

 elvis_core

 v4.2.0

 Table of contents

 	elvis_core

 	LICENSE

 	
 Modules

 	elvis_code

 	elvis_config

 	elvis_core

 	elvis_file

 	elvis_gitignore

 	elvis_project

 	elvis_result

 	elvis_rule

 	elvis_ruleset

 	elvis_style

 	elvis_task

 	elvis_text_style

 	elvis_utils

 elvis_core [image: GitHub Actions CI] [image: Erlang Support]

elvis_core is the core library for the elvis Erlang style
reviewer. It is also used by rebar3_lint for easier
integration into your Erlang libraries or applications.
It includes the mechanisms to apply rules to your Erlang code, as well as their implementation.
It implements pre-defined rules, but also supports
user-defined ones.
Usage
As a library
The elvis command-line tool uses elvis_core extensively, so
do check that project for a concrete example on how you could use it for your own purposes.
As a rebar3 plugin
The rebar3_lint plugin eases integration of the
style reviewer into your application or library. Be sure to check that out for further information.
From the Erlang shell
After adding elvis_core as a dependency to your project and starting a shell, you will need to
make sure the application is started:
1> {ok, _} = application:ensure_all_started(elvis_core).
{ok,[zipper,katana_code,elvis_core]}
2>

Once this is done you can apply the style rules in the following ways.
Loading configuration from a file
1> ElvisConfig = elvis_config:config().
<loaded_config>
2> application:set_env(elvis_core, verbose, true), elvis_core:rock(ElvisConfig).
Loading src/elvis_code.erl
src/elvis_code.erl [OK]
Loading src/elvis_config.erl
src/elvis_config.erl [OK]
Loading src/elvis_core.erl
src/elvis_core.erl [OK]
Loading src/elvis_file.erl
src/elvis_file.erl [OK]
...
ok
3>

This will load the configuration, specified in file elvis.config, from the
current directory.
If elvis.config is not present, the application will fall back to searching for configuration
parameters in rebar.config. If rebar.config is also unavailable, the application proceeds to
perform a tertiary lookup within its application environment (which can also be set via the
app/sys.config file, or e.g., via application:set_env(elvis_core, Key, Value). for the required
settings.
Providing configuration as a value
Another option for using elvis_core from the shell is to explicitly provide the configuration as
an argument to elvis_core:rock/1:
1> ElvisConfig = [#{dirs => ["src"], filter => "elvis_rule.erl", ruleset => erl_files}].
[#{dirs => ["src"],filter => "*.erl",rules => []}]
2> application:set_env(elvis_core, verbose, true), elvis_core:rock(ElvisConfig).
Loading src/elvis_rule.erl
src/elvis_rule.erl [OK]
ok
3>

Output for failing rules
We have only presented results where all files were well-behaved (i.e. they respect all the rules),
so here's an example of how the output looks when files break some of the rules:
test/examples/british_behaviour_spelling.erl [FAIL]
 - state_record_and_type (https://github.com/inaka/elvis_core/tree/main/doc_rules/elvis_style/state_record_and_type.md)
 - This module implements an OTP behavior but is missing a '#state{}' record.
test/examples/fail_always_shortcircuit.erl [FAIL]
 - always_shortcircuit (https://github.com/inaka/elvis_core/tree/main/doc_rules/elvis_style/always_shortcircuit.md)
 - At line 5, column 45, unexpected non-shortcircuiting operator 'or' was found; prefer 'orelse'.

Configuration
An elvis.config file looks something like this:
[{elvis, [
 {config, [
 #{ dirs => ["src"]
 , filter => "*.erl"
 , ruleset => erl_files }
 , #{ dirs => ["include"]
 , filter => "*.hrl"
 , ruleset => hrl_files }
 , #{ dirs => ["."]
 , filter => "rebar.config"
 , ruleset => rebar_config }
]}
 % output_format (optional): how to format the output.
 % Possible values are 'plain', 'colors' or 'parsable' (default='colors').
 , {output_format, colors}
 % verbose (optional): when 'true' more information will
 % be printed (default=false).
 , {verbose, true}
 % no_output (optional): when 'true' nothing will be printed
 % (default=false).
 , {no_output, false}
 % parallel: determine how many files will be
 % analyzed in parallel (default=1).
 , {parallel, 1}
]}].
To look at what is considered the "current default" configuration, do:
rebar3 shell
...
1> elvis_config:default().
[#{filter => "*.erl",
 dirs => ["apps/**/src/**","src/**"],
 ruleset => erl_files},
 #{filter => "*.erl",
 dirs =>
 ["apps/**/src/**","src/**","apps/**/include/**",
 "include/**"],
 ruleset => hrl_files},
 #{filter => "rebar.config",
 dirs => ["."],
 ruleset => rebar_config},
 #{filter => ".gitignore",
 dirs => ["."],
 ruleset => gitignore}]
2>

Note: this element might change with time. The above was what was generated when this
documentation was updated.
Files, rules and rulesets
The dirs key is a list that tells elvis_core where it should look for the files that match
filter, which will be run through each of the pre-defined rules in the specified ruleset.
filter can contain ** for further matching (it uses
filelib:wildcard/1 under the hood).
If you want to override the pre-defined rules, for a given ruleset, you need
to specify them in a rules key which is a list of items with the following structure
{RuleNamespace, Rule, RuleConfig}, or {RuleNamespace, Rule} - if the rule takes no configuration
values. You can also disable certain rules if you want to, by specifying them in the rules key
and passing disable as a third argument.
RuleNamespace is an Erlang module that implements the elvis_rule behaviour.
Rule is a function exported from RuleNamespace.
Disabling Rules
IMPORTANT: disable will only work if you also provided a ruleset as shown above.
Let's say you like your files to have a maximum of 90 characters per line and you also like to use
tabs instead of spaces. In that case, you need to override erl_files's ruleset pre-defined
rules as follows:
#{ dirs => ["src"]
 , filter => "*.erl"
 , rules => [
 {elvis_text_style, line_length, #{ limit => 90 }} % change line_length from 100 to 90
 , {elvis_text_style, no_tabs, disable} % disable no_tabs
]
 , ruleset => erl_files
 }.
Ignoring modules
You can also ignore modules at a check level or at a ruleset (group of checks) level:
	at a check level, you set the ignore option in the rule you want to ignore, e.g.:

{elvis_style, no_debug_call, #{ ignore => [elvis, elvis_utils] }}
(we are telling elvis to ignore the elvis and elvis_utils modules when executing
the no_debug_call check.
	at a ruleset (group of checks) level, you set the ignore option for the group you want to
ignore, e.g.:

#{ dirs => ["src"]
 , filter => "*.erl"
 , ruleset => erl_files
 , ignore => [module1, module4]
}.
With this configuration, none of the checks for erl_files is applied to module1 or module4.
Formatting
Option output_format allows you to configure the output format. Possible values are colors,
plain and parsable. The latter could be used for automated parsing and has a format very close
to the one presented by dialyzer, like <file>:<line>:<rule>:<message>:
test/examples/british_behaviour_spelling.erl:-1:state_record_and_type:This module implements an OTP behavior but is missing a '#state{}' record.```
test/examples/fail_always_shortcircuit.erl:5:always_shortcircuit:At line 5, column 45, unexpected non-shortcircuiting operator ''or'' was found; prefer 'orelse'.

The default value for the output_format option is colors.
Verbosity
It is possible to tell elvis_core to produce a more verbose output, using the verbose option.
The value provided is a boolean, either true or false.
The default value for the verbose option is false.
On the other hand, if no output is desired then the value for the no_output option should be
true.
The default value for the no_output option is false.
Parallel execution
In order to speed up the analysis process, you can use the parallel option.
Its value indicates how many processes to use at the same time to apply the style rules to all the
files gathered. The provided number should be less than or equal to the available cores, since any
value higher than that won't report any speedup benefits.
The default value for parallel is 1.
Configuration examples
You can find examples for configuration files in this project's
config directory.
Application environment
Options output_format, verbose, no_output, and parallel can also be set as application-level
environment variables, i.e. as they would be found by application:get_env/2,3.
Rules
Pre-defined rules
A reference to all pre-defined rules (and some other information) implemented in elvis_core can be
found in this repository's RULES.md.
User-defined rules
The implementation of a new rule is a function that takes 2 arguments in the following order:
	t:elvis_rule:t(): the opaque rule to implement
	t:elvis_config:t(): the value of each element in list config as found in the
configuration,

This means you can define rules of your own (user-defined rules) as long as the functions that
implement them respect this interface.
Contributing and reporting bugs
If you find any bugs or have other problems using this library,
open an issue in this repository (or even a pull
request 😃).
References
Inspired by HoundCI.

 LICENSE

LICENSE

 Apache License
 Version 2.0, January 2004
 https://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2015 Erlang Solutions Ltd.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 https://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

elvis_code

 Summary

 Types

 tree_node/0

 tree_node_zipper/0

 Functions

 find(Options)

 print_node(Node)

 Debugging utility function.

 print_node(Node, CurrentLevel)

 Debugging utility function.

 root(Rule, ElvisConfig)

 zipper(Root)

 Types

 tree_node/0

 -type tree_node() :: ktn_code:tree_node().

 tree_node_zipper/0

 -type tree_node_zipper() :: zipper:zipper(tree_node()).

 Functions

 find(Options)

 -spec find(Options) -> {nodes, [Node]} | {zippers, [Zipper]}
 when
 Options ::
 #{of_types := [ktn_code:tree_node_type()] | undefined,
 inside := Node,
 filtered_by => fun((Node | Zipper) -> boolean()),
 filtered_from => node | zipper,
 traverse => content | all},
 Node :: tree_node(),
 Zipper :: tree_node_zipper().

 print_node(Node)

 -spec print_node(tree_node()) -> ok.

Debugging utility function.

 print_node(Node, CurrentLevel)

 -spec print_node(tree_node(), integer()) -> ok.

Debugging utility function.

 root(Rule, ElvisConfig)

 -spec root(Rule, ElvisConfig) -> Res
 when Rule :: elvis_rule:t(), ElvisConfig :: elvis_config:t(), Res :: ktn_code:tree_node().

 zipper(Root)

 -spec zipper(tree_node()) -> tree_node_zipper().

elvis_config

 Summary

 Types

 fail_validation/0

 output_format/0

 t/0

 Functions

 apply_to_files(Fun, Config)

 Takes a function and configuration and applies the function to all file in the configuration.

 config()

 default()

 dirs(Config)

 files(RuleGroup)

 filter(Config)

 from_file(File)

 from_rebar(File)

 ignore(Config)

 merge_rules(UserRules, DefaultRules)

 Merge user rules (override) with elvis default rules.

 no_output()

 output_format()

 parallel()

 resolve_files(RuleGroup)

 Takes a configuration and finds all files according to its 'dirs' end 'filter' key, or if not specified uses '*.erl'.

 resolve_files(Config, Files)

 Takes a configuration and a list of files, filtering some of them according to the 'filter' key, or if not specified uses '*.erl'.

 rules(RulesL)

 ruleset(ElvisConfig)

 set_no_output(NoOutput)

 set_output_format(OutputFormat)

 set_parallel(Parallel)

 set_verbose(Verbose)

 validate_config(ElvisConfig)

 verbose()

 Types

 fail_validation/0

 -type fail_validation() :: {fail, [{throw, {invalid_config, Message :: string()}}]}.

 output_format/0

 -type output_format() :: plain | colors | parsable.

 t/0

 -opaque t()

 Functions

 apply_to_files(Fun, Config)

 -spec apply_to_files(Fun :: fun(), Config :: [t()] | t()) -> [t()] | t().

Takes a function and configuration and applies the function to all file in the configuration.

 config()

 -spec config() -> [t()] | fail_validation().

 default()

 -spec default() -> [t()].

 dirs(Config)

 -spec dirs(Config :: [t()] | t()) -> [string()].

 files(RuleGroup)

 -spec files(RuleGroup :: [t()] | t()) -> [elvis_file:t()].

 filter(Config)

 -spec filter([t()] | t()) -> [string()].

 from_file(File)

 -spec from_file(File :: string()) -> [t()] | fail_validation().

 from_rebar(File)

 -spec from_rebar(File :: string()) -> [t()] | fail_validation().

 ignore(Config)

 -spec ignore([t()] | t()) -> [string()].

 merge_rules(UserRules, DefaultRules)

 -spec merge_rules(UserRules :: list(), DefaultRules :: list()) -> [elvis_rule:t()].

Merge user rules (override) with elvis default rules.

 no_output()

 -spec no_output() -> boolean().

 output_format()

 -spec output_format() -> output_format().

 parallel()

 -spec parallel() -> pos_integer().

 resolve_files(RuleGroup)

 -spec resolve_files(t()) -> t().

Takes a configuration and finds all files according to its 'dirs' end 'filter' key, or if not specified uses '*.erl'.

 resolve_files(Config, Files)

 -spec resolve_files(Config :: [t()] | t(), Files :: [elvis_file:t()]) -> [t()] | t().

Takes a configuration and a list of files, filtering some of them according to the 'filter' key, or if not specified uses '*.erl'.

 rules(RulesL)

 -spec rules(RulesL :: [t()]) -> [[elvis_rule:t()]];
 (Rules :: t()) -> [elvis_rule:t()].

 ruleset(ElvisConfig)

 -spec ruleset(t()) -> Ruleset :: atom() | undefined.

 set_no_output(NoOutput)

 -spec set_no_output(boolean()) -> ok.

 set_output_format(OutputFormat)

 -spec set_output_format(output_format()) -> ok.

 set_parallel(Parallel)

 -spec set_parallel(pos_integer()) -> ok.

 set_verbose(Verbose)

 -spec set_verbose(boolean()) -> ok.

 validate_config(ElvisConfig)

 -spec validate_config(term()) -> ok.

 verbose()

 -spec verbose() -> boolean().

elvis_core

 Summary

 Types

 source_filename/0

 target/0

 Functions

 do_rock(File, ElvisConfig)

 main(_)

 rock(ElvisConfig)

 rock_this(Module, ElvisConfig)

 start()

 Used when starting the application on the shell.

 Types

 source_filename/0

 -type source_filename() :: nonempty_string().

 target/0

 -type target() :: source_filename() | module().

 Functions

 do_rock(File, ElvisConfig)

 -spec do_rock(elvis_file:t(), [elvis_config:t()] | elvis_config:t()) -> {ok, elvis_result:file()}.

 main(_)

 -spec main([]) -> true | no_return().

 rock(ElvisConfig)

 -spec rock([elvis_config:t()]) ->
 ok | {fail, [{throw, term()} | elvis_result:file() | elvis_result:rule()]}.

 rock_this(Module, ElvisConfig)

 -spec rock_this(target(), [elvis_config:t()]) ->
 ok | {fail, [elvis_result:file() | elvis_result:rule()]}.

 start()

 -spec start() -> ok.

Used when starting the application on the shell.

elvis_file

 Summary

 Types

 t/0

 Functions

 encoding(_)

 Returns the file encoding.

 filter_files(Files, Dirs, Filter, IgnoreList)

 Filter files based on the glob provided.

 find_files(Dirs, Pattern)

 Returns all files under the specified Path that match the pattern Name.

 get_abstract_parse_tree(File)

 load_file_data(ElvisConfig, File0)

 Loads and adds all related file data.

 module(_)

 Return module name corresponding to a given .hrl/.erl/.beam file

 parse_tree(File, ElvisConfig)

 Add the root node of the parse tree to the file data, with filtering.

 path(File)

 Given a t() returns its path.

 src(File)

 Returns a tuple with the contents of the file and the file itself.

 Types

 t/0

 -opaque t()

 Functions

 encoding(_)

 -spec encoding(t()) -> atom().

Returns the file encoding.

 filter_files(Files, Dirs, Filter, IgnoreList)

 -spec filter_files([t()], [string()], string(), [string()]) -> [t()].

Filter files based on the glob provided.

 find_files(Dirs, Pattern)

 -spec find_files([string()], string()) -> [t()].

Returns all files under the specified Path that match the pattern Name.

 get_abstract_parse_tree(File)

 -spec get_abstract_parse_tree(t()) -> ktn_code:tree_node().

 load_file_data(ElvisConfig, File0)

 -spec load_file_data([elvis_config:t()] | elvis_config:t(), t()) -> t().

Loads and adds all related file data.

 module(_)

 -spec module(t()) -> module().

Return module name corresponding to a given .hrl/.erl/.beam file

 parse_tree(File, ElvisConfig)

 -spec parse_tree(elvis_rule:t() | elvis_file:t(), [elvis_config:t()] | elvis_config:t()) ->
 {ktn_code:tree_node(), t()}.

Add the root node of the parse tree to the file data, with filtering.

 path(File)

 -spec path(t()) -> string().

Given a t() returns its path.

 src(File)

 -spec src(t()) -> {binary(), t()} | {error, enoent}.

Returns a tuple with the contents of the file and the file itself.

elvis_gitignore

 Summary

 Functions

 default(RuleName)

 forbidden_patterns(Rule, ElvisConfig)

 required_patterns(Rule, ElvisConfig)

 Functions

 default(RuleName)

 -spec default(RuleName :: atom()) -> elvis_rule:def().

 forbidden_patterns(Rule, ElvisConfig)

 -spec forbidden_patterns(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 required_patterns(Rule, ElvisConfig)

 -spec required_patterns(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

elvis_project

 Summary

 Functions

 default(RuleName)

 no_branch_deps(Rule, ElvisConfig)

 protocol_for_deps(Rule, ElvisConfig)

 Functions

 default(RuleName)

 -spec default(RuleName :: atom()) -> elvis_rule:def().

 no_branch_deps(Rule, ElvisConfig)

 -spec no_branch_deps(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 protocol_for_deps(Rule, ElvisConfig)

 -spec protocol_for_deps(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

elvis_result

 Summary

 Types

 elvis_error/0

 elvis_warn/0

 file/0

 item/0

 rule/0

 Functions

 clean(Files)

 Removes files that don't have any failures.

 get_info(_)

 get_items(_)

 get_line_num(_)

 get_message(_)

 get_path(_)

 get_rules(_)

 new(_, Msg, Info)

 new_item(Format)

 new_item(Format, Data)

 new_item(Format, Data, Attrs)

 print_results(Results)

 status(Files)

 Types

 elvis_error/0

 -opaque elvis_error()

 elvis_warn/0

 -opaque elvis_warn()

 file/0

 -opaque file()

 item/0

 -opaque item()

 rule/0

 -opaque rule()

 Functions

 clean(Files)

 -spec clean([file() | rule()]) -> [file() | rule()].

Removes files that don't have any failures.

 get_info(_)

 -spec get_info(item()) -> string().

 get_items(_)

 -spec get_items(rule()) -> [item()].

 get_line_num(_)

 -spec get_line_num(item()) -> integer().

 get_message(_)

 -spec get_message(item()) -> string().

 get_path(_)

 -spec get_path(file()) -> string().

 get_rules(_)

 -spec get_rules(file()) -> [rule()].

 new(_, Msg, Info)

 -spec new(item, string(), [term()]) -> item();
 (rule, elvis_rule:t(), [item()]) -> rule();
 (file, elvis_file:t(), [elvis_error() | rule()]) -> file();
 (error, string(), string()) -> elvis_error();
 (warn, string(), string()) -> elvis_warn().

 new_item(Format)

 -spec new_item(Format :: string()) -> item().

 new_item(Format, Data)

 -spec new_item(Format :: string(), Data :: [term()]) -> item().

 new_item(Format, Data, Attrs)

 -spec new_item(Format :: string(), Data :: [term()], Attrs) -> item()
 when
 Attrs ::
 #{node => ktn_code:tree_node(),
 zipper => zipper:zipper(ktn_code:tree_node()),
 line => -1 | non_neg_integer(),
 column => -1 | non_neg_integer(),
 limit => -1 | non_neg_integer()}.

 print_results(Results)

 -spec print_results(file() | [elvis_warn()]) -> ok.

 status(Files)

 -spec status([file() | rule()]) -> ok | fail.

elvis_rule behaviour

 Summary

 Types

 def/0

 ignorable/0

 t/0

 Callbacks

 default/1

 Functions

 def(Rule)

 defkeys(Rule)

 defmap(Map)

 disabled(Rule)

 execute(Rule, ElvisConfig)

 file(Rule)

 file(Rule, File)

 from_tuple(Rule)

 ignorable(Ignorable)

 ignored(Needle, Rule)

 is_ignorable(Module)

 is_valid_from_tuple(Tuple)

 name(Rule)

 new(NS, Name)

 new(NS, Name, Def)

 ns(Rule)

 option(Key, Rule)

 same(RuleL, RuleR)

 Loose equality comparison for a specific use case

 Types

 def/0

 -opaque def()

 ignorable/0

 -opaque ignorable()

 t/0

 -opaque t()

 Callbacks

 default/1

 -callback default(RuleName :: atom()) -> def().

 Functions

 def(Rule)

 -spec def(t()) -> def().

 defkeys(Rule)

 -spec defkeys(t()) -> [atom()].

 defmap(Map)

 -spec defmap(map()) -> def().

 disabled(Rule)

 -spec disabled(t()) -> boolean().

 execute(Rule, ElvisConfig)

 -spec execute(t(), ElvisConfig) -> Results
 when
 ElvisConfig :: elvis_config:t(),
 Results :: [elvis_result:rule() | elvis_result:elvis_error()].

 file(Rule)

 -spec file(t()) -> elvis_file:t().

 file(Rule, File)

 -spec file(t(), elvis_file:t()) -> t().

 from_tuple(Rule)

 -spec from_tuple(Rule | NSName | NSNameDef) -> t() | invalid_tuple
 when
 Rule :: t(),
 NSName :: {NS :: module(), Name :: atom()},
 NSNameDef :: {NS :: module(), Name :: atom(), Def :: disable | map()}.

 ignorable(Ignorable)

 -spec ignorable(module() | {module(), atom()} | {module(), atom(), arity()}) -> ignorable().

 ignored(Needle, Rule)

 -spec ignored(Needle :: ignorable(), t()) -> boolean().

 is_ignorable(Module)

 -spec is_ignorable(term()) -> boolean().

 is_valid_from_tuple(Tuple)

 -spec is_valid_from_tuple(tuple()) -> {true, t()} | {false, string()}.

 name(Rule)

 -spec name(t()) -> atom().

 new(NS, Name)

 -spec new(NS :: module(), Name :: atom()) -> t().

 new(NS, Name, Def)

 -spec new(NS :: module(), Name :: atom(), Def :: def()) -> t().

 ns(Rule)

 -spec ns(t()) -> module().

 option(Key, Rule)

 -spec option(Key :: atom(), t()) -> Value :: undefined | term().

 same(RuleL, RuleR)

 -spec same(t(), t()) -> boolean().

Loose equality comparison for a specific use case

elvis_ruleset

 Summary

 Functions

 custom_names()

 drop_custom()

 is_defined(Ruleset)

 load_custom(Rulesets)

 rules(Group)

 Functions

 custom_names()

 -spec custom_names() -> [atom()].

 drop_custom()

 -spec drop_custom() -> _.

 is_defined(Ruleset)

 -spec is_defined(atom()) -> boolean().

 load_custom(Rulesets)

 -spec load_custom(#{atom() => list()}) -> ok.

 rules(Group)

 -spec rules(Group :: atom()) -> [elvis_rule:t()].

elvis_style

 Summary

 Types

 binary_part/0

 Functions

 always_shortcircuit(Rule, ElvisConfig)

 atom_naming_convention(Rule, ElvisConfig)

 behaviour_spelling(Rule, ElvisConfig)

 default(RuleName)

 dont_repeat_yourself(Rule, ElvisConfig)

 export_used_types(Rule, ElvisConfig)

 function_naming_convention(Rule, ElvisConfig)

 generic_type(Rule, ElvisConfig)

 guard_operators(Rule, ElvisConfig)

 macro_definition_parentheses(Rule, ElvisConfig)

 macro_naming_convention(Rule, ElvisConfig)

 max_anonymous_function_arity(Rule, ElvisConfig)

 max_anonymous_function_clause_length(Rule, ElvisConfig)

 max_anonymous_function_length(Rule, ElvisConfig)

 max_function_arity(Rule, ElvisConfig)

 max_function_clause_length(Rule, ElvisConfig)

 max_function_length(Rule, ElvisConfig)

 max_map_type_keys(Rule, ElvisConfig)

 max_module_length(Rule, ElvisConfig)

 max_record_fields(Rule, ElvisConfig)

 module_naming_convention(Rule, ElvisConfig)

 ms_transform_included(Rule, ElvisConfig)

 no_author(Rule, ElvisConfig)

 no_behavior_info(Rule, ElvisConfig)

 no_block_expressions(Rule, ElvisConfig)

 no_boolean_in_comparison(Rule, ElvisConfig)

 no_call(Rule, ElvisConfig)

 no_catch_expressions(Rule, ElvisConfig)

 no_common_caveats_call(Rule, ElvisConfig)

 no_debug_call(Rule, ElvisConfig)

 no_deep_nesting(Rule, ElvisConfig)

 no_dollar_space(Rule, ElvisConfig)

 no_god_modules(Rule, ElvisConfig)

 no_if_expression(Rule, ElvisConfig)

 no_import(Rule, ElvisConfig)

 no_includes(Rule, ElvisConfig)

 no_init_lists(Rule, ElvisConfig)

 no_invalid_dynamic_calls(Rule, ElvisConfig)

 no_macros(Rule, ElvisConfig)

 no_match_in_condition(Rule, ElvisConfig)

 no_nested_try_catch(Rule, ElvisConfig)

 no_operation_on_same_value(Rule, ElvisConfig)

 no_receive_without_timeout(Rule, ElvisConfig)

 no_single_clause_case(Rule, ElvisConfig)

 no_single_match_maybe(Rule, ElvisConfig)

 no_space(Rule, ElvisConfig)

 no_space_after_pound(Rule, ElvisConfig)

 no_spec_with_records(Rule, ElvisConfig)

 no_specs(Rule, ElvisConfig)

 no_successive_maps(Rule, ElvisConfig)

 no_throw(Rule, ElvisConfig)

 no_types(Rule, ElvisConfig)

 no_used_ignored_variables(Rule, ElvisConfig)

 numeric_format(Rule, ElvisConfig)

 operator_spaces(Rule, ElvisConfig)

 param_pattern_matching(Rule, ElvisConfig)

 prefer_include(Rule, ElvisConfig)

 prefer_strict_generators(Rule, ElvisConfig)

 prefer_unquoted_atoms(Rule, ElvisConfig)

 private_data_types(Rule, ElvisConfig)

 simplify_anonymous_functions(Rule, ElvisConfig)

 state_record_and_type(Rule, ElvisConfig)

 strict_term_equivalence(Rule, ElvisConfig)

 variable_casing(Rule, ElvisConfig)

 variable_naming_convention(Rule, ElvisConfig)

 Types

 binary_part/0

 -type binary_part() :: {Start :: non_neg_integer(), Length :: integer()}.

 Functions

 always_shortcircuit(Rule, ElvisConfig)

 -spec always_shortcircuit(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 atom_naming_convention(Rule, ElvisConfig)

 -spec atom_naming_convention(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 behaviour_spelling(Rule, ElvisConfig)

 -spec behaviour_spelling(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 default(RuleName)

 -spec default(RuleName :: atom()) -> elvis_rule:def().

 dont_repeat_yourself(Rule, ElvisConfig)

 -spec dont_repeat_yourself(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 export_used_types(Rule, ElvisConfig)

 -spec export_used_types(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 function_naming_convention(Rule, ElvisConfig)

 -spec function_naming_convention(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 generic_type(Rule, ElvisConfig)

 -spec generic_type(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 guard_operators(Rule, ElvisConfig)

 -spec guard_operators(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 macro_definition_parentheses(Rule, ElvisConfig)

 -spec macro_definition_parentheses(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 macro_naming_convention(Rule, ElvisConfig)

 -spec macro_naming_convention(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_anonymous_function_arity(Rule, ElvisConfig)

 -spec max_anonymous_function_arity(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_anonymous_function_clause_length(Rule, ElvisConfig)

 -spec max_anonymous_function_clause_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_anonymous_function_length(Rule, ElvisConfig)

 -spec max_anonymous_function_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_function_arity(Rule, ElvisConfig)

 -spec max_function_arity(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_function_clause_length(Rule, ElvisConfig)

 -spec max_function_clause_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_function_length(Rule, ElvisConfig)

 -spec max_function_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_map_type_keys(Rule, ElvisConfig)

 -spec max_map_type_keys(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_module_length(Rule, ElvisConfig)

 -spec max_module_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 max_record_fields(Rule, ElvisConfig)

 -spec max_record_fields(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 module_naming_convention(Rule, ElvisConfig)

 -spec module_naming_convention(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 ms_transform_included(Rule, ElvisConfig)

 -spec ms_transform_included(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_author(Rule, ElvisConfig)

 -spec no_author(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_behavior_info(Rule, ElvisConfig)

 -spec no_behavior_info(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_block_expressions(Rule, ElvisConfig)

 -spec no_block_expressions(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_boolean_in_comparison(Rule, ElvisConfig)

 -spec no_boolean_in_comparison(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_call(Rule, ElvisConfig)

 -spec no_call(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_catch_expressions(Rule, ElvisConfig)

 -spec no_catch_expressions(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_common_caveats_call(Rule, ElvisConfig)

 -spec no_common_caveats_call(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_debug_call(Rule, ElvisConfig)

 -spec no_debug_call(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_deep_nesting(Rule, ElvisConfig)

 -spec no_deep_nesting(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_dollar_space(Rule, ElvisConfig)

 -spec no_dollar_space(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_god_modules(Rule, ElvisConfig)

 -spec no_god_modules(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_if_expression(Rule, ElvisConfig)

 -spec no_if_expression(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_import(Rule, ElvisConfig)

 -spec no_import(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_includes(Rule, ElvisConfig)

 -spec no_includes(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_init_lists(Rule, ElvisConfig)

 -spec no_init_lists(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_invalid_dynamic_calls(Rule, ElvisConfig)

 -spec no_invalid_dynamic_calls(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_macros(Rule, ElvisConfig)

 -spec no_macros(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_match_in_condition(Rule, ElvisConfig)

 -spec no_match_in_condition(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_nested_try_catch(Rule, ElvisConfig)

 -spec no_nested_try_catch(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_operation_on_same_value(Rule, ElvisConfig)

 -spec no_operation_on_same_value(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_receive_without_timeout(Rule, ElvisConfig)

 -spec no_receive_without_timeout(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_single_clause_case(Rule, ElvisConfig)

 -spec no_single_clause_case(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_single_match_maybe(Rule, ElvisConfig)

 -spec no_single_match_maybe(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_space(Rule, ElvisConfig)

 -spec no_space(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_space_after_pound(Rule, ElvisConfig)

 -spec no_space_after_pound(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_spec_with_records(Rule, ElvisConfig)

 -spec no_spec_with_records(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_specs(Rule, ElvisConfig)

 -spec no_specs(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_successive_maps(Rule, ElvisConfig)

 -spec no_successive_maps(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_throw(Rule, ElvisConfig)

 -spec no_throw(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_types(Rule, ElvisConfig)

 -spec no_types(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_used_ignored_variables(Rule, ElvisConfig)

 -spec no_used_ignored_variables(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 numeric_format(Rule, ElvisConfig)

 -spec numeric_format(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 operator_spaces(Rule, ElvisConfig)

 -spec operator_spaces(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 param_pattern_matching(Rule, ElvisConfig)

 -spec param_pattern_matching(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 prefer_include(Rule, ElvisConfig)

 -spec prefer_include(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 prefer_strict_generators(Rule, ElvisConfig)

 -spec prefer_strict_generators(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 prefer_unquoted_atoms(Rule, ElvisConfig)

 -spec prefer_unquoted_atoms(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 private_data_types(Rule, ElvisConfig)

 -spec private_data_types(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 simplify_anonymous_functions(Rule, ElvisConfig)

 -spec simplify_anonymous_functions(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 state_record_and_type(Rule, ElvisConfig)

 -spec state_record_and_type(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 strict_term_equivalence(Rule, ElvisConfig)

 -spec strict_term_equivalence(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 variable_casing(Rule, ElvisConfig)

 -spec variable_casing(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 variable_naming_convention(Rule, ElvisConfig)

 -spec variable_naming_convention(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

elvis_task

 Summary

 Functions

 chunk_fold(FunWork, FunAcc, InitialAcc, ExtraArgs, JoinItemList, Concurrency)

 chunk_fold evaluates apply(Module, Function, [Elem|ExtrArgs]) for every element Elem in JobItemList in parallel with max concurrcy factor equal to Concurrency. On successful evaluation FunAcc function is called with the result of successful execution as a first argument and accumulator as a second argument.

 Functions

 chunk_fold(FunWork, FunAcc, InitialAcc, ExtraArgs, JoinItemList, Concurrency)

 -spec chunk_fold(FunWork :: {Module :: module(), Function :: atom()},
 FunAcc :: fun((NewElem :: term(), Acc :: term()) -> Acc :: term()),
 InitialAcc :: term(),
 ExtraArgs :: list(),
 JoinItemList :: list(),
 Concurrency :: non_neg_integer()) ->
 {ok, FinalAcc :: term()} | {error, term()}.

chunk_fold evaluates apply(Module, Function, [Elem|ExtrArgs]) for every element Elem in JobItemList in parallel with max concurrcy factor equal to Concurrency. On successful evaluation FunAcc function is called with the result of successful execution as a first argument and accumulator as a second argument.

elvis_text_style

 Summary

 Functions

 default(RuleName)

 line_length(Rule, ElvisConfig)

 File can be either a filename or the name of a module.

 no_redundant_blank_lines(Rule, ElvisConfig)

 no_tabs(Rule, ElvisConfig)

 no_trailing_whitespace(Rule, ElvisConfig)

 Functions

 default(RuleName)

 -spec default(RuleName :: atom()) -> elvis_rule:def().

 line_length(Rule, ElvisConfig)

 -spec line_length(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

File can be either a filename or the name of a module.

 no_redundant_blank_lines(Rule, ElvisConfig)

 -spec no_redundant_blank_lines(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_tabs(Rule, ElvisConfig)

 -spec no_tabs(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

 no_trailing_whitespace(Rule, ElvisConfig)

 -spec no_trailing_whitespace(elvis_rule:t(), elvis_config:t()) -> [elvis_result:item()].

elvis_utils

 Summary

 Functions

 abort(Format, Data)

 debug(Format, Data)

 erlang_halt(Code)

 error(Format, Data)

 info(Format, Data)

 list_to_str(What)

 notice(Format, Data)

 split_all_lines(Binary)

 split_all_lines(Binary, Opts)

 to_str(Arg)

 warn(Format, Data)

 Functions

 abort(Format, Data)

 -spec abort(Format :: io:format(), Data :: [term()]) -> no_return().

 debug(Format, Data)

 -spec debug(string(), [term()]) -> ok.

 erlang_halt(Code)

 -spec erlang_halt(integer()) -> no_return().

 error(Format, Data)

 -spec error(string(), [term()]) -> ok.

 info(Format, Data)

 -spec info(string(), [term()]) -> ok.

 list_to_str(What)

 -spec list_to_str([term()]) -> string().

 notice(Format, Data)

 -spec notice(string(), [term()]) -> ok.

 split_all_lines(Binary)

 -spec split_all_lines(binary()) -> [binary(), ...].

 split_all_lines(Binary, Opts)

 -spec split_all_lines(binary(), list()) -> [binary()].

 to_str(Arg)

 -spec to_str(binary() | list() | atom() | integer()) -> string().

 warn(Format, Data)

 -spec warn(string(), [term()]) -> ok.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

