEST or BST).

 Callbacks

 date_to_string(year, month, day)

 Converts the date into a string according to the calendar.

 datetime_to_string(
 year,
 month,
 day,
 hour,
 minute,
 second,
 microsecond,
 time_zone,
 zone_abbr,
 utc_offset,
 std_offset
)

 Converts the datetime (with time zone) into a string according to the calendar.

 day_of_era(year, month, day)

 Calculates the day and era from the given year, month, and day.

 day_of_week(year, month, day, starting_on)

 Calculates the day of the week from the given year, month, and day.

 day_of_year(year, month, day)

 Calculates the day of the year from the given year, month, and day.

 day_rollover_relative_to_midnight_utc()

 Define the rollover moment for the calendar.

 days_in_month(year, month)

 Returns how many days there are in the given month of the given year.

 iso_days_to_beginning_of_day(iso_days)

 Converts the given iso_days/0 to the first moment of the day.

 iso_days_to_end_of_day(iso_days)

 Converts the given iso_days/0 to the last moment of the day.

 leap_year?(year)

 Returns true if the given year is a leap year.

 months_in_year(year)

 Returns how many months there are in the given year.

 naive_datetime_from_iso_days(iso_days)

 Converts iso_days/0 to the calendar's datetime format.

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 Converts the datetime (without time zone) into the iso_days/0 format.

 naive_datetime_to_string(year, month, day, hour, minute, second, microsecond)

 Converts the naive datetime (without time zone) into a string according to the calendar.

 parse_date(t)

 Parses the string representation for a date returned by date_to_string/3
into a date tuple.

 parse_naive_datetime(t)

 Parses the string representation for a naive datetime returned by
naive_datetime_to_string/7 into a naive datetime tuple.

 parse_time(t)

 Parses the string representation for a time returned by time_to_string/4
into a time tuple.

 parse_utc_datetime(t)

 Parses the string representation for a datetime returned by
datetime_to_string/11 into a datetime tuple.

 quarter_of_year(year, month, day)

 Calculates the quarter of the year from the given year, month, and day.

 shift_date(year, month, day, t)

 Shifts date by given duration according to its calendar.

 shift_naive_datetime(year, month, day, hour, minute, second, microsecond, t)

 Shifts naive datetime by given duration according to its calendar.

 shift_time(hour, minute, second, microsecond, t)

 Shifts time by given duration according to its calendar.

 time_from_day_fraction(day_fraction)

 Converts day_fraction/0 to the calendar's time format.

 time_to_day_fraction(hour, minute, second, microsecond)

 Converts the given time to the day_fraction/0 format.

 time_to_string(hour, minute, second, microsecond)

 Converts the time into a string according to the calendar.

 valid_date?(year, month, day)

 Should return true if the given date describes a proper date in the calendar.

 valid_time?(hour, minute, second, microsecond)

 Should return true if the given time describes a proper time in the calendar.

 year_of_era(year, month, day)

 Calculates the year and era from the given year.

 Functions

 compatible_calendars?(calendar, calendar)

 Returns true if two calendars have the same moment of starting a new day,
false otherwise.

 get_time_zone_database()

 Gets the current time zone database.

 put_time_zone_database(database)

 Sets the current time zone database.

 strftime(date_or_time_or_datetime, string_format, user_options \\ [])

 Formats the given date, time, or datetime into a string.

 truncate(microsecond_tuple, atom)

 Returns a microsecond tuple truncated to a given precision (:microsecond,
:millisecond, or :second).

 Types

 calendar()

 @type calendar() :: module()

A calendar implementation.

 date()

 @type date() :: %{
 optional(any()) => any(),
 calendar: calendar(),
 year: year(),
 month: month(),
 day: day()
}

Any map or struct that contains the date fields.

 datetime()

 @type datetime() :: %{
 optional(any()) => any(),
 calendar: calendar(),
 year: year(),
 month: month(),
 day: day(),
 hour: hour(),
 minute: minute(),
 second: second(),
 microsecond: microsecond(),
 time_zone: time_zone(),
 zone_abbr: zone_abbr(),
 utc_offset: utc_offset(),
 std_offset: std_offset()
}

Any map or struct that contains the datetime fields.

 day()

 @type day() :: pos_integer()

 day_fraction()

 @type day_fraction() ::
 {parts_in_day :: non_neg_integer(), parts_per_day :: pos_integer()}

The internal time format is used when converting between calendars.
It represents time as a fraction of a day (starting from midnight).
parts_in_day specifies how much of the day is already passed,
while parts_per_day signifies how many parts are there in a day.

 day_of_era()

 @type day_of_era() :: {day :: non_neg_integer(), era()}

A tuple representing the day and the era.

 day_of_week()

 @type day_of_week() :: non_neg_integer()

 era()

 @type era() :: non_neg_integer()

 hour()

 @type hour() :: non_neg_integer()

 iso_days()

 @type iso_days() :: {days :: integer(), day_fraction()}

The internal date format that is used when converting between calendars.
This is the number of days including the fractional part that has passed of
the last day since 0000-01-01+00:00T00:00.000000 in ISO 8601 notation (also
known as midnight 1 January BC 1 of the proleptic Gregorian calendar).

 microsecond()

 @type microsecond() :: {value :: non_neg_integer(), precision :: non_neg_integer()}

Microseconds with stored precision.
value always represents the total value in microseconds.
The precision represents the number of digits that must be used when
representing the microseconds to external format. If the precision is 0,
it means microseconds must be skipped. If the precision is 6, it means
that value represents exactly the number of microseconds to be used.
Examples
	{0, 0} means no microseconds.
	{1, 6} means 1µs.
	{1000, 6} means 1000µs (which is 1ms but measured at the microsecond precision).
	{1000, 3} means 1ms (which is measured at the millisecond precision).

 minute()

 @type minute() :: non_neg_integer()

 month()

 @type month() :: pos_integer()

 naive_datetime()

 @type naive_datetime() :: %{
 optional(any()) => any(),
 calendar: calendar(),
 year: year(),
 month: month(),
 day: day(),
 hour: hour(),
 minute: minute(),
 second: second(),
 microsecond: microsecond()
}

Any map or struct that contains the naive datetime fields.

 second()

 @type second() :: non_neg_integer()

 std_offset()

 @type std_offset() :: integer()

The time zone standard offset in ISO seconds (typically not zero in summer times).
It must be added to utc_offset/0 to get the total offset from UTC used for "wall time".

 strftime_opts()

 @type strftime_opts() :: [
 preferred_datetime: String.t(),
 preferred_date: String.t(),
 preferred_time: String.t(),
 am_pm_names: (:am | :pm -> String.t()) | (:am | :pm, map() -> String.t()),
 month_names:
 (pos_integer() -> String.t()) | (pos_integer(), map() -> String.t()),
 abbreviated_month_names:
 (pos_integer() -> String.t()) | (pos_integer(), map() -> String.t()),
 day_of_week_names:
 (pos_integer() -> String.t()) | (pos_integer(), map() -> String.t()),
 abbreviated_day_of_week_names:
 (pos_integer() -> String.t()) | (pos_integer(), map() -> String.t())
]

Options for formatting dates and times with strftime/3.

 time()

 @type time() :: %{
 optional(any()) => any(),
 hour: hour(),
 minute: minute(),
 second: second(),
 microsecond: microsecond()
}

Any map or struct that contains the time fields.

 time_zone()

 @type time_zone() :: String.t()

The time zone ID according to the IANA tz database (for example, Europe/Zurich).

 time_zone_database()

 @type time_zone_database() :: module()

Specifies the time zone database for calendar operations.
Many functions in the DateTime module require a time zone database.
By default, this module uses the default time zone database returned by
Calendar.get_time_zone_database/0, which defaults to
Calendar.UTCOnlyTimeZoneDatabase. This database only handles Etc/UTC
datetimes and returns {:error, :utc_only_time_zone_database}
for any other time zone.
Other time zone databases (including ones provided by packages)
can be configured as default either via configuration:
config :elixir, :time_zone_database, CustomTimeZoneDatabase
or by calling Calendar.put_time_zone_database/1.
See Calendar.TimeZoneDatabase for more information on custom
time zone databases.

 utc_offset()

 @type utc_offset() :: integer()

The time zone UTC offset in ISO seconds for standard time.
See also std_offset/0.

 week()

 @type week() :: pos_integer()

 year()

 @type year() :: integer()

 zone_abbr()

 @type zone_abbr() :: String.t()

The time zone abbreviation (for example, CET or CEST or BST).

 Callbacks

 date_to_string(year, month, day)

 @callback date_to_string(year(), month(), day()) :: String.t()

Converts the date into a string according to the calendar.

 datetime_to_string(
 year,
 month,
 day,
 hour,
 minute,
 second,
 microsecond,
 time_zone,
 zone_abbr,
 utc_offset,
 std_offset
)

 @callback datetime_to_string(
 year(),
 month(),
 day(),
 hour(),
 minute(),
 second(),
 microsecond(),
 time_zone(),
 zone_abbr(),
 utc_offset(),
 std_offset()
) :: String.t()

Converts the datetime (with time zone) into a string according to the calendar.

 day_of_era(year, month, day)

 @callback day_of_era(year(), month(), day()) :: day_of_era()

Calculates the day and era from the given year, month, and day.

 day_of_week(year, month, day, starting_on)

 @callback day_of_week(year(), month(), day(), starting_on :: :default | atom()) ::
 {day_of_week(), first_day_of_week :: non_neg_integer(),
 last_day_of_week :: non_neg_integer()}

Calculates the day of the week from the given year, month, and day.
starting_on represents the starting day of the week. All
calendars must support at least the :default value. They may
also support other values representing their days of the week.
The value of day_of_week is an ordinal number meaning that a
value of 1 is defined to mean "first day of the week". It is
specifically not defined to mean 1 is Monday.
It is a requirement that first_day_of_week is less than last_day_of_week
and that day_of_week must be within that range. Therefore it can be said
that day_of_week in first_day_of_week..last_day_of_week//1 must be
true for all values of day_of_week.

 day_of_year(year, month, day)

 @callback day_of_year(year(), month(), day()) :: non_neg_integer()

Calculates the day of the year from the given year, month, and day.

 day_rollover_relative_to_midnight_utc()

 @callback day_rollover_relative_to_midnight_utc() :: day_fraction()

Define the rollover moment for the calendar.
This is the moment, in your calendar, when the current day ends
and the next day starts.
The result of this function is used to check if two calendars roll over at
the same time of day. If they do not, we can only convert datetimes and times
between them. If they do, this means that we can also convert dates as well
as naive datetimes between them.
This day fraction should be in its most simplified form possible, to make comparisons fast.
Examples
	If in your calendar a new day starts at midnight, return {0, 1}.
	If in your calendar a new day starts at sunrise, return {1, 4}.
	If in your calendar a new day starts at noon, return {1, 2}.
	If in your calendar a new day starts at sunset, return {3, 4}.

 days_in_month(year, month)

 @callback days_in_month(year(), month()) :: day()

Returns how many days there are in the given month of the given year.

 iso_days_to_beginning_of_day(iso_days)

 (since 1.15.0)

 @callback iso_days_to_beginning_of_day(iso_days()) :: iso_days()

Converts the given iso_days/0 to the first moment of the day.

 iso_days_to_end_of_day(iso_days)

 (since 1.15.0)

 @callback iso_days_to_end_of_day(iso_days()) :: iso_days()

Converts the given iso_days/0 to the last moment of the day.

 leap_year?(year)

 @callback leap_year?(year()) :: boolean()

Returns true if the given year is a leap year.
A leap year is a year of a longer length than normal. The exact meaning
is up to the calendar. A calendar must return false if it does not support
the concept of leap years.

 months_in_year(year)

 @callback months_in_year(year()) :: month()

Returns how many months there are in the given year.

 naive_datetime_from_iso_days(iso_days)

 @callback naive_datetime_from_iso_days(iso_days()) ::
 {year(), month(), day(), hour(), minute(), second(), microsecond()}

Converts iso_days/0 to the calendar's datetime format.

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 @callback naive_datetime_to_iso_days(
 year(),
 month(),
 day(),
 hour(),
 minute(),
 second(),
 microsecond()
) ::
 iso_days()

Converts the datetime (without time zone) into the iso_days/0 format.

 naive_datetime_to_string(year, month, day, hour, minute, second, microsecond)

 @callback naive_datetime_to_string(
 year(),
 month(),
 day(),
 hour(),
 minute(),
 second(),
 microsecond()
) ::
 String.t()

Converts the naive datetime (without time zone) into a string according to the calendar.

 parse_date(t)

 (since 1.10.0)

 @callback parse_date(String.t()) :: {:ok, {year(), month(), day()}} | {:error, atom()}

Parses the string representation for a date returned by date_to_string/3
into a date tuple.

 parse_naive_datetime(t)

 (since 1.10.0)

 @callback parse_naive_datetime(String.t()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()}}
 | {:error, atom()}

Parses the string representation for a naive datetime returned by
naive_datetime_to_string/7 into a naive datetime tuple.
The given string may contain a timezone offset but it is ignored.

 parse_time(t)

 (since 1.10.0)

 @callback parse_time(String.t()) ::
 {:ok, {hour(), minute(), second(), microsecond()}} | {:error, atom()}

Parses the string representation for a time returned by time_to_string/4
into a time tuple.

 parse_utc_datetime(t)

 (since 1.10.0)

 @callback parse_utc_datetime(String.t()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()},
 utc_offset()}
 | {:error, atom()}

Parses the string representation for a datetime returned by
datetime_to_string/11 into a datetime tuple.
The returned datetime must be in UTC. The original utc_offset
it was written in must be returned in the result.

 quarter_of_year(year, month, day)

 @callback quarter_of_year(year(), month(), day()) :: non_neg_integer()

Calculates the quarter of the year from the given year, month, and day.

 shift_date(year, month, day, t)

 (since 1.17.0)

 @callback shift_date(year(), month(), day(), Duration.t()) :: {year(), month(), day()}

Shifts date by given duration according to its calendar.

 shift_naive_datetime(year, month, day, hour, minute, second, microsecond, t)

 (since 1.17.0)

 @callback shift_naive_datetime(
 year(),
 month(),
 day(),
 hour(),
 minute(),
 second(),
 microsecond(),
 Duration.t()
) :: {year(), month(), day(), hour(), minute(), second(), microsecond()}

Shifts naive datetime by given duration according to its calendar.

 shift_time(hour, minute, second, microsecond, t)

 (since 1.17.0)

 @callback shift_time(hour(), minute(), second(), microsecond(), Duration.t()) ::
 {hour(), minute(), second(), microsecond()}

Shifts time by given duration according to its calendar.

 time_from_day_fraction(day_fraction)

 @callback time_from_day_fraction(day_fraction()) ::
 {hour(), minute(), second(), microsecond()}

Converts day_fraction/0 to the calendar's time format.

 time_to_day_fraction(hour, minute, second, microsecond)

 @callback time_to_day_fraction(hour(), minute(), second(), microsecond()) ::
 day_fraction()

Converts the given time to the day_fraction/0 format.

 time_to_string(hour, minute, second, microsecond)

 @callback time_to_string(hour(), minute(), second(), microsecond()) :: String.t()

Converts the time into a string according to the calendar.

 valid_date?(year, month, day)

 @callback valid_date?(year(), month(), day()) :: boolean()

Should return true if the given date describes a proper date in the calendar.

 valid_time?(hour, minute, second, microsecond)

 @callback valid_time?(hour(), minute(), second(), microsecond()) :: boolean()

Should return true if the given time describes a proper time in the calendar.

 year_of_era(year, month, day)

 @callback year_of_era(year(), month(), day()) :: {year(), era()}

Calculates the year and era from the given year.

 Functions

 compatible_calendars?(calendar, calendar)

 (since 1.5.0)

 @spec compatible_calendars?(calendar(), calendar()) :: boolean()

Returns true if two calendars have the same moment of starting a new day,
false otherwise.
If two calendars are not compatible, we can only convert datetimes and times
between them. If they are compatible, this means that we can also convert
dates as well as naive datetimes between them.

 get_time_zone_database()

 (since 1.8.0)

 @spec get_time_zone_database() :: time_zone_database()

Gets the current time zone database.

 put_time_zone_database(database)

 (since 1.8.0)

 @spec put_time_zone_database(time_zone_database()) :: :ok

Sets the current time zone database.

 strftime(date_or_time_or_datetime, string_format, user_options \\ [])

 (since 1.11.0)

 @spec strftime(map(), String.t(), strftime_opts()) :: String.t()

Formats the given date, time, or datetime into a string.
The datetime can be any of the Calendar types (Time, Date,
NaiveDateTime, and DateTime) or any map, as long as they
contain all of the relevant fields necessary for formatting.
For example, if you use %Y to format the year, the datetime
must have the :year field. Therefore, if you pass a Time,
or a map without the :year field to a format that expects %Y,
an error will be raised.
Examples of common usage:
iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%y-%m-%d %I:%M:%S %p")
"19-08-26 01:52:06 PM"

iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%a, %B %d %Y")
"Mon, August 26 2019"
User Options
	:preferred_datetime - a string for the preferred format to show datetimes,
it can't contain the %c format and defaults to "%Y-%m-%d %H:%M:%S"
if the option is not received

	:preferred_date - a string for the preferred format to show dates,
it can't contain the %x format and defaults to "%Y-%m-%d"
if the option is not received

	:preferred_time - a string for the preferred format to show times,
it can't contain the %X format and defaults to "%H:%M:%S"
if the option is not received

	:am_pm_names - a function that receives either :am or :pm
(and also the datetime if the function is arity/2) and returns
the name of the period of the day, if the option is not received it defaults
to a function that returns "am" and "pm", respectively

	 :month_names - a function that receives a number (and also the
datetime if the function is arity/2) and returns the name of
the corresponding month, if the option is not received it defaults to a
function that returns the month names in English

	:abbreviated_month_names - a function that receives a number (and also
the datetime if the function is arity/2) and returns the
abbreviated name of the corresponding month, if the option is not received it
defaults to a function that returns the abbreviated month names in English

	:day_of_week_names - a function that receives a number and (and also the
datetime if the function is arity/2) returns the name of
the corresponding day of week, if the option is not received it defaults to a
function that returns the day of week names in English

	:abbreviated_day_of_week_names - a function that receives a number (and also
the datetime if the function is arity/2) and returns the abbreviated name of
the corresponding day of week, if the option is not received it defaults to a
function that returns the abbreviated day of week names in English

Formatting syntax
The formatting syntax for the string_format argument is a sequence of characters in
the following format:
%<padding><width><format>
where:
	%: indicates the start of a formatted section
	<padding>: set the padding (see below)
	<width>: a number indicating the minimum size of the formatted section
	<format>: the format itself (see below)

Accepted padding options
	-: no padding, removes all padding from the format
	_: pad with spaces
	0: pad with zeroes

Accepted string formats
The accepted formats for string_format are:
	Format	Description	Examples (in ISO)
	a	Abbreviated name of day	Mon
	A	Full name of day	Monday
	b	Abbreviated month name	Jan
	B	Full month name	January
	c	Preferred date+time representation	2018-10-17 12:34:56
	d	Day of the month	01, 31
	f	Microseconds (uses its precision for width and padding)	000000, 999999, 0123
	H	Hour using a 24-hour clock	00, 23
	I	Hour using a 12-hour clock	01, 12
	j	Day of the year	001, 366
	m	Month	01, 12
	M	Minute	00, 59
	p	"AM" or "PM" (noon is "PM", midnight as "AM")	AM, PM
	P	"am" or "pm" (noon is "pm", midnight as "am")	am, pm
	q	Quarter	1, 2, 3, 4
	s	Number of seconds since the Epoch, 1970-01-01 00:00:00+0000 (UTC)	1565888877
	S	Second	00, 59, 60
	u	Day of the week	1 (Monday), 7 (Sunday)
	x	Preferred date (without time) representation	2018-10-17
	X	Preferred time (without date) representation	12:34:56
	y	Year as 2-digits	01, 01, 86, 18
	Y	Year	-0001, 0001, 1986
	z	+hhmm/-hhmm time zone offset from UTC (empty string if naive)	+0300, -0530
	Z	Time zone abbreviation (empty string if naive)	CET, BRST
	%	Literal "%" character	%

Any other character will be interpreted as an invalid format and raise an error.
%f Microseconds
%f does not support width and padding modifiers. It will be formatted by truncating
the microseconds to the precision of the microseconds field of the struct, with a
minimum precision of 1.
Examples
Without user options:
iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%y-%m-%d %I:%M:%S %p")
"19-08-26 01:52:06 PM"

iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%a, %B %d %Y")
"Mon, August 26 2019"

iex> Calendar.strftime(~U[2020-04-02 13:52:06.0Z], "%B %-d, %Y")
"April 2, 2020"

iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%c")
"2019-08-26 13:52:06"
With user options:
iex> Calendar.strftime(~U[2019-08-26 13:52:06.0Z], "%c", preferred_datetime: "%H:%M:%S %d-%m-%y")
"13:52:06 26-08-19"

iex> Calendar.strftime(
...> ~U[2019-08-26 13:52:06.0Z],
...> "%A",
...> day_of_week_names: fn day_of_week ->
...> {"segunda-feira", "terça-feira", "quarta-feira", "quinta-feira",
...> "sexta-feira", "sábado", "domingo"}
...> |> elem(day_of_week - 1)
...> end
...>)
"segunda-feira"

iex> Calendar.strftime(
...> ~U[2019-08-26 13:52:06.0Z],
...> "%B",
...> month_names: fn month ->
...> {"січень", "лютий", "березень", "квітень", "травень", "червень",
...> "липень", "серпень", "вересень", "жовтень", "листопад", "грудень"}
...> |> elem(month - 1)
...> end
...>)
"серпень"
 Microsecond formatting:
iex> Calendar.strftime(~U[2019-08-26 13:52:06Z], "%y-%m-%d %H:%M:%S.%f")
"19-08-26 13:52:06.0"

iex> Calendar.strftime(~U[2019-08-26 13:52:06.048Z], "%y-%m-%d %H:%M:%S.%f")
"19-08-26 13:52:06.048"

iex> Calendar.strftime(~U[2019-08-26 13:52:06.048531Z], "%y-%m-%d %H:%M:%S.%f")
"19-08-26 13:52:06.048531"

 truncate(microsecond_tuple, atom)

 (since 1.6.0)

 @spec truncate(microsecond(), :microsecond | :millisecond | :second) :: microsecond()

Returns a microsecond tuple truncated to a given precision (:microsecond,
:millisecond, or :second).

Calendar.ISO

The default calendar implementation, a Gregorian calendar following ISO 8601.
This calendar implements a proleptic Gregorian calendar and
is therefore compatible with the calendar used in most countries
today. The proleptic means the Gregorian rules for leap years are
applied for all time, consequently the dates give different results
before the year 1583 from when the Gregorian calendar was adopted.
ISO 8601 compliance
The ISO 8601 specification is feature-rich, but allows applications
to selectively implement most parts of it. The choices Elixir makes
are catalogued below.
Features
The standard library supports a minimal set of possible ISO 8601 features.
Specifically, the parser only supports calendar dates and does not support
ordinal and week formats. Additionally, it supports parsing ISO 8601
formatted durations, including negative time units and fractional seconds.
By default Elixir only parses extended-formatted date/times. You can opt-in
to parse basic-formatted date/times.
NaiveDateTime.to_iso8601/2 and DateTime.to_iso8601/2 allow you to produce
either basic or extended formatted strings, and Calendar.strftime/2 allows
you to format datetimes however else you desire.
Elixir does not support reduced accuracy formats (for example, a date without
the day component) nor decimal precisions in the lowest component (such as
10:01:25,5).
Examples
Elixir expects the extended format by default when parsing:
iex> Calendar.ISO.parse_naive_datetime("2015-01-23T23:50:07")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("20150123T235007")
{:error, :invalid_format}
Parsing can be restricted to basic if desired:
iex> Calendar.ISO.parse_naive_datetime("20150123T235007Z", :basic)
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("20150123T235007Z", :extended)
{:error, :invalid_format}
Only calendar dates are supported in parsing; ordinal and week dates are not.
iex> Calendar.ISO.parse_date("2015-04-15")
{:ok, {2015, 4, 15}}
iex> Calendar.ISO.parse_date("2015-105")
{:error, :invalid_format}
iex> Calendar.ISO.parse_date("2015-W16")
{:error, :invalid_format}
iex> Calendar.ISO.parse_date("2015-W016-3")
{:error, :invalid_format}
Years, months, days, hours, minutes, and seconds must be fully specified:
iex> Calendar.ISO.parse_date("2015-04-15")
{:ok, {2015, 4, 15}}
iex> Calendar.ISO.parse_date("2015-04")
{:error, :invalid_format}
iex> Calendar.ISO.parse_date("2015")
{:error, :invalid_format}

iex> Calendar.ISO.parse_time("23:50:07.0123456")
{:ok, {23, 50, 7, {12345, 6}}}
iex> Calendar.ISO.parse_time("23:50:07")
{:ok, {23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_time("23:50")
{:error, :invalid_format}
iex> Calendar.ISO.parse_time("23")
{:error, :invalid_format}
Extensions
The parser and formatter adopt one ISO 8601 extension: extended year notation.
This allows dates to be prefixed with a + or - sign, extending the range of
expressible years from the default (0000..9999) to -9999..9999. Elixir still
restricts years in this format to four digits.
Examples
iex> Calendar.ISO.parse_date("-2015-01-23")
{:ok, {-2015, 1, 23}}
iex> Calendar.ISO.parse_date("+2015-01-23")
{:ok, {2015, 1, 23}}

iex> Calendar.ISO.parse_naive_datetime("-2015-01-23 23:50:07")
{:ok, {-2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("+2015-01-23 23:50:07")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}

iex> Calendar.ISO.parse_utc_datetime("-2015-01-23 23:50:07Z")
{:ok, {-2015, 1, 23, 23, 50, 7, {0, 0}}, 0}
iex> Calendar.ISO.parse_utc_datetime("+2015-01-23 23:50:07Z")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}, 0}
Additions
ISO 8601 does not allow a whitespace instead of T as a separator
between date and times, both when parsing and formatting.
This is a common enough representation, Elixir allows it during parsing.
The formatting of dates in NaiveDateTime.to_iso8601/1 and DateTime.to_iso8601/1
do produce specification-compliant string representations using the T separator.
Examples
iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07.0123456")
{:ok, {2015, 1, 23, 23, 50, 7, {12345, 6}}}
iex> Calendar.ISO.parse_naive_datetime("2015-01-23T23:50:07.0123456")
{:ok, {2015, 1, 23, 23, 50, 7, {12345, 6}}}

iex> Calendar.ISO.parse_utc_datetime("2015-01-23 23:50:07.0123456Z")
{:ok, {2015, 1, 23, 23, 50, 7, {12345, 6}}, 0}
iex> Calendar.ISO.parse_utc_datetime("2015-01-23T23:50:07.0123456Z")
{:ok, {2015, 1, 23, 23, 50, 7, {12345, 6}}, 0}

 Summary

 Types

 bce()

 "Before the Current Era" or "Before the Common Era" (BCE), for those years less than 1.

 ce()

 The "Current Era" or the "Common Era" (CE) which starts in year 1.

 day()

 day_of_week()

 Integer that represents the day of the week, where 1 is Monday and 7 is Sunday.

 day_of_year()

 era()

 The calendar era.

 format()

 hour()

 microsecond()

 Microseconds with stored precision.

 minute()

 month()

 quarter_of_year()

 second()

 utc_offset()

 weekday()

 year()

 year_of_era()

 Functions

 date_to_iodata(year, month, day, format \\ :extended)

 Converts the given date into a iodata.

 date_to_string(year, month, day, format \\ :extended)

 Converts the given date into a string.

 datetime_to_iodata(year, month, day, hour, minute, second, microsecond, time_zone, zone_abbr, utc_offset, std_offset, format \\ :extended)

 Converts the given datetime into a iodata.

 datetime_to_string(year, month, day, hour, minute, second, microsecond, time_zone, zone_abbr, utc_offset, std_offset, format \\ :extended)

 Converts the datetime (with time zone) into a string.

 day_of_era(year, month, day)

 Calculates the day and era from the given year, month, and day.

 day_of_week(year, month, day, starting_on)

 Calculates the day of the week from the given year, month, and day.

 day_of_year(year, month, day)

 Calculates the day of the year from the given year, month, and day.

 day_rollover_relative_to_midnight_utc()

 See Calendar.day_rollover_relative_to_midnight_utc/0 for documentation.

 days_in_month(year, month)

 Returns how many days there are in the given year-month.

 iso_days_to_beginning_of_day(arg)

 Converts the Calendar.iso_days/0 to the first moment of the day.

 iso_days_to_end_of_day(arg)

 Converts the Calendar.iso_days/0 to the last moment of the day.

 leap_year?(year)

 Returns if the given year is a leap year.

 months_in_year(year)

 Returns how many months there are in the given year.

 naive_datetime_from_iso_days(arg)

 Converts the Calendar.iso_days/0 format to the datetime format specified by this calendar.

 naive_datetime_to_iodata(year, month, day, hour, minute, second, microsecond, format \\ :extended)

 Converts the given naive_datetime into a iodata.

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 Returns the Calendar.iso_days/0 format of the specified date.

 naive_datetime_to_string(year, month, day, hour, minute, second, microsecond, format \\ :extended)

 Converts the datetime (without time zone) into a string.

 parse_date(string)

 Parses a date string in the :extended format.

 parse_date(string, format)

 Parses a date string according to a given format.

 parse_duration(arg1)

 Parses an ISO 8601 formatted duration string to a list of Duration compabitble unit pairs.

 parse_naive_datetime(string)

 Parses a naive datetime string in the :extended format.

 parse_naive_datetime(string, format)

 Parses a naive datetime string according to a given format.

 parse_time(string)

 Parses a time string in the :extended format.

 parse_time(string, format)

 Parses a time string according to a given format.

 parse_utc_datetime(string)

 Parses a UTC datetime string in the :extended format.

 parse_utc_datetime(string, format)

 Parses a UTC datetime string according to a given format.

 quarter_of_year(year, month, day)

 Calculates the quarter of the year from the given year, month, and day.

 shift_date(year, month, day, duration)

 Shifts Date by Duration according to its calendar.

 shift_naive_datetime(year, month, day, hour, minute, second, microsecond, duration)

 Shifts NaiveDateTime by Duration according to its calendar.

 shift_time(hour, minute, second, microsecond, duration)

 Shifts Time by Duration units according to its calendar.

 time_from_day_fraction(arg)

 Converts a day fraction to this Calendar's representation of time.

 time_to_day_fraction(hour, minute, second, arg)

 Returns the normalized day fraction of the specified time.

 time_to_iodata(hour, minute, second, microsecond, format \\ :extended)

 Converts the given time into a iodata.

 time_to_string(hour, minute, second, microsecond, format \\ :extended)

 Converts the given time into a string.

 time_unit_to_precision(int)

 Converts a System.time_unit/0 to precision.

 valid_date?(year, month, day)

 Determines if the date given is valid according to the proleptic Gregorian calendar.

 valid_time?(hour, minute, second, microsecond)

 Determines if the date given is valid according to the proleptic Gregorian calendar.

 year_of_era(year)

 Calculates the year and era from the given year.

 year_of_era(year, month, day)

 Calendar callback to compute the year and era from the
given year, month and day.

 Types

 bce()

 @type bce() :: 0

"Before the Current Era" or "Before the Common Era" (BCE), for those years less than 1.

 ce()

 @type ce() :: 1

The "Current Era" or the "Common Era" (CE) which starts in year 1.

 day()

 @type day() :: 1..31

 day_of_week()

 @type day_of_week() :: 1..7

Integer that represents the day of the week, where 1 is Monday and 7 is Sunday.

 day_of_year()

 @type day_of_year() :: 1..366

 era()

 @type era() :: bce() | ce()

The calendar era.
The ISO calendar has two eras:
	CE - which starts in year 1 and is defined as era 1.
	BCE - for those years less than 1 and is defined as era 0.

 format()

 @type format() :: :basic | :extended

 hour()

 @type hour() :: 0..23

 microsecond()

 @type microsecond() :: {0..999_999, 0..6}

Microseconds with stored precision.
The precision represents the number of digits that must be used when
representing the microseconds to external format. If the precision is 0,
it means microseconds must be skipped.

 minute()

 @type minute() :: 0..59

 month()

 @type month() :: 1..12

 quarter_of_year()

 @type quarter_of_year() :: 1..4

 second()

 @type second() :: 0..59

 utc_offset()

 @type utc_offset() :: integer()

 weekday()

 @type weekday() ::
 :monday | :tuesday | :wednesday | :thursday | :friday | :saturday | :sunday

 year()

 @type year() :: -9999..9999

 year_of_era()

 @type year_of_era() :: {1..10000, era()}

 Functions

 date_to_iodata(year, month, day, format \\ :extended)

 (since 1.19.0)

 @spec date_to_iodata(year(), month(), day(), :basic | :extended) :: iodata()

Converts the given date into a iodata.
See date_to_string/4 for more information.
Examples
iex> data = Calendar.ISO.date_to_iodata(2015, 2, 28)
iex> IO.iodata_to_binary(data)
"2015-02-28"

 date_to_string(year, month, day, format \\ :extended)

 (since 1.4.0)

 @spec date_to_string(year(), month(), day(), :basic | :extended) :: String.t()

Converts the given date into a string.
By default, returns dates formatted in the "extended" format,
for human readability. It also supports the "basic" format
by passing the :basic option.
Examples
iex> Calendar.ISO.date_to_string(2015, 2, 28)
"2015-02-28"
iex> Calendar.ISO.date_to_string(2017, 8, 1)
"2017-08-01"
iex> Calendar.ISO.date_to_string(-99, 1, 31)
"-0099-01-31"

iex> Calendar.ISO.date_to_string(2015, 2, 28, :basic)
"20150228"
iex> Calendar.ISO.date_to_string(-99, 1, 31, :basic)
"-00990131"

 datetime_to_iodata(year, month, day, hour, minute, second, microsecond, time_zone, zone_abbr, utc_offset, std_offset, format \\ :extended)

 (since 1.19.0)

 @spec datetime_to_iodata(
 year(),
 month(),
 day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 Calendar.time_zone(),
 Calendar.zone_abbr(),
 Calendar.utc_offset(),
 Calendar.std_offset(),
 :basic | :extended
) :: iodata()

Converts the given datetime into a iodata.
See datetime_to_iodata/12 for more information.
Examples
iex> time_zone = "Etc/UTC"
iex> data = Calendar.ISO.datetime_to_iodata(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "UTC", 0, 0)
iex> IO.iodata_to_binary(data)
"2017-08-01 01:02:03.00000Z"

 datetime_to_string(year, month, day, hour, minute, second, microsecond, time_zone, zone_abbr, utc_offset, std_offset, format \\ :extended)

 (since 1.4.0)

 @spec datetime_to_string(
 year(),
 month(),
 day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 Calendar.time_zone(),
 Calendar.zone_abbr(),
 Calendar.utc_offset(),
 Calendar.std_offset(),
 :basic | :extended
) :: String.t()

Converts the datetime (with time zone) into a string.
By default, returns datetimes formatted in the "extended" format,
for human readability. It also supports the "basic" format
by passing the :basic option.
Examples
iex> time_zone = "Etc/UTC"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "UTC", 0, 0)
"2017-08-01 01:02:03.00000Z"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "UTC", 3600, 0)
"2017-08-01 01:02:03.00000+01:00"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "UTC", 3600, 3600)
"2017-08-01 01:02:03.00000+02:00"

iex> time_zone = "Europe/Berlin"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "CET", 3600, 0)
"2017-08-01 01:02:03.00000+01:00 CET Europe/Berlin"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "CDT", 3600, 3600)
"2017-08-01 01:02:03.00000+02:00 CDT Europe/Berlin"

iex> time_zone = "America/Los_Angeles"
iex> Calendar.ISO.datetime_to_string(2015, 2, 28, 1, 2, 3, {4, 5}, time_zone, "PST", -28800, 0)
"2015-02-28 01:02:03.00000-08:00 PST America/Los_Angeles"
iex> Calendar.ISO.datetime_to_string(2015, 2, 28, 1, 2, 3, {4, 5}, time_zone, "PDT", -28800, 3600)
"2015-02-28 01:02:03.00000-07:00 PDT America/Los_Angeles"

iex> time_zone = "Europe/Berlin"
iex> Calendar.ISO.datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5}, time_zone, "CET", 3600, 0, :basic)
"20170801 010203.00000+0100 CET Europe/Berlin"

 day_of_era(year, month, day)

 (since 1.8.0)

 @spec day_of_era(year(), month(), day()) :: Calendar.day_of_era()

Calculates the day and era from the given year, month, and day.
Examples
iex> Calendar.ISO.day_of_era(0, 1, 1)
{366, 0}
iex> Calendar.ISO.day_of_era(1, 1, 1)
{1, 1}
iex> Calendar.ISO.day_of_era(0, 12, 31)
{1, 0}
iex> Calendar.ISO.day_of_era(0, 12, 30)
{2, 0}
iex> Calendar.ISO.day_of_era(-1, 12, 31)
{367, 0}

 day_of_week(year, month, day, starting_on)

 (since 1.11.0)

 @spec day_of_week(year(), month(), day(), :default | weekday()) ::
 {day_of_week(), 1, 7}

Calculates the day of the week from the given year, month, and day.
It is an integer from 1 to 7, where 1 is the given starting_on weekday.
For example, if starting_on is set to :monday, then 1 is Monday and
7 is Sunday.
starting_on can also be :default, which is equivalent to :monday.
Examples
iex> Calendar.ISO.day_of_week(2016, 10, 31, :monday)
{1, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 1, :monday)
{2, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 2, :monday)
{3, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 3, :monday)
{4, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 4, :monday)
{5, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 5, :monday)
{6, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 6, :monday)
{7, 1, 7}
iex> Calendar.ISO.day_of_week(-99, 1, 31, :monday)
{4, 1, 7}

iex> Calendar.ISO.day_of_week(2016, 10, 31, :sunday)
{2, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 1, :sunday)
{3, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 2, :sunday)
{4, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 3, :sunday)
{5, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 4, :sunday)
{6, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 5, :sunday)
{7, 1, 7}
iex> Calendar.ISO.day_of_week(2016, 11, 6, :sunday)
{1, 1, 7}
iex> Calendar.ISO.day_of_week(-99, 1, 31, :sunday)
{5, 1, 7}

iex> Calendar.ISO.day_of_week(2016, 10, 31, :saturday)
{3, 1, 7}

 day_of_year(year, month, day)

 (since 1.8.0)

 @spec day_of_year(year(), month(), day()) :: day_of_year()

Calculates the day of the year from the given year, month, and day.
It is an integer from 1 to 366.
Examples
iex> Calendar.ISO.day_of_year(2016, 1, 31)
31
iex> Calendar.ISO.day_of_year(-99, 2, 1)
32
iex> Calendar.ISO.day_of_year(2018, 2, 28)
59

 day_rollover_relative_to_midnight_utc()

 (since 1.5.0)

 @spec day_rollover_relative_to_midnight_utc() :: {0, 1}

See Calendar.day_rollover_relative_to_midnight_utc/0 for documentation.

 days_in_month(year, month)

 (since 1.4.0)

 @spec days_in_month(year(), month()) :: 28..31

Returns how many days there are in the given year-month.
Examples
iex> Calendar.ISO.days_in_month(1900, 1)
31
iex> Calendar.ISO.days_in_month(1900, 2)
28
iex> Calendar.ISO.days_in_month(2000, 2)
29
iex> Calendar.ISO.days_in_month(2001, 2)
28
iex> Calendar.ISO.days_in_month(2004, 2)
29
iex> Calendar.ISO.days_in_month(2004, 4)
30
iex> Calendar.ISO.days_in_month(-1, 5)
31

 iso_days_to_beginning_of_day(arg)

 (since 1.15.0)

 @spec iso_days_to_beginning_of_day(Calendar.iso_days()) :: Calendar.iso_days()

Converts the Calendar.iso_days/0 to the first moment of the day.
Examples
iex> Calendar.ISO.iso_days_to_beginning_of_day({0, {0, 86_400_000_000}})
{0, {0, 86400000000}}
iex> Calendar.ISO.iso_days_to_beginning_of_day({730_485, {43_200_000_000, 86_400_000_000}})
{730485, {0, 86400000000}}
iex> Calendar.ISO.iso_days_to_beginning_of_day({730_485, {46_800_000_000, 86_400_000_000}})
{730485, {0, 86400000000}}

 iso_days_to_end_of_day(arg)

 (since 1.15.0)

 @spec iso_days_to_end_of_day(Calendar.iso_days()) :: Calendar.iso_days()

Converts the Calendar.iso_days/0 to the last moment of the day.
Examples
iex> Calendar.ISO.iso_days_to_end_of_day({0, {0, 86_400_000_000}})
{0, {86399999999, 86400000000}}
iex> Calendar.ISO.iso_days_to_end_of_day({730_485, {43_200_000_000, 86_400_000_000}})
{730485, {86399999999, 86400000000}}
iex> Calendar.ISO.iso_days_to_end_of_day({730_485, {46_800_000_000, 86_400_000_000}})
{730485, {86399999999, 86400000000}}

 leap_year?(year)

 (since 1.3.0)

 @spec leap_year?(year()) :: boolean()

Returns if the given year is a leap year.
Examples
iex> Calendar.ISO.leap_year?(2000)
true
iex> Calendar.ISO.leap_year?(2001)
false
iex> Calendar.ISO.leap_year?(2004)
true
iex> Calendar.ISO.leap_year?(1900)
false
iex> Calendar.ISO.leap_year?(-4)
true

 months_in_year(year)

 (since 1.7.0)

 @spec months_in_year(year()) :: 12

Returns how many months there are in the given year.
Example
iex> Calendar.ISO.months_in_year(2004)
12

 naive_datetime_from_iso_days(arg)

 (since 1.5.0)

 @spec naive_datetime_from_iso_days(Calendar.iso_days()) ::
 {Calendar.year(), Calendar.month(), Calendar.day(), Calendar.hour(),
 Calendar.minute(), Calendar.second(), Calendar.microsecond()}

Converts the Calendar.iso_days/0 format to the datetime format specified by this calendar.
Examples
iex> Calendar.ISO.naive_datetime_from_iso_days({0, {0, 86_400}})
{0, 1, 1, 0, 0, 0, {0, 6}}
iex> Calendar.ISO.naive_datetime_from_iso_days({730_485, {0, 86_400}})
{2000, 1, 1, 0, 0, 0, {0, 6}}
iex> Calendar.ISO.naive_datetime_from_iso_days({730_485, {43_200, 86_400}})
{2000, 1, 1, 12, 0, 0, {0, 6}}
iex> Calendar.ISO.naive_datetime_from_iso_days({-365, {0, 86_400_000_000}})
{-1, 1, 1, 0, 0, 0, {0, 6}}

 naive_datetime_to_iodata(year, month, day, hour, minute, second, microsecond, format \\ :extended)

 (since 1.19.0)

 @spec naive_datetime_to_iodata(
 year(),
 month(),
 day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 :basic | :extended
) :: iodata()

Converts the given naive_datetime into a iodata.
See naive_datetime_to_iodata/8 for more information.
Examples
iex> data = Calendar.ISO.naive_datetime_to_iodata(2015, 2, 28, 1, 2, 3, {4, 6}, :basic)
iex> IO.iodata_to_binary(data)
"20150228 010203.000004"

iex> data = Calendar.ISO.naive_datetime_to_iodata(2015, 2, 28, 1, 2, 3, {4, 6}, :extended)
iex> IO.iodata_to_binary(data)
"2015-02-28 01:02:03.000004"

 naive_datetime_to_iso_days(year, month, day, hour, minute, second, microsecond)

 (since 1.5.0)

 @spec naive_datetime_to_iso_days(
 Calendar.year(),
 Calendar.month(),
 Calendar.day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond()
) :: Calendar.iso_days()

Returns the Calendar.iso_days/0 format of the specified date.
Examples
iex> Calendar.ISO.naive_datetime_to_iso_days(0, 1, 1, 0, 0, 0, {0, 6})
{0, {0, 86400000000}}
iex> Calendar.ISO.naive_datetime_to_iso_days(2000, 1, 1, 12, 0, 0, {0, 6})
{730485, {43200000000, 86400000000}}
iex> Calendar.ISO.naive_datetime_to_iso_days(2000, 1, 1, 13, 0, 0, {0, 6})
{730485, {46800000000, 86400000000}}
iex> Calendar.ISO.naive_datetime_to_iso_days(-1, 1, 1, 0, 0, 0, {0, 6})
{-365, {0, 86400000000}}

 naive_datetime_to_string(year, month, day, hour, minute, second, microsecond, format \\ :extended)

 (since 1.4.0)

 @spec naive_datetime_to_string(
 year(),
 month(),
 day(),
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 :basic | :extended
) :: String.t()

Converts the datetime (without time zone) into a string.
By default, returns datetimes formatted in the "extended" format,
for human readability. It also supports the "basic" format
by passing the :basic option.
Examples
iex> Calendar.ISO.naive_datetime_to_string(2015, 2, 28, 1, 2, 3, {4, 6})
"2015-02-28 01:02:03.000004"
iex> Calendar.ISO.naive_datetime_to_string(2017, 8, 1, 1, 2, 3, {4, 5})
"2017-08-01 01:02:03.00000"

iex> Calendar.ISO.naive_datetime_to_string(2015, 2, 28, 1, 2, 3, {4, 6}, :basic)
"20150228 010203.000004"

 parse_date(string)

 (since 1.10.0)

 @spec parse_date(String.t()) :: {:ok, {year(), month(), day()}} | {:error, atom()}

Parses a date string in the :extended format.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_date("2015-01-23")
{:ok, {2015, 1, 23}}

iex> Calendar.ISO.parse_date("2015:01:23")
{:error, :invalid_format}
iex> Calendar.ISO.parse_date("2015-01-32")
{:error, :invalid_date}

 parse_date(string, format)

 (since 1.12.0)

 @spec parse_date(String.t(), format()) ::
 {:ok, {year(), month(), day()}} | {:error, atom()}

Parses a date string according to a given format.
The format can either be :basic or :extended.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_date("20150123", :basic)
{:ok, {2015, 1, 23}}
iex> Calendar.ISO.parse_date("20150123", :extended)
{:error, :invalid_format}

 parse_duration(arg1)

 (since 1.17.0)

 @spec parse_duration(String.t()) :: {:ok, [Duration.unit_pair()]} | {:error, atom()}

Parses an ISO 8601 formatted duration string to a list of Duration compabitble unit pairs.
See Duration.from_iso8601/1.

 parse_naive_datetime(string)

 (since 1.10.0)

 @spec parse_naive_datetime(String.t()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()}}
 | {:error, atom()}

Parses a naive datetime string in the :extended format.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07Z")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07-02:30")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}

iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07.0")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 1}}}
iex> Calendar.ISO.parse_naive_datetime("2015-01-23 23:50:07,0123456")
{:ok, {2015, 1, 23, 23, 50, 7, {12345, 6}}}

 parse_naive_datetime(string, format)

 (since 1.12.0)

 @spec parse_naive_datetime(String.t(), format()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()}}
 | {:error, atom()}

Parses a naive datetime string according to a given format.
The format can either be :basic or :extended.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_naive_datetime("20150123 235007", :basic)
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_naive_datetime("20150123 235007", :extended)
{:error, :invalid_format}

 parse_time(string)

 (since 1.10.0)

 @spec parse_time(String.t()) ::
 {:ok, {hour(), minute(), second(), microsecond()}} | {:error, atom()}

Parses a time string in the :extended format.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_time("23:50:07")
{:ok, {23, 50, 7, {0, 0}}}

iex> Calendar.ISO.parse_time("23:50:07Z")
{:ok, {23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_time("T23:50:07Z")
{:ok, {23, 50, 7, {0, 0}}}

 parse_time(string, format)

 (since 1.12.0)

 @spec parse_time(String.t(), format()) ::
 {:ok, {hour(), minute(), second(), microsecond()}} | {:error, atom()}

Parses a time string according to a given format.
The format can either be :basic or :extended.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_time("235007", :basic)
{:ok, {23, 50, 7, {0, 0}}}
iex> Calendar.ISO.parse_time("235007", :extended)
{:error, :invalid_format}

 parse_utc_datetime(string)

 (since 1.10.0)

 @spec parse_utc_datetime(String.t()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()},
 utc_offset()}
 | {:error, atom()}

Parses a UTC datetime string in the :extended format.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_utc_datetime("2015-01-23 23:50:07Z")
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}, 0}

iex> Calendar.ISO.parse_utc_datetime("2015-01-23 23:50:07+02:30")
{:ok, {2015, 1, 23, 21, 20, 7, {0, 0}}, 9000}

iex> Calendar.ISO.parse_utc_datetime("2015-01-23 23:50:07")
{:error, :missing_offset}

 parse_utc_datetime(string, format)

 (since 1.12.0)

 @spec parse_utc_datetime(String.t(), format()) ::
 {:ok, {year(), month(), day(), hour(), minute(), second(), microsecond()},
 utc_offset()}
 | {:error, atom()}

Parses a UTC datetime string according to a given format.
The format can either be :basic or :extended.
For more information on supported strings, see how this
module implements ISO 8601.
Examples
iex> Calendar.ISO.parse_utc_datetime("20150123 235007Z", :basic)
{:ok, {2015, 1, 23, 23, 50, 7, {0, 0}}, 0}
iex> Calendar.ISO.parse_utc_datetime("20150123 235007Z", :extended)
{:error, :invalid_format}

 quarter_of_year(year, month, day)

 (since 1.8.0)

 @spec quarter_of_year(year(), month(), day()) :: quarter_of_year()

Calculates the quarter of the year from the given year, month, and day.
It is an integer from 1 to 4.
Examples
iex> Calendar.ISO.quarter_of_year(2016, 1, 31)
1
iex> Calendar.ISO.quarter_of_year(2016, 4, 3)
2
iex> Calendar.ISO.quarter_of_year(-99, 9, 31)
3
iex> Calendar.ISO.quarter_of_year(2018, 12, 28)
4

 shift_date(year, month, day, duration)

 @spec shift_date(year(), month(), day(), Duration.t()) :: {year(), month(), day()}

Shifts Date by Duration according to its calendar.
Examples
iex> Calendar.ISO.shift_date(2016, 1, 3, Duration.new!(month: 2))
{2016, 3, 3}
iex> Calendar.ISO.shift_date(2016, 2, 29, Duration.new!(month: 1))
{2016, 3, 29}
iex> Calendar.ISO.shift_date(2016, 1, 31, Duration.new!(month: 1))
{2016, 2, 29}
iex> Calendar.ISO.shift_date(2016, 1, 31, Duration.new!(year: 4, day: 1))
{2020, 2, 1}

 shift_naive_datetime(year, month, day, hour, minute, second, microsecond, duration)

 @spec shift_naive_datetime(
 year(),
 month(),
 day(),
 hour(),
 minute(),
 second(),
 microsecond(),
 Duration.t()
) :: {year(), month(), day(), hour(), minute(), second(), microsecond()}

Shifts NaiveDateTime by Duration according to its calendar.
Examples
iex> Calendar.ISO.shift_naive_datetime(2016, 1, 3, 0, 0, 0, {0, 0}, Duration.new!(hour: 1))
{2016, 1, 3, 1, 0, 0, {0, 0}}
iex> Calendar.ISO.shift_naive_datetime(2016, 1, 3, 0, 0, 0, {0, 0}, Duration.new!(hour: 30))
{2016, 1, 4, 6, 0, 0, {0, 0}}
iex> Calendar.ISO.shift_naive_datetime(2016, 1, 3, 0, 0, 0, {0, 0}, Duration.new!(microsecond: {100, 6}))
{2016, 1, 3, 0, 0, 0, {100, 6}}

 shift_time(hour, minute, second, microsecond, duration)

 @spec shift_time(hour(), minute(), second(), microsecond(), Duration.t()) ::
 {hour(), minute(), second(), microsecond()}

Shifts Time by Duration units according to its calendar.
Examples
iex> Calendar.ISO.shift_time(13, 0, 0, {0, 0}, Duration.new!(hour: 2))
{15, 0, 0, {0, 0}}
iex> Calendar.ISO.shift_time(13, 0, 0, {0, 0}, Duration.new!(microsecond: {100, 6}))
{13, 0, 0, {100, 6}}

 time_from_day_fraction(arg)

 (since 1.5.0)

 @spec time_from_day_fraction(Calendar.day_fraction()) ::
 {hour(), minute(), second(), microsecond()}

Converts a day fraction to this Calendar's representation of time.
Examples
iex> Calendar.ISO.time_from_day_fraction({1, 2})
{12, 0, 0, {0, 6}}
iex> Calendar.ISO.time_from_day_fraction({13, 24})
{13, 0, 0, {0, 6}}

 time_to_day_fraction(hour, minute, second, arg)

 (since 1.5.0)

 @spec time_to_day_fraction(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond()
) :: Calendar.day_fraction()

Returns the normalized day fraction of the specified time.
Examples
iex> Calendar.ISO.time_to_day_fraction(0, 0, 0, {0, 6})
{0, 86400000000}
iex> Calendar.ISO.time_to_day_fraction(12, 34, 56, {123, 6})
{45296000123, 86400000000}

 time_to_iodata(hour, minute, second, microsecond, format \\ :extended)

 (since 1.19.0)

 @spec time_to_iodata(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 :basic | :extended
) :: iodata()

Converts the given time into a iodata.
See time_to_string/5 for more information.
Examples
iex> data = Calendar.ISO.time_to_iodata(2, 2, 2, {2, 6})
iex> IO.iodata_to_binary(data)
"02:02:02.000002"

 time_to_string(hour, minute, second, microsecond, format \\ :extended)

 (since 1.5.0)

 @spec time_to_string(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond(),
 :basic | :extended
) :: String.t()

Converts the given time into a string.
By default, returns times formatted in the "extended" format,
for human readability. It also supports the "basic" format
by passing the :basic option.
Examples
iex> Calendar.ISO.time_to_string(2, 2, 2, {2, 6})
"02:02:02.000002"
iex> Calendar.ISO.time_to_string(2, 2, 2, {2, 2})
"02:02:02.00"
iex> Calendar.ISO.time_to_string(2, 2, 2, {2, 0})
"02:02:02"

iex> Calendar.ISO.time_to_string(2, 2, 2, {2, 6}, :basic)
"020202.000002"
iex> Calendar.ISO.time_to_string(2, 2, 2, {2, 6}, :extended)
"02:02:02.000002"

 time_unit_to_precision(int)

 (since 1.15.0)

 @spec time_unit_to_precision(System.time_unit()) :: 0..6

Converts a System.time_unit/0 to precision.
Integer-based time units always get maximum precision.
Examples
iex> Calendar.ISO.time_unit_to_precision(:nanosecond)
6

iex> Calendar.ISO.time_unit_to_precision(:second)
0

iex> Calendar.ISO.time_unit_to_precision(1)
6

 valid_date?(year, month, day)

 (since 1.5.0)

 @spec valid_date?(year(), month(), day()) :: boolean()

Determines if the date given is valid according to the proleptic Gregorian calendar.
Examples
iex> Calendar.ISO.valid_date?(2015, 2, 28)
true
iex> Calendar.ISO.valid_date?(2015, 2, 30)
false
iex> Calendar.ISO.valid_date?(-1, 12, 31)
true
iex> Calendar.ISO.valid_date?(-1, 12, 32)
false

 valid_time?(hour, minute, second, microsecond)

 (since 1.5.0)

 @spec valid_time?(
 Calendar.hour(),
 Calendar.minute(),
 Calendar.second(),
 Calendar.microsecond()
) ::
 boolean()

Determines if the date given is valid according to the proleptic Gregorian calendar.
Leap seconds are not supported by the built-in Calendar.ISO.
Examples
iex> Calendar.ISO.valid_time?(10, 50, 25, {3006, 6})
true
iex> Calendar.ISO.valid_time?(23, 59, 60, {0, 0})
false
iex> Calendar.ISO.valid_time?(24, 0, 0, {0, 0})
false

 year_of_era(year)

 (since 1.8.0)

 @spec year_of_era(year()) :: {1..10000, era()}

Calculates the year and era from the given year.
The ISO calendar has two eras: the "current era" (CE) which
starts in year 1 and is defined as era 1. And "before the current
era" (BCE) for those years less than 1, defined as era 0.
Examples
iex> Calendar.ISO.year_of_era(1)
{1, 1}
iex> Calendar.ISO.year_of_era(2018)
{2018, 1}
iex> Calendar.ISO.year_of_era(0)
{1, 0}
iex> Calendar.ISO.year_of_era(-1)
{2, 0}

 year_of_era(year, month, day)

 (since 1.13.0)

 @spec year_of_era(year(), month(), day()) :: {1..10000, era()}

Calendar callback to compute the year and era from the
given year, month and day.
In the ISO calendar, the new year coincides with the new era,
so the month and day arguments are discarded. If you only
have the year available, you can year_of_era/1 instead.
Examples
iex> Calendar.ISO.year_of_era(1, 1, 1)
{1, 1}
iex> Calendar.ISO.year_of_era(2018, 12, 1)
{2018, 1}
iex> Calendar.ISO.year_of_era(0, 1, 1)
{1, 0}
iex> Calendar.ISO.year_of_era(-1, 12, 1)
{2, 0}

Calendar.TimeZoneDatabase behaviour

This module defines a behaviour for providing time zone data.
IANA provides time zone data that includes data about different
UTC offsets and standard offsets for time zones.

 Summary

 Types

 time_zone_period()

 A period where a certain combination of UTC offset, standard offset, and zone
abbreviation is in effect.

 time_zone_period_limit()

 Limit for when a certain time zone period begins or ends.

 Callbacks

 time_zone_period_from_utc_iso_days(iso_days, time_zone)

 Time zone period for a point in time in UTC for a specific time zone.

 time_zone_periods_from_wall_datetime(naive_datetime, time_zone)

 Possible time zone periods for a certain time zone and wall clock date and time.

 Types

 time_zone_period()

 @type time_zone_period() :: %{
 optional(any()) => any(),
 utc_offset: Calendar.utc_offset(),
 std_offset: Calendar.std_offset(),
 zone_abbr: Calendar.zone_abbr()
}

A period where a certain combination of UTC offset, standard offset, and zone
abbreviation is in effect.
For example, one period could be the summer of 2018 in the Europe/London timezone,
where summer time/daylight saving time is in effect and lasts from spring to autumn.
In autumn, the std_offset changes along with the zone_abbr so a different
period is needed during winter.

 time_zone_period_limit()

 @type time_zone_period_limit() :: Calendar.naive_datetime()

Limit for when a certain time zone period begins or ends.
A beginning is inclusive. An ending is exclusive. For example, if a period is from
2015-03-29 01:00:00 and until 2015-10-25 01:00:00, the period includes and
begins from the beginning of 2015-03-29 01:00:00 and lasts until just before
2015-10-25 01:00:00.
A beginning or end for certain periods are infinite, such as the latest
period for time zones without DST or plans to change. However, for the purpose
of this behaviour, they are only used for gaps in wall time where the needed
period limits are at a certain time.

 Callbacks

 time_zone_period_from_utc_iso_days(iso_days, time_zone)

 (since 1.8.0)

 @callback time_zone_period_from_utc_iso_days(Calendar.iso_days(), Calendar.time_zone()) ::
 {:ok, time_zone_period()}
 | {:error, :time_zone_not_found | :utc_only_time_zone_database}

Time zone period for a point in time in UTC for a specific time zone.
Takes a time zone name and a point in time for UTC and returns a
time_zone_period for that point in time.

 time_zone_periods_from_wall_datetime(naive_datetime, time_zone)

 (since 1.8.0)

 @callback time_zone_periods_from_wall_datetime(
 Calendar.naive_datetime(),
 Calendar.time_zone()
) ::
 {:ok, time_zone_period()}
 | {:ambiguous, time_zone_period(), time_zone_period()}
 | {:gap, {time_zone_period(), time_zone_period_limit()},
 {time_zone_period(), time_zone_period_limit()}}
 | {:error, :time_zone_not_found | :utc_only_time_zone_database}

Possible time zone periods for a certain time zone and wall clock date and time.
When the provided naive datetime is ambiguous, return a tuple with :ambiguous
and the two possible periods. The periods in the tuple must be sorted with the
first element being the one that begins first.
When the provided naive datetime is in a gap, such as during the "spring forward" when going
from winter time to summer time, return a tuple with :gap and two periods with limits
in a nested tuple. The first nested two-tuple is the period before the gap and a naive datetime
with a limit for when the period ends (wall time). The second nested two-tuple is the period
just after the gap and a datetime (wall time) for when the period begins just after the gap.
If there is only a single possible period for the provided datetime, then return a tuple
with :ok and the time_zone_period.

Calendar.UTCOnlyTimeZoneDatabase

Built-in time zone database that works only in the Etc/UTC timezone.
For all other time zones, it returns {:error, :utc_only_time_zone_database}.

Agent

Agents are a simple abstraction around state.
Often in Elixir there is a need to share or store state that
must be accessed from different processes or by the same process
at different points in time.
The Agent module provides a basic server implementation that
allows state to be retrieved and updated via a simple API.
Examples
For example, the following agent implements a counter:
defmodule Counter do
 use Agent

 def start_link(initial_value) do
 Agent.start_link(fn -> initial_value end, name: __MODULE__)
 end

 def value do
 Agent.get(__MODULE__, & &1)
 end

 def increment do
 Agent.update(__MODULE__, &(&1 + 1))
 end
end
Usage would be:
Counter.start_link(0)
#=> {:ok, #PID<0.123.0>}

Counter.value()
#=> 0

Counter.increment()
#=> :ok

Counter.increment()
#=> :ok

Counter.value()
#=> 2
Thanks to the agent server process, the counter can be safely incremented
concurrently.
use Agent
When you use Agent, the Agent module will define a
child_spec/1 function, so your module can be used
as a child in a supervision tree.
Agents provide a segregation between the client and server APIs (similar to
GenServers). In particular, the functions passed as arguments to the calls to
Agent functions are invoked inside the agent (the server). This distinction
is important because you may want to avoid expensive operations inside the
agent, as they will effectively block the agent until the request is
fulfilled.
Consider these two examples:
Compute in the agent/server
def get_something(agent) do
 Agent.get(agent, fn state -> do_something_expensive(state) end)
end

Compute in the agent/client
def get_something(agent) do
 Agent.get(agent, & &1) |> do_something_expensive()
end
The first function blocks the agent. The second function copies all the state
to the client and then executes the operation in the client. One aspect to
consider is whether the data is large enough to require processing in the server,
at least initially, or small enough to be sent to the client cheaply. Another
factor is whether the data needs to be processed atomically: getting the
state and calling do_something_expensive(state) outside of the agent means
that the agent's state can be updated in the meantime. This is specially
important in case of updates as computing the new state in the client rather
than in the server can lead to race conditions if multiple clients are trying
to update the same state to different values.
How to supervise
An Agent is most commonly started under a supervision tree.
When we invoke use Agent, it automatically defines a child_spec/1
function that allows us to start the agent directly under a supervisor.
To start an agent under a supervisor with an initial counter of 0,
one may do:
children = [
 {Counter, 0}
]

Supervisor.start_link(children, strategy: :one_for_all)
While one could also simply pass the Counter as a child to the supervisor,
such as:
children = [
 Counter # Same as {Counter, []}
]

Supervisor.start_link(children, strategy: :one_for_all)
The definition above wouldn't work for this particular example,
as it would attempt to start the counter with an initial value
of an empty list. However, this may be a viable option in your
own agents. A common approach is to use a keyword list, as that
would allow setting the initial value and giving a name to the
counter process, for example:
def start_link(opts) do
 {initial_value, opts} = Keyword.pop(opts, :initial_value, 0)
 Agent.start_link(fn -> initial_value end, opts)
end
and then you can use Counter, {Counter, name: :my_counter} or
even {Counter, initial_value: 0, name: :my_counter} as a child
specification.
use Agent also accepts a list of options which configures the
child specification and therefore how it runs under a supervisor.
The generated child_spec/1 can be customized with the following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the child should be restarted, defaults to :permanent
	:shutdown - how to shut down the child, either immediately or by giving it time to shut down

For example:
use Agent, restart: :transient, shutdown: 10_000
See the "Child specification" section in the Supervisor module for more
detailed information. The @doc annotation immediately preceding
use Agent will be attached to the generated child_spec/1 function.
Name registration
An agent is bound to the same name registration rules as GenServers.
Read more about it in the GenServer documentation.
A word on distributed agents
It is important to consider the limitations of distributed agents. Agents
provide two APIs, one that works with anonymous functions and another
that expects an explicit module, function, and arguments.
In a distributed setup with multiple nodes, the API that accepts anonymous
functions only works if the caller (client) and the agent have the same
version of the caller module.
Keep in mind this issue also shows up when performing "rolling upgrades"
with agents. By rolling upgrades we mean the following situation: you wish
to deploy a new version of your software by shutting down some of your
nodes and replacing them with nodes running a new version of the software.
In this setup, part of your environment will have one version of a given
module and the other part another version (the newer one) of the same module.
The best solution is to simply use the explicit module, function, and arguments
APIs when working with distributed agents.
Hot code swapping
An agent can have its code hot swapped live by simply passing a module,
function, and arguments tuple to the update instruction. For example, imagine
you have an agent named :sample and you want to convert its inner state
from a keyword list to a map. It can be done with the following
instruction:
{:update, :sample, {:advanced, {Enum, :into, [%{}]}}}
The agent's state will be added to the given list of arguments ([%{}]) as
the first argument.

 Summary

 Types

 agent()

 The agent reference

 name()

 The agent name

 on_start()

 Return values of start* functions

 state()

 The agent state

 Functions

 cast(agent, fun)

 Performs a cast (fire and forget) operation on the agent state.

 cast(agent, module, fun, args)

 Performs a cast (fire and forget) operation on the agent state.

 child_spec(arg)

 Returns a specification to start an agent under a supervisor.

 get(agent, fun, timeout \\ 5000)

 Gets an agent value via the given anonymous function.

 get(agent, module, fun, args, timeout \\ 5000)

 Gets an agent value via the given function.

 get_and_update(agent, fun, timeout \\ 5000)

 Gets and updates the agent state in one operation via the given anonymous
function.

 get_and_update(agent, module, fun, args, timeout \\ 5000)

 Gets and updates the agent state in one operation via the given function.

 start(fun, options \\ [])

 Starts an agent process without links (outside of a supervision tree).

 start(module, fun, args, options \\ [])

 Starts an agent without links with the given module, function, and arguments.

 start_link(fun, options \\ [])

 Starts an agent linked to the current process with the given function.

 start_link(module, fun, args, options \\ [])

 Starts an agent linked to the current process.

 stop(agent, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the agent with the given reason.

 update(agent, fun, timeout \\ 5000)

 Updates the agent state via the given anonymous function.

 update(agent, module, fun, args, timeout \\ 5000)

 Updates the agent state via the given function.

 Types

 agent()

 @type agent() :: pid() | {atom(), node()} | name()

The agent reference

 name()

 @type name() :: atom() | {:global, term()} | {:via, module(), term()}

The agent name

 on_start()

 @type on_start() :: {:ok, pid()} | {:error, {:already_started, pid()} | term()}

Return values of start* functions

 state()

 @type state() :: term()

The agent state

 Functions

 cast(agent, fun)

 @spec cast(agent(), (state() -> state())) :: :ok

Performs a cast (fire and forget) operation on the agent state.
The function fun is sent to the agent which invokes the function
passing the agent state. The return value of fun becomes the new
state of the agent.
Note that cast returns :ok immediately, regardless of whether agent (or
the node it should live on) exists.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.cast(pid, fn state -> state + 1 end)
:ok
iex> Agent.get(pid, fn state -> state end)
43

 cast(agent, module, fun, args)

 @spec cast(agent(), module(), atom(), [term()]) :: :ok

Performs a cast (fire and forget) operation on the agent state.
Same as cast/2 but a module, function, and arguments are expected
instead of an anonymous function. The state is added as first
argument to the given list of arguments.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.cast(pid, Kernel, :+, [12])
:ok
iex> Agent.get(pid, fn state -> state end)
54

 child_spec(arg)

 (since 1.5.0)

Returns a specification to start an agent under a supervisor.
See the "Child specification" section in the Supervisor module for more detailed information.

 get(agent, fun, timeout \\ 5000)

 @spec get(agent(), (state() -> a), timeout()) :: a when a: var

Gets an agent value via the given anonymous function.
The function fun is sent to the agent which invokes the function
passing the agent state. The result of the function invocation is
returned from this function.
timeout is an integer greater than zero which specifies how many
milliseconds are allowed before the agent executes the function and returns
the result value, or the atom :infinity to wait indefinitely. If no result
is received within the specified time, the function call fails and the caller
exits.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.get(pid, fn state -> state end)
42

 get(agent, module, fun, args, timeout \\ 5000)

 @spec get(agent(), module(), atom(), [term()], timeout()) :: term()

Gets an agent value via the given function.
Same as get/3 but a module, function, and arguments are expected
instead of an anonymous function. The state is added as first
argument to the given list of arguments.

 get_and_update(agent, fun, timeout \\ 5000)

 @spec get_and_update(agent(), (state() -> {a, state()}), timeout()) :: a when a: var

Gets and updates the agent state in one operation via the given anonymous
function.
The function fun is sent to the agent which invokes the function
passing the agent state. The function must return a tuple with two
elements, the first being the value to return (that is, the "get" value)
and the second one being the new state of the agent.
timeout is an integer greater than zero which specifies how many
milliseconds are allowed before the agent executes the function and returns
the result value, or the atom :infinity to wait indefinitely. If no result
is received within the specified time, the function call fails and the caller
exits.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.get_and_update(pid, fn state -> {state, state + 1} end)
42
iex> Agent.get(pid, fn state -> state end)
43

 get_and_update(agent, module, fun, args, timeout \\ 5000)

 @spec get_and_update(agent(), module(), atom(), [term()], timeout()) :: term()

Gets and updates the agent state in one operation via the given function.
Same as get_and_update/3 but a module, function, and arguments are expected
instead of an anonymous function. The state is added as first
argument to the given list of arguments.

 start(fun, options \\ [])

 @spec start((-> term()), GenServer.options()) :: on_start()

Starts an agent process without links (outside of a supervision tree).
See start_link/2 for more information.
Examples
iex> {:ok, pid} = Agent.start(fn -> 42 end)
iex> Agent.get(pid, fn state -> state end)
42

 start(module, fun, args, options \\ [])

 @spec start(module(), atom(), [term()], GenServer.options()) :: on_start()

Starts an agent without links with the given module, function, and arguments.
See start_link/4 for more information.

 start_link(fun, options \\ [])

 @spec start_link((-> term()), GenServer.options()) :: on_start()

Starts an agent linked to the current process with the given function.
This is often used to start the agent as part of a supervision tree.
Once the agent is spawned, the given function fun is invoked in the server
process, and should return the initial agent state. Note that start_link/2
does not return until the given function has returned.
Options
The :name option is used for registration as described in the module
documentation.
If the :timeout option is present, the agent is allowed to spend at most
the given number of milliseconds on initialization or it will be terminated
and the start function will return {:error, :timeout}.
If the :debug option is present, the corresponding function in the
:sys module will be invoked.
If the :spawn_opt option is present, its value will be passed as options
to the underlying process as in Process.spawn/4.
Return values
If the server is successfully created and initialized, the function returns
{:ok, pid}, where pid is the PID of the server. If an agent with the
specified name already exists, the function returns
{:error, {:already_started, pid}} with the PID of that process.
If the given function callback fails, the function returns {:error, reason}.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.get(pid, fn state -> state end)
42

iex> {:error, {exception, _stacktrace}} = Agent.start(fn -> raise "oops" end)
iex> exception
%RuntimeError{message: "oops"}

 start_link(module, fun, args, options \\ [])

 @spec start_link(module(), atom(), [term()], GenServer.options()) :: on_start()

Starts an agent linked to the current process.
Same as start_link/2 but a module, function, and arguments are expected
instead of an anonymous function; fun in module will be called with the
given arguments args to initialize the state.

 stop(agent, reason \\ :normal, timeout \\ :infinity)

 @spec stop(agent(), reason :: term(), timeout()) :: :ok

Synchronously stops the agent with the given reason.
It returns :ok if the agent terminates with the given
reason. If the agent terminates with another reason, the call will
exit.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report will be logged.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.stop(pid)
:ok

 update(agent, fun, timeout \\ 5000)

 @spec update(agent(), (state() -> state()), timeout()) :: :ok

Updates the agent state via the given anonymous function.
The function fun is sent to the agent which invokes the function
passing the agent state. The return value of fun becomes the new
state of the agent.
This function always returns :ok.
timeout is an integer greater than zero which specifies how many
milliseconds are allowed before the agent executes the function and returns
the result value, or the atom :infinity to wait indefinitely. If no result
is received within the specified time, the function call fails and the caller
exits.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.update(pid, fn state -> state + 1 end)
:ok
iex> Agent.get(pid, fn state -> state end)
43

 update(agent, module, fun, args, timeout \\ 5000)

 @spec update(agent(), module(), atom(), [term()], timeout()) :: :ok

Updates the agent state via the given function.
Same as update/3 but a module, function, and arguments are expected
instead of an anonymous function. The state is added as first
argument to the given list of arguments.
Examples
iex> {:ok, pid} = Agent.start_link(fn -> 42 end)
iex> Agent.update(pid, Kernel, :+, [12])
:ok
iex> Agent.get(pid, fn state -> state end)
54

Application behaviour

A module for working with applications and defining application callbacks.
Applications are the idiomatic way to package software in Erlang/OTP. To get
the idea, they are similar to the "library" concept common in other
programming languages, but with some additional characteristics.
An application is a component implementing some specific functionality, with a
standardized directory structure, configuration, and life cycle. Applications
are loaded, started, and stopped. Each application also has its own
environment, which provides a unified API for configuring each application.
Developers typically interact with the application environment and its
callback module. Therefore those will be the topics we will cover first
before jumping into details about the application resource file and life cycle.
The application environment
Each application has its own environment. The environment is a keyword list
that maps atoms to terms. Note that this environment is unrelated to the
operating system environment.
By default, the environment of an application is an empty list. In a Mix
project's mix.exs file, you can set the :env key in application/0:
def application do
 [env: [db_host: "localhost"]]
end
Now, in your application, you can read this environment by using functions
such as fetch_env!/2 and friends:
defmodule MyApp.DBClient do
 def start_link() do
 SomeLib.DBClient.start_link(host: db_host())
 end

 defp db_host do
 Application.fetch_env!(:my_app, :db_host)
 end
end
In Mix projects, the environment of the application and its dependencies can
be overridden via the config/config.exs and config/runtime.exs files. The
former is loaded at build-time, before your code compiles, and the latter at
runtime, just before your app starts. For example, someone using your application
can override its :db_host environment variable as follows:
import Config
config :my_app, :db_host, "db.local"
See the "Configuration" section in the Mix module for more information.
You can also change the application environment dynamically by using functions
such as put_env/3 and delete_env/2.
Application environment in libraries
If you are writing a library to be used by other developers,
it is generally recommended to avoid the application environment, as the
application environment is effectively a global storage. For more information,
read about this anti-pattern.
Reading the environment of other applications
Each application is responsible for its own environment. Do not
use the functions in this module for directly accessing or modifying
the environment of other applications. Whenever you change the application
environment, Elixir's build tool will only recompile the files that
belong to that application. So if you read the application environment
of another application, there is a chance you will be depending on
outdated configuration, as your file won't be recompiled as it changes.
Compile-time environment
In the previous example, we read the application environment at runtime:
defmodule MyApp.DBClient do
 def start_link() do
 SomeLib.DBClient.start_link(host: db_host())
 end

 defp db_host do
 Application.fetch_env!(:my_app, :db_host)
 end
end
In other words, the environment key :db_host for application :my_app
will only be read when MyApp.DBClient effectively starts. While reading
the application environment at runtime is the preferred approach, in some
rare occasions you may want to use the application environment to configure
the compilation of a certain project. However, if you try to access
Application.fetch_env!/2 outside of a function:
defmodule MyApp.DBClient do
 @db_host Application.fetch_env!(:my_app, :db_host)

 def start_link() do
 SomeLib.DBClient.start_link(host: @db_host)
 end
end
You might see warnings and errors:
warning: Application.fetch_env!/2 is discouraged in the module body,
use Application.compile_env/3 instead
 iex:3: MyApp.DBClient

** (ArgumentError) could not fetch application environment :db_host
for application :my_app because the application was not loaded nor
configured
This happens because, when defining modules, the application environment
is not yet available. Luckily, the warning tells us how to solve this
issue, by using Application.compile_env/3 instead:
defmodule MyApp.DBClient do
 @db_host Application.compile_env(:my_app, :db_host, "db.local")

 def start_link() do
 SomeLib.DBClient.start_link(host: @db_host)
 end
end
The difference here is that compile_env expects the default value to be
given as an argument, instead of using the def application function of
your mix.exs. Furthermore, by using compile_env/3, tools like Mix will
store the values used during compilation and compare the compilation values
with the runtime values whenever your system starts, raising an error in
case they differ.
In any case, compile-time environments should be avoided. Whenever possible,
reading the application environment at runtime should be the first choice.
The application callback module
Applications can be loaded, started, and stopped. Generally, build tools
like Mix take care of starting an application and all of its dependencies
for you, but you can also do it manually by calling:
{:ok, _} = Application.ensure_all_started(:some_app)
When an application starts, developers may configure a callback module
that executes custom code. Developers use this callback to start the
application supervision tree.
The first step to do so is to add a :mod key to the application/0
definition in your mix.exs file. It expects a tuple, with the application
callback module and start argument (commonly an empty list):
def application do
 [mod: {MyApp, []}]
end
The MyApp module given to :mod needs to implement the Application behaviour.
This can be done by putting use Application in that module and implementing the
start/2 callback, for example:
defmodule MyApp do
 use Application

 def start(_type, _args) do
 children = []
 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
use Application
When you use Application, the Application module will
set @behaviour Application and define an overridable
definition for the stop/1 function, which is required
by Erlang/OTP.
The start/2 callback has to spawn and link a supervisor and return {:ok, pid} or {:ok, pid, state}, where pid is the PID of the supervisor, and
state is an optional application state. args is the second element of the
tuple given to the :mod option.
The type argument passed to start/2 is usually :normal unless in a
distributed setup where application takeovers and failovers are configured.
Distributed applications are beyond the scope of this documentation.
When an application is shutting down, its stop/1 callback is called after
the supervision tree has been stopped by the runtime. This callback allows the
application to do any final cleanup. The argument is the state returned by
start/2, if it did, or [] otherwise. The return value of stop/1 is
ignored.
By using Application, modules get a default implementation of stop/1
that ignores its argument and returns :ok, but it can be overridden.
Application callback modules may also implement the optional callback
prep_stop/1. If present, prep_stop/1 is invoked before the supervision
tree is terminated. Its argument is the state returned by start/2, if it did,
or [] otherwise, and its return value is passed to stop/1.
The application resource file
In the sections above, we have configured an application in the
application/0 section of the mix.exs file. Ultimately, Mix will use
this configuration to create an application resource
file, which is a file called
APP_NAME.app. For example, the application resource file of the OTP
application ex_unit is called ex_unit.app.
You can learn more about the generation of application resource files in
the documentation of Mix.Tasks.Compile.App, available as well by running
mix help compile.app.
The application life cycle
Loading applications
Applications are loaded, which means that the runtime finds and processes
their resource files:
Application.load(:ex_unit)
#=> :ok
When an application is loaded, the environment specified in its resource file
is merged with any overrides from config files.
Loading an application does not load its modules.
In practice, you rarely load applications by hand because that is part of the
start process, explained next.
Starting applications
Applications are also started:
Application.start(:ex_unit)
#=> :ok
Once your application is compiled, running your system is a matter of starting
your current application and its dependencies. Differently from other languages,
Elixir does not have a main procedure that is responsible for starting your
system. Instead, you start one or more applications, each with their own
initialization and termination logic.
When an application is started, the Application.load/1 is automatically
invoked if it hasn't been done yet. Then, it checks if the dependencies listed
in the applications key of the resource file are already started. Having at
least one dependency not started is an error condition. Functions like
ensure_all_started/1 take care of starting an application and all of its
dependencies for you.
If the application does not have a callback module configured, starting is
done at this point. Otherwise, its start/2 callback is invoked. The PID of
the top-level supervisor returned by this function is stored by the runtime
for later use, and the returned application state is saved too, if any.
Stopping applications
Started applications are, finally, stopped:
Application.stop(:ex_unit)
#=> :ok
Stopping an application without a callback module defined, is in practice a
no-op, except for some system tracing.
Stopping an application with a callback module has three steps:
	If present, invoke the optional callback prep_stop/1.
	Terminate the top-level supervisor.
	Invoke the required callback stop/1.

The arguments passed to the callbacks are related to the state optionally
returned by start/2, and are documented in the section about the callback
module above.
It is important to highlight that step 2 is a blocking one. Termination of a
supervisor triggers a recursive chain of children terminations, therefore
orderly shutting down all descendant processes. The stop/1 callback is
invoked only after termination of the whole supervision tree.
Shutting down a live system cleanly can be done by calling System.stop/1. It
will shut down every application in the reverse order they were started.
By default, a SIGTERM from the operating system will automatically translate to
System.stop/0. You can also have more explicit control over operating system
signals via the :os.set_signal/2 function.
Tooling
The Mix build tool automates most of the application management tasks. For example,
mix test automatically starts your application dependencies and your application
itself before your test runs. mix run --no-halt boots your current project and
can be used to start a long running system. See mix help run.
Developers can also use mix release to build releases. Releases are able to
package all of your source code as well as the Erlang VM into a single directory.
Releases also give you explicit control over how each application is started and in
which order. They also provide a more streamlined mechanism for starting and
stopping systems, debugging, logging, as well as system monitoring.
Finally, Elixir provides tools such as escripts and archives, which are
different mechanisms for packaging your application. Those are typically used
when tools must be shared between developers and not as deployment options.
See mix help archive.build and mix help escript.build for more detail.
Further information
For further details on applications please check the documentation of the
:application Erlang module, and the
Applications
section of the OTP Design Principles User's
Guide.

 Summary

 Types

 app()

 application_key()

 key()

 restart_type()

 Specifies the type of the application

 start_type()

 state()

 value()

 Callbacks

 config_change(changed, new, removed)

 Callback invoked after code upgrade, if the application environment
has changed.

 prep_stop(state)

 Called before stopping the application.

 start(start_type, start_args)

 Called when an application is started.

 start_phase(phase, start_type, phase_args)

 Starts an application in synchronous phases.

 stop(state)

 Called after an application has been stopped.

 Functions

 app_dir(app)

 Gets the directory for app.

 app_dir(app, path)

 Returns the given path inside app_dir/1.

 compile_env(app, key_or_path, default \\ nil)

 Reads the application environment at compilation time.

 compile_env(env, app, key_or_path, default)

 Reads the application environment at compilation time from a macro.

 compile_env!(app, key_or_path)

 Reads the application environment at compilation time or raises.

 compile_env!(env, app, key_or_path)

 Reads the application environment at compilation time from a macro
or raises.

 delete_env(app, key, opts \\ [])

 Deletes the key from the given app environment.

 ensure_all_started(app_or_apps, type_or_opts \\ [])

 Ensures the given app or apps and their child applications are started.

 ensure_loaded(app)

 Ensures the given app is loaded.

 ensure_started(app, type \\ :temporary)

 Ensures the given app is started with restart_type/0.

 fetch_env(app, key)

 Returns the value for key in app's environment in a tuple.

 fetch_env!(app, key)

 Returns the value for key in app's environment.

 format_error(reason)

 Formats the error reason returned by start/2,
ensure_started/2, stop/1, load/1 and unload/1,
returns a string.

 get_all_env(app)

 Returns all key-value pairs for app.

 get_application(module)

 Gets the application for the given module.

 get_env(app, key, default \\ nil)

 Returns the value for key in app's environment.

 load(app)

 Loads the given app.

 loaded_applications()

 Returns a list with information about the applications which have been loaded.

 put_all_env(config, opts \\ [])

 Puts the environment for multiple applications at the same time.

 put_env(app, key, value, opts \\ [])

 Puts the value in key for the given app.

 spec(app)

 Returns the spec for app.

 spec(app, key)

 Returns the value for key in app's specification.

 start(app, type \\ :temporary)

 Starts the given app with restart_type/0.

 started_applications(timeout \\ 5000)

 Returns a list with information about the applications which are currently running.

 stop(app)

 Stops the given app.

 unload(app)

 Unloads the given app.

 Types

 app()

 @type app() :: atom()

 application_key()

 @type application_key() ::
 :start_phases
 | :mod
 | :applications
 | :optional_applications
 | :included_applications
 | :registered
 | :maxT
 | :maxP
 | :modules
 | :vsn
 | :id
 | :description

 key()

 @type key() :: atom()

 restart_type()

 @type restart_type() :: :permanent | :transient | :temporary

Specifies the type of the application:
	:permanent - if app terminates, all other applications and the entire
node are also terminated.

	:transient - if app terminates with :normal reason, it is reported
but no other applications are terminated. If a transient application
terminates abnormally, all other applications and the entire node are
also terminated.

	:temporary - if app terminates, it is reported but no other
applications are terminated (the default).

Note that it is always possible to stop an application explicitly by calling
stop/1. Regardless of the type of the application, no other applications will
be affected.
Note also that the :transient type is of little practical use, since when a
supervision tree terminates, the reason is set to :shutdown, not :normal.

 start_type()

 @type start_type() :: :normal | {:takeover, node()} | {:failover, node()}

 state()

 @type state() :: term()

 value()

 @type value() :: term()

 Callbacks

 config_change(changed, new, removed)

 (optional)

 @callback config_change(changed, new, removed) :: :ok
when changed: keyword(), new: keyword(), removed: [atom()]

Callback invoked after code upgrade, if the application environment
has changed.
changed is a keyword list of keys and their changed values in the
application environment. new is a keyword list with all new keys
and their values. removed is a list with all removed keys.

 prep_stop(state)

 (optional)

 @callback prep_stop(state()) :: state()

Called before stopping the application.
This function is called before the top-level supervisor is terminated. It
receives the state returned by start/2, if it did, or [] otherwise.
The return value is later passed to stop/1.

 start(start_type, start_args)

 @callback start(start_type(), start_args :: term()) ::
 {:ok, pid()} | {:ok, pid(), state()} | {:error, reason :: term()}

Called when an application is started.
This function is called when an application is started using
Application.start/2 (and functions on top of that, such as
Application.ensure_started/2). This function should start the top-level
process of the application (which should be the top supervisor of the
application's supervision tree if the application follows the OTP design
principles around supervision).
start_type defines how the application is started:
	:normal - used if the startup is a normal startup or if the application
is distributed and is started on the current node because of a failover
from another node and the application specification key :start_phases
is :undefined.
	{:takeover, node} - used if the application is distributed and is
started on the current node because of a failover on the node node.
	{:failover, node} - used if the application is distributed and is
started on the current node because of a failover on node node, and the
application specification key :start_phases is not :undefined.

start_args are the arguments passed to the application in the :mod
specification key (for example, mod: {MyApp, [:my_args]}).
This function should either return {:ok, pid} or {:ok, pid, state} if
startup is successful. pid should be the PID of the top supervisor. state
can be an arbitrary term, and if omitted will default to []; if the
application is later stopped, state is passed to the stop/1 callback (see
the documentation for the stop/1 callback for more information).
use Application provides no default implementation for the start/2
callback.

 start_phase(phase, start_type, phase_args)

 (optional)

 @callback start_phase(phase :: term(), start_type(), phase_args :: term()) ::
 :ok | {:error, reason :: term()}

Starts an application in synchronous phases.
This function is called after start/2 finishes but before
Application.start/2 returns. It will be called once for every start phase
defined in the application's (and any included applications') specification,
in the order they are listed in.

 stop(state)

 @callback stop(state()) :: term()

Called after an application has been stopped.
This function is called after an application has been stopped, i.e., after its
supervision tree has been stopped. It should do the opposite of what the
start/2 callback did, and should perform any necessary cleanup. The return
value of this callback is ignored.
state is the state returned by start/2, if it did, or [] otherwise.
If the optional callback prep_stop/1 is present, state is its return
value instead.
use Application defines a default implementation of this function which does
nothing and just returns :ok.

 Functions

 app_dir(app)

 @spec app_dir(app()) :: String.t()

Gets the directory for app.
This information is returned based on the code path. Here is an
example:
File.mkdir_p!("foo/ebin")
Code.prepend_path("foo/ebin")
Application.app_dir(:foo)
#=> "foo"
Even though the directory is empty and there is no .app file
it is considered the application directory based on the name
"foo/ebin". The name may contain a dash - which is considered
to be the app version and it is removed for the lookup purposes:
File.mkdir_p!("bar-123/ebin")
Code.prepend_path("bar-123/ebin")
Application.app_dir(:bar)
#=> "bar-123"
For more information on code paths, check the Code module in
Elixir and also Erlang's :code module.

 app_dir(app, path)

 @spec app_dir(app(), String.t() | [String.t()]) :: String.t()

Returns the given path inside app_dir/1.
If path is a string, then it will be used as the path inside app_dir/1. If
path is a list of strings, it will be joined (see Path.join/1) and the result
will be used as the path inside app_dir/1.
Examples
File.mkdir_p!("foo/ebin")
Code.prepend_path("foo/ebin")

Application.app_dir(:foo, "my_path")
#=> "foo/my_path"

Application.app_dir(:foo, ["my", "nested", "path"])
#=> "foo/my/nested/path"

 compile_env(app, key_or_path, default \\ nil)

 (since 1.10.0)

 (macro)

 @spec compile_env(app(), key() | list(), value()) :: value()

Reads the application environment at compilation time.
Similar to get_env/3, except it must be used to read values
at compile time. This allows Elixir to track when configuration
values change between compile time and runtime.
The first argument is the application name. The second argument
key_or_path is either an atom key or a path to traverse in
search of the configuration, starting with an atom key.
For example, imagine the following configuration:
config :my_app, :key, [foo: [bar: :baz]]
We can access it during compile time as:
Application.compile_env(:my_app, :key)
#=> [foo: [bar: :baz]]

Application.compile_env(:my_app, [:key, :foo])
#=> [bar: :baz]

Application.compile_env(:my_app, [:key, :foo, :bar])
#=> :baz
A default value can also be given as third argument. If
any of the keys in the path along the way is missing, the
default value is used:
Application.compile_env(:my_app, [:unknown, :foo, :bar], :default)
#=> :default

Application.compile_env(:my_app, [:key, :unknown, :bar], :default)
#=> :default

Application.compile_env(:my_app, [:key, :foo, :unknown], :default)
#=> :default
Giving a path is useful to let Elixir know that only certain paths
in a large configuration are compile time dependent.

 compile_env(env, app, key_or_path, default)

 (since 1.14.0)

 @spec compile_env(Macro.Env.t(), app(), key() | list(), value()) :: value()

Reads the application environment at compilation time from a macro.
Typically, developers will use compile_env/3. This function must
only be invoked from macros which aim to read the compilation environment
dynamically.
It expects a Macro.Env as first argument, where the Macro.Env is
typically the __CALLER__ in a macro. It raises if Macro.Env comes
from a function.

 compile_env!(app, key_or_path)

 (since 1.10.0)

 (macro)

 @spec compile_env!(app(), key() | list()) :: value()

Reads the application environment at compilation time or raises.
This is the same as compile_env/3 but it raises an
ArgumentError if the configuration is not available.

 compile_env!(env, app, key_or_path)

 (since 1.14.0)

 @spec compile_env!(Macro.Env.t(), app(), key() | list()) :: value()

Reads the application environment at compilation time from a macro
or raises.
Typically, developers will use compile_env!/2. This function must
only be invoked from macros which aim to read the compilation environment
dynamically.
It expects a Macro.Env as first argument, where the Macro.Env is
typically the __CALLER__ in a macro. It raises if Macro.Env comes
from a function.

 delete_env(app, key, opts \\ [])

 @spec delete_env(app(), key(), timeout: timeout(), persistent: boolean()) :: :ok

Deletes the key from the given app environment.
It receives the same options as put_env/4. Returns :ok.

 ensure_all_started(app_or_apps, type_or_opts \\ [])

 @spec ensure_all_started(app() | [app()],
 type: restart_type(),
 mode: :serial | :concurrent
) ::
 {:ok, [app()]} | {:error, term()}

 @spec ensure_all_started(app() | [app()], restart_type()) ::
 {:ok, [app()]} | {:error, term()}

Ensures the given app or apps and their child applications are started.
The second argument is either the restart_type/0 (for consistency with
start/2) or a keyword list.
Options
	:type - if the application should be started :temporary (default),
:permanent, or :transient. See restart_type/0 for more information.

	:mode - (since v1.15.0) if the applications should be started serially
(:serial, default) or concurrently (:concurrent).

 ensure_loaded(app)

 (since 1.10.0)

 @spec ensure_loaded(app()) :: :ok | {:error, term()}

Ensures the given app is loaded.
Same as load/1 but returns :ok if the application was already
loaded.

 ensure_started(app, type \\ :temporary)

 @spec ensure_started(app(), restart_type()) :: :ok | {:error, term()}

Ensures the given app is started with restart_type/0.
Same as start/2 but returns :ok if the application was already
started.

 fetch_env(app, key)

 @spec fetch_env(app(), key()) :: {:ok, value()} | :error

Returns the value for key in app's environment in a tuple.
If the configuration parameter does not exist, the function returns :error.
Warning
You must use this function to read only your own application
environment. Do not read the environment of other applications.
Application environment in info
If you are writing a library to be used by other developers,
it is generally recommended to avoid the application environment, as the
application environment is effectively a global storage. For more information,
read our library guidelines.

 fetch_env!(app, key)

 @spec fetch_env!(app(), key()) :: value()

Returns the value for key in app's environment.
If the configuration parameter does not exist, raises ArgumentError.
Warning
You must use this function to read only your own application
environment. Do not read the environment of other applications.
Application environment in info
If you are writing a library to be used by other developers,
it is generally recommended to avoid the application environment, as the
application environment is effectively a global storage. For more information,
read our library guidelines.

 format_error(reason)

 @spec format_error(any()) :: String.t()

Formats the error reason returned by start/2,
ensure_started/2, stop/1, load/1 and unload/1,
returns a string.

 get_all_env(app)

 @spec get_all_env(app()) :: [{key(), value()}]

Returns all key-value pairs for app.

 get_application(module)

 @spec get_application(module()) :: app() | nil

Gets the application for the given module.
The application is located by analyzing the spec
of all loaded applications. Returns nil if
the module is not listed in any application spec.

 get_env(app, key, default \\ nil)

 @spec get_env(app(), key(), value()) :: value()

Returns the value for key in app's environment.
If the configuration parameter does not exist, the function returns the
default value.
Warning
You must use this function to read only your own application
environment. Do not read the environment of other applications.
Examples
get_env/3 is commonly used to read the configuration of your OTP applications.
Since Mix configurations are commonly used to configure applications, we will use
this as a point of illustration.
Consider a new application :my_app. :my_app contains a database engine which
supports a pool of databases. The database engine needs to know the configuration for
each of those databases, and that configuration is supplied by key-value pairs in
environment of :my_app.
config :my_app, Databases.RepoOne,
 # A database configuration
 ip: "localhost",
 port: 5433

config :my_app, Databases.RepoTwo,
 # Another database configuration (for the same OTP app)
 ip: "localhost",
 port: 20_717

config :my_app, my_app_databases: [Databases.RepoOne, Databases.RepoTwo]
Our database engine used by :my_app needs to know what databases exist, and
what the database configurations are. The database engine can make a call to
Application.get_env(:my_app, :my_app_databases, []) to retrieve the list of
databases (specified by module names).
The engine can then traverse each repository in the list and call
Application.get_env(:my_app, Databases.RepoOne) and so forth to retrieve the
configuration of each one. In this case, each configuration will be a keyword
list, so you can use the functions in the Keyword module or even the Access
module to traverse it, for example:
config = Application.get_env(:my_app, Databases.RepoOne)
config[:ip]

 load(app)

 @spec load(app()) :: :ok | {:error, term()}

Loads the given app.
In order to be loaded, an .app file must be in the load paths.
All :included_applications will also be loaded.
Loading the application does not start it nor load its modules, but
it does load its environment.

 loaded_applications()

 @spec loaded_applications() :: [{app(), description :: charlist(), vsn :: charlist()}]

Returns a list with information about the applications which have been loaded.

 put_all_env(config, opts \\ [])

 (since 1.9.0)

 @spec put_all_env([{app(), [{key(), value()}]}],
 timeout: timeout(),
 persistent: boolean()
) :: :ok

Puts the environment for multiple applications at the same time.
The given config should not:
	have the same application listed more than once
	have the same key inside the same application listed more than once

If those conditions are not met, this function will raise.
This function receives the same options as put_env/4. Returns :ok.
Examples
Application.put_all_env(
 my_app: [
 key: :value,
 another_key: :another_value
],
 another_app: [
 key: :value
]
)

 put_env(app, key, value, opts \\ [])

 @spec put_env(app(), key(), value(), timeout: timeout(), persistent: boolean()) :: :ok

Puts the value in key for the given app.
Compile environment
Do not use this function to change environment variables read
via Application.compile_env/2. The compile environment must
be exclusively set before compilation, in your config files.
Options
	:timeout - the timeout for the change (defaults to 5_000 milliseconds)
	:persistent - persists the given value on application load and reloads

If put_env/4 is called before the application is loaded, the application
environment values specified in the .app file will override the ones
previously set.
The :persistent option can be set to true when there is a need to guarantee
parameters set with this function will not be overridden by the ones defined
in the application resource file on load. This means persistent values will
stick after the application is loaded and also on application reload.

 spec(app)

 @spec spec(app()) :: [{application_key(), value()}] | nil

Returns the spec for app.
The following keys are returned:
	:description
	:id
	:vsn
	:modules
	:maxP
	:maxT
	:registered
	:included_applications
	:optional_applications
	:applications
	:mod
	:start_phases

For a description of all fields, see Erlang's application
specification.
Note the environment is not returned as it can be accessed via
fetch_env/2. Returns nil if the application is not loaded.

 spec(app, key)

 @spec spec(app(), application_key()) :: value() | nil

Returns the value for key in app's specification.
See spec/1 for the supported keys. If the given
specification parameter does not exist, this function
will raise. Returns nil if the application is not loaded.

 start(app, type \\ :temporary)

 @spec start(app(), restart_type()) :: :ok | {:error, term()}

Starts the given app with restart_type/0.
If the app is not loaded, the application will first be loaded using load/1.
Any included application, defined in the :included_applications key of the
.app file will also be loaded, but they won't be started.
Furthermore, all applications listed in the :applications key must be explicitly
started before this application is. If not, {:error, {:not_started, app}} is
returned, where app is the name of the missing application.
In case you want to automatically load and start all of app's dependencies,
see ensure_all_started/2.

 started_applications(timeout \\ 5000)

 @spec started_applications(timeout()) :: [
 {app(), description :: charlist(), vsn :: charlist()}
]

Returns a list with information about the applications which are currently running.

 stop(app)

 @spec stop(app()) :: :ok | {:error, term()}

Stops the given app.
When stopped, the application is still loaded.

 unload(app)

 @spec unload(app()) :: :ok | {:error, term()}

Unloads the given app.
It will also unload all :included_applications.
Note that the function does not purge the application modules.

Config

A simple keyword-based configuration API.
Example
This module is most commonly used to define application configuration,
typically in config/config.exs:
import Config

config :some_app,
 key1: "value1",
 key2: "value2"

import_config "#{config_env()}.exs"
import Config will import the functions config/2, config/3
config_env/0, config_target/0, and import_config/1
to help you manage your configuration.
config/2 and config/3 are used to define key-value configuration
for a given application. Once Mix starts, it will automatically
evaluate the configuration file and persist the configuration above
into :some_app's application environment, which can be accessed in
as follows:
"value1" = Application.fetch_env!(:some_app, :key1)
Finally, the line import_config "#{config_env()}.exs" will import
other config files based on the current configuration environment,
such as config/dev.exs and config/test.exs.
Config also provides a low-level API for evaluating and reading
configuration, under the Config.Reader module.
Avoid application environment in libraries
If you are writing a library to be used by other developers,
it is generally recommended to avoid the application environment, as the
application environment is effectively a global storage. Also note that
the config/config.exs of a library is not evaluated when the library is
used as a dependency, as configuration is always meant to configure the
current project. For more information, see "Using application configuration for
libraries".
Migrating from use Mix.Config
The Config module in Elixir was introduced in v1.9 as a replacement to
use Mix.Config, which was specific to Mix and has been deprecated.
You can leverage Config instead of use Mix.Config in three steps. The first
step is to replace use Mix.Config at the top of your config files by
import Config.
The second is to make sure your import_config/1 calls do not have a
wildcard character. If so, you need to perform the wildcard lookup
manually. For example, if you did:
import_config "../apps/*/config/config.exs"
It has to be replaced by:
for config <- "../apps/*/config/config.exs" |> Path.expand(__DIR__) |> Path.wildcard() do
 import_config config
end
The last step is to replace all Mix.env() calls in the config files with config_env().
Keep in mind you must also avoid using Mix.env() inside your project files.
To check the environment at runtime, you may add a configuration key:
config.exs
...
config :my_app, env: config_env()
Then, in other scripts and modules, you may get the environment with
Application.fetch_env!/2:
router.exs
...
if Application.fetch_env!(:my_app, :env) == :prod do
 ...
end
The only places where you may access functions from the Mix module are
the mix.exs file and inside custom Mix tasks, which are always within
the Mix.Tasks namespace.
config/runtime.exs
For runtime configuration, you can use the config/runtime.exs file.
It is executed right before applications start in both Mix and releases
(assembled with mix release).

 Summary

 Types

 config_opts()

 Functions

 config(root_key, opts)

 Configures the given root_key.

 config(root_key, key, opts)

 Configures the given key for the given root_key.

 config_env()

 Returns the environment this configuration file is executed on.

 config_target()

 Returns the target this configuration file is executed on.

 import_config(file)

 Imports configuration from the given file.

 read_config(root_key)

 Reads the configuration for the given root key.

 Types

 config_opts()

 @type config_opts() :: [imports: [Path.t()] | :disabled, env: atom(), target: atom()]

 Functions

 config(root_key, opts)

 (since 1.9.0)

Configures the given root_key.
Keyword lists are always deep-merged.
Examples
The given opts are merged into the existing configuration
for the given root_key. Conflicting keys are overridden by the
ones specified in opts, unless they are keywords, which are
deep merged recursively. For example, the application configuration
below
config :logger,
 level: :warn,

config :logger,
 level: :info,
 truncate: 1024
will have a final configuration for :logger of:
[level: :info, truncate: 1024]

 config(root_key, key, opts)

 (since 1.9.0)

Configures the given key for the given root_key.
Keyword lists are always deep merged.
Examples
The given opts are merged into the existing values for key
in the given root_key. Conflicting keys are overridden by the
ones specified in opts, unless they are keywords, which are
deep merged recursively. For example, the application configuration
below
config :ecto, Repo,
 log_level: :warn,
 adapter: Ecto.Adapters.Postgres,
 metadata: [read_only: true]

config :ecto, Repo,
 log_level: :info,
 pool_size: 10,
 metadata: [replica: true]
will have a final value of the configuration for the Repo
key in the :ecto application of:
Application.get_env(:ecto, Repo)
#=> [
#=> log_level: :info,
#=> pool_size: 10,
#=> adapter: Ecto.Adapters.Postgres,
#=> metadata: [read_only: true, replica: true]
#=>]

 config_env()

 (since 1.11.0)

 (macro)

Returns the environment this configuration file is executed on.
In Mix projects this function returns the environment this configuration
file is executed on.
In releases, returns the MIX_ENV specified when running mix release.
This is most often used to execute conditional code:
if config_env() == :prod do
 config :my_app, :debug, false
end

 config_target()

 (since 1.11.0)

 (macro)

Returns the target this configuration file is executed on.
This is most often used to execute conditional code:
if config_target() == :host do
 config :my_app, :debug, false
end

 import_config(file)

 (since 1.9.0)

 (macro)

Imports configuration from the given file.
In case the file doesn't exist, an error is raised.
If file is a relative, it will be expanded relatively to the
directory the current configuration file is in.
Examples
This is often used to emulate configuration across environments:
import_config "#{config_env()}.exs"
Note, however, some configuration files, such as config/runtime.exs
does not support imports, as they are meant to be copied across
systems.

 read_config(root_key)

 (since 1.18.0)

Reads the configuration for the given root key.
This function only reads the configuration from a previous
config/2 or config/3 call. If root_key points to an
application, it does not read its actual application environment.
Its main use case is to make it easier to access and share
configuration values across files.
If the root_key was not configured, it returns nil.
Examples
In config/config.exs
config :my_app, foo: :bar

In config/dev.exs
config :another_app, foo: read_config(:my_app)[:foo] || raise "missing parent configuration"

Config.Provider behaviour

Specifies a provider API that loads configuration during boot.
Config providers are typically used during releases to load
external configuration while the system boots. This is done
by starting the VM with the minimum amount of applications
running, then invoking all of the providers, and then
restarting the system. This requires a mutable configuration
file on disk, as the results of the providers are written to
the file system. For more information on runtime configuration,
see mix release.
Multiple config files
One common use of config providers is to specify multiple
configuration files in a release. Elixir ships with one provider,
called Config.Reader, which is capable of handling Elixir's
built-in config files.
For example, imagine you want to list some basic configuration
on Mix's built-in config/runtime.exs file, but you also want
to support additional configuration files. To do so, you can add
this inside the def project portion of your mix.exs:
releases: [
 demo: [
 config_providers: [
 {Config.Reader, {:system, "RELEASE_ROOT", "/extra_config.exs"}}
]
]
]
You can place this extra_config.exs file in your release in
multiple ways:
	If it is available on the host when assembling the release,
you can place it on "rel/overlays/extra_config.exs" and it
will be automatically copied to the release root

	If it is available on the target during deployment, you can
simply copy it to the release root as a step in your deployment

Now once the system boots, it will load both config/runtime.exs
and extra_config.exs early in the boot process. You can learn
more options on Config.Reader.
Custom config provider
You can also implement custom config providers, similar to how
Config.Reader works. For example, imagine you need to load
some configuration from a JSON file and load that into the system.
Said configuration provider would look like:
defmodule JSONConfigProvider do
 @behaviour Config.Provider

 # Let's pass the path to the JSON file as config
 @impl true
 def init(path) when is_binary(path), do: path

 @impl true
 def load(config, path) do
 # We need to start any app we may depend on.
 {:ok, _} = Application.ensure_all_started(:jason)

 json = path |> File.read!() |> Jason.decode!()

 Config.Reader.merge(
 config,
 my_app: [
 some_value: json["my_app_some_value"],
 another_value: json["my_app_another_value"],
]
)
 end
end
Then, when specifying your release, you can specify the provider in
the release configuration:
releases: [
 demo: [
 config_providers: [
 {JSONConfigProvider, "/etc/config.json"}
]
]
]

 Summary

 Types

 config()

 config_path()

 A path pointing to a configuration file.

 init_opts()

 Options for init/3.

 state()

 Callbacks

 init(term)

 Invoked when initializing a config provider.

 load(config, state)

 Loads configuration (typically during system boot).

 Functions

 resolve_config_path!(path)

 Resolves a config_path/0 to an actual path.

 validate_config_path!(path)

 Validates a config_path/0.

 Types

 config()

 @type config() :: keyword()

 config_path()

 @type config_path() :: {:system, binary(), binary()} | binary()

A path pointing to a configuration file.
Since configuration files are often accessed on target machines,
it can be expressed either as:
	a binary representing an absolute path

	a {:system, system_var, path} tuple where the config is the
concatenation of the environment variable system_var with
the given path

 init_opts()

 @type init_opts() :: [
 extra_config: config(),
 prune_runtime_sys_config_after_boot: boolean(),
 reboot_system_after_config: boolean(),
 validate_compile_env: [{atom(), [atom()], term()}]
]

Options for init/3.

 state()

 @type state() :: term()

 Callbacks

 init(term)

 @callback init(term()) :: state()

Invoked when initializing a config provider.
A config provider is typically initialized on the machine
where the system is assembled and not on the target machine.
The init/1 callback is useful to verify the arguments
given to the provider and prepare the state that will be
given to load/2.
Furthermore, because the state returned by init/1 can
be written to text-based config files, it should be
restricted only to simple data types, such as integers,
strings, atoms, tuples, maps, and lists. Entries such as
PIDs, references, and functions cannot be serialized.

 load(config, state)

 @callback load(config(), state()) :: config()

Loads configuration (typically during system boot).
It receives the current config and the state returned by
init/1. Then, you typically read the extra configuration
from an external source and merge it into the received config.
Merging should be done with Config.Reader.merge/2, as it
performs deep merge. It should return the updated config.
Note that load/2 is typically invoked very early in the
boot process, therefore if you need to use an application
in the provider, it is your responsibility to start it.

 Functions

 resolve_config_path!(path)

 (since 1.9.0)

 @spec resolve_config_path!(config_path()) :: binary()

Resolves a config_path/0 to an actual path.

 validate_config_path!(path)

 (since 1.9.0)

 @spec validate_config_path!(config_path()) :: :ok

Validates a config_path/0.

Config.Reader

API for reading config files defined with Config.
As a provider
Config.Reader can also be used as a Config.Provider. A config
provider is used during releases to customize how applications are
configured. When used as a provider, it expects a single argument:
the configuration path (as outlined in Config.Provider.config_path/0)
for the file to be read and loaded during the system boot.
For example, if you expect the target system to have a config file
in an absolute path, you can add this inside the def project portion
of your mix.exs:
releases: [
 demo: [
 config_providers: [
 {Config.Reader, "/etc/config.exs"}
]
]
]
Or if you want to read a custom path inside the release:
config_providers: [{Config.Reader, {:system, "RELEASE_ROOT", "/config.exs"}}]
You can also pass a keyword list of options to the reader,
where the :path is a required key:
config_providers: [
 {Config.Reader,
 path: "/etc/config.exs",
 env: :prod,
 imports: :disabled}
]
Remember Mix already loads config/runtime.exs by default.
For more examples and scenarios, see the Config.Provider module.

 Summary

 Types

 config_opts()

 Functions

 eval!(file, contents, opts \\ [])

 Evaluates the configuration contents for the given file.

 merge(config1, config2)

 Merges two configurations.

 read!(file, opts \\ [])

 Reads the configuration file.

 read_imports!(file, opts \\ [])

 Reads the given configuration file and returns the configuration
with its imports.

 Types

 config_opts()

 @type config_opts() :: [imports: [Path.t()] | :disabled, env: atom(), target: atom()]

 Functions

 eval!(file, contents, opts \\ [])

 (since 1.11.0)

 @spec eval!(Path.t(), binary(), config_opts()) :: keyword()

Evaluates the configuration contents for the given file.
Accepts the same options as read!/2.

 merge(config1, config2)

 (since 1.9.0)

 @spec merge(keyword(), keyword()) :: keyword()

Merges two configurations.
The configurations are merged together with the values in
the second one having higher preference than the first in
case of conflicts. In case both values are set to keyword
lists, it deep merges them.
Examples
iex> Config.Reader.merge([app: [k: :v1]], [app: [k: :v2]])
[app: [k: :v2]]

iex> Config.Reader.merge([app: [k: [v1: 1, v2: 2]]], [app: [k: [v2: :a, v3: :b]]])
[app: [k: [v1: 1, v2: :a, v3: :b]]]

iex> Config.Reader.merge([app1: []], [app2: []])
[app1: [], app2: []]

 read!(file, opts \\ [])

 (since 1.9.0)

 @spec read!(Path.t(), config_opts()) :: keyword()

Reads the configuration file.
Options
	:imports - a list of already imported paths or :disabled
to disable imports

	:env - the environment the configuration file runs on.
See Config.config_env/0 for sample usage

	:target - the target the configuration file runs on.
See Config.config_target/0 for sample usage

 read_imports!(file, opts \\ [])

 (since 1.9.0)

 @spec read_imports!(Path.t(), config_opts()) :: {keyword(), [Path.t()]}

Reads the given configuration file and returns the configuration
with its imports.
Accepts the same options as read!/2. Although note the :imports
option cannot be disabled in read_imports!/2.

DynamicSupervisor behaviour

A supervisor optimized to only start children dynamically.
The Supervisor module was designed to handle mostly static children
that are started in the given order when the supervisor starts. A
DynamicSupervisor starts with no children. Instead, children are
started on demand via start_child/2 and there is no ordering between
children. This allows the DynamicSupervisor to hold millions of
children by using efficient data structures and to execute certain
operations, such as shutting down, concurrently.
Examples
A dynamic supervisor is started with no children and often with a name:
children = [
 {DynamicSupervisor, name: MyApp.DynamicSupervisor, strategy: :one_for_one}
]

Supervisor.start_link(children, strategy: :one_for_one)
The options given in the child specification are documented in start_link/1.
Once the dynamic supervisor is running, we can use it to start children
on demand. Given this sample GenServer:
defmodule Counter do
 use GenServer

 def start_link(initial) do
 GenServer.start_link(__MODULE__, initial)
 end

 def inc(pid) do
 GenServer.call(pid, :inc)
 end

 def init(initial) do
 {:ok, initial}
 end

 def handle_call(:inc, _, count) do
 {:reply, count, count + 1}
 end
end
We can use start_child/2 with a child specification to start a Counter
server:
{:ok, counter1} = DynamicSupervisor.start_child(MyApp.DynamicSupervisor, {Counter, 0})
Counter.inc(counter1)
#=> 0

{:ok, counter2} = DynamicSupervisor.start_child(MyApp.DynamicSupervisor, {Counter, 10})
Counter.inc(counter2)
#=> 10

DynamicSupervisor.count_children(MyApp.DynamicSupervisor)
#=> %{active: 2, specs: 2, supervisors: 0, workers: 2}
Scalability and partitioning
The DynamicSupervisor is a single process responsible for starting
other processes. In some applications, the DynamicSupervisor may
become a bottleneck. To address this, you can start multiple instances
of the DynamicSupervisor and then pick a "random" instance to start
the child on.
Instead of:
children = [
 {DynamicSupervisor, name: MyApp.DynamicSupervisor}
]
and:
DynamicSupervisor.start_child(MyApp.DynamicSupervisor, {Counter, 0})
You can do this:
children = [
 {PartitionSupervisor,
 child_spec: DynamicSupervisor,
 name: MyApp.DynamicSupervisors}
]
and then:
DynamicSupervisor.start_child(
 {:via, PartitionSupervisor, {MyApp.DynamicSupervisors, self()}},
 {Counter, 0}
)
In the code above, we start a partition supervisor that will by default
start a dynamic supervisor for each core in your machine. Then, instead
of calling the DynamicSupervisor by name, you call it through the
partition supervisor, using self() as the routing key. This means each
process will be assigned one of the existing dynamic supervisors.
Read the PartitionSupervisor docs for more information.
Module-based supervisors
Similar to Supervisor, dynamic supervisors also support module-based
supervisors.
defmodule MyApp.DynamicSupervisor do
 # Automatically defines child_spec/1
 use DynamicSupervisor

 def start_link(init_arg) do
 DynamicSupervisor.start_link(__MODULE__, init_arg, name: __MODULE__)
 end

 @impl true
 def init(_init_arg) do
 DynamicSupervisor.init(strategy: :one_for_one)
 end
end
See the Supervisor docs for a discussion of when you may want to use
module-based supervisors. A @doc annotation immediately preceding
use DynamicSupervisor will be attached to the generated child_spec/1
function.
use DynamicSupervisor
When you use DynamicSupervisor, the DynamicSupervisor module will
set @behaviour DynamicSupervisor and define a child_spec/1
function, so your module can be used as a child in a supervision tree.
Name registration
A supervisor is bound to the same name registration rules as a GenServer.
Read more about these rules in the documentation for GenServer.

 Summary

 Types

 init_option()

 Options given to start_link/1 and init/1 functions

 on_start_child()

 Return values of start_child functions.

 strategy()

 Supported strategies

 sup_flags()

 The supervisor flags returned on init

 Callbacks

 init(init_arg)

 Callback invoked to start the supervisor and during hot code upgrades.

 Functions

 child_spec(options)

 Returns a specification to start a dynamic supervisor under a supervisor.

 count_children(supervisor)

 Returns a map containing count values for the supervisor.

 init(options)

 Receives a set of options that initializes a dynamic supervisor.

 start_child(supervisor, child_spec)

 Dynamically adds a child specification to supervisor and starts that child.

 start_link(options)

 Starts a supervisor with the given options.

 start_link(module, init_arg, opts \\ [])

 Starts a module-based supervisor process with the given module and init_arg.

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the given supervisor with the given reason.

 terminate_child(supervisor, pid)

 Terminates the given child identified by pid.

 which_children(supervisor)

 Returns a list with information about all children of the given supervisor.

 Types

 init_option()

 @type init_option() ::
 {:strategy, strategy()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, pos_integer()}
 | {:max_children, non_neg_integer() | :infinity}
 | {:extra_arguments, [term()]}

Options given to start_link/1 and init/1 functions

 on_start_child()

 @type on_start_child() ::
 {:ok, pid()}
 | {:ok, pid(), info :: term()}
 | :ignore
 | {:error, {:already_started, pid()} | :max_children | term()}

Return values of start_child functions.
Unlike Supervisor, this module ignores the child spec ids,
so {:error, {:already_started, pid}} is not returned for child specs
given with the same id. {:error, {:already_started, pid}} is returned
however if a duplicate name is used when using
name registration.

 strategy()

 @type strategy() :: :one_for_one

Supported strategies

 sup_flags()

 @type sup_flags() :: %{
 strategy: strategy(),
 intensity: non_neg_integer(),
 period: pos_integer(),
 max_children: non_neg_integer() | :infinity,
 extra_arguments: [term()]
}

The supervisor flags returned on init

 Callbacks

 init(init_arg)

 @callback init(init_arg :: term()) :: {:ok, sup_flags()} | :ignore

Callback invoked to start the supervisor and during hot code upgrades.
Developers typically invoke DynamicSupervisor.init/1 at the end of
their init callback to return the proper supervision flags.

 Functions

 child_spec(options)

 (since 1.6.1)

 @spec child_spec([init_option() | GenServer.option()]) :: Supervisor.child_spec()

Returns a specification to start a dynamic supervisor under a supervisor.
It accepts the same options as start_link/1.
See Supervisor for more information about child specifications.

 count_children(supervisor)

 (since 1.6.0)

 @spec count_children(Supervisor.supervisor()) :: %{
 specs: non_neg_integer(),
 active: non_neg_integer(),
 supervisors: non_neg_integer(),
 workers: non_neg_integer()
}

Returns a map containing count values for the supervisor.
The map contains the following keys:
	:specs - the number of children processes

	:active - the count of all actively running child processes managed by
this supervisor

	:supervisors - the count of all supervisors whether or not the child
process is still alive

	:workers - the count of all workers, whether or not the child process
is still alive

 init(options)

 (since 1.6.0)

 @spec init([init_option()]) :: {:ok, sup_flags()}

Receives a set of options that initializes a dynamic supervisor.
This is typically invoked at the end of the init/1 callback of
module-based supervisors. See the "Module-based supervisors" section
in the module documentation for more information.
It accepts the same options as start_link/1 (except for :name)
and it returns a tuple containing the supervisor options.
Examples
def init(_arg) do
 DynamicSupervisor.init(max_children: 1000)
end

 start_child(supervisor, child_spec)

 (since 1.6.0)

 @spec start_child(
 Supervisor.supervisor(),
 Supervisor.child_spec()
 | {module(), term()}
 | module()
 | (old_erlang_child_spec :: :supervisor.child_spec())
) :: on_start_child()

Dynamically adds a child specification to supervisor and starts that child.
child_spec should be a valid child specification.
The child process will be started as defined in the child specification. Note that while
the :id field is still required in the spec, the value is ignored and
therefore does not need to be unique. Unlike Supervisor, this module does not
return {:error, {:already_started, pid}} for child specs given with the same id.
{:error, {:already_started, pid}} is returned however if a duplicate name is
used when using name registration.
This function will block the DynamicSupervisor until the child initializes.
When starting too many processes dynamically, you may want to use a
PartitionSupervisor to split the work across multiple processes.
If the child process start function returns {:ok, child} or {:ok, child, info}, then child specification and PID are added to the supervisor and
this function returns the same value.
If the child process start function returns :ignore, then no child is added
to the supervision tree and this function returns :ignore too.
If the child process start function returns an error tuple or an erroneous
value, or if it fails, the child specification is discarded and this function
returns {:error, error} where error is the error or erroneous value
returned from child process start function, or failure reason if it fails.
If the supervisor already has N children in a way that N exceeds the amount
of :max_children set on the supervisor initialization (see init/1), then
this function returns {:error, :max_children}.

 start_link(options)

 (since 1.6.0)

 @spec start_link([init_option() | GenServer.option()]) :: Supervisor.on_start()

Starts a supervisor with the given options.
This function is typically not invoked directly, instead it is invoked
when using a DynamicSupervisor as a child of another supervisor:
children = [
 {DynamicSupervisor, name: MySupervisor}
]
If the supervisor is successfully spawned, this function returns
{:ok, pid}, where pid is the PID of the supervisor. If the supervisor
is given a name and a process with the specified name already exists,
the function returns {:error, {:already_started, pid}}, where pid
is the PID of that process.
Note that a supervisor started with this function is linked to the parent
process and exits not only on crashes but also if the parent process exits
with :normal reason.
Options
	:name - registers the supervisor under the given name.
The supported values are described under the "Name registration"
section in the GenServer module docs.

	:strategy - the restart strategy option. The only supported
value is :one_for_one which means that no other child is
terminated if a child process terminates. You can learn more
about strategies in the Supervisor module docs.

	:max_restarts - the maximum number of restarts allowed in
a time frame. Defaults to 3.

	:max_seconds - the time frame in which :max_restarts applies.
Defaults to 5.

	:max_children - the maximum amount of children to be running
under this supervisor at the same time. When :max_children is
exceeded, start_child/2 returns {:error, :max_children}. Defaults
to :infinity.

	:extra_arguments - arguments that are prepended to the arguments
specified in the child spec given to start_child/2. Defaults to
an empty list.

	Any of the standard GenServer options

 start_link(module, init_arg, opts \\ [])

 (since 1.6.0)

 @spec start_link(module(), term(), [GenServer.option()]) :: Supervisor.on_start()

Starts a module-based supervisor process with the given module and init_arg.
To start the supervisor, the init/1 callback will be invoked in the given
module, with init_arg as its argument. The init/1 callback must return a
supervisor specification which can be created with the help of the init/1
function.
If the init/1 callback returns :ignore, this function returns
:ignore as well and the supervisor terminates with reason :normal.
If it fails or returns an incorrect value, this function returns
{:error, term} where term is a term with information about the
error, and the supervisor terminates with reason term.
The :name option can also be given in order to register a supervisor
name, the supported values are described in the "Name registration"
section in the GenServer module docs.
If the supervisor is successfully spawned, this function returns
{:ok, pid}, where pid is the PID of the supervisor. If the supervisor
is given a name and a process with the specified name already exists,
the function returns {:error, {:already_started, pid}}, where pid
is the PID of that process.
Note that a supervisor started with this function is linked to the parent
process and exits not only on crashes but also if the parent process exits
with :normal reason.
Options
This function accepts any regular GenServer options.
Options specific to DynamicSupervisor must be returned from the init/1
callback.

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 (since 1.7.0)

 @spec stop(Supervisor.supervisor(), reason :: term(), timeout()) :: :ok

Synchronously stops the given supervisor with the given reason.
It returns :ok if the supervisor terminates with the given
reason. If it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 terminate_child(supervisor, pid)

 (since 1.6.0)

 @spec terminate_child(Supervisor.supervisor(), pid()) :: :ok | {:error, :not_found}

Terminates the given child identified by pid.
This function will block the DynamicSupervisor until the child
terminates, which may take an arbitrary amount of time if the child
is trapping exits and implements its own terminate callback.
For this reason, it is often better to ask the child process
itself to terminate, often by declaring in its child spec it has
a restart strategy of :transient (or :temporary) and then
sending it a message to stop with reason :shutdown.
If successful, this function returns :ok. If there is no process with
the given PID, this function returns {:error, :not_found}.

 which_children(supervisor)

 (since 1.6.0)

 @spec which_children(Supervisor.supervisor()) :: [
 {:undefined, pid() | :restarting, :worker | :supervisor,
 [module()] | :dynamic}
]

Returns a list with information about all children of the given supervisor.
Note that calling this function when supervising a large number
of children under low memory conditions can bring the system down due to an
out of memory error.
This function returns a list of tuples containing:
	id - it is always :undefined for dynamic supervisors

	child - the PID of the corresponding child process or the
atom :restarting if the process is about to be restarted

	type - :worker or :supervisor as defined in the child
specification

	modules - as defined in the child specification

GenServer behaviour

A behaviour module for implementing the server of a client-server relation.
A GenServer is a process like any other Elixir process and it can be used
to keep state, execute code asynchronously and so on. The advantage of using
a generic server process (GenServer) implemented using this module is that it
will have a standard set of interface functions and include functionality for
tracing and error reporting. It will also fit into a supervision tree.
graph BT
 C(Client #3) ~~~ B(Client #2) ~~~ A(Client #1)
 A & B & C -->|request| GenServer
 GenServer -.->|reply| A & B & C
Example
The GenServer behaviour abstracts the common client-server interaction.
Developers are only required to implement the callbacks and functionality
they are interested in.
Let's start with a code example and then explore the available callbacks.
Imagine we want to implement a service with a GenServer that works
like a stack, allowing us to push and pop elements. We'll customize a
generic GenServer with our own module by implementing three callbacks.
init/1 transforms our initial argument to the initial state for the
GenServer. handle_call/3 fires when the server receives a synchronous
pop message, popping an element from the stack and returning it to the
user. handle_cast/2 will fire when the server receives an asynchronous
push message, pushing an element onto the stack:
defmodule Stack do
 use GenServer

 # Callbacks

 @impl true
 def init(elements) do
 initial_state = String.split(elements, ",", trim: true)
 {:ok, initial_state}
 end

 @impl true
 def handle_call(:pop, _from, state) do
 [to_caller | new_state] = state
 {:reply, to_caller, new_state}
 end

 @impl true
 def handle_cast({:push, element}, state) do
 new_state = [element | state]
 {:noreply, new_state}
 end
end
We leave the process machinery of startup, message passing, and the message
loop to the GenServer behaviour and focus only on the stack
implementation. We can now use the GenServer API to interact with
the service by creating a process and sending it messages:
Start the server
{:ok, pid} = GenServer.start_link(Stack, "hello,world")

This is the client
GenServer.call(pid, :pop)
#=> "hello"

GenServer.cast(pid, {:push, "elixir"})
#=> :ok

GenServer.call(pid, :pop)
#=> "elixir"
We start our Stack by calling start_link/2, passing the module
with the server implementation and its initial argument with a
comma-separated list of elements. The GenServer behaviour calls the
init/1 callback to establish the initial GenServer state. From
this point on, the GenServer has control so we interact with it by
sending two types of messages on the client. call messages expect
a reply from the server (and are therefore synchronous) while cast
messages do not.
Each call to GenServer.call/3 results in a message
that must be handled by the handle_call/3 callback in the GenServer.
A cast/2 message must be handled by handle_cast/2. GenServer
supports 8 callbacks, but only init/1 is required.
use GenServer
When you use GenServer, the GenServer module will
set @behaviour GenServer and define a child_spec/1
function, so your module can be used as a child
in a supervision tree.
Client / Server APIs
Although in the example above we have used GenServer.start_link/3 and
friends to directly start and communicate with the server, most of the
time we don't call the GenServer functions directly. Instead, we wrap
the calls in new functions representing the public API of the server.
These thin wrappers are called the client API.
Here is a better implementation of our Stack module:
defmodule Stack do
 use GenServer

 # Client

 def start_link(default) when is_binary(default) do
 GenServer.start_link(__MODULE__, default)
 end

 def push(pid, element) do
 GenServer.cast(pid, {:push, element})
 end

 def pop(pid) do
 GenServer.call(pid, :pop)
 end

 # Server (callbacks)

 @impl true
 def init(elements) do
 initial_state = String.split(elements, ",", trim: true)
 {:ok, initial_state}
 end

 @impl true
 def handle_call(:pop, _from, state) do
 [to_caller | new_state] = state
 {:reply, to_caller, new_state}
 end

 @impl true
 def handle_cast({:push, element}, state) do
 new_state = [element | state]
 {:noreply, new_state}
 end
end
In practice, it is common to have both server and client functions in
the same module. If the server and/or client implementations are growing
complex, you may want to have them in different modules.
The following diagram summarizes the interactions between client and server.
Both Client and Server are processes and communication happens via messages
(continuous line). The Server <-> Module interaction happens when the
GenServer process calls your code (dotted lines):
sequenceDiagram
 participant C as Client (Process)
 participant S as Server (Process)
 participant M as Module (Code)

 note right of C: Typically started by a supervisor
 C->>+S: GenServer.start_link(module, arg, options)
 S-->>+M: init(arg)
 M-->>-S: {:ok, state} | :ignore | {:error, reason}
 S->>-C: {:ok, pid} | :ignore | {:error, reason}

 note right of C: call is synchronous
 C->>+S: GenServer.call(pid, message)
 S-->>+M: handle_call(message, from, state)
 M-->>-S: {:reply, reply, state} | {:stop, reason, reply, state}
 S->>-C: reply

 note right of C: cast is asynchronous
 C-)S: GenServer.cast(pid, message)
 S-->>+M: handle_cast(message, state)
 M-->>-S: {:noreply, state} | {:stop, reason, state}

 note right of C: send is asynchronous
 C-)S: Kernel.send(pid, message)
 S-->>+M: handle_info(message, state)
 M-->>-S: {:noreply, state} | {:stop, reason, state}
How to supervise
A GenServer is most commonly started under a supervision tree.
When we invoke use GenServer, it automatically defines a child_spec/1
function that allows us to start the Stack directly under a supervisor.
To start a default stack of ["hello", "world"] under a supervisor,
we can do:
children = [
 {Stack, "hello,world"}
]

Supervisor.start_link(children, strategy: :one_for_all)
Note that specifying a module MyServer would be the same as specifying
the tuple {MyServer, []}.
use GenServer also accepts a list of options which configures the
child specification and therefore how it runs under a supervisor.
The generated child_spec/1 can be customized with the following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the
child should be restarted, defaults to :permanent
	:shutdown - how to
shut down the child, either immediately or by giving it time to shut down

For example:
use GenServer, restart: :transient, shutdown: 10_000
See the "Child specification" section in the Supervisor module for more
detailed information. The @doc annotation immediately preceding
use GenServer will be attached to the generated child_spec/1 function.
When stopping the GenServer, for example by returning a {:stop, reason, new_state}
tuple from a callback, the exit reason is used by the supervisor to determine
whether the GenServer needs to be restarted. See the "Exit reasons and restarts"
section in the Supervisor module.
Name registration
Both start_link/3 and start/3 support the GenServer to register
a name on start via the :name option. Registered names are also
automatically cleaned up on termination. The supported values are:
	an atom - the GenServer is registered locally (to the current node)
with the given name using Process.register/2.

	{:global, term} - the GenServer is registered globally with the given
term using the functions in the :global module.

	{:via, module, term} - the GenServer is registered with the given
mechanism and name. The :via option expects a module that exports
register_name/2, unregister_name/1, whereis_name/1 and send/2.
One such example is the :global module which uses these functions
for keeping the list of names of processes and their associated PIDs
that are available globally for a network of Elixir nodes. Elixir also
ships with a local, decentralized and scalable registry called Registry
for locally storing names that are generated dynamically.

For example, we could start and register our Stack server locally as follows:
Start the server and register it locally with name MyStack
{:ok, _} = GenServer.start_link(Stack, "hello", name: MyStack)

Now messages can be sent directly to MyStack
GenServer.call(MyStack, :pop)
#=> "hello"
Once the server is started, the remaining functions in this module (call/3,
cast/2, and friends) will also accept an atom, or any {:global, ...} or
{:via, ...} tuples. In general, the following formats are supported:
	a PID
	an atom if the server is locally registered
	{atom, node} if the server is locally registered at another node
	{:global, term} if the server is globally registered
	{:via, module, name} if the server is registered through an alternative
registry

If there is an interest to register dynamic names locally, do not use
atoms, as atoms are never garbage-collected and therefore dynamically
generated atoms won't be garbage-collected. For such cases, you can
set up your own local registry by using the Registry module.
For example:
{:ok, _} = Registry.start_link(keys: :unique, name: :stacks)
name = {:via, Registry, {:stacks, "stack 1"}}
{:ok, _pid} = GenServer.start_link(Stack, "hello", name: name)
GenServer.whereis(name)
#=> #PID<0.150.0>
Receiving "regular" messages
The goal of a GenServer is to abstract the "receive" loop for developers,
automatically handling system messages, supporting code change, synchronous
calls and more. Therefore, you should never call your own "receive" inside
the GenServer callbacks as doing so will cause the GenServer to misbehave.
Besides the synchronous and asynchronous communication provided by call/3
and cast/2, "regular" messages sent by functions such as send/2,
Process.send_after/4 and similar, can be handled inside the handle_info/2
callback.
handle_info/2 can be used in many situations, such as handling monitor
DOWN messages sent by Process.monitor/1. Another use case for handle_info/2
is to perform periodic work, with the help of Process.send_after/4:
defmodule MyApp.Periodically do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, %{})
 end

 @impl true
 def init(state) do
 # Schedule work to be performed on start
 schedule_work()

 {:ok, state}
 end

 @impl true
 def handle_info(:work, state) do
 # Do the desired work here
 # ...

 # Reschedule once more
 schedule_work()

 {:noreply, state}
 end

 defp schedule_work do
 # We schedule the work to happen in 2 hours (written in milliseconds).
 # Alternatively, one might write :timer.hours(2)
 Process.send_after(self(), :work, 2 * 60 * 60 * 1000)
 end
end
Timeouts
The return value of init/1 or any of the handle_* callbacks may include
a timeout value in milliseconds; if not, :infinity is assumed.
The timeout can be used to detect a lull in incoming messages.
The timeout() value is used as follows:
	If the process has any message already waiting when the timeout() value
is returned, the timeout is ignored and the waiting message is handled as
usual. This means that even a timeout of 0 milliseconds is not guaranteed
to execute (if you want to take another action immediately and unconditionally,
use a :continue instruction instead).

	If any message arrives before the specified number of milliseconds
elapse, the timeout is cleared and that message is handled as usual.

	Otherwise, when the specified number of milliseconds have elapsed with no
message arriving, handle_info/2 is called with :timeout as the first
argument.

For example:
defmodule Counter do
 use GenServer

 @timeout to_timeout(second: 5)

 @impl true
 def init(count) do
 {:ok, count, @timeout}
 end

 @impl true
 def handle_call(:increment, _from, count) do
 new_count = count + 1
 {:reply, new_count, new_count, @timeout}
 end

 @impl true
 def handle_info(:timeout, count) do
 {:stop, :normal, count}
 end
end
A Counter server will exit with :normal if there are no messages in 5 seconds
after the initialization or after the last :increment call:
{:ok, counter_pid} = GenServer.start(Counter, 50)
GenServer.call(counter_pid, :increment)
#=> 51

After 5 seconds
Process.alive?(counter_pid)
#=> false
When (not) to use a GenServer
So far, we have learned that a GenServer can be used as a supervised process
that handles sync and async calls. It can also handle system messages, such as
periodic messages and monitoring events. GenServer processes may also be named.
A GenServer, or a process in general, must be used to model runtime characteristics
of your system. A GenServer must never be used for code organization purposes.
In Elixir, code organization is done by modules and functions, processes are not
necessary. For example, imagine you are implementing a calculator and you decide
to put all the calculator operations behind a GenServer:
def add(a, b) do
 GenServer.call(__MODULE__, {:add, a, b})
end

def subtract(a, b) do
 GenServer.call(__MODULE__, {:subtract, a, b})
end

def handle_call({:add, a, b}, _from, state) do
 {:reply, a + b, state}
end

def handle_call({:subtract, a, b}, _from, state) do
 {:reply, a - b, state}
end
This is an anti-pattern not only because it convolutes the calculator logic but
also because you put the calculator logic behind a single process that will
potentially become a bottleneck in your system, especially as the number of
calls grow. Instead just define the functions directly:
def add(a, b) do
 a + b
end

def subtract(a, b) do
 a - b
end
If you don't need a process, then you don't need a process. Use processes only to
model runtime properties, such as mutable state, concurrency and failures, never
for code organization.
Debugging with the :sys module
GenServers, as special processes,
can be debugged using the :sys module.
Through various hooks, this module allows developers to introspect the state of
the process and trace system events that happen during its execution, such as
received messages, sent replies and state changes.
Let's explore the basic functions from the
:sys module used for debugging:
	:sys.get_state/2 - allows retrieval of the state of the process.
In the case of a GenServer process, it will be the callback module state,
as passed into the callback functions as last argument.
	:sys.get_status/2 - allows retrieval of the status of the process.
This status includes the process dictionary, if the process is running
or is suspended, the parent PID, the debugger state, and the state of
the behaviour module, which includes the callback module state
(as returned by :sys.get_state/2). It's possible to change how this
status is represented by defining the optional GenServer.format_status/1
callback.
	:sys.trace/3 - prints all the system events to :stdio.
	:sys.statistics/3 - manages collection of process statistics.
	:sys.no_debug/2 - turns off all debug handlers for the given process.
It is very important to switch off debugging once we're done. Excessive
debug handlers or those that should be turned off, but weren't, can
seriously damage the performance of the system.
	:sys.suspend/2 - allows to suspend a process so that it only
replies to system messages but no other messages. A suspended process
can be reactivated via :sys.resume/2.

Let's see how we could use those functions for debugging the stack server
we defined earlier.
iex> {:ok, pid} = Stack.start_link("")
iex> :sys.statistics(pid, true) # turn on collecting process statistics
iex> :sys.trace(pid, true) # turn on event printing
iex> Stack.push(pid, 1)
DBG <0.122.0> got cast {push,1}
DBG <0.122.0> new state [1]
:ok

iex> :sys.get_state(pid)
[1]

iex> Stack.pop(pid)
DBG <0.122.0> got call pop from <0.80.0>
DBG <0.122.0> sent 1 to <0.80.0>, new state []
1

iex> :sys.statistics(pid, :get)
{:ok,
 [
 start_time: {{2016, 7, 16}, {12, 29, 41}},
 current_time: {{2016, 7, 16}, {12, 29, 50}},
 reductions: 117,
 messages_in: 2,
 messages_out: 0
]}

iex> :sys.no_debug(pid) # turn off all debug handlers
:ok

iex> :sys.get_status(pid)
{:status, #PID<0.122.0>, {:module, :gen_server},
 [
 [
 "$initial_call": {Stack, :init, 1}, # process dictionary
 "$ancestors": [#PID<0.80.0>, #PID<0.51.0>]
],
 :running, # :running | :suspended
 #PID<0.80.0>, # parent
 [], # debugger state
 [
 header: 'Status for generic server <0.122.0>', # module status
 data: [
 {'Status', :running},
 {'Parent', #PID<0.80.0>},
 {'Logged events', []}
],
 data: [{'State', [1]}]
]
]}
Learn more
If you wish to find out more about GenServers, the Elixir Getting Started
guide provides a tutorial-like introduction. The documentation and links
in Erlang can also provide extra insight.
	GenServer - Elixir's Getting Started Guide
	:gen_server module documentation
	gen_server Behaviour - OTP Design Principles
	Clients and Servers - Learn You Some Erlang for Great Good!

 Summary

 Types

 debug()

 Debug options supported by the start* functions

 from()

 Tuple describing the client of a call request.

 name()

 The GenServer name

 on_start()

 Return values of start* functions

 option()

 Option values used by the start* functions

 options()

 Options used by the start* functions

 server()

 The server reference.

 Callbacks

 code_change(old_vsn, state, extra)

 Invoked to change the state of the GenServer when a different version of a
module is loaded (hot code swapping) and the state's term structure should be
changed.

 format_status(status)

 This function is called by a GenServer process in the following situations

 format_status(reason, pdict_and_state)

 deprecated

 handle_call(request, from, state)

 Invoked to handle synchronous call/3 messages. call/3 will block until a
reply is received (unless the call times out or nodes are disconnected).

 handle_cast(request, state)

 Invoked to handle asynchronous cast/2 messages.

 handle_continue(continue_arg, state)

 Invoked to handle continue instructions.

 handle_info(msg, state)

 Invoked to handle all other messages.

 init(init_arg)

 Invoked when the server is started. start_link/3 or start/3 will
block until it returns.

 terminate(reason, state)

 Invoked when the server is about to exit. It should do any cleanup required.

 Functions

 abcast(nodes \\ [node() | Node.list()], name, request)

 Casts all servers locally registered as name at the specified nodes.

 call(server, request, timeout \\ 5000)

 Makes a synchronous call to the server and waits for its reply.

 cast(server, request)

 Casts a request to the server without waiting for a response.

 multi_call(nodes \\ [node() | Node.list()], name, request, timeout \\ :infinity)

 Calls all servers locally registered as name at the specified nodes.

 reply(client, reply)

 Replies to a client.

 start(module, init_arg, options \\ [])

 Starts a GenServer process without links (outside of a supervision tree).

 start_link(module, init_arg, options \\ [])

 Starts a GenServer process linked to the current process.

 stop(server, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the server with the given reason.

 whereis(server)

 Returns the pid or {name, node} of a GenServer process, nil otherwise.

 Types

 debug()

 @type debug() :: [:trace | :log | :statistics | {:log_to_file, Path.t()}]

Debug options supported by the start* functions

 from()

 @type from() :: {pid(), tag :: term()}

Tuple describing the client of a call request.
pid is the PID of the caller and tag is a unique term used to identify the
call.

 name()

 @type name() :: atom() | {:global, term()} | {:via, module(), term()}

The GenServer name

 on_start()

 @type on_start() ::
 {:ok, pid()} | :ignore | {:error, {:already_started, pid()} | term()}

Return values of start* functions

 option()

 @type option() ::
 {:debug, debug()}
 | {:name, name()}
 | {:timeout, timeout()}
 | {:spawn_opt, [Process.spawn_opt()]}
 | {:hibernate_after, timeout()}

Option values used by the start* functions

 options()

 @type options() :: [option()]

Options used by the start* functions

 server()

 @type server() :: pid() | name() | {atom(), node()}

The server reference.
This is either a plain PID or a value representing a registered name.
See the "Name registration" section of this document for more information.

 Callbacks

 code_change(old_vsn, state, extra)

 (optional)

 @callback code_change(old_vsn, state :: term(), extra :: term()) ::
 {:ok, new_state :: term()} | {:error, reason :: term()}
when old_vsn: term() | {:down, term()}

Invoked to change the state of the GenServer when a different version of a
module is loaded (hot code swapping) and the state's term structure should be
changed.
old_vsn is the previous version of the module (defined by the @vsn
attribute) when upgrading. When downgrading the previous version is wrapped in
a 2-tuple with first element :down. state is the current state of the
GenServer and extra is any extra data required to change the state.
Returning {:ok, new_state} changes the state to new_state and the code
change is successful.
Returning {:error, reason} fails the code change with reason reason and
the state remains as the previous state.
If code_change/3 raises the code change fails and the loop will continue
with its previous state. Therefore this callback does not usually contain side effects.
This callback is optional.

 format_status(status)

 (since 1.17.0)

 (optional)

 @callback format_status(status :: :gen_server.format_status()) ::
 new_status :: :gen_server.format_status()

This function is called by a GenServer process in the following situations:
	:sys.get_status/1,2 is invoked to get the GenServer status.
	The GenServer process terminates abnormally and logs an error.

This callback is used to limit the status of the process returned by
:sys.get_status/1,2 or sent to logger.
The callback gets a map status describing the current status and shall return
a map new_status with the same keys, but it may transform some values.
Two possible use cases for this callback is to remove sensitive information
from the state to prevent it from being printed in log files, or to compact
large irrelevant status items that would only clutter the logs.
Example
@impl GenServer
def format_status(status) do
 Map.new(status, fn
 {:state, state} -> {:state, Map.delete(state, :private_key)}
 {:message, {:password, _}} -> {:message, {:password, "redacted"}}
 key_value -> key_value
 end)
end

 format_status(reason, pdict_and_state)

 (optional)

 This callback is deprecated. Use format_status/1 callback instead.

 @callback format_status(reason, pdict_and_state :: list()) :: term()
when reason: :normal | :terminate

 handle_call(request, from, state)

 (optional)

 @callback handle_call(request :: term(), from(), state :: term()) ::
 {:reply, reply, new_state}
 | {:reply, reply, new_state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | {:noreply, new_state}
 | {:noreply, new_state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | {:stop, reason, reply, new_state}
 | {:stop, reason, new_state}
when reply: term(), new_state: term(), reason: term()

Invoked to handle synchronous call/3 messages. call/3 will block until a
reply is received (unless the call times out or nodes are disconnected).
request is the request message sent by a call/3, from is a 2-tuple
containing the caller's PID and a term that uniquely identifies the call, and
state is the current state of the GenServer.
Returning {:reply, reply, new_state} sends the response reply to the
caller and continues the loop with new state new_state.
Returning {:reply, reply, new_state, timeout} is similar to
{:reply, reply, new_state} except that it also sets a timeout.
See the "Timeouts" section in the module documentation for more information.
Returning {:reply, reply, new_state, :hibernate} is similar to
{:reply, reply, new_state} except the process is hibernated and will
continue the loop once a message is in its message queue. However, if a message is
already in the message queue, the process will continue the loop immediately.
Hibernating a GenServer causes garbage collection and leaves a continuous
heap that minimises the memory used by the process.
Hibernating should not be used aggressively as too much time could be spent
garbage collecting, which would delay the processing of incoming messages.
Normally it should only be used when you are not expecting new messages to
immediately arrive and minimising the memory of the process is shown to be
beneficial.
Returning {:reply, reply, new_state, {:continue, continue_arg}} is similar to
{:reply, reply, new_state} except that handle_continue/2 will be invoked
immediately after with continue_arg as the first argument and
state as the second one.
Returning {:noreply, new_state} does not send a response to the caller and
continues the loop with new state new_state. The response must be sent with
reply/2.
There are three main use cases for not replying using the return value:
	To reply before returning from the callback because the response is known
before calling a slow function.
	To reply after returning from the callback because the response is not yet
available.
	To reply from another process, such as a task.

When replying from another process the GenServer should exit if the other
process exits without replying as the caller will be blocking awaiting a
reply.
Returning {:noreply, new_state, timeout | :hibernate | {:continue, continue_arg}}
is similar to {:noreply, new_state} except a timeout, hibernation or continue
occurs as with a :reply tuple.
Returning {:stop, reason, reply, new_state} stops the loop and terminate/2
is called with reason reason and state new_state. Then, the reply is sent
as the response to call and the process exits with reason reason.
Returning {:stop, reason, new_state} is similar to
{:stop, reason, reply, new_state} except a reply is not sent.
This callback is optional. If one is not implemented, the server will fail
if a call is performed against it.

 handle_cast(request, state)

 (optional)

 @callback handle_cast(request :: term(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | {:stop, reason :: term(), new_state}
when new_state: term()

Invoked to handle asynchronous cast/2 messages.
request is the request message sent by a cast/2 and state is the current
state of the GenServer.
Returning {:noreply, new_state} continues the loop with new state new_state.
Returning {:noreply, new_state, timeout} is similar to {:noreply, new_state}
except that it also sets a timeout. See the "Timeouts" section in the module
documentation for more information.
Returning {:noreply, new_state, :hibernate} is similar to
{:noreply, new_state} except the process is hibernated before continuing the
loop. See handle_call/3 for more information.
Returning {:noreply, new_state, {:continue, continue_arg}} is similar to
{:noreply, new_state} except handle_continue/2 will be invoked
immediately after with continue_arg as the first argument and
state as the second one.
Returning {:stop, reason, new_state} stops the loop and terminate/2 is
called with the reason reason and state new_state. The process exits with
reason reason.
This callback is optional. If one is not implemented, the server will fail
if a cast is performed against it.

 handle_continue(continue_arg, state)

 (optional)

 @callback handle_continue(continue_arg, state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state, timeout() | :hibernate | {:continue, continue_arg}}
 | {:stop, reason :: term(), new_state}
when new_state: term(), continue_arg: term()

Invoked to handle continue instructions.
It is useful for performing work after initialization or for splitting the work
in a callback in multiple steps, updating the process state along the way.
Return values are the same as handle_cast/2.
This callback is optional. If one is not implemented, the server will fail
if a continue instruction is used.

 handle_info(msg, state)

 (optional)

 @callback handle_info(msg :: :timeout | term(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | {:stop, reason :: term(), new_state}
when new_state: term()

Invoked to handle all other messages.
msg is the message and state is the current state of the GenServer. When
a timeout occurs the message is :timeout.
Return values are the same as handle_cast/2.
This callback is optional. If one is not implemented, the received message
will be logged.

 init(init_arg)

 @callback init(init_arg :: term()) ::
 {:ok, state}
 | {:ok, state, timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | :ignore
 | {:stop, reason :: term()}
when state: term()

Invoked when the server is started. start_link/3 or start/3 will
block until it returns.
init_arg is the argument term (second argument) passed to start_link/3.
Returning {:ok, state} will cause start_link/3 to return
{:ok, pid} and the process to enter its loop.
Returning {:ok, state, timeout} is similar to {:ok, state},
except that it also sets a timeout. See the "Timeouts" section
in the module documentation for more information.
Returning {:ok, state, :hibernate} is similar to {:ok, state}
except the process is hibernated before entering the loop. See
handle_call/3 for more information on hibernation.
Returning {:ok, state, {:continue, continue_arg}} is similar to
{:ok, state} except that immediately after entering the loop,
the handle_continue/2 callback will be invoked with continue_arg
as the first argument and state as the second one.
Returning :ignore will cause start_link/3 to return :ignore and
the process will exit normally without entering the loop or calling
terminate/2. If used when part of a supervision tree the parent
supervisor will not fail to start nor immediately try to restart the
GenServer. The remainder of the supervision tree will be started
and so the GenServer should not be required by other processes.
It can be started later with Supervisor.restart_child/2 as the child
specification is saved in the parent supervisor. The main use cases for
this are:
	The GenServer is disabled by configuration but might be enabled later.
	An error occurred and it will be handled by a different mechanism than the
Supervisor. Likely this approach involves calling Supervisor.restart_child/2
after a delay to attempt a restart.

Returning {:stop, reason} will cause start_link/3 to return
{:error, reason} and the process to exit with reason reason without
entering the loop or calling terminate/2.

 terminate(reason, state)

 (optional)

 @callback terminate(reason, state :: term()) :: term()
when reason: :normal | :shutdown | {:shutdown, term()} | term()

Invoked when the server is about to exit. It should do any cleanup required.
reason is exit reason and state is the current state of the GenServer.
The return value is ignored.
terminate/2 is useful for cleanup that requires access to the
GenServer's state. However, it is not guaranteed that terminate/2
is called when a GenServer exits. Therefore, important cleanup should be
done using process links and/or monitors. A monitoring process will receive the
same exit reason that would be passed to terminate/2.
terminate/2 is called if:
	the GenServer traps exits (using Process.flag/2) and the parent
process (the one which called start_link/1) sends an exit signal

	a callback (except init/1) does one of the following:
	returns a :stop tuple

	raises (via raise/2) or exits (via exit/1)

	returns an invalid value

If part of a supervision tree, a GenServer will receive an exit signal from
its parent process (its supervisor) when the tree is shutting down. The exit
signal is based on the shutdown strategy in the child's specification, where
this value can be:
	:brutal_kill: the GenServer is killed and so terminate/2 is not called.

	a timeout value, where the supervisor will send the exit signal :shutdown and
the GenServer will have the duration of the timeout to terminate.
If after duration of this timeout the process is still alive, it will be killed
immediately.

For a more in-depth explanation, please read the "Shutdown values (:shutdown)"
section in the Supervisor module.
If the GenServer receives an exit signal (that is not :normal) from any
process when it is not trapping exits it will exit abruptly with the same
reason and so not call terminate/2. Note that a process does NOT trap
exits by default and an exit signal is sent when a linked process exits or its
node is disconnected.
terminate/2 is only called after the GenServer finishes processing all
messages which arrived in its mailbox prior to the exit signal. If it
receives a :kill signal before it finishes processing those,
terminate/2 will not be called. If terminate/2 is called, any
messages received after the exit signal will still be in the mailbox.
There is no cleanup needed when the GenServer controls a port (for example,
:gen_tcp.socket) or File.io_device/0, because these will be closed on
receiving a GenServer's exit signal and do not need to be closed manually
in terminate/2.
If reason is neither :normal, :shutdown, nor {:shutdown, term} an error is
logged.
This callback is optional.

 Functions

 abcast(nodes \\ [node() | Node.list()], name, request)

 @spec abcast([node()], name :: atom(), term()) :: :abcast

Casts all servers locally registered as name at the specified nodes.
This function returns immediately and ignores nodes that do not exist, or where the
server name does not exist.
See multi_call/4 for more information.

 call(server, request, timeout \\ 5000)

 @spec call(server(), term(), timeout()) :: term()

Makes a synchronous call to the server and waits for its reply.
The client sends the given request to the server and waits until a reply
arrives or a timeout occurs. handle_call/3 will be called on the server
to handle the request.
server can be a PID or any of the other values described in the
"Name registration" section of the documentation for this module.
Timeouts
timeout is an integer greater than zero which specifies how many
milliseconds to wait for a reply, or the atom :infinity to wait
indefinitely. The default value is 5000. If no reply is received within
the specified time, the function call fails and the caller exits. If the
caller catches the failure and continues running, and the server is just late
with the reply, it may arrive at any time later into the caller's message
queue. The caller must in this case be prepared for this and discard any such
garbage messages that are two-element tuples with a reference as the first
element.

 cast(server, request)

 @spec cast(server(), term()) :: :ok

Casts a request to the server without waiting for a response.
This function always returns :ok regardless of whether
the destination server (or node) exists. Therefore it
is unknown whether the destination server successfully
handled the request.
server can be any of the values described in the "Name registration"
section of the documentation for this module.

 multi_call(nodes \\ [node() | Node.list()], name, request, timeout \\ :infinity)

 @spec multi_call([node()], name :: atom(), term(), timeout()) ::
 {replies :: [{node(), term()}], bad_nodes :: [node()]}

Calls all servers locally registered as name at the specified nodes.
First, the request is sent to every node in nodes; then, the caller waits
for the replies. This function returns a two-element tuple {replies, bad_nodes} where:
	replies - is a list of {node, reply} tuples where node is the node
that replied and reply is its reply
	bad_nodes - is a list of nodes that either did not exist or where a
server with the given name did not exist or did not reply

nodes is a list of node names to which the request is sent. The default
value is the list of all known nodes (including this node).
Examples
Assuming the Stack GenServer mentioned in the docs for the GenServer
module is registered as Stack in the :"foo@my-machine" and
:"bar@my-machine" nodes:
GenServer.multi_call(Stack, :pop)
#=> {[{:"foo@my-machine", :hello}, {:"bar@my-machine", :world}], []}

 reply(client, reply)

 @spec reply(from(), term()) :: :ok

Replies to a client.
This function can be used to explicitly send a reply to a client that called
call/3 or multi_call/4 when the reply cannot be specified in the return
value of handle_call/3.
client must be the from argument (the second argument) accepted by
handle_call/3 callbacks. reply is an arbitrary term which will be given
back to the client as the return value of the call.
Note that reply/2 can be called from any process, not just the GenServer
that originally received the call (as long as that GenServer communicated the
from argument somehow).
This function always returns :ok.
Examples
def handle_call(:reply_in_one_second, from, state) do
 Process.send_after(self(), {:reply, from}, 1_000)
 {:noreply, state}
end

def handle_info({:reply, from}, state) do
 GenServer.reply(from, :one_second_has_passed)
 {:noreply, state}
end

 start(module, init_arg, options \\ [])

 @spec start(module(), term(), options()) :: on_start()

Starts a GenServer process without links (outside of a supervision tree).
See start_link/3 for more information.

 start_link(module, init_arg, options \\ [])

 @spec start_link(module(), term(), options()) :: on_start()

Starts a GenServer process linked to the current process.
This is often used to start the GenServer as part of a supervision tree.
Once the server is started, the init/1 function of the given module is
called with init_arg as its argument to initialize the server. To ensure a
synchronized start-up procedure, this function does not return until init/1
has returned.
Note that a GenServer started with start_link/3 is linked to the
parent process and will exit in case of crashes from the parent. The GenServer
will also exit due to the :normal reasons in case it is configured to trap
exits in the init/1 callback.
Options
	:name - used for name registration as described in the "Name
registration" section in the documentation for GenServer

	:timeout - if present, the server is allowed to spend the given number of
milliseconds initializing or it will be terminated and the start function
will return {:error, :timeout}

	:debug - if present, the corresponding function in the :sys module is invoked

	:spawn_opt - if present, its value is passed as options to the
underlying process as in Process.spawn/4

	:hibernate_after - if present, the GenServer process awaits any message for
the given number of milliseconds and if no message is received, the process goes
into hibernation automatically (by calling :proc_lib.hibernate/3).

Return values
If the server is successfully created and initialized, this function returns
{:ok, pid}, where pid is the PID of the server. If a process with the
specified server name already exists, this function returns
{:error, {:already_started, pid}} with the PID of that process.
If the init/1 callback fails with reason, this function returns
{:error, reason}. Otherwise, if it returns {:stop, reason}
or :ignore, the process is terminated and this function returns
{:error, reason} or :ignore, respectively.

 stop(server, reason \\ :normal, timeout \\ :infinity)

 @spec stop(server(), reason :: term(), timeout()) :: :ok

Synchronously stops the server with the given reason.
The terminate/2 callback of the given server will be invoked before
exiting. This function returns :ok if the server terminates with the
given reason; if it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 whereis(server)

 @spec whereis(server()) :: pid() | {atom(), node()} | nil

Returns the pid or {name, node} of a GenServer process, nil otherwise.
To be precise, nil is returned whenever a pid or {name, node} cannot
be returned. Note there is no guarantee the returned pid or {name, node}
is alive, as a process could terminate immediately after it is looked up.
Examples
For example, to lookup a server process, monitor it and send a cast to it:
process = GenServer.whereis(server)
monitor = Process.monitor(process)
GenServer.cast(process, :hello)

Node

Functions related to VM nodes.
Some of the functions in this module are inlined by the compiler,
similar to functions in the Kernel module and they are explicitly
marked in their docs as "inlined by the compiler". For more information
about inlined functions, check out the Kernel module.

 Summary

 Types

 state()

 t()

 Functions

 alive?()

 Returns true if the local node is alive.

 connect(node)

 Establishes a connection to node.

 disconnect(node)

 Forces the disconnection of a node.

 get_cookie()

 Returns the magic cookie of the local node.

 list()

 Returns a list of all visible nodes in the system, excluding
the local node.

 list(args)

 Returns a list of nodes according to argument given.

 monitor(node, flag)

 Monitors the status of the node.

 monitor(node, flag, options)

 Behaves as monitor/2 except that it allows an extra
option to be given, namely :allow_passive_connect.

 ping(node)

 Tries to set up a connection to node.

 self()

 Returns the current node.

 set_cookie(node \\ Node.self(), cookie)

 Sets the magic cookie of node to the atom cookie.

 spawn(node, fun)

 Returns the PID of a new process started by the application of fun
on node. If node does not exist, a useless PID is returned.

 spawn(node, fun, opts)

 Returns the PID of a new process started by the application of fun
on node.

 spawn(node, module, fun, args)

 Returns the PID of a new process started by the application of
module.function(args) on node.

 spawn(node, module, fun, args, opts)

 Returns the PID of a new process started by the application of
module.function(args) on node.

 spawn_link(node, fun)

 Returns the PID of a new linked process started by the application of fun on node.

 spawn_link(node, module, fun, args)

 Returns the PID of a new linked process started by the application of
module.function(args) on node.

 spawn_monitor(node, fun)

 Spawns the given function on a node, monitors it and returns its PID
and monitoring reference.

 spawn_monitor(node, module, fun, args)

 Spawns the given module and function passing the given args on a node,
monitors it and returns its PID and monitoring reference.

 start(name, opts \\ [])

 Turns a non-distributed node into a distributed node.

 stop()

 Turns a distributed node into a non-distributed node.

 Types

 state()

 @type state() :: :visible | :hidden | :connected | :this | :known

 t()

 @type t() :: node()

 Functions

 alive?()

 @spec alive?() :: boolean()

Returns true if the local node is alive.
That is, if the node can be part of a distributed system.

 connect(node)

 @spec connect(t()) :: boolean() | :ignored

Establishes a connection to node.
Returns true if successful, false if not, and the atom
:ignored if the local node is not alive.
For more information, see :net_kernel.connect_node/1.

 disconnect(node)

 @spec disconnect(t()) :: boolean() | :ignored

Forces the disconnection of a node.
This will appear to the node as if the local node has crashed.
This function is mainly used in the Erlang network authentication
protocols. Returns true if disconnection succeeds, otherwise false.
If the local node is not alive, the function returns :ignored.
For more information, see :erlang.disconnect_node/1.

 get_cookie()

 @spec get_cookie() :: atom()

Returns the magic cookie of the local node.
Returns the cookie if the node is alive, otherwise :nocookie.

 list()

 @spec list() :: [t()]

Returns a list of all visible nodes in the system, excluding
the local node.
Same as list(:visible).
Inlined by the compiler.

 list(args)

 @spec list(state() | [state()]) :: [t()]

Returns a list of nodes according to argument given.
The result returned when the argument is a list, is the list of nodes
satisfying the disjunction(s) of the list elements.
For more information, see :erlang.nodes/1.
Inlined by the compiler.

 monitor(node, flag)

 @spec monitor(t(), boolean()) :: true

Monitors the status of the node.
If flag is true, monitoring is turned on.
If flag is false, monitoring is turned off.
For more information, see :erlang.monitor_node/2.
For monitoring status changes of all nodes, see :net_kernel.monitor_nodes/2.

 monitor(node, flag, options)

 @spec monitor(t(), boolean(), [:allow_passive_connect]) :: true

Behaves as monitor/2 except that it allows an extra
option to be given, namely :allow_passive_connect.
For more information, see :erlang.monitor_node/3.
For monitoring status changes of all nodes, see :net_kernel.monitor_nodes/2.

 ping(node)

 @spec ping(t()) :: :pong | :pang

Tries to set up a connection to node.
Returns :pang if it fails, or :pong if it is successful.
Examples
iex> Node.ping(:unknown_node)
:pang

 self()

 @spec self() :: t()

Returns the current node.
It returns the same as the built-in node().

 set_cookie(node \\ Node.self(), cookie)

 @spec set_cookie(t(), atom()) :: true

Sets the magic cookie of node to the atom cookie.
The default node is Node.self/0, the local node. If node is the local node,
the function also sets the cookie of all other unknown nodes to cookie.
This function will raise FunctionClauseError if the given node is not alive.

 spawn(node, fun)

 @spec spawn(t(), (-> any())) :: pid()

Returns the PID of a new process started by the application of fun
on node. If node does not exist, a useless PID is returned.
For the list of available options, see :erlang.spawn/2.
Inlined by the compiler.

 spawn(node, fun, opts)

 @spec spawn(t(), (-> any()), Process.spawn_opts()) :: pid() | {pid(), reference()}

Returns the PID of a new process started by the application of fun
on node.
If node does not exist, a useless PID is returned.
For the list of available options, see :erlang.spawn_opt/3.
Inlined by the compiler.

 spawn(node, module, fun, args)

 @spec spawn(t(), module(), atom(), [any()]) :: pid()

Returns the PID of a new process started by the application of
module.function(args) on node.
If node does not exist, a useless PID is returned.
For the list of available options, see :erlang.spawn/4.
Inlined by the compiler.

 spawn(node, module, fun, args, opts)

 @spec spawn(t(), module(), atom(), [any()], Process.spawn_opts()) ::
 pid() | {pid(), reference()}

Returns the PID of a new process started by the application of
module.function(args) on node.
If node does not exist, a useless PID is returned.
For the list of available options, see :erlang.spawn_opt/5.
Inlined by the compiler.

 spawn_link(node, fun)

 @spec spawn_link(t(), (-> any())) :: pid()

Returns the PID of a new linked process started by the application of fun on node.
A link is created between the calling process and the new process, atomically.
If node does not exist, a useless PID is returned (and due to the link, an exit
signal with exit reason :noconnection will be received).
Inlined by the compiler.

 spawn_link(node, module, fun, args)

 @spec spawn_link(t(), module(), atom(), [any()]) :: pid()

Returns the PID of a new linked process started by the application of
module.function(args) on node.
A link is created between the calling process and the new process, atomically.
If node does not exist, a useless PID is returned (and due to the link, an exit
signal with exit reason :noconnection will be received).
Inlined by the compiler.

 spawn_monitor(node, fun)

 (since 1.14.0)

 @spec spawn_monitor(t(), (-> any())) :: {pid(), reference()}

Spawns the given function on a node, monitors it and returns its PID
and monitoring reference.
Inlined by the compiler.

 spawn_monitor(node, module, fun, args)

 (since 1.14.0)

 @spec spawn_monitor(t(), module(), atom(), [any()]) :: {pid(), reference()}

Spawns the given module and function passing the given args on a node,
monitors it and returns its PID and monitoring reference.
Inlined by the compiler.

 start(name, opts \\ [])

 @spec start(node(),
 name_domain: :shortnames | :longnames,
 net_ticktime: pos_integer(),
 net_tickintensity: 4..1000,
 dist_listen: boolean(),
 hidden: boolean()
) :: {:ok, pid()} | {:error, term()}

Turns a non-distributed node into a distributed node.
This functionality starts the :net_kernel and other related
processes.
This function is rarely invoked in practice. Instead, nodes are
named and started via the command line by using the --sname and
--name flags. If you need to use this function to dynamically
name a node, please make sure the epmd operating system process
is running by calling epmd -daemon, such as System.cmd("epmd", ["-daemon"]).
Invoking this function when the distribution has already been started,
either via the command line interface or dynamically, will return an
error.
Examples
{:ok, pid} = Node.start(:example, name_domain: :shortnames, hidden: true)
Options
Currently supported options are:
	:name_domain - determines the host name part of the node name. If :longnames,
fully qualified domain names will be used which also is the default.
If :shortnames, only the short name of the host will be used.

	:net_ticktime - The tick time to use in seconds. Defaults to the value of the
net_ticktime configuration under Erlang's kernel application.
See the kernel documentation
for more information.

	net_tickintensity - The tick intensity to use. Defaults to the value of the
net_tickintensity configuration under Erlang's kernel application.
See the kernel documentation
for more information.

	:dist_listen - Enable or disable listening for incoming connections.
Defaults to the value given to the --erl flag, otherwise it defaults to true.
Note that dist_listen: false implies hidden: true.

	:hidden - Enable or disable hidden node. Defaults to true if the --hidden
flag is given to elixir's CLI (or via the --erl flag), otherwise it
defaults to false.

If name is set to :undefined, the distribution will be started to request a
dynamic node name from the first node it connects to. Setting name to
:undefined also implies options dist_listen: false, hidden: true.

 stop()

 @spec stop() :: :ok | {:error, :not_allowed | :not_found}

Turns a distributed node into a non-distributed node.
For other nodes in the network, this is the same as the node going down.
Only possible when the node was started with Node.start/2, otherwise
returns {:error, :not_allowed}. Returns {:error, :not_found} if the
local node is not alive.

PartitionSupervisor

A supervisor that starts multiple partitions of the same child.
Certain processes may become bottlenecks in large systems.
If those processes can have their state trivially partitioned,
in a way there is no dependency between them, then they can use
the PartitionSupervisor to create multiple isolated and
independent partitions.
Once the PartitionSupervisor starts, you can dispatch to its
children using {:via, PartitionSupervisor, {name, key}}, where
name is the name of the PartitionSupervisor and key is used
for routing.
This module was introduced in Elixir v1.14.0.
Simple Example
Let's start with an example which is not useful per se, but shows how the
partitions are started and how messages are routed to them.
Here's a toy GenServer that simply collects the messages it's given.
It prints them for easy illustration.
defmodule Collector do
 use GenServer

 def start_link(args) do
 GenServer.start_link(__MODULE__, args)
 end

 def init(args) do
 IO.inspect([__MODULE__, " got args ", args, " in ", self()])
 {:ok, _initial_state = []}
 end

 def collect(server, msg) do
 GenServer.call(server, {:collect, msg})
 end

 def handle_call({:collect, msg}, _from, state) do
 new_state = [msg | state]
 IO.inspect(["current messages:", new_state, " in process", self()])
 {:reply, :ok, new_state}
 end
end
To run multiple of these, we can start them under a PartitionSupervisor by placing
this in our supervision tree:
{PartitionSupervisor,
 child_spec: Collector.child_spec([some: :arg]),
 name: MyApp.PartitionSupervisor
}
We can send messages to them using a "via tuple":
The key is used to route our message to a particular instance.
key = 1
Collector.collect({:via, PartitionSupervisor, {MyApp.PartitionSupervisor, key}}, :hi)
["current messages:", [:hi], " in process", #PID<0.602.0>]
:ok
Collector.collect({:via, PartitionSupervisor, {MyApp.PartitionSupervisor, key}}, :ho)
["current messages:", [:ho, :hi], " in process", #PID<0.602.0>]
:ok

With a different key, the message will be routed to a different instance.
key = 2
Collector.collect({:via, PartitionSupervisor, {MyApp.PartitionSupervisor, key}}, :a)
["current messages:", [:a], " in process", #PID<0.603.0>]
:ok
Collector.collect({:via, PartitionSupervisor, {MyApp.PartitionSupervisor, key}}, :b)
["current messages:", [:b, :a], " in process", #PID<0.603.0>]
:ok
Now let's move on to a useful example.
DynamicSupervisor Example
The DynamicSupervisor is a single process responsible for starting
other processes. In some applications, the DynamicSupervisor may
become a bottleneck. To address this, you can start multiple instances
of the DynamicSupervisor through a PartitionSupervisor, and then
pick a "random" instance to start the child on.
Instead of starting a single DynamicSupervisor:
children = [
 {DynamicSupervisor, name: MyApp.DynamicSupervisor}
]

Supervisor.start_link(children, strategy: :one_for_one)
and starting children on that dynamic supervisor directly:
DynamicSupervisor.start_child(MyApp.DynamicSupervisor, {Agent, fn -> %{} end})
You can start the dynamic supervisors under a PartitionSupervisor:
children = [
 {PartitionSupervisor,
 child_spec: DynamicSupervisor,
 name: MyApp.DynamicSupervisors}
]

Supervisor.start_link(children, strategy: :one_for_one)
and then:
DynamicSupervisor.start_child(
 {:via, PartitionSupervisor, {MyApp.DynamicSupervisors, self()}},
 {Agent, fn -> %{} end}
)
In the code above, we start a partition supervisor that will by default
start a dynamic supervisor for each core in your machine. Then, instead
of calling the DynamicSupervisor by name, you call it through the
partition supervisor using the {:via, PartitionSupervisor, {name, key}}
format. We picked self() as the routing key, which means each process
will be assigned one of the existing dynamic supervisors. See start_link/1
to see all options supported by the PartitionSupervisor.
Implementation notes
The PartitionSupervisor uses either an ETS table or a Registry to
manage all of the partitions. Under the hood, the PartitionSupervisor
generates a child spec for each partition and then acts as a regular
supervisor. The ID of each child spec is the partition number.
For routing, two strategies are used. If key is an integer, it is routed
using rem(abs(key), partitions) where partitions is the number of
partitions. Otherwise it uses :erlang.phash2(key, partitions).
The particular routing may change in the future, and therefore must not
be relied on. If you want to retrieve a particular PID for a certain key,
you can use GenServer.whereis({:via, PartitionSupervisor, {name, key}}).

 Summary

 Types

 name()

 The name of the PartitionSupervisor.

 partition()

 The "identifier" of a partition.

 start_link_option()

 The possible options to give to start_link/0.

 Functions

 count_children(supervisor)

 Returns a map containing count values for the supervisor.

 partitions(name)

 Returns the number of partitions for the partition supervisor.

 resize!(name, partitions)

 Resizes the number of partitions in the PartitionSupervisor.

 start_link(opts)

 Starts a partition supervisor with the given options.

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the given partition supervisor with the given reason.

 which_children(name)

 Returns a list with information about all children of the given supervisor.

 Types

 name()

 (since 1.14.0)

 @type name() :: atom() | {:via, module(), term()}

The name of the PartitionSupervisor.

 partition()

 (since 1.19.0)

 @type partition() :: non_neg_integer()

The "identifier" of a partition.

 start_link_option()

 (since 1.19.0)

 @type start_link_option() ::
 {:name, name()}
 | {:child_spec, Supervisor.child_spec() | Supervisor.module_spec()}
 | {:partitions, pos_integer()}
 | {:strategy, Supervisor.strategy()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, non_neg_integer()}
 | {:with_arguments,
 (args :: [term()], partition() -> updated_args :: [term()])}

The possible options to give to start_link/0.

 Functions

 count_children(supervisor)

 (since 1.14.0)

 @spec count_children(name()) :: %{
 specs: non_neg_integer(),
 active: non_neg_integer(),
 supervisors: non_neg_integer(),
 workers: non_neg_integer()
}

Returns a map containing count values for the supervisor.
The map contains the following keys:
	:specs - the number of partitions (children processes)

	:active - the count of all actively running child processes managed by
this supervisor

	:supervisors - the count of all supervisors whether or not the child
process is still alive

	:workers - the count of all workers, whether or not the child process
is still alive

 partitions(name)

 (since 1.14.0)

 @spec partitions(name()) :: pos_integer()

Returns the number of partitions for the partition supervisor.

 resize!(name, partitions)

 (since 1.18.0)

 @spec resize!(name(), non_neg_integer()) :: non_neg_integer()

Resizes the number of partitions in the PartitionSupervisor.
This is done by starting or stopping a given number of
partitions in the supervisor. All of the child specifications
are kept in the PartitionSupervisor itself.
The final number of partitions cannot be less than zero and
cannot be more than the number of partitions the supervisor
started with.

 start_link(opts)

 (since 1.14.0)

 @spec start_link([start_link_option()]) :: Supervisor.on_start()

Starts a partition supervisor with the given options.
This function is typically not invoked directly, instead it is invoked
when using a PartitionSupervisor as a child of another supervisor:
children = [
 {PartitionSupervisor, child_spec: SomeChild, name: MyPartitionSupervisor}
]
If the supervisor is successfully spawned, this function returns
{:ok, pid}, where pid is the PID of the supervisor. If the given name
for the partition supervisor is already assigned to a process,
the function returns {:error, {:already_started, pid}}, where pid
is the PID of that process.
Note that a supervisor started with this function is linked to the parent
process and exits not only on crashes but also if the parent process exits
with :normal reason.
Options
See start_link_option/0 for the type of each option.
	:name - an atom or via tuple representing the name of the partition
supervisor. Required.

	:child_spec - the child spec to be used when starting the partitions. Required.

	:partitions - the number of partitions.
Defaults to System.schedulers_online/0 (typically the number of cores).

	:strategy - the restart strategy option.
You can learn more about strategies in the Supervisor module docs.
Defaults to :one_for_one.

	:max_restarts - the maximum number of restarts allowed in
a time frame. Defaults to 3.

	:max_seconds - the time frame in which :max_restarts applies.
Defaults to 5.

	:with_arguments - a two-argument anonymous function that allows
the partition to be given to the child starting function. It takes the list of arguments
passed to the child start function and the partition itself, and must return
possibly-updated arguments to give to the child start function. See the
:with_arguments section below.

:with_arguments
Sometimes you want each partition to know their partition assigned number.
This can be done with the :with_arguments option. This function receives
the value of the :child_spec option and an integer for the partition
number. It must return a new list of arguments that will be used to start the
partition process.
For example, most processes are started by calling start_link(opts),
where opts is a keyword list. You could inject the partition into the
options given to the child:
with_arguments: fn [opts], partition ->
 [Keyword.put(opts, :partition, partition)]
end

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 (since 1.14.0)

 @spec stop(name(), reason :: term(), timeout()) :: :ok

Synchronously stops the given partition supervisor with the given reason.
It returns :ok if the supervisor terminates with the given
reason. If it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 which_children(name)

 (since 1.14.0)

 @spec which_children(name()) :: [
 {integer(), pid() | :restarting, :worker | :supervisor, [module()] | :dynamic}
]

Returns a list with information about all children of the given supervisor.
This function returns a list of tuples containing:
	id - the partition number

	child - the PID of the corresponding child process or the
atom :restarting if the process is about to be restarted

	type - :worker or :supervisor as defined in the child
specification

	modules - as defined in the child specification

Process

Conveniences for working with processes and the process dictionary.
Besides the functions available in this module, the Kernel module
exposes and auto-imports some basic functionality related to processes
available through the following functions:
	Kernel.spawn/1 and Kernel.spawn/3
	Kernel.spawn_link/1 and Kernel.spawn_link/3
	Kernel.spawn_monitor/1 and Kernel.spawn_monitor/3
	Kernel.self/0
	Kernel.send/2

While this module provides low-level conveniences to work with processes,
developers typically use abstractions such as Agent, GenServer,
Registry, Supervisor and Task for building their systems and
resort to this module for gathering information, trapping exits, links
and monitoring.
Aliases
Aliases are a feature introduced in Erlang/OTP 24. An alias is a way
to refer to a PID in order to send messages to it. The advantage of using
aliases is that they can be deactivated even if the aliased process is still
running. If you send a message to a deactivated alias, nothing will happen.
This makes request/response scenarios easier to implement.
You can use alias/0 or alias/1 to set an alias, and then you can send
messages to that alias like you do with PIDs using send/2. To deactivate
an alias, you can use unalias/1. If you send a message to a deactivated alias,
nothing will happen.
For example, you could have a process that listens for :ping messages:
def server do
 receive do
 {:ping, source_alias} ->
 send(source_alias, :pong)
 server()
 end
end
Now, another process might ping this process:
server = spawn(&server/0)

source_alias = Process.alias()
send(server, {:ping, source_alias})

receive do
 :pong -> :pong
end
#=> :pong
If now you deactivate the source_alias and ping the server again, you
won't receive any response since the server will send/2 the :pong response
to a deactivated alias.
Process.unalias(source_alias)
send(server, {:ping, source_alias})

receive do
 :pong -> :pong
after
 1000 -> :timeout
end
#=> :timeout
See also the Process Aliases
section
of the Erlang reference manual.

 Summary

 Types

 alias()

 An alias returned by alias/0 or alias/1.

 alias_opt()

 dest()

 A process destination.

 process_info_item()

 process_info_result_item()

 spawn_opt()

 spawn_opts()

 Functions

 alias()

 Creates a process alias.

 alias(options)

 Creates a process alias.

 alive?(pid)

 Tells whether the given process is alive on the local node.

 cancel_timer(timer_ref, options \\ [])

 Cancels a timer returned by send_after/3.

 delete(key)

 Deletes the given key from the process dictionary.

 demonitor(monitor_ref, options \\ [])

 Demonitors the monitor identified by the given reference.

 exit(pid, reason)

 Sends an exit signal with the given reason to pid.

 flag(flag, value)

 Sets the given flag to value for the calling process.

 flag(pid, flag, value)

 Sets the given flag to value for the given process pid.

 get()

 Returns all key-value pairs in the process dictionary.

 get(key, default \\ nil)

 Returns the value for the given key in the process dictionary,
or default if key is not set.

 get_keys()

 Returns all keys in the process dictionary.

 get_keys(value)

 Returns all keys in the process dictionary that have the given value.

 group_leader()

 Returns the PID of the group leader for the calling process.

 group_leader(pid, leader)

 Sets the group leader of the given pid to leader.

 hibernate(mod, fun_name, args)

 Puts the calling process into a "hibernation" state.

 info(pid)

 Returns information about the process identified by pid, or returns nil if the process
is not alive.

 info(pid, spec)

 Returns information about the process identified by pid,
or returns nil if the process is not alive.

 link(pid_or_port)

 Creates a link between the calling process and the given item (process or
port).

 list()

 Returns a list of PIDs corresponding to all the
processes currently existing on the local node.

 monitor(item)

 Starts monitoring the given item from the calling process.

 monitor(item, options)

 Starts monitoring the given item from the calling process.

 put(key, value)

 Stores the given key-value pair in the process dictionary.

 read_timer(timer_ref)

 Reads a timer created by send_after/3.

 register(pid_or_port, name)

 Registers the given pid_or_port under the given name on the local node.

 registered()

 Returns a list of names which have been registered using register/2.

 send(dest, msg, options)

 Sends a message to the given dest.

 send_after(dest, msg, time, opts \\ [])

 Sends msg to dest after time milliseconds.

 set_label(label)

 Add a descriptive term to the current process.

 sleep(timeout)

 Sleeps the current process for the given timeout.

 spawn(fun, opts)

 Spawns the given function according to the given options.

 spawn(mod, fun, args, opts)

 Spawns the given function fun from module mod, passing the given args
according to the given options.

 unalias(alias)

 Explicitly deactivates a process alias.

 unlink(pid_or_port)

 Removes the link between the calling process and the given item (process or
port).

 unregister(name)

 Removes the registered name, associated with a PID
or a port identifier.

 whereis(name)

 Returns the PID or port identifier registered under name or nil if the
name is not registered.

 Types

 alias()

 @type alias() :: reference()

An alias returned by alias/0 or alias/1.
See the module documentation for more information about aliases.

 alias_opt()

 @type alias_opt() :: :explicit_unalias | :reply

 dest()

 @type dest() ::
 pid()
 | port()
 | (registered_name :: atom())
 | {registered_name :: atom(), node()}

A process destination.
A remote or local PID, a local port, a locally registered name, or a tuple in
the form of {registered_name, node} for a registered name at another node.

 process_info_item()

 @type process_info_item() :: atom() | {:dictionary, term()}

 process_info_result_item()

 @type process_info_result_item() :: {process_info_item(), term()}

 spawn_opt()

 @type spawn_opt() ::
 :link
 | :monitor
 | {:monitor, :erlang.monitor_option()}
 | {:priority, :low | :normal | :high}
 | {:fullsweep_after, non_neg_integer()}
 | {:min_heap_size, non_neg_integer()}
 | {:min_bin_vheap_size, non_neg_integer()}
 | {:max_heap_size, heap_size()}
 | {:message_queue_data, :off_heap | :on_heap}

 spawn_opts()

 @type spawn_opts() :: [spawn_opt()]

 Functions

 alias()

 (since 1.15.0)

 @spec alias() :: alias()

Creates a process alias.
This is the same as calling alias/1 as alias([:explicit_unalias]). See
also :erlang.alias/0.
Inlined by the compiler.
Examples
alias = Process.alias()

 alias(options)

 (since 1.15.0)

 @spec alias([alias_opt()]) :: alias()

Creates a process alias.
See the module documentation for more information about aliases.
See also :erlang.alias/1.
Inlined by the compiler.
Examples
alias = Process.alias([:reply])

 alive?(pid)

 @spec alive?(pid()) :: boolean()

Tells whether the given process is alive on the local node.
If the process identified by pid is alive (that is, it's not exiting and has
not exited yet) then this function returns true. Otherwise, it returns
false.
pid must refer to a process running on the local node or ArgumentError is raised.
To check whether a process on any node is alive you can use the :erpc module.
:erpc.call(node(pid), Process, :alive?, [pid])
Inlined by the compiler.

 cancel_timer(timer_ref, options \\ [])

 @spec cancel_timer(reference(), options) :: non_neg_integer() | false | :ok
when options: [async: boolean(), info: boolean()]

Cancels a timer returned by send_after/3.
When the result is an integer, it represents the time in milliseconds
left until the timer would have expired.
When the result is false, a timer corresponding to timer_ref could not be
found. This can happen either because the timer expired, because it has
already been canceled, or because timer_ref never corresponded to a timer.
Even if the timer had expired and the message was sent, this function does not
tell you if the timeout message has arrived at its destination yet.
Inlined by the compiler.
Options
	:async - (boolean) when false, the request for cancellation is
synchronous. When true, the request for cancellation is asynchronous,
meaning that the request to cancel the timer is issued and :ok is
returned right away. Defaults to false.

	:info - (boolean) whether to return information about the timer being
cancelled. When the :async option is false and :info is true, then
either an integer or false (like described above) is returned. If
:async is false and :info is false, :ok is returned. If :async
is true and :info is true, a message in the form {:cancel_timer, timer_ref, result} (where result is an integer or false like
described above) is sent to the caller of this function when the
cancellation has been performed. If :async is true and :info is
false, no message is sent. Defaults to true.

 delete(key)

 @spec delete(term()) :: term() | nil

Deletes the given key from the process dictionary.
Returns the value that was under key in the process dictionary,
or nil if key was not stored in the process dictionary.
Examples
iex> Process.put(:comments, ["comment", "other comment"])
iex> Process.delete(:comments)
["comment", "other comment"]
iex> Process.delete(:comments)
nil

 demonitor(monitor_ref, options \\ [])

 @spec demonitor(reference(), options :: [:flush | :info]) :: boolean()

Demonitors the monitor identified by the given reference.
If monitor_ref is a reference which the calling process
obtained by calling monitor/1, that monitoring is turned off.
If the monitoring is already turned off, nothing happens.
See :erlang.demonitor/2 for more information.
Inlined by the compiler.
Examples
pid = spawn(fn -> 1 + 2 end)
ref = Process.monitor(pid)
Process.demonitor(ref)
#=> true

 exit(pid, reason)

 @spec exit(pid(), term()) :: true

Sends an exit signal with the given reason to pid.
Exit behavior differs based on the value of reason:
	If :normal, pid will not exit unless it is the calling process, in
which case it will exit with the reason :normal. If it is trapping exits,
the exit signal is transformed into a message {:EXIT, from, :normal} and
delivered to its message queue.

	If :kill, which occurs when Process.exit(pid, :kill) is called, an
untrappable exit signal is sent to pid which will unconditionally exit
with reason :killed.

	If any other term and pid is not trapping exits, pid will exit with
the given reason.

	If any other term and pid is trapping exits, the exit signal is
transformed into a message {:EXIT, from, reason} and delivered to its
message queue.

Inlined by the compiler.
Differences to Kernel.exit/1
The functions Kernel.exit/1 and Process.exit/2 are
named similarly but provide very different functionalities. The
Kernel:exit/1 function should be used when the intent is to stop the current
process while Process.exit/2 should be used when the intent is to send an
exit signal to another process. Note also that Kernel.exit/1 can be caught
with try/1 while Process.exit/2 can only be handled by trapping exits and
when the signal is different than :kill.
Examples
Process.exit(pid, :kill)
#=> true

 flag(flag, value)

 @spec flag(:error_handler, module()) :: module()

 @spec flag(:max_heap_size, heap_size()) :: heap_size()

 @spec flag(:message_queue_data, :off_heap | :on_heap) :: :off_heap | :on_heap

 @spec flag(:min_bin_vheap_size, non_neg_integer()) :: non_neg_integer()

 @spec flag(:min_heap_size, non_neg_integer()) :: non_neg_integer()

 @spec flag(:priority, priority_level()) :: priority_level()

 @spec flag(:save_calls, 0..10000) :: 0..10000

 @spec flag(:sensitive, boolean()) :: boolean()

 @spec flag(:trap_exit, boolean()) :: boolean()

Sets the given flag to value for the calling process.
Returns the old value of flag.
See :erlang.process_flag/2 for more information.
Inlined by the compiler.

 flag(pid, flag, value)

 @spec flag(pid(), :save_calls, 0..10000) :: 0..10000

Sets the given flag to value for the given process pid.
Returns the old value of flag.
It raises ArgumentError if pid is not a local process.
The allowed values for flag are only a subset of those allowed in flag/2,
namely :save_calls.
See :erlang.process_flag/3 for more information.
Inlined by the compiler.

 get()

 @spec get() :: [{term(), term()}]

Returns all key-value pairs in the process dictionary.
Inlined by the compiler.

 get(key, default \\ nil)

 @spec get(term(), default :: term()) :: term()

Returns the value for the given key in the process dictionary,
or default if key is not set.
Examples
Assuming :locale was not set
iex> Process.get(:locale, "pt")
"pt"
iex> Process.put(:locale, "fr")
nil
iex> Process.get(:locale, "pt")
"fr"

 get_keys()

 @spec get_keys() :: [term()]

Returns all keys in the process dictionary.
Inlined by the compiler.
Examples
Assuming :locale was not set
iex> :locale in Process.get_keys()
false
iex> Process.put(:locale, "pt")
nil
iex> :locale in Process.get_keys()
true

 get_keys(value)

 @spec get_keys(term()) :: [term()]

Returns all keys in the process dictionary that have the given value.
Inlined by the compiler.

 group_leader()

 @spec group_leader() :: pid()

Returns the PID of the group leader for the calling process.
Inlined by the compiler.
Examples
Process.group_leader()
#=> #PID<0.53.0>

 group_leader(pid, leader)

 @spec group_leader(pid(), leader :: pid()) :: true

Sets the group leader of the given pid to leader.
Typically, this is used when a process started from a certain shell should
have a group leader other than :init.
Inlined by the compiler.

 hibernate(mod, fun_name, args)

 @spec hibernate(module(), atom(), list()) :: no_return()

Puts the calling process into a "hibernation" state.
The calling process is put into a waiting state
where its memory allocation has been reduced as much as possible,
which is useful if the process does not expect to receive any messages
in the near future.
See :erlang.hibernate/3 for more information.
Inlined by the compiler.

 info(pid)

 @spec info(pid()) :: keyword() | nil

Returns information about the process identified by pid, or returns nil if the process
is not alive.
Use this only for debugging information.
See :erlang.process_info/1 for more information.

 info(pid, spec)

 @spec info(pid(), process_info_item()) :: process_info_result_item() | nil

 @spec info(pid(), [process_info_item()]) :: [process_info_result_item()] | nil

Returns information about the process identified by pid,
or returns nil if the process is not alive.
See :erlang.process_info/2 for more information.

 link(pid_or_port)

 @spec link(pid() | port()) :: true

Creates a link between the calling process and the given item (process or
port).
Links are bidirectional. Linked processes can be unlinked by using unlink/1.
If such a link exists already, this function does nothing since there can only
be one link between two given processes. If a process tries to create a link
to itself, nothing will happen.
When two processes are linked, each one receives exit signals from the other
(see also exit/2). Let's assume pid1 and pid2 are linked. If pid2
exits with a reason other than :normal (which is also the exit reason used
when a process finishes its job) and pid1 is not trapping exits (see
flag/2), then pid1 will exit with the same reason as pid2 and in turn
emit an exit signal to all its other linked processes. The behavior when
pid1 is trapping exits is described in exit/2.
See :erlang.link/1 for more information.
Inlined by the compiler.

 list()

 @spec list() :: [pid()]

Returns a list of PIDs corresponding to all the
processes currently existing on the local node.
Note that if a process is exiting, it is considered to exist but not be
alive. This means that for such process, alive?/1 will return false but
its PID will be part of the list of PIDs returned by this function.
See :erlang.processes/0 for more information.
Inlined by the compiler.
Examples
Process.list()
#=> [#PID<0.0.0>, #PID<0.1.0>, #PID<0.2.0>, #PID<0.3.0>, ...]

 monitor(item)

 @spec monitor(pid() | {name, node()} | name) :: reference() when name: atom()

Starts monitoring the given item from the calling process.
Once the monitored process dies, a message is delivered to the
monitoring process in the shape of:
{:DOWN, ref, :process, object, reason}
where:
	ref is a monitor reference returned by this function;
	object is either a pid of the monitored process (if monitoring
a PID) or {name, node} (if monitoring a remote or local name);
	reason is the exit reason.

If the process is already dead when calling Process.monitor/1, a
:DOWN message is delivered immediately.
See "Links and monitors"
for an example. See :erlang.monitor/2 for more information.
Inlined by the compiler.
Examples
pid = spawn(fn -> 1 + 2 end)
#=> #PID<0.118.0>
Process.monitor(pid)
#=> #Reference<0.906660723.3006791681.40191>
Process.exit(pid, :kill)
#=> true
receive do
 msg -> msg
end
#=> {:DOWN, #Reference<0.906660723.3006791681.40191>, :process, #PID<0.118.0>, :noproc}

 monitor(item, options)

 (since 1.15.0)

 @spec monitor(pid() | {name, node()} | name, [:erlang.monitor_option()]) ::
 reference()
when name: atom()

Starts monitoring the given item from the calling process.
This function is similar to monitor/1, but accepts options to customize how
item is monitored. See :erlang.monitor/3 for documentation on those
options.
Inlined by the compiler.
Examples
pid =
 spawn(fn ->
 receive do
 {:ping, source_alias} -> send(source_alias, :pong)
 end
 end)
#=> #PID<0.118.0>

ref_and_alias = Process.monitor(pid, alias: :reply_demonitor)
#=> #Reference<0.906660723.3006791681.40191>

send(pid, {:ping, ref_and_alias})

receive do: (msg -> msg)
#=> :pong

ref_and_alias = Process.monitor(pid, alias: :reply_demonitor)
#=> #Reference<0.906660723.3006791681.40191>

send(pid, {:ping, ref_and_alias})

receive do: (msg -> msg)
#=> {:DOWN, #Reference<0.906660723.3006791681.40191>, :process, #PID<0.118.0>, :noproc}

 put(key, value)

 @spec put(term(), term()) :: term() | nil

Stores the given key-value pair in the process dictionary.
The return value of this function is the value that was previously stored
under key, or nil in case no value was stored under it.
Examples
Assuming :locale was not set
iex> Process.put(:locale, "en")
nil
iex> Process.put(:locale, "fr")
"en"

 read_timer(timer_ref)

 @spec read_timer(reference()) :: non_neg_integer() | false

Reads a timer created by send_after/3.
When the result is an integer, it represents the time in milliseconds
left until the timer will expire.
When the result is false, a timer corresponding to timer_ref could not be
found. This can be either because the timer expired, because it has already
been canceled, or because timer_ref never corresponded to a timer.
Even if the timer had expired and the message was sent, this function does not
tell you if the timeout message has arrived at its destination yet.
Inlined by the compiler.

 register(pid_or_port, name)

 @spec register(pid() | port(), atom()) :: true

Registers the given pid_or_port under the given name on the local node.
name must be an atom and can then be used instead of the
PID/port identifier when sending messages with Kernel.send/2.
register/2 will fail with ArgumentError in any of the following cases:
	the PID/Port is not existing locally and alive
	the name is already registered
	the pid_or_port is already registered under a different name

The following names are reserved and cannot be assigned to
processes nor ports:
	nil
	false
	true
	:undefined

Examples
Process.register(self(), :test)
#=> true
send(:test, :hello)
#=> :hello
send(:wrong_name, :hello)
** (ArgumentError) argument error

 registered()

 @spec registered() :: [atom()]

Returns a list of names which have been registered using register/2.
Inlined by the compiler.
Examples
Process.register(self(), :test)
Process.registered()
#=> [:test, :elixir_config, :inet_db, ...]

 send(dest, msg, options)

 @spec send(dest, msg, [option]) :: :ok | :noconnect | :nosuspend
when dest: dest(), msg: any(), option: :noconnect | :nosuspend

Sends a message to the given dest.
dest may be a remote or local PID, a local port, a locally
registered name, or a tuple in the form of {registered_name, node} for a
registered name at another node.
Inlined by the compiler.
Options
	:noconnect - when used, if sending the message would require an
auto-connection to another node the message is not sent and :noconnect is
returned.

	:nosuspend - when used, if sending the message would cause the sender to
be suspended the message is not sent and :nosuspend is returned.

Otherwise the message is sent and :ok is returned.
Examples
iex> Process.send({:name, :node_that_does_not_exist}, :hi, [:noconnect])
:noconnect

 send_after(dest, msg, time, opts \\ [])

 @spec send_after(pid() | atom(), term(), non_neg_integer(), [option]) :: reference()
when option: {:abs, boolean()}

Sends msg to dest after time milliseconds.
If dest is a PID, it must be the PID of a local process, dead or alive.
If dest is an atom, it must be the name of a registered process
which is looked up at the time of delivery. No error is produced if the name does
not refer to a process.
The message is not sent immediately. Therefore, dest can receive other messages
in-between even when time is 0.
This function returns a timer reference, which can be read with read_timer/1
or canceled with cancel_timer/1.
The timer will be automatically canceled if the given dest is a PID
which is not alive or when the given PID exits. Note that timers will not be
automatically canceled when dest is an atom (as the atom resolution is done
on delivery).
Inlined by the compiler.
Options
	:abs - (boolean) when false, time is treated as relative to the
current monotonic time. When true, time is the absolute value of the
Erlang monotonic time at which msg should be delivered to dest.
To read more about Erlang monotonic time and other time-related concepts,
look at the documentation for the System module. Defaults to false.

Examples
timer_ref = Process.send_after(pid, :hi, 1000)

 set_label(label)

 (since 1.17.0)

 @spec set_label(term()) :: :ok

Add a descriptive term to the current process.
The term does not need to be unique, and in Erlang/OTP 27+ will be shown in
Observer and in crash logs.
This label may be useful for identifying a process as one of multiple in a
given role, such as :queue_worker or {:live_chat, user_id}.
Examples
Process.set_label(:worker)
#=> :ok

Process.set_label({:any, "term"})
#=> :ok

 sleep(timeout)

 @spec sleep(timeout()) :: :ok

Sleeps the current process for the given timeout.
timeout is either the number of milliseconds to sleep as an
integer or the atom :infinity. When :infinity is given,
the current process will sleep forever, and not
consume or reply to messages.
Sleeping limit
Before Elixir v1.18, sleep/1 did not accept integer timeout values greater
than 16#ffffffff, that is, 2^32-1. Since Elixir v1.18, arbitrarily-high integer
values are accepted.
Use this function with extreme care. For almost all situations
where you would use sleep/1 in Elixir, there is likely a
more correct, faster and precise way of achieving the same with
message passing.
For example, if you are waiting for a process to perform some
action, it is better to communicate the progress of such action
with messages.
In other words, do not:
Task.start_link(fn ->
 do_something()
 ...
end)

Wait until work is done
Process.sleep(2000)
But do:
parent = self()

Task.start_link(fn ->
 do_something()
 send(parent, :work_is_done)
 ...
end)

receive do
 :work_is_done -> :ok
after
 # Optional timeout
 30_000 -> :timeout
end
For cases like the one above, Task.async/1 and Task.await/2 are
preferred.
Similarly, if you are waiting for a process to terminate,
monitor that process instead of sleeping. Do not:
Task.start_link(fn ->
 ...
end)

Wait until task terminates
Process.sleep(2000)
Instead do:
{:ok, pid} =
 Task.start_link(fn ->
 ...
 end)

ref = Process.monitor(pid)

receive do
 {:DOWN, ^ref, _, _, _} -> :task_is_down
after
 # Optional timeout
 30_000 -> :timeout
end

 spawn(fun, opts)

 @spec spawn((-> any()), spawn_opts()) :: pid() | {pid(), reference()}

Spawns the given function according to the given options.
The result depends on the given options. In particular,
if :monitor is given as an option, it will return a tuple
containing the PID and the monitoring reference, otherwise
just the spawned process PID.
More options are available; for the comprehensive list of available options
check :erlang.spawn_opt/4.
Inlined by the compiler.
Examples
Process.spawn(fn -> 1 + 2 end, [:monitor])
#=> {#PID<0.93.0>, #Reference<0.18808174.1939079169.202418>}
Process.spawn(fn -> 1 + 2 end, [:link])
#=> #PID<0.95.0>

 spawn(mod, fun, args, opts)

 @spec spawn(module(), atom(), list(), spawn_opts()) :: pid() | {pid(), reference()}

Spawns the given function fun from module mod, passing the given args
according to the given options.
The result depends on the given options. In particular,
if :monitor is given as an option, it will return a tuple
containing the PID and the monitoring reference, otherwise
just the spawned process PID.
It also accepts extra options, for the list of available options
check :erlang.spawn_opt/4.
Inlined by the compiler.

 unalias(alias)

 (since 1.15.0)

 @spec unalias(alias()) :: boolean()

Explicitly deactivates a process alias.
Returns true if alias was a currently-active alias for current processes,
or false otherwise.
See the module documentation for more information about aliases.
See also :erlang.unalias/1.
Inlined by the compiler.
Examples
alias = Process.alias()
Process.unalias(alias)
#=> true

 unlink(pid_or_port)

 @spec unlink(pid() | port()) :: true

Removes the link between the calling process and the given item (process or
port).
If there is no such link, this function does nothing. If pid_or_port does
not exist, this function does not produce any errors and simply does nothing.
The return value of this function is always true.
See :erlang.unlink/1 for more information.
Inlined by the compiler.

 unregister(name)

 @spec unregister(atom()) :: true

Removes the registered name, associated with a PID
or a port identifier.
Fails with ArgumentError if the name is not registered
to any PID or port.
Inlined by the compiler.
Examples
Process.register(self(), :test)
#=> true
Process.unregister(:test)
#=> true
Process.unregister(:wrong_name)
** (ArgumentError) argument error

 whereis(name)

 @spec whereis(atom()) :: pid() | port() | nil

Returns the PID or port identifier registered under name or nil if the
name is not registered.
See :erlang.whereis/1 for more information.
Examples
Process.register(self(), :test)
Process.whereis(:test)
#=> #PID<0.84.0>
Process.whereis(:wrong_name)
#=> nil

Registry

A local, decentralized and scalable key-value process storage.
It allows developers to lookup one or more processes with a given key.
If the registry has :unique keys, a key points to 0 or 1 process.
If the registry allows :duplicate keys, a single key may point to any
number of processes. In both cases, different keys could identify the
same process.
Each entry in the registry is associated to the process that has
registered the key. If the process crashes, the keys associated to that
process are automatically removed. All key comparisons in the registry
are done using the match operation (===/2).
The registry can be used for different purposes, such as name lookups (using
the :via option), storing properties, custom dispatching rules, or a pubsub
implementation. We explore some of those use cases below.
The registry may also be transparently partitioned, which provides
more scalable behavior for running registries on highly concurrent
environments with thousands or millions of entries.
Using in :via
Once the registry is started with a given name using
Registry.start_link/1, it can be used to register and access named
processes using the {:via, Registry, {registry, key}} tuple:
{:ok, _} = Registry.start_link(keys: :unique, name: MyApp.Registry)
name = {:via, Registry, {MyApp.Registry, "agent"}}
{:ok, _} = Agent.start_link(fn -> 0 end, name: name)
Agent.get(name, & &1)
#=> 0
Agent.update(name, &(&1 + 1))
Agent.get(name, & &1)
#=> 1
In the previous example, we were not interested in associating a value to the
process:
Registry.lookup(MyApp.Registry, "agent")
#=> [{self(), nil}]
However, in some cases it may be desired to associate a value to the process
using the alternate {:via, Registry, {registry, key, value}} tuple:
{:ok, _} = Registry.start_link(keys: :unique, name: MyApp.Registry)
name = {:via, Registry, {MyApp.Registry, "agent", :hello}}
{:ok, agent_pid} = Agent.start_link(fn -> 0 end, name: name)

Registry.lookup(MyApp.Registry, "agent")
#=> [{agent_pid, :hello}]

name_without_meta = {:via, Registry, {MyApp.Registry, "agent"}}
Agent.update(name_without_meta, fn x -> x + 1 end)
Agent.get(name_without_meta, & &1)
#=> 1
With and without metadata
When using the version of :via tuples with metadata, you can still use the version
without metadata to look up the process.
To this point, we have been starting Registry using start_link/1.
Typically the registry is started as part of a supervision tree though:
{Registry, keys: :unique, name: MyApp.Registry}
Only registries with unique keys can be used in :via. If the name is
already taken, the case-specific start_link function (Agent.start_link/2
in the example above) will return {:error, {:already_started, current_pid}}.
Using as a dispatcher
Registry has a dispatch mechanism that allows developers to implement custom
dispatch logic triggered from the caller. For example, let's say we have a
duplicate registry started as so:
{:ok, _} = Registry.start_link(keys: :duplicate, name: Registry.DispatcherTest)
By calling register/3, different processes can register under a given key
and associate any value under that key. In this case, let's register the
current process under the key "hello" and attach the {IO, :inspect} tuple
to it:
{:ok, _} = Registry.register(Registry.DispatcherTest, "hello", {IO, :inspect})
Now, an entity interested in dispatching events for a given key may call
dispatch/3 passing in the key and a callback. This callback will be invoked
with a list of all the values registered under the requested key, alongside
the PID of the process that registered each value, in the form of {pid, value} tuples. In our example, value will be the {module, function} tuple
in the code above:
Registry.dispatch(Registry.DispatcherTest, "hello", fn entries ->
 for {pid, {module, function}} <- entries, do: apply(module, function, [pid])
end)
Prints #PID<...> where the PID is for the process that called register/3 above
#=> :ok
Dispatching happens in the process that calls dispatch/3 either serially or
concurrently in case of multiple partitions (via spawned tasks). The
registered processes are not involved in dispatching unless involving them is
done explicitly (for example, by sending them a message in the callback).
Furthermore, if there is a failure when dispatching, due to a bad
registration, dispatching will always fail and the registered process will not
be notified. Therefore let's make sure we at least wrap and report those
errors:
require Logger

Registry.dispatch(Registry.DispatcherTest, "hello", fn entries ->
 for {pid, {module, function}} <- entries do
 try do
 apply(module, function, [pid])
 catch
 kind, reason ->
 formatted = Exception.format(kind, reason, __STACKTRACE__)
 Logger.error("Registry.dispatch/3 failed with #{formatted}")
 end
 end
end)
Prints #PID<...>
#=> :ok
You could also replace the whole apply system by explicitly sending
messages. That's the example we will see next.
Using as a PubSub
Registries can also be used to implement a local, non-distributed, scalable
PubSub by relying on the dispatch/3 function, similarly to the previous
section: in this case, however, we will send messages to each associated
process, instead of invoking a given module-function.
In this example, we will also set the number of partitions to the number of
schedulers online, which will make the registry more performant on highly
concurrent environments:
{:ok, _} =
 Registry.start_link(
 keys: :duplicate,
 name: Registry.PubSubTest,
 partitions: System.schedulers_online()
)

{:ok, _} = Registry.register(Registry.PubSubTest, "hello", [])

Registry.dispatch(Registry.PubSubTest, "hello", fn entries ->
 for {pid, _} <- entries, do: send(pid, {:broadcast, "world"})
end)
#=> :ok
The example above broadcasted the message {:broadcast, "world"} to all
processes registered under the "topic" (or "key" as we called it until now)
"hello".
The third argument given to register/3 is a value associated to the
current process. While in the previous section we used it when dispatching,
in this particular example we are not interested in it, so we have set it
to an empty list. You could store a more meaningful value if necessary.
Registrations
Looking up, dispatching and registering are efficient and immediate at
the cost of delayed unsubscription. For example, if a process crashes,
its keys are automatically removed from the registry but the change may
not propagate immediately. This means certain operations may return processes
that are already dead. When such may happen, it will be explicitly stated
in the function documentation.
However, keep in mind those cases are typically not an issue. After all, a
process referenced by a PID may crash at any time, including between getting
the value from the registry and sending it a message. Many parts of the standard
library are designed to cope with that, such as Process.monitor/1 which will
deliver the :DOWN message immediately if the monitored process is already dead
and send/2 which acts as a no-op for dead processes.
ETS
Note that the registry uses one ETS table plus two ETS tables per partition.

 Summary

 Types

 body()

 A pattern used to representing the output format part of a match spec

 dispatch_opts()

 Options used for dispatch/4.

 guard()

 A guard to be evaluated when matching on objects in a registry

 guards()

 A list of guards to be evaluated when matching on objects in a registry

 key()

 The type of keys allowed on registration

 keys()

 The type of the registry

 listener_message()

 The message that the registry sends to listeners when a process registers or unregisters.

 match_pattern()

 A pattern to match on objects in a registry

 meta_key()

 The type of registry metadata keys

 meta_value()

 The type of registry metadata values

 registry()

 The registry identifier

 spec()

 A full match spec used when selecting objects in the registry

 start_option()

 Options used for child_spec/1 and start_link/1

 value()

 The type of values allowed on registration

 Functions

 child_spec(options)

 Returns a specification to start a registry under a supervisor.

 count(registry)

 Returns the number of registered keys in a registry.
It runs in constant time.

 count_match(registry, key, pattern, guards \\ [])

 Returns the number of {pid, value} pairs under the given key in registry
that match pattern.

 count_select(registry, spec)

 Works like select/2, but only returns the number of matching records.

 delete_meta(registry, key)

 Deletes registry metadata for the given key in registry.

 dispatch(registry, key, mfa_or_fun, opts \\ [])

 Invokes the callback with all entries under key in each partition
for the given registry.

 keys(registry, pid)

 Returns the known keys for the given pid in registry in no particular order.

 lock(registry, lock_key, function)

 Out-of-band locking of the given lock_key for the duration of function.

 lookup(registry, key)

 Finds the {pid, value} pair for the given key in registry in no particular order.

 match(registry, key, pattern, guards \\ [])

 Returns {pid, value} pairs under the given key in registry that match pattern.

 meta(registry, key)

 Reads registry metadata given on start_link/1.

 put_meta(registry, key, value)

 Stores registry metadata.

 register(registry, key, value)

 Registers the current process under the given key in registry.

 select(registry, spec)

 Select key, pid, and values registered using full match specs.

 start_link(options)

 Starts the registry as a supervisor process.

 unregister(registry, key)

 Unregisters all entries for the given key associated to the current
process in registry.

 unregister_match(registry, key, pattern, guards \\ [])

 Unregisters entries for keys matching a pattern associated to the current
process in registry.

 update_value(registry, key, callback)

 Updates the value for key for the current process in the unique registry.

 values(registry, key, pid)

 Reads the values for the given key for pid in registry.

 Types

 body()

 @type body() :: [term()]

A pattern used to representing the output format part of a match spec

 dispatch_opts()

 @type dispatch_opts() :: [{:parallel, boolean()}]

Options used for dispatch/4.

 guard()

 @type guard() :: atom() | tuple()

A guard to be evaluated when matching on objects in a registry

 guards()

 @type guards() :: [guard()]

A list of guards to be evaluated when matching on objects in a registry

 key()

 @type key() :: term()

The type of keys allowed on registration

 keys()

 @type keys() :: :unique | :duplicate | {:duplicate, :key} | {:duplicate, :pid}

The type of the registry

 listener_message()

 (since 1.15.0)

 @type listener_message() ::
 {:register, registry(), key(), registry_partition :: pid(), value()}
 | {:unregister, registry(), key(), registry_partition :: pid()}

The message that the registry sends to listeners when a process registers or unregisters.
See the :listeners option in start_link/1.

 match_pattern()

 @type match_pattern() :: atom() | term()

A pattern to match on objects in a registry

 meta_key()

 @type meta_key() :: atom() | tuple()

The type of registry metadata keys

 meta_value()

 @type meta_value() :: term()

The type of registry metadata values

 registry()

 @type registry() :: atom()

The registry identifier

 spec()

 @type spec() :: [{match_pattern(), guards(), body()}]

A full match spec used when selecting objects in the registry

 start_option()

 @type start_option() ::
 {:keys, keys()}
 | {:name, registry()}
 | {:partitions, pos_integer()}
 | {:listeners, [atom()]}
 | {:meta, [{meta_key(), meta_value()}]}

Options used for child_spec/1 and start_link/1

 value()

 @type value() :: term()

The type of values allowed on registration

 Functions

 child_spec(options)

 (since 1.5.0)

 @spec child_spec([start_option()]) :: Supervisor.child_spec()

Returns a specification to start a registry under a supervisor.
See Supervisor.

 count(registry)

 (since 1.7.0)

 @spec count(registry()) :: non_neg_integer()

Returns the number of registered keys in a registry.
It runs in constant time.
Examples
In the example below we register the current process and ask for the
number of keys in the registry:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueCountTest)
iex> Registry.count(Registry.UniqueCountTest)
0
iex> {:ok, _} = Registry.register(Registry.UniqueCountTest, "hello", :world)
iex> {:ok, _} = Registry.register(Registry.UniqueCountTest, "world", :world)
iex> Registry.count(Registry.UniqueCountTest)
2
The same applies to duplicate registries:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateCountTest)
iex> Registry.count(Registry.DuplicateCountTest)
0
iex> {:ok, _} = Registry.register(Registry.DuplicateCountTest, "hello", :world)
iex> {:ok, _} = Registry.register(Registry.DuplicateCountTest, "hello", :world)
iex> Registry.count(Registry.DuplicateCountTest)
2

 count_match(registry, key, pattern, guards \\ [])

 (since 1.7.0)

 @spec count_match(registry(), key(), match_pattern(), guards()) :: non_neg_integer()

Returns the number of {pid, value} pairs under the given key in registry
that match pattern.
Pattern must be an atom or a tuple that will match the structure of the
value stored in the registry. The atom :_ can be used to ignore a given
value or tuple element, while the atom :"$1" can be used to temporarily assign part
of pattern to a variable for a subsequent comparison.
Optionally, it is possible to pass a list of guard conditions for more precise matching.
Each guard is a tuple, which describes checks that should be passed by assigned part of pattern.
For example the $1 > 1 guard condition would be expressed as the {:>, :"$1", 1} tuple.
Please note that guard conditions will work only for assigned
variables like :"$1", :"$2", and so forth.
Avoid usage of special match variables :"$_" and :"$$", because it might not work as expected.
Zero will be returned if there is no match.
For unique registries, a single partition lookup is necessary. For
duplicate registries, all partitions must be looked up.
Examples
In the example below we register the current process under the same
key in a duplicate registry but with different values:
iex> Registry.start_link(keys: :duplicate, name: Registry.CountMatchTest)
iex> {:ok, _} = Registry.register(Registry.CountMatchTest, "hello", {1, :atom, 1})
iex> {:ok, _} = Registry.register(Registry.CountMatchTest, "hello", {2, :atom, 2})
iex> Registry.count_match(Registry.CountMatchTest, "hello", {1, :_, :_})
1
iex> Registry.count_match(Registry.CountMatchTest, "hello", {2, :_, :_})
1
iex> Registry.count_match(Registry.CountMatchTest, "hello", {:_, :atom, :_})
2
iex> Registry.count_match(Registry.CountMatchTest, "hello", {:"$1", :_, :"$1"})
2
iex> Registry.count_match(Registry.CountMatchTest, "hello", {:_, :_, :"$1"}, [{:>, :"$1", 1}])
1
iex> Registry.count_match(Registry.CountMatchTest, "hello", {:_, :"$1", :_}, [{:is_atom, :"$1"}])
2

 count_select(registry, spec)

 (since 1.14.0)

 @spec count_select(registry(), spec()) :: non_neg_integer()

Works like select/2, but only returns the number of matching records.
Examples
In the example below we register the current process under different
keys in a unique registry but with the same value:
iex> Registry.start_link(keys: :unique, name: Registry.CountSelectTest)
iex> {:ok, _} = Registry.register(Registry.CountSelectTest, "hello", :value)
iex> {:ok, _} = Registry.register(Registry.CountSelectTest, "world", :value)
iex> Registry.count_select(Registry.CountSelectTest, [{{:_, :_, :value}, [], [true]}])
2

 delete_meta(registry, key)

 (since 1.11.0)

 @spec delete_meta(registry(), meta_key()) :: :ok

Deletes registry metadata for the given key in registry.
Examples
iex> Registry.start_link(keys: :unique, name: Registry.DeleteMetaTest)
iex> Registry.put_meta(Registry.DeleteMetaTest, :custom_key, "custom_value")
:ok
iex> Registry.meta(Registry.DeleteMetaTest, :custom_key)
{:ok, "custom_value"}
iex> Registry.delete_meta(Registry.DeleteMetaTest, :custom_key)
:ok
iex> Registry.meta(Registry.DeleteMetaTest, :custom_key)
:error

 dispatch(registry, key, mfa_or_fun, opts \\ [])

 (since 1.4.0)

 @spec dispatch(registry(), key(), dispatcher, dispatch_opts()) :: :ok
when dispatcher:
 (entries :: [{pid(), value()}] -> term()) | {module(), atom(), [term()]}

Invokes the callback with all entries under key in each partition
for the given registry.
The list of entries is a non-empty list of two-element tuples where
the first element is the PID and the second element is the value
associated to the PID. If there are no entries for the given key,
the callback is never invoked.
If the registry is partitioned, the callback is invoked multiple times
per partition. If the registry is partitioned and parallel: true is
given as an option, the dispatching happens in parallel. In both cases,
the callback is only invoked if there are entries for that partition.
See the module documentation for examples of using the dispatch/3
function for building custom dispatching or a pubsub system.
Options
	:parallel - if true, the dispatching is done in parallel
across all partitions. Defaults to false.

 keys(registry, pid)

 (since 1.4.0)

 @spec keys(registry(), pid()) :: [key()]

Returns the known keys for the given pid in registry in no particular order.
If the registry is unique, the keys are unique. Otherwise
they may contain duplicates if the process was registered
under the same key multiple times. The list will be empty
if the process is dead or it has no keys in this registry.
Examples
Registering under a unique registry does not allow multiple entries:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueKeysTest)
iex> Registry.keys(Registry.UniqueKeysTest, self())
[]
iex> {:ok, _} = Registry.register(Registry.UniqueKeysTest, "hello", :world)
iex> Registry.register(Registry.UniqueKeysTest, "hello", :later) # registry is :unique
{:error, {:already_registered, self()}}
iex> Registry.keys(Registry.UniqueKeysTest, self())
["hello"]
Such is possible for duplicate registries though:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateKeysTest)
iex> Registry.keys(Registry.DuplicateKeysTest, self())
[]
iex> {:ok, _} = Registry.register(Registry.DuplicateKeysTest, "hello", :world)
iex> {:ok, _} = Registry.register(Registry.DuplicateKeysTest, "hello", :world)
iex> Registry.keys(Registry.DuplicateKeysTest, self())
["hello", "hello"]

 lock(registry, lock_key, function)

 (since 1.18.0)

Out-of-band locking of the given lock_key for the duration of function.
Only one function can execute under the same lock_key at a given
time. The given function always runs in the caller process.
The lock_key has its own namespace and therefore does not clash or
overlap with the regular registry keys. In other words, locking works
out-of-band from the regular Registry operations. See the "Use cases"
section below.
Locking behaves the same regardless of the registry type.
Use cases
The Registry is safe and concurrent out-of-the-box. You are not required
to use this function when interacting with the Registry. Furthermore,
Registry with :unique keys can already act as a process-lock for any
given key. For example, you can ensure only one process runs at a given
time for a given :key by doing:
name = {:via, Registry, {MyApp.Registry, :key, :value}}

Do not attempt to start if we are already running
if pid = GenServer.whereis(name) do
 pid
else
 case GenServer.start_link(__MODULE__, :ok, name: name) do
 {:ok, pid} -> pid
 {:error, {:already_started, pid}} -> pid
 end
end
Process locking gives you plenty of flexibility and fault isolation and
is enough for most cases.
This function is useful only when spawning processes is not an option,
for example, when copying the data to another process could be too
expensive. Or when the work must be done within the current process
for other reasons. In such cases, this function provides a scalable
mechanism for managing locks on top of the registry's infrastructure.
Examples
iex> Registry.start_link(keys: :unique, name: Registry.LockTest)
iex> Registry.lock(Registry.LockTest, :hello, fn -> :ok end)
:ok
iex> Registry.lock(Registry.LockTest, :world, fn -> self() end)
self()

 lookup(registry, key)

 (since 1.4.0)

 @spec lookup(registry(), key()) :: [{pid(), value()}]

Finds the {pid, value} pair for the given key in registry in no particular order.
An empty list if there is no match.
For unique registries, a single partition lookup is necessary. For
duplicate registries, all partitions must be looked up.
Examples
In the example below we register the current process and look it up
both from itself and other processes:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueLookupTest)
iex> Registry.lookup(Registry.UniqueLookupTest, "hello")
[]
iex> {:ok, _} = Registry.register(Registry.UniqueLookupTest, "hello", :world)
iex> Registry.lookup(Registry.UniqueLookupTest, "hello")
[{self(), :world}]
iex> Task.async(fn -> Registry.lookup(Registry.UniqueLookupTest, "hello") end) |> Task.await()
[{self(), :world}]
The same applies to duplicate registries:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateLookupTest)
iex> Registry.lookup(Registry.DuplicateLookupTest, "hello")
[]
iex> {:ok, _} = Registry.register(Registry.DuplicateLookupTest, "hello", :world)
iex> Registry.lookup(Registry.DuplicateLookupTest, "hello")
[{self(), :world}]
iex> {:ok, _} = Registry.register(Registry.DuplicateLookupTest, "hello", :another)
iex> Enum.sort(Registry.lookup(Registry.DuplicateLookupTest, "hello"))
[{self(), :another}, {self(), :world}]

 match(registry, key, pattern, guards \\ [])

 (since 1.4.0)

 @spec match(registry(), key(), match_pattern(), guards()) :: [{pid(), term()}]

Returns {pid, value} pairs under the given key in registry that match pattern.
Pattern must be an atom or a tuple that will match the structure of the
value stored in the registry. The atom :_ can be used to ignore a given
value or tuple element, while the atom :"$1" can be used to temporarily assign part
of pattern to a variable for a subsequent comparison.
Optionally, it is possible to pass a list of guard conditions for more precise matching.
Each guard is a tuple, which describes checks that should be passed by assigned part of pattern.
For example the $1 > 1 guard condition would be expressed as the {:>, :"$1", 1} tuple.
Please note that guard conditions will work only for assigned
variables like :"$1", :"$2", and so forth.
Avoid usage of special match variables :"$_" and :"$$", because it might not work as expected.
An empty list will be returned if there is no match.
For unique registries, a single partition lookup is necessary. For
duplicate registries, all partitions must be looked up.
Examples
In the example below we register the current process under the same
key in a duplicate registry but with different values:
iex> Registry.start_link(keys: :duplicate, name: Registry.MatchTest)
iex> {:ok, _} = Registry.register(Registry.MatchTest, "hello", {1, :atom, 1})
iex> {:ok, _} = Registry.register(Registry.MatchTest, "hello", {2, :atom, 2})
iex> Registry.match(Registry.MatchTest, "hello", {1, :_, :_})
[{self(), {1, :atom, 1}}]
iex> Registry.match(Registry.MatchTest, "hello", {2, :_, :_})
[{self(), {2, :atom, 2}}]
iex> Registry.match(Registry.MatchTest, "hello", {:_, :atom, :_}) |> Enum.sort()
[{self(), {1, :atom, 1}}, {self(), {2, :atom, 2}}]
iex> Registry.match(Registry.MatchTest, "hello", {:"$1", :_, :"$1"}) |> Enum.sort()
[{self(), {1, :atom, 1}}, {self(), {2, :atom, 2}}]
iex> guards = [{:>, :"$1", 1}]
iex> Registry.match(Registry.MatchTest, "hello", {:_, :_, :"$1"}, guards)
[{self(), {2, :atom, 2}}]
iex> guards = [{:is_atom, :"$1"}]
iex> Registry.match(Registry.MatchTest, "hello", {:_, :"$1", :_}, guards) |> Enum.sort()
[{self(), {1, :atom, 1}}, {self(), {2, :atom, 2}}]

 meta(registry, key)

 (since 1.4.0)

 @spec meta(registry(), meta_key()) :: {:ok, meta_value()} | :error

Reads registry metadata given on start_link/1.
Atoms and tuples are allowed as keys.
Examples
iex> Registry.start_link(keys: :unique, name: Registry.MetaTest, meta: [custom_key: "custom_value"])
iex> Registry.meta(Registry.MetaTest, :custom_key)
{:ok, "custom_value"}
iex> Registry.meta(Registry.MetaTest, :unknown_key)
:error

 put_meta(registry, key, value)

 (since 1.4.0)

 @spec put_meta(registry(), meta_key(), meta_value()) :: :ok

Stores registry metadata.
Atoms and tuples are allowed as keys.
Examples
iex> Registry.start_link(keys: :unique, name: Registry.PutMetaTest)
iex> Registry.put_meta(Registry.PutMetaTest, :custom_key, "custom_value")
:ok
iex> Registry.meta(Registry.PutMetaTest, :custom_key)
{:ok, "custom_value"}
iex> Registry.put_meta(Registry.PutMetaTest, {:tuple, :key}, "tuple_value")
:ok
iex> Registry.meta(Registry.PutMetaTest, {:tuple, :key})
{:ok, "tuple_value"}

 register(registry, key, value)

 (since 1.4.0)

 @spec register(registry(), key(), value()) ::
 {:ok, pid()} | {:error, {:already_registered, pid()}}

Registers the current process under the given key in registry.
A value to be associated with this registration must also be given.
This value will be retrieved whenever dispatching or doing a key
lookup.
This function returns {:ok, owner} or {:error, reason}.
The owner is the PID in the registry partition responsible for
the PID. The owner is automatically linked to the caller.
If the registry has unique keys, it will return {:ok, owner} unless
the key is already associated to a PID, in which case it returns
{:error, {:already_registered, pid}}.
If the registry has duplicate keys, multiple registrations from the
current process under the same key are allowed.
If the registry has listeners specified via the :listeners option in start_link/1,
those listeners will be notified of the registration and will receive a
message of type listener_message/0.
Examples
Registering under a unique registry does not allow multiple entries:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueRegisterTest)
iex> {:ok, _} = Registry.register(Registry.UniqueRegisterTest, "hello", :world)
iex> Registry.register(Registry.UniqueRegisterTest, "hello", :later)
{:error, {:already_registered, self()}}
iex> Registry.keys(Registry.UniqueRegisterTest, self())
["hello"]
Such is possible for duplicate registries though:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateRegisterTest)
iex> {:ok, _} = Registry.register(Registry.DuplicateRegisterTest, "hello", :world)
iex> {:ok, _} = Registry.register(Registry.DuplicateRegisterTest, "hello", :world)
iex> Registry.keys(Registry.DuplicateRegisterTest, self())
["hello", "hello"]

 select(registry, spec)

 (since 1.9.0)

 @spec select(registry(), spec()) :: [term()]

Select key, pid, and values registered using full match specs.
The spec consists of a list of three part tuples, in the shape of [{match_pattern, guards, body}].
The first part, the match pattern, must be a tuple that will match the structure of the
the data stored in the registry, which is {key, pid, value}. The atom :_ can be used to
ignore a given value or tuple element, while the atom :"$1" can be used to temporarily
assign part of pattern to a variable for a subsequent comparison. This can be combined
like {:"$1", :_, :_}.
The second part, the guards, is a list of conditions that allow filtering the results.
Each guard is a tuple, which describes checks that should be passed by assigned part of pattern.
For example the $1 > 1 guard condition would be expressed as the {:>, :"$1", 1} tuple.
Please note that guard conditions will work only for assigned
variables like :"$1", :"$2", and so forth.
The third part, the body, is a list of shapes of the returned entries. Like guards, you have access to
assigned variables like :"$1", which you can combine with hard-coded values to freely shape entries
Note that tuples have to be wrapped in an additional tuple. To get a result format like
%{key: key, pid: pid, value: value}, assuming you bound those variables in order in the match part,
you would provide a body like [%{key: :"$1", pid: :"$2", value: :"$3"}]. Like guards, you can use
some operations like :element to modify the output format.
Do not use special match variables :"$_" and :"$$", because they might not work as expected.
Note that for large registries with many partitions this will be costly as it builds the result by
concatenating all the partitions.
Examples
This example shows how to get everything from the registry:
iex> Registry.start_link(keys: :unique, name: Registry.SelectAllTest)
iex> {:ok, _} = Registry.register(Registry.SelectAllTest, "hello", :value)
iex> {:ok, _} = Registry.register(Registry.SelectAllTest, "world", :value)
iex> Registry.select(Registry.SelectAllTest, [{{:"$1", :"$2", :"$3"}, [], [{{:"$1", :"$2", :"$3"}}]}]) |> Enum.sort()
[{"hello", self(), :value}, {"world", self(), :value}]
If you want to get keys, you can pass a separate selector:
iex> Registry.start_link(keys: :unique, name: Registry.SelectKeysTest)
iex> {:ok, _} = Registry.register(Registry.SelectKeysTest, "hello", :value)
iex> {:ok, _} = Registry.register(Registry.SelectKeysTest, "world", :value)
iex> Registry.select(Registry.SelectKeysTest, [{{:"$1", :_, :_}, [], [:"$1"]}]) |> Enum.sort()
["hello", "world"]

 start_link(options)

 (since 1.5.0)

 @spec start_link([start_option()]) :: {:ok, pid()} | {:error, term()}

Starts the registry as a supervisor process.
Manually it can be started as:
Registry.start_link(keys: :unique, name: MyApp.Registry)
In your supervisor tree, you would write:
Supervisor.start_link([
 {Registry, keys: :unique, name: MyApp.Registry}
], strategy: :one_for_one)
For intensive workloads, the registry may also be partitioned (by specifying
the :partitions option). If partitioning is required then a good default is to
set the number of partitions to the number of schedulers available:
Registry.start_link(
 keys: :unique,
 name: MyApp.Registry,
 partitions: System.schedulers_online()
)
or:
Supervisor.start_link([
 {Registry, keys: :unique, name: MyApp.Registry, partitions: System.schedulers_online()}
], strategy: :one_for_one)
For :duplicate registries with many different keys (e.g., many topics with
few subscribers each), you can optimize key-based lookups by partitioning by key:
Registry.start_link(
 keys: {:duplicate, :key},
 name: MyApp.TopicRegistry,
 partitions: System.schedulers_online()
)
This allows key-based lookups to check only a single partition instead of
searching all partitions. Use the default :pid partitioning when you have
fewer keys with many entries each (e.g., one topic with many subscribers).
Options
The registry requires the following keys:
	:keys - chooses if keys are :unique, :duplicate,
{:duplicate, :key}, or {:duplicate, :pid}
	:name - the name of the registry and its tables

The following keys are optional:
	:partitions - the number of partitions in the registry. Defaults to 1.
	:listeners - a list of named processes which are notified of register
and unregister events. The registered process must be monitored by the
listener if the listener wants to be notified if the registered process
crashes. Messages sent to listeners are of type listener_message/0.
	:meta - a keyword list of metadata to be attached to the registry.

For :duplicate registries, you can specify the partitioning strategy
directly in the :keys option:
	:duplicate or {:duplicate, :pid} - Use :pid partitioning (default)
when you have keys with many entries (e.g., one topic with many subscribers).
This is the traditional behavior and groups all entries from the same process together.

	{:duplicate, :key} - Use :key partitioning when entries are spread across
many different keys (e.g., many topics with few subscribers each). This makes
key-based lookups more efficient as they only need to check a single partition
instead of all partitions.

 unregister(registry, key)

 (since 1.4.0)

 @spec unregister(registry(), key()) :: :ok

Unregisters all entries for the given key associated to the current
process in registry.
Always returns :ok and automatically unlinks the current process from
the owner if there are no more keys associated to the current process. See
also register/3 to read more about the "owner".
If the registry has listeners specified via the :listeners option in start_link/1,
those listeners will be notified of the unregistration and will receive a
message of type listener_message/0.
Examples
For unique registries:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueUnregisterTest)
iex> Registry.register(Registry.UniqueUnregisterTest, "hello", :world)
iex> Registry.keys(Registry.UniqueUnregisterTest, self())
["hello"]
iex> Registry.unregister(Registry.UniqueUnregisterTest, "hello")
:ok
iex> Registry.keys(Registry.UniqueUnregisterTest, self())
[]
For duplicate registries:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateUnregisterTest)
iex> Registry.register(Registry.DuplicateUnregisterTest, "hello", :world)
iex> Registry.register(Registry.DuplicateUnregisterTest, "hello", :world)
iex> Registry.keys(Registry.DuplicateUnregisterTest, self())
["hello", "hello"]
iex> Registry.unregister(Registry.DuplicateUnregisterTest, "hello")
:ok
iex> Registry.keys(Registry.DuplicateUnregisterTest, self())
[]

 unregister_match(registry, key, pattern, guards \\ [])

 (since 1.5.0)

 @spec unregister_match(registry(), key(), match_pattern(), guards()) :: :ok

Unregisters entries for keys matching a pattern associated to the current
process in registry.
Examples
For unique registries it can be used to conditionally unregister a key on
the basis of whether or not it matches a particular value.
iex> Registry.start_link(keys: :unique, name: Registry.UniqueUnregisterMatchTest)
iex> Registry.register(Registry.UniqueUnregisterMatchTest, "hello", :world)
iex> Registry.keys(Registry.UniqueUnregisterMatchTest, self())
["hello"]
iex> Registry.unregister_match(Registry.UniqueUnregisterMatchTest, "hello", :foo)
:ok
iex> Registry.keys(Registry.UniqueUnregisterMatchTest, self())
["hello"]
iex> Registry.unregister_match(Registry.UniqueUnregisterMatchTest, "hello", :world)
:ok
iex> Registry.keys(Registry.UniqueUnregisterMatchTest, self())
[]
For duplicate registries:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateUnregisterMatchTest)
iex> Registry.register(Registry.DuplicateUnregisterMatchTest, "hello", :world_a)
iex> Registry.register(Registry.DuplicateUnregisterMatchTest, "hello", :world_b)
iex> Registry.register(Registry.DuplicateUnregisterMatchTest, "hello", :world_c)
iex> Registry.keys(Registry.DuplicateUnregisterMatchTest, self())
["hello", "hello", "hello"]
iex> Registry.unregister_match(Registry.DuplicateUnregisterMatchTest, "hello", :world_a)
:ok
iex> Registry.keys(Registry.DuplicateUnregisterMatchTest, self())
["hello", "hello"]
iex> Registry.lookup(Registry.DuplicateUnregisterMatchTest, "hello")
[{self(), :world_b}, {self(), :world_c}]

 update_value(registry, key, callback)

 (since 1.4.0)

 @spec update_value(registry(), key(), (value() -> value())) ::
 {new_value :: term(), old_value :: term()} | :error

Updates the value for key for the current process in the unique registry.
Returns a {new_value, old_value} tuple or :error if there
is no such key assigned to the current process.
If a non-unique registry is given, an error is raised.
Examples
iex> Registry.start_link(keys: :unique, name: Registry.UpdateTest)
iex> {:ok, _} = Registry.register(Registry.UpdateTest, "hello", 1)
iex> Registry.lookup(Registry.UpdateTest, "hello")
[{self(), 1}]
iex> Registry.update_value(Registry.UpdateTest, "hello", &(&1 + 1))
{2, 1}
iex> Registry.lookup(Registry.UpdateTest, "hello")
[{self(), 2}]

 values(registry, key, pid)

 (since 1.12.0)

 @spec values(registry(), key(), pid()) :: [value()]

Reads the values for the given key for pid in registry.
For unique registries, it is either an empty list or a list
with a single element. For duplicate registries, it is a list
with zero, one, or multiple elements.
Examples
In the example below we register the current process and look it up
both from itself and other processes:
iex> Registry.start_link(keys: :unique, name: Registry.UniqueValuesTest)
iex> Registry.values(Registry.UniqueValuesTest, "hello", self())
[]
iex> {:ok, _} = Registry.register(Registry.UniqueValuesTest, "hello", :world)
iex> Registry.values(Registry.UniqueValuesTest, "hello", self())
[:world]
iex> Task.async(fn -> Registry.values(Registry.UniqueValuesTest, "hello", self()) end) |> Task.await()
[]
iex> parent = self()
iex> Task.async(fn -> Registry.values(Registry.UniqueValuesTest, "hello", parent) end) |> Task.await()
[:world]
The same applies to duplicate registries:
iex> Registry.start_link(keys: :duplicate, name: Registry.DuplicateValuesTest)
iex> Registry.values(Registry.DuplicateValuesTest, "hello", self())
[]
iex> {:ok, _} = Registry.register(Registry.DuplicateValuesTest, "hello", :world)
iex> Registry.values(Registry.DuplicateValuesTest, "hello", self())
[:world]
iex> {:ok, _} = Registry.register(Registry.DuplicateValuesTest, "hello", :another)
iex> Enum.sort(Registry.values(Registry.DuplicateValuesTest, "hello", self()))
[:another, :world]

Supervisor behaviour

A behaviour module for implementing supervisors.
A supervisor is a process which supervises other processes, which we
refer to as child processes. Supervisors are used to build a hierarchical
process structure called a supervision tree. Supervision trees provide
fault-tolerance and encapsulate how our applications start and shutdown.
A supervisor may be started directly with a list of child specifications via
start_link/2 or you may define a module-based supervisor that implements
the required callbacks. The sections below use start_link/2 to start
supervisors in most examples, but it also includes a specific section
on module-based ones.
Examples
In order to start a supervisor, we need to first define a child process
that will be supervised. As an example, we will define a GenServer,
a generic server, that keeps a counter. Other processes can then send
messages to this process to read the counter and bump its value.
Disclaimer
In practice you would not define a counter as a GenServer. Instead,
if you need a counter, you would pass it around as inputs and outputs to
the functions that need it. The reason we picked a counter in this example
is due to its simplicity, as it allows us to focus on how supervisors work.
defmodule Counter do
 use GenServer

 def start_link(arg) when is_integer(arg) do
 GenServer.start_link(__MODULE__, arg, name: __MODULE__)
 end

 ## Callbacks

 @impl true
 def init(counter) do
 {:ok, counter}
 end

 @impl true
 def handle_call(:get, _from, counter) do
 {:reply, counter, counter}
 end

 def handle_call({:bump, value}, _from, counter) do
 {:reply, counter, counter + value}
 end
end
The Counter receives an argument on start_link. This argument
is passed to the init/1 callback which becomes the initial value
of the counter. Our counter handles two operations (known as calls):
:get, to get the current counter value, and :bump, that bumps
the counter by the given value and returns the old counter.
We can now start a supervisor that will start and supervise our
counter process. The first step is to define a list of child
specifications that control how each child behaves. Each child
specification is a map, as shown below:
children = [
 # The Counter is a child started via Counter.start_link(0)
 %{
 id: Counter,
 start: {Counter, :start_link, [0]}
 }
]

Now we start the supervisor with the children and a strategy
{:ok, pid} = Supervisor.start_link(children, strategy: :one_for_one)

After started, we can query the supervisor for information
Supervisor.count_children(pid)
#=> %{active: 1, specs: 1, supervisors: 0, workers: 1}
Note that when starting the GenServer, we are registering it
with name Counter via the name: __MODULE__ option. This allows
us to call it directly and get its value:
GenServer.call(Counter, :get)
#=> 0

GenServer.call(Counter, {:bump, 3})
#=> 0

GenServer.call(Counter, :get)
#=> 3
However, there is a bug in our counter server. If we call :bump with
a non-numeric value, it is going to crash:
GenServer.call(Counter, {:bump, "oops"})
** (exit) exited in: GenServer.call(Counter, {:bump, "oops"}, 5000)
Luckily, since the server is being supervised by a supervisor, the
supervisor will automatically start a new one, reset back to its initial
value of 0:
GenServer.call(Counter, :get)
#=> 0
Supervisors support different strategies; in the example above, we
have chosen :one_for_one. Furthermore, each supervisor can have many
workers and/or supervisors as children, with each one having its own
configuration (as outlined in the "Child specification" section).
The rest of this document will cover how child processes are specified,
how they can be started and stopped, different supervision strategies
and more.
Child specification
The child specification describes how the supervisor starts, shuts down,
and restarts child processes.
The child specification is a map containing up to 6 elements. The first two keys
in the following list are required, and the remaining ones are optional:
	:id - any term used to identify the child specification internally by
the supervisor; defaults to the given module. This key is required.
For supervisors, in the case of conflicting :id values, the supervisor
will refuse to initialize and require explicit IDs. This is not the case
for dynamic supervisors though.

	:start - a tuple with the module-function-args to be invoked
to start the child process. This key is required.

	:restart - an atom that defines when a terminated child process
 should be restarted (see the "Restart values" section below).
 This key is optional and defaults to :permanent.

	:shutdown - an integer or atom that defines how a child process should
be terminated (see the "Shutdown values" section below). This key
is optional and defaults to 5_000 if the type is :worker or
:infinity if the type is :supervisor.

	:type - specifies that the child process is a :worker or a
:supervisor. This key is optional and defaults to :worker.

	:modules - a list of modules used by hot code upgrade mechanisms
to determine which processes are using certain modules. It is typically
set to the callback module of behaviours like GenServer, Supervisor,
and such. It is set automatically based on the :start value and it is rarely
changed in practice.

	:significant - a boolean indicating if the child process should be
considered significant with regard to automatic shutdown. Only :transient
and :temporary child processes can be marked as significant. This key is
optional and defaults to false. See section "Automatic shutdown" below
for more details.

Let's understand what the :shutdown and :restart options control.
Shutdown values (:shutdown)
The following shutdown values are supported in the :shutdown option:
	:brutal_kill - the child process is unconditionally and immediately
terminated using Process.exit(child, :kill).

	any integer >= 0 - the amount of time in milliseconds that the
supervisor will wait for its children to terminate after emitting a
Process.exit(child, :shutdown) signal. If the child process is
not trapping exits, the initial :shutdown signal will terminate
the child process immediately. If the child process is trapping
exits, it has the given amount of time to terminate.
If it doesn't terminate within the specified time, the child process
is unconditionally terminated by the supervisor via
Process.exit(child, :kill).

	:infinity - works as an integer except the supervisor will wait
indefinitely for the child to terminate. If the child process is a
supervisor, the recommended value is :infinity to give the supervisor
and its children enough time to shut down. This option can be used with
regular workers but doing so is discouraged and requires extreme care.
If not used carefully, the child process will never terminate,
preventing your application from terminating as well.

Restart values (:restart)
The :restart option controls what the supervisor should consider to
be a successful termination or not. If the termination is successful,
the supervisor won't restart the child. If the child process crashed,
the supervisor will start a new one.
The following restart values are supported in the :restart option:
	:permanent - the child process is always restarted.

	:temporary - the child process is never restarted, regardless
of the supervision strategy: any termination (even abnormal) is
considered successful.

	:transient - the child process is restarted only if it
terminates abnormally, i.e., with an exit reason other than
:normal, :shutdown, or {:shutdown, term}.

For a more complete understanding of the exit reasons and their
impact, see the "Exit reasons and restarts" section.
child_spec/1 function
When starting a supervisor, we may pass a list of child specifications. Those
specifications are maps that tell how the supervisor should start, stop and
restart each of its children:
%{
 id: Counter,
 start: {Counter, :start_link, [0]}
}
The map above defines a child with :id of Counter that is started
by calling Counter.start_link(0).
However, defining the child specification for each child as a map can be
quite error prone, as we may change the Counter implementation and forget
to update its specification. That's why Elixir allows you to pass a tuple with
the module name and the start_link argument instead of the specification:
children = [
 {Counter, 0}
]
The supervisor will then invoke Counter.child_spec(0) to retrieve a child
specification. Now the Counter module is responsible for building its own
specification, for example, we could write:
def child_spec(arg) do
 %{
 id: Counter,
 start: {Counter, :start_link, [arg]}
 }
end
Then the supervisor will call Counter.start_link(arg) to start the child
process. This flow is summarized in the diagram below. Caller is a process
which spawns the Supervisor process. The Supervisor then proceeds to call
your code (Module) to spawn its child process:
sequenceDiagram
 participant C as Caller (Process)
 participant S as Supervisor (Process)
 participant M as Module (Code)

 note right of C: child is a {module, arg} specification
 C->>+S: Supervisor.start_link([child])
 S-->>+M: module.child_spec(arg)
 M-->>-S: %{id: term, start: {module, :start_link, [arg]}}
 S-->>+M: module.start_link(arg)
 M->>M: Spawns child process (child_pid)
 M-->>-S: {:ok, child_pid} | :ignore | {:error, reason}
 S->>-C: {:ok, supervisor_pid} | {:error, reason}
Luckily for us, use GenServer already defines a Counter.child_spec/1
exactly like above, so you don't need to write the definition above yourself.
If you want to customize the automatically generated child_spec/1 function,
you can pass the options directly to use GenServer:
use GenServer, restart: :transient
Finally, note it is also possible to simply pass the Counter module as
a child:
children = [
 Counter
]
When only the module name is given, it is equivalent to {Counter, []},
which in our case would be invalid, which is why we always pass the initial
counter explicitly.
By replacing the child specification with {Counter, 0}, we keep it
encapsulated in the Counter module. We could now share our
Counter implementation with other developers and they can add it directly
to their supervision tree without worrying about the low-level details of
the counter.
Overall, a child specification can be one of the following:
	a map representing the child specification itself - as outlined in the
"Child specification" section

	a tuple with a module as first element and the start argument as second -
such as {Counter, 0}. In this case, Counter.child_spec(0) is called
to retrieve the child specification

	a module - such as Counter. In this case, Counter.child_spec([])
would be called, which is invalid for the counter, but it is useful in
many other cases, especially when you want to pass a list of options
to the child process

If you need to convert a {module, arg} tuple or a module child specification to a
child specification or modify a child specification itself,
you can use the Supervisor.child_spec/2 function.
For example, to run the counter with a different :id and a :shutdown value of
10 seconds (10_000 milliseconds):
children = [
 Supervisor.child_spec({Counter, 0}, id: MyCounter, shutdown: 10_000)
]
Supervisor strategies and options
So far we have started the supervisor passing a single child as a tuple
as well as a strategy called :one_for_one:
children = [
 {Counter, 0}
]

Supervisor.start_link(children, strategy: :one_for_one)
The first argument given to start_link/2 is a list of child
specifications as defined in the "child_spec/1" section above.
The second argument is a keyword list of options:
	:strategy - the supervision strategy option. It can be either
:one_for_one, :rest_for_one or :one_for_all. Required.
See the "Strategies" section.

	:max_restarts - the maximum number of restarts allowed in
a time frame. Defaults to 3.

	:max_seconds - the time frame in which :max_restarts applies.
Defaults to 5.

	:auto_shutdown - the automatic shutdown option. It can be
:never, :any_significant, or :all_significant. Optional.
See the "Automatic shutdown" section.

	:name - a name to register the supervisor process. Supported values are
explained in the "Name registration" section in the documentation for
GenServer. Optional.

Strategies
Supervisors support different supervision strategies (through the
:strategy option, as seen above):
	:one_for_one - if a child process terminates, only that
process is restarted.

	:one_for_all - if a child process terminates, all other child
processes are terminated and then all child processes (including
the terminated one) are restarted.

	:rest_for_one - if a child process terminates, the terminated child
process and the rest of the children started after it, are terminated and
restarted.

In the above, process termination refers to unsuccessful termination, which
is determined by the :restart option.
To efficiently supervise children started dynamically, see DynamicSupervisor.
Automatic shutdown
Supervisors have the ability to automatically shut themselves down when child
processes marked as :significant exit.
Supervisors support different automatic shutdown options (through
the :auto_shutdown option, as seen above):
	:never - this is the default, automatic shutdown is disabled.

	:any_significant - if any significant child process exits, the supervisor
will automatically shut down its children, then itself.

	:all_significant - when all significant child processes have exited,
the supervisor will automatically shut down its children, then itself.

Only :transient and :temporary child processes can be marked as significant,
and this configuration affects the behavior. Significant :transient child
processes must exit normally for automatic shutdown to be considered, where
:temporary child processes may exit for any reason.
Name registration
A supervisor is bound to the same name registration rules as a GenServer.
Read more about these rules in the documentation for GenServer.
Module-based supervisors
In the example so far, the supervisor was started by passing the supervision
structure to start_link/2. However, supervisors can also be created by
explicitly defining a supervision module:
defmodule MyApp.Supervisor do
 # Automatically defines child_spec/1
 use Supervisor

 def start_link(init_arg) do
 Supervisor.start_link(__MODULE__, init_arg, name: __MODULE__)
 end

 @impl true
 def init(_init_arg) do
 children = [
 {Counter, 0}
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end
The difference between the two approaches is that a module-based
supervisor gives you more direct control over how the supervisor
is initialized. Instead of calling Supervisor.start_link/2 with
a list of child specifications that are implicitly initialized for us,
we must explicitly initialize the children by calling Supervisor.init/2
inside its init/1 callback. Supervisor.init/2 accepts the same
:strategy, :max_restarts, and :max_seconds options as start_link/2.
use Supervisor
When you use Supervisor, the Supervisor module will
set @behaviour Supervisor and define a child_spec/1
function, so your module can be used as a child
in a supervision tree.
use Supervisor also defines a child_spec/1 function which allows
us to run MyApp.Supervisor as a child of another supervisor or
at the top of your supervision tree as:
children = [
 MyApp.Supervisor
]

Supervisor.start_link(children, strategy: :one_for_one)
A general guideline is to use the supervisor without a callback
module only at the top of your supervision tree, generally in the
Application.start/2 callback. We recommend using module-based
supervisors for any other supervisor in your application, so they
can run as a child of another supervisor in the tree. The child_spec/1
generated automatically by Supervisor can be customized with the
following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the supervisor should be restarted, defaults to :permanent

The @doc annotation immediately preceding use Supervisor will be
attached to the generated child_spec/1 function.
Start and shutdown
When the supervisor starts, it traverses all child specifications and
then starts each child in the order they are defined. This is done by
calling the function defined under the :start key in the child
specification and typically defaults to start_link/1.
The start_link/1 (or a custom) is then called for each child process.
The start_link/1 function must return {:ok, pid} where pid is the
process identifier of a new process that is linked to the supervisor.
The child process usually starts its work by executing the init/1
callback. Generally speaking, the init callback is where we initialize
and configure the child process.
The shutdown process happens in reverse order.
When a supervisor shuts down, it terminates all children in the opposite
order they are listed. The termination happens by sending a shutdown exit
signal, via Process.exit(child_pid, :shutdown), to the child process and
then awaiting for a time interval for the child process to terminate. This
interval defaults to 5000 milliseconds. If the child process does not
terminate in this interval, the supervisor abruptly terminates the child
with reason :kill. The shutdown time can be configured in the child
specification which is fully detailed in the next section.
If the child process is not trapping exits, it will shutdown immediately
when it receives the first exit signal. If the child process is trapping
exits, then the terminate callback is invoked, and the child process
must terminate in a reasonable time interval before being abruptly
terminated by the supervisor.
In other words, if it is important that a process cleans after itself
when your application or the supervision tree is shutting down, then
this process must trap exits and its child specification should specify
the proper :shutdown value, ensuring it terminates within a reasonable
interval.
Exit reasons and restarts
A supervisor restarts a child process depending on its :restart configuration.
For example, when :restart is set to :transient, the supervisor does not
restart the child in case it exits with reason :normal, :shutdown or
{:shutdown, term}.
Those exits also impact logging. By default, behaviours such as GenServers
do not emit error logs when the exit reason is :normal, :shutdown or
{:shutdown, term}.
So one may ask: which exit reason should I choose? There are three options:
	:normal - in such cases, the exit won't be logged, there is no restart
in transient mode, and linked processes do not exit

	:shutdown or {:shutdown, term} - in such cases, the exit won't be
logged, there is no restart in transient mode, and linked processes exit
with the same reason unless they're trapping exits

	any other term - in such cases, the exit will be logged, there are
restarts in transient mode, and linked processes exit with the same
reason unless they're trapping exits

Generally speaking, if you are exiting for expected reasons, you want to use
:shutdown or {:shutdown, term}.
Note that the supervisor that reaches maximum restart intensity will exit with
:shutdown reason. In this case the supervisor will only be restarted if its
child specification was defined with the :restart option set to :permanent
(the default).

 Summary

 Types

 auto_shutdown()

 Supported automatic shutdown options.

 child()

 A child process.

 child_spec()

 The supervisor child specification.

 child_spec_overrides()

 Options for overriding child specification fields.

 init_option()

 Options given to start_link/2 and init/2.

 module_spec()

 A module-based child spec.

 name()

 The supervisor name.

 on_start()

 Return values of start_link/2 and start_link/3.

 on_start_child()

 Return values of start_child/2.

 option()

 Option values used by the start_link/2 and start_link/3 functions.

 restart()

 Supported restart options.

 shutdown()

 Supported shutdown options.

 strategy()

 Supported strategies.

 sup_flags()

 The supervisor flags returned on init.

 supervisor()

 The supervisor reference.

 type()

 Type of a supervised child.

 Callbacks

 init(init_arg)

 Callback invoked to start the supervisor and during hot code upgrades.

 Functions

 child_spec(module_or_map, overrides)

 Builds and overrides a child specification.

 count_children(supervisor)

 Returns a map containing count values for the given supervisor.

 delete_child(supervisor, child_id)

 Deletes the child specification identified by child_id.

 init(children, options)

 Receives a list of child specifications to initialize and a set of options.

 restart_child(supervisor, child_id)

 Restarts a child process identified by child_id.

 start_child(supervisor, child_spec)

 Adds a child specification to supervisor and starts that child.

 start_link(children, options)

 Starts a supervisor with the given children.

 start_link(module, init_arg, options \\ [])

 Starts a module-based supervisor process with the given module and init_arg.

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the given supervisor with the given reason.

 terminate_child(supervisor, child_id)

 Terminates the given child identified by child_id.

 which_children(supervisor)

 Returns a list with information about all children of the given supervisor.

 Types

 auto_shutdown()

 @type auto_shutdown() :: :never | :any_significant | :all_significant

Supported automatic shutdown options.

 child()

 @type child() :: pid() | :undefined

A child process.
It can be a PID when the child process was started, or :undefined when
the child was created by a dynamic supervisor.

 child_spec()

 @type child_spec() :: %{
 :id => atom() | term(),
 :start => {module(), function_name :: atom(), args :: [term()]},
 optional(:restart) => restart(),
 optional(:shutdown) => shutdown(),
 optional(:type) => type(),
 optional(:modules) => [module()] | :dynamic,
 optional(:significant) => boolean()
}

The supervisor child specification.
It defines how the supervisor should start, stop and restart each of its children.

 child_spec_overrides()

 @type child_spec_overrides() :: [
 id: atom() | term(),
 start: {module(), atom(), [term()]},
 restart: restart(),
 shutdown: shutdown(),
 type: type(),
 modules: [module()] | :dynamic,
 significant: boolean()
]

Options for overriding child specification fields.

 init_option()

 @type init_option() ::
 {:strategy, strategy()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, pos_integer()}
 | {:auto_shutdown, auto_shutdown()}

Options given to start_link/2 and init/2.

 module_spec()

 (since 1.16.0)

 @type module_spec() :: {module(), args :: term()} | module()

A module-based child spec.
This is a form of child spec that you can pass to functions such as child_spec/2,
start_child/2, and start_link/2, in addition to the normalized child_spec/0.
A module-based child spec can be:
	a module — the supervisor calls module.child_spec([]) to retrieve the
child specification

	a two-element tuple in the shape of {module, arg} — the supervisor
calls module.child_spec(arg) to retrieve the child specification

 name()

 @type name() :: atom() | {:global, term()} | {:via, module(), term()}

The supervisor name.

 on_start()

 @type on_start() ::
 {:ok, pid()}
 | :ignore
 | {:error, {:already_started, pid()} | {:shutdown, term()} | term()}

Return values of start_link/2 and start_link/3.

 on_start_child()

 @type on_start_child() ::
 {:ok, child()}
 | {:ok, child(), info :: term()}
 | {:error, {:already_started, child()} | :already_present | term()}

Return values of start_child/2.

 option()

 @type option() :: {:name, name()}

Option values used by the start_link/2 and start_link/3 functions.

 restart()

 @type restart() :: :permanent | :transient | :temporary

Supported restart options.

 shutdown()

 @type shutdown() :: timeout() | :brutal_kill

Supported shutdown options.

 strategy()

 @type strategy() :: :one_for_one | :one_for_all | :rest_for_one

Supported strategies.

 sup_flags()

 @type sup_flags() :: %{
 strategy: strategy(),
 intensity: non_neg_integer(),
 period: pos_integer(),
 auto_shutdown: auto_shutdown()
}

The supervisor flags returned on init.

 supervisor()

 @type supervisor() :: pid() | name() | {atom(), node()}

The supervisor reference.

 type()

 @type type() :: :worker | :supervisor

Type of a supervised child.
Whether the supervised child is a worker or a supervisor.

 Callbacks

 init(init_arg)

 @callback init(init_arg :: term()) ::
 {:ok,
 {sup_flags(),
 [child_spec() | (old_erlang_child_spec :: :supervisor.child_spec())]}}
 | :ignore

Callback invoked to start the supervisor and during hot code upgrades.
Developers typically invoke Supervisor.init/2 at the end of their
init callback to return the proper supervision flags.

 Functions

 child_spec(module_or_map, overrides)

 @spec child_spec(child_spec() | module_spec(), child_spec_overrides()) :: child_spec()

Builds and overrides a child specification.
Similar to start_link/2 and init/2, it expects a module, {module, arg},
or a child specification.
If a two-element tuple in the shape of {module, arg} is given,
the child specification is retrieved by calling module.child_spec(arg).
If a module is given, the child specification is retrieved by calling
module.child_spec([]).
After the child specification is retrieved, the fields on overrides
are directly applied to the child spec. If overrides has keys that
do not map to any child specification field, an error is raised.
See the "Child specification" section in the module documentation
for all of the available keys for overriding.
Examples
This function is often used to set an :id option when
the same module needs to be started multiple times in the
supervision tree:
Supervisor.child_spec({Agent, fn -> :ok end}, id: {Agent, 1})
#=> %{id: {Agent, 1},
#=> start: {Agent, :start_link, [fn -> :ok end]}}

 count_children(supervisor)

 @spec count_children(supervisor()) :: %{
 specs: non_neg_integer(),
 active: non_neg_integer(),
 supervisors: non_neg_integer(),
 workers: non_neg_integer()
}

Returns a map containing count values for the given supervisor.
The map contains the following keys:
	:specs - the total count of children, dead or alive

	:active - the count of all actively running child processes managed by
this supervisor

	:supervisors - the count of all supervisors whether or not these
child supervisors are still alive

	:workers - the count of all workers, whether or not these child workers
are still alive

 delete_child(supervisor, child_id)

 @spec delete_child(supervisor(), term()) :: :ok | {:error, error}
when error: :not_found | :running | :restarting

Deletes the child specification identified by child_id.
The corresponding child process must not be running; use terminate_child/2
to terminate it if it's running.
If successful, this function returns :ok. This function may return an error
with an appropriate error tuple if the child_id is not found, or if the
current process is running or being restarted.

 init(children, options)

 (since 1.5.0)

 @spec init(
 [
 child_spec()
 | module_spec()
 | (old_erlang_child_spec :: :supervisor.child_spec())
],
 [
 init_option()
]
) ::
 {:ok,
 {sup_flags(),
 [child_spec() | (old_erlang_child_spec :: :supervisor.child_spec())]}}

Receives a list of child specifications to initialize and a set of options.
This is typically invoked at the end of the init/1 callback of
module-based supervisors. See the sections "Supervisor strategies and options" and
"Module-based supervisors" in the module documentation for more information.
This function returns a tuple containing the supervisor
flags and child specifications.
Examples
def init(_init_arg) do
 children = [
 {Counter, 0}
]

 Supervisor.init(children, strategy: :one_for_one)
end
Options
	:strategy - the supervision strategy option. It can be either
:one_for_one, :rest_for_one, or :one_for_all

	:max_restarts - the maximum number of restarts allowed in
a time frame. Defaults to 3.

	:max_seconds - the time frame in seconds in which :max_restarts
applies. Defaults to 5.

	:auto_shutdown - the automatic shutdown option. It can be either
:never, :any_significant, or :all_significant

The :strategy option is required and by default a maximum of 3 restarts
is allowed within 5 seconds. Check the Supervisor module for a detailed
description of the available strategies.

 restart_child(supervisor, child_id)

 @spec restart_child(supervisor(), term()) ::
 {:ok, child()} | {:ok, child(), term()} | {:error, error}
when error: :not_found | :running | :restarting | term()

Restarts a child process identified by child_id.
The child specification must exist and the corresponding child process must not
be running.
Note that for temporary children, the child specification is automatically deleted
when the child terminates, and thus it is not possible to restart such children.
If the child process start function returns {:ok, child} or {:ok, child, info},
the PID is added to the supervisor and this function returns the same value.
If the child process start function returns :ignore, the PID remains set to
:undefined and this function returns {:ok, :undefined}.
This function may return an error with an appropriate error tuple if the
child_id is not found, or if the current process is running or being
restarted.
If the child process start function returns an error tuple or an erroneous value,
or if it fails, this function returns {:error, error}.

 start_child(supervisor, child_spec)

 @spec start_child(
 supervisor(),
 child_spec()
 | module_spec()
 | (old_erlang_child_spec :: :supervisor.child_spec())
) :: on_start_child()

Adds a child specification to supervisor and starts that child.
child_spec should be a valid child specification. The child process will
be started as defined in the child specification.
If a child specification with the specified ID already exists, child_spec is
discarded and this function returns an error with :already_started or
:already_present if the corresponding child process is running or not,
respectively.
If the child process start function returns {:ok, child} or {:ok, child, info}, then child specification and PID are added to the supervisor and
this function returns the same value.
If the child process start function returns :ignore, the child specification
is added to the supervisor, the PID is set to :undefined and this function
returns {:ok, :undefined}.
If the child process start function returns an error tuple or an erroneous
value, or if it fails, the child specification is discarded and this function
returns {:error, error} where error is a term containing information about
the error and child specification.
Order Among Children
The child specification is appended to the children of supervisor.
This guarantees that semantics of things such as the :rest_for_one strategy
are preserved correctly.

 start_link(children, options)

 @spec start_link(
 [
 child_spec()
 | module_spec()
 | (old_erlang_child_spec :: :supervisor.child_spec())
],
 [
 option() | init_option()
]
) ::
 {:ok, pid()}
 | {:error, {:already_started, pid()} | {:shutdown, term()} | term()}

 @spec start_link(module(), term()) :: on_start()

Starts a supervisor with the given children.
children is a list of the following forms:
	a child specification (see child_spec/0)

	a module, where the supervisor calls module.child_spec([])
to retrieve the child specification (see module_spec/0)

	a {module, arg} tuple, where the supervisor calls module.child_spec(arg)
to retrieve the child specification (see module_spec/0)

	a (old) Erlang-style child specification (see
:supervisor.child_spec())

A strategy is required to be provided through the :strategy option. See
"Supervisor strategies and options" for examples and other options.
The options can also be used to register a supervisor name.
The supported values are described under the "Name registration"
section in the GenServer module docs.
If the supervisor and all child processes are successfully spawned
(if the start function of each child process returns {:ok, child},
{:ok, child, info}, or :ignore), this function returns
{:ok, pid}, where pid is the PID of the supervisor. If the supervisor
is given a name and a process with the specified name already exists,
the function returns {:error, {:already_started, pid}}, where pid
is the PID of that process.
If the start function of any of the child processes fails or returns an error
tuple or an erroneous value, the supervisor first terminates with reason
:shutdown all the child processes that have already been started, and then
terminates itself and returns {:error, {:shutdown, reason}}.
Note that a supervisor started with this function is linked to the parent
process and exits not only on crashes but also if the parent process exits
with :normal reason.

 start_link(module, init_arg, options \\ [])

 @spec start_link(module(), term(), [option()]) :: on_start()

Starts a module-based supervisor process with the given module and init_arg.
To start the supervisor, the init/1 callback will be invoked in the given
module, with init_arg as its argument. The init/1 callback must return a
supervisor specification which can be created with the help of the init/2
function.
If the init/1 callback returns :ignore, this function returns
:ignore as well and the supervisor terminates with reason :normal.
If it fails or returns an incorrect value, this function returns
{:error, term} where term is a term with information about the
error, and the supervisor terminates with reason term.
The :name option can also be given in order to register a supervisor
name, the supported values are described in the "Name registration"
section in the GenServer module docs.

 stop(supervisor, reason \\ :normal, timeout \\ :infinity)

 @spec stop(supervisor(), reason :: term(), timeout()) :: :ok

Synchronously stops the given supervisor with the given reason.
It returns :ok if the supervisor terminates with the given
reason. If it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 terminate_child(supervisor, child_id)

 @spec terminate_child(supervisor(), term()) :: :ok | {:error, :not_found}

Terminates the given child identified by child_id.
The process is terminated, if there's one. The child specification is
kept unless the child is temporary.
A non-temporary child process may later be restarted by the supervisor.
The child process can also be restarted explicitly by calling restart_child/2.
Use delete_child/2 to remove the child specification.
If successful, this function returns :ok. If there is no child
specification for the given child ID, this function returns
{:error, :not_found}.

 which_children(supervisor)

 @spec which_children(supervisor()) :: [
 {term() | :undefined, child() | :restarting, :worker | :supervisor,
 [module()] | :dynamic}
]

Returns a list with information about all children of the given supervisor.
Note that calling this function when supervising a large number of children
under low memory conditions can bring the system down due to an out of memory
error.
This function returns a list of {id, child, type, modules} tuples, where:
	id - as defined in the child specification

	child - the PID of the corresponding child process, :restarting if the
process is about to be restarted, or :undefined if there is no such
process

	type - :worker or :supervisor, as specified by the child specification

	modules - as specified by the child specification

Task

Conveniences for spawning and awaiting tasks.
Tasks are processes meant to execute one particular
action throughout their lifetime, often with little or no
communication with other processes. The most common use case
for tasks is to convert sequential code into concurrent code
by computing a value asynchronously:
task = Task.async(fn -> do_some_work() end)
res = do_some_other_work()
res + Task.await(task)
Tasks spawned with async can be awaited on by their caller
process (and only their caller) as shown in the example above.
They are implemented by spawning a process that sends a message
to the caller once the given computation is performed.
Compared to plain processes, started with spawn/1, tasks
include monitoring metadata and logging in case of errors.
Besides async/1 and await/2, tasks can also be
started as part of a supervision tree and dynamically spawned
on remote nodes. We will explore these scenarios next.
async and await
One of the common uses of tasks is to convert sequential code
into concurrent code with Task.async/1 while keeping its semantics.
When invoked, a new process will be created, linked and monitored
by the caller. Once the task action finishes, a message will be sent
to the caller with the result.
Task.await/2 is used to read the message sent by the task.
There are two important things to consider when using async:
	If you are using async tasks, you must await a reply
as they are always sent. If you are not expecting a reply,
consider using Task.start_link/1 as detailed below.

	Async tasks link the caller and the spawned process. This
means that, if the caller crashes, the task will crash
too and vice-versa. This is on purpose: if the process
meant to receive the result no longer exists, there is
no purpose in completing the computation. If this is not
desired, you will want to use supervised tasks, described
in a subsequent section.

Tasks are processes
Tasks are processes and so data will need to be completely copied
to them. Take the following code as an example:
large_data = fetch_large_data()
task = Task.async(fn -> do_some_work(large_data) end)
res = do_some_other_work()
res + Task.await(task)
The code above copies over all of large_data, which can be
resource intensive depending on the size of the data.
There are two ways to address this.
First, if you need to access only part of large_data,
consider extracting it before the task:
large_data = fetch_large_data()
subset_data = large_data.some_field
task = Task.async(fn -> do_some_work(subset_data) end)
Alternatively, if you can move the data loading altogether
to the task, it may be even better:
task = Task.async(fn ->
 large_data = fetch_large_data()
 do_some_work(large_data)
end)
Dynamically supervised tasks
The Task.Supervisor module allows developers to dynamically
create multiple supervised tasks.
A short example is:
{:ok, pid} = Task.Supervisor.start_link()

task =
 Task.Supervisor.async(pid, fn ->
 # Do something
 end)

Task.await(task)
However, in the majority of cases, you want to add the task supervisor
to your supervision tree:
Supervisor.start_link([
 {Task.Supervisor, name: MyApp.TaskSupervisor}
], strategy: :one_for_one)
And now you can use async/await by passing the name of
the supervisor instead of the pid:
Task.Supervisor.async(MyApp.TaskSupervisor, fn ->
 # Do something
end)
|> Task.await()
We encourage developers to rely on supervised tasks as much as possible.
Supervised tasks improve the visibility of how many tasks are running
at a given moment and enable a variety of patterns that give you
explicit control on how to handle the results, errors, and timeouts.
Here is a summary:
	Using Task.Supervisor.start_child/2 allows you to start a fire-and-forget
task when you don't care about its results or if it completes successfully or not.

	Using Task.Supervisor.async/2 + Task.await/2 allows you to execute
tasks concurrently and retrieve its result. If the task fails,
the caller will also fail.

	Using Task.Supervisor.async_nolink/2 + Task.yield/2 + Task.shutdown/2
allows you to execute tasks concurrently and retrieve their results
or the reason they failed within a given time frame. If the task fails,
the caller won't fail. You will receive the error reason either on
yield or shutdown.

Furthermore, the supervisor guarantees all tasks terminate within a
configurable shutdown period when your application shuts down. See the
Task.Supervisor module for details on the supported operations.
Distributed tasks
With Task.Supervisor, it is easy to dynamically start tasks across nodes:
First on the remote node named :remote@local
Task.Supervisor.start_link(name: MyApp.DistSupervisor)

Then on the local client node
supervisor = {MyApp.DistSupervisor, :remote@local}
Task.Supervisor.async(supervisor, MyMod, :my_fun, [arg1, arg2, arg3])
Note that, as above, when working with distributed tasks, one should use the
Task.Supervisor.async/5 function that expects explicit module, function,
and arguments, instead of Task.Supervisor.async/3 that works with anonymous
functions. That's because anonymous functions expect the same module version
to exist on all involved nodes. Check the Agent module documentation for
more information on distributed processes as the limitations described there
apply to the whole ecosystem.
Statically supervised tasks
The Task module implements the child_spec/1 function, which
allows it to be started directly under a regular Supervisor -
instead of a Task.Supervisor - by passing a tuple with a function
to run:
Supervisor.start_link([
 {Task, fn -> :some_work end}
], strategy: :one_for_one)
This is often useful when you need to execute some steps while
setting up your supervision tree. For example: to warm up caches,
log the initialization status, and such.
If you don't want to put the Task code directly under the Supervisor,
you can wrap the Task in its own module, similar to how you would
do with a GenServer or an Agent:
defmodule MyTask do
 use Task

 def start_link(arg) do
 Task.start_link(__MODULE__, :run, [arg])
 end

 def run(arg) do
 # ...
 end
end
And then passing it to the supervisor:
Supervisor.start_link([
 {MyTask, arg}
], strategy: :one_for_one)
Since these tasks are supervised and not directly linked to the caller,
they cannot be awaited on. By default, the functions Task.start/1
and Task.start_link/1 are for fire-and-forget tasks, where you don't
care about the results or if it completes successfully or not.
use Task
When you use Task, the Task module will define a
child_spec/1 function, so your module can be used
as a child in a supervision tree.
use Task defines a child_spec/1 function, allowing the
defined module to be put under a supervision tree. The generated
child_spec/1 can be customized with the following options:
	:id - the child specification identifier, defaults to the current module
	:restart - when the child should be restarted, defaults to :temporary
	:shutdown - how to shut down the child, either immediately or by giving it time to shut down

Opposite to GenServer, Agent and Supervisor, a Task has
a default :restart of :temporary. This means the task will
not be restarted even if it crashes. If you desire the task to
be restarted for non-successful exits, do:
use Task, restart: :transient
If you want the task to always be restarted:
use Task, restart: :permanent
See the "Child specification" section in the Supervisor module
for more detailed information. The @doc annotation immediately
preceding use Task will be attached to the generated child_spec/1
function.
Ancestor and Caller Tracking
Whenever you start a new process, Elixir annotates the process with the parent
through the $ancestors key in the process dictionary. This is often used to
track the hierarchy inside a supervision tree.
For example, we recommend developers to always start tasks under a supervisor.
This provides more visibility and allows you to control how those tasks are
terminated when a node shuts down. That might look something like
Task.Supervisor.start_child(MySupervisor, task_function). This means
that, although your code is the one invoking the task, the actual ancestor of
the task is the supervisor, as the supervisor is the one effectively starting it.
To track the relationship between your code and the task, we use the $callers
key in the process dictionary. Therefore, assuming the Task.Supervisor call
above, we have:
[your code] -- calls --> [supervisor] ---- spawns --> [task]
Which means we store the following relationships:
[your code] [supervisor] <-- ancestor -- [task]
 ^ |
 |--------------------- caller ---------------------|
The list of callers of the current process can be retrieved from the Process
dictionary with Process.get(:"$callers"). This will return either nil or
a list [pid_n, ..., pid2, pid1] with at least one entry where pid_n is
the PID that called the current process, pid2 called pid_n, and pid2 was
called by pid1.
If a task crashes, the callers field is included as part of the log message
metadata under the :callers key.

 Summary

 Types

 async_stream_option()

 Options given to async_stream functions.

 ref()

 The task opaque reference.

 t()

 The Task type.

 Functions

 %Task{}

 The Task struct.

 async(fun)

 Starts a task that must be awaited on.

 async(module, function_name, args)

 Starts a task that must be awaited on.

 async_stream(enumerable, fun, options \\ [])

 Returns a stream that runs the given function fun concurrently
on each element in enumerable.

 async_stream(enumerable, module, function_name, args, options \\ [])

 Returns a stream where the given function (module and function_name)
is mapped concurrently on each element in enumerable.

 await(task, timeout \\ 5000)

 Awaits a task reply and returns it.

 await_many(tasks, timeout \\ 5000)

 Awaits replies from multiple tasks and returns them.

 child_spec(arg)

 Returns a specification to start a task under a supervisor.

 completed(result)

 Starts a task that immediately completes with the given result.

 ignore(task)

 Ignores an existing task.

 shutdown(task, shutdown \\ 5000)

 Unlinks and shuts down the task, and then checks for a reply.

 start(fun)

 Starts a task.

 start(module, function_name, args)

 Starts a task.

 start_link(fun)

 Starts a task as part of a supervision tree with the given fun.

 start_link(module, function, args)

 Starts a task as part of a supervision tree with the given
module, function, and args.

 yield(task, timeout \\ 5000)

 Temporarily blocks the caller process waiting for a task reply.

 yield_many(tasks, opts \\ [])

 Yields to multiple tasks in the given time interval.

 Types

 async_stream_option()

 (since 1.17.0)

 @type async_stream_option() ::
 {:max_concurrency, pos_integer()}
 | {:ordered, boolean()}
 | {:timeout, timeout()}
 | {:on_timeout, :exit | :kill_task}
 | {:zip_input_on_exit, boolean()}

Options given to async_stream functions.

 ref()

 @opaque ref()

The task opaque reference.

 t()

 @type t() :: %Task{mfa: mfa(), owner: pid(), pid: pid() | nil, ref: ref()}

The Task type.
See %Task{} for information about each field of the structure.

 Functions

 %Task{}

 (struct)

The Task struct.
It contains these fields:
	:mfa - a three-element tuple containing the module, function name,
and arity invoked to start the task in async/1 and async/3

	:owner - the PID of the process that started the task

	:pid - the PID of the task process; nil if there is no process
specifically assigned for the task

	:ref - an opaque term used as the task monitor reference

 async(fun)

 @spec async((-> any())) :: t()

Starts a task that must be awaited on.
fun must be a zero-arity anonymous function. This function
spawns a process that is linked to and monitored by the caller
process. A Task struct is returned containing the relevant
information.
If you start an async, you must await. This is either done
by calling Task.await/2 or Task.yield/2 followed by
Task.shutdown/2 on the returned task. Alternatively, if you
spawn a task inside a GenServer, then the GenServer will
automatically await for you and call GenServer.handle_info/2
with the task response and associated :DOWN message.
Read the Task module documentation for more information about
the general usage of async tasks.
Linking
This function spawns a process that is linked to and monitored
by the caller process. The linking part is important because it
aborts the task if the parent process dies. It also guarantees
the code before async/await has the same properties after you
add the async call. For example, imagine you have this:
x = heavy_function()
y = some_function()
x + y
Now you want to make the heavy_function() async:
x = Task.async(&heavy_function/0)
y = some_function()
Task.await(x) + y
As before, if heavy_function/0 fails, the whole computation will
fail, including the caller process. If you don't want the task
to fail then you must change the heavy_fun/0 code in the
same way you would achieve it if you didn't have the async call.
For example, to either return {:ok, val} | :error results or,
in more extreme cases, by using try/rescue. In other words,
an asynchronous task should be thought of as an extension of the
caller process rather than a mechanism to isolate it from all errors.
If you don't want to link the caller to the task, then you
must use a supervised task with Task.Supervisor and call
Task.Supervisor.async_nolink/2.
In any case, avoid any of the following:
	Setting :trap_exit to true - trapping exits should be
used only in special circumstances as it would make your
process immune to not only exits from the task but from
any other processes.
Moreover, even when trapping exits, calling await will
still exit if the task has terminated without sending its
result back.

	Unlinking the task process started with async/await.
If you unlink the processes and the task does not belong
to any supervisor, you may leave dangling tasks in case
the caller process dies.

Metadata
The task created with this function stores :erlang.apply/2 in
its :mfa metadata field, which is used internally to apply
the anonymous function. Use async/3 if you want another function
to be used as metadata.

 async(module, function_name, args)

 @spec async(module(), atom(), [term()]) :: t()

Starts a task that must be awaited on.
Similar to async/1 except the function to be started is
specified by the given module, function_name, and args.
The module, function_name, and its arity are stored as
a tuple in the :mfa field for reflection purposes.

 async_stream(enumerable, fun, options \\ [])

 (since 1.4.0)

 @spec async_stream(Enumerable.t(), (term() -> term()), [async_stream_option()]) ::
 Enumerable.t()

Returns a stream that runs the given function fun concurrently
on each element in enumerable.
Works the same as async_stream/5 but with an anonymous function instead of a
module-function-arguments tuple. fun must be a one-arity anonymous function.
Each enumerable element is passed as argument to the given function fun and
processed by its own task. The tasks will be linked to the caller process, similarly
to async/1.
Example
Count the code points in each string asynchronously, then add the counts together using reduce.
iex> strings = ["long string", "longer string", "there are many of these"]
iex> stream = Task.async_stream(strings, fn text -> text |> String.codepoints() |> Enum.count() end)
iex> Enum.sum_by(stream, fn {:ok, num} -> num end)
47
See async_stream/5 for discussion, options, and more examples.

 async_stream(enumerable, module, function_name, args, options \\ [])

 (since 1.4.0)

 @spec async_stream(Enumerable.t(), module(), atom(), [term()], [async_stream_option()]) ::
 Enumerable.t()

Returns a stream where the given function (module and function_name)
is mapped concurrently on each element in enumerable.
Each element of enumerable will be prepended to the given args and
processed by its own task. Those tasks will be linked to an intermediate
process that is then linked to the caller process. This means a failure
in a task terminates the caller process and a failure in the caller
process terminates all tasks.
When streamed, each task will emit {:ok, value} upon successful
completion or {:exit, reason} if the caller is trapping exits.
It's possible to have {:exit, {element, reason}} for exits
using the :zip_input_on_exit option. The order of results depends
on the value of the :ordered option.
The level of concurrency and the time tasks are allowed to run can
be controlled via options (see the "Options" section below).
Consider using Task.Supervisor.async_stream/6 to start tasks
under a supervisor. If you find yourself trapping exits to ensure
errors in the tasks do not terminate the caller process, consider
using Task.Supervisor.async_stream_nolink/6 to start tasks that
are not linked to the caller process.
Options
	:max_concurrency - sets the maximum number of tasks to run
at the same time. Defaults to System.schedulers_online/0.

	:ordered - whether the results should be returned in the same order
as the input stream. When the output is ordered, Elixir may need to
buffer results to emit them in the original order. Setting this option
to false disables the need to buffer at the cost of removing ordering.
This is also useful when you're using the tasks only for the side effects.
Note that regardless of what :ordered is set to, the tasks will
process asynchronously. If you need to process elements in order,
consider using Enum.map/2 or Enum.each/2 instead. Defaults to true.

	:timeout - the maximum amount of time (in milliseconds or :infinity)
each task is allowed to execute for. Defaults to 5000.

	:on_timeout - what to do when a task times out. The possible
values are:
	:exit (default) - the caller (the process that spawned the tasks) exits.
	:kill_task - the task that timed out is killed. The value
emitted for that task is {:exit, :timeout}.

	:zip_input_on_exit - (since v1.14.0) adds the original
input to :exit tuples. The value emitted for that task is
{:exit, {input, reason}}, where input is the collection element
that caused an exit during processing. Defaults to false.

Example
Let's build a stream and then enumerate it:
stream = Task.async_stream(collection, Mod, :expensive_fun, [])
Enum.to_list(stream)
The concurrency can be increased or decreased using the :max_concurrency
option. For example, if the tasks are IO heavy, the value can be increased:
max_concurrency = System.schedulers_online() * 2
stream = Task.async_stream(collection, Mod, :expensive_fun, [], max_concurrency: max_concurrency)
Enum.to_list(stream)
If you do not care about the results of the computation, you can run
the stream with Stream.run/1. Also set ordered: false, as you don't
care about the order of the results either:
stream = Task.async_stream(collection, Mod, :expensive_fun, [], ordered: false)
Stream.run(stream)
First async tasks to complete
You can also use async_stream/3 to execute M tasks and find the N tasks
to complete. For example:
[
 &heavy_call_1/0,
 &heavy_call_2/0,
 &heavy_call_3/0
]
|> Task.async_stream(fn fun -> fun.() end, ordered: false, max_concurrency: 3)
|> Stream.filter(&match?({:ok, _}, &1))
|> Enum.take(2)
In the example above, we are executing three tasks and waiting for the
first 2 to complete. We use Stream.filter/2 to restrict ourselves only
to successfully completed tasks, and then use Enum.take/2 to retrieve
N items. Note it is important to set both ordered: false and
max_concurrency: M, where M is the number of tasks, to make sure all
calls execute concurrently.
Attention: unbound async + take
If you want to potentially process a high number of items and keep only
part of the results, you may end-up processing more items than desired.
Let's see an example:
1..100
|> Task.async_stream(fn i ->
 Process.sleep(100)
 IO.puts(to_string(i))
end)
|> Enum.take(10)
Running the example above in a machine with 8 cores will process 16 items,
even though you want only 10 elements, since async_stream/3 process items
concurrently. That's because it will process 8 elements at once. Then all 8
elements complete at roughly the same time, causing 8 elements to be kicked
off for processing. Out of these extra 8, only 2 will be used, and the rest
will be terminated.
Depending on the problem, you can filter or limit the number of elements
upfront:
1..100
|> Stream.take(10)
|> Task.async_stream(fn i ->
 Process.sleep(100)
 IO.puts(to_string(i))
end)
|> Enum.to_list()
In other cases, you likely want to tweak :max_concurrency to limit how
many elements may be over processed at the cost of reducing concurrency.
You can also set the number of elements to take to be a multiple of
:max_concurrency. For instance, setting max_concurrency: 5 in the
example above.

 await(task, timeout \\ 5000)

 @spec await(t(), timeout()) :: term()

Awaits a task reply and returns it.
In case the task process dies, the caller process will exit with the same
reason as the task.
A timeout, in milliseconds or :infinity, can be given with a default value
of 5000. If the timeout is exceeded, then the caller process will exit.
If the task process is linked to the caller process which is the case when
a task is started with async, then the task process will also exit. If the
task process is trapping exits or not linked to the caller process, then it
will continue to run.
This function assumes the task's monitor is still active or the monitor's
:DOWN message is in the message queue. If it has been demonitored, or the
message already received, this function will wait for the duration of the
timeout awaiting the message.
This function can only be called once for any given task. If you want
to be able to check multiple times if a long-running task has finished
its computation, use yield/2 instead.
Examples
iex> task = Task.async(fn -> 1 + 1 end)
iex> Task.await(task)
2
Compatibility with OTP behaviours
It is not recommended to await a long-running task inside an OTP
behaviour such as GenServer. Instead, you should match on the message
coming from a task inside your GenServer.handle_info/2 callback.
A GenServer will receive two messages on handle_info/2:
	{ref, result} - the reply message where ref is the monitor
reference returned by the task.ref and result is the task
result

	{:DOWN, ref, :process, pid, reason} - since all tasks are also
monitored, you will also receive the :DOWN message delivered by
Process.monitor/1. If you receive the :DOWN message without a
a reply, it means the task crashed

Another consideration to have in mind is that tasks started by Task.async/1
are always linked to their callers and you may not want the GenServer to
crash if the task crashes. Therefore, it is preferable to instead use
Task.Supervisor.async_nolink/3 inside OTP behaviours. For completeness, here
is an example of a GenServer that start tasks and handles their results:
defmodule GenServerTaskExample do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, :ok, opts)
 end

 def init(_opts) do
 # We will keep all running tasks in a map
 {:ok, %{tasks: %{}}}
 end

 # Imagine we invoke a task from the GenServer to access a URL...
 def handle_call(:some_message, _from, state) do
 url = ...
 task = Task.Supervisor.async_nolink(MyApp.TaskSupervisor, fn -> fetch_url(url) end)

 # After we start the task, we store its reference and the url it is fetching
 state = put_in(state.tasks[task.ref], url)

 {:reply, :ok, state}
 end

 # If the task succeeds...
 def handle_info({ref, result}, state) do
 # The task succeed so we can demonitor its reference
 Process.demonitor(ref, [:flush])

 {url, state} = pop_in(state.tasks[ref])
 IO.puts("Got #{inspect(result)} for URL #{inspect url}")
 {:noreply, state}
 end

 # If the task fails...
 def handle_info({:DOWN, ref, _, _, reason}, state) do
 {url, state} = pop_in(state.tasks[ref])
 IO.puts("URL #{inspect url} failed with reason #{inspect(reason)}")
 {:noreply, state}
 end
end
With the server defined, you will want to start the task supervisor
above and the GenServer in your supervision tree:
children = [
 {Task.Supervisor, name: MyApp.TaskSupervisor},
 {GenServerTaskExample, name: MyApp.GenServerTaskExample}
]

Supervisor.start_link(children, strategy: :one_for_one)

 await_many(tasks, timeout \\ 5000)

 (since 1.11.0)

 @spec await_many([t()], timeout()) :: [term()]

Awaits replies from multiple tasks and returns them.
This function receives a list of tasks and waits for their replies in the
given time interval. It returns a list of the results, in the same order as
the tasks supplied in the tasks input argument.
If any of the task processes dies, the caller process will exit with the same
reason as that task.
A timeout, in milliseconds or :infinity, can be given with a default value
of 5000. If the timeout is exceeded, then the caller process will exit.
Any task processes that are linked to the caller process (which is the case
when a task is started with async) will also exit. Any task processes that
are trapping exits or not linked to the caller process will continue to run.
This function assumes the tasks' monitors are still active or the monitor's
:DOWN message is in the message queue. If any tasks have been demonitored,
or the message already received, this function will wait for the duration of
the timeout.
This function can only be called once for any given task. If you want to be
able to check multiple times if a long-running task has finished its
computation, use yield_many/2 instead.
Compatibility with OTP behaviours
It is not recommended to await long-running tasks inside an OTP behaviour
such as GenServer. See await/2 for more information.
Examples
iex> tasks = [
...> Task.async(fn -> 1 + 1 end),
...> Task.async(fn -> 2 + 3 end)
...>]
iex> Task.await_many(tasks)
[2, 5]

 child_spec(arg)

 (since 1.5.0)

 @spec child_spec(term()) :: Supervisor.child_spec()

Returns a specification to start a task under a supervisor.
arg is passed as the argument to Task.start_link/1 in the :start field
of the spec.
For more information, see the Supervisor module,
the Supervisor.child_spec/2 function and the Supervisor.child_spec/0 type.

 completed(result)

 (since 1.13.0)

 @spec completed(any()) :: t()

Starts a task that immediately completes with the given result.
Unlike async/1, this task does not spawn a linked process. It can
be awaited or yielded like any other task.
Usage
In some cases, it is useful to create a "completed" task that represents
a task that has already run and generated a result. For example, when
processing data you may be able to determine that certain inputs are
invalid before dispatching them for further processing:
def process(data) do
 tasks =
 for entry <- data do
 if invalid_input?(entry) do
 Task.completed({:error, :invalid_input})
 else
 Task.async(fn -> further_process(entry) end)
 end
 end

 Task.await_many(tasks)
end
In many cases, Task.completed/1 may be avoided in favor of returning the
result directly. You should generally only require this variant when working
with mixed asynchrony, when a group of inputs will be handled partially
synchronously and partially asynchronously.

 ignore(task)

 (since 1.13.0)

 @spec ignore(t()) :: {:ok, term()} | {:exit, term()} | nil

Ignores an existing task.
This means the task will continue running, but it will be unlinked
and you can no longer yield, await or shut it down.
Returns {:ok, reply} if the reply is received before ignoring the task,
{:exit, reason} if the task died before ignoring it, otherwise nil.
Important: avoid using Task.async/1,3 and then immediately ignoring
the task. If you want to start tasks you don't care about their
results, use Task.Supervisor.start_child/2 instead.

 shutdown(task, shutdown \\ 5000)

 @spec shutdown(t(), timeout() | :brutal_kill) :: {:ok, term()} | {:exit, term()} | nil

Unlinks and shuts down the task, and then checks for a reply.
Returns {:ok, reply} if the reply is received while shutting down the task,
{:exit, reason} if the task died, otherwise nil. Once shut down,
you can no longer await or yield it.
The second argument is either a timeout or :brutal_kill. In case
of a timeout, a :shutdown exit signal is sent to the task process
and if it does not exit within the timeout, it is killed. With :brutal_kill
the task is killed straight away. In case the task terminates abnormally
(possibly killed by another process), this function will exit with the same reason.
It is not required to call this function when terminating the caller, unless
exiting with reason :normal or if the task is trapping exits. If the caller is
exiting with a reason other than :normal and the task is not trapping exits, the
caller's exit signal will stop the task. The caller can exit with reason
:shutdown to shut down all of its linked processes, including tasks, that
are not trapping exits without generating any log messages.
If there is no process linked to the task, such as tasks started by
Task.completed/1, we check for a response or error accordingly, but without
shutting a process down.
If a task's monitor has already been demonitored or received and there is not
a response waiting in the message queue this function will return
{:exit, :noproc} as the result or exit reason can not be determined.

 start(fun)

 @spec start((-> any())) :: {:ok, pid()}

Starts a task.
fun must be a zero-arity anonymous function.
This should only used when the task is used for side-effects
(like I/O) and you have no interest on its results nor if it
completes successfully.
If the current node is shutdown, the node will terminate even
if the task was not completed. For this reason, we recommend
to use Task.Supervisor.start_child/2 instead, which allows
you to control the shutdown time via the :shutdown option.

 start(module, function_name, args)

 @spec start(module(), atom(), [term()]) :: {:ok, pid()}

Starts a task.
This should only used when the task is used for side-effects
(like I/O) and you have no interest on its results nor if it
completes successfully.
If the current node is shutdown, the node will terminate even
if the task was not completed. For this reason, we recommend
to use Task.Supervisor.start_child/2 instead, which allows
you to control the shutdown time via the :shutdown option.

 start_link(fun)

 @spec start_link((-> any())) :: {:ok, pid()}

Starts a task as part of a supervision tree with the given fun.
fun must be a zero-arity anonymous function.
This is used to start a statically supervised task under a supervision tree.

 start_link(module, function, args)

 @spec start_link(module(), atom(), [term()]) :: {:ok, pid()}

Starts a task as part of a supervision tree with the given
module, function, and args.
This is used to start a statically supervised task under a supervision tree.

 yield(task, timeout \\ 5000)

 @spec yield(t(), timeout()) :: {:ok, term()} | {:exit, term()} | nil

Temporarily blocks the caller process waiting for a task reply.
Returns {:ok, reply} if the reply is received, nil if
no reply has arrived, or {:exit, reason} if the task has already
exited. Keep in mind that normally a task failure also causes
the process owning the task to exit. Therefore this function can
return {:exit, reason} if at least one of the conditions below apply:
	the task process exited with the reason :normal
	the task isn't linked to the caller (the task was started
with Task.Supervisor.async_nolink/2 or Task.Supervisor.async_nolink/4)
	the caller is trapping exits

A timeout, in milliseconds or :infinity, can be given with a default value
of 5000. If the time runs out before a message from the task is received,
this function will return nil and the monitor will remain active. Therefore
yield/2 can be called multiple times on the same task.
This function assumes the task's monitor is still active or the
monitor's :DOWN message is in the message queue. If it has been
demonitored or the message already received, this function will wait
for the duration of the timeout awaiting the message.
If you intend to shut the task down if it has not responded within timeout
milliseconds, you should chain this together with shutdown/1, like so:
case Task.yield(task, timeout) || Task.shutdown(task) do
 {:ok, result} ->
 result

 nil ->
 Logger.warning("Failed to get a result in #{timeout}ms")
 nil
end
If you intend to check on the task but leave it running after the timeout,
you can chain this together with ignore/1, like so:
case Task.yield(task, timeout) || Task.ignore(task) do
 {:ok, result} ->
 result

 nil ->
 Logger.warning("Failed to get a result in #{timeout}ms")
 nil
end
That ensures that if the task completes after the timeout but before shutdown/1
has been called, you will still get the result, since shutdown/1 is designed to
handle this case and return the result.

 yield_many(tasks, opts \\ [])

 @spec yield_many([t()], timeout()) :: [{t(), {:ok, term()} | {:exit, term()} | nil}]

 @spec yield_many([t()],
 limit: pos_integer(),
 timeout: timeout(),
 on_timeout: :nothing | :ignore | :kill_task
) :: [{t(), {:ok, term()} | {:exit, term()} | nil}]

Yields to multiple tasks in the given time interval.
This function receives a list of tasks and waits for their
replies in the given time interval. It returns a list
of two-element tuples, with the task as the first element
and the yielded result as the second. The tasks in the returned
list will be in the same order as the tasks supplied in the tasks
input argument.
Similarly to yield/2, each task's result will be
	{:ok, term} if the task has successfully reported its
result back in the given time interval
	{:exit, reason} if the task has died
	nil if the task keeps running, either because a limit
has been reached or past the timeout

Check yield/2 for more information.
Example
Task.yield_many/2 allows developers to spawn multiple tasks
and retrieve the results received in a given time frame.
If we combine it with Task.shutdown/2 (or Task.ignore/1),
it allows us to gather those results and cancel (or ignore)
the tasks that have not replied in time.
Let's see an example.
tasks =
 for i <- 1..10 do
 Task.async(fn ->
 Process.sleep(i * 1000)
 i
 end)
 end

tasks_with_results = Task.yield_many(tasks, timeout: 5000)

results =
 Enum.map(tasks_with_results, fn {task, res} ->
 # Shut down the tasks that did not reply nor exit
 res || Task.shutdown(task, :brutal_kill)
 end)

Here we are matching only on {:ok, value} and
ignoring {:exit, _} (crashed tasks) and `nil` (no replies)
for {:ok, value} <- results do
 IO.inspect(value)
end
In the example above, we create tasks that sleep from 1
up to 10 seconds and return the number of seconds they slept for.
If you execute the code all at once, you should see 1 up to 5
printed, as those were the tasks that have replied in the
given time. All other tasks will have been shut down using
the Task.shutdown/2 call.
As a convenience, you can achieve a similar behavior to above
by specifying the :on_timeout option to be :kill_task (or
:ignore). See Task.await_many/2 if you would rather exit
the caller process on timeout.
Options
The second argument is either a timeout or options, which defaults
to this:
	:limit - the maximum amount of tasks to wait for.
If the limit is reached before the timeout, this function
returns immediately without triggering the :on_timeout behaviour

	:timeout - the maximum amount of time (in milliseconds or :infinity)
each task is allowed to execute for. Defaults to 5000.

	:on_timeout - what to do when a task times out. The possible
values are:
	:nothing - do nothing (default). The tasks can still be
awaited on, yielded on, ignored, or shut down later.
	:ignore - the results of the task will be ignored.
	:kill_task - the task that timed out is killed.

Task.Supervisor

A task supervisor.
This module defines a supervisor which can be used to dynamically
supervise tasks.
A task supervisor is started with no children, often under a
supervisor and a name:
children = [
 {Task.Supervisor, name: MyApp.TaskSupervisor}
]

Supervisor.start_link(children, strategy: :one_for_one)
The options given in the child specification are documented in start_link/1.
Once started, you can start tasks directly under the supervisor, for example:
task = Task.Supervisor.async(MyApp.TaskSupervisor, fn ->
 :do_some_work
end)
See the Task module for more examples.
Scalability and partitioning
The Task.Supervisor is a single process responsible for starting
other processes. In some applications, the Task.Supervisor may
become a bottleneck. To address this, you can start multiple instances
of the Task.Supervisor and then pick a random instance to start
the task on.
Instead of:
children = [
 {Task.Supervisor, name: MyApp.TaskSupervisor}
]
and:
Task.Supervisor.async(MyApp.TaskSupervisor, fn -> :do_some_work end)
You can do this:
children = [
 {PartitionSupervisor,
 child_spec: Task.Supervisor,
 name: MyApp.TaskSupervisors}
]
and then:
Task.Supervisor.async(
 {:via, PartitionSupervisor, {MyApp.TaskSupervisors, self()}},
 fn -> :do_some_work end
)
In the code above, we start a partition supervisor that will by default
start a dynamic supervisor for each core in your machine. Then, instead
of calling the Task.Supervisor by name, you call it through the
partition supervisor using the {:via, PartitionSupervisor, {name, key}}
format, where name is the name of the partition supervisor and key
is the routing key. We picked self() as the routing key, which means
each process will be assigned one of the existing task supervisors.
Read the PartitionSupervisor docs for more information.
Name registration
A Task.Supervisor is bound to the same name registration rules as a
GenServer. Read more about them in the GenServer docs.

 Summary

 Types

 async_opts()

 Options for async/3, async/5, async_nolink/3, and async_nolink/5 functions.

 async_stream_option()

 Options given to async_stream and async_stream_nolink functions.

 option()

 Option values used by start_link

 start_child_opts()

 Functions

 async(supervisor, fun, options \\ [])

 Starts a task that can be awaited on.

 async(supervisor, module, fun, args, options \\ [])

 Starts a task that can be awaited on.

 async_nolink(supervisor, fun, options \\ [])

 Starts a task that can be awaited on.

 async_nolink(supervisor, module, fun, args, options \\ [])

 Starts a task that can be awaited on.

 async_stream(supervisor, enumerable, fun, options \\ [])

 Returns a stream that runs the given function fun concurrently
on each element in enumerable.

 async_stream(supervisor, enumerable, module, function, args, options \\ [])

 Returns a stream where the given function (module and function)
is mapped concurrently on each element in enumerable.

 async_stream_nolink(supervisor, enumerable, fun, options \\ [])

 Returns a stream that runs the given function concurrently on each
element in enumerable.

 async_stream_nolink(supervisor, enumerable, module, function, args, options \\ [])

 Returns a stream where the given function (module and function)
is mapped concurrently on each element in enumerable.

 children(supervisor)

 Returns all children PIDs except those that are restarting.

 start_child(supervisor, fun, options \\ [])

 Starts a task as a child of the given supervisor.

 start_child(supervisor, module, fun, args, options \\ [])

 Starts a task as a child of the given supervisor.

 start_link(options \\ [])

 Starts a new supervisor.

 terminate_child(supervisor, pid)

 Terminates the child with the given pid.

 Types

 async_opts()

 @type async_opts() :: [{:shutdown, :brutal_kill | timeout()}]

Options for async/3, async/5, async_nolink/3, and async_nolink/5 functions.

 async_stream_option()

 (since 1.17.0)

 @type async_stream_option() ::
 Task.async_stream_option() | {:shutdown, Supervisor.shutdown()}

Options given to async_stream and async_stream_nolink functions.

 option()

 @type option() :: GenServer.option() | DynamicSupervisor.init_option()

Option values used by start_link

 start_child_opts()

 @type start_child_opts() :: [
 restart: :temporary | :transient | :permanent,
 shutdown: :brutal_kill | timeout()
]

 Functions

 async(supervisor, fun, options \\ [])

 @spec async(Supervisor.supervisor(), (-> any()), async_opts()) :: Task.t()

Starts a task that can be awaited on.
The supervisor must be a reference as defined in Supervisor.
The task will still be linked to the caller, see Task.async/1 for
more information and async_nolink/3 for a non-linked variant.
Raises an error if supervisor has reached the maximum number of
children.
Options
	:shutdown - :brutal_kill if the tasks must be killed directly on shutdown
or an integer indicating the timeout value, defaults to 5000 milliseconds.
The tasks must trap exits for the timeout to have an effect.

 async(supervisor, module, fun, args, options \\ [])

 @spec async(Supervisor.supervisor(), module(), atom(), [term()], async_opts()) ::
 Task.t()

Starts a task that can be awaited on.
The supervisor must be a reference as defined in Supervisor.
The task will still be linked to the caller, see Task.async/1 for
more information and async_nolink/3 for a non-linked variant.
Raises an error if supervisor has reached the maximum number of
children.
Options
	:shutdown - :brutal_kill if the tasks must be killed directly on shutdown
or an integer indicating the timeout value, defaults to 5000 milliseconds.
The tasks must trap exits for the timeout to have an effect.

 async_nolink(supervisor, fun, options \\ [])

 @spec async_nolink(Supervisor.supervisor(), (-> any()), async_opts()) :: Task.t()

Starts a task that can be awaited on.
The supervisor must be a reference as defined in Supervisor.
The task won't be linked to the caller, see Task.async/1 for
more information.
Raises an error if supervisor has reached the maximum number of
children.
Note this function requires the task supervisor to have :temporary
as the :restart option (the default), as async_nolink/3 keeps a
direct reference to the task which is lost if the task is restarted.
Options
	:shutdown - :brutal_kill if the tasks must be killed directly on shutdown
or an integer indicating the timeout value, defaults to 5000 milliseconds.
The tasks must trap exits for the timeout to have an effect.

Compatibility with OTP behaviours
If you create a task using async_nolink inside an OTP behaviour
like GenServer, you should match on the message coming from the
task inside your GenServer.handle_info/2 callback.
The reply sent by the task will be in the format {ref, result},
where ref is the monitor reference held by the task struct
and result is the return value of the task function.
Keep in mind that, regardless of how the task created with async_nolink
terminates, the caller's process will always receive a :DOWN message
with the same ref value that is held by the task struct. If the task
terminates normally, the reason in the :DOWN message will be :normal.
Examples
Typically, you use async_nolink/3 when there is a reasonable expectation that
the task may fail, and you don't want it to take down the caller. Let's see an
example where a GenServer is meant to run a single task and track its status:
defmodule MyApp.Server do
 use GenServer

 # ...

 def start_task do
 GenServer.call(__MODULE__, :start_task)
 end

 # In this case the task is already running, so we just return :ok.
 def handle_call(:start_task, _from, %{ref: ref} = state) when is_reference(ref) do
 {:reply, :ok, state}
 end

 # The task is not running yet, so let's start it.
 def handle_call(:start_task, _from, %{ref: nil} = state) do
 task =
 Task.Supervisor.async_nolink(MyApp.TaskSupervisor, fn ->
 ...
 end)

 # We return :ok and the server will continue running
 {:reply, :ok, %{state | ref: task.ref}}
 end

 # The task completed successfully
 def handle_info({ref, answer}, %{ref: ref} = state) do
 # We don't care about the DOWN message now, so let's demonitor and flush it
 Process.demonitor(ref, [:flush])
 # Do something with the result and then return
 {:noreply, %{state | ref: nil}}
 end

 # The task failed
 def handle_info({:DOWN, ref, :process, _pid, _reason}, %{ref: ref} = state) do
 # Log and possibly restart the task...
 {:noreply, %{state | ref: nil}}
 end
end

 async_nolink(supervisor, module, fun, args, options \\ [])

 @spec async_nolink(Supervisor.supervisor(), module(), atom(), [term()], async_opts()) ::
 Task.t()

Starts a task that can be awaited on.
The supervisor must be a reference as defined in Supervisor.
The task won't be linked to the caller, see Task.async/1 for
more information.
Raises an error if supervisor has reached the maximum number of
children.
Note this function requires the task supervisor to have :temporary
as the :restart option (the default), as async_nolink/5 keeps a
direct reference to the task which is lost if the task is restarted.

 async_stream(supervisor, enumerable, fun, options \\ [])

 (since 1.4.0)

 @spec async_stream(Supervisor.supervisor(), Enumerable.t(), (term() -> term()), [
 async_stream_option()
]) ::
 Enumerable.t()

Returns a stream that runs the given function fun concurrently
on each element in enumerable.
Each element in enumerable is passed as argument to the given function fun
and processed by its own task. The tasks will be spawned under the given
supervisor and linked to the caller process, similarly to async/3.
See async_stream/6 for discussion, options, and examples.

 async_stream(supervisor, enumerable, module, function, args, options \\ [])

 (since 1.4.0)

 @spec async_stream(
 Supervisor.supervisor(),
 Enumerable.t(),
 module(),
 atom(),
 [term()],
 [
 async_stream_option()
]
) :: Enumerable.t()

Returns a stream where the given function (module and function)
is mapped concurrently on each element in enumerable.
Each element will be prepended to the given args and processed by its
own task. The tasks will be spawned under the given supervisor and
linked to the caller process, similarly to async/5.
When streamed, each task will emit {:ok, value} upon successful
completion or {:exit, reason} if the caller is trapping exits.
The order of results depends on the value of the :ordered option.
The level of concurrency and the time tasks are allowed to run can
be controlled via options (see the "Options" section below).
If you find yourself trapping exits to handle exits inside
the async stream, consider using async_stream_nolink/6 to start tasks
that are not linked to the calling process.
Options
	:max_concurrency - sets the maximum number of tasks to run
at the same time. Defaults to System.schedulers_online/0.

	:ordered - whether the results should be returned in the same order
as the input stream. This option is useful when you have large
streams and don't want to buffer results before they are delivered.
This is also useful when you're using the tasks for side effects.
Defaults to true.

	:timeout - the maximum amount of time to wait (in milliseconds)
without receiving a task reply (across all running tasks).
Defaults to 5000.

	:on_timeout - what do to when a task times out. The possible
values are:
	:exit (default) - the process that spawned the tasks exits.
	:kill_task - the task that timed out is killed. The value
emitted for that task is {:exit, :timeout}.

	:zip_input_on_exit - (since v1.14.0) adds the original
input to :exit tuples. The value emitted for that task is
{:exit, {input, reason}}, where input is the collection element
that caused an exited during processing. Defaults to false.

	:shutdown - :brutal_kill if the tasks must be killed directly on shutdown
or an integer indicating the timeout value. Defaults to 5000 milliseconds.
The tasks must trap exits for the timeout to have an effect.

Examples
Let's build a stream and then enumerate it:
stream = Task.Supervisor.async_stream(MySupervisor, collection, Mod, :expensive_fun, [])
Enum.to_list(stream)

 async_stream_nolink(supervisor, enumerable, fun, options \\ [])

 (since 1.4.0)

 @spec async_stream_nolink(
 Supervisor.supervisor(),
 Enumerable.t(),
 (term() -> term()),
 [
 async_stream_option()
]
) :: Enumerable.t()

Returns a stream that runs the given function concurrently on each
element in enumerable.
Each element in enumerable is passed as argument to the given function fun
and processed by its own task. The tasks will be spawned under the given
supervisor and will not be linked to the caller process, similarly
to async_nolink/3.
See async_stream/6 for discussion and examples.
Error handling and cleanup
Even if tasks are not linked to the caller, there is no risk of leaving dangling tasks
running after the stream halts.
Consider the following example:
Task.Supervisor.async_stream_nolink(MySupervisor, collection, fun, on_timeout: :kill_task, ordered: false)
|> Enum.each(fn
 {:ok, _} -> :ok
 {:exit, reason} -> raise "Task exited: #{Exception.format_exit(reason)}"
end)
If one task raises or times out:
	the second clause gets called
	an exception is raised
	the stream halts
	all ongoing tasks will be shut down

Here is another example:
Task.Supervisor.async_stream_nolink(MySupervisor, collection, fun, on_timeout: :kill_task, ordered: false)
|> Stream.filter(&match?({:ok, _}, &1))
|> Enum.take(3)
This will return the three first tasks to succeed, ignoring timeouts and errors, and shut down
every ongoing task.
Just running the stream with Stream.run/1 on the other hand would ignore errors and process the whole stream.

 async_stream_nolink(supervisor, enumerable, module, function, args, options \\ [])

 (since 1.4.0)

 @spec async_stream_nolink(
 Supervisor.supervisor(),
 Enumerable.t(),
 module(),
 atom(),
 [term()],
 [
 async_stream_option()
]
) :: Enumerable.t()

Returns a stream where the given function (module and function)
is mapped concurrently on each element in enumerable.
Each element in enumerable will be prepended to the given args and processed
by its own task. The tasks will be spawned under the given supervisor and
will not be linked to the caller process, similarly to async_nolink/5.
See async_stream/6 for discussion, options, and examples.

 children(supervisor)

 @spec children(Supervisor.supervisor()) :: [pid()]

Returns all children PIDs except those that are restarting.
Note that calling this function when supervising a large number
of children under low memory conditions can bring the system down due to an
out of memory error.

 start_child(supervisor, fun, options \\ [])

 @spec start_child(Supervisor.supervisor(), (-> any()), start_child_opts()) ::
 DynamicSupervisor.on_start_child()

Starts a task as a child of the given supervisor.
Task.Supervisor.start_child(MyTaskSupervisor, fn ->
 IO.puts("I am running in a task")
end)
Note that the spawned process is not linked to the caller, but
only to the supervisor. This command is useful in case the
task needs to perform side-effects (like I/O) and you have no
interest in its results nor if it completes successfully.
Options
	:restart - the restart strategy, may be :temporary (the default),
:transient or :permanent. :temporary means the task is never
restarted, :transient means it is restarted if the exit is not
:normal, :shutdown or {:shutdown, reason}. A :permanent restart
strategy means it is always restarted.

	:shutdown - :brutal_kill if the task must be killed directly on shutdown
or an integer indicating the timeout value, defaults to 5000 milliseconds.
The task must trap exits for the timeout to have an effect.

 start_child(supervisor, module, fun, args, options \\ [])

 @spec start_child(
 Supervisor.supervisor(),
 module(),
 atom(),
 [term()],
 start_child_opts()
) ::
 DynamicSupervisor.on_start_child()

Starts a task as a child of the given supervisor.
Similar to start_child/3 except the task is specified
by the given module, fun and args.

 start_link(options \\ [])

 @spec start_link([option()]) :: Supervisor.on_start()

Starts a new supervisor.
Examples
A task supervisor is typically started under a supervision tree using
the tuple format:
{Task.Supervisor, name: MyApp.TaskSupervisor}
You can also start it by calling start_link/1 directly:
Task.Supervisor.start_link(name: MyApp.TaskSupervisor)
But this is recommended only for scripting and should be avoided in
production code. Generally speaking, processes should always be started
inside supervision trees.
Options
	:name - used to register a supervisor name, the supported values are
described under the Name Registration section in the GenServer module
docs;

	:max_restarts, :max_seconds, and :max_children - as specified in
DynamicSupervisor;

This function could also receive :restart and :shutdown as options
but those two options have been deprecated and it is now preferred to
give them directly to start_child.

 terminate_child(supervisor, pid)

 @spec terminate_child(Supervisor.supervisor(), pid()) :: :ok | {:error, :not_found}

Terminates the child with the given pid.

Collectable protocol

A protocol to traverse data structures.
The Enum.into/2 function uses this protocol to insert an
enumerable into a collection:
iex> Enum.into([a: 1, b: 2], %{})
%{a: 1, b: 2}
Why Collectable?
The Enumerable protocol is useful to take values out of a collection.
In order to support a wide range of values, the functions provided by
the Enumerable protocol do not keep shape. For example, passing a
map to Enum.map/2 always returns a list.
This design is intentional. Enumerable was designed to support infinite
collections, resources and other structures with fixed shape. For example,
it doesn't make sense to insert values into a Range, as it has a
fixed shape where only the range limits and step are stored.
The Collectable module was designed to fill the gap left by the
Enumerable protocol. Collectable.into/1 can be seen as the opposite of
Enumerable.reduce/3. If the functions in Enumerable are about taking values out,
then Collectable.into/1 is about collecting those values into a structure.
Examples
To show how to manually use the Collectable protocol, let's play with a
simplified implementation for MapSet.
iex> {initial_acc, collector_fun} = Collectable.into(MapSet.new())
iex> updated_acc = Enum.reduce([1, 2, 3], initial_acc, fn elem, acc ->
...> collector_fun.(acc, {:cont, elem})
...> end)
iex> collector_fun.(updated_acc, :done)
MapSet.new([1, 2, 3])
To show how the protocol can be implemented, we can again look at the
simplified implementation for MapSet. In this implementation "collecting" elements
simply means inserting them in the set through MapSet.put/2.
defimpl Collectable, for: MapSet do
 def into(map_set) do
 collector_fun = fn
 map_set_acc, {:cont, elem} ->
 MapSet.put(map_set_acc, elem)

 map_set_acc, :done ->
 map_set_acc

 _map_set_acc, :halt ->
 :ok
 end

 initial_acc = map_set

 {initial_acc, collector_fun}
 end
end
So now we can call Enum.into/2:
iex> Enum.into([1, 2, 3], MapSet.new())
MapSet.new([1, 2, 3])

 Summary

 Types

 command()

 t()

 All the types that implement this protocol.

 Functions

 into(collectable)

 Returns an initial accumulator and a "collector" function.

 Types

 command()

 @type command() :: {:cont, term()} | :done | :halt

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 into(collectable)

 @spec into(t()) ::
 {initial_acc :: term(), collector :: (term(), command() -> t() | term())}

Returns an initial accumulator and a "collector" function.
Receives a collectable which can be used as the initial accumulator that will
be passed to the function.
The collector function receives a term and a command and injects the term into
the collectable accumulator on every {:cont, term} command.
:done is passed as a command when no further values will be injected. This
is useful when there's a need to close resources or normalizing values. A
collectable must be returned when the command is :done.
If injection is suddenly interrupted, :halt is passed and the function
can return any value as it won't be used.
For examples on how to use the Collectable protocol and into/1 see the
module documentation.

Enumerable protocol

Enumerable protocol used by Enum and Stream modules.
When you invoke a function in the Enum module, the first argument
is usually a collection that must implement this protocol.
For example, the expression Enum.map([1, 2, 3], &(&1 * 2))
invokes Enumerable.reduce/3 to perform the reducing operation that
builds a mapped list by calling the mapping function &(&1 * 2) on
every element in the collection and consuming the element with an
accumulated list.
Internally, Enum.map/2 is implemented as follows:
def map(enumerable, fun) do
 reducer = fn x, acc -> {:cont, [fun.(x) | acc]} end
 Enumerable.reduce(enumerable, {:cont, []}, reducer) |> elem(1) |> :lists.reverse()
end
Note that the user-supplied function is wrapped into a reducer/0 function.
The reducer/0 function must return a tagged tuple after each step,
as described in the acc/0 type. At the end, Enumerable.reduce/3
returns result/0.
This protocol uses tagged tuples to exchange information between the
reducer function and the data type that implements the protocol. This
allows enumeration of resources, such as files, to be done efficiently
while also guaranteeing the resource will be closed at the end of the
enumeration. This protocol also allows suspension of the enumeration,
which is useful when interleaving between many enumerables is required
(as in the zip/1 and zip/2 functions).
This protocol requires four functions to be implemented, reduce/3,
count/1, member?/2, and slice/1. The core of the protocol is the
reduce/3 function. All other functions exist as optimizations paths
for data structures that can implement certain properties in better
than linear time.
Default implementation for lists
Sometimes you may want to implement this protocol for a list contained
in struct. This can be done by delegating to the Enumerable.List module
in the reduce/3 implementation and providing a straight-forward
implementation for the remaining ones:
defimpl Enumerable, for: CustomStruct do
 def count(struct), do: {:ok, length(struct.items)}
 def member?(struct, value), do: {:ok, value in struct.items}
 def slice(struct), do: {:error, __MODULE__}
 def reduce(struct, acc, fun), do: Enumerable.List.reduce(struct.items, acc, fun)
end

 Summary

 Types

 acc()

 The accumulator value for each step.

 continuation()

 A partially applied reduce function.

 reducer()

 The reducer function.

 result()

 The result of the reduce operation.

 slicing_fun()

 A slicing function that receives the initial position,
the number of elements in the slice, and the step.

 t()

 All the types that implement this protocol.

 t(_element)

 An enumerable of elements of type element.

 to_list_fun()

 Receives an enumerable and returns a list.

 Functions

 count(enumerable)

 Retrieves the number of elements in the enumerable.

 member?(enumerable, element)

 Checks if an element exists within the enumerable.

 reduce(enumerable, acc, fun)

 Reduces the enumerable into an element.

 slice(enumerable)

 Returns a function that slices the data structure contiguously.

 Types

 acc()

 @type acc() :: {:cont, term()} | {:halt, term()} | {:suspend, term()}

The accumulator value for each step.
It must be a tagged tuple with one of the following "tags":
	:cont - the enumeration should continue
	:halt - the enumeration should halt immediately
	:suspend - the enumeration should be suspended immediately

Depending on the accumulator value, the result returned by
Enumerable.reduce/3 will change. Please check the result/0
type documentation for more information.
In case a reducer/0 function returns a :suspend accumulator,
it must be explicitly handled by the caller and never leak.

 continuation()

 @type continuation() :: (acc() -> result())

A partially applied reduce function.
The continuation is the closure returned as a result when
the enumeration is suspended. When invoked, it expects
a new accumulator and it returns the result.
A continuation can be trivially implemented as long as the reduce
function is defined in a tail recursive fashion. If the function
is tail recursive, all the state is passed as arguments, so
the continuation is the reducing function partially applied.

 reducer()

 @type reducer() :: (element :: term(), element_acc :: term() -> acc())

The reducer function.
Should be called with the enumerable element and the
accumulator contents.
Returns the accumulator for the next enumeration step.

 result()

 @type result() ::
 {:done, term()} | {:halted, term()} | {:suspended, term(), continuation()}

The result of the reduce operation.
It may be done when the enumeration is finished by reaching
its end, or halted/suspended when the enumeration was halted
or suspended by the tagged accumulator.
In case the tagged :halt accumulator is given, the :halted tuple
with the accumulator must be returned. Functions like Enum.take_while/2
use :halt underneath and can be used to test halting enumerables.
In case the tagged :suspend accumulator is given, the caller must
return the :suspended tuple with the accumulator and a continuation.
The caller is then responsible of managing the continuation and the
caller must always call the continuation, eventually halting or continuing
until the end. Enum.zip/2 uses suspension, so it can be used to test
whether your implementation handles suspension correctly. You can also use
Stream.zip/2 with Enum.take_while/2 to test the combination of
:suspend with :halt.

 slicing_fun()

 @type slicing_fun() :: (start :: non_neg_integer(),
 length :: pos_integer(),
 step :: pos_integer() ->
 [term()])

A slicing function that receives the initial position,
the number of elements in the slice, and the step.
The start position is a number >= 0 and guaranteed to
exist in the enumerable. The length is a number >= 1
in a way that start + length * step <= count, where
count is the maximum amount of elements in the enumerable.
The function should return a non empty list where
the amount of elements is equal to length.

 t()

 @type t() :: term()

All the types that implement this protocol.

 t(_element)

 (since 1.14.0)

 @type t(_element) :: t()

An enumerable of elements of type element.
This type is equivalent to t/0 but is especially useful for documentation.
For example, imagine you define a function that expects an enumerable of
integers and returns an enumerable of strings:
@spec integers_to_strings(Enumerable.t(integer())) :: Enumerable.t(String.t())
def integers_to_strings(integers) do
 Stream.map(integers, &Integer.to_string/1)
end

 to_list_fun()

 @type to_list_fun() :: (t() -> [term()])

Receives an enumerable and returns a list.

 Functions

 count(enumerable)

 @spec count(t()) :: {:ok, non_neg_integer()} | {:error, module()}

Retrieves the number of elements in the enumerable.
It should return {:ok, count} if you can count the number of elements
in enumerable in a faster way than fully traversing it.
Otherwise it should return {:error, __MODULE__} and a default algorithm
built on top of reduce/3 that runs in linear time will be used.

 member?(enumerable, element)

 @spec member?(t(), term()) :: {:ok, boolean()} | {:error, module()}

Checks if an element exists within the enumerable.
It should return {:ok, boolean} if you can check the membership of a
given element in enumerable with ===/2 without traversing the whole
of it.
Otherwise it should return {:error, __MODULE__} and a default algorithm
built on top of reduce/3 that runs in linear time will be used.
When called outside guards, the in and not in
operators work by using this function.

 reduce(enumerable, acc, fun)

 @spec reduce(t(), acc(), reducer()) :: result()

Reduces the enumerable into an element.
Most of the operations in Enum are implemented in terms of reduce.
This function should apply the given reducer/0 function to each
element in the enumerable and proceed as expected by the returned
accumulator.
See the documentation of the types result/0 and acc/0 for
more information.
Examples
As an example, here is the implementation of reduce for lists:
def reduce(_list, {:halt, acc}, _fun), do: {:halted, acc}
def reduce(list, {:suspend, acc}, fun), do: {:suspended, acc, &reduce(list, &1, fun)}
def reduce([], {:cont, acc}, _fun), do: {:done, acc}
def reduce([head | tail], {:cont, acc}, fun), do: reduce(tail, fun.(head, acc), fun)

 slice(enumerable)

 @spec slice(t()) ::
 {:ok, size :: non_neg_integer(), slicing_fun() | to_list_fun()}
 | {:error, module()}

Returns a function that slices the data structure contiguously.
It should return either:
	{:ok, size, slicing_fun} - if the enumerable has a known
bound and can access a position in the enumerable without
traversing all previous elements. The slicing_fun will receive
a start position, the amount of elements to fetch, and a
step.

	{:ok, size, to_list_fun} - if the enumerable has a known bound
and can access a position in the enumerable by first converting
it to a list via to_list_fun.

	{:error, __MODULE__} - the enumerable cannot be sliced efficiently
and a default algorithm built on top of reduce/3 that runs in
linear time will be used.

Differences to count/1
The size value returned by this function is used for boundary checks,
therefore it is extremely important that this function only returns :ok
if retrieving the size of the enumerable is cheap, fast, and takes
constant time. Otherwise the simplest of operations, such as
Enum.at(enumerable, 0), will become too expensive.
On the other hand, the count/1 function in this protocol should be
implemented whenever you can count the number of elements in the collection
without traversing it.

Inspect protocol

The Inspect protocol converts an Elixir data structure into an
algebra document.
This is typically done when you want to customize how your own
structs are inspected in logs and the terminal.
This documentation refers to implementing the Inspect protocol
for your own data structures. To learn more about using inspect,
see Kernel.inspect/2 and IO.inspect/2.
Inspect representation
There are typically three choices of inspect representation. In order
to understand them, let's imagine we have the following User struct:
defmodule User do
 defstruct [:id, :name, :address]
end
Our choices are:
	Print the struct using Elixir's struct syntax, for example:
%User{address: "Earth", id: 13, name: "Jane"}. This is the
default representation and best choice if all struct fields
are public.

	Print using the #User<...> notation, for example: #User<id: 13, name: "Jane", ...>.
This notation does not emit valid Elixir code and is typically
used when the struct has private fields (for example, you may want
to hide the field :address to redact person identifiable information).

	Print the struct using the expression syntax, for example:
User.new(13, "Jane", "Earth"). This assumes there is a User.new/3
function. This option is mostly used as an alternative to option 2
for representing custom data structures, such as MapSet, Date.Range,
and others.

You can implement the Inspect protocol for your own structs while
adhering to the conventions above. Option 1 is the default representation
and you can quickly achieve option 2 by deriving the Inspect protocol.
For option 3, you need your custom implementation.
Deriving
The Inspect protocol can be derived to customize the order of fields
(the default is alphabetical) and hide certain fields from structs,
so they don't show up in logs, inspects and similar. The latter is
especially useful for fields containing private information.
The supported options are:
	:only - only include the given fields when inspecting.

	:except - remove the given fields when inspecting.

	:optional - (since v1.14.0) a list of fields that should not be
included when they match their default value. This can be used to
simplify the struct representation at the cost of hiding
information. Since v1.19.0, the :all atom can be passed to
mark all fields as optional.

Whenever :only or :except are used to restrict fields,
the struct will be printed using the #User<...> notation,
as the struct can no longer be copy and pasted as valid Elixir
code. Let's see an example:
defmodule User do
 @derive {Inspect, only: [:id, :name]}
 defstruct [:id, :name, :address]
end

inspect(%User{id: 1, name: "Jane", address: "Earth"})
#=> #User<id: 1, name: "Jane", ...>
If you use only the :optional option, the struct will still be
printed as a valid struct.
defmodule Point do
 @derive {Inspect, optional: [:z]}
 defstruct [x: 0, y: 0, z: 0]
end

inspect(%Point{x: 1})
%Point{x: 1, y: 0}
Custom implementation
You can also define your custom protocol implementation by
defining the inspect/2 function. The function receives the
entity to be inspected followed by the inspecting options,
represented by the struct Inspect.Opts and it must return
an algebra document alongside the updated options (or, optionally,
just the algebra document). Building of the algebra document
is done with Inspect.Algebra.
Many times, inspecting a structure can be implemented in function
of existing entities. For example, here is MapSet's inspect/2
implementation:
defimpl Inspect, for: MapSet do
 import Inspect.Algebra

 def inspect(map_set, opts) do
 {doc, opts} = to_doc_with_opts(MapSet.to_list(map_set), opts)
 {concat(["MapSet.new(", doc, ")"]), opts}
 end
end
First to_doc_with_opts/2 is
used to convert another data structure into its algebra document and
then concat/1 concatenates algebra
documents together.
In the example above it is concatenating the string "MapSet.new(",
the document returned by to_doc_with_opts/2, and the final string ")".
Therefore, the MapSet with the numbers 1, 2, and 3 will be printed as:
iex> MapSet.new([1, 2, 3], fn x -> x * 2 end)
MapSet.new([2, 4, 6])
In other words, MapSet's inspect representation returns an expression
that, when evaluated, builds the MapSet itself.
Error handling
In case there is an error while your structure is being inspected,
Elixir will raise an ArgumentError error and will automatically fall back
to a raw representation for printing the structure. Furthermore, you
must be careful when debugging your own Inspect implementation, as calls
to IO.inspect/2 or dbg/1 may trigger an infinite loop (as in order to
inspect/debug the data structure, you must call inspect itself).
Here are some tips:
	For debugging, use IO.inspect/2 with the structs: false option,
which disables custom printing and avoids calling the Inspect
implementation recursively

	To access the underlying error on your custom Inspect implementation,
you may invoke the protocol directly. For example, we could invoke the
Inspect.MapSet implementation above as:
Inspect.MapSet.inspect(MapSet.new(), %Inspect.Opts{})
Note that, from Elixir v1.19, the inspect protocol was augmented to
allow a two-element tuple with the document and the updated options
to be returned from the protocol.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 inspect(term, opts)

 Converts term into an algebra document.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 inspect(term, opts)

 @spec inspect(t(), Inspect.Opts.t()) ::
 Inspect.Algebra.t() | {Inspect.Algebra.t(), Inspect.Opts.t()}

Converts term into an algebra document.
This function shouldn't be invoked directly, unless when implementing
a custom inspect_fun to be given to Inspect.Opts. Everywhere else,
Inspect.Algebra.to_doc/2 should be preferred as it handles structs
and exceptions.

Inspect.Algebra

A set of functions for creating and manipulating algebra
documents.
This module implements the functionality described in
"Strictly Pretty" (2000) by Christian Lindig with small
additions, like support for binary nodes and a break mode that
maximises use of horizontal space.
iex> Inspect.Algebra.line()
:doc_line

iex> "foo"
"foo"
With the functions in this module, we can concatenate different
elements together and render them:
iex> doc = Inspect.Algebra.concat(Inspect.Algebra.empty(), "foo")
iex> Inspect.Algebra.format(doc, 80)
"foo"
The functions nest/2, space/2 and line/2 help you put the
document together into a rigid structure. However, the document
algebra gets interesting when using functions like glue/3 and
group/1. A glue inserts a break between two documents. A group
indicates a document that must fit the current line, otherwise
breaks are rendered as new lines. Let's glue two docs together
with a break, group it and then render it:
iex> doc = Inspect.Algebra.glue("a", " ", "b")
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 80)
"a b"
Note that the break was represented as is, because we haven't reached
a line limit. Once we do, it is replaced by a newline:
iex> doc = Inspect.Algebra.glue(String.duplicate("a", 20), " ", "b")
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 10)
"aaaaaaaaaaaaaaaaaaaa\nb"
This module uses the byte size to compute how much space there is
left. If your document contains strings, then those need to be
wrapped in string/1, which then relies on String.length/1 to
precompute the document size.
Finally, this module also contains Elixir related functions, a bit
tied to Elixir formatting, such as to_doc/2.
Implementation details
The implementation of Inspect.Algebra is based on the Strictly Pretty
paper by Lindig which builds on top of previous pretty printing
algorithms but is tailored to strict languages, such as Elixir.
The core idea in the paper is the use of explicit document groups which
are rendered as flat (breaks as spaces) or as break (breaks as newlines).
This implementation provides two types of breaks: :strict and :flex.
When a group does not fit, all strict breaks are treated as newlines.
Flex breaks, however, are re-evaluated on every occurrence and may still
be rendered flat. See break/1 and flex_break/1 for more information.
This implementation also adds force_unfit/1 and optimistic/pessimistic
groups which give more control over the document fitting.

 Summary

 Guards

 is_doc(doc)

 Types

 container_opts()

 Options for container documents.

 t()

 Functions

 break(string \\ " ")

 Returns a break document based on the given string.

 collapse_lines(max)

 Collapse any new lines and whitespace following this
node, emitting up to max new lines.

 color(doc, color)

 Colors a document with the given color (preceding the document itself).

 color(doc, key, opts)

 deprecated

 color_doc(doc, color_key, opts)

 Colors a document if the color_key has a color in the options.

 concat(docs)

 Concatenates a list of documents returning a new document.

 concat(doc1, doc2)

 Concatenates two document entities returning a new document.

 container_doc(left, collection, right, inspect_opts, fun, opts \\ [])

 Wraps collection in left and right according to limit and contents
and returns only the container document.

 container_doc_with_opts(left, collection, right, inspect_opts, fun, opts \\ [])

 Wraps collection in left and right according to limit and contents.

 empty()

 Returns a document entity used to represent nothingness.

 flex_break(string \\ " ")

 Returns a flex break document based on the given string.

 flex_glue(doc1, break_string \\ " ", doc2)

 Glues two documents (doc1 and doc2) inserting a
flex_break/1 given by break_string between them.

 fold(docs, folder_fun)

 Folds a list of documents into a document using the given folder function.

 fold_doc(docs, folder_fun)

 deprecated

 force_unfit(doc)

 Forces the current group to be unfit.

 format(doc, width)

 Formats a given document for a given width.

 glue(doc1, break_string \\ " ", doc2)

 Glues two documents (doc1 and doc2) inserting the given
break break_string between them.

 group(doc, mode \\ :normal)

 Returns a group containing the specified document doc.

 line()

 A mandatory linebreak.

 line(doc1, doc2)

 Inserts a mandatory linebreak between two documents.

 nest(doc, level, mode \\ :always)

 Nests the given document at the given level.

 next_break_fits(doc, mode \\ :enabled)

 deprecated

 Considers the next break as fit.

 no_limit(doc)

 Disable any rendering limit while rendering the given document.

 space(doc1, doc2)

 Inserts a mandatory single space between two documents.

 string(string)

 Creates a document represented by string.

 to_doc(term, opts)

 Converts an Elixir term to an algebra document
according to the Inspect protocol.

 to_doc_with_opts(term, opts)

 Converts an Elixir term to an algebra document
according to the Inspect protocol, alongside the updated options.

 Guards

 is_doc(doc)

 (macro)

 Types

 container_opts()

 @type container_opts() :: [separator: String.t(), break: :strict | :flex | :maybe]

Options for container documents.

 t()

 @type t() ::
 binary()
 | doc_nil()
 | doc_cons()
 | doc_line()
 | doc_break()
 | doc_collapse()
 | doc_color()
 | doc_fits()
 | doc_force()
 | doc_group()
 | doc_nest()
 | doc_string()
 | doc_limit()

 Functions

 break(string \\ " ")

 @spec break(binary()) :: doc_break()

Returns a break document based on the given string.
This break can be rendered as a linebreak or as the given string,
depending on the mode of the chosen layout.
Examples
Let's create a document by concatenating two strings with a break between
them:
iex> doc = Inspect.Algebra.concat(["a", Inspect.Algebra.break("\t"), "b"])
iex> Inspect.Algebra.format(doc, 80)
"a\tb"
Note that the break was represented with the given string, because we didn't
reach a line limit. Once we do, it is replaced by a newline:
iex> break = Inspect.Algebra.break("\t")
iex> doc = Inspect.Algebra.concat([String.duplicate("a", 20), break, "b"])
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 10)
"aaaaaaaaaaaaaaaaaaaa\nb"

 collapse_lines(max)

 (since 1.6.0)

 @spec collapse_lines(pos_integer()) :: doc_collapse()

Collapse any new lines and whitespace following this
node, emitting up to max new lines.

 color(doc, color)

 (since 1.18.0)

 @spec color(t(), binary()) :: t()

Colors a document with the given color (preceding the document itself).

 color(doc, key, opts)

 This function is deprecated. Use color_doc/3 instead.

 color_doc(doc, color_key, opts)

 (since 1.18.0)

 @spec color_doc(t(), Inspect.Opts.color_key(), Inspect.Opts.t()) :: t()

Colors a document if the color_key has a color in the options.

 concat(docs)

 @spec concat([t()]) :: t()

Concatenates a list of documents returning a new document.
Examples
iex> doc = Inspect.Algebra.concat(["a", "b", "c"])
iex> Inspect.Algebra.format(doc, 80)
"abc"

 concat(doc1, doc2)

 @spec concat(t(), t()) :: t()

Concatenates two document entities returning a new document.
Examples
iex> doc = Inspect.Algebra.concat("hello", "world")
iex> Inspect.Algebra.format(doc, 80)
"helloworld"

 container_doc(left, collection, right, inspect_opts, fun, opts \\ [])

 (since 1.6.0)

 @spec container_doc(
 t(),
 [term()],
 t(),
 Inspect.Opts.t(),
 (term(), Inspect.Opts.t() -> t()),
 container_opts()
) :: t()

Wraps collection in left and right according to limit and contents
and returns only the container document.
In practice, one must prefer to use container_doc_with_opts/6
over this function, as container_doc_with_opts/6 returns the
updated options from inspection.

 container_doc_with_opts(left, collection, right, inspect_opts, fun, opts \\ [])

 (since 1.19.0)

 @spec container_doc_with_opts(
 t(),
 [term()],
 t(),
 Inspect.Opts.t(),
 (term(), Inspect.Opts.t() -> t()),
 container_opts()
) :: {t(), Inspect.Opts.t()}

Wraps collection in left and right according to limit and contents.
It uses the given left and right documents as surrounding and the
separator document separator to separate items in docs. If all entries
in the collection are simple documents (texts or strings), then this function
attempts to put as much as possible on the same line. If they are not simple,
only one entry is shown per line if they do not fit.
The limit in the given inspect_opts is respected and when reached this
function stops processing and outputs "..." instead.
It returns a tuple with the algebra document and the updated options.
Options
	:separator - the separator used between each doc
	:break - If :strict, always break between each element. If :flex,
breaks only when necessary. If :maybe, chooses :flex only if all
elements are text-based, otherwise is :strict

Examples
iex> inspect_opts = %Inspect.Opts{limit: :infinity}
iex> fun = fn i, _opts -> to_string(i) end
iex> {doc, _opts} = Inspect.Algebra.container_doc_with_opts("[", Enum.to_list(1..5), "]", inspect_opts, fun)
iex> Inspect.Algebra.format(doc, 5) |> IO.iodata_to_binary()
"[1,\n 2,\n 3,\n 4,\n 5]"

iex> inspect_opts = %Inspect.Opts{limit: 3}
iex> fun = fn i, _opts -> to_string(i) end
iex> {doc, _opts} = Inspect.Algebra.container_doc_with_opts("[", Enum.to_list(1..5), "]", inspect_opts, fun)
iex> Inspect.Algebra.format(doc, 20) |> IO.iodata_to_binary()
"[1, 2, 3, ...]"

iex> inspect_opts = %Inspect.Opts{limit: 3}
iex> fun = fn i, _opts -> to_string(i) end
iex> opts = [separator: "!"]
iex> {doc, _opts} = Inspect.Algebra.container_doc_with_opts("[", Enum.to_list(1..5), "]", inspect_opts, fun, opts)
iex> Inspect.Algebra.format(doc, 20) |> IO.iodata_to_binary()
"[1! 2! 3! ...]"

 empty()

 @spec empty() :: doc_nil()

Returns a document entity used to represent nothingness.
Examples
iex> Inspect.Algebra.empty()
[]

 flex_break(string \\ " ")

 (since 1.6.0)

 @spec flex_break(binary()) :: doc_break()

Returns a flex break document based on the given string.
A flex break still causes a group to break, like break/1,
but it is re-evaluated when the documented is rendered.
For example, take a group document represented as [1, 2, 3]
where the space after every comma is a break. When the document
above does not fit a single line, all breaks are enabled,
causing the document to be rendered as:
[1,
 2,
 3]
However, if flex breaks are used, then each break is re-evaluated
when rendered, so the document could be possible rendered as:
[1, 2,
 3]
Hence the name "flex". they are more flexible when it comes
to the document fitting. On the other hand, they are more expensive
since each break needs to be re-evaluated.
This function is used by container_doc/6 and friends to the
maximum number of entries on the same line.

 flex_glue(doc1, break_string \\ " ", doc2)

 (since 1.6.0)

 @spec flex_glue(t(), binary(), t()) :: t()

Glues two documents (doc1 and doc2) inserting a
flex_break/1 given by break_string between them.
This function is used by container_doc/6 and friends
to the maximum number of entries on the same line.

 fold(docs, folder_fun)

 (since 1.18.0)

 @spec fold([t()], (t(), t() -> t())) :: t()

Folds a list of documents into a document using the given folder function.
The list of documents is folded "from the right"; in that, this function is
similar to List.foldr/3, except that it doesn't expect an initial
accumulator and uses the last element of docs as the initial accumulator.
Examples
iex> docs = ["A", "B", "C"]
iex> docs =
...> Inspect.Algebra.fold(docs, fn doc, acc ->
...> Inspect.Algebra.concat([doc, "!", acc])
...> end)
iex> Inspect.Algebra.format(docs, 80)
"A!B!C"

 fold_doc(docs, folder_fun)

 This function is deprecated. Use fold/2 instead.

 force_unfit(doc)

 (since 1.6.0)

 @spec force_unfit(t()) :: doc_force()

Forces the current group to be unfit.

 format(doc, width)

 @spec format(t(), non_neg_integer() | :infinity) :: iodata()

Formats a given document for a given width.
Takes the maximum width and a document to print as its arguments
and returns an IO data representation of the best layout for the
document to fit in the given width.
The document starts flat (without breaks) until a group is found.
Examples
iex> doc = Inspect.Algebra.glue("hello", " ", "world")
iex> doc = Inspect.Algebra.group(doc)
iex> doc |> Inspect.Algebra.format(30) |> IO.iodata_to_binary()
"hello world"
iex> doc |> Inspect.Algebra.format(10) |> IO.iodata_to_binary()
"hello\nworld"

 glue(doc1, break_string \\ " ", doc2)

 @spec glue(t(), binary(), t()) :: t()

Glues two documents (doc1 and doc2) inserting the given
break break_string between them.
For more information on how the break is inserted, see break/1.
Examples
iex> doc = Inspect.Algebra.glue("hello", "world")
iex> Inspect.Algebra.format(doc, 80)
"hello world"

iex> doc = Inspect.Algebra.glue("hello", "\t", "world")
iex> Inspect.Algebra.format(doc, 80)
"hello\tworld"

 group(doc, mode \\ :normal)

 @spec group(t(), :normal | :optimistic | :pessimistic) :: doc_group()

Returns a group containing the specified document doc.
Documents in a group are attempted to be rendered together
to the best of the renderer ability. If there are break/1s
in the group and the group does not fit the given width,
the breaks are converted into lines. Otherwise the breaks
are rendered as text based on their string contents.
There are three types of groups, described next.
Group modes
	:normal - the group fits if it fits within the given width

	:optimistic - the group fits if it fits within the given
width. However, when nested within another group, the parent
group will assume this group fits as long as it has a single
break, even if the optimistic group has a force_unfit/1
document within it. Overall, this has an effect similar
to swapping the order groups break. For example, if you have
a parent_group(child_group) and they do not fit, the parent
converts breaks into newlines first, allowing the child to compute
if it fits. However, if the child group is optimistic and it
has breaks, then the parent assumes it fits, leaving the overall
fitting decision to the child

	:pessimistic - the group fits if it fits within the given
width. However it disables any optimistic group within it

Examples
iex> doc =
...> Inspect.Algebra.group(
...> Inspect.Algebra.concat(
...> Inspect.Algebra.group(
...> Inspect.Algebra.concat(
...> "Hello,",
...> Inspect.Algebra.concat(
...> Inspect.Algebra.break(),
...> "A"
...>)
...>)
...>),
...> Inspect.Algebra.concat(
...> Inspect.Algebra.break(),
...> "B"
...>)
...>)
...>)
iex> Inspect.Algebra.format(doc, 80)
"Hello, A B"
iex> Inspect.Algebra.format(doc, 6)
"Hello,\nA\nB"
Mode examples
The different groups modes are used by Elixir's code formatter
to avoid breaking code at some specific locations. For example,
consider this code:
some_function_call(%{..., key: value, ...})
Now imagine that this code does not fit its line. The code
formatter introduces breaks inside (and) and inside
%{ and }, each within their own group. Therefore the
document would break as:
some_function_call(
 %{
 ...,
 key: value,
 ...
 }
)
To address this, the formatter marks the inner group as optimistic.
This means the first group, which is (...) will consider the document
fits and avoids adding breaks around the parens. So overall the code
is formatted as:
some_function_call(%{
 ...,
 key: value,
 ...
})

 line()

 (since 1.6.0)

 @spec line() :: t()

A mandatory linebreak.
A group with linebreaks will fit if all lines in the group fit.
Examples
iex> doc =
...> Inspect.Algebra.concat(
...> Inspect.Algebra.concat(
...> "Hughes",
...> Inspect.Algebra.line()
...>),
...> "Wadler"
...>)
iex> Inspect.Algebra.format(doc, 80)
"Hughes\nWadler"

 line(doc1, doc2)

 @spec line(t(), t()) :: t()

Inserts a mandatory linebreak between two documents.
See line/0.
Examples
iex> doc = Inspect.Algebra.line("Hughes", "Wadler")
iex> Inspect.Algebra.format(doc, 80)
"Hughes\nWadler"

 nest(doc, level, mode \\ :always)

 @spec nest(t(), non_neg_integer() | :cursor | :reset, :always | :break) ::
 doc_nest() | t()

Nests the given document at the given level.
If level is an integer, that's the indentation appended
to line breaks whenever they occur. If the level is :cursor,
the current position of the "cursor" in the document becomes
the nesting. If the level is :reset, it is set back to 0.
mode can be :always, which means nesting always happen,
or :break, which means nesting only happens inside a group
that has been broken.
Examples
iex> doc = Inspect.Algebra.nest(Inspect.Algebra.glue("hello", "world"), 5)
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 5)
"hello\n world"

 next_break_fits(doc, mode \\ :enabled)

 This function is deprecated. Pass the optimistic/pessimistic type to group/2 instead.

 @spec next_break_fits(t(), :enabled | :disabled) :: doc_fits()

Considers the next break as fit.

 no_limit(doc)

 (since 1.14.0)

 @spec no_limit(t()) :: t()

Disable any rendering limit while rendering the given document.
Examples
iex> doc = Inspect.Algebra.glue("hello", "world") |> Inspect.Algebra.group()
iex> Inspect.Algebra.format(doc, 10)
"hello\nworld"
iex> doc = Inspect.Algebra.no_limit(doc)
iex> Inspect.Algebra.format(doc, 10)
"hello world"

 space(doc1, doc2)

 @spec space(t(), t()) :: t()

Inserts a mandatory single space between two documents.
Examples
iex> doc = Inspect.Algebra.space("Hughes", "Wadler")
iex> Inspect.Algebra.format(doc, 5)
"Hughes Wadler"

 string(string)

 (since 1.6.0)

 @spec string(String.t()) :: doc_string()

Creates a document represented by string.
While Inspect.Algebra accepts binaries as documents,
those are counted by binary size. On the other hand,
string documents are measured in terms of graphemes
towards the document size.
Examples
The following document has 10 bytes and therefore it
does not format to width 9 without breaks:
iex> doc = Inspect.Algebra.glue("olá", " ", "mundo")
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 9)
"olá\nmundo"
However, if we use string, then the string length is
used, instead of byte size, correctly fitting:
iex> string = Inspect.Algebra.string("olá")
iex> doc = Inspect.Algebra.glue(string, " ", "mundo")
iex> doc = Inspect.Algebra.group(doc)
iex> Inspect.Algebra.format(doc, 9)
"olá mundo"

 to_doc(term, opts)

 @spec to_doc(any(), Inspect.Opts.t()) :: t()

Converts an Elixir term to an algebra document
according to the Inspect protocol.
In practice, one must prefer to use to_doc_with_opts/2
over this function, as to_doc_with_opts/2 returns the
updated options from inspection.

 to_doc_with_opts(term, opts)

 (since 1.19.0)

 @spec to_doc_with_opts(any(), Inspect.Opts.t()) :: {t(), Inspect.Opts.t()}

Converts an Elixir term to an algebra document
according to the Inspect protocol, alongside the updated options.
This function is used when implementing the inspect protocol for
a given type and you must convert nested terms to documents too.

Inspect.Opts

Defines the options used by the Inspect protocol.
The following fields are available:
	:base - prints integers and binaries as :binary, :octal, :decimal,
or :hex. Defaults to :decimal.

	:binaries - when :as_binaries all binaries will be printed in bit
syntax.
When :as_strings all binaries will be printed as strings, non-printable
bytes will be escaped.
When the default :infer, the binary will be printed as a string if :base
is :decimal and if it is printable, otherwise in bit syntax. See
String.printable?/1 to learn when a string is printable.

	:charlists - when :as_charlists all lists will be printed as charlists,
non-printable elements will be escaped.
When :as_lists all lists will be printed as lists.
When the default :infer, the list will be printed as a charlist if it
is printable, otherwise as list. See List.ascii_printable?/1 to learn
when a charlist is printable.

	:custom_options (since v1.9.0) - a keyword list storing custom user-defined
options. Useful when implementing the Inspect protocol for nested structs
to pass the custom options through.
It supports some pre-defined keys:
	:sort_maps (since v1.14.4) - if set to true, sorts key-value pairs
in maps. This can be helpful to make map inspection deterministic for
testing, given maps key order is random.

	:inspect_fun (since v1.9.0) - a function to build algebra documents.
Defaults to Inspect.Opts.default_inspect_fun/0.

	:limit - limits the number of items that are inspected for tuples,
bitstrings, maps, lists and any other collection of items, with the exception of
printable strings and printable charlists which use the :printable_limit option.
It accepts a positive integer or :infinity. It defaults to 100 since
Elixir v1.19.0, as it has better defaults to deal with nested collections.

	:pretty - if set to true enables pretty printing. Defaults to false.

	:printable_limit - limits the number of characters that are inspected
on printable strings and printable charlists. You can use String.printable?/1
and List.ascii_printable?/1 to check if a given string or charlist is
printable. If you don't want to limit the number of characters to a particular
number, use :infinity. It accepts a positive integer or :infinity.
Defaults to 4096.

	:safe - when false, failures while inspecting structs will be raised
as errors instead of being wrapped in the Inspect.Error exception. This
is useful when debugging failures and crashes for custom inspect
implementations. Defaults to true.

	:structs - when false, structs are not formatted by the inspect
protocol, they are instead printed as maps. Defaults to true.

	:syntax_colors - when set to a keyword list of colors the output is
colorized. The keys are types and the values are the colors to use for
each type (for example, [number: :red, atom: :blue]). Types can include
:atom, :binary, :boolean, :list, :map, :number, :regex,
:string, :tuple, or some types to represent AST like :variable,
:call, and :operator.
Custom data types may provide their own options.
Colors can be any IO.ANSI.ansidata/0 as accepted by IO.ANSI.format/1.
A default list of colors can be retrieved from IO.ANSI.syntax_colors/0.

	:width - number of characters per line used when pretty is true or when
printing to IO devices. Set to 0 to force each item to be printed on its
own line. If you don't want to limit the number of items to a particular
number, use :infinity. Defaults to 80.

 Summary

 Types

 color_key()

 new_opt()

 Options for building an Inspect.Opts struct with new/1.

 t()

 Functions

 default_inspect_fun()

 Returns the default inspect function.

 default_inspect_fun(fun)

 Sets the default inspect function.

 new(opts)

 Builds an Inspect.Opts struct.

 Types

 color_key()

 @type color_key() :: atom()

 new_opt()

 @type new_opt() ::
 {:base, :decimal | :binary | :hex | :octal}
 | {:binaries, :infer | :as_binaries | :as_strings}
 | {:charlists, :infer | :as_lists | :as_charlists}
 | {:custom_options, keyword()}
 | {:inspect_fun, (any(), t() -> Inspect.Algebra.t())}
 | {:limit, non_neg_integer() | :infinity}
 | {:pretty, boolean()}
 | {:printable_limit, non_neg_integer() | :infinity}
 | {:safe, boolean()}
 | {:structs, boolean()}
 | {:syntax_colors, [{color_key(), IO.ANSI.ansidata()}]}
 | {:width, non_neg_integer() | :infinity}

Options for building an Inspect.Opts struct with new/1.

 t()

 @type t() :: %Inspect.Opts{
 base: :decimal | :binary | :hex | :octal,
 binaries: :infer | :as_binaries | :as_strings,
 char_lists: term(),
 charlists: :infer | :as_lists | :as_charlists,
 custom_options: keyword(),
 inspect_fun: (any(), t() -> Inspect.Algebra.t()),
 limit: non_neg_integer() | :infinity,
 pretty: boolean(),
 printable_limit: non_neg_integer() | :infinity,
 safe: boolean(),
 structs: boolean(),
 syntax_colors: [{color_key(), IO.ANSI.ansidata()}],
 width: non_neg_integer() | :infinity
}

 Functions

 default_inspect_fun()

 (since 1.13.0)

 @spec default_inspect_fun() :: (term(), t() -> Inspect.Algebra.t())

Returns the default inspect function.

 default_inspect_fun(fun)

 (since 1.13.0)

 @spec default_inspect_fun((term(), t() -> Inspect.Algebra.t())) :: :ok

Sets the default inspect function.
Set this option with care as it will change how all values
in the system are inspected. The main use of this functionality
is to provide an entry point to filter inspected values,
in order for entities to comply with rules and legislations
on data security and data privacy.
It is extremely discouraged for libraries to set their own
function as this must be controlled by applications. Libraries
should instead define their own structs with custom inspect
implementations. If a library must change the default inspect
function, then it is best to ask users of your library to explicitly
call default_inspect_fun/1 with your function of choice.
The default is Inspect.inspect/2.
Examples
previous_fun = Inspect.Opts.default_inspect_fun()

Inspect.Opts.default_inspect_fun(fn
 %{address: _} = map, opts ->
 previous_fun.(%{map | address: "[REDACTED]"}, opts)

 value, opts ->
 previous_fun.(value, opts)
end)

 new(opts)

 (since 1.13.0)

 @spec new([new_opt()]) :: t()

Builds an Inspect.Opts struct.

JSON.Encoder protocol

A protocol for custom JSON encoding of data structures.
If you have a struct, you can derive the implementation of this protocol
by specifying which fields should be encoded to JSON:
@derive {JSON.Encoder, only: [...]}
defstruct ...
Additionally, you can exclude specific fields using the :except option or
encode all fields by omitting both options entirely, but these should be used
with caution:
@derive {JSON.Encoder, except: [...]}
defstruct ...

@derive JSON.Encoder
defstruct ...
Leaking Private Information
Prefer using :only to avoid accidentally leaking private information when
new fields are added. Other approaches should be used with auction.
You can also use Protocol.derive/3 if you don't own the struct that you want
to encode to JSON:
Protocol.derive(JSON.Encoder, NameOfTheStruct, only: [...])
Protocol.derive(JSON.Encoder, NameOfTheStruct, except: [...])
Protocol.derive(JSON.Encoder, NameOfTheStruct)

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 encode(term, encoder)

 A function invoked to encode the given term to iodata/0.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 encode(term, encoder)

A function invoked to encode the given term to iodata/0.

List.Chars protocol

The List.Chars protocol is responsible for
converting a structure to a charlist (only if applicable).
The only function that must be implemented is
to_charlist/1 which does the conversion.
The to_charlist/1 function automatically imported
by Kernel invokes this protocol.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_charlist(term)

 Converts term to a charlist.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_charlist(term)

 @spec to_charlist(t()) :: charlist()

Converts term to a charlist.

Protocol behaviour

Reference and functions for working with protocols.
A protocol specifies an API that should be defined by its
implementations. A protocol is defined with Kernel.defprotocol/2
and its implementations with Kernel.defimpl/3.
Example
In Elixir, we have two nouns for checking how many items there
are in a data structure: length and size. length means the
information must be computed. For example, length(list) needs to
traverse the whole list to calculate its length. On the other hand,
tuple_size(tuple) and byte_size(binary) do not depend on the
tuple and binary size as the size information is precomputed in
the data structure.
Although Elixir includes specific functions such as tuple_size,
byte_size and map_size, sometimes we want to be able to
retrieve the size of a data structure regardless of its type.
In Elixir we can write polymorphic code, i.e. code that works
with different shapes/types, by using protocols. A size protocol
could be implemented as follows:
defprotocol Size do
 @doc "Calculates the size (and not the length!) of a data structure"
 def size(data)
end
Now that the protocol can be implemented for every data structure
the protocol may have a compliant implementation for:
defimpl Size, for: BitString do
 def size(binary), do: byte_size(binary)
end

defimpl Size, for: Map do
 def size(map), do: map_size(map)
end

defimpl Size, for: Tuple do
 def size(tuple), do: tuple_size(tuple)
end
Finally, we can use the Size protocol to call the correct implementation:
Size.size({1, 2})
=> 2
Size.size(%{key: :value})
=> 1
Note that we didn't implement it for lists as we don't have the
size information on lists, rather its value needs to be
computed with length.
The data structure you are implementing the protocol for
must be the first argument to all functions defined in the
protocol.
It is possible to implement protocols for all Elixir types:
	Structs (see the "Protocols and Structs" section below)
	Tuple
	Atom
	List
	BitString
	Integer
	Float
	Function
	PID
	Map
	Port
	Reference
	Any (see the "Fallback to Any" section below)

Protocols and Structs
The real benefit of protocols comes when mixed with structs.
For instance, Elixir ships with many data types implemented as
structs, like MapSet. We can implement the Size protocol
for those types as well:
defimpl Size, for: MapSet do
 def size(map_set), do: MapSet.size(map_set)
end
When implementing a protocol for a struct, the :for option can
be omitted if the defimpl/3 call is inside the module that defines
the struct:
defmodule User do
 defstruct [:email, :name]

 defimpl Size do
 # two fields
 def size(%User{}), do: 2
 end
end
If a protocol implementation is not found for a given type,
invoking the protocol will raise unless it is configured to
fall back to Any. Conveniences for building implementations
on top of existing ones are also available, look at defstruct/1
for more information about deriving protocols.
Fallback to Any
In some cases, it may be convenient to provide a default
implementation for all types. This can be achieved by setting
the @fallback_to_any attribute to true in the protocol
definition:
defprotocol Size do
 @fallback_to_any true
 def size(data)
end
The Size protocol can now be implemented for Any:
defimpl Size, for: Any do
 def size(_), do: 0
end
Although the implementation above is arguably not a reasonable
one. For example, it makes no sense to say a PID or an integer
have a size of 0. That's one of the reasons why @fallback_to_any
is an opt-in behavior. For the majority of protocols, raising
an error when a protocol is not implemented is the proper behavior.
Multiple implementations
Protocols can also be implemented for multiple types at once:
defprotocol Reversible do
 def reverse(term)
end

defimpl Reversible, for: [Map, List] do
 def reverse(term), do: Enum.reverse(term)
end
Inside defimpl/3, you can use @protocol to access the protocol
being implemented and @for to access the module it is being
defined for.
Types
Defining a protocol automatically defines a zero-arity type named t, which
can be used as follows:
@spec print_size(Size.t()) :: :ok
def print_size(data) do
 result =
 case Size.size(data) do
 0 -> "data has no items"
 1 -> "data has one item"
 n -> "data has #{n} items"
 end

 IO.puts(result)
end
The @spec above expresses that all types allowed to implement the
given protocol are valid argument types for the given function.
Configuration
The following module attributes are available to configure a protocol:
	@fallback_to_any - when true, enables protocol dispatch to
fallback to any

	@undefined_impl_description - a string with additional description
to be used on Protocol.UndefinedError when looking up the implementation
fails. This option is only applied if @fallback_to_any is not set to true

Consolidation
In order to speed up protocol dispatching, whenever all protocol implementations
are known up-front, typically after all Elixir code in a project is compiled,
Elixir provides a feature called protocol consolidation. Consolidation directly
links protocols to their implementations in a way that invoking a function from a
consolidated protocol is equivalent to invoking two remote functions - one to
identify the correct implementation, and another to call the implementation.
Protocol consolidation is applied by default to all Mix projects during compilation.
This may be an issue during test. For instance, if you want to implement a protocol
during test, the implementation will have no effect, as the protocol has already been
consolidated. One possible solution is to include compilation directories that are
specific to your test environment in your mix.exs:
def project do
 ...
 elixirc_paths: elixirc_paths(Mix.env())
 ...
end

defp elixirc_paths(:test), do: ["lib", "test/support"]
defp elixirc_paths(_), do: ["lib"]
And then you can define the implementations specific to the test environment
inside test/support/some_file.ex.
Another approach is to disable protocol consolidation during tests in your
mix.exs:
def project do
 ...
 consolidate_protocols: Mix.env() != :test
 ...
end
If you are using Mix.install/2, you can do by passing the consolidate_protocols
option:
Mix.install(
 deps,
 consolidate_protocols: false
)
Although doing so is not recommended as it may affect the performance of
your code.
Finally, note all protocols are compiled with debug_info set to true,
regardless of the option set by the elixirc compiler. The debug info is
used for consolidation and it is removed after consolidation unless
globally set.

 Summary

 Callbacks

 __deriving__(module, term)

 An optional callback to be implemented by protocol authors for custom deriving.

 __protocol__(atom)

 A function available in all protocol definitions that returns protocol metadata.

 impl_for(term)

 A function available in all protocol definitions that returns the implementation
for the given term or nil.

 impl_for!(term)

 A function available in all protocol definitions that returns the implementation
for the given term or raises.

 Functions

 assert_impl!(protocol, base)

 Checks if the given module is loaded and is an implementation
of the given protocol.

 assert_protocol!(module)

 Checks if the given module is loaded and is protocol.

 consolidate(protocol, types)

 Receives a protocol and a list of implementations and
consolidates the given protocol.

 consolidated?(protocol)

 Returns true if the protocol was consolidated.

 derive(protocol, module, options \\ [])

 Derives the protocol for module with the given options.

 extract_impls(protocol, paths)

 Extracts all types implemented for the given protocol from
the given paths.

 extract_protocols(paths)

 Extracts all protocols from the given paths.

 Callbacks

 __deriving__(module, term)

 (optional)

 @macrocallback __deriving__(module(), term()) :: Macro.t()

An optional callback to be implemented by protocol authors for custom deriving.
It must return a quoted expression that implements the protocol for the given module.
See Protocol.derive/3 for an example.

 __protocol__(atom)

 @callback __protocol__(:consolidated?) :: boolean()

 @callback __protocol__(:functions) :: [{atom(), arity()}]

 @callback __protocol__(:impls) :: {:consolidated, [module()]} | :not_consolidated

 @callback __protocol__(:module) :: module()

A function available in all protocol definitions that returns protocol metadata.

 impl_for(term)

 @callback impl_for(term()) :: module() | nil

A function available in all protocol definitions that returns the implementation
for the given term or nil.
If @fallback_to_any is true, nil is never returned.

 impl_for!(term)

 @callback impl_for!(term()) :: module()

A function available in all protocol definitions that returns the implementation
for the given term or raises.
If @fallback_to_any is true, it never raises.

 Functions

 assert_impl!(protocol, base)

 @spec assert_impl!(module(), module()) :: :ok

Checks if the given module is loaded and is an implementation
of the given protocol.
Returns :ok if so, otherwise raises ArgumentError.

 assert_protocol!(module)

 @spec assert_protocol!(module()) :: :ok

Checks if the given module is loaded and is protocol.
Returns :ok if so, otherwise raises ArgumentError.

 consolidate(protocol, types)

 @spec consolidate(module(), [module()]) ::
 {:ok, binary()} | {:error, :not_a_protocol} | {:error, :no_beam_info}

Receives a protocol and a list of implementations and
consolidates the given protocol.
Consolidation happens by changing the protocol impl_for
in the abstract format to have fast lookup rules. Usually
the list of implementations to use during consolidation
are retrieved with the help of extract_impls/2.
It returns the updated version of the protocol bytecode.
If the first element of the tuple is :ok, it means
the protocol was consolidated.
A given bytecode or protocol implementation can be checked
to be consolidated or not by analyzing the protocol
attribute:
Protocol.consolidated?(Enumerable)
This function does not load the protocol at any point
nor loads the new bytecode for the compiled module.
However, each implementation must be available and
it will be loaded.

 consolidated?(protocol)

 @spec consolidated?(module()) :: boolean()

Returns true if the protocol was consolidated.

 derive(protocol, module, options \\ [])

 (macro)

Derives the protocol for module with the given options.
Every time you derive a protocol, Elixir will verify if the protocol
has implemented the Protocol.__deriving__/2 callback. If so,
the callback will be invoked and it should define the implementation
module. Otherwise an implementation that simply points to the Any
implementation is automatically derived.
Examples
defprotocol Derivable do
 @impl true
 defmacro __deriving__(module, options) do
 # If you need to load struct metadata, you may call:
 # struct_info = Macro.struct_info!(module, __CALLER__)

 quote do
 defimpl Derivable, for: unquote(module) do
 def ok(arg) do
 {:ok, arg, unquote(options)}
 end
 end
 end
 end

 def ok(arg)
end
Once the protocol is defined, there are two ways it can be
derived. The first is by using the @derive module attribute
by the time you define the struct:
defmodule ImplStruct do
 @derive [Derivable]
 defstruct a: 0, b: 0
end

Derivable.ok(%ImplStruct{})
#=> {:ok, %ImplStruct{a: 0, b: 0}, []}
If the struct has already been defined, you can call this macro:
require Protocol
Protocol.derive(Derivable, ImplStruct, :oops)
Derivable.ok(%ImplStruct{a: 1, b: 1})
#=> {:ok, %ImplStruct{a: 1, b: 1}, :oops}

 extract_impls(protocol, paths)

 @spec extract_impls(module(), [charlist() | String.t() | {charlist(), [charlist()]}]) ::
 [atom()]

Extracts all types implemented for the given protocol from
the given paths.
The paths can be either a charlist or a string. Internally
they are worked on as charlists, so passing them as lists
avoid extra conversion.
Does not load any of the implementations.
Examples
Get Elixir's ebin directory path and retrieve all protocols
iex> path = Application.app_dir(:elixir, "ebin")
iex> mods = Protocol.extract_impls(Enumerable, [path])
iex> List in mods
true

 extract_protocols(paths)

 @spec extract_protocols([charlist() | String.t() | {charlist(), [charlist()]}]) :: [
 atom()
]

Extracts all protocols from the given paths.
The paths can be either a charlist or a string. Internally
they are worked on as charlists, so passing them as lists
avoid extra conversion.
Does not load any of the protocols.
Examples
Get Elixir's ebin directory path and retrieve all protocols
iex> path = Application.app_dir(:elixir, "ebin")
iex> mods = Protocol.extract_protocols([path])
iex> Enumerable in mods
true

String.Chars protocol

The String.Chars protocol is responsible for
converting a structure to a binary (only if applicable).
The only function required to be implemented is
to_string/1, which does the conversion.
The to_string/1 function automatically imported
by Kernel invokes this protocol. String
interpolation also invokes to_string/1 in its
arguments. For example, "foo#{bar}" is the same
as "foo" <> to_string(bar).

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_string(term)

 Converts term to a string.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_string(term)

 @spec to_string(t()) :: String.t()

Converts term to a string.

Code

Utilities for managing code compilation, code evaluation, and code loading.
This module complements Erlang's :code module
to add behavior which is specific to Elixir. For functions to
manipulate Elixir's AST (rather than evaluating it), see the
Macro module.
Working with files
This module contains three functions for compiling and evaluating files.
Here is a summary of them and their behavior:
	require_file/2 - compiles a file and tracks its name. It does not
compile the file again if it has been previously required.

	compile_file/2 - compiles a file without tracking its name. Compiles the
file multiple times when invoked multiple times.

	eval_file/2 - evaluates the file contents without tracking its name. It
returns the result of the last expression in the file, instead of the modules
defined in it. Evaluated files do not trigger the compilation tracers described
in the next section.

In a nutshell, the first must be used when you want to keep track of the files
handled by the system, to avoid the same file from being compiled multiple
times. This is common in scripts.
compile_file/2 must be used when you are interested in the modules defined in a
file, without tracking. eval_file/2 should be used when you are interested in
the result of evaluating the file rather than the modules it defines.
The functions above work with Elixir source. If you want to work
with modules compiled to bytecode, which have the .beam extension
and are typically found below the _build directory of a Mix project,
see the functions in Erlang's :code module.
Code loading on the Erlang VM
Erlang has two modes to load code: interactive and embedded.
By default, the Erlang VM runs in interactive mode, where modules
are loaded as needed. In embedded mode the opposite happens, as all
modules need to be loaded upfront or explicitly.
You can use ensure_loaded/1 (as well as ensure_loaded?/1 and
ensure_loaded!/1) to check if a module is loaded before using it and
act.
ensure_compiled/1 and ensure_compiled!/1
Elixir also includes ensure_compiled/1 and ensure_compiled!/1
functions that are a superset of ensure_loaded/1.
Since Elixir's compilation happens in parallel, in some situations
you may need to use a module that was not yet compiled, therefore
it can't even be loaded.
When invoked, ensure_compiled/1 and ensure_compiled!/1 halt the
compilation of the caller until the module becomes available. Note that
the distinction between ensure_compiled/1 and ensure_compiled!/1
is important: if you are using ensure_compiled!/1, you are
indicating to the compiler that you can only continue if said module
is available.
If you are using Code.ensure_compiled/1, you are implying you may
continue without the module and therefore Elixir may return
{:error, :unavailable} for cases where the module is not yet available
(but may be available later on).
For those reasons, developers must typically use Code.ensure_compiled!/1.
In particular, do not do this:
case Code.ensure_compiled(module) do
 {:module, _} -> module
 {:error, _} -> raise ...
end
Finally, note you only need ensure_compiled!/1 to check for modules
being defined within the same project. It does not apply to modules from
dependencies as dependencies are always compiled upfront.
In most cases, ensure_loaded/1 is enough. ensure_compiled!/1
must be used in rare cases, usually involving macros that need to
invoke a module for callback information. The use of ensure_compiled/1
is even less likely.
Compilation tracers
Elixir supports compilation tracers, which allow modules to observe constructs
handled by the Elixir compiler when compiling files. A tracer is a module
that implements the trace/2 function. The function receives the event name
as first argument and Macro.Env as second and it must return :ok. It is
very important for a tracer to do as little work as possible synchronously
and dispatch the bulk of the work to a separate process. Slow tracers will
slow down compilation.
You can configure your list of tracers via put_compiler_option/2. The
following events are available to tracers:
	:start - (since v1.11.0) invoked whenever the compiler starts to trace
a new lexical context. A lexical context is started when compiling a new
file or when defining a module within a function. Note evaluated code
does not start a new lexical context (because they don't track unused
aliases, imports, etc) but defining a module inside evaluated code will.
Note this event may be emitted in parallel, where multiple files/modules
invoke :start and run at the same time. The value of the lexical_tracker
of the macro environment, albeit opaque, can be used to uniquely identify
the environment.

	:stop - (since v1.11.0) invoked whenever the compiler stops tracing a
new lexical context, such as a new file.

	{:import, meta, module, opts} - traced whenever module is imported.
meta is the import AST metadata and opts are the import options.

	{:imported_function, meta, module, name, arity} and
{:imported_macro, meta, module, name, arity} - traced whenever an
imported function or macro is invoked. meta is the call AST metadata,
module is the module the import is from, followed by the name and arity
of the imported function/macro. A :remote_function/:remote_macro event
may still be emitted for the imported module/name/arity.

	{:imported_quoted, meta, module, name, [arity]} - traced whenever an
imported function or macro is processed inside a quote/2. meta is the
call AST metadata, module is the module the import is from, followed by
the name and a list of arities of the imported function/macro.

	{:alias, meta, alias, as, opts} - traced whenever alias is aliased
to as. meta is the alias AST metadata and opts are the alias options.

	{:alias_expansion, meta, as, alias} traced whenever there is an alias
expansion for a previously defined alias, i.e. when the user writes as
which is expanded to alias. meta is the alias expansion AST metadata.

	{:alias_reference, meta, module} - traced whenever there is an alias
in the code, i.e. whenever the user writes MyModule.Foo.Bar in the code,
regardless if it was expanded or not.

	{:require, meta, module, opts} - traced whenever module is required.
meta is the require AST metadata and opts are the require options.
If the meta option contains the :from_macro, then module was called
from within a macro and therefore must be treated as a compile-time dependency.

	{:struct_expansion, meta, module, keys} - traced whenever module's struct
is expanded. meta is the struct AST metadata and keys are the keys being
used by expansion

	{:remote_function, meta, module, name, arity} and
{:remote_macro, meta, module, name, arity} - traced whenever a remote
function or macro is referenced. meta is the call AST metadata, module
is the invoked module, followed by the name and arity.

	{:local_function, meta, name, arity} and
{:local_macro, meta, name, arity} - traced whenever a local
function or macro is referenced. meta is the call AST metadata, followed by
the name and arity.

	{:compile_env, app, path, return} - traced whenever Application.compile_env/3
or Application.compile_env!/2 are called. app is an atom, path is a list
of keys to traverse in the application environment and return is either
{:ok, value} or :error.

	:defmodule - (since v1.16.2) traced as soon as the definition of a module
starts. This is invoked early on in the module life cycle, Module.open?/1
still returns false for such traces

	{:on_module, bytecode, _ignore} - (since v1.13.0) traced whenever a module
is defined. This is equivalent to the @after_compile callback and invoked
after any @after_compile in the given module. The third element is currently
:none but it may provide more metadata in the future. It is best to ignore
it at the moment. Note that Module functions expecting not yet compiled modules
(such as Module.definitions_in/1) are still available at the time this event
is emitted.

The :tracers compiler option can be combined with the :parser_options
compiler option to enrich the metadata of the traced events above.
New events may be added at any time in the future, therefore it is advised
for the trace/2 function to have a "catch-all" clause.
Below is an example tracer that prints all remote function invocations:
defmodule MyTracer do
 def trace({:remote_function, _meta, module, name, arity}, env) do
 IO.puts("#{env.file}:#{env.line} #{inspect(module)}.#{name}/#{arity}")
 :ok
 end

 def trace(_event, _env) do
 :ok
 end
end

 Summary

 Types

 binding()

 A list with all variables and their values.

 diagnostic(severity)

 Diagnostics returned by the compiler and code evaluation.

 env_eval_opts()

 Options for environment evaluation functions like eval_string/3 and eval_quoted/3.

 format_opt()

 Options for code formatting functions.

 line()

 The line. 0 indicates no line.

 parser_opts()

 Options for parsing functions that convert strings to quoted expressions.

 position()

 The position of the diagnostic.

 quoted_to_algebra_opt()

 Options for quoted_to_algebra/2.

 Functions

 append_path(path, opts \\ [])

 Appends a path to the Erlang VM code path list.

 append_paths(paths, opts \\ [])

 Appends a list of paths to the Erlang VM code path list.

 available_compiler_options()

 Returns a list with all available compiler options.

 can_await_module_compilation?()

 Returns true if the current process can await for module compilation.

 compile_file(file, relative_to \\ nil)

 Compiles the given file.

 compile_quoted(quoted, file \\ "nofile")

 Compiles the quoted expression.

 compile_string(string, file \\ "nofile")

 Compiles the given string.

 compiler_options()

 Gets all compilation options from the code server.

 compiler_options(opts)

 Stores all given compilation options.

 delete_path(path)

 Deletes a path from the Erlang VM code path list.

 delete_paths(paths)

 Deletes a list of paths from the Erlang VM code path list.

 ensure_all_loaded(modules)

 Ensures the given modules are loaded.

 ensure_all_loaded!(modules)

 Same as ensure_all_loaded/1 but raises if any of the modules cannot be loaded.

 ensure_compiled(module)

 Similar to ensure_compiled!/1 but indicates you can continue without said module.

 ensure_compiled!(module)

 Ensures the given module is compiled and loaded.

 ensure_loaded(module)

 Ensures the given module is loaded.

 ensure_loaded!(module)

 Same as ensure_loaded/1 but raises if the module cannot be loaded.

 ensure_loaded?(module)

 Ensures the given module is loaded.

 env_for_eval(env_or_opts)

 Returns an environment for evaluation.

 eval_file(file, relative_to \\ nil)

 Evaluates the given file.

 eval_quoted(quoted, binding \\ [], env_or_opts \\ [])

 Evaluates the quoted contents.

 eval_quoted_with_env(quoted, binding, env, opts \\ [])

 Evaluates the given quoted contents with binding and env.

 eval_string(string, binding \\ [], opts \\ [])

 Evaluates the contents given by string.

 fetch_docs(module_or_path)

 Returns the docs for the given module or path to .beam file.

 format_file!(file, opts \\ [])

 Formats a file.

 format_string!(string, opts \\ [])

 Formats the given code string.

 get_compiler_option(key)

 Returns the value of a given compiler option.

 loaded?(module)

 Returns true if the module is loaded.

 prepend_path(path, opts \\ [])

 Prepends a path to the Erlang VM code path list.

 prepend_paths(paths, opts \\ [])

 Prepends a list of paths to the Erlang VM code path list.

 print_diagnostic(diagnostic, opts \\ [])

 Prints a diagnostic into the standard error.

 purge_compiler_modules()

 Purge compiler modules.

 put_compiler_option(key, value)

 Stores a compilation option.

 quoted_to_algebra(quoted, opts \\ [])

 Converts a quoted expression to an algebra document using Elixir's formatter rules.

 require_file(file, relative_to \\ nil)

 Requires the given file.

 required_files()

 Lists all required files.

 string_to_quoted(string, opts \\ [])

 Converts the given string to its quoted form.

 string_to_quoted!(string, opts \\ [])

 Converts the given string to its quoted form.

 string_to_quoted_with_comments(string, opts \\ [])

 Converts the given string to its quoted form and a list of comments.

 string_to_quoted_with_comments!(string, opts \\ [])

 Converts the given string to its quoted form and a list of comments.

 unrequire_files(files)

 Removes files from the required files list.

 with_diagnostics(opts \\ [], fun)

 Executes the given fun and capture all diagnostics.

 Types

 binding()

 @type binding() :: [{atom() | tuple(), any()}]

A list with all variables and their values.
The binding keys are usually atoms, but they may be a tuple for variables
defined in a different context.

 diagnostic(severity)

 @type diagnostic(severity) :: %{
 :source => Path.t() | nil,
 :file => Path.t() | nil,
 :severity => severity,
 :message => String.t(),
 :position => position(),
 :stacktrace => Exception.stacktrace(),
 :span => {line :: pos_integer(), column :: pos_integer()} | nil,
 optional(:details) => term(),
 optional(any()) => any()
}

Diagnostics returned by the compiler and code evaluation.
The file and position relate to where the diagnostic should be shown.
If there is a file and position, then the diagnostic is precise
and you can use the given file and position for generating snippets,
IDEs annotations, and so on. An optional span is available with
the line and column the diagnostic ends.
Otherwise, a stacktrace may be given, which you can place your own
heuristics to provide better reporting.
The source field points to the source file the compiler tracked
the error to. For example, a file lib/foo.ex may embed .eex
templates from lib/foo/bar.eex. A syntax error on the EEx template
will point to file lib/foo/bar.eex but the source is lib/foo.ex.

 env_eval_opts()

 @type env_eval_opts() :: [
 file: binary(),
 line: pos_integer(),
 module: module(),
 prune_binding: boolean()
]

Options for environment evaluation functions like eval_string/3 and eval_quoted/3.

 format_opt()

 @type format_opt() ::
 {:file, binary()}
 | {:line, pos_integer()}
 | {:line_length, pos_integer()}
 | {:locals_without_parens, keyword()}
 | {:force_do_end_blocks, boolean()}
 | {:migrate, boolean()}
 | {:migrate_bitstring_modifiers, boolean()}
 | {:migrate_call_parens_on_pipe, boolean()}
 | {:migrate_charlists_as_sigils, boolean()}
 | {:migrate_unless, boolean()}
 | {atom(), term()}

Options for code formatting functions.

 line()

 @type line() :: non_neg_integer()

The line. 0 indicates no line.

 parser_opts()

 @type parser_opts() :: [
 file: binary(),
 line: pos_integer(),
 column: pos_integer(),
 indentation: non_neg_integer(),
 columns: boolean(),
 unescape: boolean(),
 existing_atoms_only: boolean(),
 token_metadata: boolean(),
 literal_encoder: (term(), Macro.metadata() -> term()),
 static_atoms_encoder: (atom() -> term()),
 emit_warnings: boolean()
]

Options for parsing functions that convert strings to quoted expressions.

 position()

 @type position() :: line() | {line :: pos_integer(), column :: pos_integer()}

The position of the diagnostic.
Can be either a line number or a {line, column}.
Line and columns numbers are one-based.
A position of 0 represents unknown.

 quoted_to_algebra_opt()

 @type quoted_to_algebra_opt() ::
 {:line, pos_integer() | nil}
 | {:escape, boolean()}
 | {:locals_without_parens, keyword()}
 | {:comments, [term()]}

Options for quoted_to_algebra/2.

 Functions

 append_path(path, opts \\ [])

 @spec append_path(Path.t(), [{:cache, boolean()}]) :: true | false

Appends a path to the Erlang VM code path list.
This is the list of directories the Erlang VM uses for
finding module code. The list of files is managed per Erlang
VM node.
The path is expanded with Path.expand/1 before being appended.
It requires the path to exist. Returns a boolean indicating if
the path was successfully added.
Examples
Code.append_path(".")
#=> true

Code.append_path("/does_not_exist")
#=> false
Options
	:cache - (since v1.15.0) when true, the code path is cached
the first time it is traversed in order to reduce file system
operations.

 append_paths(paths, opts \\ [])

 (since 1.15.0)

 @spec append_paths([Path.t()], [{:cache, boolean()}]) :: :ok

Appends a list of paths to the Erlang VM code path list.
This is the list of directories the Erlang VM uses for
finding module code. The list of files is managed per Erlang
VM node.
All paths are expanded with Path.expand/1 before being appended.
Only existing paths are appended. This function always returns :ok,
regardless of how many paths were appended. Use append_path/1
if you need more control.
Examples
Code.append_paths([".", "/does_not_exist"])
#=> :ok
Options
	:cache - when true, the code path is cached the first time
it is traversed in order to reduce file system operations.

 available_compiler_options()

 @spec available_compiler_options() :: [atom()]

Returns a list with all available compiler options.
For a description of all options, see put_compiler_option/2.
Examples
Code.available_compiler_options()
#=> [:docs, :debug_info, ...]

 can_await_module_compilation?()

 (since 1.11.0)

 @spec can_await_module_compilation?() :: boolean()

Returns true if the current process can await for module compilation.
When compiling Elixir code via Kernel.ParallelCompiler, which is
used by Mix and elixirc, calling a module that has not yet been
compiled will block the caller until the module becomes available.
Executing Elixir scripts, such as passing a filename to elixir,
does not await.

 compile_file(file, relative_to \\ nil)

 (since 1.7.0)

 @spec compile_file(binary(), nil | binary()) :: [{module(), binary()}]

Compiles the given file.
Accepts relative_to as an argument to tell where the file is located.
Returns a list of tuples where the first element is the module name and
the second one is its bytecode (as a binary). Opposite to require_file/2,
it does not track the filename of the compiled file.
If you would like to get the result of evaluating file rather than the
modules defined in it, see eval_file/2.
For compiling many files concurrently, see Kernel.ParallelCompiler.compile/2.

 compile_quoted(quoted, file \\ "nofile")

 @spec compile_quoted(Macro.t(), binary()) :: [{module(), binary()}]

Compiles the quoted expression.
Returns a list of tuples where the first element is the module name and
the second one is its bytecode (as a binary). A file can be
given as second argument which will be used for reporting warnings
and errors.

 compile_string(string, file \\ "nofile")

 @spec compile_string(List.Chars.t(), binary()) :: [{module(), binary()}]

Compiles the given string.
Returns a list of tuples where the first element is the module name
and the second one is its bytecode (as a binary). A file can be
given as a second argument which will be used for reporting warnings
and errors.
Warning: string can be any Elixir code and code can be executed with
the same privileges as the Erlang VM: this means that such code could
compromise the machine (for example by executing system commands).
Don't use compile_string/2 with untrusted input (such as strings coming
from the network).

 compiler_options()

 @spec compiler_options() :: map()

Gets all compilation options from the code server.
To get individual options, see get_compiler_option/1.
For a description of all options, see put_compiler_option/2.
Examples
Code.compiler_options()
#=> %{debug_info: true, docs: true, ...}

 compiler_options(opts)

 @spec compiler_options(Enumerable.t({atom(), term()})) :: %{
 optional(atom()) => term()
}

Stores all given compilation options.
Changing the compilation options affect all processes
running in a given Erlang VM node. To store individual
options and for a description of all options, see
put_compiler_option/2.
Returns a map with previous values.
Examples
Code.compiler_options(infer_signatures: false)
#=> %{infer_signatures: [:elixir]}

 delete_path(path)

 @spec delete_path(Path.t()) :: boolean()

Deletes a path from the Erlang VM code path list.
This is the list of directories the Erlang VM uses for finding
module code. The list of files is managed per Erlang VM node.
The path is expanded with Path.expand/1 before being deleted. If the
path does not exist, this function returns false.
Examples
Code.prepend_path(".")
Code.delete_path(".")
#=> true

Code.delete_path("/does_not_exist")
#=> false

 delete_paths(paths)

 (since 1.15.0)

 @spec delete_paths([Path.t()]) :: :ok

Deletes a list of paths from the Erlang VM code path list.
This is the list of directories the Erlang VM uses for finding
module code. The list of files is managed per Erlang VM node.
The path is expanded with Path.expand/1 before being deleted. If the
path does not exist, this function returns false.

 ensure_all_loaded(modules)

 (since 1.15.0)

 @spec ensure_all_loaded([module()]) :: :ok | {:error, [{module(), reason}]}
when reason: :badfile | :nofile | :on_load_failure

Ensures the given modules are loaded.
Similar to ensure_loaded/1, but accepts a list of modules instead of a single
module, and loads all of them.
If all modules load successfully, returns :ok. Otherwise, returns {:error, errors}
where errors is a list of tuples made of the module and the reason it failed to load.
Examples
iex> Code.ensure_all_loaded([Atom, String])
:ok

iex> Code.ensure_all_loaded([Atom, DoesNotExist])
{:error, [{DoesNotExist, :nofile}]}

 ensure_all_loaded!(modules)

 (since 1.15.0)

 @spec ensure_all_loaded!([module()]) :: :ok

Same as ensure_all_loaded/1 but raises if any of the modules cannot be loaded.

 ensure_compiled(module)

 @spec ensure_compiled(module()) ::
 {:module, module()}
 | {:error, :embedded | :badfile | :nofile | :on_load_failure | :unavailable}

Similar to ensure_compiled!/1 but indicates you can continue without said module.
While ensure_compiled!/1 indicates to the Elixir compiler you can
only continue when said module is available, this function indicates
you may continue compilation without said module.
If it succeeds in loading the module, it returns {:module, module}.
If not, returns {:error, reason} with the error reason.
If the module being checked is currently in a compiler deadlock,
this function returns {:error, :unavailable}. Unavailable doesn't
necessarily mean the module doesn't exist, just that it is not currently
available, but it (or may not) become available in the future.
Therefore, if you can only continue if the module is available, use
ensure_compiled!/1 instead. In particular, do not do this:
case Code.ensure_compiled(module) do
 {:module, _} -> module
 {:error, _} -> raise ...
end
See the module documentation for more information on code loading.

 ensure_compiled!(module)

 (since 1.12.0)

 @spec ensure_compiled!(module()) :: module()

Ensures the given module is compiled and loaded.
If the module is already loaded, it works as no-op. If the module was
not compiled yet, ensure_compiled!/1 halts the compilation of the caller
until the module given to ensure_compiled!/1 becomes available or
all files for the current project have been compiled. If compilation
finishes and the module is not available or is in a deadlock, an error
is raised.
Given this function halts compilation, use it carefully. In particular,
avoid using it to guess which modules are in the system. Overuse of this
function can also lead to deadlocks, where two modules check at the same time
if the other is compiled. This returns a specific unavailable error code,
where we cannot successfully verify a module is available or not.
See the module documentation for more information on code loading.

 ensure_loaded(module)

 @spec ensure_loaded(module()) ::
 {:module, module()}
 | {:error, :embedded | :badfile | :nofile | :on_load_failure}

Ensures the given module is loaded.
If the module is already loaded, this works as no-op. If the module
was not yet loaded, it tries to load it.
If it succeeds in loading the module, it returns {:module, module}.
If not, returns {:error, reason} with the error reason.
See the module documentation for more information on code loading.
Examples
iex> Code.ensure_loaded(Atom)
{:module, Atom}

iex> Code.ensure_loaded(DoesNotExist)
{:error, :nofile}

 ensure_loaded!(module)

 (since 1.12.0)

 @spec ensure_loaded!(module()) :: module()

Same as ensure_loaded/1 but raises if the module cannot be loaded.

 ensure_loaded?(module)

 @spec ensure_loaded?(module()) :: boolean()

Ensures the given module is loaded.
Similar to ensure_loaded/1, but returns true if the module
is already loaded or was successfully loaded. Returns false
otherwise.
Examples
iex> Code.ensure_loaded?(String)
true

 env_for_eval(env_or_opts)

 (since 1.14.0)

 @spec env_for_eval(Macro.Env.t() | env_eval_opts()) :: Macro.Env.t()

Returns an environment for evaluation.
It accepts either a Macro.Env, that is then pruned and prepared,
or a list of options. It returns an environment that is ready for
evaluation.
Most functions in this module will automatically prepare the given
environment for evaluation, so you don't need to explicitly call
this function, with the exception of eval_quoted_with_env/3,
which was designed precisely to be called in a loop, to implement
features such as interactive shells or anything else with multiple
evaluations.
Options
If an env is not given, the options can be:
	:file - the file to be considered in the evaluation

	:line - the line on which the script starts

	:module - the module to run the environment on

	:prune_binding - (since v1.14.2) prune binding to keep only
variables read or written by the evaluated code. Note that
variables used by modules are always pruned, even if later used
by the modules. You can submit to the :on_module tracer event
and access the variables used by the module from its environment.

 eval_file(file, relative_to \\ nil)

 @spec eval_file(binary(), nil | binary()) :: {term(), binding()}

Evaluates the given file.
Accepts relative_to as an argument to tell where the file is located.
While require_file/2 and compile_file/2 return the loaded modules and their
bytecode, eval_file/2 simply evaluates the file contents and returns the
evaluation result and its binding (exactly the same return value as eval_string/3).

 eval_quoted(quoted, binding \\ [], env_or_opts \\ [])

 @spec eval_quoted(Macro.t(), binding(), Macro.Env.t() | env_eval_opts()) ::
 {term(), binding()}

Evaluates the quoted contents.
Warning: Calling this function inside a macro is considered bad
practice as it will attempt to evaluate runtime values at compile time.
Macro arguments are typically transformed by unquoting them into the
returned quoted expressions (instead of evaluated).
See eval_string/3 for a description of arguments and return types.
The options are described under env_for_eval/1.
Examples
iex> contents = quote(do: var!(a) + var!(b))
iex> {result, binding} = Code.eval_quoted(contents, [a: 1, b: 2], file: __ENV__.file, line: __ENV__.line)
iex> result
3
iex> Enum.sort(binding)
[a: 1, b: 2]
For convenience, you can pass __ENV__/0 as the opts argument and
all options will be automatically extracted from the current environment:
iex> contents = quote(do: var!(a) + var!(b))
iex> {result, binding} = Code.eval_quoted(contents, [a: 1, b: 2], __ENV__)
iex> result
3
iex> Enum.sort(binding)
[a: 1, b: 2]

 eval_quoted_with_env(quoted, binding, env, opts \\ [])

 (since 1.14.0)

 @spec eval_quoted_with_env(Macro.t(), binding(), Macro.Env.t(), env_eval_opts()) ::
 {term(), binding(), Macro.Env.t()}

Evaluates the given quoted contents with binding and env.
This function is meant to be called in a loop, to implement features
such as interactive shells or anything else with multiple evaluations.
Therefore, the first time you call this function, you must compute
the initial environment with env_for_eval/1. The remaining calls
must pass the environment that was returned by this function.
Options
It accepts the same options as env_for_eval/1.

 eval_string(string, binding \\ [], opts \\ [])

 @spec eval_string(List.Chars.t(), binding(), Macro.Env.t() | env_eval_opts()) ::
 {term(), binding()}

Evaluates the contents given by string.
The binding argument is a list of all variables and their values.
The opts argument is a keyword list of environment options.
Warning: string can be any Elixir code and will be executed with
the same privileges as the Erlang VM: this means that such code could
compromise the machine (for example by executing system commands).
Don't use eval_string/3 with untrusted input (such as strings coming
from the network).
Options
It accepts the same options as env_for_eval/1. Additionally, you may
also pass an environment as second argument, so the evaluation happens
within that environment.
Returns a tuple of the form {value, binding}, where value is the value
returned from evaluating string. If an error occurs while evaluating
string, an exception will be raised.
binding is a list with all variable names and their values after evaluating
string. The binding keys are usually atoms, but they may be a tuple for variables
defined in a different context. The names are in no particular order.
Examples
iex> {result, binding} = Code.eval_string("a + b", [a: 1, b: 2], file: __ENV__.file, line: __ENV__.line)
iex> result
3
iex> Enum.sort(binding)
[a: 1, b: 2]

iex> {result, binding} = Code.eval_string("c = a + b", [a: 1, b: 2], __ENV__)
iex> result
3
iex> Enum.sort(binding)
[a: 1, b: 2, c: 3]

iex> {result, binding} = Code.eval_string("a = a + b", [a: 1, b: 2])
iex> result
3
iex> Enum.sort(binding)
[a: 3, b: 2]
For convenience, you can pass __ENV__/0 as the opts argument and
all imports, requires and aliases defined in the current environment
will be automatically carried over:
iex> require Integer, warn: false
iex> {result, binding} = Code.eval_string("if Integer.is_odd(a), do: a + b", [a: 1, b: 2], __ENV__)
iex> result
3
iex> Enum.sort(binding)
[a: 1, b: 2]

 fetch_docs(module_or_path)

 (since 1.7.0)

 @spec fetch_docs(module() | String.t()) ::
 {:docs_v1, annotation, beam_language, format, module_doc :: doc_content,
 metadata, docs :: [doc_element]}
 | {:error,
 :module_not_found
 | :chunk_not_found
 | {:invalid_chunk, binary()}
 | :invalid_beam}
when annotation: :erl_anno.anno(),
 beam_language: :elixir | :erlang | atom(),
 doc_content: %{optional(binary()) => binary()} | :none | :hidden,
 doc_element:
 {{kind :: atom(), function_name :: atom(), arity()}, annotation,
 signature, doc_content, metadata},
 format: binary(),
 signature: [binary()],
 metadata: map()

Returns the docs for the given module or path to .beam file.
When given a module name, it finds its BEAM code and reads the docs from it.
When given a path to a .beam file, it will load the docs directly from that
file.
It returns the term stored in the documentation chunk in the format defined by
EEP 48 or {:error, reason} if
the chunk is not available.
Examples
Module documentation of an existing module
iex> {:docs_v1, _, :elixir, _, %{"en" => module_doc}, _, _} = Code.fetch_docs(Atom)
iex> module_doc |> String.split("\n") |> Enum.at(0)
"Atoms are constants whose values are their own name."

A module that doesn't exist
iex> Code.fetch_docs(ModuleNotGood)
{:error, :module_not_found}

 format_file!(file, opts \\ [])

 (since 1.6.0)

 @spec format_file!(binary(), [format_opt()]) :: iodata()

Formats a file.
See format_string!/2 for more information on code formatting and
available options.

 format_string!(string, opts \\ [])

 (since 1.6.0)

 @spec format_string!(binary(), [format_opt()]) :: iodata()

Formats the given code string.
The formatter receives a string representing Elixir code and
returns iodata representing the formatted code according to
pre-defined rules.
Options
Regular options (do not change the AST):
	:file - the file which contains the string, used for error
reporting

	:line - the line the string starts, used for error reporting

	:line_length - the line length to aim for when formatting
the document. Defaults to 98. This value indicates when an expression
should be broken over multiple lines but it is not guaranteed
to do so. See the "Line length" section below for more information

	:locals_without_parens - a keyword list of name and arity
pairs that should be kept without parens whenever possible.
The arity may be the atom :*, which implies all arities of
that name. The formatter already includes a list of functions
and this option augments this list.

	:force_do_end_blocks (since v1.9.0) - when true, converts all
inline usages of do: ..., else: ... and friends into do-end
blocks. Defaults to false. Note that this option is convergent:
once you set it to true, all keywords will be converted.
If you set it to false later on, do-end blocks won't be
converted back to keywords.

Migration options (change the AST), see the "Migration formatting" section below:
	:migrate (since v1.18.0) - when true, sets all other migration options
to true by default. Defaults to false.

	:migrate_bitstring_modifiers (since v1.18.0) - when true,
removes unnecessary parentheses in known bitstring
modifiers, for example <<foo::binary()>>
becomes <<foo::binary>>, or adds parentheses for custom
modifiers, where <<foo::custom_type>> becomes <<foo::custom_type()>>.
Defaults to the value of the :migrate option. This option changes the AST.

	:migrate_call_parens_on_pipe (since v1.19.0) - when true,
formats calls on the right-hand side of the pipe operator to always include
parentheses, for example foo |> bar becomes foo |> bar() and
foo |> mod.fun becomes foo |> mod.fun().
Parentheses are always added for qualified calls like foo |> Bar.bar even
when this option is false.
Defaults to the value of the :migrate option. This option changes the AST.

	:migrate_charlists_as_sigils (since v1.18.0) - when true,
formats charlists as ~c sigils, for example
'foo' becomes ~c"foo".
Defaults to the value of the :migrate option. This option changes the AST.

	:migrate_unless (since v1.18.0) - when true,
rewrites unless expressions using if with a negated condition, for example
unless foo, do: becomes if !foo, do:.
Defaults to the value of the :migrate option. This option changes the AST.

Design principles
The formatter was designed under three principles.
First, the formatter never changes the semantics of the code by default.
This means the input AST and the output AST are almost always equivalent.
The second principle is to provide as little configuration as possible.
This eases the formatter adoption by removing contention points while
making sure a single style is followed consistently by the community as
a whole.
The formatter does not hard code names. The formatter will not behave
specially because a function is named defmodule, def, or the like. This
principle mirrors Elixir's goal of being an extensible language where
developers can extend the language with new constructs as if they were
part of the language. When it is absolutely necessary to change behavior
based on the name, this behavior should be configurable, such as the
:locals_without_parens option.
Running the formatter
The formatter attempts to fit the most it can on a single line and
introduces line breaks wherever possible when it cannot.
In some cases, this may lead to undesired formatting. Therefore, some
code generated by the formatter may not be aesthetically pleasing and
may require explicit intervention from the developer. That's why we
do not recommend to run the formatter blindly in an existing codebase.
Instead you should format and sanity check each formatted file.
For example, the formatter may break a long function definition over
multiple clauses:
def my_function(
 %User{name: name, age: age, ...},
 arg1,
 arg2
) do
 ...
end
While the code above is completely valid, you may prefer to match on
the struct variables inside the function body in order to keep the
definition on a single line:
def my_function(%User{} = user, arg1, arg2) do
 %{name: name, age: age, ...} = user
 ...
end
In some situations, you can use the fact the formatter does not generate
elegant code as a hint for refactoring. Take this code:
def board?(board_id, %User{} = user, available_permissions, required_permissions) do
 Tracker.OrganizationMembers.user_in_organization?(user.id, board.organization_id) and
 required_permissions == Enum.to_list(MapSet.intersection(MapSet.new(required_permissions), MapSet.new(available_permissions)))
end
The code above has very long lines and running the formatter is not going
to address this issue. In fact, the formatter may make it more obvious that
you have complex expressions:
def board?(board_id, %User{} = user, available_permissions, required_permissions) do
 Tracker.OrganizationMembers.user_in_organization?(user.id, board.organization_id) and
 required_permissions ==
 Enum.to_list(
 MapSet.intersection(
 MapSet.new(required_permissions),
 MapSet.new(available_permissions)
)
)
end
Take such cases as a suggestion that your code should be refactored:
def board?(board_id, %User{} = user, available_permissions, required_permissions) do
 Tracker.OrganizationMembers.user_in_organization?(user.id, board.organization_id) and
 matching_permissions?(required_permissions, available_permissions)
end

defp matching_permissions?(required_permissions, available_permissions) do
 intersection =
 required_permissions
 |> MapSet.new()
 |> MapSet.intersection(MapSet.new(available_permissions))
 |> Enum.to_list()

 required_permissions == intersection
end
To sum it up: since the formatter cannot change the semantics of your
code, sometimes it is necessary to tweak or refactor the code to get
optimal formatting. To help better understand how to control the formatter,
we describe in the next sections the cases where the formatter keeps the
user encoding and how to control multiline expressions.
Line length
Another point about the formatter is that the :line_length configuration
indicates when an expression should be broken over multiple lines but it is
not guaranteed to do so. In many cases, it is not possible for the formatter
to break your code apart, which means it will go over the line length.
For example, if you have a long string:
"this is a very long string that will go over the line length"
The formatter doesn't know how to break it apart without changing the
code underlying syntax representation, so it is up to you to step in:
"this is a very long string " <>
 "that will go over the line length"
The string concatenation makes the code fit on a single line and also
gives more options to the formatter.
This may also appear in keywords such as do/end blocks and operators,
where the do keyword may go over the line length because there is no
opportunity for the formatter to introduce a line break in a readable way.
For example, if you do:
case very_long_expression() do
end
And only the do keyword is beyond the line length, Elixir will not
emit this:
case very_long_expression()
do
end
So it prefers to not touch the line at all and leave do above the
line limit.
Keeping user's formatting
The formatter respects the input format in some cases. Those are
listed below:
	Insignificant digits in numbers are kept as is. The formatter,
however, always inserts underscores for decimal numbers with more
than 5 digits and converts hexadecimal digits to uppercase

	Strings, charlists, atoms and sigils are kept as is. No character
is automatically escaped or unescaped. The choice of delimiter is
also respected from the input

	Newlines inside blocks are kept as in the input except for:
	expressions that take multiple lines will always have an empty
line before and after and 2) empty lines are always squeezed
together into a single empty line

	The choice between :do keyword and do-end blocks is left
to the user

	Lists, tuples, bitstrings, maps, structs and function calls will be
broken into multiple lines if they are followed by a newline in the
opening bracket and preceded by a new line in the closing bracket

	Newlines before certain operators (such as the pipeline operators)
and before other operators (such as comparison operators)

The behaviors above are not guaranteed. We may remove or add new
rules in the future. The goal of documenting them is to provide better
understanding on what to expect from the formatter.
Multi-line lists, maps, tuples, and the like
You can force lists, tuples, bitstrings, maps, structs and function
calls to have one entry per line by adding a newline after the opening
bracket and a new line before the closing bracket lines. For example:
[
 foo,
 bar
]
If there are no newlines around the brackets, then the formatter will
try to fit everything on a single line, such that the snippet below
[foo,
 bar]
will be formatted as
[foo, bar]
You can also force function calls and keywords to be rendered on multiple
lines by having each entry on its own line:
defstruct name: nil,
 age: 0
The code above will be kept with one keyword entry per line by the
formatter. To avoid that, just squash everything into a single line.
Parens and no parens in function calls
Elixir has two syntaxes for function calls. With parens and no parens.
By default, Elixir will add parens to all calls except for:
	calls that have do-end blocks
	local calls without parens where the name and arity of the local
call is also listed under :locals_without_parens (except for
calls with arity 0, where the compiler always require parens)

The choice of parens and no parens also affects indentation. When a
function call with parens doesn't fit on the same line, the formatter
introduces a newline around parens and indents the arguments with two
spaces:
some_call(
 arg1,
 arg2,
 arg3
)
On the other hand, function calls without parens are always indented
by the function call length itself, like this:
some_call arg1,
 arg2,
 arg3
If the last argument is a data structure, such as maps and lists, and
the beginning of the data structure fits on the same line as the function
call, then no indentation happens, this allows code like this:
Enum.reduce(some_collection, initial_value, fn element, acc ->
 # code
end)

some_function_without_parens %{
 foo: :bar,
 baz: :bat
}
Code comments
The formatter handles code comments and guarantees a space is always added
between the beginning of the comment (#) and the next character.
The formatter also extracts all trailing comments to their previous line.
For example, the code below
hello #world
will be rewritten to
world
hello
While the formatter attempts to preserve comments in most situations,
that's not always possible, because code comments are handled apart from
the code representation (AST). While the formatter can preserve code
comments between expressions and function arguments, the formatter
cannot currently preserve them around operators. For example, the following
code:
foo() ||
 # also check for bar
 bar()
will move the code comments to before the operator usage:
also check for bar
foo() ||
 bar()
In some situations, code comments can be seen as ambiguous by the formatter.
For example, the comment in the anonymous function below
fn
 arg1 ->
 body1
 # comment

 arg2 ->
 body2
end
and in this one
fn
 arg1 ->
 body1

 # comment
 arg2 ->
 body2
end
are considered equivalent (the nesting is discarded alongside most of
user formatting). In such cases, the code formatter will always format to
the latter.
Newlines
The formatter converts all newlines in code from \r\n to \n.
Migration formatting
As part of the Elixir release cycle, deprecations are being introduced,
emitting warnings which might require existing code to be changed.
In order to reduce the burden on developers when upgrading Elixir to the
next version, the formatter exposes some options, disabled by default,
in order to automate this process.
These options should address most of the typical use cases, but given they
introduce changes to the AST, there is a non-zero risk for meta-programming
heavy projects that relied on a specific AST, or projects that are
re-defining functions from the Kernel. In such cases, migrations cannot
be applied blindly and some extra changes might be needed in order to
address the deprecation warnings.

 get_compiler_option(key)

 (since 1.10.0)

 @spec get_compiler_option(atom()) :: term()

Returns the value of a given compiler option.
For a description of all options, see put_compiler_option/2.
Examples
Code.get_compiler_option(:debug_info)
#=> true

 loaded?(module)

 (since 1.15.0)

 @spec loaded?(module()) :: boolean()

Returns true if the module is loaded.
This function doesn't attempt to load the module. For such behavior,
ensure_loaded?/1 can be used.
Examples
iex> Code.loaded?(String)
true

iex> Code.loaded?(NotYetLoaded)
false

 prepend_path(path, opts \\ [])

 @spec prepend_path(Path.t(), [{:cache, boolean()}]) :: boolean()

Prepends a path to the Erlang VM code path list.
This is the list of directories the Erlang VM uses for
finding module code. The list of files is managed per Erlang
VM node.
The path is expanded with Path.expand/1 before being prepended.
It requires the path to exist. Returns a boolean indicating if
the path was successfully added.
Examples
Code.prepend_path(".")
#=> true

Code.prepend_path("/does_not_exist")
#=> false
Options
	:cache - (since v1.15.0) when true, the code path is cached
the first time it is traversed in order to reduce file system
operations.

 prepend_paths(paths, opts \\ [])

 (since 1.15.0)

 @spec prepend_paths([Path.t()], [{:cache, boolean()}]) :: :ok

Prepends a list of paths to the Erlang VM code path list.
This is the list of directories the Erlang VM uses for
finding module code. The list of files is managed per Erlang
VM node.
All paths are expanded with Path.expand/1 before being prepended.
Only existing paths are prepended. This function always returns :ok,
regardless of how many paths were prepended. Use prepend_path/1
if you need more control.
Examples
Code.prepend_paths([".", "/does_not_exist"])
#=> :ok
Options
	:cache - when true, the code path is cached the first time
it is traversed in order to reduce file system operations.

 print_diagnostic(diagnostic, opts \\ [])

 (since 1.15.0)

 @spec print_diagnostic(diagnostic(:warning | :error), [{:snippet, boolean()}]) :: :ok

Prints a diagnostic into the standard error.
A diagnostic is either returned by Kernel.ParallelCompiler
or by Code.with_diagnostics/2.
Options
	:snippet - whether to read the code snippet in the diagnostic location.
As it may impact performance, it is not recommended to be used in runtime.
Defaults to true.

 purge_compiler_modules()

 (since 1.7.0)

 @spec purge_compiler_modules() :: {:ok, non_neg_integer()}

Purge compiler modules.
The compiler utilizes temporary modules to compile code. For example,
elixir_compiler_1, elixir_compiler_2, and so on. In case the compiled code
stores references to anonymous functions or similar, the Elixir compiler
may be unable to reclaim those modules, keeping an unnecessary amount of
code in memory and eventually leading to modules such as elixir_compiler_12345.
This function purges all modules currently kept by the compiler, allowing
old compiler module names to be reused. If there are any processes running
any code from such modules, they will be terminated too.
This function is only meant to be called if you have a long running node
that is constantly evaluating code.
It returns {:ok, number_of_modules_purged}.

 put_compiler_option(key, value)

 (since 1.10.0)

 @spec put_compiler_option(atom(), term()) :: :ok

Stores a compilation option.
Changing the compilation options affect all processes running in a
given Erlang VM node.
Available options are:
	:docs - when true, retains documentation in the compiled module.
Defaults to true.

	:debug_info - when true, retains debug information in the compiled
module. This option can also be overridden per module using the @compile
directive. Defaults to true.
This enables tooling to partially reconstruct the original source code,
for instance, to perform static analysis of code. Therefore, disabling
:debug_info is not recommended as it removes the ability of the
Elixir compiler and other tools to provide feedback. If you want to
remove the :debug_info while deploying, tools like mix release
already do such by default.
Other environments, such as mix test, automatically disables this
via the :test_elixirc_options project configuration, as there is
typically no need to store debug chunks for test files.

	:ignore_already_consolidated (since v1.10.0) - when true, does not warn
when a protocol has already been consolidated and a new implementation is added.
Defaults to false.

	:ignore_module_conflict - when true, does not warn when a module has
already been defined. Defaults to false.

	:infer_signatures (since v1.18.0) - a list of applications of which modules
should be using during type inference. When false, it disables module-local
signature inference used when type checking remote calls to the compiled
module. Type checking will be executed regardless of the value of this option.
Defaults to true, which is equivalent to setting it to [:elixir] only.
When setting this option, we recommend running mix clean so the modules can be
recompiled with the new behaviour. mix test automatically disables this option
via the :test_elixirc_options project configuration, as there is typically no
need to infer signatures for test files.

	:relative_paths - when true, uses relative paths in quoted nodes,
warnings, and errors generated by the compiler. Note disabling this option
won't affect runtime warnings and errors. Defaults to true.

	:no_warn_undefined (since v1.10.0) - list of modules and {Mod, fun, arity}
tuples that will not emit warnings that the module or function does not exist
at compilation time. Pass atom :all to skip warning for all undefined
functions. This can be useful when doing dynamic compilation. Defaults to [].

	:tracers (since v1.10.0) - a list of tracers (modules) to be used during
compilation. See the module docs for more information. Defaults to [].

	:parser_options (since v1.10.0) - a keyword list of options to be given
to the parser when compiling files. It accepts the same options as
string_to_quoted/2 (except by the options that change the AST itself).
This can be used in combination with the tracer to retrieve localized
information about events happening during compilation. Defaults to [columns: true].
This option only affects code compilation functions, such as compile_string/2
and compile_file/2 but not string_to_quoted/2 and friends, as the
latter is used for other purposes beyond compilation.

	:on_undefined_variable (since v1.15.0) - either :raise or :warn.
When :raise (the default), undefined variables will trigger a compilation
error. You may be set it to :warn if you want undefined variables to
emit a warning and expand as to a local call to the zero-arity function
of the same name (for example, node would be expanded as node()).
This :warn behavior only exists for compatibility reasons when working
with old dependencies, its usage is discouraged and it will be removed
in future releases.

It always returns :ok. Raises an error for invalid options.
Examples
Code.put_compiler_option(:debug_info, true)
#=> :ok

 quoted_to_algebra(quoted, opts \\ [])

 (since 1.13.0)

 @spec quoted_to_algebra(Macro.t(), [format_opt() | quoted_to_algebra_opt()]) ::
 Inspect.Algebra.t()

Converts a quoted expression to an algebra document using Elixir's formatter rules.
The algebra document can be converted into a string by calling:
doc
|> Inspect.Algebra.format(:infinity)
|> IO.iodata_to_binary()
For a high-level function that does the same, see Macro.to_string/1.
Formatting considerations
The Elixir AST does not contain metadata for literals like strings, lists, or
tuples with two elements, which means that the produced algebra document will
not respect all of the user preferences and comments may be misplaced.
To get better results, you can use the :token_metadata, :unescape and
:literal_encoder options to string_to_quoted/2 to provide additional
information to the formatter:
[
 literal_encoder: &{:ok, {:__block__, &2, [&1]}},
 token_metadata: true,
 unescape: false
]
This will produce an AST that contains information such as do blocks start
and end lines or sigil delimiters, and by wrapping literals in blocks they can
now hold metadata like line number, string delimiter and escaped sequences, or
integer formatting (such as 0x2a instead of 47). However, note this AST is
not valid. If you evaluate it, it won't have the same semantics as the regular
Elixir AST due to the :unescape and :literal_encoder options. However,
those options are useful if you're doing source code manipulation, where it's
important to preserve user choices and comments placing.
Options
This function accepts all options supported by format_string!/2 for controlling
code formatting, plus these additional options:
	:comments - the list of comments associated with the quoted expression.
Defaults to []. It is recommended that both :token_metadata and
:literal_encoder options are given to string_to_quoted_with_comments/2
in order to get proper placement for comments

	:escape - when true, escaped sequences like \n will be escaped into
\\n. If the :unescape option was set to false when using
string_to_quoted/2, setting this option to false will prevent it from
escaping the sequences twice. Defaults to true.

See format_string!/2 for the full list of formatting options including
:file, :line, :line_length, :locals_without_parens, :force_do_end_blocks,
:syntax_colors, and all migration options like :migrate_charlists_as_sigils.

 require_file(file, relative_to \\ nil)

 @spec require_file(binary(), nil | binary()) :: [{module(), binary()}] | nil

Requires the given file.
Accepts relative_to as an argument to tell where the file is located.
If the file was already required, require_file/2 doesn't do anything and
returns nil.
Note that if require_file/2 is invoked by different processes concurrently,
the first process to invoke require_file/2 acquires a lock and the remaining
ones will block until the file is available. This means that if require_file/2
is called more than once with a given file, that file will be compiled only once.
The first process to call require_file/2 will get the list of loaded modules,
others will get nil. The list of required files is managed per Erlang VM node.
See compile_file/2 if you would like to compile a file without tracking its
filenames. Finally, if you would like to get the result of evaluating a file rather
than the modules defined in it, see eval_file/2.
Examples
If the file has not been required, it returns the list of modules:
modules = Code.require_file("eex_test.exs", "../eex/test")
List.first(modules)
#=> {EExTest.Compiled, <<70, 79, 82, 49, ...>>}
If the file has been required, it returns nil:
Code.require_file("eex_test.exs", "../eex/test")
#=> nil

 required_files()

 (since 1.7.0)

 @spec required_files() :: [binary()]

Lists all required files.
Examples
Code.require_file("../eex/test/eex_test.exs")
List.first(Code.required_files()) =~ "eex_test.exs"
#=> true

 string_to_quoted(string, opts \\ [])

 @spec string_to_quoted(List.Chars.t(), parser_opts()) ::
 {:ok, Macro.t()}
 | {:error, {location :: keyword(), binary() | {binary(), binary()}, binary()}}

Converts the given string to its quoted form.
Returns {:ok, quoted_form} if it succeeds,
{:error, {meta, message_info, token}} otherwise.
Options
	:file - the filename to be reported in case of parsing errors.
Defaults to "nofile".

	:line - the starting line of the string being parsed.
Defaults to 1.

	:column - (since v1.11.0) the starting column of the string being parsed.
Defaults to 1.

	:indentation - (since v1.19.0) the indentation for the string being parsed.
This is useful when the code parsed is embedded within another document.
Defaults to 0.

	:columns - when true, attach a :column key to the quoted
metadata. Defaults to false.

	:unescape (since v1.10.0) - when false, preserves escaped sequences.
For example, "null byte\\t\\x00" will be kept as is instead of being
converted to a bitstring literal. Note if you set this option to false, the
resulting AST is no longer valid, but it can be useful to analyze/transform
source code, typically in combination with quoted_to_algebra/2.
Defaults to true.

	:existing_atoms_only - when true, raises an error
when non-existing atoms are found by the tokenizer.
Defaults to false.

	:token_metadata (since v1.10.0) - when true, includes token-related
metadata in the expression AST, such as metadata for do and end
tokens, for closing tokens, end of expressions, as well as delimiters
for sigils. See Macro.metadata/0. Defaults to false.

	:literal_encoder (since v1.10.0) - how to encode literals in the AST.
It must be a function that receives two arguments, the literal and its
metadata, and it must return {:ok, ast :: Macro.t} or
{:error, reason :: binary}. If you return anything than the literal
itself as the term, then the AST is no longer valid. This option
may still useful for textual analysis of the source code.

	:static_atoms_encoder - the static atom encoder function, see
"The :static_atoms_encoder function" section below. Note this
option overrides the :existing_atoms_only behavior for static
atoms but :existing_atoms_only is still used for dynamic atoms,
such as atoms with interpolations.

	:emit_warnings (since v1.16.0) - when false, does not emit
tokenizing/parsing related warnings. Defaults to true.

Macro.to_string/2
The opposite of converting a string to its quoted form is
Macro.to_string/2, which converts a quoted form to a string/binary
representation.
The :static_atoms_encoder function
When static_atoms_encoder: &my_encoder/2 is passed as an argument,
my_encoder/2 is called every time the tokenizer needs to create a
"static" atom. Static atoms are atoms in the AST that function as
aliases, remote calls, local calls, variable names, regular atoms
and keyword lists.
The encoder function will receive the atom name (as a binary) and a
keyword list with the current file, line and column. It must return
{:ok, token :: term} | {:error, reason :: binary}.
The encoder function is supposed to create an atom from the given
string. To produce a valid AST, it is required to return {:ok, term},
where term is an atom. It is possible to return something other than an atom,
however, in that case the AST is no longer "valid" in that it cannot
be used to compile or evaluate Elixir code. A use case for this is
if you want to use the Elixir parser in a user-facing situation, but
you don't want to exhaust the atom table.
The atom encoder is not called for all atoms that are present in
the AST. It won't be invoked for the following atoms:
	operators (:+, :-, and so on)

	syntax keywords (fn, do, else, and so on)

	atoms containing interpolation (:"#{1 + 1} is two"), as these
atoms are constructed at runtime

	atoms used to represent single-letter sigils like :sigil_X
(but multi-letter sigils like :sigil_XYZ are encoded).

Examples
iex> Code.string_to_quoted("1 + 3")
{:ok, {:+, [line: 1], [1, 3]}}

iex> Code.string_to_quoted("1 \ 3")
{:error, {[line: 1, column: 4], "syntax error before: ", "\"3\""}}

 string_to_quoted!(string, opts \\ [])

 @spec string_to_quoted!(List.Chars.t(), parser_opts()) :: Macro.t()

Converts the given string to its quoted form.
It returns the AST if it succeeds,
raises an exception otherwise. The exception is a TokenMissingError
in case a token is missing (usually because the expression is incomplete),
MismatchedDelimiterError (in case of mismatched opening and closing delimiters) and
SyntaxError otherwise.
Check string_to_quoted/2 for options information.

 string_to_quoted_with_comments(string, opts \\ [])

 (since 1.13.0)

 @spec string_to_quoted_with_comments(List.Chars.t(), parser_opts()) ::
 {:ok, Macro.t(), [map()]} | {:error, {location :: keyword(), term(), term()}}

Converts the given string to its quoted form and a list of comments.
This function is useful when performing textual changes to the source code,
while preserving information like comments and literals position.
Returns {:ok, quoted_form, comments} if it succeeds,
{:error, {line, error, token}} otherwise.
Comments are maps with the following fields:
	:line - The line number of the source code

	:text - The full text of the comment, including the leading #

	:previous_eol_count - How many end of lines there are between the comment and the previous AST node or comment

	:next_eol_count - How many end of lines there are between the comment and the next AST node or comment

Check string_to_quoted/2 for options information.
Examples
iex> Code.string_to_quoted_with_comments("""
...> :foo
...>
...> # Hello, world!
...>
...>
...> # Some more comments!
...> """)
{:ok, :foo, [
 %{line: 3, column: 1, previous_eol_count: 2, next_eol_count: 3, text: "# Hello, world!"},
 %{line: 6, column: 1, previous_eol_count: 3, next_eol_count: 1, text: "# Some more comments!"},
]}

iex> Code.string_to_quoted_with_comments(":foo # :bar")
{:ok, :foo, [
 %{line: 1, column: 6, previous_eol_count: 0, next_eol_count: 0, text: "# :bar"}
]}

 string_to_quoted_with_comments!(string, opts \\ [])

 (since 1.13.0)

 @spec string_to_quoted_with_comments!(List.Chars.t(), parser_opts()) ::
 {Macro.t(), [map()]}

Converts the given string to its quoted form and a list of comments.
Returns the AST and a list of comments if it succeeds, raises an exception
otherwise. The exception is a TokenMissingError in case a token is missing
(usually because the expression is incomplete), SyntaxError otherwise.
Check string_to_quoted/2 for options information.

 unrequire_files(files)

 (since 1.7.0)

 @spec unrequire_files([binary()]) :: :ok

Removes files from the required files list.
The modules defined in the file are not removed;
calling this function only removes them from the list,
allowing them to be required again.
The list of files is managed per Erlang VM node.
Examples
Require EEx test code
Code.require_file("../eex/test/eex_test.exs")

Now unrequire all files
Code.unrequire_files(Code.required_files())

Note that modules are still available
function_exported?(EExTest.Compiled, :before_compile, 0)
#=> true

 with_diagnostics(opts \\ [], fun)

 (since 1.15.0)

 @spec with_diagnostics([{:log, boolean()}], (-> result)) ::
 {result, [diagnostic(:warning | :error)]}
when result: term()

Executes the given fun and capture all diagnostics.
Diagnostics are warnings and errors emitted during code
evaluation or single-file compilation and by functions
such as IO.warn/2.
If using mix compile or Kernel.ParallelCompiler,
note they already capture and return diagnostics.
Options
	:log - if the diagnostics should be logged as they happen.
Defaults to false.

Rescuing errors
with_diagnostics/2 does not automatically handle exceptions.
You may capture them by adding a try/1 in fun:
{result, all_errors_and_warnings} =
 Code.with_diagnostics(fn ->
 try do
 {:ok, Code.compile_quoted(quoted)}
 rescue
 err -> {:error, err}
 end
 end)

Code.Fragment

This module provides conveniences for analyzing fragments of
textual code and extract available information whenever possible.
This module should be considered experimental.

 Summary

 Types

 container_cursor_to_quoted_opts()

 Options for converting code fragments to quoted expressions.

 cursor_opts()

 Options for cursor context functions.

 position()

 Functions

 container_cursor_to_quoted(fragment, opts \\ [])

 Receives a string and returns a quoted expression
with the cursor AST position within its parent expression.

 cursor_context(fragment, opts \\ [])

 Receives a string and returns the cursor context.

 lines(string)

 Returns the list of lines in the given string, preserving their line endings.

 surround_context(fragment, position, options \\ [])

 Receives a string and returns the surround context.

 Types

 container_cursor_to_quoted_opts()

 @type container_cursor_to_quoted_opts() :: [
 file: String.t(),
 line: pos_integer(),
 column: pos_integer(),
 columns: boolean(),
 token_metadata: boolean(),
 literal_encoder: (term(), Macro.metadata() -> term()),
 trailing_fragment: String.t()
]

Options for converting code fragments to quoted expressions.

 cursor_opts()

 @type cursor_opts() :: []

Options for cursor context functions.
Currently, these options are not used but reserved for future extensibility.

 position()

 @type position() :: {line :: pos_integer(), column :: pos_integer()}

 Functions

 container_cursor_to_quoted(fragment, opts \\ [])

 (since 1.13.0)

 @spec container_cursor_to_quoted(List.Chars.t(), container_cursor_to_quoted_opts()) ::
 {:ok, Macro.t()}
 | {:error, {location :: keyword(), binary() | {binary(), binary()}, binary()}}

Receives a string and returns a quoted expression
with the cursor AST position within its parent expression.
This function receives a string with an Elixir code fragment,
representing a cursor position, and converts such string to
AST with the inclusion of special __cursor__() node representing
the cursor position within its container (i.e. its parent).
For example, take this code, which would be given as input:
max(some_value,
This function will return the AST equivalent to:
max(some_value, __cursor__())
In other words, this function is capable of closing any open
brackets and insert the cursor position. Other content at the
cursor position which is not a parent is discarded.
For example, if this is given as input:
max(some_value, another_val
It will return the same AST:
max(some_value, __cursor__())
Similarly, if only this is given:
max(some_va
Then it returns:
max(__cursor__())
Calls without parenthesis are also supported, as we assume the
brackets are implicit.
Tuples, lists, maps, and binaries all retain the cursor position:
max(some_value, [1, 2,
Returns the following AST:
max(some_value, [1, 2, __cursor__()])
Keyword lists (and do-end blocks) are also retained. The following:
if(some_value, do:
if(some_value, do: :token
if(some_value, do: 1 + val
all return:
if(some_value, do: __cursor__())
For multi-line blocks, all previous lines are preserved.
The AST returned by this function is not safe to evaluate but
it can be analyzed and expanded.
Examples
Function call:
iex> Code.Fragment.container_cursor_to_quoted("max(some_value, ")
{:ok, {:max, [line: 1], [{:some_value, [line: 1], nil}, {:__cursor__, [line: 1], []}]}}
Containers (for example, a list):
iex> Code.Fragment.container_cursor_to_quoted("[some, value")
{:ok, [{:some, [line: 1], nil}, {:__cursor__, [line: 1], []}]}
If an expression is complete, then the whole expression is discarded
and only the parent is returned:
iex> Code.Fragment.container_cursor_to_quoted("if(is_atom(var)")
{:ok, {:if, [line: 1], [{:__cursor__, [line: 1], []}]}}
this means complete expressions themselves return only the cursor:
iex> Code.Fragment.container_cursor_to_quoted("if(is_atom(var))")
{:ok, {:__cursor__, [line: 1], []}}
Operators are also included from Elixir v1.15:
iex> Code.Fragment.container_cursor_to_quoted("foo +")
{:ok, {:+, [line: 1], [{:foo, [line: 1], nil}, {:__cursor__, [line: 1], []}]}}
In order to parse the left-side of -> properly, which appears both
in anonymous functions and do-end blocks, the trailing fragment option
must be given with the rest of the contents:
iex> Code.Fragment.container_cursor_to_quoted("fn x", trailing_fragment: " -> :ok end")
{:ok, {:fn, [line: 1], [{:->, [line: 1], [[{:__cursor__, [line: 1], []}], :ok]}]}}
Options
	:file - the filename to be reported in case of parsing errors.
Defaults to "nofile".

	:line - the starting line of the string being parsed.
Defaults to 1.

	:column - the starting column of the string being parsed.
Defaults to 1.

	:columns - when true, attach a :column key to the quoted
metadata. Defaults to false.

	:token_metadata - when true, includes token-related
metadata in the expression AST, such as metadata for do and end
tokens, for closing tokens, end of expressions, as well as delimiters
for sigils. See Macro.metadata/0. Defaults to false.

	:literal_encoder - a function to encode literals in the AST.
See the documentation for Code.string_to_quoted/2 for more information.

	:trailing_fragment (since v1.18.0) - the rest of the contents after
the cursor. This is necessary to correctly complete anonymous functions
and the left-hand side of ->

 cursor_context(fragment, opts \\ [])

 (since 1.13.0)

 @spec cursor_context(List.Chars.t(), cursor_opts()) ::
 {:alias, charlist()}
 | {:alias, inside_alias, charlist()}
 | {:block_keyword_or_binary_operator, charlist()}
 | {:dot, inside_dot, charlist()}
 | {:dot_arity, inside_dot, charlist()}
 | {:dot_call, inside_dot, charlist()}
 | :expr
 | {:local_or_var, charlist()}
 | {:local_arity, charlist()}
 | {:local_call, charlist()}
 | {:anonymous_call, inside_caller}
 | {:module_attribute, charlist()}
 | {:operator, charlist()}
 | {:operator_arity, charlist()}
 | {:operator_call, charlist()}
 | :none
 | {:sigil, charlist()}
 | {:struct, inside_struct}
 | {:unquoted_atom, charlist()}
when inside_dot:
 {:alias, charlist()}
 | {:alias, inside_alias, charlist()}
 | {:dot, inside_dot, charlist()}
 | {:module_attribute, charlist()}
 | {:unquoted_atom, charlist()}
 | {:var, charlist()}
 | :expr,
 inside_alias: {:local_or_var, charlist()} | {:module_attribute, charlist()},
 inside_struct:
 charlist()
 | {:alias, inside_alias, charlist()}
 | {:local_or_var, charlist()}
 | {:module_attribute, charlist()}
 | {:dot, inside_dot, charlist()},
 inside_caller: {:var, charlist()} | {:module_attribute, charlist()}

Receives a string and returns the cursor context.
This function receives a string with an Elixir code fragment,
representing a cursor position, and based on the string, it
provides contextual information about the latest token.
The return of this function can then be used to provide tips,
suggestions, and autocompletion functionality.
This function performs its analyses on tokens. This means
it does not understand how constructs are nested within each
other. See the "Limitations" section below.
Consider adding a catch-all clause when handling the return
type of this function as new cursor information may be added
in future releases.
Examples
iex> Code.Fragment.cursor_context("")
:expr

iex> Code.Fragment.cursor_context("hello_wor")
{:local_or_var, ~c"hello_wor"}
Return values
	{:alias, charlist} - the context is an alias, potentially
a nested one, such as Hello.Wor or HelloWor

	{:alias, inside_alias, charlist} - the context is an alias, potentially
a nested one, where inside_alias is an expression {:module_attribute, charlist}
or {:local_or_var, charlist} and charlist is a static part
Examples are __MODULE__.Submodule or @hello.Submodule

	{:block_keyword_or_binary_operator, charlist} - may be a block keyword (do, end, after,
catch, else, rescue) or a binary operator

	{:dot, inside_dot, charlist} - the context is a dot
where inside_dot is either a {:var, charlist}, {:alias, charlist},
{:module_attribute, charlist}, {:unquoted_atom, charlist} or a dot
itself. If a var is given, this may either be a remote call or a map
field access. Examples are Hello.wor, :hello.wor, hello.wor,
Hello.nested.wor, hello.nested.wor, and @hello.world. If charlist
is empty and inside_dot is an alias, then the autocompletion may either
be an alias or a remote call.

	{:dot_arity, inside_dot, charlist} - the context is a dot arity
where inside_dot is either a {:var, charlist}, {:alias, charlist},
{:module_attribute, charlist}, {:unquoted_atom, charlist} or a dot
itself. If a var is given, it must be a remote arity. Examples are
Hello.world/, :hello.world/, hello.world/2, and @hello.world/2

	{:dot_call, inside_dot, charlist} - the context is a dot
call. This means parentheses or space have been added after the expression.
where inside_dot is either a {:var, charlist}, {:alias, charlist},
{:module_attribute, charlist}, {:unquoted_atom, charlist} or a dot
itself. If a var is given, it must be a remote call. Examples are
Hello.world(, :hello.world(, Hello.world, hello.world(, hello.world,
and @hello.world(

	:expr - may be any expression. Autocompletion may suggest an alias,
local or var

	{:local_or_var, charlist} - the context is a variable or a local
(import or local) call, such as hello_wor

	{:local_arity, charlist} - the context is a local (import or local)
arity, such as hello_world/

	{:local_call, charlist} - the context is a local (import or local)
call, such as hello_world(and hello_world

	{:anonymous_call, inside_caller} - the context is an anonymous
call, such as fun.(and @fun.(.

	{:module_attribute, charlist} - the context is a module attribute,
such as @hello_wor

	{:operator, charlist} - the context is an operator, such as + or
==. Note textual operators, such as when do not appear as operators
but rather as :local_or_var. @ is never an :operator and always a
:module_attribute

	{:operator_arity, charlist} - the context is an operator arity, which
is an operator followed by /, such as +/, not/ or when/

	{:operator_call, charlist} - the context is an operator call, which is
an operator followed by space, such as left +, not or x when

	:none - no context possible

	{:sigil, charlist} - the context is a sigil. It may be either the beginning
of a sigil, such as ~ or ~s, or an operator starting with ~, such as
~> and ~>>

	{:struct, inside_struct} - the context is a struct, such as %, %UR or %URI.
inside_struct can either be a charlist in case of a static alias or an
expression {:alias, inside_alias, charlist}, {:module_attribute, charlist},
{:local_or_var, charlist}, {:dot, inside_dot, charlist}

	{:unquoted_atom, charlist} - the context is an unquoted atom. This
can be any atom or an atom representing a module

We recommend looking at the test suite of this function for a complete list
of examples and their return values.
Limitations
The analysis is based on the current token, by analysing the last line of
the input. For example, this code:
iex> Code.Fragment.cursor_context("%URI{")
:expr
returns :expr, which suggests any variable, local function or alias
could be used. However, given we are inside a struct, the best suggestion
would be a struct field. In such cases, you can use
container_cursor_to_quoted, which will return the container of the AST
the cursor is currently within. You can then analyse this AST to provide
completion of field names.
As a consequence of its token-based implementation, this function considers
only the last line of the input. This means it will show suggestions inside
strings, heredocs, etc, which is intentional as it helps with doctests,
references, and more.

 lines(string)

 (since 1.19.0)

Returns the list of lines in the given string, preserving their line endings.
Only the line endings recognized by the Elixir compiler are
considered, namely \r\n and \n. If you would like the retrieve
lines without their line endings, use String.split(string, ["\r\n", "\n"]).
Examples
iex> Code.Fragment.lines("foo\r\nbar\r\nbaz")
["foo\r\n", "bar\r\n", "baz"]

iex> Code.Fragment.lines("foo\nbar\nbaz")
["foo\n", "bar\n", "baz"]

iex> Code.Fragment.lines("")
[""]

 surround_context(fragment, position, options \\ [])

 (since 1.13.0)

 @spec surround_context(List.Chars.t(), position(), cursor_opts()) ::
 %{begin: position(), end: position(), context: context} | :none
when context:
 {:alias, charlist()}
 | {:alias, inside_alias, charlist()}
 | {:dot, inside_dot, charlist()}
 | {:local_or_var, charlist()}
 | {:local_arity, charlist()}
 | {:local_call, charlist()}
 | {:module_attribute, charlist()}
 | {:operator, charlist()}
 | {:sigil, charlist()}
 | {:struct, inside_struct}
 | {:unquoted_atom, charlist()}
 | {:keyword, charlist()}
 | {:key, charlist()}
 | {:capture_arg, charlist()},
 inside_dot:
 {:alias, charlist()}
 | {:alias, inside_alias, charlist()}
 | {:dot, inside_dot, charlist()}
 | {:module_attribute, charlist()}
 | {:unquoted_atom, charlist()}
 | {:var, charlist()}
 | :expr,
 inside_alias: {:local_or_var, charlist()} | {:module_attribute, charlist()},
 inside_struct:
 charlist()
 | {:alias, inside_alias, charlist()}
 | {:local_or_var, charlist()}
 | {:module_attribute, charlist()}
 | {:dot, inside_dot, charlist()}

Receives a string and returns the surround context.
This function receives a string with an Elixir code fragment
and a position. It returns a map containing the beginning
and ending of the identifier alongside its context, or :none
if there is nothing with a known context. This is useful to
provide mouse-over and highlight functionality in editors.
The difference between cursor_context/2 and surround_context/3
is that the former assumes the expression in the code fragment
is incomplete. For example, do in cursor_context/2 may be
a keyword or a variable or a local call, while surround_context/3
assumes the expression in the code fragment is complete, therefore
do would always be a keyword.
The position contains both the line and column, both starting
with the index of 1. The column must precede the surrounding expression.
For example, the expression foo, will return something for the columns
1, 2, and 3, but not 4:
foo
^ column 1

foo
 ^ column 2

foo
 ^ column 3

foo
 ^ column 4
The returned map contains the column the expression starts and the
first column after the expression ends.
Similar to cursor_context/2, this function is also token-based
and may not be accurate under all circumstances. See the
"Return values" and "Limitations" section under cursor_context/2
for more information.
Examples
iex> Code.Fragment.surround_context("foo", {1, 1})
%{begin: {1, 1}, context: {:local_or_var, ~c"foo"}, end: {1, 4}}
Differences to cursor_context/2
Because surround_context/3 attempts to capture complex expressions,
it has some differences to cursor_context/2:
	dot_call/dot_arity and operator_call/operator_arity
are collapsed into dot and operator contexts respectively
as there aren't any meaningful distinctions between them

	On the other hand, this function still makes a distinction between
local_call/local_arity and local_or_var, since the latter can
be a local or variable

	@ when not followed by any identifier is returned as {:operator, ~c"@"}
(in contrast to {:module_attribute, ~c""} in cursor_context/2

	This function never returns empty sigils {:sigil, ~c""} or empty structs
{:struct, ~c""} as context

	This function returns keywords as {:keyword, ~c"do"}

	This function never returns :expr

We recommend looking at the test suite of this function for a complete list
of examples and their return values.

Kernel.ParallelCompiler

A module responsible for compiling and requiring files in parallel.

 Summary

 Types

 compile_opts()

 Options for parallel compilation functions.

 error()

 info()

 require_opts()

 Options for requiring files in parallel.

 warning()

 Functions

 async(fun)

 deprecated

 Starts a task for parallel compilation.

 compile(files, options \\ [])

 Compiles the given files.

 compile_to_path(files, path, options \\ [])

 Compiles the given files and writes resulting BEAM files into path.

 pmap(collection, fun)

 Perform parallel compilation of collection with fun.

 require(files, options \\ [])

 Requires the given files in parallel.

 Types

 compile_opts()

 @type compile_opts() :: [
 after_compile: (-> term()),
 each_file: (Path.t() -> term()),
 each_long_compilation: (Path.t() -> term()) | (Path.t(), pid() -> term()),
 each_long_verification: (module() -> term()) | (module(), pid() -> term()),
 each_module: (Path.t(), module(), binary() -> term()),
 each_cycle: ([module()], [Code.diagnostic(:warning)] ->
 {:compile, [module()], [Code.diagnostic(:warning)]}
 | {:runtime, [module()], [Code.diagnostic(:warning)]}),
 long_compilation_threshold: pos_integer(),
 long_verification_threshold: pos_integer(),
 verification: boolean(),
 profile: :time,
 dest: Path.t(),
 beam_timestamp: term(),
 return_diagnostics: boolean(),
 max_concurrency: pos_integer()
]

Options for parallel compilation functions.

 error()

 @type error() :: {file :: Path.t(), Code.position(), message :: String.t()}

 info()

 @type info() :: %{
 runtime_warnings: [Code.diagnostic(:warning)],
 compile_warnings: [Code.diagnostic(:warning)]
}

 require_opts()

 @type require_opts() :: [
 each_file: (Path.t() -> term()),
 each_module: (Path.t(), module(), binary() -> term()),
 max_concurrency: pos_integer(),
 return_diagnostics: boolean()
]

Options for requiring files in parallel.

 warning()

 @type warning() :: {file :: Path.t(), Code.position(), message :: String.t()}

 Functions

 async(fun)

 This function is deprecated. Use `pmap/2` instead.

Starts a task for parallel compilation.

 compile(files, options \\ [])

 (since 1.6.0)

 @spec compile([Path.t()], compile_opts()) ::
 {:ok, [atom()], [warning()] | info()}
 | {:error, [error()] | [Code.diagnostic(:error)], [warning()] | info()}

Compiles the given files.
Those files are compiled in parallel and can automatically
detect dependencies between them. Once a dependency is found,
the current file stops being compiled until the dependency is
resolved.
It must be invoked with return_diagnostics: true as option, so it returns
{:ok, modules, warnings_info} or {:error, errors, warnings_info},
where warnings_info has the shape:
%{
 runtime_warnings: [warning],
 compile_warnings: [warning]
}
Options
	:after_compile - invoked after all modules are compiled, but before
they are verified. If the files are being written to disk, such as in
compile_to_path/3, this will be invoked after the files are written

	:each_file - for each file compiled, invokes the callback passing the
file

	:each_long_compilation - for each file that takes more than a given
timeout (see the :long_compilation_threshold option) to compile, invoke
this callback passing the file as its argument (and optionally the PID
of the process compiling the file)

	:each_long_verification (since v1.19.0) - for each file that takes more
than a given timeout (see the :long_verification_threshold option) to
compile, invoke this callback passing the module as its argument (and
optionally the PID of the process verifying the module)

	:each_module - for each module compiled, invokes the callback passing
the file, module and the module bytecode

	:each_cycle - after the given files are compiled, invokes this function
that should return the following values:
	{:compile, modules, warnings} - to continue compilation with a list of
further modules to compile
	{:runtime, modules, warnings} - to stop compilation and verify the list
of modules because dependent modules have changed

	:long_compilation_threshold - the timeout (in seconds) to check for files
taking too long to compile. For each file that exceeds the threshold, the
:each_long_compilation callback is invoked. Defaults to 10 seconds.

	:long_verification_threshold (since v1.19.0) - the timeout (in seconds) to
check for modules taking too long to compile. For each module that exceeds the
threshold, the :each_long_verification callback is invoked. Defaults to
10 seconds.

	:verification (since v1.19.0) - if code verification, such as unused functions,
deprecation warnings, and type checking should run. Defaults to true.
We recommend disabling it only for debugging purposes.

	:profile - if set to :time measure the compilation time of each compilation cycle
 and group pass checker

	:dest - the destination directory for the BEAM files. When using compile/2,
this information is only used to properly annotate the BEAM files before
they are loaded into memory. If you want a file to actually be written to
dest, use compile_to_path/3 instead.

	:beam_timestamp - the modification timestamp to give all BEAM files

	:return_diagnostics (since v1.15.0) - returns maps with information instead of
a list of warnings and returns diagnostics as maps instead of tuples.
This option must be set to true, except for backwards compatibibility reasons.

	:max_concurrency - the maximum number of files to compile in parallel.
Setting this option to 1 will compile files sequentially.
Defaults to the number of schedulers online, or at least 2.

 compile_to_path(files, path, options \\ [])

 (since 1.6.0)

 @spec compile_to_path([Path.t()], Path.t(), compile_opts()) ::
 {:ok, [atom()], [warning()] | info()}
 | {:error, [error()] | [Code.diagnostic(:error)], [warning()] | info()}

Compiles the given files and writes resulting BEAM files into path.
See compile/2 for more information.

 pmap(collection, fun)

 (since 1.16.0)

Perform parallel compilation of collection with fun.
If you have a file that needs to compile other modules in parallel,
the spawned processes need to be aware of the compiler environment.
This function allows a developer to perform such tasks.

 require(files, options \\ [])

 (since 1.6.0)

 @spec require([Path.t()], require_opts()) ::
 {:ok, [atom()], [warning()] | info()}
 | {:error, [error()] | [Code.diagnostic(:error)], [warning()] | info()}

Requires the given files in parallel.
Opposite to compile, dependencies are not attempted to be
automatically solved between files.
It must be invoked with return_diagnostics: true as option, so it returns
{:ok, modules, warnings_info} or {:error, errors, warnings_info},
where warnings_info has the shape:
%{
 runtime_warnings: [warning],
 compile_warnings: [warning]
}
Options
	:each_file - for each file compiled, invokes the callback passing the
file

	:each_module - for each module compiled, invokes the callback passing
the file, module and the module bytecode

	:max_concurrency - the maximum number of files to compile in parallel.
Setting this option to 1 will compile files sequentially.
Defaults to the number of schedulers online, or at least 2.

	:return_diagnostics (since v1.15.0) - returns maps with information instead of
a list of warnings and returns diagnostics as maps instead of tuples.
This option must be set to true, except for backwards compatibibility reasons.

Macro

Functions for manipulating AST and implementing macros.
Macros are compile-time constructs that receive Elixir's AST as input
and return Elixir's AST as output.
Many of the functions in this module exist precisely to work with Elixir
AST, to traverse, query, and transform it.
Let's see a simple example that shows the difference between functions
and macros:
defmodule Example do
 defmacro macro_inspect(value) do
 IO.inspect(value)
 value
 end

 def fun_inspect(value) do
 IO.inspect(value)
 value
 end
end
Now let's give it a try:
import Example

macro_inspect(1)
#=> 1
#=> 1

fun_inspect(1)
#=> 1
#=> 1
So far they behave the same, as we are passing an integer as argument.
But let's see what happens when we pass an expression:
macro_inspect(1 + 2)
#=> {:+, [line: 3], [1, 2]}
#=> 3

fun_inspect(1 + 2)
#=> 3
#=> 3
The macro receives the representation of the code given as argument,
while a function receives the result of the code given as argument.
A macro must return a superset of the code representation. See
input/0 and output/0 for more information.
To learn more about Elixir's AST and how to build them programmatically,
see quote/2.
Evaluating code
The functions in this module do not evaluate code. In fact,
evaluating code from macros is often an anti-pattern. For code
evaluation, see the Code module.

 Summary

 Types

 captured_remote_function()

 A captured remote function in the format of &Mod.fun/arity

 escape_opts()

 input()

 The inputs of a macro

 inspect_atom_opts()

 metadata()

 A keyword list of AST metadata.

 output()

 The output of a macro

 t()

 Abstract Syntax Tree (AST)

 Functions

 camelize(string)

 Converts the given string to CamelCase format.

 classify_atom(atom)

 Classifies an atom based on its possible AST placement.

 compile_apply(mod, fun, args, caller)

 Applies a mod, function, and args at compile-time in caller.

 dbg(code, options, env)

 Default backend for Kernel.dbg/2.

 decompose_call(ast)

 Decomposes a local or remote call into its remote part (when provided),
function name and argument list.

 escape(expr, opts \\ [])

 Recursively escapes a value so it can be inserted into a syntax tree.

 expand(ast, env)

 Receives an AST node and expands it until it can no longer
be expanded.

 expand_literals(ast, env)

 Expands all literals in ast with the given env.

 expand_literals(ast, acc, fun)

 Expands all literals in ast with the given acc and fun.

 expand_once(ast, env)

 Receives an AST node and expands it once.

 generate_arguments(amount, context)

 Generates AST nodes for a given number of required argument
variables using Macro.var/2.

 generate_unique_arguments(amount, context)

 Generates AST nodes for a given number of required argument
variables using Macro.unique_var/2.

 inspect_atom(source_format, atom, opts \\ [])

 Inspects atom according to different source formats.

 operator?(name, arity)

 Returns true if the given name and arity is an operator.

 path(ast, fun)

 Returns the path to the node in ast for which fun returns a truthy value.

 pipe(expr, call_args, position)

 Pipes expr into the call_args at the given position.

 postwalk(ast, fun)

 This function behaves like prewalk/2, but performs a depth-first,
post-order traversal of quoted expressions.

 postwalk(ast, acc, fun)

 This functions behaves like prewalk/3, but performs a depth-first,
post-order traversal of quoted expressions using an accumulator.

 postwalker(ast)

 Returns an enumerable that traverses the ast in depth-first,
post-order traversal.

 prewalk(ast, fun)

 Performs a depth-first, pre-order traversal of quoted expressions.

 prewalk(ast, acc, fun)

 Performs a depth-first, pre-order traversal of quoted expressions
using an accumulator.

 prewalker(ast)

 Returns an enumerable that traverses the ast in depth-first,
pre-order traversal.

 quoted_literal?(term)

 Returns true if the given quoted expression represents a quoted literal.

 special_form?(name, arity)

 Returns true if the given name and arity is a special form.

 struct!(module, env)

 deprecated

 struct_info!(module, env)

 Extracts the struct information.

 to_string(tree)

 Converts the given expression AST to a string.

 to_string(tree, fun)

 deprecated

 Converts the given expression AST to a string.

 traverse(ast, acc, pre, post)

 Performs a depth-first traversal of quoted expressions
using an accumulator.

 underscore(atom_or_string)

 Converts the given argument to a string with the underscore-slash format.

 unescape_string(string)

 Unescapes characters in a string.

 unescape_string(string, map)

 Unescapes characters in a string according to the given mapping.

 unique_var(var, context)

 Generates an AST node representing a unique variable
given by the atoms var and context.

 unpipe(expr)

 Breaks a pipeline expression into a list.

 update_meta(quoted, fun)

 Applies the given function to the node metadata if it contains one.

 validate(expr)

 Validates the given expressions are valid quoted expressions.

 var(var, context)

 Generates an AST node representing the variable given
by the atoms var and context.

 Types

 captured_remote_function()

 @type captured_remote_function() :: fun()

A captured remote function in the format of &Mod.fun/arity

 escape_opts()

 @type escape_opts() :: [
 unquote: boolean(),
 prune_metadata: boolean(),
 generated: boolean()
]

 input()

 @type input() ::
 input_expr() | {input(), input()} | [input()] | atom() | number() | binary()

The inputs of a macro

 inspect_atom_opts()

 @type inspect_atom_opts() :: [{:escape, (binary(), char() -> binary())}]

 metadata()

 @type metadata() :: keyword()

A keyword list of AST metadata.
The metadata in Elixir AST is a keyword list of values. Any key can be used
and different parts of the compiler may use different keys. For example,
the AST received by a macro will always include the :line annotation,
while the AST emitted by quote/2 will only have the :line annotation if
the :line option is provided.
The following metadata keys are public:
	:context - Defines the context in which the AST was generated.
For example, quote/2 will include the module calling quote/2
as the context. This is often used to distinguish regular code from code
generated by a macro or by quote/2.

	:counter - The variable counter used for variable hygiene. In terms of
the compiler, each variable is identified by the combination of either
name and metadata[:counter], or name and context.

	:from_brackets - Used to determine whether a call to Access.get/3 is from
bracket syntax.

	:from_interpolation - Used to determine whether a call to Kernel.to_string/1 is
from interpolation.

	:generated - Whether the code should be considered as generated by
the compiler or not. This means the compiler and tools like Dialyzer may not
emit certain warnings.

	:if_undefined - How to expand a variable that is undefined. Set it to
:apply if you want a variable to become a nullary call without warning
or :raise

	:keep - Used by quote/2 with the option location: :keep to annotate
the file and the line number of the quoted source.

	:line - The line number of the AST node. Note line information is discarded
from quoted code but can be enabled back via the :line option.

The following metadata keys are enabled by Code.string_to_quoted/2:
	:assoc - contains metadata about the => operator location in a
map key-value AST node (when :token_metadata is true). This entry
appears on map key nodes only

	:closing - contains metadata about the closing pair, such as a }
in a tuple or in a map, or such as the closing) in a function call
with parens (when :token_metadata is true). If the function call
has a do-end block attached to it, its metadata is found under the
:do and :end metadata

	:column - the column number of the AST node (when :columns is true).
Note column information is always discarded from quoted code.

	:delimiter - contains the opening delimiter for sigils, strings,
and charlists as a string (such as "{", "/", "'", and the like)

	:do - contains metadata about the do location in a function call with
do-end blocks (when :token_metadata is true)

	:end - contains metadata about the end location in a function call with
do-end blocks (when :token_metadata is true)

	:end_of_expression - denotes when the end of expression effectively
happens (when :token_metadata is true). This is only available for
expressions inside "blocks of code", which are either direct children
of a __block__ or the right side of ->. The last expression of the
block does not have metadata if it is not followed by an end of line
character (either a newline or ;). This entry may appear multiple times
in the same metadata if the expression is surround by parens

	:format - set to :keyword when an atom is defined as a keyword.
It may also be set to :atom to distinguish nil, false, and true

	:indentation - indentation of a sigil heredoc

	:parens - denotes a node was surrounded by parens for grouping.
This entry may appear multiple times in the same metadata if
multiple pairs are used for grouping

The following metadata keys are private:
	:alias - Used for alias hygiene.
	:ambiguous_op - Used for improved error messages in the compiler.
	:imports - Used for import hygiene.
	:var - Used for improved error messages on undefined variables.

Do not rely on them as they may change or be fully removed in future versions
of the language. They are often used by quote/2 and the compiler to provide
features like hygiene, better error messages, and so forth.
If you introduce custom keys into the AST metadata, please make sure to prefix
them with the name of your library or application, so that they will not conflict
with keys that could potentially be introduced by the compiler in the future.

 output()

 @type output() ::
 output_expr()
 | {output(), output()}
 | [output()]
 | atom()
 | number()
 | binary()
 | captured_remote_function()
 | pid()

The output of a macro

 t()

 @type t() :: input()

Abstract Syntax Tree (AST)

 Functions

 camelize(string)

 @spec camelize(String.t()) :: String.t()

Converts the given string to CamelCase format.
This function was designed to camelize language identifiers/tokens,
that's why it belongs to the Macro module. Do not use it as a general
mechanism for camelizing strings as it does not support Unicode or
characters that are not valid in Elixir identifiers.
Examples
iex> Macro.camelize("foo_bar")
"FooBar"

iex> Macro.camelize("foo/bar")
"Foo.Bar"
If uppercase characters are present, they are not modified in any way
as a mechanism to preserve acronyms:
iex> Macro.camelize("API.V1")
"API.V1"
iex> Macro.camelize("API_SPEC")
"API_SPEC"

 classify_atom(atom)

 (since 1.14.0)

 @spec classify_atom(atom()) :: :alias | :identifier | :quoted | :unquoted

Classifies an atom based on its possible AST placement.
It returns one of the following atoms:
	:alias - the atom represents an alias

	:identifier - the atom can be used as a variable or local function
call (as well as be an unquoted atom)

	:unquoted - the atom can be used in its unquoted form,
includes operators and atoms with @ in them

	:quoted - all other atoms which can only be used in their quoted form

Most operators are going to be :unquoted, such as :+, with
some exceptions returning :quoted due to ambiguity, such as
:"::". Use operator?/2 to check if a given atom is an operator.
Examples
iex> Macro.classify_atom(:foo)
:identifier
iex> Macro.classify_atom(Foo)
:alias
iex> Macro.classify_atom(:foo@bar)
:unquoted
iex> Macro.classify_atom(:+)
:unquoted
iex> Macro.classify_atom(:Foo)
:unquoted
iex> Macro.classify_atom(:"with spaces")
:quoted

 compile_apply(mod, fun, args, caller)

 (since 1.16.0)

Applies a mod, function, and args at compile-time in caller.
This is used when you want to dynamically invoke a function at
compile-time and force it to be tracked as a compile-time dependency.
For example, this is used by dbg/1 to force the dbg_callback
configuration to be a compile-time dependency.
If you want to "invoke" a macro instead, remember macros are by
definition compile-time, and you can use Macro.expand/2.

 dbg(code, options, env)

 (since 1.14.0)

 @spec dbg(t(), t(), Macro.Env.t()) :: t()

Default backend for Kernel.dbg/2.
This function provides a default backend for Kernel.dbg/2. See the
Kernel.dbg/2 documentation for more information.
This function:
	prints information about the given env
	prints information about code and its returned value (using opts to inspect terms)
	returns the value returned by evaluating code

You can call this function directly to build Kernel.dbg/2 backends that fall back
to this function.
This function raises if the context of the given env is :match or :guard.

 decompose_call(ast)

 @spec decompose_call(t()) :: {atom(), [t()]} | {t(), atom(), [t()]} | :error

Decomposes a local or remote call into its remote part (when provided),
function name and argument list.
Returns :error when an invalid call syntax is provided.
Examples
iex> Macro.decompose_call(quote(do: foo))
{:foo, []}

iex> Macro.decompose_call(quote(do: foo()))
{:foo, []}

iex> Macro.decompose_call(quote(do: foo(1, 2, 3)))
{:foo, [1, 2, 3]}

iex> Macro.decompose_call(quote(do: Elixir.M.foo(1, 2, 3)))
{{:__aliases__, [], [:Elixir, :M]}, :foo, [1, 2, 3]}

iex> Macro.decompose_call(quote(do: 42))
:error

iex> Macro.decompose_call(quote(do: {:foo, [], []}))
:error

 escape(expr, opts \\ [])

 @spec escape(term(), escape_opts()) :: t()

Recursively escapes a value so it can be inserted into a syntax tree.
Examples
iex> Macro.escape(:foo)
:foo

iex> Macro.escape({:a, :b, :c})
{:{}, [], [:a, :b, :c]}

iex> Macro.escape({:unquote, [], [1]}, unquote: true)
1
Options
	:unquote - when true, this function leaves unquote/1 and
unquote_splicing/1 expressions unescaped, effectively unquoting
the contents on escape. This option is useful only when escaping
ASTs which may have quoted fragments in them. Note this option
will give a special meaning to quote/unquote nodes, which need
to be valid AST before escaping. Defaults to false.

	:prune_metadata - when true, removes most metadata from escaped AST
nodes. Note this option changes the semantics of escaped code and
it should only be used when escaping ASTs. Defaults to false.

	:generated - (since v1.19.0) Whether the AST should be considered as generated
by the compiler or not. This means the compiler and tools like Dialyzer may not
emit certain warnings.
As an example for :prune_metadata, ExUnit stores the AST of every
assertion, so when an assertion fails we can show code snippets to users.
Without this option, each time the test module is compiled, we would get a
different MD5 of the module bytecode, because the AST contains metadata,
such as counters, specific to the compilation environment. By pruning
the metadata, we ensure that the module is deterministic and reduce
the amount of data ExUnit needs to keep around. Only the minimal
amount of metadata is kept, such as :line, :no_parens and :delimiter.

Comparison to quote/2
The escape/2 function is sometimes confused with quote/2,
because the above examples behave the same with both. The key difference is
best illustrated when the value to escape is stored in a variable.
iex> Macro.escape({:a, :b, :c})
{:{}, [], [:a, :b, :c]}
iex> quote do: {:a, :b, :c}
{:{}, [], [:a, :b, :c]}

iex> value = {:a, :b, :c}
iex> Macro.escape(value)
{:{}, [], [:a, :b, :c]}

iex> quote do: value
{:value, [], __MODULE__}

iex> value = {:a, :b, :c}
iex> quote do: unquote(value)
** (ArgumentError) tried to unquote invalid AST: {:a, :b, :c}
Did you forget to escape term using Macro.escape/1?
escape/2 is used to escape values (either directly passed or variable
bound), while quote/2 produces syntax trees for
expressions.
Dealing with references and other runtime values
Macros work at compile-time and therefore Macro.escape/1 can only escape values
that are valid during compilation, such as numbers, atoms, tuples, maps, binaries,
etc.
However, you may have values at compile-time which cannot be escaped, such as
references and pids, since the process or memory address they point to will
no longer exist once compilation completes. Attempting to escape said values will
raise an exception. This is a common issue when working with NIFs.
Luckily, Elixir v1.19 introduces a mechanism that allows those values to be escaped,
as long as they are encapsulated by a struct within a module that defines the
__escape__/1 function. This is possible as long as the reference has a natural
text or binary representation that can be serialized during compilation.
Let's imagine we have the following struct:
defmodule WrapperStruct do
 defstruct [:ref]

 def new(...), do: %WrapperStruct{ref: ...}

 # efficiently dump to / load from binaries
 def dump_to_binary(%WrapperStruct{ref: ref}), do: ...
 def load_from_binary(binary), do: %WrapperStruct{ref: ...}
end
Such a struct could not be used in module attributes or escaped with Macro.escape/2:
defmodule Foo do
 @my_struct WrapperStruct.new(...)
 def my_struct, do: @my_struct
end

** (ArgumentError) cannot inject attribute @my_struct into function/macro because cannot escape #Reference<...>
To address this, structs can re-define how they should be escaped by defining a custom
__escape__/1 function which returns the AST. In our example:
defmodule WrapperStruct do
 # ...

 def __escape__(struct) do
 # dump to a binary representation at compile-time
 binary = dump_to_binary(struct)
 quote do
 # load from the binary representation at runtime
 WrapperStruct.load_from_binary(unquote(Macro.escape(binary)))
 end
 end
end
Now, our example above will be expanded as:
def my_struct, do: WrapperStruct.load_from_binary(<<...>>)
When implementing __escape__/1, you must ensure that the quoted expression
will evaluate to a struct that represents the one given as argument.

 expand(ast, env)

 @spec expand(input(), Macro.Env.t()) :: output()

Receives an AST node and expands it until it can no longer
be expanded.
Note this function does not traverse the AST, only the root
node is expanded.
This function uses expand_once/2 under the hood. Check
it out for more information and examples.

 expand_literals(ast, env)

 (since 1.14.1)

 @spec expand_literals(input(), Macro.Env.t()) :: output()

Expands all literals in ast with the given env.
This function is mostly used to remove compile-time dependencies
from AST nodes. In such cases, the given environment is usually
manipulated to represent a function:
Macro.expand_literals(ast, %{env | function: {:my_code, 1}})
At the moment, the only expandable literal nodes in an AST are
aliases, so this function only expands aliases (and it does so
anywhere in a literal).
However, be careful when removing compile-time dependencies between
modules. If you remove them but you still invoke the module at
compile-time, Elixir will be unable to properly recompile modules
when they change.

 expand_literals(ast, acc, fun)

 (since 1.14.1)

 @spec expand_literals(t(), acc, (t(), acc -> {t(), acc})) :: t() when acc: term()

Expands all literals in ast with the given acc and fun.
fun will be invoked with an expandable AST node and acc and
must return a new node with acc. This is a general version of
expand_literals/2 which supports a custom expansion function.
Please check expand_literals/2 for use cases and pitfalls.

 expand_once(ast, env)

 @spec expand_once(input(), Macro.Env.t()) :: output()

Receives an AST node and expands it once.
The following contents are expanded:
	Macros (local or remote)
	Aliases are expanded (if possible) and return atoms
	Compilation environment macros (__CALLER__/0, __DIR__/0, __ENV__/0 and __MODULE__/0)
	Module attributes reader (@foo)

If the expression cannot be expanded, it returns the expression
itself. This function does not traverse the AST, only the root
node is expanded. The expansion happens as if it was expanded by
the Elixir compiler and therefore compilation tracers will be invoked
and deprecation warnings will be emitted during the expansion.
expand_once/2 performs the expansion just once. Check expand/2
to perform expansion until the node can no longer be expanded.
Examples
In the example below, we have a macro that generates a module
with a function named name_length that returns the length
of the module name. The value of this function will be calculated
at compilation time and not at runtime.
Consider the implementation below:
defmacro defmodule_with_length(name, do: block) do
 length = length(Atom.to_charlist(name))

 quote do
 defmodule unquote(name) do
 def name_length, do: unquote(length)
 unquote(block)
 end
 end
end
When invoked like this:
defmodule_with_length My.Module do
 def other_function, do: ...
end
The compilation will fail because My.Module when quoted
is not an atom, but a syntax tree as follows:
{:__aliases__, [], [:My, :Module]}
That said, we need to expand the aliases node above to an
atom, so we can retrieve its length. Expanding the node is
not straightforward because we also need to expand the
caller aliases. For example:
alias MyHelpers, as: My

defmodule_with_length My.Module do
 def other_function, do: ...
end
The final module name will be MyHelpers.Module and not
My.Module. With Macro.expand/2, such aliases are taken
into consideration. Local and remote macros are also
expanded. We could rewrite our macro above to use this
function as:
defmacro defmodule_with_length(name, do: block) do
 expanded = Macro.expand(name, __CALLER__)
 length = length(Atom.to_charlist(expanded))

 quote do
 defmodule unquote(name) do
 def name_length, do: unquote(length)
 unquote(block)
 end
 end
end

 generate_arguments(amount, context)

 (since 1.5.0)

 @spec generate_arguments(0, context :: atom()) :: []

 @spec generate_arguments(pos_integer(), context) :: [{atom(), [], context}, ...]
when context: atom()

Generates AST nodes for a given number of required argument
variables using Macro.var/2.
Note the arguments are not unique. If you later on want
to access the same variables, you can invoke this function
with the same inputs. Use generate_unique_arguments/2 to
generate unique arguments that can't be overridden.
Examples
iex> Macro.generate_arguments(2, __MODULE__)
[{:arg1, [], __MODULE__}, {:arg2, [], __MODULE__}]

 generate_unique_arguments(amount, context)

 (since 1.11.3)

 @spec generate_unique_arguments(0, context :: atom()) :: []

 @spec generate_unique_arguments(pos_integer(), context) :: [
 {atom(), [{:counter, integer()}], context},
 ...
]
when context: atom()

Generates AST nodes for a given number of required argument
variables using Macro.unique_var/2.
The second argument is generally the macro caller's module.
Examples
[var1, var2] = Macro.generate_unique_arguments(2, __CALLER__.module)

 inspect_atom(source_format, atom, opts \\ [])

 (since 1.14.0)

 @spec inspect_atom(:literal | :key | :remote_call, atom(), inspect_atom_opts()) ::
 binary()

Inspects atom according to different source formats.
The atom can be inspected according to the three different
formats it appears in the AST: as a literal (:literal),
as a key (:key), or as the function name of a remote call
(:remote_call).
Options
	:escape - a two-arity function used to escape a quoted
atom content, if necessary. The function receives the atom
content as string and a quote delimiter character, which
should always be escaped. By default the content is escaped
such that the inspected sequence would be parsed as the
given atom.

Examples
As a literal
Literals include regular atoms, quoted atoms, operators,
aliases, and the special nil, true, and false atoms.
iex> Macro.inspect_atom(:literal, nil)
"nil"
iex> Macro.inspect_atom(:literal, :foo)
":foo"
iex> Macro.inspect_atom(:literal, :<>)
":<>"
iex> Macro.inspect_atom(:literal, :Foo)
":Foo"
iex> Macro.inspect_atom(:literal, Foo.Bar)
"Foo.Bar"
iex> Macro.inspect_atom(:literal, :"with spaces")
":\"with spaces\""
As a key
Inspect an atom as a key of a keyword list or a map.
iex> Macro.inspect_atom(:key, :foo)
"foo:"
iex> Macro.inspect_atom(:key, :<>)
"<>:"
iex> Macro.inspect_atom(:key, :Foo)
"Foo:"
iex> Macro.inspect_atom(:key, :"with spaces")
"\"with spaces\":"
As a remote call
Inspect an atom the function name of a remote call.
iex> Macro.inspect_atom(:remote_call, :foo)
"foo"
iex> Macro.inspect_atom(:remote_call, :<>)
"<>"
iex> Macro.inspect_atom(:remote_call, :Foo)
"\"Foo\""
iex> Macro.inspect_atom(:remote_call, :"with spaces")
"\"with spaces\""

 operator?(name, arity)

 (since 1.7.0)

 @spec operator?(name :: atom(), arity()) :: boolean()

Returns true if the given name and arity is an operator.
Examples
iex> Macro.operator?(:not_an_operator, 3)
false
iex> Macro.operator?(:.., 0)
true
iex> Macro.operator?(:+, 1)
true
iex> Macro.operator?(:++, 2)
true
iex> Macro.operator?(:..//, 3)
true

 path(ast, fun)

 (since 1.14.0)

 @spec path(t(), (t() -> as_boolean(term()))) :: [t()] | nil

Returns the path to the node in ast for which fun returns a truthy value.
The path is a list, starting with the node in which fun returns
a truthy value, followed by all of its parents.
Returns nil if fun returns only falsy values.
Computing the path can be an efficient operation when you want
to find a particular node in the AST within its context and then
assert something about it.
Examples
iex> Macro.path(quote(do: [1, 2, 3]), & &1 == 3)
[3, [1, 2, 3]]

iex> Macro.path(quote(do: [1, 2]), & &1 == 5)
nil

iex> Macro.path(quote(do: Foo.bar(3)), & &1 == 3)
[3, quote(do: Foo.bar(3))]

iex> Macro.path(quote(do: %{foo: [bar: :baz]}), & &1 == :baz)
[
 :baz,
 {:bar, :baz},
 [bar: :baz],
 {:foo, [bar: :baz]},
 {:%{}, [], [foo: [bar: :baz]]}
]

 pipe(expr, call_args, position)

 @spec pipe(t(), t(), integer()) :: t()

Pipes expr into the call_args at the given position.
This function can be used to implement |> like functionality. For example,
|> itself is implemented as:
defmacro left |> right do
 Macro.pipe(left, right, 0)
end
expr is the AST of an expression. call_args must be the AST of a call,
otherwise this function will raise an error. As an example, consider the pipe
operator |>/2, which uses this function to build pipelines.
Even if the expression is piped into the AST, it doesn't necessarily mean that
the AST is valid. For example, you could pipe an argument to div/2, effectively
turning it into a call to div/3, which is a function that doesn't exist by
default. The code will raise unless a div/3 function is locally defined.

 postwalk(ast, fun)

 @spec postwalk(t(), (t() -> t())) :: t()

This function behaves like prewalk/2, but performs a depth-first,
post-order traversal of quoted expressions.

 postwalk(ast, acc, fun)

 @spec postwalk(t(), any(), (t(), any() -> {t(), any()})) :: {t(), any()}

This functions behaves like prewalk/3, but performs a depth-first,
post-order traversal of quoted expressions using an accumulator.

 postwalker(ast)

 (since 1.13.0)

 @spec postwalker(t()) :: Enumerable.t()

Returns an enumerable that traverses the ast in depth-first,
post-order traversal.
Examples
iex> ast = quote do: foo(1, "abc")
iex> Enum.map(Macro.postwalker(ast), & &1)
[1, "abc", {:foo, [], [1, "abc"]}]

 prewalk(ast, fun)

 @spec prewalk(t(), (t() -> t())) :: t()

Performs a depth-first, pre-order traversal of quoted expressions.
Returns a new AST where each node is the result of invoking fun on each
corresponding node of ast.
Examples
iex> ast = quote do: 5 + 3 * 7
iex> {:+, _, [5, {:*, _, [3, 7]}]} = ast
iex> new_ast = Macro.prewalk(ast, fn
...> {:+, meta, children} -> {:*, meta, children}
...> {:*, meta, children} -> {:+, meta, children}
...> other -> other
...> end)
iex> {:*, _, [5, {:+, _, [3, 7]}]} = new_ast
iex> Code.eval_quoted(ast)
{26, []}
iex> Code.eval_quoted(new_ast)
{50, []}

 prewalk(ast, acc, fun)

 @spec prewalk(t(), any(), (t(), any() -> {t(), any()})) :: {t(), any()}

Performs a depth-first, pre-order traversal of quoted expressions
using an accumulator.
Returns a tuple where the first element is a new AST where each node is the
result of invoking fun on each corresponding node and the second one is the
final accumulator.
Examples
iex> ast = quote do: 5 + 3 * 7
iex> {:+, _, [5, {:*, _, [3, 7]}]} = ast
iex> {new_ast, acc} = Macro.prewalk(ast, [], fn
...> {:+, meta, children}, acc -> {{:*, meta, children}, [:+ | acc]}
...> {:*, meta, children}, acc -> {{:+, meta, children}, [:* | acc]}
...> other, acc -> {other, acc}
...> end)
iex> {{:*, _, [5, {:+, _, [3, 7]}]}, [:*, :+]} = {new_ast, acc}
iex> Code.eval_quoted(ast)
{26, []}
iex> Code.eval_quoted(new_ast)
{50, []}

 prewalker(ast)

 (since 1.13.0)

 @spec prewalker(t()) :: Enumerable.t()

Returns an enumerable that traverses the ast in depth-first,
pre-order traversal.
Examples
iex> ast = quote do: foo(1, "abc")
iex> Enum.map(Macro.prewalker(ast), & &1)
[{:foo, [], [1, "abc"]}, 1, "abc"]

 quoted_literal?(term)

 (since 1.7.0)

 @spec quoted_literal?(t()) :: boolean()

Returns true if the given quoted expression represents a quoted literal.
Atoms and numbers are always literals. Binaries, lists, tuples,
maps, and structs are only literals if all of their terms are also literals.
Examples
iex> Macro.quoted_literal?(quote(do: "foo"))
true
iex> Macro.quoted_literal?(quote(do: {"foo", 1}))
true
iex> Macro.quoted_literal?(quote(do: {"foo", 1, :baz}))
true
iex> Macro.quoted_literal?(quote(do: %{foo: "bar"}))
true
iex> Macro.quoted_literal?(quote(do: %URI{path: "/"}))
true
iex> Macro.quoted_literal?(quote(do: URI.parse("/")))
false
iex> Macro.quoted_literal?(quote(do: {foo, var}))
false

 special_form?(name, arity)

 (since 1.7.0)

 @spec special_form?(name :: atom(), arity()) :: boolean()

Returns true if the given name and arity is a special form.

 struct!(module, env)

 This function is deprecated. Use Macro.struct_info!/2 instead.

 struct_info!(module, env)

 (since 1.18.0)

 @spec struct_info!(module(), Macro.Env.t()) :: [
 %{
 :field => atom(),
 optional(:required) => boolean(),
 optional(:default) => term()
 }
]

Extracts the struct information.
This is useful when a struct needs to be expanded at
compilation time and the struct being expanded may or may
not have been compiled (including structs in the defined
under the module being compiled). For compiled modules,
it will invoke module.__info__(:struct).
Calling this function also adds an export dependency on the
given struct.
It will raise ArgumentError if the struct is not available.
Compatibility considerations
This function currently returns both :required and :default
entries for each field. While this naming is inconsistent
(a required field should not have a default), this is done for
backwards compatibility purposes.
In future releases, Elixir may introduce truly required struct
fields, the required field will be removed and default will be
present only if the field is optional. Your code should prepare
for such scenario accordingly.

 to_string(tree)

 @spec to_string(t()) :: String.t()

Converts the given expression AST to a string.
This is a convenience function for converting AST into
a string, which discards all formatting of the original
code and wraps newlines around 98 characters. See
Code.quoted_to_algebra/2 as a lower level function
with more control around formatting.
If the AST contains invalid nodes, this function will
attempt to inspect them, to aid debugging, although
the elements won't be formatted accordingly.
Examples
iex> Macro.to_string(quote(do: foo.bar(1, 2, 3)))
"foo.bar(1, 2, 3)"

 to_string(tree, fun)

 This function is deprecated. Use Macro.to_string/1 instead.

 @spec to_string(t(), (t(), String.t() -> String.t())) :: String.t()

Converts the given expression AST to a string.
The given fun is called for every node in the AST with two arguments: the
AST of the node being printed and the string representation of that same
node. The return value of this function is used as the final string
representation for that AST node.
This function discards all formatting of the original code.
Examples
Macro.to_string(quote(do: 1 + 2), fn
 1, _string -> "one"
 2, _string -> "two"
 _ast, string -> string
end)
#=> "one + two"

 traverse(ast, acc, pre, post)

 @spec traverse(t(), any(), (t(), any() -> {t(), any()}), (t(), any() -> {t(), any()})) ::
 {t(), any()}

Performs a depth-first traversal of quoted expressions
using an accumulator.
Returns a tuple where the first element is a new AST and the second one is
the final accumulator. The new AST is the result of invoking pre on each
node of ast during the pre-order phase and post during the post-order
phase.
Examples
iex> ast = quote do: 5 + 3 * 7
iex> {:+, _, [5, {:*, _, [3, 7]}]} = ast
iex> {new_ast, acc} =
...> Macro.traverse(
...> ast,
...> [],
...> fn
...> {:+, meta, children}, acc -> {{:-, meta, children}, [:- | acc]}
...> {:*, meta, children}, acc -> {{:/, meta, children}, [:/ | acc]}
...> other, acc -> {other, acc}
...> end,
...> fn
...> {:-, meta, children}, acc -> {{:min, meta, children}, [:min | acc]}
...> {:/, meta, children}, acc -> {{:max, meta, children}, [:max | acc]}
...> other, acc -> {other, acc}
...> end
...>)
iex> {:min, _, [5, {:max, _, [3, 7]}]} = new_ast
iex> [:min, :max, :/, :-] = acc
iex> Code.eval_quoted(new_ast)
{5, []}

 underscore(atom_or_string)

 @spec underscore(atom() | String.t()) :: String.t()

Converts the given argument to a string with the underscore-slash format.
The argument must either be an atom, representing an Elixir module,
or a string representing a module without the Elixir. prefix.
This function was designed to format language identifiers/tokens with the underscore-slash format,
that's why it belongs to the Macro module. Do not use it as a general
mechanism for underscoring strings as it does not support Unicode or
characters that are not valid in Elixir identifiers.
Examples
iex> Macro.underscore("FooBar")
"foo_bar"

iex> Macro.underscore("Foo.Bar")
"foo/bar"

iex> Macro.underscore(Foo.Bar)
"foo/bar"
In general, underscore can be thought of as the reverse of
camelize, however, in some cases formatting may be lost:
iex> Macro.underscore("SAPExample")
"sap_example"

iex> Macro.camelize("sap_example")
"SapExample"

iex> Macro.camelize("hello_10")
"Hello10"

iex> Macro.camelize("foo/bar")
"Foo.Bar"

 unescape_string(string)

 @spec unescape_string(String.t()) :: String.t()

Unescapes characters in a string.
This is the unescaping behaviour used by default in Elixir
single- and double-quoted strings. Check unescape_string/2
for information on how to customize the escaping map.
In this setup, Elixir will escape the following: \0, \a, \b,
\d, \e, \f, \n, \r, \s, \t and \v. Bytes can be
given as hexadecimals via \xNN and Unicode code points as
\uNNNN escapes.
This function is commonly used on sigil implementations
(like ~r, ~s and others), which receive a raw, unescaped
string, and it can be used anywhere that needs to mimic how
Elixir parses strings.
Examples
iex> Macro.unescape_string("example\\n")
"example\n"
In the example above, we pass a string with \n escaped
and return a version with it unescaped.

 unescape_string(string, map)

 @spec unescape_string(String.t(), (non_neg_integer() -> non_neg_integer() | false)) ::
 String.t()

Unescapes characters in a string according to the given mapping.
Check unescape_string/1 if you want to use the same mapping
as Elixir single- and double-quoted strings.
Mapping function
The mapping function receives an integer representing the code point
of the character it wants to unescape. There are also the special atoms
:newline, :unicode, and :hex, which control newline, unicode,
and escaping respectively.
Here is the default mapping function implemented by Elixir:
def unescape_map(:newline), do: true
def unescape_map(:unicode), do: true
def unescape_map(:hex), do: true
def unescape_map(?0), do: ?0
def unescape_map(?a), do: ?\a
def unescape_map(?b), do: ?\b
def unescape_map(?d), do: ?\d
def unescape_map(?e), do: ?\e
def unescape_map(?f), do: ?\f
def unescape_map(?n), do: ?\n
def unescape_map(?r), do: ?\r
def unescape_map(?s), do: ?\s
def unescape_map(?t), do: ?\t
def unescape_map(?v), do: ?\v
def unescape_map(e), do: e
If the unescape_map/1 function returns false, the char is
not escaped and the backslash is kept in the string.
Examples
Using the unescape_map/1 function defined above is easy:
Macro.unescape_string("example\\n", &unescape_map(&1))

 unique_var(var, context)

 (since 1.11.3)

 @spec unique_var(var, context) :: {var, [{:counter, integer()}], context}
when var: atom(), context: atom()

Generates an AST node representing a unique variable
given by the atoms var and context.
Calling this function with the same arguments will
generate another variable, with its own unique counter.
See var/2 for an alternative.
The second argument is generally the macro caller's module.
Examples
var = Macro.unique_var(:foo, __CALLER__.module)

 unpipe(expr)

 @spec unpipe(t()) :: [t()]

Breaks a pipeline expression into a list.
The AST for a pipeline (a sequence of applications of |>/2) is similar to the
AST of a sequence of binary operators or function applications: the top-level
expression is the right-most :|> (which is the last one to be executed), and
its left-hand and right-hand sides are its arguments:
quote do: 100 |> div(5) |> div(2)
#=> {:|>, _, [arg1, arg2]}
In the example above, the |>/2 pipe is the right-most pipe; arg1 is the AST
for 100 |> div(5), and arg2 is the AST for div(2).
It's often useful to have the AST for such a pipeline as a list of function
applications. This function does exactly that:
Macro.unpipe(quote do: 100 |> div(5) |> div(2))
#=> [{100, 0}, {{:div, [], [5]}, 0}, {{:div, [], [2]}, 0}]
We get a list that follows the pipeline directly: first the 100, then the
div(5) (more precisely, its AST), then div(2). The 0 as the second
element of the tuples is the position of the previous element in the pipeline
inside the current function application: {{:div, [], [5]}, 0} means that the
previous element (100) will be inserted as the 0th (first) argument to the
div/2 function, so that the AST for that function will become {:div, [], [100, 5]} (div(100, 5)).

 update_meta(quoted, fun)

 @spec update_meta(t(), (keyword() -> keyword())) :: t()

Applies the given function to the node metadata if it contains one.
This is often useful when used with Macro.prewalk/2 to remove
information like lines and hygienic counters from the expression
for either storage or comparison.
Examples
iex> quoted = quote line: 10, do: sample()
{:sample, [line: 10], []}
iex> Macro.update_meta(quoted, &Keyword.delete(&1, :line))
{:sample, [], []}

 validate(expr)

 @spec validate(term()) :: :ok | {:error, term()}

Validates the given expressions are valid quoted expressions.
Check the type Macro.t/0 for a complete specification of a
valid quoted expression.
It returns :ok if the expression is valid. Otherwise it returns
a tuple in the form of {:error, remainder} where remainder is
the invalid part of the quoted expression.
Examples
iex> Macro.validate({:two_element, :tuple})
:ok
iex> Macro.validate({:three, :element, :tuple})
{:error, {:three, :element, :tuple}}

iex> Macro.validate([1, 2, 3])
:ok
iex> Macro.validate([1, 2, 3, {4}])
{:error, {4}}

 var(var, context)

 @spec var(var, context) :: {var, [], context} when var: atom(), context: atom()

Generates an AST node representing the variable given
by the atoms var and context.
Note this variable is not unique. If you later on want
to access this same variable, you can invoke var/2
again with the same arguments. Use unique_var/2 to
generate a unique variable that can't be overridden.
Examples
In order to build a variable, a context is expected.
Most of the times, in order to preserve hygiene, the
context must be __MODULE__/0:
iex> Macro.var(:foo, __MODULE__)
{:foo, [], __MODULE__}
However, if there is a need to access the user variable,
nil can be given:
iex> Macro.var(:foo, nil)
{:foo, [], nil}

Macro.Env

A struct that holds compile time environment information.
The current environment can be accessed at any time as
__ENV__/0. Inside macros, the caller environment can be
accessed as __CALLER__/0.
The majority of the functions in this module are provided
for low-level tools, which need to integrate with the Elixir
compiler, such as language servers and embedded languages.
For regular usage in Elixir code and macros, you must use
the Macro module instead. In particular, avoid modifying
the Macro.Env struct directly and prefer to use high-level
constructs, such as a import, aliases, and so forth to
build your own environment. For example, to build a custom
environment, you can define a function such as:
def make_custom_env do
 import SomeModule, only: [some_function: 2], warn: false
 alias A.B.C, warn: false
 __ENV__
end
Struct fields
The Macro.Env struct contains the following fields:
	context - the context of the environment; it can be nil
(default context), :guard (inside a guard) or :match (inside a match)
	context_modules - a list of modules defined in the current context
	file - the current absolute file name as a binary
	function - a tuple as {atom, integer}, where the first
element is the function name and the second its arity; returns
nil if not inside a function
	line - the current line as an integer
	module - the current module name

The following fields are private to Elixir's macro expansion mechanism and
must not be accessed directly:
	aliases
	functions
	macro_aliases
	macros
	lexical_tracker
	requires
	tracers
	versioned_vars

 Summary

 Types

 context()

 context_modules()

 define_alias_opts()

 define_import_opts()

 define_require_opts()

 expand_alias_opts()

 expand_import_opts()

 expand_require_opts()

 file()

 line()

 name_arity()

 t()

 variable()

 Functions

 define_alias(env, meta, module, opts \\ [])

 Defines the given as an alias to module in the environment.

 define_import(env, meta, module, opts \\ [])

 Defines the given module as imported in the environment.

 define_require(env, meta, module, opts \\ [])

 Defines the given module as required in the environment.

 expand_alias(env, meta, list, opts \\ [])

 Expands an alias given by the alias segments.

 expand_import(env, meta, name, arity, opts \\ [])

 Expands an import given by name and arity.

 expand_require(env, meta, module, name, arity, opts \\ [])

 Expands a require given by module, name, and arity.

 has_var?(env, var)

 Checks if a variable belongs to the environment.

 in_guard?(env)

 Returns whether the compilation environment is currently
inside a guard.

 in_match?(env)

 Returns whether the compilation environment is currently
inside a match clause.

 location(env)

 Returns a keyword list containing the file and line
information as keys.

 lookup_alias_as(env, atom)

 Returns the names of any aliases for the given module or atom.

 lookup_import(env, name_arity)

 Returns the modules from which the given {name, arity} was
imported.

 prepend_tracer(env, tracer)

 Prepend a tracer to the list of tracers in the environment.

 prune_compile_info(env)

 Prunes compile information from the environment.

 required?(env, module)

 Returns true if the given module has been required.

 stacktrace(env)

 Returns the environment stacktrace.

 to_guard(env)

 Returns an environment in the guard context.

 to_match(env)

 Returns an environment in the match context.

 vars(env)

 Returns a list of variables in the current environment.

 Types

 context()

 @type context() :: :match | :guard | nil

 context_modules()

 @type context_modules() :: [module()]

 define_alias_opts()

 @type define_alias_opts() :: [trace: boolean(), as: atom(), warn: boolean()]

 define_import_opts()

 @type define_import_opts() :: [
 trace: boolean(),
 emit_warnings: boolean(),
 info_callback: (atom() -> [{atom(), arity()}]),
 only: :functions | :macros | [{atom(), arity()}],
 except: [{atom(), arity()}],
 warn: boolean()
]

 define_require_opts()

 @type define_require_opts() :: [trace: boolean(), as: atom(), warn: boolean()]

 expand_alias_opts()

 @type expand_alias_opts() :: [{:trace, boolean()}]

 expand_import_opts()

 @type expand_import_opts() :: [
 allow_locals: boolean() | (-> function() | false),
 check_deprecations: boolean(),
 trace: boolean()
]

 expand_require_opts()

 @type expand_require_opts() :: [check_deprecations: boolean(), trace: boolean()]

 file()

 @type file() :: binary()

 line()

 @type line() :: non_neg_integer()

 name_arity()

 @type name_arity() :: {atom(), arity()}

 t()

 @type t() :: %Macro.Env{
 aliases: aliases(),
 context: context(),
 context_modules: context_modules(),
 file: file(),
 function: name_arity() | nil,
 functions: functions(),
 lexical_tracker: lexical_tracker(),
 line: line(),
 macro_aliases: macro_aliases(),
 macros: macros(),
 module: module(),
 requires: requires(),
 tracers: tracers(),
 versioned_vars: versioned_vars()
}

 variable()

 @type variable() :: {atom(), atom() | term()}

 Functions

 define_alias(env, meta, module, opts \\ [])

 (since 1.17.0)

 @spec define_alias(t(), Macro.metadata(), module(), define_alias_opts()) ::
 {:ok, t()} | {:error, String.t()}

Defines the given as an alias to module in the environment.
This is used by tools which need to mimic the Elixir compiler.
The appropriate :alias compiler tracing event will be emitted.
Additional options
It accepts the same options as Kernel.SpecialForm.alias/2 plus:
	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

Examples
iex> env = __ENV__
iex> Macro.Env.expand_alias(env, [], [:Baz])
:error
iex> {:ok, env} = Macro.Env.define_alias(env, [line: 10], Foo.Bar, as: Baz)
iex> Macro.Env.expand_alias(env, [], [:Baz])
{:alias, Foo.Bar}
iex> Macro.Env.expand_alias(env, [], [:Baz, :Bat])
{:alias, Foo.Bar.Bat}
If no :as option is given, the alias will be inferred from the module:
iex> env = __ENV__
iex> {:ok, env} = Macro.Env.define_alias(env, [line: 10], Foo.Bar)
iex> Macro.Env.expand_alias(env, [], [:Bar])
{:alias, Foo.Bar}
If it is not possible to infer one, an error is returned:
iex> Macro.Env.define_alias(__ENV__, [line: 10], :an_atom)
{:error,
 "alias cannot be inferred automatically for module: :an_atom, " <>
 "please use the :as option. Implicit aliasing is only supported with Elixir modules"}

 define_import(env, meta, module, opts \\ [])

 (since 1.17.0)

 @spec define_import(t(), Macro.metadata(), module(), define_import_opts()) ::
 {:ok, t()} | {:error, String.t()}

Defines the given module as imported in the environment.
It assumes module is available. This is used by tools which
need to mimic the Elixir compiler. The appropriate :import
compiler tracing event will be emitted.
Additional options
It accepts the same options as Kernel.SpecialForm.import/2 plus:
	:emit_warnings - emit warnings found when defining imports

	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

	:info_callback - a function to use instead of Module.__info__/1.
The function will be invoked with :functions or :macros argument.
It has to return a list of {function, arity} key value pairs.
If it fails, it defaults to using module metadata based on module_info/1.

Examples
iex> env = __ENV__
iex> Macro.Env.lookup_import(env, {:flatten, 1})
[]
iex> {:ok, env} = Macro.Env.define_import(env, [line: 10], List)
iex> Macro.Env.lookup_import(env, {:flatten, 1})
[{:function, List}]
It accepts the same options as Kernel.SpecialForm.import/2:
iex> env = __ENV__
iex> Macro.Env.lookup_import(env, {:is_odd, 1})
[]
iex> {:ok, env} = Macro.Env.define_import(env, [line: 10], Integer, only: :macros)
iex> Macro.Env.lookup_import(env, {:is_odd, 1})
[{:macro, Integer}]
Info callback override
iex> env = __ENV__
iex> Macro.Env.lookup_import(env, {:flatten, 1})
[]
iex> {:ok, env} = Macro.Env.define_import(env, [line: 10], SomeModule, [info_callback: fn :functions -> [{:flatten, 1}]; :macros -> [{:some, 2}]; end])
iex> Macro.Env.lookup_import(env, {:flatten, 1})
[{:function, SomeModule}]
iex> Macro.Env.lookup_import(env, {:some, 2})
[{:macro, SomeModule}]

 define_require(env, meta, module, opts \\ [])

 (since 1.17.0)

 @spec define_require(t(), Macro.metadata(), module(), define_require_opts()) ::
 {:ok, t()}

Defines the given module as required in the environment.
It does not check or assert the module is available.
This is used by tools which need to mimic the Elixir compiler.
The appropriate :require compiler tracing event will be emitted.
Additional options
It accepts the same options as Kernel.SpecialForm.require/2 plus:
	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

Examples
iex> env = __ENV__
iex> Macro.Env.required?(env, Integer)
false
iex> {:ok, env} = Macro.Env.define_require(env, [line: 10], Integer)
iex> Macro.Env.required?(env, Integer)
true
If the :as option is given, it will also define an alias:
iex> env = __ENV__
iex> {:ok, env} = Macro.Env.define_require(env, [line: 10], Foo.Bar, as: Baz)
iex> Macro.Env.expand_alias(env, [], [:Baz])
{:alias, Foo.Bar}

 expand_alias(env, meta, list, opts \\ [])

 (since 1.17.0)

 @spec expand_alias(t(), keyword(), [atom()], expand_alias_opts()) ::
 {:alias, atom()} | :error

Expands an alias given by the alias segments.
It returns {:alias, alias} if the segments is a list
of atoms and an alias was found. Returns :error otherwise.
This expansion may emit the :alias_expansion trace event
but it does not emit the :alias_reference one.
Options
	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

Examples
iex> alias List, as: MyList
iex> Macro.Env.expand_alias(__ENV__, [], [:MyList])
{:alias, List}
iex> Macro.Env.expand_alias(__ENV__, [], [:MyList, :Nested])
{:alias, List.Nested}
If there is no alias or the alias starts with Elixir.
(which disables aliasing), then :error is returned:
iex> alias List, as: MyList
iex> Macro.Env.expand_alias(__ENV__, [], [:Elixir, MyList])
:error
iex> Macro.Env.expand_alias(__ENV__, [], [:AnotherList])
:error

 expand_import(env, meta, name, arity, opts \\ [])

 (since 1.17.0)

 @spec expand_import(t(), keyword(), atom(), arity(), expand_import_opts()) ::
 {:macro, module(), (Macro.metadata(), args :: [Macro.t()] -> Macro.t())}
 | {:function, module(), atom()}
 | {:error, :not_found | {:conflict, module()} | {:ambiguous, [module()]}}

Expands an import given by name and arity.
If the import points to a macro, it returns a tuple
with the module and a function that expands the macro.
The function expects the metadata to be attached to the
expansion and the arguments of the macro.
If the import points to a function, it returns a tuple
with the module and the function name.
If any import is found, the appropriate compiler tracing
event will be emitted.
Otherwise returns {:error, reason}.
Options
	:allow_locals - controls how local macros are resolved.
Defaults to true.
	When false, does not attempt to capture local macros defined in the
current module in env
	When true, uses a default resolver that looks for public macros in
the current module
	When a function, it will be invoked to lazily compute a local function
(or return false). It has signature (-> function() | false)

	:check_deprecations - when set to false, does not check for deprecations
when expanding macros

	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

 expand_require(env, meta, module, name, arity, opts \\ [])

 (since 1.17.0)

 @spec expand_require(t(), keyword(), module(), atom(), arity(), expand_require_opts()) ::
 {:macro, module(), (Macro.metadata(), args :: [Macro.t()] -> Macro.t())}
 | :error

Expands a require given by module, name, and arity.
If the require points to a macro and the module has been
required, it returns a tuple with the module and a function
that expands the macro. The function expects the metadata
to be attached to the expansion and the arguments of the macro.
The appropriate :remote_macro compiler tracing event will
be emitted if a macro is found (note a :remote_function
event is not emitted in :error cases).
Otherwise returns :error.
Options
	:check_deprecations - when set to false, does not check for deprecations
when expanding macros

	:trace - when set to false, it disables compilation tracers and
lexical tracker. This option must only be used by language servers and
other tools that need to introspect code without affecting how it is compiled.
Disabling tracer inside macros or regular code expansion is extremely
discouraged as it blocks the compiler from accurately tracking dependencies

 has_var?(env, var)

 (since 1.7.0)

 @spec has_var?(t(), variable()) :: boolean()

Checks if a variable belongs to the environment.
Examples
iex> x = 13
iex> x
13
iex> Macro.Env.has_var?(__ENV__, {:x, nil})
true
iex> Macro.Env.has_var?(__ENV__, {:unknown, nil})
false

 in_guard?(env)

 @spec in_guard?(t()) :: boolean()

Returns whether the compilation environment is currently
inside a guard.

 in_match?(env)

 @spec in_match?(t()) :: boolean()

Returns whether the compilation environment is currently
inside a match clause.

 location(env)

 @spec location(t()) :: keyword()

Returns a keyword list containing the file and line
information as keys.

 lookup_alias_as(env, atom)

 (since 1.15.0)

 @spec lookup_alias_as(t(), atom()) :: [atom()]

Returns the names of any aliases for the given module or atom.
Examples
iex> alias Foo.Bar
iex> Bar
Foo.Bar
iex> Macro.Env.lookup_alias_as(__ENV__, Foo.Bar)
[Elixir.Bar]
iex> alias Foo.Bar, as: Baz
iex> Baz
Foo.Bar
iex> Macro.Env.lookup_alias_as(__ENV__, Foo.Bar)
[Elixir.Bar, Elixir.Baz]
iex> Macro.Env.lookup_alias_as(__ENV__, Unknown)
[]

 lookup_import(env, name_arity)

 (since 1.13.0)

 @spec lookup_import(t(), name_arity()) :: [{:function | :macro, module()}]

Returns the modules from which the given {name, arity} was
imported.
It returns a list of two element tuples in the shape of
{:function | :macro, module}. The elements in the list
are in no particular order and the order is not guaranteed.
Use only for introspection
This function does not emit compiler tracing events,
which may block the compiler from correctly tracking
dependencies. Use this function for reflection purposes
but to do not use it to expand imports into qualified
calls. Instead, use expand_import/5.
Examples
iex> Macro.Env.lookup_import(__ENV__, {:duplicate, 2})
[]
iex> import Tuple, only: [duplicate: 2], warn: false
iex> Macro.Env.lookup_import(__ENV__, {:duplicate, 2})
[{:function, Tuple}]
iex> import List, only: [duplicate: 2], warn: false
iex> Macro.Env.lookup_import(__ENV__, {:duplicate, 2})
[{:function, List}, {:function, Tuple}]

iex> Macro.Env.lookup_import(__ENV__, {:def, 1})
[{:macro, Kernel}]

 prepend_tracer(env, tracer)

 (since 1.13.0)

 @spec prepend_tracer(t(), module()) :: t()

Prepend a tracer to the list of tracers in the environment.
Examples
Macro.Env.prepend_tracer(__ENV__, MyCustomTracer)

 prune_compile_info(env)

 (since 1.14.0)

 @spec prune_compile_info(t()) :: t()

Prunes compile information from the environment.
This happens when the environment is captured at compilation
time, for example, in the module body, and then used to
evaluate code after the module has been defined.

 required?(env, module)

 (since 1.13.0)

 @spec required?(t(), module()) :: boolean()

Returns true if the given module has been required.
Examples
iex> Macro.Env.required?(__ENV__, Integer)
false
iex> require Integer, warn: false
iex> Macro.Env.required?(__ENV__, Integer)
true

iex> Macro.Env.required?(__ENV__, Kernel)
true

 stacktrace(env)

 @spec stacktrace(t()) :: list()

Returns the environment stacktrace.

 to_guard(env)

 (since 1.17.0)

 @spec to_guard(t()) :: t()

Returns an environment in the guard context.

 to_match(env)

 @spec to_match(t()) :: t()

Returns an environment in the match context.

 vars(env)

 (since 1.7.0)

 @spec vars(t()) :: [variable()]

Returns a list of variables in the current environment.
Each variable is identified by a tuple of two elements,
where the first element is the variable name as an atom
and the second element is its context, which may be an
atom or an integer.

Behaviour

 This module is deprecated. Use @callback and @macrocallback attributes instead.

Mechanism for handling behaviours.
This module is deprecated. Instead of defcallback/1 and
defmacrocallback/1, the @callback and @macrocallback
module attributes can be used respectively. See the
documentation for Module for more information on these
attributes.
Instead of MyModule.__behaviour__(:callbacks),
MyModule.behaviour_info(:callbacks) can be used. behaviour_info/1
is documented in Module.

 Summary

 Functions

 defcallback(spec)

 deprecated

 Defines a function callback according to the given type specification.

 defmacrocallback(spec)

 deprecated

 Defines a macro callback according to the given type specification.

 Functions

 defcallback(spec)

 (macro)

 This macro is deprecated. Use the @callback module attribute instead.

Defines a function callback according to the given type specification.

 defmacrocallback(spec)

 (macro)

 This macro is deprecated. Use the @macrocallback module attribute instead.

Defines a macro callback according to the given type specification.

Dict

 This module is deprecated. Use Map or Keyword modules instead.

Generic API for dictionaries.
If you need a general dictionary, use the Map module.
If you need to manipulate keyword lists, use Keyword.
To convert maps into keywords and vice-versa, use the
new function in the respective modules.

 Summary

 Types

 key()

 t()

 value()

 Functions

 delete(dict, key)

 deprecated

 drop(dict, keys)

 deprecated

 empty(dict)

 deprecated

 equal?(dict1, dict2)

 deprecated

 fetch(dict, key)

 deprecated

 fetch!(dict, key)

 deprecated

 get(dict, key, default \\ nil)

 deprecated

 get_and_update(dict, key, fun)

 deprecated

 get_lazy(dict, key, fun)

 deprecated

 has_key?(dict, key)

 deprecated

 keys(dict)

 deprecated

 merge(dict1, dict2)

 deprecated

 merge(dict1, dict2, fun)

 deprecated

 pop(dict, key, default \\ nil)

 deprecated

 pop_lazy(dict, key, fun)

 deprecated

 put(dict, key, val)

 deprecated

 put_new(dict, key, val)

 deprecated

 put_new_lazy(dict, key, fun)

 deprecated

 size(dict)

 deprecated

 split(dict, keys)

 deprecated

 take(dict, keys)

 deprecated

 to_list(dict)

 deprecated

 update(dict, key, default, fun)

 deprecated

 update!(dict, key, fun)

 deprecated

 values(dict)

 deprecated

 Types

 key()

 @type key() :: any()

 t()

 @type t() :: list() | map()

 value()

 @type value() :: any()

 Functions

 delete(dict, key)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec delete(t(), key()) :: t()

 drop(dict, keys)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec drop(t(), [key()]) :: t()

 empty(dict)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec empty(t()) :: t()

 equal?(dict1, dict2)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec equal?(t(), t()) :: boolean()

 fetch(dict, key)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec fetch(t(), key()) :: value()

 fetch!(dict, key)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec fetch!(t(), key()) :: value()

 get(dict, key, default \\ nil)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec get(t(), key(), value()) :: value()

 get_and_update(dict, key, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec get_and_update(t(), key(), (value() -> {value(), value()})) :: {value(), t()}

 get_lazy(dict, key, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec get_lazy(t(), key(), (-> value())) :: value()

 has_key?(dict, key)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec has_key?(t(), key()) :: boolean()

 keys(dict)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec keys(t()) :: [key()]

 merge(dict1, dict2)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec merge(t(), t()) :: t()

 merge(dict1, dict2, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec merge(t(), t(), (key(), value(), value() -> value())) :: t()

 pop(dict, key, default \\ nil)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec pop(t(), key(), value()) :: {value(), t()}

 pop_lazy(dict, key, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec pop_lazy(t(), key(), (-> value())) :: {value(), t()}

 put(dict, key, val)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec put(t(), key(), value()) :: t()

 put_new(dict, key, val)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec put_new(t(), key(), value()) :: t()

 put_new_lazy(dict, key, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec put_new_lazy(t(), key(), (-> value())) :: t()

 size(dict)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec size(t()) :: non_neg_integer()

 split(dict, keys)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec split(t(), [key()]) :: {t(), t()}

 take(dict, keys)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec take(t(), [key()]) :: t()

 to_list(dict)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec to_list(t()) :: list()

 update(dict, key, default, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec update(t(), key(), value(), (value() -> value())) :: t()

 update!(dict, key, fun)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec update!(t(), key(), (value() -> value())) :: t()

 values(dict)

 This function is deprecated. Use the Map module for working with maps or the Keyword module for working with keyword lists.

 @spec values(t()) :: [value()]

GenEvent behaviour

 This behaviour is deprecated. Use Erlang/OTP's :gen_event module instead.

An event manager with event handlers behaviour.
If you are interested in implementing an event manager, please read the
"Alternatives" section below. If you have to implement an event handler to
integrate with an existing system, such as Elixir's Logger, please use
:gen_event instead.
Alternatives
There are a few suitable alternatives to replace GenEvent. Each of them can be
the most beneficial based on the use case.
Supervisor and GenServers
One alternative to GenEvent is a very minimal solution consisting of using a
supervisor and multiple GenServers started under it. The supervisor acts as
the "event manager" and the children GenServers act as the "event handlers".
This approach has some shortcomings (it provides no back-pressure for example)
but can still replace GenEvent for low-profile usages of it. This blog post
by José
Valim
has more detailed information on this approach.
GenStage
If the use case where you were using GenEvent requires more complex logic,
GenStage provides a great
alternative. GenStage is an external Elixir library maintained by the Elixir
team; it provides a tool to implement systems that exchange events in a
demand-driven way with built-in support for back-pressure. See the GenStage
documentation for more information.
:gen_event
If your use case requires exactly what GenEvent provided, or you have to
integrate with an existing :gen_event-based system, you can still use the
:gen_event Erlang module.

 Summary

 Types

 handler()

 manager()

 name()

 on_start()

 options()

 Callbacks

 code_change(old_vsn, state, extra)

 handle_call(request, state)

 handle_event(event, state)

 handle_info(msg, state)

 init(args)

 terminate(reason, state)

 Types

 handler()

 @type handler() :: atom() | {atom(), term()}

 manager()

 @type manager() :: pid() | name() | {atom(), node()}

 name()

 @type name() :: atom() | {:global, term()} | {:via, module(), term()}

 on_start()

 @type on_start() :: {:ok, pid()} | {:error, {:already_started, pid()}}

 options()

 @type options() :: [{:name, name()}]

 Callbacks

 code_change(old_vsn, state, extra)

 @callback code_change(old_vsn, state :: term(), extra :: term()) ::
 {:ok, new_state :: term()}
when old_vsn: term() | {:down, term()}

 handle_call(request, state)

 @callback handle_call(request :: term(), state :: term()) ::
 {:ok, reply, new_state}
 | {:ok, reply, new_state, :hibernate}
 | {:remove_handler, reply}
when reply: term(), new_state: term()

 handle_event(event, state)

 @callback handle_event(event :: term(), state :: term()) ::
 {:ok, new_state} | {:ok, new_state, :hibernate} | :remove_handler
when new_state: term()

 handle_info(msg, state)

 @callback handle_info(msg :: term(), state :: term()) ::
 {:ok, new_state} | {:ok, new_state, :hibernate} | :remove_handler
when new_state: term()

 init(args)

 @callback init(args :: term()) ::
 {:ok, state} | {:ok, state, :hibernate} | {:error, reason :: term()}
when state: term()

 terminate(reason, state)

 @callback terminate(reason, state :: term()) :: term()
when reason:
 :stop | {:stop, term()} | :remove_handler | {:error, term()} | term()

HashDict

 This module is deprecated. Use Map instead.

Tuple-based HashDict implementation.
This module is deprecated. Use the Map module instead.

 Summary

 Types

 t()

 Functions

 delete(dict, key)

 deprecated

 drop(dict, keys)

 deprecated

 equal?(dict1, dict2)

 deprecated

 fetch(hash_dict, key)

 deprecated

 fetch!(dict, key)

 deprecated

 get(dict, key, default \\ nil)

 deprecated

 get_and_update(dict, key, fun)

 deprecated

 get_lazy(dict, key, fun)

 deprecated

 has_key?(dict, key)

 deprecated

 keys(dict)

 deprecated

 merge(dict1, dict2, fun \\ fn _k, _v1, v2 -> v2 end)

 deprecated

 new()

 deprecated

 Creates a new empty dict.

 pop(dict, key, default \\ nil)

 deprecated

 pop_lazy(dict, key, fun)

 deprecated

 put(hash_dict, key, value)

 deprecated

 put_new(dict, key, value)

 deprecated

 put_new_lazy(dict, key, fun)

 deprecated

 size(hash_dict)

 deprecated

 split(dict, keys)

 deprecated

 take(dict, keys)

 deprecated

 to_list(dict)

 deprecated

 update(dict, key, default, fun)

 deprecated

 update!(dict, key, fun)

 deprecated

 values(dict)

 deprecated

 Types

 t()

 @opaque t()

 Functions

 delete(dict, key)

 This function is deprecated. Use maps and the Map module instead.

 drop(dict, keys)

 This function is deprecated. Use maps and the Map module instead.

 equal?(dict1, dict2)

 This function is deprecated. Use maps and the Map module instead.

 fetch(hash_dict, key)

 This function is deprecated. Use maps and the Map module instead.

 fetch!(dict, key)

 This function is deprecated. Use maps and the Map module instead.

 get(dict, key, default \\ nil)

 This function is deprecated. Use maps and the Map module instead.

 get_and_update(dict, key, fun)

 This function is deprecated. Use maps and the Map module instead.

 get_lazy(dict, key, fun)

 This function is deprecated. Use maps and the Map module instead.

 has_key?(dict, key)

 This function is deprecated. Use maps and the Map module instead.

 keys(dict)

 This function is deprecated. Use maps and the Map module instead.

 merge(dict1, dict2, fun \\ fn _k, _v1, v2 -> v2 end)

 This function is deprecated. Use maps and the Map module instead.

 new()

 This function is deprecated. Use maps and the Map module instead.

 @spec new() :: Dict.t()

Creates a new empty dict.

 pop(dict, key, default \\ nil)

 This function is deprecated. Use maps and the Map module instead.

 pop_lazy(dict, key, fun)

 This function is deprecated. Use maps and the Map module instead.

 put(hash_dict, key, value)

 This function is deprecated. Use maps and the Map module instead.

 put_new(dict, key, value)

 This function is deprecated. Use maps and the Map module instead.

 put_new_lazy(dict, key, fun)

 This function is deprecated. Use maps and the Map module instead.

 size(hash_dict)

 This function is deprecated. Use maps and the Map module instead.

 split(dict, keys)

 This function is deprecated. Use maps and the Map module instead.

 take(dict, keys)

 This function is deprecated. Use maps and the Map module instead.

 to_list(dict)

 This function is deprecated. Use maps and the Map module instead.

 update(dict, key, default, fun)

 This function is deprecated. Use maps and the Map module instead.

 update!(dict, key, fun)

 This function is deprecated. Use maps and the Map module instead.

 values(dict)

 This function is deprecated. Use maps and the Map module instead.

HashSet

 This module is deprecated. Use MapSet instead.

Tuple-based HashSet implementation.
This module is deprecated. Use the MapSet module instead.

 Summary

 Types

 t()

 Functions

 delete(set, term)

 deprecated

 difference(set1, set2)

 deprecated

 disjoint?(set1, set2)

 deprecated

 equal?(set1, set2)

 deprecated

 intersection(set1, set2)

 deprecated

 member?(hash_set, term)

 deprecated

 new()

 deprecated

 put(hash_set, term)

 deprecated

 size(hash_set)

 deprecated

 subset?(set1, set2)

 deprecated

 to_list(set)

 deprecated

 union(set1, set2)

 deprecated

 Types

 t()

 @opaque t()

 Functions

 delete(set, term)

 This function is deprecated. Use the MapSet module instead.

 difference(set1, set2)

 This function is deprecated. Use the MapSet module instead.

 disjoint?(set1, set2)

 This function is deprecated. Use the MapSet module instead.

 equal?(set1, set2)

 This function is deprecated. Use the MapSet module instead.

 intersection(set1, set2)

 This function is deprecated. Use the MapSet module instead.

 member?(hash_set, term)

 This function is deprecated. Use the MapSet module instead.

 new()

 This function is deprecated. Use the MapSet module instead.

 @spec new() :: Set.t()

 put(hash_set, term)

 This function is deprecated. Use the MapSet module instead.

 size(hash_set)

 This function is deprecated. Use the MapSet module instead.

 subset?(set1, set2)

 This function is deprecated. Use the MapSet module instead.

 to_list(set)

 This function is deprecated. Use the MapSet module instead.

 union(set1, set2)

 This function is deprecated. Use the MapSet module instead.

Set

 This module is deprecated. Use MapSet instead.

Generic API for sets.
This module is deprecated, use the MapSet module instead.

 Summary

 Types

 t()

 value()

 values()

 Functions

 delete(set, value)

 deprecated

 difference(set1, set2)

 deprecated

 disjoint?(set1, set2)

 deprecated

 empty(set)

 deprecated

 equal?(set1, set2)

 deprecated

 intersection(set1, set2)

 deprecated

 member?(set, value)

 deprecated

 put(set, value)

 deprecated

 size(set)

 deprecated

 subset?(set1, set2)

 deprecated

 to_list(set)

 deprecated

 union(set1, set2)

 deprecated

 Types

 t()

 @type t() :: map()

 value()

 @type value() :: any()

 values()

 @type values() :: [value()]

 Functions

 delete(set, value)

 This function is deprecated. Use the MapSet module for working with sets.

 difference(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

 disjoint?(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

 empty(set)

 This function is deprecated. Use the MapSet module for working with sets.

 equal?(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

 intersection(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

 member?(set, value)

 This function is deprecated. Use the MapSet module for working with sets.

 put(set, value)

 This function is deprecated. Use the MapSet module for working with sets.

 size(set)

 This function is deprecated. Use the MapSet module for working with sets.

 subset?(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

 to_list(set)

 This function is deprecated. Use the MapSet module for working with sets.

 union(set1, set2)

 This function is deprecated. Use the MapSet module for working with sets.

Supervisor.Spec

 This module is deprecated. Use the new child specifications outlined in the Supervisor module instead.

Outdated functions for building child specifications.
The functions in this module are deprecated and they do not work
with the module-based child specs introduced in Elixir v1.5.
Please see the Supervisor documentation instead.
Convenience functions for defining supervisor specifications.
Example
By using the functions in this module one can specify the children
to be used under a supervisor, started with Supervisor.start_link/2:
import Supervisor.Spec

children = [
 worker(MyWorker, [arg1, arg2, arg3]),
 supervisor(MySupervisor, [arg1])
]

Supervisor.start_link(children, strategy: :one_for_one)
Sometimes, it may be handy to define supervisors backed
by a module:
defmodule MySupervisor do
 use Supervisor

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg)
 end

 def init(arg) do
 children = [
 worker(MyWorker, [arg], restart: :temporary)
]

 supervise(children, strategy: :simple_one_for_one)
 end
end
Note that in this case we don't have to explicitly import
Supervisor.Spec since use Supervisor automatically does so.
Defining a module-based supervisor can be useful, for example,
to perform initialization tasks in the Supervisor.init/1 callback.
Supervisor and worker options
In the example above, we defined specs for workers and supervisors.
These specs (both for workers as well as supervisors) accept the
following options:
	:id - a name used to identify the child specification
internally by the supervisor; defaults to the given module
name for the child worker/supervisor

	:function - the function to invoke on the child to start it

	:restart - an atom that defines when a terminated child process should
be restarted (see the "Restart values" section below)

	:shutdown - an atom that defines how a child process should be
terminated (see the "Shutdown values" section below)

	:modules - it should be a list with one element [module],
where module is the name of the callback module only if the
child process is a Supervisor or GenServer; if the child
process is a GenEvent, :modules should be :dynamic

Restart values (:restart)
The following restart values are supported in the :restart option:
	:permanent - the child process is always restarted

	:temporary - the child process is never restarted (not even
when the supervisor's strategy is :rest_for_one or :one_for_all)

	:transient - the child process is restarted only if it
terminates abnormally, i.e., with an exit reason other than
:normal, :shutdown or {:shutdown, term}

Note that supervisor that reached maximum restart intensity will exit with :shutdown reason.
In this case the supervisor will only restart if its child specification was defined with
the :restart option set to :permanent (the default).
Shutdown values (:shutdown)
The following shutdown values are supported in the :shutdown option:
	:brutal_kill - the child process is unconditionally terminated
using Process.exit(child, :kill)

	:infinity - if the child process is a supervisor, this is a mechanism
to give the subtree enough time to shut down; it can also be used with
workers with care

	a non-negative integer - the amount of time in milliseconds
that the supervisor tells the child process to terminate by calling
Process.exit(child, :shutdown) and then waits for an exit signal back.
If no exit signal is received within the specified time,
the child process is unconditionally terminated
using Process.exit(child, :kill)

 Summary

 Types

 child_id()

 Supported ID values

 modules()

 Supported module values

 restart()

 Supported restart values

 shutdown()

 Supported shutdown values

 spec()

 The supervisor specification

 strategy()

 Supported strategies

 worker()

 Supported worker values

 Functions

 supervise(children, options)

 deprecated

 Receives a list of children (workers or supervisors) to
supervise and a set of options.

 supervisor(module, args, options \\ [])

 deprecated

 Defines the given module as a supervisor which will be started
with the given arguments.

 worker(module, args, options \\ [])

 deprecated

 Defines the given module as a worker which will be started
with the given arguments.

 Types

 child_id()

 @type child_id() :: term()

Supported ID values

 modules()

 @type modules() :: :dynamic | [module()]

Supported module values

 restart()

 @type restart() :: :permanent | :transient | :temporary

Supported restart values

 shutdown()

 @type shutdown() :: timeout() | :brutal_kill

Supported shutdown values

 spec()

 @type spec() ::
 {child_id(), start_fun :: {module(), atom(), [term()]}, restart(), shutdown(),
 worker(), modules()}

The supervisor specification

 strategy()

 @type strategy() :: :simple_one_for_one | :one_for_one | :one_for_all | :rest_for_one

Supported strategies

 worker()

 @type worker() :: :worker | :supervisor

Supported worker values

 Functions

 supervise(children, options)

 This function is deprecated. Use the new child specifications outlined in the Supervisor module instead.

 @spec supervise([spec()],
 strategy: strategy(),
 max_restarts: non_neg_integer(),
 max_seconds: pos_integer()
) :: {:ok, tuple()}

Receives a list of children (workers or supervisors) to
supervise and a set of options.
Returns a tuple containing the supervisor specification. This tuple can be
used as the return value of the Supervisor.init/1 callback when implementing a
module-based supervisor.
Examples
supervise(children, strategy: :one_for_one)
Options
	:strategy - the restart strategy option. It can be either
:one_for_one, :rest_for_one, :one_for_all, or
:simple_one_for_one. You can learn more about strategies
in the Supervisor module docs.

	:max_restarts - the maximum number of restarts allowed in
a time frame. Defaults to 3.

	:max_seconds - the time frame in which :max_restarts applies.
Defaults to 5.

The :strategy option is required and by default a maximum of 3 restarts is
allowed within 5 seconds. Check the Supervisor module for a detailed
description of the available strategies.

 supervisor(module, args, options \\ [])

 This function is deprecated. Use the new child specifications outlined in the Supervisor module instead.

 @spec supervisor(
 module(),
 [term()],
 restart: restart(),
 shutdown: shutdown(),
 id: term(),
 function: atom(),
 modules: modules()
) :: spec()

Defines the given module as a supervisor which will be started
with the given arguments.
supervisor(module, [], restart: :permanent)
By default, the function start_link is invoked on the given
module. Overall, the default values for the options are:
[
 id: module,
 function: :start_link,
 restart: :permanent,
 shutdown: :infinity,
 modules: [module]
]
See the "Supervisor and worker options" section in the Supervisor.Spec module for more
information on the available options.

 worker(module, args, options \\ [])

 This function is deprecated. Use the new child specifications outlined in the Supervisor module instead.

 @spec worker(
 module(),
 [term()],
 restart: restart(),
 shutdown: shutdown(),
 id: term(),
 function: atom(),
 modules: modules()
) :: spec()

Defines the given module as a worker which will be started
with the given arguments.
worker(ExUnit.Runner, [], restart: :permanent)
By default, the function start_link is invoked on the given
module. Overall, the default values for the options are:
[
 id: module,
 function: :start_link,
 restart: :permanent,
 shutdown: 5000,
 modules: [module]
]
See the "Supervisor and worker options" section in the Supervisor.Spec module for more
information on the available options.

ArgumentError exception

An exception raised when an argument to a function is invalid.
You can raise this exception when you want to signal that an argument to
a function is invalid. For example, this exception is raised when calling
Integer.to_string/1 with an invalid argument:
iex> Integer.to_string(1.0)
** (ArgumentError) errors were found at the given arguments:
...
ArgumentError exceptions have a single field, :message (a String.t/0),
which is public and can be accessed freely when reading or creating ArgumentError
exceptions.

ArithmeticError exception

An exception raised on invalid arithmetic operations.
For example, this exception is raised if you divide by 0:
iex> 1 / 0
** (ArithmeticError) bad argument in arithmetic expression

BadArityError exception

An exception raised when a function is called with the wrong number of arguments.
For example:
my_function = fn x, y -> x + y end
my_function.(42)
** (BadArityError) #Function<41.39164016/2 in :erl_eval.expr/6> with arity 2 called with 1 argument (42)

BadBooleanError exception

An exception raised when a boolean is expected, but something else was given.
This exception is raised by and and or when the first argument is not a boolean:
iex> 123 and true
** (BadBooleanError) expected a boolean on left-side of "and", got:
...

BadFunctionError exception

An exception raised when a function is expected, but something else was given.
For example:
iex> value = "hello"
iex> value.()
** (BadFunctionError) expected a function, got: "hello"

BadMapError exception

An exception raised when a map is expected, but something else was given.
For example:
iex> value = "hello"
iex> %{value | key: "value"}
** (BadMapError) expected a map, got:
...

CaseClauseError exception

An exception raised when a term in a case/2 expression
does not match any of the defined -> clauses.
For example:
iex> case System.unique_integer() do
...> bin when is_binary(bin) -> :oops
...> :ok -> :neither_this_one
...> end
** (CaseClauseError) no case clause matching:
...
The following fields of this exception are public and can be accessed freely:
	:term (term/0) - the term that did not match any of the clauses

Code.LoadError exception

An exception raised when a file cannot be loaded.
This is typically raised by functions in the Code module, for example:
Code.require_file("missing_file.exs")
** (Code.LoadError) could not load missing_file.exs. Reason: enoent
The following fields of this exception are public and can be accessed freely:
	:file (String.t/0) - the file name
	:reason (term/0) - the reason why the file could not be loaded

CompileError exception

An exception raised when there's an error when compiling code.
For example:
1 = y
** (CompileError) iex:1: undefined variable "y"
The following fields of this exceptions are public and can be accessed freely:
	:file (Path.t/0 or nil) - the file where the error occurred, or nil if
the error occurred in code that did not come from a file
	:line (non_neg_integer/0) - the line where the error occurred
	:description (String.t/0) - a description of the compile error

This is mostly raised by Elixir tooling when compiling and evaluating code.

CondClauseError exception

An exception raised when no clauses in a cond/1 expression evaluate to a truthy value.
For example, this exception gets raised for a cond/1 like the following:
iex> cond do
...> 1 + 1 == 3 -> :woah
...> nil -> "yeah this won't happen"
...> end
** (CondClauseError) no cond clause evaluated to a truthy value

Enum.EmptyError exception

An exception that is raised when something expects a non-empty enumerable
but finds an empty one.
For example:
iex> Enum.min([])
** (Enum.EmptyError) empty error

Enum.OutOfBoundsError exception

An exception that is raised when a function expects an enumerable to have
a certain size but finds that it is too small.
For example:
iex> Enum.fetch!([1, 2, 3], 5)
** (Enum.OutOfBoundsError) out of bounds error at position 5 when traversing enumerable [1, 2, 3]

 Summary

 Functions

 message(index, enumerable)

 Functions

 message(index, enumerable)

ErlangError exception

An exception raised when invoking an Erlang code that errors
with a value not handled by Elixir.
Most common error reasons, such as :badarg are automatically
converted into exceptions by Elixir. However, you may invoke some
code that emits a custom error reason and those get wrapped into
ErlangError:
iex> :erlang.error(:some_invalid_error)
** (ErlangError) Erlang error: :some_invalid_error

File.CopyError exception

An exception that is raised when copying a file fails.
For example, this exception is raised when trying to copy to file or directory that isn't present:
iex> File.cp_r!("non_existent", "source_dir/subdir")
** (File.CopyError) could not copy recursively from "non_existent" to "source_dir/subdir". non_existent: no such file or directory
The following fields of this exception are public and can be accessed freely:
	:source (Path.t/0) - the source path
	:destination (Path.t/0) - the destination path
	:reason (File.posix/0) - the reason why the file could not be copied

File.Error exception

An exception that is raised when a file operation fails.
For example, this exception is raised, when trying to read a non existent file:
iex> File.read!("nonexistent_file.txt")
** (File.Error) could not read file "nonexistent_file.txt": no such file or directory
The following fields of this exception are public and can be accessed freely:
	:path (Path.t/0) - the path of the file that caused the error
	:reason (File.posix/0) - the reason for the error

File.LinkError exception

An exception that is raised when linking a file fails.
For example, this exception is raised when trying to link to file that isn't present:
iex> File.ln!("existing.txt", "link.txt")
** (File.LinkError) could not create hard link from "link.txt" to "existing.txt": no such file or directory
The following fields of this exception are public and can be accessed freely:
	:existing (Path.t/0) - the existing file to link
	:new (Path.t/0) - the link destination
	:reason (File.posix/0) - the reason why the file could not be linked

File.RenameError exception

An exception that is raised when renaming a file fails.
For example, this exception is raised when trying to rename a file that isn't present:
 iex> File.rename!("source.txt", "target.txt")
 ** (File.RenameError) could not rename from "source.txt" to "target.txt": no such file or directory
The following fields of this exception are public and can be accessed freely:
	:source (Path.t/0) - the source path
	:destination (Path.t/0) - the destination path
	:reason (File.posix/0) - the reason why the file could not be renamed

FunctionClauseError exception

An exception raised when a function call doesn't match any defined clause.
For example:
iex> List.duplicate(:ok, -3)
** (FunctionClauseError) no function clause matching in List.duplicate/2
The following fields of this exception are public and can be accessed freely:
	:module (module/0) - the module name
	:function (atom/0) - the function name
	:arity (non_neg_integer/0) - the arity of the function

IO.StreamError exception

Inspect.Error exception

Raised when a struct cannot be inspected.

JSON.DecodeError exception

The exception raised by JSON.decode!/1.

Kernel.TypespecError exception

An exception raised when there's an error in a typespec.
For example, if your typespec definition points to an invalid type, you get an exception:
@type my_type :: intger()
will raise:
** (Kernel.TypespecError) type intger/0 undefined
The following fields of this exceptions are public and can be accessed freely:
	:file (Path.t/0 or nil) - the file where the error occurred, or nil if
the error occurred in code that did not come from a file
	:line (non_neg_integer/0) - the line where the error occurred

KeyError exception

An exception raised when a key is not found in a data structure.
For example, this is raised by Map.fetch!/2 when the given key
cannot be found in the given map:
iex> map = %{name: "Alice", age: 25}
iex> Map.fetch!(map, :first_name)
** (KeyError) key :first_name not found in:
...
The following fields of this exception are public and can be accessed freely:
	:term (term/0) - the data structure that was searched
	:key (term/0) - the key that was not found

MatchError exception

An exception raised when a pattern match (=/2) fails.
For example:
iex> [_ | _] = []
** (MatchError) no match of right hand side value:
...
The following fields of this exception are public and can be accessed freely:
	:term (term/0) - the term that did not match the pattern

MismatchedDelimiterError exception

An exception raised when a mismatched delimiter is found when parsing code.
For example:
iex> Code.eval_string("[1, 2, 3}")
** (MismatchedDelimiterError) mismatched delimiter found on nofile:1:9:
...
The following fields of this exceptions are public and can be accessed freely:
	:file (Path.t/0 or nil) - the file where the error occurred, or nil if
the error occurred in code that did not come from a file
	:line - the line for the opening delimiter
	:column - the column for the opening delimiter
	:end_line - the line for the mismatched closing delimiter
	:end_column - the column for the mismatched closing delimiter
	:opening_delimiter - an atom representing the opening delimiter
	:closing_delimiter - an atom representing the mismatched closing delimiter
	:expected_delimiter - an atom representing the closing delimiter
	:description - a description of the mismatched delimiter error

MissingApplicationsError exception

An exception that is raised when an application depends on one or more
missing applications.
This exception is used by Mix and other tools. It can also be used by library authors
when their library only requires an external application (like a dependency) for a subset
of features.
The fields of this exception are public. See t/0.
Available since v1.18.0.
Examples
unless Application.spec(:plug, :vsn) do
 raise MissingApplicationsError,
 description: "application :plug is required for testing Plug-related functionality",
 apps: [{:plug, "~> 1.0"}]
end

 Summary

 Types

 t()

 Types

 t()

 (since 1.18.0)

 @type t() :: %MissingApplicationsError{
 __exception__: true,
 apps: [{Application.app(), Version.requirement()}, ...],
 description: String.t()
}

OptionParser.ParseError exception

An exception raised when parsing option fails.
For example, see OptionParser.parse!/2.

Protocol.UndefinedError exception

An exception raised when a protocol is not implemented for a given value.
For example:
iex> Enum.at("A string!", 0)
** (Protocol.UndefinedError) protocol Enumerable not implemented for BitString
...
The following fields of this exception are public and can be accessed freely:
	:protocol (module/0) - the protocol that is not implemented
	:value (term/0) - the value that does not implement the protocol

Regex.CompileError exception

An exception raised when a regular expression could not be compiled.

RuntimeError exception

An exception for a generic runtime error.
This is the exception that raise/1 raises when you pass it only a string as
a message:
iex> raise "oops!"
** (RuntimeError) oops!
You should use this exceptions sparingly, since most of the time it might be
better to define your own exceptions specific to your application or library.
Sometimes, however, there are situations in which you don't expect a condition to
happen, but you want to give a meaningful error message if it does. In those cases,
RuntimeError can be a good choice.
Fields
RuntimeError exceptions have a single field, :message (a String.t/0),
which is public and can be accessed freely when reading or creating RuntimeError
exceptions.

SyntaxError exception

An exception raised when there's a syntax error when parsing code.
For example:
iex> Code.eval_string("5 + 5h")
** (SyntaxError) invalid syntax found on nofile:1:5:
...
The following fields of this exceptions are public and can be accessed freely:
	:file (Path.t/0 or nil) - the file where the error occurred, or nil if
the error occurred in code that did not come from a file
	:line - the line where the error occurred
	:column - the column where the error occurred
	:description - a description of the syntax error

System.EnvError exception

An exception raised when a system environment variable is not set.
For example, see System.fetch_env!/1.

SystemLimitError exception

An exception raised when a system limit has been reached.
For example, this can happen if you try to create an atom that is too large:
iex> String.to_atom(String.duplicate("a", 100_000))
** (SystemLimitError) a system limit has been reached

TokenMissingError exception

An exception raised when a token is missing when parsing code.
For example:
iex> Code.eval_string("[1, 2, 3")
** (TokenMissingError) token missing on nofile:1:9:
...
The following fields of this exceptions are public and can be accessed freely:
	:file (Path.t/0 or nil) - the file where the error occurred, or nil if
the error occurred in code that did not come from a file
	:line - the line for the opening delimiter
	:column - the column for the opening delimiter
	:end_line - the line for the end of the string
	:end_column - the column for the end of the string
	:opening_delimiter - an atom representing the opening delimiter
	:expected_delimiter - an atom representing the expected delimiter
	:description - a description of the missing token error

This is mostly raised by Elixir tooling when compiling and evaluating code.

TryClauseError exception

An exception raised when none of the else clauses in a try/1 match.
For example:
iex> try do
...> :ok
...> rescue
...> e -> e
...> else
...> # :ok -> :ok is missing
...> :not_ok -> :not_ok
...> end
** (TryClauseError) no try clause matching:
...
The following fields of this exception are public and can be accessed freely:
	:term (term/0) - the term that did not match any of the clauses

URI.Error exception

An exception raised when an error occurs when a URI is invalid.
For example, see URI.new!/1.

UndefinedFunctionError exception

An exception raised when a function is invoked that is not defined.
For example:
Let's use apply/3 as otherwise Elixir emits a compile-time warning
iex> apply(String, :non_existing_fun, ["hello"])
** (UndefinedFunctionError) function String.non_existing_fun/1 is undefined or private
The following fields of this exception are public and can be accessed freely:
	:module (module/0) - the module name
	:function (atom/0) - the function name
	:arity (non_neg_integer/0) - the arity of the function

UnicodeConversionError exception

An exception raised when converting data to or from Unicode.
For example:
iex> String.to_charlist(<<0xFF>>)
** (UnicodeConversionError) invalid encoding starting at <<255>>

Version.InvalidRequirementError exception

An exception raised when a version requirement is invalid.
For example, see Version.parse_requirement!/1.

Version.InvalidVersionError exception

An exception raised when a version is invalid.
For example, see Version.parse!/1.

WithClauseError exception

An exception raised when a term in a with/1 expression
does not match any of the defined -> clauses in its else.
For example, this exception gets raised for a with/1 like the following, because
the {:ok, 2} term does not match the :error or {:error, _} clauses in the
else:
iex> with {:ok, 1} <- {:ok, 2} do
...> :woah
...> else
...> :error -> :error
...> {:error, _} -> :error
...> end
** (WithClauseError) no with clause matching:
...
The following fields of this exception are public and can be accessed freely:
	:term (term/0) - the term that did not match any of the clauses

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/kv-observer.png
00 nonode@nohost
System Load Charts = Memory All... A\oelllerziilenisi . Processes Table Viewer Trace Overv...

elixir

. Elixir.KV.Bucket.Supervisor
iex

kernel Elixir.KV.Registry

kv

logger
mix

OEBPS/assets/logo.png

OEBPS/assets/logo.png

