

    

        eredis

        v1.7.1



    



  

    Table of contents

    
      



            	eredis


            	CHANGELOG


            	Module eredis


            	Module eredis_sub






      

    


  

    
eredis
    

Non-blocking Redis client with focus on performance and robustness.
[image: Build Status]
[image: Hex pm]
[image: Hex.pm]
This fork is the official continuation of wooga/eredis.
It includes several improvements, such as
TLS support, Sentinel support and TCP error handling corrections.
See CHANGELOG.md for details.
Note: This client connects to a standalone Redis node, optionally using Sentinel.
For Redis Cluster, you need
eredis_cluster or
ecredis.
Supported Redis features:
	Any command, through eredis:q/2,3
	Transactions
	Pipelining
	Authentication & multiple DBs
	Pubsub
	TLS
	Sentinel support

Generated API documentation: doc/eredis.md
Published documentation can also be found on hexdocs.
Setup
If you have Redis running on localhost with default settings, like:
docker run --rm --net=host redis:latest
you may copy and paste the following into a shell to try out Eredis:
git clone https://github.com/Nordix/eredis.git
cd eredis
rebar3 shell
{ok, C} = eredis:start_link().
{ok, <<"OK">>} = eredis:q(C, ["SET", "foo", "bar"]).
{ok, <<"bar">>} = eredis:q(C, ["GET", "foo"]).
To connect to a Redis instance listening on a Unix domain socket:
{ok, C1} = eredis:start_link({local, "/var/run/redis.sock"}, 0).
To connect to a Redis instance using TLS:
Options = [{tls, [{cacertfile, "ca.crt"},
                  {certfile,   "client.crt"},
                  {keyfile,    "client.key"}]}],
{ok, C2} = eredis:start_link("127.0.0.1", ?TLS_PORT, Options),
To connect to a Redis sentinel cluster:
SentinelOptions = [{master_group, mymaster},
                   {endpoints, [{"127.0.0.1", 26379}]}],
{ok, C1} = eredis:start_link([{sentinel, SentinelOptions}]).
Example
MSET and MGET:
KeyValuePairs = ["key1", "value1", "key2", "value2", "key3", "value3"].
{ok, <<"OK">>} = eredis:q(C, ["MSET" | KeyValuePairs]).
{ok, Values} = eredis:q(C, ["MGET" | ["key1", "key2", "key3"]]).
HASH
HashObj = ["id", "objectId", "message", "message", "receiver", "receiver", "status", "read"].
{ok, <<"OK">>} = eredis:q(C, ["HMSET", "key" | HashObj]).
{ok, Values} = eredis:q(C, ["HGETALL", "key"]).
LIST
eredis:q(C, ["LPUSH", "keylist", "value"]).
eredis:q(C, ["RPUSH", "keylist", "value"]).
eredis:q(C, ["LRANGE", "keylist", 0, -1]).
Transactions:
{ok, <<"OK">>} = eredis:q(C, ["MULTI"]).
{ok, <<"QUEUED">>} = eredis:q(C, ["SET", "foo", "bar"]).
{ok, <<"QUEUED">>} = eredis:q(C, ["SET", "bar", "baz"]).
{ok, [<<"OK">>, <<"OK">>]} = eredis:q(C, ["EXEC"]).
Pipelining:
P1 = [["SET", a, "1"],
      ["LPUSH", b, "3"],
      ["LPUSH", b, "2"]].
[{ok, <<"OK">>}, {ok, <<"1">>}, {ok, <<"2">>}] = eredis:qp(C, P1).
Pubsub:
1> eredis_sub:sub_example().
received {subscribed,<<"foo">>,<0.34.0>}
{<0.34.0>,<0.37.0>}
2> eredis_sub:pub_example().
received {message,<<"foo">>,<<"bar">>,<0.34.0>}
ok
3>
Pattern Subscribe:
1> eredis_sub:psub_example().
received {subscribed,<<"foo*">>,<0.33.0>}
{<0.33.0>,<0.36.0>}
2> eredis_sub:ppub_example().
received {pmessage,<<"foo*">>,<<"foo123">>,<<"bar">>,<0.33.0>}
ok
3>
Commands
Query: qp/2,3
Eredis has one main function to interact with redis, which is
eredis:q(Client::pid(), Command::iolist()). The response will either
be {ok, Value::binary() | [binary()]} or {error, Message::binary()}.  The value is always the exact value returned by
Redis, without any type conversion. If Redis returns a list of values,
this list is returned in the exact same order without any type
conversion.
Pipelined query: qp/2,3
To send multiple requests to redis in a batch, aka. pipelining
requests, you may use eredis:qp(Client::pid(), [Command::iolist()]). This function returns {ok, [Value::binary()]}
where the values are the redis responses in the same order as the
commands you provided.
Connect a client: start_link/1
To start the client, use start_link/1 or one of its variants. start_link/1
takes the following options (proplist):
	host: DNS name or IP address as string; or unix domain socket as {local, Path} (available in OTP 19+)
	port: integer, default is 6379
	database: integer or 0 for default database, default: 0
	username: string, default: no username
	password: string, default: no password
	reconnect_sleep: integer of milliseconds to sleep between reconnect attempts, default: 100
	connect_timeout: timeout value in milliseconds to use in the connect, default: 5000
	socket_options: proplist of gen_tcp
options used when connecting the socket, default is ?SOCKET_OPTS.
It's possible to specify {active, N} or {active, true}.
Active once and false are not supported. The default is N = 10.
	tls: enable TLS by providing a list of
options used when establishing the TLS
connection, default is off.
It's possible to specify {active, N} or {active, true} in TLS options.
Active once and false are not supported. The default is N = 10.
Note that {active, N} with TLS requires OTP 21.3 or later.

Implicit pipelining
Commands are pipelined automatically so multiple processes can share the same
Eredis connection instance. Although q/2,3 and qp/2,3 are blocking until the
response is returned, Eredis is not blocked.
  Process A          Process B          Eredis        TCP/TLS socket
     |                  |                  |          (Redis server)
     | q(Pid, Command1) |                  |                 |
     |------------------------------------>|---------------->|
     |                  | q(Pid, Command2) |                 |
     |                  |----------------->|---------------->|
     |                  |                  |                 |
    ...                ...                ...               ...
     |                  |                  |                 |
     |                  |                  |      Response 1 |
     |<------------------------------------|<----------------|
     |                  |                  |      Response 2 |
     |                  |<-----------------|<----------------|
Reconnecting on Redis down / network failure / timeout / etc
When Eredis for some reason loses the connection to Redis, Eredis
will keep trying to reconnect until a connection is successfully
established, which includes the AUTH and SELECT calls. The sleep
time between attempts to reconnect can be set in the
eredis:start_link/1 call.
As long as the connection is down, Eredis will respond to any request
immediately with {error, no_connection} without actually trying to
connect. This serves as a kind of circuit breaker and prevents a
stampede of clients just waiting for a failed connection attempt or
gen_server:call timeout.
Note: If Eredis is starting up and cannot connect, it will fail
immediately with {connection_error, Reason}.
Pubsub
Thanks to Dave Peticolas (jdavisp3), eredis supports
pubsub. eredis_sub offers a separate client that will forward
channel messages from Redis to an Erlang process in an "active-once"
pattern similar to gen_tcp sockets. After every message received, the
controlling process must acknowledge receipt using
eredis_sub:ack_message/1.
If the controlling process does not process messages fast enough,
eredis will queue the messages up to a certain queue size controlled
by configuration. When the max size is reached, eredis will either
drop messages or crash, also based on configuration.
Subscriptions are managed using eredis_sub:subscribe/2 and
eredis_sub:unsubscribe/2. When Redis acknowledges the change in
subscription, a message is sent to the controlling process for each
channel. Then, eredis sends a message on the form {subscribed, Channel, ClientPid} to the controlling process, which must be acked using
eredis_sub:ack_message/1.
eredis also supports Pattern Subscribe using eredis_sub:psubscribe/2
and eredis_sub:punsubscribe/2. As with normal subscriptions, a message
is sent to the controlling process for each channel and eredis sends a
message on the form {subscribed, Channel, ClientPid} to the
controlling process, which must be acked using eredis_sub:ack_message/1.
The controlling process is also notified in case of reconnection attempts or
failures. See test/eredis_pubsub_SUITE.erl for examples.
Starting with version 1.5, eredis automatically resubscribes after reconnect.
Then, the controlling process will receive {subscribed, Channel, ClientPid}
messages again for every channel and pattern subscribed to. These must also be
acked.
Here is a list of all the messages that are sent to the controlling process.
Some messages don't need to be acked, but it does not harm doing so.
	{eredis_connected, Pid} when the socket to Redis is established
and authenticated. Doesn't need to be acked.

	{eredis_disconnected, Pid} when the connection to Redis has been lost.
Doesn't need to be acked.

	{eredis_reconnect_attempt, Pid} at every reconnect attempt, when the
connection to Redis has been lost. Doesn't need to be acked.

	{eredis_reconnect_failed, Pid, {error, {connection_error, Reason}}} after
every failed reconnect attempt. Doesn't need to be acked.

	{message, Channel, Message, Pid} for every incoming message on subscribed
channels. Needs to be acked using eredis_sub:ack_message/1.

	{pmessage, Pattern, Channel, Message, Pid} for every incoming message on
channels subscribed to by pattern, using using eredis_sub:psubscribe/2.
Needs to be acked using eredis_sub:ack_message/1.

	{subscribed, Channel, Pid} when a subscription has been confirmed by Redis.
Channel is either a channel (subscribe) or a pattern (psubscribe). Needs to be
acked using eredis_sub:ack_message/1.

	{unsubscribed, Channel, Pid} when a subscription has been removed from
Redis. Channel is either a channel (unsubscribe) or a pattern (punsubscribe).
Needs to be acked using eredis_sub:ack_message/1.


AUTH and SELECT
Eredis also implements the AUTH and SELECT calls for you. When the
client is started with something else than default values for password
and database, it will issue the AUTH and SELECT commands
appropriately, even when reconnecting after a timeout.
Benchmarking
Using lasp-bench you may
benchmark Eredis on your own hardware using the provided config and
driver. See priv/basho_bench_driver_eredis.config and
src/basho_bench_driver_eredis.erl.
Testcase summary from our daily runs:
	eredis
	eredis_pipeline

The eredis-benchmark repo runs
a daily job that produces above graphs. It also contains the script
run-tests.sh that might help you with the needed steps when setting up the
benchmark testing on your own.
Queueing
Eredis uses the same queueing mechanism as Erldis. eredis:q/2 uses
gen_server:call/2 to do a blocking call to the client
gen_server. The client will immediately send the request to Redis, add
the caller to the queue and reply with noreply. This frees the
gen_server up to accept new requests and parse responses as they come
on the socket.
When data is received on the socket, we call eredis_parser:parse/2
until it returns a value, we then use gen_server:reply/2 to reply to
the first process waiting in the queue.
This queueing mechanism works because Redis guarantees that the
response will be in the same order as the requests.
Response parsing
The socket is set to {active, N} with N = 10 by default. This is configurable
by including {active, N} in socket options or TLS options (if TLS is used). N
must be an integer or true. Active once and false are not supported.
The response parser is capable of parsing partial data and continuing when more
data arrives on the socket.
Tests and code checking
EUnit tests currently require a locally running instance of Redis.
rebar3 eunit

Xref, dialyzer and elvis should result in no errors.
rebar3 xref
rebar3 dialyzer
elvis rock

Future improvements
When the parser is accumulating data, a new binary is generated for
every call to parse/2. This might create binaries that will be
reference counted. This could be improved by replacing it with an
iolist.
When parsing bulk replies, the parser knows the size of the bulk. If the
bulk is big and would come in many chunks, this could be improved by
having the client explicitly use gen_tcp:recv/2 to fetch the entire
bulk at once.
Credits
This is a fork of the original Eredis. Eredis was created by Knut Nesheim, with
inspiration from the earlier Erldis.
Although this project is almost a complete rewrite, many patterns are
the same as you find in Erldis, most notably the queueing of requests.
create_multibulk/1 and to_binary/1 were taken verbatim from Erldis.



  

    
CHANGELOG
    

v1.7.1
July 2023.
	Allow floats in commands.

	Remove unused include-lib eunit.hrl which caused problems for Elixir users.


v1.7.0
July 2022.
	Replaces error_logger with logger.

	Turns repeated reconnection errors into log level notice.

	Parser optimizations.

	Enables performance tuning of the received packets handling.
The socket is set to {active, N} with N = 10 by default.
This is configurable by including {active, N} in the socket options or
in the TLS options when TLS is used.
Note that {active, N} with TLS requires OTP 21.3 or later.
When using OTP below 21.3 the option needs to be set to {active, true}.


v1.6.0
July 2022.
	Adds sentinel support.

	Obfuscates username and password in the state, to prevent them from appearing
verbatim in logs and stack traces. They can be provided as 0-ary functions
returning the actual secret when applied.

	Fix a crash that happens when reconnect fails twice with two different
reasons. This bug was introduced in v1.5.0.


v1.5.1
May 2022.
	Solves a bug introduced in v1.5.0 causing the reconnect process to survive
if the client is stopped while attempting to reconnect.

	Drops the spawned process used for reconnecting. Instead, the reconnect
attempts are scheduled using timers.
The option reconnect_sleep now applies to the time between a
successful connect and the first reconnect attemt, if the connection is lost
just after connecting. However, there is no delay before reconnecting
if the connection has been up for at least reconnect_sleep milliseconds.


v1.5.0
May 2022.
	No delay before the first reconnect attempt.

	eredis_sub: Automatic re-subscribe on reconnect. Messages on the
form {subscribed, Channel, Pid} are sent to the controlling
process in this case and need to be acked.

	eredis_sub: TLS, custom TCP options, AUTH with username, SELECT
database and registered name options added.


v1.4.1
June 2021.
	Restore support for rebar 2.
	Optimize parser.

v1.4.0
June 2021.
	Support for named connection processes.
	Support AUTH with username.

v1.3.3
March 2021.
	Include correct files in published package on hex.pm.

v1.3.2
February 2021.
	Official release

v1.3.1-nordix
February 2021.
	Fix build problems with Mix and other non-Rebar tools

v1.3.0-nordix
December 2020 in the Nordix fork by Björn Svensson and Viktor Söderqvist.
	TLS support
	Correction regarding chunked error responses
	All socket errors, including send and setopts errors, trigger reconnect
	Explicitly close socket before reconnect, preventing dangling ports
	Terminate reconnect loop when client terminates (fixes wooga/eredis#124)
	Try all addresses from inet:getaddrs/2 instead of just one when connecting
	Stray messages don't crash the connection process
	Improved tests and coverage
	CI builds using Github Actions
	Elvis code style and Dialyzer corrections

v1.2.0
2018 in the original wooga/eredis repo.
	Unix domain socket support (PR wooga/eredis#108 by Igor Slepchin)
	Reset parser state on disconnect (PR wooga/eredis#106 by Ivan Baidakou)
	Non-blocking init AKA async connect (PR wooga/eredis#105 by Valery Meleshkin)
	Some improved tests

v1.1.0
	Merged a ton of of old and neglected pull requests. Thanks to
patient contributors:
	Emil Falk
	Evgeny Khramtsov
	Kevin Wilson
	Luis Rascão
	Аверьянов Илья (savonarola on github)
	ololoru
	Giacomo Olgeni


	Removed rebar binary, made everything a bit more rebar3 & mix
friendly.


v1.0.8
	Fixed include directive to work with rebar 2.5.1. Thanks to Feng Hao
for the patch.

v1.0.7
	If an eredis_sub_client needs to reconnect to Redis, the controlling
process is now notified with the message {eredis_reconnect_attempt, Pid}. If the reconnection attempt fails, the message is
{eredis_reconnect_failed, Pid, Reason}. Thanks to Piotr Nosek for
the patch.

	No more deprecation warnings of the queue type on OTP 17. Thanks
to Daniel Kempkens for the patch.

	Various spec fixes. Thanks to Hernan Rivas Acosta and Anton Kalyaev.


v1.0.6
	If the connection to Redis is lost, requests in progress will
receive {error, tcp_closed} instead of the gen_server:call
timing out. Thanks to Seth Falcon for the patch.

v1.0.5
	Added support for not selecting any specific database. Thanks to
Mikl Kurkov for the patch.

v1.0.4
	Added eredis:q_noreply/2 which sends a fire-and-forget request to
Redis. Thanks to Ransom Richardson for the patch.

	Various type annotation improvements, typo fixes and robustness
improvements. Thanks to Michael Gregson, Matthew Conway and Ransom
Richardson.


v1.0.3
	Fixed bug in eredis_sub where when the connection to Redis was lost,
the socket would not be set into {active, once} on reconnect. Thanks
to georgeye for the patch.

v1.0.2
	Fixed bug in eredis_sub where the socket was incorrectly set to
{active, once} twice. At large volumes of messages, this resulted
in too many messages from the socket and we would be unable to keep
up. Thanks to pmembrey for reporting.

v1.0
	Support added for pubsub thanks to Dave Peticolas
(jdavisp3). Implemented in eredis_sub and eredis_sub_client is a
subscriber that will forward messages from Redis to an Erlang
process with flow control. The user can configure to either drop
messages or crash the driver if a certain queue size inside the
driver is reached.

	Fixed error handling when eredis starts up and Redis is still
loading the dataset into memory.


v0.7.0
	Support added for pipelining requests, which allows batching
multiple requests in a single call to eredis. Thanks to Dave
Peticolas (jdavisp3) for the implementation.

v0.6.0
	Support added for transactions, by Dave Peticolas (jdavisp3) who implemented
parsing of nested multibulks.

v0.5.0
	Configurable reconnect sleep time, by Valentino Volonghi (dialtone)

	Support for using eredis as a poolboy worker, by Valentino Volonghi
(dialtone)





  

    
Module eredis
    

	Data Types
	Function Index
	Function Details

[bookmark: types]Data Types
[bookmark: type-client]client()
client() = pid() | atom() | {atom(), atom()} | {global, term()} | {via, atom(), term()}

[bookmark: type-host]host()
host() = string() | {local, string()}

[bookmark: type-obfuscated]obfuscated()
obfuscated() = fun(() -> iodata())

[bookmark: type-option]option()
option() = {host, string() | {local, string()}} | {port, inet:port_number()} | {database, integer()} | {username, iodata() | obfuscated() | undefined} | {password, iodata() | obfuscated() | undefined} | {reconnect_sleep, reconnect_sleep()} | {connect_timeout, integer()} | {socket_options, list()} | {tls, [ssl:tls_client_option()]} | {name, registered_name()} | {sentinel, list()}

[bookmark: type-options]options()
options() = [option()]

[bookmark: type-pipeline]pipeline()
pipeline() = [iolist()]

[bookmark: type-reconnect_sleep]reconnect_sleep()
reconnect_sleep() = no_reconnect | integer()

[bookmark: type-registered_name]registered_name()
registered_name() = {local, atom()} | {global, term()} | {via, atom(), term()}

[bookmark: type-return_value]return_value()
return_value() = undefined | binary() | [binary() | nonempty_list()]

[bookmark: index]Function Index
	q/2	 Executes the given command in the specified connection.
	q/3	Like q/2 with a custom timeout.
	q_async/2	Executes the command, and sends a message to the calling process with theresponse (with either error or success).
	q_async/3	Executes the command, and sends a message to Pid with the response
(with either or success).
	q_noreply/2	Executes the command but does not wait for a response and ignores any
errors.
	qp/2	 Executes the given pipeline (list of commands) in the
specified connection.
	qp/3	Like qp/2 with a custom timeout.
	start_link/0	Connect with default options.
	start_link/1	Connect with the given options.
	start_link/2	Connect to the given host and port.
	start_link/3	(Deprecated.) 
	start_link/4	(Deprecated.) 
	start_link/5	(Deprecated.) 
	start_link/6	(Deprecated.) 
	start_link/7	(Deprecated.) 
	stop/1	Closes the connection and stops the client.

[bookmark: functions]Function Details
[bookmark: q-2]q/2
q(Client::client(), Command::[any()]) -> {ok, return_value()} | {error, Reason::binary() | no_connection}

Executes the given command in the specified connection. The
command must be a valid Redis command and may contain arbitrary
data which will be converted to binaries. The returned values will
always be binaries.
[bookmark: q-3]q/3
q(Client::client(), Command::[any()], Timeout::timeout()) -> {ok, return_value()} | {error, Reason::binary() | no_connection}

Like q/2 with a custom timeout.
[bookmark: q_async-2]q_async/2
q_async(Client::client(), Command::[any()]) -> ok

Executes the command, and sends a message to the calling process with the
response (with either error or success). Message is of the form {response, Reply}, where Reply is the reply expected from q/2.
[bookmark: q_async-3]q_async/3
q_async(Client::client(), Command::[any()], Pid::pid() | atom()) -> ok

Executes the command, and sends a message to Pid with the response
(with either or success).
See also: q_async/2.
[bookmark: q_noreply-2]q_noreply/2
q_noreply(Client::client(), Command::[any()]) -> ok

Executes the command but does not wait for a response and ignores any
errors.
See also: q/2.
[bookmark: qp-2]qp/2
qp(Client::client(), Pipeline::pipeline()) -> [{ok, return_value()} | {error, Reason::binary()}] | {error, no_connection}

Executes the given pipeline (list of commands) in the
specified connection. The commands must be valid Redis commands and
may contain arbitrary data which will be converted to binaries. The
values returned by each command in the pipeline are returned in a list.
[bookmark: qp-3]qp/3
qp(Client::client(), Pipeline::pipeline(), Timeout::timeout()) -> [{ok, return_value()} | {error, Reason::binary()}] | {error, no_connection}

Like qp/2 with a custom timeout.
[bookmark: start_link-0]start_link/0
start_link() -> {ok, Pid::pid()} | {error, Reason::term()}

Equivalent to start_link([]).
Connect with default options.
[bookmark: start_link-1]start_link/1
start_link(Options::options()) -> {ok, pid()} | {error, Reason::term()}

Options: 
	{host, Host}
	DNS name or IP address as string; or unix domain  socket as {local, Path} (available in OTP 19+); default "127.0.0.1"
	{port, Port}
	Integer, default is 6379
	{database, Database}
	Integer; 0 for the default database
	{username, Username}
	A 0-ary function that returns the username  (the preferred way to provide username as it prevents the actual secret from
  appearing in logs and stacktraces), a string or iodata or the
  atom undefined for no username; default undefined
	{password, Password}
	A 0-ary function that returns the password  (the preferred way to provide password as it prevents the actual secret from
  appearing in logs and stacktraces), a string or iodata or the
  atom undefined for no password; default undefined
	{reconnect_sleep, ReconnectSleep}
	Integer of milliseconds to  sleep between reconnect attempts; default: 100
	{connect_timeout, Timeout}
	Timeout value in milliseconds to use  when connecting to Redis; default: 5000
	{socket_options, SockOpts}
	List ofgen_tcp options used  when connecting the socket; default is ?SOCKET_OPTS
	{tls, TlsOpts}
	Enabling TLS and a list ofssl options; used when  establishing a TLS connection; default is off
	{name, Name}
	Tuple to register the client with a name  such as {local, atom()}; for all options see ServerName atgen_server:start_link/4;
  default: no name
	{sentinel, SentinelOptions}
	Enables client for sentinel mode; options are required  to connect to sentinel cluster; default: undefined 
	Sentinel Options: {master_group, master_group_name} - Atom, default: mymaster;{endpoints, [{Host, Port}]} - List of {Host, Port} tuples, default: [{"127.0.0.1", 26379}];{username, Username};{password, Password};{connect_timeout, Timeout};{socket_options, SockOpts}{tls, TlsOpts}
Connect with the given options.
[bookmark: start_link-2]start_link/2
start_link(Host::host(), Port::inet:port_number()) -> {ok, Pid::pid()} | {error, Reason::term()}

Equivalent to start_link([{host, Host}, {port, Port}]).
Connect to the given host and port.
[bookmark: start_link-3]start_link/3
start_link(Host::host(), Port::inet:port_number(), OptionsOrDatabase) -> {ok, Pid::pid()} | {error, Reason::term()}

	OptionsOrDatabase = options() | integer()

This function is deprecated: Use start_link/1 instead.
[bookmark: start_link-4]start_link/4
start_link(Host::host(), Port::inet:port_number(), Database::integer(), Password::string()) -> {ok, pid()} | {error, term()}

This function is deprecated: Use start_link/1 instead.
See also: start_link/1.
[bookmark: start_link-5]start_link/5
start_link(Host::host(), Port::inet:port_number(), Database::integer(), Password::string(), ReconnectSleep::reconnect_sleep()) -> {ok, pid()} | {error, term()}

This function is deprecated: Use start_link/1 instead.
See also: start_link/1.
[bookmark: start_link-6]start_link/6
start_link(Host::host(), Port::inet:port_number(), Database::integer(), Password::string(), ReconnectSleep::reconnect_sleep(), ConnectTimeout::timeout()) -> {ok, pid()} | {error, term()}

This function is deprecated: Use start_link/1 instead.
See also: start_link/1.
[bookmark: start_link-7]start_link/7
start_link(Host::host(), Port::inet:port_number(), Database::integer(), Password::string(), ReconnectSleep::reconnect_sleep(), ConnectTimeout::timeout(), SocketOptions::list()) -> {ok, pid()} | {error, term()}

This function is deprecated: Use start_link/1 instead.
See also: start_link/1.
[bookmark: stop-1]stop/1
stop(Client::client()) -> ok

Closes the connection and stops the client.



  

    
Module eredis_sub
    

	Data Types
	Function Index
	Function Details

[bookmark: types]Data Types
[bookmark: type-channel]channel()
channel() = binary()

[bookmark: type-obfuscated]obfuscated()
obfuscated() = fun(() -> iodata())

[bookmark: type-option]option()
option() = {host, string() | {local, string()}} | {port, inet:port_number()} | {database, integer()} | {username, iodata() | obfuscated() | undefined} | {password, iodata() | obfuscated() | undefined} | {reconnect_sleep, reconnect_sleep()} | {connect_timeout, integer()} | {socket_options, list()} | {tls, [ssl:tls_client_option()]} | {name, registered_name()} | {sentinel, list()}

[bookmark: type-reconnect_sleep]reconnect_sleep()
reconnect_sleep() = no_reconnect | integer()

[bookmark: type-registered_name]registered_name()
registered_name() = {local, atom()} | {global, term()} | {via, atom(), term()}

[bookmark: type-sub_option]sub_option()
sub_option() = {max_queue_size, integer() | infinity} | {queue_behaviour, drop | exit} | option()

[bookmark: type-sub_options]sub_options()
sub_options() = [sub_option()]

[bookmark: index]Function Index
	ack_message/1	 acknowledge the receipt of a pubsub message.
	channels/1	 Returns the channels the given client is currentlysubscribing to.
	controlling_process/1	 Make the calling process the controlling process.
	controlling_process/2	 Make the given process (pid) the controlling process.
	controlling_process/3	 Make the given process (pid) the controlling process subscriber
with the given Timeout.
	psubscribe/2	 Pattern subscribe to the given channels.
	punsubscribe/2	
	start_link/0	
	start_link/1	Start with options in proplist format.
	start_link/3	(Deprecated.) 
	start_link/6	(Deprecated.) 
	stop/1	
	subscribe/2	 Subscribe to the given channels.
	unsubscribe/2	

[bookmark: functions]Function Details
[bookmark: ack_message-1]ack_message/1
ack_message(Client::pid()) -> ok

acknowledge the receipt of a pubsub message. each pubsub
message must be acknowledged before the next one is received
[bookmark: channels-1]channels/1
channels(Client) -> any()
Returns the channels the given client is currently
subscribing to. Note: this list is based on the channels at startup
and any channel added during runtime. It might not immediately
reflect the channels Redis thinks the client is subscribed to.
[bookmark: controlling_process-1]controlling_process/1
controlling_process(Client::pid()) -> ok

Make the calling process the controlling process. The
controlling process received pubsub-related messages, of which
there are three kinds. In each message, the pid refers to the
eredis client process.
{message, Channel::binary(), Message::binary(), pid()}
This is sent for each pubsub message received by the client.
{pmessage, Pattern::binary(), Channel::binary(), Message::binary(), pid()}
This is sent for each pattern pubsub message received by the client.
{dropped, NumMessages::integer(), pid()}
If the queue reaches the max size as specified in start_link
and the behaviour is to drop messages, this message is sent when
the queue is flushed.
{subscribed, Channel::binary(), pid()}
When using eredis_sub:subscribe(pid()), this message will be
sent for each channel Redis aknowledges the subscription. The
opposite, 'unsubscribed' is sent when Redis aknowledges removal
of a subscription.
{eredis_disconnected, pid()}
This is sent when the eredis client is disconnected from redis.
{eredis_connected, pid()}
This is sent when the eredis client reconnects to redis after
an existing connection was disconnected.
Any message of the form {message, , , _} must be acknowledged
before any subsequent message of the same form is sent. This
prevents the controlling process from being overrun with redis
pubsub messages. See ack_message/1.
[bookmark: controlling_process-2]controlling_process/2
controlling_process(Client::pid(), Pid::pid()) -> ok

Make the given process (pid) the controlling process.
[bookmark: controlling_process-3]controlling_process/3
controlling_process(Client, Pid, Timeout) -> any()
Make the given process (pid) the controlling process subscriber
with the given Timeout.
[bookmark: psubscribe-2]psubscribe/2
psubscribe(Client::pid(), Channels::[channel()]) -> ok

Pattern subscribe to the given channels. Returns immediately. The
result will be delivered to the controlling process as any other
message. Delivers {subscribed, Channel::binary(), pid()}
[bookmark: punsubscribe-2]punsubscribe/2
punsubscribe(Client::pid(), Channels::[channel()]) -> ok

[bookmark: start_link-0]start_link/0
start_link() -> any()
[bookmark: start_link-1]start_link/1
start_link(Options::sub_options()) -> {ok, Pid::pid()} | {error, Reason::term()}

Options: 
	{host, Host}
	DNS name or IP address as string; or unix domain  socket as {local, Path} (available in OTP 19+); default "127.0.0.1"
	{port, Port}
	Integer, default is 6379
	{database, Database}
	Integer; 0 for the default database
	{username, Username}
	A 0-ary function that returns the username  (the preferred way to provide username as it prevents the actual secret from
  appearing in logs and stacktraces), a string or iodata or the atomundefined for no username; default undefined
	{password, Password}
	A 0-ary function that returns the password  (the preferred way to provide password as it prevents the actual secret from
  appearing in logs and stacktraces), a string or iodata or the atomundefined for no username; default undefined
	{reconnect_sleep, ReconnectSleep}
	Integer of milliseconds to  sleep between reconnect attempts; default: 100
	{connect_timeout, Timeout}
	Timeout value in milliseconds to use  when connecting to Redis; default: 5000
	{socket_options, SockOpts}
	List ofgen_tcp options used  when connecting the socket; default is ?SOCKET_OPTS
	{tls, TlsOpts}
	Enabling TLS and a list ofssl options; used when  establishing a TLS connection; default is off
	{name, Name}
	Tuple to register the client with a name  such as {local, atom()}; for all options see ServerName atgen_server:start_link/4;
  default: no name
	{max_queue_size, N}
	Queue size for incoming pubsub messages
	{queue_behaviour, drop | exit}
	What to do if the controlling  process doesn't ack pubsub messages fast enough
.
Start with options in proplist format.
[bookmark: start_link-3]start_link/3
start_link(Host, Port, Password) -> any()
This function is deprecated: Use start_link/1 instead.
[bookmark: start_link-6]start_link/6
start_link(Host, Port, Password, ReconnectSleep, MaxQueueSize, QueueBehaviour) -> any()
This function is deprecated: Use start_link/1 instead.
[bookmark: stop-1]stop/1
stop(Pid) -> any()
[bookmark: subscribe-2]subscribe/2
subscribe(Client::pid(), Channels::[channel()]) -> ok

Subscribe to the given channels. Returns immediately. The
result will be delivered to the controlling process as any other
message. Delivers {subscribed, Channel::binary(), pid()}
[bookmark: unsubscribe-2]unsubscribe/2
unsubscribe(Client::pid(), Channels::[channel()]) -> ok




  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




