

 encoding_rs

 v0.2.2

 Table of contents

 	EncodingRs

 	Changelog

 	Guides

 	Streaming Guide

 	Batch Processing Guide

 	Library Comparison

 	
 Modules

 	Core API

 	EncodingRs

 	Streaming

 	EncodingRs.Decoder

EncodingRs

High-performance string encoding/decoding using Rust's encoding_rs crate.
This library provides fast character encoding conversion using the same
encoding library that powers Firefox. It supports all encodings in the
WHATWG Encoding Standard.
Features
	High performance: Uses encoding_rs, the same library used by Firefox
	Dirty schedulers: Large binaries automatically use dirty CPU schedulers
to avoid blocking the BEAM (configurable threshold, default 64KB)
	Safe error handling: Returns {:ok, result} or {:error, reason} tuples
	WHATWG compliant: Supports all encodings from the WHATWG Encoding Standard

Configuration
The dirty scheduler threshold controls when operations are moved to dirty CPU
schedulers. The BEAM VM has a limited number of normal schedulers, and long-running
NIFs can block them, causing latency for other processes. By offloading large
encoding/decoding operations to dirty schedulers, the normal schedulers remain
available for other work.
Configure in your config.exs:
Using multiplication for readability
config :encoding_rs, dirty_threshold: 128 * 1024

Or using Elixir's underscore notation
config :encoding_rs, dirty_threshold: 131_072
The default is 64KB (65,536 bytes).
Increasing the threshold reduces context switching overhead, which benefits
batch processing and throughput-focused workloads. However, larger operations
will block normal schedulers longer, potentially causing latency for other processes.
Decreasing the threshold keeps normal schedulers more available, which benefits
latency-sensitive and high-concurrency applications. However, more frequent context
switching adds overhead that may reduce throughput.
Supported Encodings
	UTF-8, UTF-16LE, UTF-16BE
	Windows code pages: 874, 1250-1258, 949, 932
	ISO-8859 family: 2, 3, 4, 5, 6, 7, 8, 8-I, 10, 13, 14, 15, 16
	IBM866
	KOI8-R, KOI8-U
	macintosh, x-mac-cyrillic
	Asian encodings: Shift_JIS, EUC-JP, ISO-2022-JP, EUC-KR, GBK, GB18030, Big5
	x-user-defined

Examples
iex> EncodingRs.encode("Hello", "windows-1252")
{:ok, "Hello"}

iex> EncodingRs.decode(<<72, 101, 108, 108, 111>>, "windows-1252")
{:ok, "Hello"}

iex> EncodingRs.encode!("¥₪ש", "windows-1255")
<<165, 164, 249>>

iex> EncodingRs.decode!(<<165, 164, 249>>, "windows-1255")
"¥₪ש"

iex> EncodingRs.encoding_exists?("utf-8")
true

iex> EncodingRs.encoding_exists?("not-an-encoding")
false

 Summary

 Types

 batch_result(t)

 Result from batch operations

 bom_result()

 Result of BOM detection: encoding name and BOM length in bytes.

 decode_batch_item()

 Input item for batch decoding: {binary, encoding}

 encode_batch_item()

 Input item for batch encoding: {string, encoding}

 encoding()

 An encoding label string (e.g., "utf-8", "shift_jis", "windows-1252").

 error_reason()

 Error reason atoms returned by encoding/decoding functions.

 Functions

 canonical_name(encoding)

 Returns the canonical name for an encoding label.

 decode(binary, encoding)

 Decodes a binary from the specified encoding to a UTF-8 string.

 decode!(binary, encoding)

 Decodes a binary from the specified encoding to a UTF-8 string.

 decode_batch(items)

 Decodes multiple binaries in a single NIF call.

 detect_and_strip_bom(data)

 Detects the encoding from a BOM and strips it from the data.

 detect_bom(data)

 Detects the encoding from a Byte Order Mark (BOM) at the start of the data.

 dirty_threshold()

 Returns the threshold (in bytes) above which dirty schedulers are used.

 encode(string, encoding)

 Encodes a UTF-8 string to the specified encoding.

 encode!(string, encoding)

 Encodes a UTF-8 string to the specified encoding.

 encode_batch(items)

 Encodes multiple strings in a single NIF call.

 encoding_exists?(encoding)

 Checks if an encoding label is valid and supported.

 list_encodings()

 Returns a list of all supported encoding names.

 Types

 batch_result(t)

 @type batch_result(t) :: {:ok, t} | {:error, :unknown_encoding}

Result from batch operations

 bom_result()

 @type bom_result() ::
 {:ok, encoding(), bom_length :: non_neg_integer()} | {:error, :no_bom}

Result of BOM detection: encoding name and BOM length in bytes.

 decode_batch_item()

 @type decode_batch_item() :: {binary(), encoding()}

Input item for batch decoding: {binary, encoding}

 encode_batch_item()

 @type encode_batch_item() :: {String.t(), encoding()}

Input item for batch encoding: {string, encoding}

 encoding()

 @type encoding() :: String.t()

An encoding label string (e.g., "utf-8", "shift_jis", "windows-1252").
See list_encodings/0 for all supported encodings, or check the
WHATWG Encoding Standard.

 error_reason()

 @type error_reason() :: :unknown_encoding | :no_bom

Error reason atoms returned by encoding/decoding functions.

 Functions

 canonical_name(encoding)

 @spec canonical_name(encoding()) :: {:ok, encoding()} | {:error, :unknown_encoding}

Returns the canonical name for an encoding label.
Encoding labels have many aliases (e.g., "latin1", "iso-8859-1", "iso_8859-1").
This function returns the canonical WHATWG name for any valid alias.
Examples
iex> EncodingRs.canonical_name("latin1")
{:ok, "windows-1252"}

iex> EncodingRs.canonical_name("utf8")
{:ok, "UTF-8"}

iex> EncodingRs.canonical_name("invalid")
{:error, :unknown_encoding}

 decode(binary, encoding)

 @spec decode(binary(), encoding()) :: {:ok, String.t()} | {:error, :unknown_encoding}

Decodes a binary from the specified encoding to a UTF-8 string.
Returns {:ok, string} on success, or {:error, reason} on failure.
Unmappable bytes are replaced with the Unicode replacement character (U+FFFD).
Automatically uses dirty CPU schedulers for binaries larger than the
configured threshold (see dirty_threshold/0).
Examples
iex> EncodingRs.decode(<<72, 101, 108, 108, 111>>, "windows-1252")
{:ok, "Hello"}

iex> EncodingRs.decode(<<0xFF>>, "invalid-encoding")
{:error, :unknown_encoding}

 decode!(binary, encoding)

 @spec decode!(binary(), encoding()) :: String.t()

Decodes a binary from the specified encoding to a UTF-8 string.
Returns the decoded string on success, or raises an ArgumentError on failure.
Examples
iex> EncodingRs.decode!(<<72, 101, 108, 108, 111>>, "windows-1252")
"Hello"

iex> EncodingRs.decode!(<<0xFF>>, "invalid-encoding")
** (ArgumentError) unknown encoding: invalid-encoding

 decode_batch(items)

 @spec decode_batch([decode_batch_item()]) :: [batch_result(String.t())]

Decodes multiple binaries in a single NIF call.
This is more efficient than calling decode/2 repeatedly when processing
many items, as it amortizes the NIF dispatch overhead.
Results are returned in the same order as the input items.
Note: Batch operations always use dirty CPU schedulers, regardless of
input size. See the Batch Processing Guide for details.
Arguments
	items - List of {binary, encoding} tuples to decode

Returns
List of {:ok, string} or {:error, :unknown_encoding} tuples.
Examples
iex> items = [{<<72, 101, 108, 108, 111>>, "windows-1252"}, {<<0x82, 0xA0>>, "shift_jis"}]
iex> EncodingRs.decode_batch(items)
[{:ok, "Hello"}, {:ok, "あ"}]

iex> EncodingRs.decode_batch([{<<72>>, "invalid-encoding"}])
[{:error, :unknown_encoding}]

 detect_and_strip_bom(data)

 @spec detect_and_strip_bom(binary()) ::
 {:ok, encoding(), binary()} | {:error, :no_bom}

Detects the encoding from a BOM and strips it from the data.
Convenience function that combines BOM detection with stripping the BOM
from the input data. Useful when you want to both detect the encoding
and get the data without the BOM prefix.
Returns
	{:ok, encoding, data_without_bom} - BOM detected and stripped
	{:error, :no_bom} - No BOM found, data unchanged

Examples
iex> EncodingRs.detect_and_strip_bom(<<0xEF, 0xBB, 0xBF, "hello">>)
{:ok, "UTF-8", "hello"}

iex> EncodingRs.detect_and_strip_bom("hello")
{:error, :no_bom}

 detect_bom(data)

 @spec detect_bom(binary()) :: bom_result()

Detects the encoding from a Byte Order Mark (BOM) at the start of the data.
BOMs are special byte sequences at the beginning of a file that indicate
the encoding. This function checks the first few bytes of the input and
returns the detected encoding if a BOM is found.
Supported BOMs:
	UTF-8: <<0xEF, 0xBB, 0xBF>> (3 bytes)
	UTF-16LE: <<0xFF, 0xFE>> (2 bytes)
	UTF-16BE: <<0xFE, 0xFF>> (2 bytes)

Returns
	{:ok, encoding, bom_length} - BOM detected, returns encoding name and BOM size
	{:error, :no_bom} - No BOM found at the start of the data

Examples
iex> EncodingRs.detect_bom(<<0xEF, 0xBB, 0xBF, "hello">>)
{:ok, "UTF-8", 3}

iex> EncodingRs.detect_bom(<<0xFF, 0xFE, 0x48, 0x00>>)
{:ok, "UTF-16LE", 2}

iex> EncodingRs.detect_bom(<<0xFE, 0xFF, 0x00, 0x48>>)
{:ok, "UTF-16BE", 2}

iex> EncodingRs.detect_bom("hello")
{:error, :no_bom}

iex> EncodingRs.detect_bom(<<>>)
{:error, :no_bom}

 dirty_threshold()

 @spec dirty_threshold() :: non_neg_integer()

Returns the threshold (in bytes) above which dirty schedulers are used.
Encode/decode operations on binaries larger than this threshold will
automatically use dirty CPU schedulers to avoid blocking the BEAM's normal
schedulers. This prevents long-running encoding operations from causing
latency for other processes.
This value can be configured in your config.exs:
Using multiplication for readability
config :encoding_rs, dirty_threshold: 128 * 1024

Or using Elixir's underscore notation
config :encoding_rs, dirty_threshold: 131_072
The default is 64KB (65,536 bytes).
Examples
iex> EncodingRs.dirty_threshold()
65536

 encode(string, encoding)

 @spec encode(String.t(), encoding()) :: {:ok, binary()} | {:error, :unknown_encoding}

Encodes a UTF-8 string to the specified encoding.
Returns {:ok, binary} on success, or {:error, reason} on failure.
Unmappable characters are replaced with a suitable fallback character.
Automatically uses dirty CPU schedulers for strings larger than the
configured threshold (see dirty_threshold/0).
Examples
iex> EncodingRs.encode("Hello", "windows-1252")
{:ok, "Hello"}

iex> EncodingRs.encode("Hello", "invalid-encoding")
{:error, :unknown_encoding}

 encode!(string, encoding)

 @spec encode!(String.t(), encoding()) :: binary()

Encodes a UTF-8 string to the specified encoding.
Returns the encoded binary on success, or raises an ArgumentError on failure.
Examples
iex> EncodingRs.encode!("Hello", "windows-1252")
"Hello"

iex> EncodingRs.encode!("Hello", "invalid-encoding")
** (ArgumentError) unknown encoding: invalid-encoding

 encode_batch(items)

 @spec encode_batch([encode_batch_item()]) :: [batch_result(binary())]

Encodes multiple strings in a single NIF call.
This is more efficient than calling encode/2 repeatedly when processing
many items, as it amortizes the NIF dispatch overhead.
Results are returned in the same order as the input items.
Note: Batch operations always use dirty CPU schedulers, regardless of
input size. See the Batch Processing Guide for details.
Arguments
	items - List of {string, encoding} tuples to encode

Returns
List of {:ok, binary} or {:error, :unknown_encoding} tuples.
Examples
iex> items = [{"Hello", "windows-1252"}, {"あ", "shift_jis"}]
iex> EncodingRs.encode_batch(items)
[{:ok, "Hello"}, {:ok, <<130, 160>>}]

iex> EncodingRs.encode_batch([{"test", "invalid-encoding"}])
[{:error, :unknown_encoding}]

 encoding_exists?(encoding)

 @spec encoding_exists?(encoding()) :: boolean()

Checks if an encoding label is valid and supported.
Examples
iex> EncodingRs.encoding_exists?("utf-8")
true

iex> EncodingRs.encoding_exists?("UTF-8")
true

iex> EncodingRs.encoding_exists?("not-an-encoding")
false

 list_encodings()

 @spec list_encodings() :: [encoding()]

Returns a list of all supported encoding names.
Examples
iex> "UTF-8" in EncodingRs.list_encodings()
true

iex> "Shift_JIS" in EncodingRs.list_encodings()
true

EncodingRs.Decoder

Stateful streaming decoder for converting encoded byte streams to UTF-8.
This module provides a streaming API for decoding multibyte encodings
(like Shift_JIS, GBK, Big5, EUC-JP, etc.) where characters may be split
across chunk boundaries.
Why Use Streaming Decoding?
Multibyte encodings use variable-length byte sequences to represent characters.
For example, in Shift_JIS, the character "あ" is encoded as two bytes: <<0x82, 0xA0>>.
When processing data in chunks (e.g., from File.stream!/1 or network streams),
a character's bytes may be split across chunks:
Chunk 1 ends with first byte of "あ"
chunk1 = <<..., 0x82>>
Chunk 2 starts with second byte of "あ"
chunk2 = <<0xA0, ...>>
The one-shot EncodingRs.decode/2 treats each chunk independently, so:
	Chunk 1's trailing 0x82 is invalid → replaced with �
	Chunk 2's leading 0xA0 is invalid → replaced with �

The streaming decoder maintains state between chunks, properly buffering
incomplete sequences until completed.
Usage
Manual Chunked Decoding
{:ok, decoder} = EncodingRs.Decoder.new("shift_jis")

{:ok, output1, _} = EncodingRs.Decoder.decode_chunk(decoder, chunk1, false)
{:ok, output2, _} = EncodingRs.Decoder.decode_chunk(decoder, chunk2, false)
{:ok, output3, _} = EncodingRs.Decoder.decode_chunk(decoder, chunk3, true)

result = output1 <> output2 <> output3
Stream-Based Decoding
File.stream!("data.txt", [], 4096)
|> EncodingRs.Decoder.stream("shift_jis")
|> Enum.join()
Important Notes
	Always pass is_last: true for the final chunk to flush any buffered bytes
	The decoder resource is mutable; don't share it across concurrent processes
	For single complete binaries, use EncodingRs.decode/2 instead (more efficient)

 Summary

 Types

 decode_result()

 Result of decoding a chunk: {:ok, decoded_string, had_errors}

 t()

 An opaque decoder reference. Created with new/1.

 Functions

 decode_chunk(decoder, chunk, is_last \\ false)

 Decodes a chunk of bytes using the stateful decoder.

 decode_chunk!(decoder, chunk, is_last \\ false)

 Decodes a chunk, raising on error.

 new(encoding)

 Creates a new stateful decoder for the specified encoding.

 new!(encoding)

 Creates a new stateful decoder, raising on error.

 stream(chunks, encoding)

 Creates a stream that decodes chunks from the given encoding to UTF-8.

 stream_with_errors(chunks, encoding)

 Creates a stream that decodes chunks, including error information.

 Types

 decode_result()

 @type decode_result() :: {:ok, String.t(), had_errors :: boolean()}

Result of decoding a chunk: {:ok, decoded_string, had_errors}

 t()

 @type t() :: reference()

An opaque decoder reference. Created with new/1.

 Functions

 decode_chunk(decoder, chunk, is_last \\ false)

 @spec decode_chunk(t(), binary(), boolean()) :: decode_result()

Decodes a chunk of bytes using the stateful decoder.
This function properly handles multibyte characters split across chunk
boundaries by maintaining decoder state between calls.
Arguments
	decoder - The decoder reference from new/1
	chunk - The binary chunk to decode
	is_last - Set to true for the final chunk (default: false)

Returns
	{:ok, output, had_errors} on success	output - The decoded UTF-8 string for this chunk
	had_errors - true if any bytes were replaced with U+FFFD

Behavior
	When is_last is false: Incomplete byte sequences at the end of the
chunk are buffered internally and completed with the next chunk.
	When is_last is true: Any remaining incomplete sequences are replaced
with U+FFFD (the Unicode replacement character).

Examples
iex> {:ok, decoder} = EncodingRs.Decoder.new("shift_jis")
iex> # Shift_JIS "あ" is <<0x82, 0xA0>> - split across chunks
iex> {:ok, out1, false} = EncodingRs.Decoder.decode_chunk(decoder, <<0x82>>, false)
iex> {:ok, out2, false} = EncodingRs.Decoder.decode_chunk(decoder, <<0xA0>>, true)
iex> out1 <> out2
"あ"

 decode_chunk!(decoder, chunk, is_last \\ false)

 @spec decode_chunk!(t(), binary(), boolean()) :: {String.t(), boolean()}

Decodes a chunk, raising on error.
See decode_chunk/3 for details.
Examples
iex> decoder = EncodingRs.Decoder.new!("utf-8")
iex> EncodingRs.Decoder.decode_chunk!(decoder, "hello", true)
{"hello", false}

 new(encoding)

 @spec new(EncodingRs.encoding()) :: {:ok, t()} | {:error, :unknown_encoding}

Creates a new stateful decoder for the specified encoding.
The decoder maintains internal state to handle multibyte characters
that may be split across chunk boundaries.
Arguments
	encoding - The source encoding label (e.g., "shift_jis", "gbk", "euc-jp")

Returns
	{:ok, decoder} on success
	{:error, :unknown_encoding} if the encoding is not recognized

Examples
iex> {:ok, decoder} = EncodingRs.Decoder.new("shift_jis")
iex> is_reference(decoder)
true

iex> EncodingRs.Decoder.new("invalid-encoding")
{:error, :unknown_encoding}

 new!(encoding)

 @spec new!(EncodingRs.encoding()) :: t()

Creates a new stateful decoder, raising on error.
Examples
iex> decoder = EncodingRs.Decoder.new!("shift_jis")
iex> is_reference(decoder)
true

iex> EncodingRs.Decoder.new!("invalid-encoding")
** (ArgumentError) unknown encoding: invalid-encoding

 stream(chunks, encoding)

 @spec stream(Enumerable.t(), EncodingRs.encoding()) :: Enumerable.t()

Creates a stream that decodes chunks from the given encoding to UTF-8.
This is the recommended way to process streaming data in multibyte encodings.
It properly handles characters split across chunk boundaries.
Arguments
	chunks - An enumerable of binary chunks (e.g., from File.stream!/3)
	encoding - The source encoding label

Returns
A stream of decoded UTF-8 strings. One element is emitted per input chunk,
plus an additional element may be emitted at the end if the decoder has
buffered bytes remaining (e.g., an incomplete multibyte sequence that gets
flushed as a replacement character).
Examples
Decode a Shift_JIS file
File.stream!("japanese.txt", [], 4096)
|> EncodingRs.Decoder.stream("shift_jis")
|> Enum.join()

Process line by line (after decoding)
File.stream!("data.csv", [], 8192)
|> EncodingRs.Decoder.stream("gbk")
|> Enum.join()
|> String.split("\n")

With error tracking
File.stream!("data.txt", [], 4096)
|> EncodingRs.Decoder.stream_with_errors("windows-1252")
|> Enum.reduce({"", false}, fn {chunk, errors}, {acc, had_any} ->
 {acc <> chunk, had_any or errors}
end)
Notes
	The stream automatically handles the is_last flag for the final chunk
	The output may contain one more element than the input if buffered bytes
are flushed at the end of the stream
	For better error visibility, use stream_with_errors/2

 stream_with_errors(chunks, encoding)

 @spec stream_with_errors(Enumerable.t(), EncodingRs.encoding()) :: Enumerable.t()

Creates a stream that decodes chunks, including error information.
Like stream/2, but each element is a tuple {decoded_string, had_errors}.
Examples
File.stream!("data.txt", [], 4096)
|> EncodingRs.Decoder.stream_with_errors("shift_jis")
|> Enum.each(fn {chunk, had_errors} ->
 if had_errors, do: Logger.warning("Encountered invalid bytes")
 IO.write(chunk)
end)

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

