

 erl_esdb_gater

 v0.6.6

 Table of contents

 	Readme

 	License

 	Changelog

 	Configuration

 	Event Sourcing

 	CQRS

 	Interactive REPL

 	Subscriptions

 	Snapshots

 	Shared Types

 	Capability Security

 	Temporal Queries

 	Scavenging

 	Causation Tracking

 	Schema Evolution

 	Stream Links

 	Memory Pressure

 	
 Modules

 	erl_esdb_gater_app

 	erl_esdb_gater_sup

 	esdb_capability

 	esdb_channel

 	esdb_channel_alerts

 	esdb_channel_audit

 	esdb_channel_diagnostics

 	esdb_channel_events

 	esdb_channel_health

 	esdb_channel_lifecycle

 	esdb_channel_logging

 	esdb_channel_metrics

 	esdb_channel_security

 	esdb_channel_server

 	esdb_channel_sup

 	esdb_channel_system

 	esdb_gater_api

 	esdb_gater_cluster_monitor

 	esdb_gater_cluster_sup

 	esdb_gater_config

 	esdb_gater_crypto_nif

 	esdb_gater_repl

 	esdb_gater_retry

 	esdb_gater_telemetry

 	esdb_gater_worker_registry

 	esdb_identity

 	esdb_pubsub_security

 erl-esdb-gater

[image: Hex.pm]
[image: Hexdocs.pm]
Gateway for distributed access to erl-esdb event stores.
[image: Gateway Architecture]
Overview
erl-esdb-gater is an Erlang gateway service providing:
	Distributed Worker Registry: pg-based registry for cluster-wide worker discovery
	Load Balancing: Round-robin with exponential backoff retry
	Shared Type Definitions: Common records for events, snapshots, and subscriptions
	Capability-Based Security: UCAN-inspired tokens for decentralized authorization
	PubSub Channels: 10 dedicated channels with priority-based delivery
	HMAC Security: Message signing for critical channels
	Telemetry: BEAM telemetry with optional OpenTelemetry exporters

Installation
Community Edition (hex.pm)
Add to your rebar.config:
{deps, [
 {erl_esdb_gater, "0.6.0"}
]}.
Pure Erlang implementation - works everywhere, no native dependencies.
Enterprise Edition (optional NIF acceleration)
For NIF-accelerated performance (5-10x faster crypto operations), add the erl_esdb_nifs package:
{deps, [
 {erl_esdb_gater, "0.6.0"},
 {erl_esdb_nifs, {git, "git@github.com:macula-io/erl-esdb-nifs.git", {tag, "0.4.0"}}}
]}.
Requires Rust toolchain: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
The NIF provides accelerated Base58 encoding/decoding for DID operations and resource pattern matching. When unavailable, pure Erlang fallbacks are used automatically.
Quick Start
%% Start the application (typically started by erl-esdb)
application:ensure_all_started(erl_esdb_gater).

%% Append events to a stream
Events = [#{type => <<"user_created">>, data => #{name => <<"Alice">>}}],
{ok, Version} = esdb_gater_api:append_events(my_store, <<"users-123">>, Events).

%% Read events from a stream
{ok, EventList} = esdb_gater_api:stream_forward(my_store, <<"users-123">>, 0, 100).

%% Subscribe to PubSub channel
ok = esdb_channel_server:subscribe(esdb_channel_events, <<"user.*">>, self()).

%% Receive channel messages
receive
 {channel_message, esdb_channel_events, _Topic, Event} ->
 handle_event(Event)
end.
API Reference
Stream Operations
%% Append events to a stream
esdb_gater_api:append_events(StoreId, StreamId, Events) ->
 {ok, NewVersion} | {error, term()}.
esdb_gater_api:append_events(StoreId, StreamId, ExpectedVersion, Events) ->
 {ok, NewVersion} | {error, term()}.

%% Read events from a stream
esdb_gater_api:get_events(StoreId, StreamId, StartVersion, Count, Direction) ->
 {ok, [Event]} | {error, term()}.
esdb_gater_api:stream_forward(StoreId, StreamId, StartVersion, Count) ->
 {ok, [Event]} | {error, term()}.
esdb_gater_api:stream_backward(StoreId, StreamId, StartVersion, Count) ->
 {ok, [Event]} | {error, term()}.

%% Stream metadata
esdb_gater_api:get_version(StoreId, StreamId) -> {ok, Version} | {error, term()}.
esdb_gater_api:stream_exists(StoreId, StreamId) -> boolean().
esdb_gater_api:get_streams(StoreId) -> {ok, [StreamId]} | {error, term()}.
Subscription Operations
%% Create a subscription
esdb_gater_api:save_subscription(StoreId, Type, Selector, Name, StartFrom, Subscriber) ->
 ok | {error, term()}.

%% Remove a subscription
esdb_gater_api:remove_subscription(StoreId, Type, Selector, Name) ->
 ok | {error, term()}.

%% Acknowledge event processing
esdb_gater_api:ack_event(StoreId, StreamId, SubscriptionName, EventNumber) ->
 ok | {error, term()}.

%% List subscriptions
esdb_gater_api:get_subscriptions(StoreId) -> {ok, [Subscription]} | {error, term()}.
Snapshot Operations
%% Record a snapshot
esdb_gater_api:record_snapshot(StoreId, SourceUuid, StreamUuid, Version, Record) ->
 ok | {error, term()}.

%% Read a snapshot
esdb_gater_api:read_snapshot(StoreId, SourceUuid, StreamUuid, Version) ->
 {ok, Snapshot} | {error, term()}.

%% Delete a snapshot
esdb_gater_api:delete_snapshot(StoreId, SourceUuid, StreamUuid, Version) ->
 ok | {error, term()}.

%% List snapshots
esdb_gater_api:list_snapshots(StoreId, SourceUuid, StreamUuid) ->
 {ok, [Snapshot]} | {error, term()}.
Health
esdb_gater_api:health() -> healthy | {degraded, Reason} | {unhealthy, Reason}.
esdb_gater_api:quick_health_check(StoreId) -> ok | {error, term()}.
Temporal Queries
Query events by timestamp for point-in-time reconstruction. See Temporal Queries Guide.
%% Read events up to a timestamp
esdb_gater_api:read_until(StoreId, StreamId, Timestamp) ->
 {ok, [Event]} | {error, term()}.
esdb_gater_api:read_until(StoreId, StreamId, Timestamp, Opts) ->
 {ok, [Event]} | {error, term()}.

%% Read events in a time range
esdb_gater_api:read_range(StoreId, StreamId, FromTs, ToTs) ->
 {ok, [Event]} | {error, term()}.

%% Get stream version at a specific timestamp
esdb_gater_api:version_at(StoreId, StreamId, Timestamp) ->
 {ok, Version} | {error, term()}.
Scavenging
Remove old events beyond retention, optionally archive first. See Scavenging Guide.
%% Scavenge a stream (delete old events)
esdb_gater_api:scavenge(StoreId, StreamId, Opts) ->
 {ok, Result} | {error, term()}.

%% Scavenge streams matching a pattern
esdb_gater_api:scavenge_matching(StoreId, Pattern, Opts) ->
 {ok, [Result]} | {error, term()}.

%% Preview what would be deleted (dry run)
esdb_gater_api:scavenge_dry_run(StoreId, StreamId, Opts) ->
 {ok, Preview} | {error, term()}.
Causation Tracking
Track event lineage for debugging and auditing. See Causation Guide.
[image: Causation Graph]
%% Get events caused by an event
esdb_gater_api:get_effects(StoreId, EventId) ->
 {ok, [Event]} | {error, term()}.

%% Get the event that caused this one
esdb_gater_api:get_cause(StoreId, EventId) ->
 {ok, Event} | {error, not_found}.

%% Get full causation chain (root to this event)
esdb_gater_api:get_causation_chain(StoreId, EventId) ->
 {ok, [Event]} | {error, term()}.

%% Get all events with the same correlation ID
esdb_gater_api:get_correlated(StoreId, CorrelationId) ->
 {ok, [Event]} | {error, term()}.

%% Build causation graph for visualization
esdb_gater_api:build_causation_graph(StoreId, EventId) ->
 {ok, Graph} | {error, term()}.
Schema Operations
Schema registry with automatic upcasting. See Schema Evolution Guide.
[image: Schema Upcasting]
%% Register a schema
esdb_gater_api:register_schema(StoreId, EventType, Schema) -> ok.

%% Get schema for an event type
esdb_gater_api:get_schema(StoreId, EventType) ->
 {ok, Schema} | {error, not_found}.

%% List all schemas
esdb_gater_api:list_schemas(StoreId) -> {ok, [SchemaInfo]}.

%% Upcast events to current schema version
esdb_gater_api:upcast_events(StoreId, Events) ->
 {ok, UpcastedEvents} | {error, term()}.

%% Unregister a schema
esdb_gater_api:unregister_schema(StoreId, EventType) -> ok.
Memory Pressure
Adaptive behavior based on system memory. See Memory Pressure Guide.
%% Get current memory pressure level
esdb_gater_api:get_memory_level(StoreId) ->
 {ok, normal | elevated | critical}.

%% Get detailed memory statistics
esdb_gater_api:get_memory_stats(StoreId) ->
 {ok, #{used := bytes(), total := bytes(), level := atom()}}.
Stream Links
Create derived streams from source streams. See Stream Links Guide.
[image: Stream Links]
%% Create a new link (filter + transform)
esdb_gater_api:create_link(StoreId, LinkSpec) -> ok.

%% Delete a link
esdb_gater_api:delete_link(StoreId, LinkName) -> ok.

%% Get link by name
esdb_gater_api:get_link(StoreId, LinkName) ->
 {ok, LinkInfo} | {error, not_found}.

%% List all links
esdb_gater_api:list_links(StoreId) -> {ok, [LinkInfo]}.

%% Start/stop a link
esdb_gater_api:start_link(StoreId, LinkName) -> ok.
esdb_gater_api:stop_link(StoreId, LinkName) -> ok.

%% Get detailed link info
esdb_gater_api:link_info(StoreId, LinkName) ->
 {ok, #{status := atom(), events_processed := integer()}}.
Channels
%% Subscribe to a topic
esdb_channel_server:subscribe(ChannelName, Topic, Pid) -> ok.

%% Subscribe with capability token (for authorization)
esdb_channel_server:subscribe(ChannelName, Topic, Pid, CapabilityToken) ->
 ok | {error, {unauthorized, Reason}}.

%% Unsubscribe from a topic
esdb_channel_server:unsubscribe(ChannelName, Topic, Pid) -> ok.

%% Publish a message
esdb_channel_server:publish(ChannelName, Topic, Message) ->
 ok | {error, rate_limited | signature_required | invalid_signature}.

%% Publish with capability token (for authorization)
esdb_channel_server:publish(ChannelName, Topic, Message, CapabilityToken) ->
 ok | {error, {unauthorized, Reason}}.
Security
%% Sign a message with default secret
esdb_pubsub_security:sign(Message) -> SignedMessage.

%% Sign with custom secret
esdb_pubsub_security:sign(Message, Secret) -> SignedMessage.

%% Verify a signed message
esdb_pubsub_security:verify(SignedMessage) -> ok | {error, Reason}.

%% Set the default secret
esdb_pubsub_security:set_secret(Secret) -> ok.
Retry Configuration
%% Create custom retry config
Config = esdb_gater_retry:new_config(
 100, %% base_delay_ms
 5000, %% max_delay_ms
 5 %% max_attempts
),

%% Execute with custom retry
esdb_gater_api:execute(my_store, Fun, Config).
Channels
[image: PubSub Channels]
The gateway provides 10 dedicated PubSub channels:
	Channel	Priority	Rate Limit	HMAC	Purpose
	esdb_channel_alerts	critical	unlimited	required	Critical system alerts
	esdb_channel_security	critical	unlimited	required	Security events
	esdb_channel_events	high	unlimited	optional	Business events
	esdb_channel_health	high	100/sec	optional	Health checks
	esdb_channel_system	normal	unlimited	optional	System notifications
	esdb_channel_metrics	normal	10000/sec	optional	Performance metrics
	esdb_channel_audit	normal	unlimited	optional	Audit trail
	esdb_channel_lifecycle	normal	unlimited	optional	Lifecycle events
	esdb_channel_logging	low	1000/sec	optional	Log messages
	esdb_channel_diagnostics	low	100/sec	optional	Diagnostic info

Channel Priorities
	critical: Immediate delivery, no rate limiting, HMAC required
	high: Priority delivery, minimal rate limiting
	normal: Standard delivery
	low: Background delivery, may be rate limited

Architecture
Supervision Tree
[image: Supervision Tree]
Worker Registry Flow
[image: Worker Registry Flow]
Channel Message Flow
[image: Channel Message Flow]
Configuration
%% sys.config
[{erl_esdb_gater, [
 %% Cluster configuration
 {cluster, [
 {port, 45893},
 {multicast_addr, {239, 255, 0, 2}}
]},

 %% Retry defaults
 {retry, [
 {base_delay_ms, 100},
 {max_delay_ms, 30000},
 {max_attempts, 10}
]},

 %% Channel configuration
 {channels, [
 {esdb_channel_events, [
 {priority, high}
]},
 {esdb_channel_metrics, [
 {max_rate, 10000}
]}
]},

 %% Security
 {security, [
 {hmac_secret, <<"your_secret_here">>},
 {message_ttl_seconds, 300}
]},

 %% Telemetry
 {telemetry_handlers, [logger]}
]}].
Telemetry Events
	Event	Measurements	Metadata
	[esdb_gater, worker, registered]	system_time	store_id, node, pid
	[esdb_gater, worker, unregistered]	system_time	store_id, pid
	[esdb_gater, worker, lookup]	duration	store_id
	[esdb_gater, request, start]	system_time	store_id, request_type
	[esdb_gater, request, stop]	duration	store_id, request_type, result
	[esdb_gater, request, error]	duration	store_id, request_type, reason
	[esdb_gater, retry, attempt]	delay_ms, attempt	store_id, reason
	[esdb_gater, retry, exhausted]	total_attempts	store_id, reason
	[esdb_gater, cluster, node, up]	system_time	node, member_count
	[esdb_gater, cluster, node, down]	system_time	node, member_count
	[esdb_gater, channel, broadcast]	recipient_count	channel, topic

Attaching Handlers
%% Attach default logger handler
ok = esdb_gater_telemetry:attach_default_handler().

%% Attach custom handler
Handler = fun(Event, Measurements, Meta, Config) ->
 %% Your custom handling
 ok
end,
ok = esdb_gater_telemetry:attach(my_handler, Handler, #{}).

%% Detach handler
ok = esdb_gater_telemetry:detach(my_handler).
Building
rebar3 compile # Compile
rebar3 eunit # Unit tests (44 tests)
rebar3 ct # Integration tests (8 tests)
rebar3 dialyzer # Type checking

Testing
Test counts:
	Unit tests: 44 tests (retry, security, telemetry)
	Integration tests: 8 tests (channel system)
	End-to-end tests: 24 tests (with erl-esdb, run from erl-esdb)

rebar3 eunit # All unit tests
rebar3 ct --suite=esdb_channel_SUITE # Channel tests

Run e2e tests from erl-esdb:
cd /path/to/erl-esdb
rebar3 ct --suite=test/e2e/erl_esdb_gater_e2e_SUITE

Integration with erl-esdb
erl-esdb-gater is designed to work with erl-esdb to provide load-balanced, distributed access to event stores.
Automatic Worker Registration
When both packages are deployed on the same nodes:
	erl-esdb gateway workers automatically register with erl-esdb-gater
	No manual registration is required
	Worker cleanup is automatic when nodes leave or workers crash

[image: Automatic Worker Registration]
Accessing the Event Store
Use the gateway API to access erl-esdb with automatic load balancing and retry:
%% Stream operations
{ok, Version} = esdb_gater_api:append_events(my_store, StreamId, Events).
{ok, Version} = esdb_gater_api:append_events(my_store, StreamId, ExpectedVersion, Events).
{ok, Events} = esdb_gater_api:stream_forward(my_store, StreamId, 0, 100).
{ok, Events} = esdb_gater_api:stream_backward(my_store, StreamId, 100, 50).
{ok, Version} = esdb_gater_api:get_version(my_store, StreamId).
true = esdb_gater_api:stream_exists(my_store, StreamId).

%% Subscription operations
ok = esdb_gater_api:save_subscription(my_store, stream, StreamId, <<"my_sub">>, 0, self()).
ok = esdb_gater_api:remove_subscription(my_store, stream, StreamId, <<"my_sub">>).
ok = esdb_gater_api:ack_event(my_store, StreamId, <<"my_sub">>, EventNumber).
{ok, Subs} = esdb_gater_api:get_subscriptions(my_store).

%% Snapshot operations
ok = esdb_gater_api:record_snapshot(my_store, SourceUuid, StreamUuid, Version, Record).
{ok, Snap} = esdb_gater_api:read_snapshot(my_store, SourceUuid, StreamUuid, Version).
ok = esdb_gater_api:delete_snapshot(my_store, SourceUuid, StreamUuid, Version).
{ok, Snaps} = esdb_gater_api:list_snapshots(my_store, SourceUuid, StreamUuid).

%% Health check
healthy = esdb_gater_api:health().
ok = esdb_gater_api:quick_health_check(my_store).
Deployment
erl-esdb includes erl-esdb-gater as a dependency. Starting erl-esdb automatically starts the gateway:
%% Start erl-esdb (includes gater)
application:ensure_all_started(erl_esdb).

%% Gateway workers auto-register with the pg-based registry
%% Use the gater API for all operations
{ok, Version} = esdb_gater_api:append_events(my_store, StreamId, Events).
In a multi-node cluster, each node runs erl-esdb with its gateway worker. The pg-based registry provides:
	Cluster-wide worker discovery via pg:get_members/2
	Eventual consistency (workers visible across all nodes)
	Automatic cleanup on node failure (pg membership)
	Load balancing with round-robin selection
	Exponential backoff retry on failures

Shared Types
erl-esdb-gater provides shared type definitions used across the ecosystem. Include them in your modules:
-include_lib("erl_esdb_gater/include/esdb_gater_types.hrl").
Records
	Record	Purpose
	#event{}	Event with type, data (Erlang term), and metadata
	#snapshot{}	Aggregate snapshot at a specific version
	#subscription{}	Subscription state and configuration
	#append_result{}	Result of an append operation

Version Constants
	Constant	Value	Purpose
	?NO_STREAM	-1	Stream must not exist (first write)
	?ANY_VERSION	-2	No version check, always append
	?STREAM_EXISTS	-4	Stream must exist

See the Shared Types Guide for detailed usage.
Related Projects
[image: Ecosystem]
	Project	Description
	erl-esdb	Core event store built on Khepri/Ra
	erl-evoq	CQRS/Event Sourcing framework
	erl-evoq-esdb	Adapter connecting erl-evoq to erl-esdb

License
Apache-2.0

 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Changelog

All notable changes to erl-esdb-gater will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.6.6] - 2025-12-26
Fixed
	Duplicate module conflict: Renamed esdb_crypto_nif module to
esdb_gater_crypto_nif to avoid collision with erl_esdb's module of the
same name. This fixes Mix release errors when both packages are used together.

[0.6.5] - 2025-12-26
Fixed
	Stale rebar.lock: Removed stale ra dependency from lock file that was
causing conflicts with erl_esdb. The gateway doesn't use ra directly.

[0.6.4] - 2025-12-22
Added
	Configuration Guide: Comprehensive configuration documentation	All application environment options documented
	Erlang (sys.config) and Elixir (config.exs) examples
	Capability mode configuration examples
	Retry configuration examples
	Complete development/staging/production examples

[0.6.3] - 2025-12-22
Added
	Capability Opt-In Mode: Global configuration for capability enforcement
	esdb_gater_config:capability_mode/0 - Get current mode (disabled|optional|required)
	esdb_gater_config:set_capability_mode/1 - Set mode at runtime
	esdb_gater_config:effective_capability_mode/1 - Get mode with channel override
	Configurable via sys.config: {capability_mode, disabled | optional | required}

	Per-channel override still takes precedence (most restrictive wins)

	Interactive REPL: Full-featured shell for event store exploration
	esdb_gater_repl:start/0,1 - Start interactive shell
	Store commands: stores, use STORE
	Stream commands: streams, stream STREAM, read, version
	Causation commands: effects, cause, chain, graph, dot FILE
	Temporal commands: until TS, range T1 T2
	Schema commands: schemas, schema TYPE
	Subscription commands: subscriptions, subscription NAME
	Health commands: health, memory
	DOT export for Graphviz visualization

Changed
	Channel Server: Updated verify_capability/4 to use 3-mode security logic	disabled mode: No capability checks (development/testing)
	optional mode: Verify if token provided, allow if not
	required mode: Always require valid capability token

[0.6.2] - 2025-12-22
Added
	Stream Operations API:
	delete_stream/2 - Delete a stream and all its events
	read_by_event_types/3 - Native Khepri filtering for type-based queries

	Subscription Operations API:
	get_subscription/2 - Get subscription details including checkpoint

These additions support the erl-evoq-esdb adapter improvements.
[0.6.1] - 2025-12-22
Changed
	Documentation Overhaul: Fixed client-side guides to use correct gateway API
	shared_types.md - Replaced server API examples with esdb_gater_api calls
	event_sourcing.md - Updated 5 code samples to use gateway API
	cqrs.md - Updated projection examples to use esdb_gater_api
	snapshots.md - Complete rewrite with client-side perspective
	subscriptions.md - Complete rewrite with gateway API and PubSub channels
	stream_links.md - Updated subscription examples

	SVG Diagrams: Replaced ASCII diagrams with professional SVG graphics
	auth_traditional.svg - Centralized authorization flow
	auth_capability.svg - Capability-based authorization flow
	verification_flow.svg - Token verification steps
	delegation_chain.svg - Permission delegation visualization
	causation_chain.svg - Event causation chain visualization

[0.6.0] - 2025-12-22
Changed
	NIF Extraction: Moved Rust NIF to separate erl-esdb-nifs package
	NIFs are now loaded from erl_esdb_nifs priv/ when available
	Falls back to erl_esdb_gater priv/ for standalone builds
	Renamed NIF to esdb_gater_crypto_nif to avoid conflict with erl-esdb's NIF
	Pure Erlang fallbacks unchanged for community edition

	Simplified Configuration: Cleaned up rebar.config
	Removed commented NIF build hooks
	Added clear documentation for enterprise addon usage

	Documentation: Updated README for new enterprise pattern
	Enterprise users now add erl_esdb_nifs dependency
	Simplified instructions for NIF acceleration

[0.5.0] - 2025-12-22
Added
	Temporal Query Operations (esdb_gater_api):
	read_until/3,4 - Read events up to a timestamp
	read_range/4,5 - Read events in a time range
	version_at/3 - Get stream version at a specific timestamp
	New guide: guides/temporal_queries.md

	Scavenge Operations (esdb_gater_api):
	scavenge/3 - Delete old events from a stream
	scavenge_matching/3 - Scavenge streams matching a pattern
	scavenge_dry_run/3 - Preview what would be deleted
	New guide: guides/scavenging.md

	Causation Tracking (esdb_gater_api):
	get_effects/2 - Get events caused by an event
	get_cause/2 - Get the event that caused this one
	get_causation_chain/2 - Trace back to root cause
	get_correlated/2 - Get all events with same correlation ID
	build_causation_graph/2 - Build graph for visualization
	New guide: guides/causation.md
	New SVG: assets/causation_graph.svg

	Schema Operations (esdb_gater_api):
	register_schema/3 - Register event schema with version
	unregister_schema/2 - Remove a schema
	get_schema/2 - Get schema for an event type
	list_schemas/1 - List all registered schemas
	get_schema_version/2 - Get current schema version
	upcast_events/2 - Transform events to current schema
	New guide: guides/schema_evolution.md
	New SVG: assets/schema_upcasting.svg

	Memory Pressure Operations (esdb_gater_api):
	get_memory_level/1 - Get current pressure level (normal/elevated/critical)
	get_memory_stats/1 - Get detailed memory statistics
	New guide: guides/memory_pressure.md

	Stream Link Operations (esdb_gater_api):
	create_link/2 - Create a derived stream with filter/transform
	delete_link/2 - Delete a link
	get_link/2 - Get link configuration
	list_links/1 - List all links
	start_link/2, stop_link/2 - Control link processing
	link_info/2 - Get detailed link statistics
	New guide: guides/stream_links.md
	New SVG: assets/stream_links.svg

Changed
	README: Added documentation for all new API sections
	ex_doc: Added 6 new guides to documentation configuration

[0.4.3] - 2025-12-20
Fixed
	Documentation: Corrected all code samples in README.md	Quick Start now uses actual descriptive API (append_events, stream_forward)
	API Reference documents real exports instead of non-existent call/execute
	"Accessing the Event Store" section uses correct function signatures
	Removed worker registration examples (server concern, not client)

[0.4.2] - 2025-12-20
Changed
	Documentation: Replaced ASCII diagrams with SVG in README.md	supervision_tree.svg - Supervision hierarchy
	worker_registry_flow.svg - Registration and execution flow
	channel_message_flow.svg - Publish message flow
	worker_registration.svg - Automatic worker registration architecture

[0.4.1] - 2025-12-20
Changed
	Documentation: Replaced ASCII diagrams with SVG in all guides	capability_architecture.svg - Security architecture flow
	cqrs_traditional.svg - Traditional single model
	cqrs_separated.svg - CQRS command/query separation
	cqrs_scaling.svg - Independent read/write scaling
	snapshots_comparison.svg - Performance comparison
	subscription_flow.svg - Event write flow with triggers

[0.4.0] - 2025-12-20
Added
	Capability-Based Security (esdb_capability.erl, esdb_identity.erl):
	UCAN-inspired capability tokens for decentralized authorization
	Ed25519 keypair generation and DID encoding (did:key method)
	Token creation, signing, and delegation with attenuation
	JWT and Erlang binary encoding formats (auto-detected on decode)
	Base58 encoding for DIDs (Bitcoin alphabet)
	Shared types in include/esdb_capability_types.hrl
	Comprehensive security guide (guides/capability_security.md)

	Channel Capability Authorization:
	esdb_channel:publish/4 and esdb_channel:subscribe/4 with capability token
	Channels can require capabilities via requires_capability/0 callback
	Resource URI format: esdb://{realm}/channel/{channel_name}/{topic}
	Actions: channel/publish and channel/subscribe
	Integrates with esdb_capability_verifier in erl-esdb for server-side verification

	Optional NIF Acceleration (Enterprise Edition):
	Rust-based NIFs for Base58 encoding/decoding (5-10x faster)
	esdb_crypto_nif.erl wrapper with automatic fallback
	native/ directory with Rust crate (excluded from hex.pm)
	Commented hooks in rebar.config for opt-in compilation
	Pattern: Community (hex.pm) = pure Erlang, Enterprise (git) = NIF-accelerated

This completes the capability-based security integration for PubSub channels.
[0.3.0] - 2024-12-20
Added
	Shared Types Header (include/esdb_gater_types.hrl):	#event{} record for event data
	#snapshot{} record for aggregate snapshots
	#subscription{} record for subscription state
	#append_result{} record for append operation results
	subscription_type() type (stream | event_type | event_pattern | event_payload)

	read_direction() type (forward | backward)

	append_error() and read_error() types
	Version constants: ?NO_STREAM, ?ANY_VERSION, ?STREAM_EXISTS
	Content type constants: ?CONTENT_TYPE_JSON, ?CONTENT_TYPE_BINARY

This header enables downstream libraries (erl-evoq, erl-evoq-esdb) to depend on
erl-esdb-gater for shared type definitions without requiring a direct dependency
on erl-esdb.
[0.2.0] - 2024-12-19
Changed
	Worker Registry: Replaced Ra-based registry with pg-based implementation	Uses OTP's built-in pg (process groups) module
	Simpler architecture with no external consensus dependency
	Cluster-wide discovery via pg:get_members/2 across all nodes
	Eventual consistency model (acceptable for stateless gateway workers)
	Automatic cleanup on worker death via process monitoring
	Automatic cleanup on node failure via pg membership

Removed
	Ra dependency: No longer required since registry uses pg
	esdb_gater_api worker: Removed from supervision tree (API is now purely functional)

Added
	End-to-end tests: 24 comprehensive e2e tests in erl-esdb covering:	Worker registration (4 tests)
	Stream operations via gater (9 tests)
	Subscription operations (4 tests)
	Snapshot operations (4 tests)
	Load balancing (3 tests)

Fixed
	API compatibility with erl-esdb gateway worker:	get_version now handles integer return directly
	Snapshot operations use correct function names (save, load_at, delete_at)
	Subscription unsubscribe uses 3-arg version

Dependencies
	Removed: Ra (no longer needed)
	Telemetry 1.3.0 - BEAM telemetry for observability

[0.1.0] - 2024-12-18
Added
	Initial release of erl-esdb-gater, gateway for distributed erl-esdb access
	Worker Registry:	Ra-based distributed worker registration
	Automatic process monitoring and cleanup
	Node-aware worker lookup

	Gateway API:	register_worker/1,2 - Register workers for stores
	unregister_worker/1,2 - Unregister workers
	call/2,3 - Synchronous calls with load balancing
	cast/2 - Asynchronous fire-and-forget
	get_workers/1 - List registered workers
	health/0 - Gateway health status

	Retry mechanism:	Exponential backoff with jitter
	Configurable base delay, max delay, max attempts
	Telemetry integration for retry tracking

	PubSub Channel System:	esdb_channel behavior for channel implementations
	10 dedicated channels with different priorities:	Critical: alerts, security (HMAC required, no rate limit)
	High: events, health
	Normal: system, metrics, audit, lifecycle
	Low: logging, diagnostics

	Rate limiting per topic per second
	HMAC-SHA256 message signing for security
	Topic-based pub/sub using pg groups

	Security:	HMAC-SHA256 message signing
	Constant-time signature verification (timing attack resistant)
	Configurable message TTL (default 5 minutes)
	Environment variable or application config for secrets

	Telemetry events:	Worker registration/unregistration
	Request start/stop/error
	Retry attempts and exhaustion
	Cluster node up/down
	Channel broadcast metrics

	Comprehensive test suite (44 unit + 8 integration tests)
	Educational guides (shared with erl-esdb):	Event Sourcing fundamentals
	CQRS patterns
	Subscriptions usage
	Snapshots optimization

Dependencies
	Ra 2.16.12 - Raft consensus for worker registry (replaced with pg in 0.2.0)
	Telemetry 1.3.0 - BEAM telemetry for observability

 Configuration Guide

This guide covers all configuration options for erl-esdb-gater, with examples for both Erlang (sys.config) and Elixir (config.exs).
Quick Start
Erlang (sys.config)
[
 {erl_esdb_gater, [
 {capability_mode, optional},
 {hmac_secret, <<"your-secret-key-here">>},
 {retry, [
 {base_delay_ms, 100},
 {max_delay_ms, 30000},
 {max_retries, 10}
]}
]}
].
Elixir (config.exs)
config :erl_esdb_gater,
 capability_mode: :optional,
 hmac_secret: "your-secret-key-here",
 retry: [
 base_delay_ms: 100,
 max_delay_ms: 30000,
 max_retries: 10
]
Configuration Reference
Capability Security
Controls how capability tokens are enforced across the gateway.
	Option	Type	Default	Description
	capability_mode	atom	disabled	Global capability enforcement mode

Modes:
	disabled - Capabilities are never checked (development/testing)
	optional - Capabilities are verified if provided, allowed if not
	required - Capabilities are always required for protected operations

Priority: Per-channel overrides take precedence. If a channel's requires_capability/0 callback returns true, that channel always requires capabilities regardless of the global setting.
Erlang Example
%% Development - no capability checks
{capability_mode, disabled}

%% Staging - verify if provided
{capability_mode, optional}

%% Production - always require
{capability_mode, required}
Elixir Example
Development
config :erl_esdb_gater, capability_mode: :disabled

Staging
config :erl_esdb_gater, capability_mode: :optional

Production
config :erl_esdb_gater, capability_mode: :required
Runtime Configuration
You can change the capability mode at runtime:
%% Erlang
esdb_gater_config:set_capability_mode(required).
esdb_gater_config:capability_mode(). %% Returns: required
Elixir
:esdb_gater_config.set_capability_mode(:required)
:esdb_gater_config.capability_mode() # Returns: :required
HMAC Security
Used for signing messages on critical PubSub channels.
	Option	Type	Default	Description
	hmac_secret	binary/string	auto-generated	Secret key for HMAC-SHA256 signing

Environment Variable: If not configured, falls back to ESDB_GATER_SECRET environment variable.
Warning: If neither is configured, a random secret is generated. This is not recommended for production as it prevents message verification across restarts.
Erlang Example
%% Binary secret (recommended)
{hmac_secret, <<"my-production-secret-key-at-least-32-bytes">>}

%% String secret (converted to binary)
{hmac_secret, "my-production-secret-key-at-least-32-bytes"}
Elixir Example
Using environment variable (recommended for production)
config :erl_esdb_gater,
 hmac_secret: System.get_env("ESDB_GATER_SECRET")

Direct configuration
config :erl_esdb_gater,
 hmac_secret: "my-production-secret-key-at-least-32-bytes"
Runtime Configuration
%% Erlang
esdb_pubsub_security:set_secret(<<"new-secret">>).
esdb_pubsub_security:get_secret().
Elixir
:esdb_pubsub_security.set_secret("new-secret")
:esdb_pubsub_security.get_secret()
Retry Configuration
Controls exponential backoff behavior for failed operations.
	Option	Type	Default	Description
	retry.base_delay_ms	integer	100	Initial delay in milliseconds
	retry.max_delay_ms	integer	30000	Maximum delay cap in milliseconds
	retry.max_retries	integer	10	Maximum number of retry attempts

Backoff Formula: delay = min(base_delay * 2^attempt + jitter, max_delay)
Where jitter is 0-25% of the calculated delay.
Erlang Example
{retry, [
 {base_delay_ms, 50}, %% Start at 50ms
 {max_delay_ms, 60000}, %% Cap at 60 seconds
 {max_retries, 5} %% Give up after 5 attempts
]}
Elixir Example
config :erl_esdb_gater,
 retry: [
 base_delay_ms: 50,
 max_delay_ms: 60_000,
 max_retries: 5
]
Retry Sequence Example
With default configuration (base_delay_ms: 100, max_delay_ms: 30000):
	Attempt	Base Delay	With Jitter (approx)
	1	100ms	100-125ms
	2	200ms	200-250ms
	3	400ms	400-500ms
	4	800ms	800-1000ms
	5	1600ms	1600-2000ms
	6	3200ms	3200-4000ms
	7	6400ms	6400-8000ms
	8	12800ms	12800-16000ms
	9	25600ms	25600-30000ms
	10	30000ms	30000ms (capped)

Total worst-case wait: ~2 minutes before giving up.
Complete Configuration Examples
Development Environment
%% Erlang sys.config
[
 {erl_esdb_gater, [
 %% No capability enforcement in development
 {capability_mode, disabled},

 %% Short retries for fast feedback
 {retry, [
 {base_delay_ms, 50},
 {max_delay_ms, 1000},
 {max_retries, 3}
]}
]}
].
Elixir config/dev.exs
config :erl_esdb_gater,
 capability_mode: :disabled,
 retry: [
 base_delay_ms: 50,
 max_delay_ms: 1_000,
 max_retries: 3
]
Production Environment
%% Erlang sys.config
[
 {erl_esdb_gater, [
 %% Strict capability enforcement
 {capability_mode, required},

 %% Secret from environment
 {hmac_secret, {env, "ESDB_GATER_SECRET"}},

 %% Patient retries for resilience
 {retry, [
 {base_delay_ms, 100},
 {max_delay_ms, 60000},
 {max_retries, 15}
]}
]}
].
Elixir config/runtime.exs
config :erl_esdb_gater,
 capability_mode: :required,
 hmac_secret: System.fetch_env!("ESDB_GATER_SECRET"),
 retry: [
 base_delay_ms: 100,
 max_delay_ms: 60_000,
 max_retries: 15
]
Staging/Testing Environment
Elixir config/test.exs
config :erl_esdb_gater,
 # Optional mode for testing both paths
 capability_mode: :optional,

 # Fixed secret for reproducible tests
 hmac_secret: "test-secret-for-reproducibility",

 # Fast retries
 retry: [
 base_delay_ms: 10,
 max_delay_ms: 100,
 max_retries: 2
]
Environment Variables
	Variable	Description
	ESDB_GATER_SECRET	HMAC secret for message signing (fallback if not in config)

Telemetry Events
The gateway emits telemetry events for monitoring. Configure handlers via BEAM telemetry:
Elixir
:telemetry.attach_many(
 "esdb-gater-handler",
 [
 [:esdb_gater, :retry, :attempt],
 [:esdb_gater, :retry, :exhausted],
 [:esdb_gater, :request, :start],
 [:esdb_gater, :request, :stop],
 [:esdb_gater, :request, :exception]
],
 &MyApp.TelemetryHandler.handle_event/4,
 nil
)
%% Erlang
telemetry:attach_many(
 <<"esdb-gater-handler">>,
 [
 [esdb_gater, retry, attempt],
 [esdb_gater, retry, exhausted],
 [esdb_gater, request, start],
 [esdb_gater, request, stop],
 [esdb_gater, request, exception]
],
 fun my_handler:handle_event/4,
 undefined
).
See Also
	Capability Security - Deep dive into capability tokens
	Interactive REPL - Interactive shell for exploration
	Event Sourcing - Core patterns

 Event Sourcing with erl-esdb

Event Sourcing is an architectural pattern where the state of an application is determined by a sequence of events. Instead of storing just the current state, you store the complete history of state changes as immutable events.
What is Event Sourcing?
Traditional CRUD-based systems store only the current state:
User Record: {id: 123, name: "Alice", email: "alice@example.com", balance: 150}
Event-sourced systems store the history of changes:
Event 1: UserCreated {id: 123, name: "Alice", email: "alice@example.com"}
Event 2: BalanceDeposited {user_id: 123, amount: 200}
Event 3: BalanceWithdrawn {user_id: 123, amount: 50}
The current state is derived by replaying these events.
Benefits of Event Sourcing
Complete Audit Trail
Every change is recorded with a timestamp and metadata. This is invaluable for:
	Regulatory compliance (financial systems, healthcare)
	Debugging production issues
	Understanding user behavior

Temporal Queries
You can reconstruct the state at any point in time:
%% Get account balance as of last month
{ok, Events} = esdb_gater_api:stream_forward(my_store, <<"account-123">>, 0, 1000),
PastEvents = [E || E <- Events, E#event.timestamp < LastMonthTimestamp],
Balance = lists:foldl(fun apply_event/2, 0, PastEvents).
Event Replay
Rebuild read models, fix bugs in projections, or create new views of historical data:
%% Rebuild a projection from scratch
{ok, Events} = esdb_gater_api:stream_forward(my_store, <<"orders-*">>, 0, 10000),
lists:foreach(fun(E) -> update_projection(E) end, Events).
Decoupled Systems
Events can be consumed by multiple subscribers independently:
Order Placed Event
 |
 +---> Inventory Service (decrements stock)
 +---> Notification Service (sends email)
 +---> Analytics Service (updates metrics)
 +---> Billing Service (creates invoice)
Event Sourcing with erl-esdb
Streams
A stream is an ordered sequence of events sharing a common identifier (the stream ID). Streams typically represent:
	An aggregate (e.g., order-123, user-456)
	A category (e.g., orders, users)
	A partition (e.g., orders-region-eu)

%% Append events to a stream via gateway
Events = [
 #{
 event_type => <<"OrderPlaced">>,
 data => #{order_id => <<"ord-123">>, items => [...], total => 9999},
 metadata => #{user_id => <<"user-456">>, correlation_id => <<"req-789">>}
 }
],
{ok, Version} = esdb_gater_api:append_events(my_store, <<"order-ord-123">>, Events).
Events
Events are immutable facts that have happened. They should:
	Be named in past tense (e.g., OrderPlaced, not PlaceOrder)
	Contain all information needed to understand what happened
	Be business-meaningful (e.g., AccountOverdrawn, not BalanceUpdated)

%% Event structure
#{
 event_type => <<"OrderPlaced">>, %% What happened
 data => #{ %% The event payload
 order_id => <<"ord-123">>,
 customer_id => <<"cust-456">>,
 items => [
 #{product_id => <<"prod-1">>, quantity => 2, price => 1999}
],
 total => 3998
 },
 metadata => #{ %% Cross-cutting concerns
 correlation_id => <<"req-abc">>, %% Traces related operations
 causation_id => <<"evt-xyz">>, %% What caused this event
 user_id => <<"user-789">>, %% Who triggered it
 timestamp => 1703001234567 %% When it happened
 }
}
Optimistic Concurrency
erl-esdb uses optimistic concurrency control to prevent conflicting writes:
%% Expected version semantics (via options):
%% expected_version => -1 (NO_STREAM): Stream must not exist (first write)
%% expected_version => -2 (ANY_VERSION): No version check, always append
%% expected_version => N >= 0: Stream version must equal N

%% First write to a new stream
{ok, 0} = esdb_gater_api:append_events(my_store, <<"order-123">>, [Event1],
 #{expected_version => -1}).

%% Subsequent writes must specify expected version
{ok, 1} = esdb_gater_api:append_events(my_store, <<"order-123">>, [Event2],
 #{expected_version => 0}).

%% Concurrent writes will fail with version mismatch
%% Process A reads version 1
%% Process B reads version 1
%% Process A writes with expected version 1 -> succeeds, version is now 2
%% Process B writes with expected version 1 -> fails! (wrong_expected_version)
Designing Events
Event Naming
Use past tense verbs that describe business facts:
	Good	Bad
	OrderPlaced	CreateOrder
	PaymentReceived	ProcessPayment
	ItemShipped	ShipItem
	AccountOverdrawn	UpdateBalance

Event Granularity
Events should be atomic business facts. Avoid:
	Generic events like EntityUpdated (not meaningful)
	Overly fine-grained events (one per field change)
	Composite events (multiple unrelated changes)

%% Good: Specific, meaningful events
#{event_type => <<"AddressChanged">>, data => #{
 old_address => OldAddr,
 new_address => NewAddr,
 reason => <<"customer_request">>
}}

%% Bad: Generic, meaningless event
#{event_type => <<"CustomerUpdated">>, data => #{
 field => <<"address">>,
 value => NewAddr
}}
Event Versioning
Events are immutable, but schemas evolve. Use explicit versions:
%% Version 1
#{event_type => <<"OrderPlaced.v1">>, data => #{
 order_id => ...,
 items => [...]
}}

%% Version 2 (added shipping_address)
#{event_type => <<"OrderPlaced.v2">>, data => #{
 order_id => ...,
 items => [...],
 shipping_address => #{}
}}
Handle schema evolution in your projections:
handle_event(#{event_type := <<"OrderPlaced.v1">>} = Event) ->
 %% Default shipping address for v1 events
 upgrade_to_v2(Event);
handle_event(#{event_type := <<"OrderPlaced.v2">>} = Event) ->
 process_order(Event).
Building Aggregates
An aggregate is a domain object that encapsulates state and enforces invariants. In event sourcing, aggregates:
	Load their state by replaying events
	Validate commands against current state
	Emit new events if the command succeeds

-module(order_aggregate).
-export([new/0, apply_event/2, place_order/2, add_item/3]).

-record(order, {
 id,
 status = pending,
 items = [],
 total = 0
}).

%% Create a new aggregate
new() -> #order{}.

%% Apply events to rebuild state
apply_event(#{event_type := <<"OrderPlaced">>} = E, _Order) ->
 Data = maps:get(data, E),
 #order{
 id = maps:get(order_id, Data),
 status = placed,
 items = maps:get(items, Data),
 total = maps:get(total, Data)
 };

apply_event(#{event_type := <<"ItemAdded">>} = E, Order) ->
 Data = maps:get(data, E),
 NewItem = #{
 product_id => maps:get(product_id, Data),
 quantity => maps:get(quantity, Data),
 price => maps:get(price, Data)
 },
 Order#order{
 items = [NewItem | Order#order.items],
 total = Order#order.total + (maps:get(quantity, Data) * maps:get(price, Data))
 };

apply_event(#{event_type := <<"OrderShipped">>}, Order) ->
 Order#order{status = shipped}.

%% Commands that produce events
place_order(OrderId, Items) ->
 Total = lists:sum([Q * P || #{quantity := Q, price := P} <- Items]),
 {ok, [#{
 event_type => <<"OrderPlaced">>,
 data => #{order_id => OrderId, items => Items, total => Total}
 }]}.

add_item(#order{status = placed} = _Order, ProductId, Quantity) ->
 Price = get_product_price(ProductId),
 {ok, [#{
 event_type => <<"ItemAdded">>,
 data => #{product_id => ProductId, quantity => Quantity, price => Price}
 }]};
add_item(#order{status = shipped}, _ProductId, _Quantity) ->
 {error, order_already_shipped}.
Loading Aggregate State
Rebuild aggregate state by reading and folding events:
%% Load order aggregate from event stream via gateway
load_order(StoreId, OrderId) ->
 StreamId = <<"order-", OrderId/binary>>,
 {ok, Events} = esdb_gater_api:stream_forward(StoreId, StreamId, 0, 10000),
 lists:foldl(fun order_aggregate:apply_event/2, order_aggregate:new(), Events).
Further Reading
	CQRS Guide - Command Query Responsibility Segregation
	Subscriptions Guide - Real-time event notifications
	Snapshots Guide - Optimizing aggregate loading

References
	Martin Fowler: Event Sourcing
	Greg Young: CQRS and Event Sourcing
	Vaughn Vernon: "Implementing Domain-Driven Design" (Chapters 8-10)

 CQRS with erl-esdb

Command Query Responsibility Segregation (CQRS) is an architectural pattern that separates read and write operations into distinct models. Combined with event sourcing, CQRS enables highly scalable and maintainable systems.
What is CQRS?
In traditional architectures, the same model handles both reads and writes:
[image: Traditional Architecture]
CQRS separates these concerns:
[image: CQRS Separated Architecture]
Why CQRS?
Different Optimization Strategies
Reads and writes have fundamentally different characteristics:
	Writes	Reads
	Validate business rules	No validation needed
	Must be consistent	Can be eventually consistent
	Lower volume	Higher volume (often 10-100x)
	Complex domain logic	Simple queries

With CQRS, you optimize each path independently:
	Write side: Focus on business logic, invariants, and consistency
	Read side: Focus on query performance, denormalization, and caching

Scalability
Read and write workloads can scale independently:
[image: CQRS Scaling]
Multiple Read Models
Different consumers can have different views of the same data:
%% Same events, different read models

%% Order Events Stream
[
 #{event_type => <<"OrderPlaced">>, data => #{...}},
 #{event_type => <<"PaymentReceived">>, data => #{...}},
 #{event_type => <<"OrderShipped">>, data => #{...}}
]

%% Read Model 1: Customer Dashboard (optimized for display)
#{
 order_id => <<"ord-123">>,
 status => <<"Shipped">>,
 status_history => [...],
 tracking_url => <<"https://...">>
}

%% Read Model 2: Warehouse System (optimized for picking)
#{
 order_id => <<"ord-123">>,
 items => [#{sku => ..., location => ..., quantity => ...}],
 priority => high,
 shipping_method => express
}

%% Read Model 3: Analytics (optimized for aggregation)
#{
 date => <<"2024-01-15">>,
 region => <<"EU">>,
 total_orders => 1547,
 total_revenue => 234567,
 avg_order_value => 151.63
}
CQRS with erl-esdb
The Command Side
Commands represent intentions to change state. They are validated and may produce events:
-module(order_commands).
-export([handle/2]).

%% Handle PlaceOrder command
handle({place_order, OrderId, CustomerId, Items}, State) ->
 %% Validate business rules
 case validate_items(Items) of
 {error, Reason} ->
 {error, Reason};
 ok ->
 %% Check inventory
 case check_inventory(Items) of
 {error, out_of_stock} ->
 {error, items_out_of_stock};
 ok ->
 %% Generate events
 Total = calculate_total(Items),
 Event = #{
 event_type => <<"OrderPlaced">>,
 data => #{
 order_id => OrderId,
 customer_id => CustomerId,
 items => Items,
 total => Total
 },
 metadata => #{
 command => place_order,
 timestamp => erlang:system_time(millisecond)
 }
 },
 {ok, [Event]}
 end
 end;

%% Handle CancelOrder command
handle({cancel_order, OrderId, Reason}, State) ->
 %% Load current state
 Order = load_order(State, OrderId),
 case Order#order.status of
 shipped ->
 {error, cannot_cancel_shipped_order};
 cancelled ->
 {error, already_cancelled};
 _ ->
 Event = #{
 event_type => <<"OrderCancelled">>,
 data => #{order_id => OrderId, reason => Reason}
 },
 {ok, [Event]}
 end.
The Query Side: Projections
Projections transform events into read models. They run asynchronously and subscribe to event streams:
-module(order_dashboard_projection).
-behaviour(gen_server).

-export([start_link/1, get_order/1, list_customer_orders/1]).
-export([init/1, handle_info/2, handle_call/3]).

%% Read model stored in ETS for fast lookups
-define(TABLE, order_dashboard).

start_link(StoreId) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, StoreId, []).

init(StoreId) ->
 %% Create ETS table for read model
 ets:new(?TABLE, [named_table, public, {read_concurrency, true}]),

 %% Subscribe to order events via gateway
 ok = esdb_gater_api:save_subscription(
 StoreId,
 event_pattern,
 <<"order-*">>,
 <<"order_dashboard_projection">>,
 self(),
 #{}
),

 %% Also subscribe to PubSub channel for real-time delivery
 ok = esdb_channel_server:subscribe(esdb_channel_events, <<"order.*">>, self()),

 {ok, #{store_id => StoreId}}.

%% Handle events from subscription
handle_info({event, Event}, State) ->
 project_event(Event),
 {noreply, State}.

%% Query interface
get_order(OrderId) ->
 case ets:lookup(?TABLE, {order, OrderId}) of
 [{_, Order}] -> {ok, Order};
 [] -> {error, not_found}
 end.

list_customer_orders(CustomerId) ->
 Pattern = {{customer_order, CustomerId, '_'}, '_'},
 Orders = ets:match_object(?TABLE, Pattern),
 {ok, [Order || {_, Order} <- Orders]}.

%% Project events into read model
project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Data = maps:get(data, Event),
 OrderId = maps:get(order_id, Data),
 CustomerId = maps:get(customer_id, Data),

 %% Denormalized read model optimized for display
 ReadModel = #{
 order_id => OrderId,
 customer_id => CustomerId,
 items => maps:get(items, Data),
 total => maps:get(total, Data),
 status => <<"Placed">>,
 status_history => [#{status => <<"Placed">>, at => Event#event.timestamp}],
 placed_at => Event#event.timestamp
 },

 %% Store by order ID
 ets:insert(?TABLE, {{order, OrderId}, ReadModel}),

 %% Index by customer for listing
 ets:insert(?TABLE, {{customer_order, CustomerId, OrderId}, ReadModel});

project_event(#{event_type := <<"OrderShipped">>} = Event) ->
 Data = maps:get(data, Event),
 OrderId = maps:get(order_id, Data),

 %% Update existing read model
 case ets:lookup(?TABLE, {order, OrderId}) of
 [{Key, Order}] ->
 Updated = Order#{
 status => <<"Shipped">>,
 status_history => [
 #{status => <<"Shipped">>, at => Event#event.timestamp}
 | maps:get(status_history, Order)
],
 tracking_number => maps:get(tracking_number, Data, undefined),
 shipped_at => Event#event.timestamp
 },
 ets:insert(?TABLE, {Key, Updated}),

 %% Update customer index too
 CustomerId = maps:get(customer_id, Order),
 ets:insert(?TABLE, {{customer_order, CustomerId, OrderId}, Updated});
 [] ->
 %% Event for unknown order - log warning
 logger:warning("OrderShipped for unknown order: ~p", [OrderId])
 end;

project_event(_Event) ->
 %% Ignore events we don't care about
 ok.
Multiple Projections
The same events can drive multiple specialized read models:
%% Analytics projection - aggregates for dashboards
-module(order_analytics_projection).

project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Data = maps:get(data, Event),
 Date = date_from_timestamp(Event#event.timestamp),
 Total = maps:get(total, Data),
 Region = get_customer_region(maps:get(customer_id, Data)),

 %% Increment daily counters
 ets:update_counter(?ANALYTICS_TABLE, {daily_orders, Date, Region}, 1, {{daily_orders, Date, Region}, 0}),
 ets:update_counter(?ANALYTICS_TABLE, {daily_revenue, Date, Region}, Total, {{daily_revenue, Date, Region}, 0}).

%% Inventory projection - tracks stock levels
-module(inventory_projection).

project_event(#{event_type := <<"OrderPlaced">>} = Event) ->
 Items = maps:get(items, maps:get(data, Event)),
 lists:foreach(fun(#{product_id := ProductId, quantity := Qty}) ->
 %% Decrement reserved stock
 ets:update_counter(?INVENTORY_TABLE, {reserved, ProductId}, Qty, {{reserved, ProductId}, 0})
 end, Items);

project_event(#{event_type := <<"OrderShipped">>} = Event) ->
 Items = maps:get(items, maps:get(data, Event)),
 lists:foreach(fun(#{product_id := ProductId, quantity := Qty}) ->
 %% Move from reserved to shipped
 ets:update_counter(?INVENTORY_TABLE, {reserved, ProductId}, -Qty),
 ets:update_counter(?INVENTORY_TABLE, {shipped, ProductId}, Qty, {{shipped, ProductId}, 0})
 end, Items).
Eventual Consistency
With CQRS, read models are eventually consistent with the write model. This means:
	A command succeeds and events are written
	Projections receive events asynchronously
	Read models are updated
	Queries return the updated data

There's a delay between steps 1 and 4. This is usually milliseconds, but can be longer under load.
Handling Eventual Consistency
In the UI:
%% After successful command, show optimistic update
case order_commands:handle(PlaceOrderCmd, State) of
 {ok, Events} ->
 %% Write events via gateway
 {ok, Version} = esdb_gater_api:append_events(
 my_store, StreamId, Events,
 #{expected_version => ExpectedVer}
),

 %% Return success with the data the client needs
 %% Don't query the read model yet - it might not be updated
 {ok, #{
 order_id => OrderId,
 status => <<"Placed">>,
 message => <<"Order placed successfully">>
 }};
 {error, Reason} ->
 {error, Reason}
end.
For critical queries:
%% If consistency is critical, query the event store via gateway
get_order_status(StoreId, OrderId) ->
 StreamId = <<"order-", OrderId/binary>>,
 {ok, Events} = esdb_gater_api:stream_forward(StoreId, StreamId, 0, 1000),

 %% Derive status from events
 Status = lists:foldl(fun
 (#event{event_type = <<"OrderPlaced">>}, _) -> placed;
 (#event{event_type = <<"OrderShipped">>}, _) -> shipped;
 (#event{event_type = <<"OrderDelivered">>}, _) -> delivered;
 (#event{event_type = <<"OrderCancelled">>}, _) -> cancelled;
 (_, Acc) -> Acc
 end, unknown, Events),

 {ok, Status}.
Best Practices
1. Keep Projections Idempotent
Projections may receive the same event multiple times (redelivery, replay). Make them idempotent:
%% Bad: Not idempotent
project_event(#{event_type := <<"ItemAdded">>} = E) ->
 OrderId = maps:get(order_id, maps:get(data, E)),
 ets:update_counter(?TABLE, {item_count, OrderId}, 1). %% Will double-count on replay

%% Good: Idempotent using event version
project_event(#{event_type := <<"ItemAdded">>} = E) ->
 OrderId = maps:get(order_id, maps:get(data, E)),
 EventVersion = E#event.version,

 case ets:lookup(?TABLE, {last_version, OrderId}) of
 [{_, LastVersion}] when EventVersion =< LastVersion ->
 %% Already processed this event
 ok;
 _ ->
 %% Process and update version
 ets:update_counter(?TABLE, {item_count, OrderId}, 1),
 ets:insert(?TABLE, {{last_version, OrderId}, EventVersion})
 end.
2. Design Read Models for Queries
Don't normalize read models. Denormalize for query performance:
%% Read model for "show customer's recent orders with item details"
%% Everything needed in one lookup
#{
 customer_id => <<"cust-123">>,
 recent_orders => [
 #{
 order_id => <<"ord-456">>,
 placed_at => 1703001234567,
 status => <<"Delivered">>,
 items => [
 #{name => <<"Widget">>, quantity => 2, price => 999}
],
 total => 1998
 }
]
}
3. Separate Projection Processes
Run projections in separate processes for isolation:
%% In your supervisor
{ok, _} = order_dashboard_projection:start_link(StoreId),
{ok, _} = order_analytics_projection:start_link(StoreId),
{ok, _} = inventory_projection:start_link(StoreId).
If one projection fails or falls behind, others continue working.
Further Reading
	Event Sourcing Guide - Foundation for CQRS
	Subscriptions Guide - Event delivery for projections
	Snapshots Guide - Optimizing projection rebuilds

References
	Martin Fowler: CQRS
	Greg Young: CQRS Documents
	Udi Dahan: Clarified CQRS

 Interactive REPL

The erl-esdb-gater REPL (Read-Eval-Print-Loop) provides an interactive shell for exploring event stores, streams, causation chains, and temporal queries. It's designed for developers to quickly inspect and debug event-sourced systems without writing code.
[image: REPL Architecture]
Overview
The REPL provides a stateful session that maintains context about:
	Current store - Which event store you're connected to
	Current stream - Which event stream is selected for operations

This context-aware design means you don't need to specify the store and stream for every command once they're selected.
Quick Start
Start the REPL from an Erlang shell:
%% Start without a store selected
esdb_gater_repl:start().

%% Start with a store pre-selected
esdb_gater_repl:start(my_store).
Command Reference
Store Commands
stores List all stores
use STORE Set current store context
Example session:
esdb> stores

Stores:
 my_store
 another_store

esdb> use my_store
Switched to store: my_store
esdb:my_store>
Stream Commands
streams List streams in current store
stream STREAM Set current stream context
read [N] Read N events (default 10)
read STREAM [N] Read N events from stream
version Get version of current stream
version STREAM Get version of stream
Example session:
esdb:my_store> streams

Streams in my_store:
 orders
 customers
 products

Total: 3 streams

esdb:my_store> stream orders
Switched to stream: orders

esdb:my_store/orders> read 5

 [0] order_created: evt-123
 [1] order_paid: evt-124
 [2] order_shipped: evt-125
 [3] order_delivered: evt-126
 [4] order_completed: evt-127

Total: 5 events

esdb:my_store/orders> version
Version: 127
Causation Commands
Causation tracking is one of the most powerful features of the REPL. It allows you to trace the lineage of events through your system.
[image: Causation Workflow]
effects ID Get events caused by event
cause ID Get event that caused this
chain ID Get full causation chain
graph ID Build and display causation graph
dot ID FILE Export graph as Graphviz DOT file
Example session:
esdb:my_store> effects evt-100

Events caused by evt-100:
 [0] payment_processed: evt-101
 [1] inventory_reserved: evt-102

Total: 2 effects

esdb:my_store> chain evt-105

Causation chain to evt-105:
 [1] order_created (evt-100)
 -> [2] payment_processed (evt-101)
 -> [3] inventory_reserved (evt-102)
 -> [4] order_shipped (evt-104)
 -> [5] delivery_scheduled (evt-105)

Chain length: 5

esdb:my_store> dot evt-100 /tmp/causation.dot
DOT file written to: /tmp/causation.dot
To visualize the DOT file:
dot -Tpng /tmp/causation.dot -o /tmp/causation.png

Temporal Commands
until TS Read events until timestamp
range T1 T2 Read events in time range
Timestamps are Unix epoch in seconds.
Example session:
esdb:my_store/orders> until 1703200000

Events until 1703200000:
 [0] order_created: evt-123
 [1] order_paid: evt-124

Total: 2 events

esdb:my_store/orders> range 1703100000 1703200000

Events from 1703100000 to 1703200000:
 [0] order_created: evt-123
 [1] order_paid: evt-124
 [2] order_shipped: evt-125

Total: 3 events
Schema Commands
schemas List all schemas
schema TYPE Get schema for event type
Subscription Commands
subscriptions List all subscriptions
subscription NAME Get subscription details
Health Commands
health Gateway health status
memory Memory statistics for current store
Example:
esdb> health

Gateway Health:
 status: healthy
 stores: #{my_store => 3, another_store => 2}
 total_workers: 5
 node: 'node1@localhost'
 timestamp: 1703234567890
Prompt Format
The prompt shows your current context:
esdb> # No store selected
esdb:my_store> # Store selected
esdb:my_store/orders> # Store + stream selected
Tips
	Tab completion: Not supported yet, but coming in a future release.

	History: Use up/down arrows if your shell supports it (depends on terminal).

	Batch operations: For bulk operations, use the esdb_gater_api module directly instead of the REPL.

	DOT files: The dot command generates Graphviz DOT format, which can be converted to PNG, SVG, or PDF using the dot command-line tool.

Use Cases
Debugging Event Flows
When an event causes unexpected behavior, use causation commands to trace its origin:
esdb:my_store> chain problematic-event-id
This shows the full chain of events that led to the problematic event, helping identify where things went wrong.
Investigating Time-Based Issues
For issues that occurred at a specific time, use temporal queries:
esdb:my_store/orders> range 1703100000 1703110000
This shows all events in the orders stream during that 10-second window.
Exporting Visualizations
Generate DOT files for documentation or sharing:
esdb:my_store> dot correlation-id-123 /tmp/saga-flow.dot
Then convert to various formats:
PNG image
dot -Tpng /tmp/saga-flow.dot -o /tmp/saga-flow.png

SVG (scalable)
dot -Tsvg /tmp/saga-flow.dot -o /tmp/saga-flow.svg

PDF document
dot -Tpdf /tmp/saga-flow.dot -o /tmp/saga-flow.pdf

Monitoring Health
Quick health check of the gateway:
esdb> health
Check memory pressure for a specific store:
esdb:my_store> memory
Integration with Development Workflow
The REPL is designed to fit into your development workflow:
	During Development: Quickly verify events are being stored correctly
	Debugging: Trace causation chains to understand event flow
	Documentation: Export graphs for architecture documentation
	Monitoring: Check health and memory status

Exit
Use any of these commands to exit:
exit
quit
q
Or press Ctrl+D (EOF).
See Also
	Causation Tracking - Deep dive into causation concepts
	Temporal Queries - Time-based query patterns
	Event Sourcing - Core event sourcing patterns

 Subscriptions via Gateway

Subscriptions enable real-time event delivery to consumers. This guide covers managing subscriptions and receiving events through the erl-esdb-gater client API.
Overview
[image: Subscription Flow]
The gateway provides two ways to receive events:
	Persistent Subscriptions - Managed subscriptions with checkpointing
	PubSub Channels - Real-time event broadcasting

Gateway Subscription API
Creating Subscriptions
%% Create a subscription via gateway
ok = esdb_gater_api:save_subscription(
 my_store, %% Store ID
 stream, %% Type: stream | event_type | event_pattern | event_payload
 <<"order-123">>, %% Selector
 <<"order_handler">>, %% Subscription name
 self(), %% Subscriber PID
 #{} %% Options
).
Subscription Types
	Type	Selector	Use Case
	stream	Stream ID	Single aggregate events
	event_type	Event type name	Cross-cutting concerns
	event_pattern	Wildcard pattern	Category projections
	event_payload	Match map	Conditional processing

Stream Subscription
%% Subscribe to a single order's events
ok = esdb_gater_api:save_subscription(
 my_store, stream, <<"order-123">>, <<"order_handler">>, self(), #{}
).
Event Type Subscription
%% Subscribe to all PaymentReceived events
ok = esdb_gater_api:save_subscription(
 my_store, event_type, <<"PaymentReceived">>, <<"payment_processor">>, self(), #{}
).
Pattern Subscription
%% Subscribe to all order streams
ok = esdb_gater_api:save_subscription(
 my_store, event_pattern, <<"order-*">>, <<"order_projection">>, self(), #{}
).
Payload Subscription
%% Subscribe to high-value orders
ok = esdb_gater_api:save_subscription(
 my_store, event_payload, #{total => {gt, 10000}}, <<"high_value_handler">>, self(), #{}
).
Listing Subscriptions
%% List all subscriptions
{ok, Subscriptions} = esdb_gater_api:get_subscriptions(my_store).

%% Each subscription contains:
%% - type, selector, subscription_name
%% - created_at, pool_size
Removing Subscriptions
%% Remove a subscription
ok = esdb_gater_api:remove_subscription(
 my_store, event_pattern, <<"order-*">>, <<"order_projection">>
).
Acknowledging Events
%% Acknowledge event processing (for at-least-once delivery)
ok = esdb_gater_api:ack_event(my_store, SubscriptionName, StreamId, EventVersion).
PubSub Channels
For real-time event delivery, use the gateway's built-in PubSub channels:
Available Channels
	Channel	Priority	Purpose
	esdb_channel_events	high	Business events
	esdb_channel_alerts	critical	System alerts
	esdb_channel_system	normal	System notifications
	esdb_channel_metrics	normal	Performance metrics

Subscribing to Channels
%% Subscribe to a topic pattern
ok = esdb_channel_server:subscribe(esdb_channel_events, <<"order.*">>, self()).

%% Subscribe with wildcard
ok = esdb_channel_server:subscribe(esdb_channel_events, <<"*">>, self()).
Receiving Channel Messages
-module(my_event_handler).
-behaviour(gen_server).

init([]) ->
 %% Subscribe to order events
 ok = esdb_channel_server:subscribe(esdb_channel_events, <<"order.*">>, self()),
 {ok, #{}}.

handle_info({channel_message, esdb_channel_events, Topic, Event}, State) ->
 %% Process the event
 logger:info("Received ~s: ~p", [Topic, Event]),
 handle_event(Topic, Event),
 {noreply, State}.

handle_event(<<"order.placed">>, Event) ->
 %% Handle order placed
 ok;
handle_event(<<"order.shipped">>, Event) ->
 %% Handle order shipped
 ok.
Unsubscribing
%% Unsubscribe from a topic
ok = esdb_channel_server:unsubscribe(esdb_channel_events, <<"order.*">>, self()).
Event Handler Patterns
Basic Handler
-module(order_handler).
-behaviour(gen_server).
-include_lib("erl_esdb_gater/include/esdb_gater_types.hrl").

-export([start_link/1, init/1, handle_info/2]).

start_link(StoreId) ->
 gen_server:start_link(?MODULE, [StoreId], []).

init([StoreId]) ->
 %% Create subscription via gateway
 ok = esdb_gater_api:save_subscription(
 StoreId, event_pattern, <<"order-*">>, <<"order_handler">>, self(), #{}
),

 %% Also subscribe to PubSub for real-time delivery
 ok = esdb_channel_server:subscribe(esdb_channel_events, <<"order.*">>, self()),

 {ok, #{store_id => StoreId}}.

handle_info({channel_message, _, Topic, Event}, State) ->
 handle_event(Event),
 {noreply, State};

handle_info({event, Event}, State) ->
 %% Direct subscription delivery
 handle_event(Event),
 {noreply, State}.

handle_event(#event{event_type = <<"OrderPlaced">>, data = Data}) ->
 logger:info("Order placed: ~p", [Data]);
handle_event(#event{event_type = <<"OrderShipped">>, data = Data}) ->
 logger:info("Order shipped: ~p", [Data]);
handle_event(_Event) ->
 ok.
Handler with Checkpointing
-module(checkpointed_handler).
-behaviour(gen_server).

init([StoreId]) ->
 %% Load last processed position
 LastPosition = load_checkpoint(StoreId),

 %% Subscribe starting from checkpoint
 ok = esdb_gater_api:save_subscription(
 StoreId, event_pattern, <<"order-*">>, <<"checkpointed_handler">>, self(),
 #{start_from => LastPosition}
),

 {ok, #{store_id => StoreId, last_position => LastPosition}}.

handle_info({event, #event{version = Version} = Event}, #{store_id := StoreId} = State) ->
 %% Process the event
 handle_event(Event),

 %% Acknowledge and checkpoint
 ok = esdb_gater_api:ack_event(StoreId, <<"checkpointed_handler">>, Event#event.stream_id, Version),
 save_checkpoint(StoreId, Version),

 {noreply, State#{last_position => Version}}.
Pool of Handlers
-module(handler_pool).

start_pool(StoreId, PoolSize) ->
 %% Create subscription
 ok = esdb_gater_api:save_subscription(
 StoreId, event_pattern, <<"order-*">>, <<"handler_pool">>, undefined,
 #{pool_size => PoolSize}
),

 %% Start worker processes
 [begin
 {ok, Pid} = handler_worker:start_link(StoreId, N),
 Pid
 end || N <- lists:seq(1, PoolSize)].

-module(handler_worker).

init([StoreId, WorkerId]) ->
 %% Subscribe to PubSub for load-balanced delivery
 ok = esdb_channel_server:subscribe(esdb_channel_events, <<"*">>, self()),
 {ok, #{store_id => StoreId, worker_id => WorkerId}}.
Catch-Up Subscriptions
Process historical events before receiving live events:
%% Start from beginning (catch up on all history)
ok = esdb_gater_api:save_subscription(
 my_store, event_pattern, <<"order-*">>, <<"new_projection">>, self(),
 #{start_from => 0}
).

%% Resume from a specific position
ok = esdb_gater_api:save_subscription(
 my_store, event_pattern, <<"order-*">>, <<"resumed_projection">>, self(),
 #{start_from => 12345}
).
Best Practices
1. Idempotent Event Handling
Events may be delivered more than once:
handle_event(#event{event_id = EventId} = Event) ->
 case ets:lookup(processed_events, EventId) of
 [{EventId, _}] ->
 ok; %% Already processed
 [] ->
 do_process_event(Event),
 ets:insert(processed_events, {EventId, erlang:system_time()})
 end.
2. Monitor Subscription Lag
Track how far behind your subscription is:
check_lag(StoreId, StreamId, ProcessedVersion) ->
 {ok, StreamVersion} = esdb_gater_api:get_version(StoreId, StreamId),
 Lag = StreamVersion - ProcessedVersion,
 case Lag > 1000 of
 true -> logger:warning("Subscription lag: ~p events", [Lag]);
 false -> ok
 end.
3. Graceful Shutdown
Clean up subscriptions on shutdown:
terminate(_Reason, #{store_id := StoreId}) ->
 esdb_channel_server:unsubscribe(esdb_channel_events, <<"order.*">>, self()),
 ok.
4. Handle Ordering
Within a single stream, events are ordered. Across streams, no ordering guarantee:
%% Events from stream "order-123" arrive in order
%% But events from different streams may interleave
See Also
	Event Sourcing Guide - Foundation concepts
	Shared Types - Record definitions
	PubSub Channels - Channel reference

For server-side subscription internals, see the erl-esdb Subscriptions Guide.

 Snapshots via Gateway

Snapshots are periodic captures of aggregate state that optimize event replay performance. This guide covers accessing snapshots through the erl-esdb-gater client API.
Overview
Snapshots reduce the number of events needed to reconstruct aggregate state:
[image: Snapshot Performance Comparison]
	Scenario	Recommendation
	Aggregates with < 100 events	Snapshots probably not needed
	Aggregates with 100-1000 events	Consider snapshots
	Aggregates with > 1000 events	Strongly recommended
	Frequent aggregate loading	Recommended

Gateway Snapshot API
Recording Snapshots
Save aggregate state at a specific version:
%% Record a snapshot via gateway
State = #{balance => 1000, status => active},
ok = esdb_gater_api:record_snapshot(
 my_store, %% Store ID
 my_source, %% Source ID (your application)
 <<"account-123">>, %% Stream ID
 150, %% Version (event number)
 State %% State to snapshot
).
Reading Snapshots
Load the latest or a specific snapshot:
%% Load the latest snapshot
case esdb_gater_api:read_snapshot(my_store, my_source, <<"account-123">>, latest) of
 {ok, Snapshot} ->
 Version = Snapshot#snapshot.version,
 State = Snapshot#snapshot.data,
 %% Replay events after the snapshot
 {ok, Events} = esdb_gater_api:stream_forward(
 my_store, <<"account-123">>, Version + 1, 10000
),
 FinalState = lists:foldl(fun apply_event/2, State, Events);
 {error, not_found} ->
 %% No snapshot, replay from beginning
 {ok, AllEvents} = esdb_gater_api:stream_forward(
 my_store, <<"account-123">>, 0, 10000
),
 lists:foldl(fun apply_event/2, initial_state(), AllEvents)
end.

%% Load snapshot at a specific version
{ok, Snapshot} = esdb_gater_api:read_snapshot(
 my_store, my_source, <<"account-123">>, 100
).
Listing Snapshots
Get all snapshots for a stream:
%% List all snapshots for a stream
{ok, Snapshots} = esdb_gater_api:list_snapshots(my_store, my_source, <<"account-123">>).

%% Returns list sorted by version (newest first)
[
 #snapshot{stream_id = <<"account-123">>, version = 150, ...},
 #snapshot{stream_id = <<"account-123">>, version = 100, ...},
 #snapshot{stream_id = <<"account-123">>, version = 50, ...}
]
Deleting Snapshots
Remove old snapshots to save storage:
%% Delete a specific snapshot
ok = esdb_gater_api:delete_snapshot(my_store, my_source, <<"account-123">>, 50).

%% Delete old snapshots (keep only recent ones)
{ok, Snapshots} = esdb_gater_api:list_snapshots(my_store, my_source, <<"account-123">>),
OldSnapshots = lists:nthtail(3, Snapshots), %% Keep 3 most recent
[esdb_gater_api:delete_snapshot(my_store, my_source, S#snapshot.stream_id, S#snapshot.version)
 || S <- OldSnapshots].
Client-Side Aggregate Pattern
A typical pattern for loading aggregates through the gateway:
-module(account_client).
-export([load/2, execute/3]).

-include_lib("erl_esdb_gater/include/esdb_gater_types.hrl").

-record(account, {
 id,
 balance = 0,
 status = active,
 version = 0
}).

-define(SNAPSHOT_THRESHOLD, 100).

%% Load aggregate via gateway
load(StoreId, AccountId) ->
 StreamId = <<"account-", AccountId/binary>>,

 %% Try to load from snapshot first
 {InitialState, StartVersion} = case esdb_gater_api:read_snapshot(
 StoreId, account_client, StreamId, latest
) of
 {ok, Snapshot} ->
 {Snapshot#snapshot.data, Snapshot#snapshot.version + 1};
 {error, not_found} ->
 {#account{id = AccountId}, 0}
 end,

 %% Replay events after snapshot
 case esdb_gater_api:stream_forward(StoreId, StreamId, StartVersion, 10000) of
 {ok, Events} ->
 FinalState = lists:foldl(fun apply_event/2, InitialState, Events),
 NewVersion = case Events of
 [] -> StartVersion;
 _ -> (lists:last(Events))#event.version
 end,
 {ok, FinalState#account{version = NewVersion}};
 {error, stream_not_found} when StartVersion =:= 0 ->
 {ok, InitialState};
 {error, Reason} ->
 {error, Reason}
 end.

%% Execute command and persist events
execute(StoreId, AccountId, Command) ->
 StreamId = <<"account-", AccountId/binary>>,

 %% Load current state
 {ok, Account} = load(StoreId, AccountId),

 %% Execute command
 case handle_command(Command, Account) of
 {ok, Events} ->
 %% Append events via gateway
 {ok, NewVersion} = esdb_gater_api:append_events(
 StoreId, StreamId, Events,
 #{expected_version => Account#account.version}
),

 %% Apply events to get new state
 NewState = lists:foldl(fun apply_event/2, Account, Events),

 %% Maybe save snapshot
 maybe_save_snapshot(StoreId, StreamId, NewState, NewVersion),

 {ok, NewVersion, NewState};
 {error, Reason} ->
 {error, Reason}
 end.

%% Save snapshot if threshold reached
maybe_save_snapshot(StoreId, StreamId, State, Version)
 when Version rem ?SNAPSHOT_THRESHOLD =:= 0, Version > 0 ->
 ok = esdb_gater_api:record_snapshot(
 StoreId, account_client, StreamId, Version, State
),
 logger:info("Saved snapshot for ~s at version ~p", [StreamId, Version]);
maybe_save_snapshot(_StoreId, _StreamId, _State, _Version) ->
 ok.

%% Command handlers
handle_command({deposit, Amount}, #account{status = active} = Account)
 when Amount > 0 ->
 {ok, [#{
 event_type => <<"MoneyDeposited">>,
 data => #{amount => Amount, balance_after => Account#account.balance + Amount}
 }]};
handle_command({deposit, _Amount}, #account{status = frozen}) ->
 {error, account_frozen}.

%% Event application
apply_event(#event{event_type = <<"MoneyDeposited">>, data = Data}, Account) ->
 Amount = maps:get(amount, Data),
 Account#account{balance = Account#account.balance + Amount};
apply_event(#event{event_type = <<"MoneyWithdrawn">>, data = Data}, Account) ->
 Amount = maps:get(amount, Data),
 Account#account{balance = Account#account.balance - Amount}.
Snapshot Strategies
Event-Count Based
Snapshot every N events (shown above):
-define(SNAPSHOT_EVERY, 100).

maybe_snapshot(StoreId, StreamId, State, Version)
 when Version rem ?SNAPSHOT_EVERY =:= 0 ->
 esdb_gater_api:record_snapshot(StoreId, my_app, StreamId, Version, State);
maybe_snapshot(_, _, _, _) ->
 ok.
Time-Based
Snapshot at regular intervals:
-module(snapshot_scheduler).
-behaviour(gen_server).

-define(INTERVAL_MS, 60000). %% Every minute

init([StoreId]) ->
 timer:send_interval(?INTERVAL_MS, check_snapshots),
 {ok, #{store_id => StoreId, aggregates => #{}}}.

handle_info(check_snapshots, #{store_id := StoreId, aggregates := Aggs} = State) ->
 maps:foreach(fun(StreamId, {CurrentState, Version}) ->
 case needs_snapshot(StoreId, StreamId, Version) of
 true ->
 esdb_gater_api:record_snapshot(
 StoreId, snapshot_scheduler, StreamId, Version, CurrentState
);
 false ->
 ok
 end
 end, Aggs),
 {noreply, State}.

needs_snapshot(StoreId, StreamId, CurrentVersion) ->
 case esdb_gater_api:read_snapshot(StoreId, snapshot_scheduler, StreamId, latest) of
 {ok, #snapshot{version = V}} -> CurrentVersion - V > 100;
 {error, not_found} -> CurrentVersion > 50
 end.
Best Practices
1. Keep Snapshots Small
Store only essential state:
%% Good: Minimal state
snapshot_data(#account{} = A) ->
 #{
 balance => A#account.balance,
 status => A#account.status
 }.

%% Bad: Including derived/cached data
snapshot_data(#account{} = A) ->
 #{
 balance => A#account.balance,
 transaction_history => A#account.history, %% Can be replayed
 monthly_totals => A#account.totals %% Derived data
 }.
2. Version Your Snapshot Schema
Handle schema evolution:
%% Save with version
save_state(State) ->
 #{schema_version => 2, data => State}.

%% Load with migration
load_state(#{schema_version := 1, data := Data}) ->
 %% Migrate v1 to v2
 Data#{currency => <<"USD">>};
load_state(#{schema_version := 2, data := Data}) ->
 Data.
3. Cleanup Old Snapshots
Don't keep unlimited snapshots:
cleanup_old_snapshots(StoreId, StreamId, KeepCount) ->
 {ok, Snapshots} = esdb_gater_api:list_snapshots(StoreId, my_app, StreamId),
 ToDelete = lists:nthtail(KeepCount, Snapshots),
 [esdb_gater_api:delete_snapshot(StoreId, my_app, StreamId, S#snapshot.version)
 || S <- ToDelete].
4. Monitor Performance
Track snapshot metrics:
save_with_metrics(StoreId, StreamId, Version, State) ->
 Start = erlang:monotonic_time(microsecond),
 ok = esdb_gater_api:record_snapshot(StoreId, my_app, StreamId, Version, State),
 Duration = erlang:monotonic_time(microsecond) - Start,

 telemetry:execute(
 [my_app, snapshot, saved],
 #{duration_us => Duration, size_bytes => byte_size(term_to_binary(State))},
 #{stream_id => StreamId, version => Version}
).
See Also
	Event Sourcing Guide - Foundation concepts
	Shared Types - Record definitions
	Subscriptions Guide - Event delivery

For server-side snapshot internals, see the erl-esdb Snapshots Guide.

 Shared Types

erl-esdb-gater defines common data structures used across the event sourcing ecosystem. These types provide a consistent interface between erl-esdb, erl-evoq, and adapter implementations.
Including the Types
-include_lib("erl_esdb_gater/include/esdb_gater_types.hrl").
Event Record
The #event{} record represents an immutable fact stored in an event stream.
-record(event, {
 event_id :: binary(), %% Unique identifier (UUID)
 event_type :: binary(), %% Type name (e.g., <<"OrderPlaced">>)
 stream_id :: binary(), %% Stream this event belongs to
 version :: non_neg_integer(), %% Position within stream (0-based)
 data :: map() | binary(), %% Event payload (Erlang term)
 metadata :: map(), %% Correlation, causation, user info
 timestamp :: integer(), %% Millisecond timestamp
 epoch_us :: integer() %% Microsecond epoch for ordering
}).
Usage (Client-Side)
%% Creating an event for append via gateway
Event = #{
 event_type => <<"UserCreated">>,
 data => #{user_id => <<"usr-123">>, email => <<"alice@example.com">>},
 metadata => #{correlation_id => <<"req-456">>}
},
{ok, Version} = esdb_gater_api:append_events(my_store, <<"user-usr-123">>, [Event]).

%% Reading events returns #event{} records
{ok, Events} = esdb_gater_api:stream_forward(my_store, <<"user-usr-123">>, 0, 100),
lists:foreach(fun(#event{event_type = Type, data = Data}) ->
 io:format("Event: ~s, Data: ~p~n", [Type, Data])
end, Events).
Snapshot Record
The #snapshot{} record stores aggregate state at a specific version for fast recovery.
-record(snapshot, {
 stream_id :: binary(), %% Stream/aggregate identifier
 version :: non_neg_integer(), %% Version at which snapshot was taken
 data :: map() | binary(), %% Aggregate state (Erlang term)
 metadata :: map(), %% Snapshot metadata
 timestamp :: integer() %% When snapshot was created
}).
Usage (Client-Side)
%% Save a snapshot via gateway
State = #{balance => 1000, status => active},
ok = esdb_gater_api:record_snapshot(my_store, my_source, <<"account-123">>, 50, State).

%% Load latest snapshot
case esdb_gater_api:read_snapshot(my_store, my_source, <<"account-123">>, latest) of
 {ok, #snapshot{version = V, data = State}} ->
 %% Replay events from version V onwards
 {ok, Events} = esdb_gater_api:stream_forward(my_store, <<"account-123">>, V, 1000),
 FinalState = lists:foldl(fun apply_event/2, State, Events);
 {error, not_found} ->
 %% No snapshot, replay all events
 rebuild_from_scratch(my_store, <<"account-123">>)
end.
Subscription Record
The #subscription{} record tracks subscription state for event delivery.
-record(subscription, {
 id :: binary(), %% Unique subscription ID
 type :: subscription_type(), %% stream | event_type | event_pattern | event_payload
 selector :: binary() | map(), %% What to match
 subscription_name :: binary(), %% Human-readable name
 subscriber_pid :: pid() | undefined, %% Process receiving events
 created_at :: integer(), %% Creation timestamp
 pool_size :: pos_integer(), %% Emitter pool size
 checkpoint :: non_neg_integer() | undefined, %% Last processed position
 options :: map() %% Additional options
}).

-type subscription_type() :: stream | event_type | event_pattern | event_payload.
Subscription Types
	Type	Selector	Description
	stream	Stream ID binary	Events from a specific stream
	event_type	Event type binary	Events of a specific type across all streams
	event_pattern	Pattern binary	Events matching a wildcard pattern
	event_payload	Match map	Events with matching payload fields

Usage (Client-Side)
%% Create a subscription via gateway
ok = esdb_gater_api:save_subscription(
 my_store,
 stream, %% Type
 <<"orders-*">>, %% Selector (pattern)
 <<"order_projection">>, %% Name
 self(), %% Subscriber PID
 #{} %% Options
).

%% List subscriptions
{ok, Subscriptions} = esdb_gater_api:get_subscriptions(my_store).

%% Remove a subscription
ok = esdb_gater_api:remove_subscription(my_store, stream, <<"orders-*">>, <<"order_projection">>).
Version Constants
These constants control optimistic concurrency behavior:
	Constant	Value	Behavior
	?NO_STREAM	-1	Fails if stream exists
	?ANY_VERSION	-2	Always appends
	?STREAM_EXISTS	-4	Fails if stream doesn't exist
	N >= 0	N	Fails if current version != N

Usage with the gateway API:
%% Append with version check via options
{ok, Version} = esdb_gater_api:append_events(
 my_store,
 <<"order-123">>,
 [Event],
 #{expected_version => 4} %% Fails if current version != 4
).
Append Result Record
The #append_result{} record provides details about a successful append operation.
-record(append_result, {
 version :: non_neg_integer(), %% New stream version
 position :: non_neg_integer() | undefined, %% Global position (if applicable)
 count :: non_neg_integer() %% Number of events appended
}).
Error Types
-type append_error() ::
 {wrong_expected_version, Expected :: integer(), Actual :: integer()} |
 {stream_deleted, StreamId :: binary()} |
 {timeout, Reason :: term()} |
 {error, Reason :: term()}.

-type read_error() ::
 {stream_not_found, StreamId :: binary()} |
 {timeout, Reason :: term()} |
 {error, Reason :: term()}.
Ecosystem Usage
These types are used by:
	erl-esdb: Core event store implementation (server-side)
	erl-esdb-gater: Gateway API for distributed access (client-side)
	erl-evoq: CQRS/Event Sourcing framework
	erl-evoq-esdb: Adapter connecting erl-evoq to erl-esdb

By depending on erl-esdb-gater for types, higher-level libraries avoid direct coupling to the core event store implementation.
See Also
	Event Sourcing Guide - Event sourcing patterns
	Subscriptions Guide - Subscription management
	Snapshots Guide - Snapshot strategies

 Capability-Based Security

This guide explains the security model used in the erl-esdb ecosystem and how to implement it in your applications.
Prerequisites
Before reading this guide, you should understand:
	Basic event sourcing concepts (Event Sourcing Guide)
	Public-key cryptography basics (signing, verification)
	The difference between authentication and authorization

The Problem: Centralized Authorization Doesn't Scale
Traditional security models rely on a central authority:
[image: Traditional Authorization]
Problems with this approach:
	Single point of failure - If the auth server is down, nothing works
	Network dependency - Every request requires a round-trip
	Partition intolerance - Network splits break authorization
	Scalability bottleneck - All requests funnel through one service

In a distributed mesh (like Macula), nodes may be temporarily disconnected. We need authorization that works offline.
The Solution: Capability Tokens
Capability tokens are self-proving - they carry their own authorization:
[image: Capability Authorization]
Benefits:
	No central authority needed - Any node can verify
	Works offline - Verification is cryptographic, not network-based
	Delegatable - Permissions can be passed with attenuation
	Time-bound - Short TTLs limit damage from compromised tokens

Architecture Overview
[image: Capability Security Architecture]
Component Responsibilities
	Component	Location	Responsibility
	esdb_identity	Your Application	Generate keypairs, manage identities
	esdb_capability	Your Application	Create, sign, delegate, encode tokens
	esdb_capability_verifier	erl-esdb Server	Verify signatures, check permissions
	esdb_revocation	erl-esdb Server	Track revoked tokens

Key insight: Token creation happens in your application. Token verification happens on the erl-esdb server. erl-esdb-gater provides the types and helpers, but doesn't enforce security.

Part 1: Identity Management (Your Application)
Identities are Ed25519 keypairs. The public key is encoded as a DID (Decentralized Identifier).
Generate an Identity
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Create a new identity for your service/user
%%--

-include_lib("erl_esdb_gater/include/esdb_capability_types.hrl").

%% Generate a new Ed25519 keypair
Identity = esdb_identity:generate().

%% The identity contains:
%% - Public key (shareable)
%% - Private key (keep secret!)
%% - DID (public key encoded as did:key:z...)

%% Get the DID for sharing with others
DID = esdb_identity:did(Identity).
%% => <<"did:key:z6MkhaXgBZDvotDkL5257faiztiGiC2QtKLGpbnnEGta2doK">>
Store Identities Securely
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Persist identity across restarts
%%--

%% NEVER store private keys in:
%% - Version control
%% - Environment variables (can leak in logs)
%% - Unencrypted files

%% DO store private keys in:
%% - Hardware security modules (HSM)
%% - Encrypted at rest with a master key
%% - Secrets management (Vault, AWS Secrets Manager)

%% Example: Load from encrypted file
load_identity(Path, MasterKey) ->
 {ok, Encrypted} = file:read_file(Path),
 Decrypted = crypto:crypto_one_time(aes_256_gcm, MasterKey, Nonce, Encrypted, false),
 {PubKey, PrivKey} = binary_to_term(Decrypted),
 esdb_identity:from_keypair(PubKey, PrivKey).
Why DIDs?
DIDs (Decentralized Identifiers) are a W3C standard for self-sovereign identity. The did:key method encodes the public key directly in the identifier:
did:key:z6MkhaXgBZDvotDkL5257faiztiGiC2QtKLGpbnnEGta2doK
 │ │
 │ └── Base58btc encoded (multicodec prefix + Ed25519 public key)
 └──── Multibase prefix (z = base58btc)
Benefits:
	Self-describing (contains the key itself)
	No resolution needed (unlike did:web or did:eth)
	Compact representation
	Interoperable with UCAN ecosystem

Part 2: Creating Capability Tokens (Your Application)
Capability tokens grant specific permissions on specific resources.
Basic Token Creation
%%--
%% This code runs in: YOUR APPLICATION (e.g., auth service)
%% Purpose: Issue a token to a client/service
%%--

%% Define what permissions to grant
Grants = [
 %% Can read any stream in the realm
 esdb_capability:grant(<<"esdb://myapp/stream/*">>, ?ACTION_STREAM_READ),

 %% Can append to order streams only
 esdb_capability:grant(<<"esdb://myapp/stream/orders-*">>, ?ACTION_STREAM_APPEND)
],

%% Who is this token for? (their DID)
Audience = <<"did:key:z6MkClientDID...">>,

%% Create the capability (unsigned)
Cap = esdb_capability:create(MyIdentity, Audience, Grants, #{
 ttl => 900 %% 15 minutes - keep it short!
}),

%% Sign with YOUR private key (proves you issued it)
SignedCap = esdb_capability:sign(Cap, esdb_identity:private_key(MyIdentity)),

%% Encode for transmission
Token = esdb_capability:encode(SignedCap, jwt).
%% => <<"eyJhbGciOiJFZERTQSIsInR5cCI6IlVDQU4ifQ...">>
Understanding Grants
A grant specifies WHAT (resource) and HOW (action):
%% Grant structure
esdb_capability:grant(Resource, Action)

%% Resource: URI pattern for the resource
%% Action: What operation is allowed
Resource URI Patterns
	Pattern	Matches	Use Case
	esdb://realm/stream/orders-123	Exact stream	Single aggregate
	esdb://realm/stream/orders-*	Prefix match	All order streams
	esdb://realm/stream/*	All streams	Admin access
	esdb://realm/channel/events/*	All topics	Full channel access
	esdb://realm/channel/events/orders.*	Topic prefix	Order events only

Available Actions
	Constant	Wire Format	Description
	?ACTION_STREAM_APPEND	stream/append	Write events to streams
	?ACTION_STREAM_READ	stream/read	Read events from streams
	?ACTION_STREAM_SUBSCRIBE	stream/subscribe	Subscribe to stream changes
	?ACTION_CHANNEL_PUBLISH	channel/publish	Publish to PubSub channel
	?ACTION_CHANNEL_SUBSCRIBE	channel/subscribe	Subscribe to PubSub topic
	?ACTION_SNAPSHOT_WRITE	snapshot/write	Write snapshots
	?ACTION_SNAPSHOT_READ	snapshot/read	Read snapshots
	?ACTION_ADMIN_ALL	*	All actions (use sparingly!)

Part 3: Delegation (Your Application)
Delegation allows passing permissions to others with attenuation (reducing scope).
Why Delegation Matters
Consider a microservices architecture where each service delegates to the next with reduced permissions:
[image: Delegation Chain]
Delegation Rules
	Attenuation only - You can reduce permissions, never expand
	TTL inheritance - Child TTL cannot exceed parent's remaining time
	Proof chain - Child includes cryptographic reference to parent
	Signature required - You sign the delegation with YOUR key

Delegation Example
%%--
%% This code runs in: YOUR APPLICATION (Order Service)
%% Purpose: Delegate reduced permissions to Payment Service
%%--

%% We received Token A with: stream/* read+append
%% We want to give Payment Service: orders-*/read only

WorkerGrants = [
 esdb_capability:grant(<<"esdb://myapp/stream/orders-*">>, ?ACTION_STREAM_READ)
 %% Note: NO append permission - attenuation!
],

%% Delegate from our token to the worker
WorkerCap = esdb_capability:delegate(
 OurSignedToken, %% Parent token (must be signed)
 PaymentServiceDID, %% Who we're delegating to
 WorkerGrants %% Reduced permissions
),

%% Sign with OUR key (proves WE delegated it)
SignedWorkerCap = esdb_capability:sign(WorkerCap, esdb_identity:private_key(OurIdentity)).
Invalid Delegations
These will fail verification on the server:
%% Parent grants: stream/orders-* with read
%% INVALID: trying to add append (not in parent)
BadGrants = [
 esdb_capability:grant(<<"esdb://myapp/stream/orders-*">>, ?ACTION_STREAM_APPEND)
].

%% Parent grants: stream/orders-* with read
%% INVALID: trying to access users-* (outside scope)
BadGrants = [
 esdb_capability:grant(<<"esdb://myapp/stream/users-*">>, ?ACTION_STREAM_READ)
].

Part 4: Using Tokens (Your Application → erl-esdb)
When making requests, include the token. The gater routes it to erl-esdb for verification.
Stream Operations with Tokens
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Append events using capability token
%%--

%% Include token in request (future API enhancement)
%% Currently, tokens are used primarily for PubSub channels

Events = [#{event_type => <<"OrderCreated">>, data => #{...}}],
{ok, Version} = esdb_gater_api:append_events(my_store, <<"orders-123">>, Events).
PubSub Channel Operations
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Publish/subscribe with capability authorization
%%--

%% Create a capability for publishing
Grants = [
 esdb_capability:grant(
 <<"esdb://myapp/channel/esdb_channel_events/*">>,
 ?ACTION_CHANNEL_PUBLISH
)
],
Cap = esdb_capability:create(Issuer, Audience, Grants, #{ttl => 900}),
SignedCap = esdb_capability:sign(Cap, esdb_identity:private_key(Issuer)),
Token = esdb_capability:encode(SignedCap, binary),

%% Publish with capability token
ok = esdb_channel:publish(esdb_channel_events, <<"orders.created">>, Event, Token).

%% Subscribe with capability token
ok = esdb_channel:subscribe(esdb_channel_events, <<"orders.*">>, self(), Token).

Part 5: Token Verification (erl-esdb Server)
You don't write this code - it runs automatically on the erl-esdb server.
What the Server Checks
	Signature valid? - Cryptographically verify using issuer's public key
	Not expired? - Check exp timestamp against current time
	Not before valid? - Check nbf timestamp
	Not revoked? - Check against revocation list
	Resource matches? - Does the grant cover the requested resource?
	Action allowed? - Does the grant include the requested action?
	Delegation valid? - If delegated, verify parent chain

Verification Flow
[image: Token Verification Flow]

Part 6: Token Formats
JWT Format (Interoperable)
Token = esdb_capability:encode(Cap, jwt).
%% => <<"eyJhbGciOiJFZERTQSIsInR5cCI6IlVDQU4ifQ.eyJpc3MiOiJkaWQ6...">>
Use when:
	Communicating with web clients (JavaScript)
	Crossing system boundaries
	Debugging (JWTs are human-readable when decoded)
	Interoperating with other UCAN-compatible systems

Erlang Binary Format (Fast)
Token = esdb_capability:encode(Cap, binary).
%% => <<131, 104, 12, 100, ...>>
Use when:
	Internal mesh communication
	Maximum performance is critical
	Both ends are Erlang/Elixir

Decoding auto-detects format:
{ok, Cap} = esdb_capability:decode(Token). %% Works for both formats

Common Pitfalls
1. Token Lifetime Too Long
%% BAD: Token valid for 30 days
Cap = esdb_capability:create(Iss, Aud, Grants, #{ttl => 30 * 24 * 60 * 60}).

%% GOOD: Short-lived tokens, refresh as needed
Cap = esdb_capability:create(Iss, Aud, Grants, #{ttl => 900}). %% 15 minutes
Why: If a token is compromised, damage is limited to its lifetime.
2. Overly Broad Grants
%% BAD: Admin access for everything
Grants = [esdb_capability:grant(<<"esdb://myapp/*">>, ?ACTION_ADMIN_ALL)].

%% GOOD: Minimum necessary permissions
Grants = [esdb_capability:grant(<<"esdb://myapp/stream/orders-*">>, ?ACTION_STREAM_READ)].
Why: Principle of least privilege limits blast radius.
3. Storing Private Keys in Code
%% BAD: Hardcoded private key
PrivKey = <<16#deadbeef:256>>.

%% GOOD: Load from secure storage at runtime
{ok, PrivKey} = secrets_manager:get(<<"my-service-private-key">>).
4. Ignoring Token Validation Errors
%% BAD: Ignoring errors
esdb_channel:publish(Channel, Topic, Msg, Token).

%% GOOD: Handle authorization failures
case esdb_channel:publish(Channel, Topic, Msg, Token) of
 ok -> ok;
 {error, {unauthorized, Reason}} ->
 logger:warning("Publish denied: ~p", [Reason]),
 {error, forbidden}
end.

Security Considerations
Short Token Lifetimes
Default TTL is 15 minutes. This is intentional:
	Limits exposure if token is leaked
	Forces regular re-authentication
	Revocation becomes less critical (tokens expire quickly)

Key Rotation
Rotate identity keys periodically:
	Generate new keypair
	Start issuing tokens with new key
	Keep old key for verification until old tokens expire
	Retire old key

Revocation Strategy
For LAN clusters (typical erl-esdb deployment), short TTLs are usually sufficient. Emergency revocation is available via esdb_revocation in erl-esdb:
%% Server-side (erl-esdb) - emergency revocation
esdb_revocation:revoke(TokenCID).

API Reference
esdb_identity (Your Application)
	Function	Description
	generate()	Generate new Ed25519 identity
	from_keypair(Pub, Priv)	Create from existing keys
	from_public_key(Pub)	Create from public key only (for verification)
	did(Identity)	Get DID string
	public_key(Identity)	Get 32-byte public key
	private_key(Identity)	Get 32-byte private key
	public_key_from_did(DID)	Extract public key from DID

esdb_capability (Your Application)
	Function	Description
	create(Iss, Aud, Grants)	Create unsigned capability
	create(Iss, Aud, Grants, Opts)	Create with options (ttl, nbf)
	sign(Cap, PrivKey)	Sign with Ed25519 private key
	delegate(Parent, Aud, Grants)	Delegate with attenuation
	encode(Cap, jwt | binary)	Encode for transmission
	decode(Token)	Decode from any format
	grant(Resource, Action)	Create a grant tuple
	is_expired(Cap)	Check if token has expired

esdb_capability_verifier (erl-esdb Server)
	Function	Description
	verify(Token)	Verify signature and time bounds
	authorize(Token, Resource, Action)	Full authorization check

Further Reading
	UCAN Specification - The standard we follow
	DID Key Method - How DIDs encode keys
	Ed25519 Signatures - The cryptography behind it
	Capability-Based Security (Wikipedia) - Conceptual background

 Temporal Queries

This guide explains how to query events by timestamp, enabling point-in-time reconstruction and historical analysis.
Prerequisites
Before reading this guide, you should understand:
	Event sourcing concepts (Event Sourcing Guide)
	How events are stored with versions and timestamps
	Aggregate reconstruction from events

The Problem: Version Numbers Aren't Always Enough
In event sourcing, you typically read events by version number:
%% "Give me events 0-100 from this stream"
{ok, Events} = esdb_gater_api:stream_forward(Store, Stream, 0, 100).
But sometimes you need to answer time-based questions:
	"What was the account balance at end of Q3?" (compliance/auditing)
	"Show me all events during the outage window" (debugging)
	"Reconstruct state as of the backup timestamp" (disaster recovery)

Version numbers don't help here because you don't know which version corresponds to which time.
The Solution: Temporal Queries
Temporal queries filter events by their epoch_us timestamp (microseconds since Unix epoch):
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Query events by timestamp instead of version
%%--

%% Read all events up to a specific moment
{ok, Events} = esdb_gater_api:read_until(my_store, <<"account-123">>, Timestamp).
How It Works
Events in stream:
┌──┐
│ v0 v1 v2 v3 v4 v5 v6 │
│ 10:00 10:15 10:30 10:45 11:00 11:15 11:30│
└──┘
 ▲
 │
 read_until(10:45) returns v0, v1, v2, v3

Where Does This Code Run?
	Operation	Location	Module
	Query events by timestamp	Your Application	esdb_gater_api
	Aggregate reconstruction	Your Application	Your aggregate logic
	Timestamp storage	erl-esdb Server	Automatic with each event

API Reference
Read Until
Read all events up to (and including) a timestamp:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Get events up to a specific point in time
%%--

%% Basic usage - timestamp in microseconds since Unix epoch
Timestamp = 1703001600000000, %% Dec 19, 2025 12:00:00 UTC
{ok, Events} = esdb_gater_api:read_until(my_store, <<"account-123">>, Timestamp).

%% With options
{ok, Events} = esdb_gater_api:read_until(my_store, <<"account-123">>, Timestamp, #{
 max_count => 1000 %% Limit number of events returned
}).
Read Range
Read events within a time window:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Get events between two timestamps
%%--

FromTimestamp = 1703001600000000, %% Dec 19, 2025 12:00:00 UTC
ToTimestamp = 1703005200000000, %% Dec 19, 2025 13:00:00 UTC

{ok, Events} = esdb_gater_api:read_range(
 my_store,
 <<"account-123">>,
 FromTimestamp,
 ToTimestamp
).
Version at Timestamp
Get the stream version at a specific point in time (without fetching events):
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Find what version the stream was at a given time
%%--

{ok, Version} = esdb_gater_api:version_at(my_store, <<"account-123">>, Timestamp).
%% => {ok, 42}

%% Useful for:
%% - Loading a snapshot at that version
%% - Understanding stream growth over time
%% - Correlating with external systems

Use Cases
1. Point-in-Time Aggregate Reconstruction
Rebuild an aggregate's state as it was at a specific moment:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Answer "what was the state at time X?"
%%--

-module(my_aggregate).

%% Reconstruct state at a specific timestamp
reconstruct_at(StoreId, StreamId, Timestamp) ->
 %% Get all events up to that moment
 {ok, Events} = esdb_gater_api:read_until(StoreId, StreamId, Timestamp),

 %% Fold them into state (same as normal reconstruction)
 State = erl_esdb_aggregator:foldl(Events),

 %% Finalize tagged values
 erl_esdb_aggregator:finalize(State).

%% Example usage:
%% EndOfQ3 = timestamp_for({{2025, 9, 30}, {23, 59, 59}}),
%% State = my_aggregate:reconstruct_at(my_store, <<"account-123">>, EndOfQ3),
%% Balance = maps:get(balance, State).
2. Compliance and Auditing
Answer regulatory questions about historical state:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Generate compliance reports for a specific date
%%--

-module(compliance_report).

generate_eod_report(StoreId, Date) ->
 %% End of day timestamp
 EndOfDay = end_of_day_timestamp(Date),

 %% Get all account streams
 {ok, Streams} = esdb_gater_api:get_streams(StoreId),
 AccountStreams = [S || S <- Streams, is_account_stream(S)],

 %% Reconstruct each account at end of day
 Reports = lists:map(
 fun(StreamId) ->
 State = reconstruct_at(StoreId, StreamId, EndOfDay),
 #{
 account_id => StreamId,
 balance => maps:get(balance, State, 0),
 as_of => Date
 }
 end,
 AccountStreams
),

 #{date => Date, accounts => Reports}.

end_of_day_timestamp(Date) ->
 DateTime = {Date, {23, 59, 59}},
 GregorianSecs = calendar:datetime_to_gregorian_seconds(DateTime),
 UnixSecs = GregorianSecs - 62167219200, %% Gregorian to Unix offset
 UnixSecs * 1000000. %% Convert to microseconds
3. Incident Investigation
Examine what happened during a specific time window:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Debug by examining events during an incident
%%--

-module(incident_debug).

investigate(StoreId, StreamPattern, IncidentStart, IncidentEnd) ->
 %% Get events during the incident window
 {ok, Events} = esdb_gater_api:read_range(
 StoreId,
 StreamPattern,
 IncidentStart,
 IncidentEnd
),

 %% Analyze what happened
 #{
 event_count => length(Events),
 event_types => count_by_type(Events),
 timeline => build_timeline(Events),
 first_event => hd(Events),
 last_event => lists:last(Events)
 }.

count_by_type(Events) ->
 lists:foldl(
 fun(#{event_type := Type}, Acc) ->
 maps:update_with(Type, fun(N) -> N + 1 end, 1, Acc)
 end,
 #{},
 Events
).

Working with Timestamps
erl-esdb uses microseconds since Unix epoch for all timestamps.
Getting Current Time
Now = erlang:system_time(microsecond).
%% => 1703001600000000
Converting from Calendar Datetime
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Helper to convert Erlang datetime to microseconds
%%--

datetime_to_micros({{Y, M, D}, {H, Min, S}}) ->
 GregorianSecs = calendar:datetime_to_gregorian_seconds({{Y, M, D}, {H, Min, S}}),
 UnixSecs = GregorianSecs - 62167219200, %% Gregorian epoch to Unix epoch
 UnixSecs * 1000000.

%% Example:
%% Timestamp = datetime_to_micros({{2025, 12, 19}, {12, 0, 0}}).
%% => 1703001600000000
Converting from ISO 8601 String
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Parse ISO 8601 timestamp
%%--

iso8601_to_micros(IsoString) ->
 %% "2025-12-19T12:00:00Z"
 [DatePart, TimePart] = binary:split(IsoString, <<"T">>),
 [Y, M, D] = [binary_to_integer(X) || X <- binary:split(DatePart, <<"-">>, [global])],
 [H, Min, SecZ] = binary:split(TimePart, <<":">>, [global]),
 S = binary_to_integer(binary:part(SecZ, 0, 2)),
 datetime_to_micros({{Y, M, D}, {H, Min, S}}).

Performance Considerations
Temporal Queries vs. Version Queries
	Query Type	Use When	Performance
	Version-based	You know the version range	Fastest (direct index)
	Temporal	You need time-based filtering	Slower (scan + filter)

Optimization Tips
	Use max_count - Limit results for large streams:
esdb_gater_api:read_until(Store, Stream, Ts, #{max_count => 1000}).

	Combine with snapshots - For aggregate reconstruction, load snapshot first:
{ok, Snapshot} = esdb_gater_api:read_snapshot(Store, Source, Stream, Version),
SnapshotTime = maps:get(timestamp, Snapshot),
{ok, NewEvents} = esdb_gater_api:read_range(Store, Stream, SnapshotTime, TargetTime).

	Index awareness - Events are sorted by version, not timestamp. Temporal queries may scan more events than version queries.

Common Pitfalls
1. Wrong Timestamp Units
%% BAD: Seconds instead of microseconds
Timestamp = 1703001600. %% This is seconds!

%% GOOD: Microseconds
Timestamp = 1703001600000000. %% Correct
%% Or use:
Timestamp = erlang:system_time(microsecond).
2. Timezone Confusion
%% Timestamps are always UTC internally
%% Convert from local time carefully:

%% BAD: Using local time directly
LocalTime = calendar:local_time(),
Micros = datetime_to_micros(LocalTime). %% Wrong if not UTC!

%% GOOD: Convert to UTC first
UTCTime = calendar:local_time_to_universal_time_dst(LocalTime),
Micros = datetime_to_micros(hd(UTCTime)).
3. Clock Skew in Distributed Systems
Events from different nodes may have slightly different timestamps due to clock skew.
%% Be aware that events may not be perfectly ordered by timestamp
%% across nodes. Version ordering is authoritative.

When NOT to Use Temporal Queries
	Real-time subscriptions - Use subscriptions instead, not polling with timestamps
	Simple "latest state" - Just read all events by version
	High-frequency queries - Version-based queries are more efficient
	Sub-millisecond precision - Timestamp resolution is limited

Related Guides
	Event Sourcing - Core concepts
	Snapshots - Optimize reconstruction with snapshots
	Scavenging - Remove old events (uses timestamps)

 Scavenging

This guide explains how to remove old events from streams to manage storage growth while preserving the ability to reconstruct current state via snapshots.
Prerequisites
Before reading this guide, you should understand:
	Event sourcing concepts (Event Sourcing Guide)
	Snapshots and their role in state reconstruction (Snapshots Guide)
	The immutable nature of event logs and why deletion requires special care

The Problem: Unbounded Storage Growth
In event sourcing, events are immutable and never deleted by default. Over time, this leads to:
	Storage costs - Event logs grow indefinitely
	Read performance - More events to scan for reconstruction
	Compliance challenges - Some regulations require data deletion

But you can't just delete events randomly—that would break state reconstruction.
The Solution: Scavenging
Scavenging safely removes old events by:
	Requiring a snapshot - Ensures state can still be reconstructed
	Preserving recent events - Keeps events newer than the snapshot
	Dry run preview - Shows what would be deleted before executing

Before scavenging:
┌───┐
│ v0 v1 v2 ... v500 ... v1000 v1001 v1002 ... v1500 │
│ │ │ │ │
│ │ Old events │ Newer events │ │
└───┘
 ▲
 Snapshot at v500

After scavenging (before=v500):
┌───┐
│ [deleted] v500 v501 ... v1000 v1001 ... v1500 │
│ │ │
│ Snapshot preserved │
└───┘

Where Does This Code Run?
	Operation	Location	Module
	Scavenge API calls	Your Application	esdb_gater_api
	Snapshot creation	Your Application	esdb_gater_api
	Event deletion	erl-esdb Server	Internal
	Archival (optional)	erl-esdb Server	erl_esdb_archive_*

API Reference
Scavenge a Stream
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Remove events older than a timestamp from a stream
%%--

%% Calculate cutoff: 30 days ago
ThirtyDaysAgo = erlang:system_time(microsecond) - (30 * 24 * 60 * 60 * 1000000),

%% Scavenge the stream
{ok, Result} = esdb_gater_api:scavenge(my_store, <<"orders-123">>, #{
 before => ThirtyDaysAgo,
 require_snapshot => true %% Safety: only scavenge if snapshot exists
}).

%% Result shows what was deleted
#{
 deleted_count => 1523,
 oldest_remaining => 1703001600000000,
 snapshot_version => 1500
}
Scavenge Matching Streams
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Scavenge multiple streams matching a pattern
%%--

%% Scavenge all order streams older than 90 days
NinetyDaysAgo = erlang:system_time(microsecond) - (90 * 24 * 60 * 60 * 1000000),

{ok, Results} = esdb_gater_api:scavenge_matching(my_store, <<"orders-*">>, #{
 before => NinetyDaysAgo,
 require_snapshot => true
}).

%% Results is a list of per-stream results
[
 #{stream => <<"orders-001">>, deleted_count => 500},
 #{stream => <<"orders-002">>, deleted_count => 823},
 ...
]
Dry Run (Preview)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Preview what would be deleted WITHOUT actually deleting
%%--

%% ALWAYS preview before executing
{ok, Preview} = esdb_gater_api:scavenge_dry_run(my_store, <<"orders-123">>, #{
 before => ThirtyDaysAgo
}).

%% Preview shows impact without making changes
#{
 would_delete => 1523,
 oldest_event => 1700000000000000,
 newest_affected => 1702500000000000,
 has_snapshot => true,
 snapshot_version => 1500
}

Options Reference
	Option	Type	Default	Description
	before	integer	required	Delete events before this timestamp (microseconds)
	require_snapshot	boolean	true	Only scavenge if snapshot exists
	keep_versions	integer	0	Keep at least N most recent versions
	archive_to	atom	undefined	Archive backend before deletion

Use Cases
1. Scheduled Storage Cleanup
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Daily automated scavenging job
%%--

-module(scavenge_scheduler).

run_daily_scavenge() ->
 RetentionDays = 90,
 Cutoff = erlang:system_time(microsecond) -
 (RetentionDays * 24 * 60 * 60 * 1000000),

 %% Scavenge all order streams
 {ok, Results} = esdb_gater_api:scavenge_matching(my_store, <<"orders-*">>, #{
 before => Cutoff,
 require_snapshot => true
 }),

 TotalDeleted = lists:foldl(
 fun(#{deleted_count := N}, Acc) -> Acc + N end,
 0,
 Results
),

 logger:info("Scavenged ~p events from ~p streams",
 [TotalDeleted, length(Results)]).
2. Compliance-Driven Archival
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Archive events before deleting for compliance
%%--

archive_and_scavenge(StoreId, StreamId, RetentionDays) ->
 Cutoff = erlang:system_time(microsecond) -
 (RetentionDays * 24 * 60 * 60 * 1000000),

 %% Archive to file before scavenging
 {ok, _} = esdb_gater_api:scavenge(StoreId, StreamId, #{
 before => Cutoff,
 archive_to => file,
 archive_path => <<"/archive/", StreamId/binary, ".events">>
 }).

Safety Features
Snapshot Requirement
By default, scavenging requires a snapshot to exist. This prevents accidental data loss:
%% This will fail if no snapshot exists
{error, no_snapshot} = esdb_gater_api:scavenge(my_store, StreamId, #{
 before => Timestamp,
 require_snapshot => true %% Default
}).

%% Override only if you understand the consequences
{ok, _} = esdb_gater_api:scavenge(my_store, StreamId, #{
 before => Timestamp,
 require_snapshot => false %% DANGER: may lose state if no snapshot
}).
Keep Recent Versions
Always keep some recent events regardless of timestamp:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Keep a minimum event history for debugging
%%--

{ok, _} = esdb_gater_api:scavenge(my_store, StreamId, #{
 before => Timestamp,
 keep_versions => 100 %% Always keep last 100 events
}).

Common Pitfalls
1. Scavenging Without Snapshots
%% BAD: Scavenging without ensuring a snapshot exists
{ok, _} = esdb_gater_api:scavenge(my_store, StreamId, #{
 before => Timestamp,
 require_snapshot => false %% State might be lost!
}).

%% GOOD: Take a snapshot first, then scavenge
{ok, State} = reconstruct_aggregate(StreamId),
{ok, Version} = esdb_gater_api:save_snapshot(my_store, StreamId, State),
{ok, _} = esdb_gater_api:scavenge(my_store, StreamId, #{
 before => Timestamp,
 require_snapshot => true
}).
2. Wrong Timestamp Units
%% BAD: Using seconds instead of microseconds
BadCutoff = erlang:system_time(second) - (30 * 24 * 60 * 60).

%% GOOD: Using microseconds
GoodCutoff = erlang:system_time(microsecond) - (30 * 24 * 60 * 60 * 1000000).
3. Skipping Dry Run
%% BAD: Scavenging production data without preview
esdb_gater_api:scavenge(prod_store, <<"important-stream">>, #{...}).

%% GOOD: Always dry run first
{ok, Preview} = esdb_gater_api:scavenge_dry_run(prod_store, <<"important-stream">>, #{...}),
logger:info("Would delete ~p events", [maps:get(would_delete, Preview)]),
%% Review preview, then proceed if acceptable
esdb_gater_api:scavenge(prod_store, <<"important-stream">>, #{...}).

When to Scavenge
Scavenge when:
	Storage costs are a concern
	Events older than retention period have no business value
	Snapshots exist for state reconstruction
	Regulatory requirements permit deletion

Do NOT scavenge when:
	Full audit history is required (legal/compliance)
	No snapshots exist (state would be lost)
	Events have legal retention requirements
	You haven't verified with a dry run first

Best Practices
	Always dry run first - Preview changes before executing
	Ensure snapshots exist - Take snapshots before scavenging
	Use keep_versions - Maintain some recent history for debugging
	Archive if needed - Preserve data for compliance before deletion
	Schedule off-peak - Scavenging is I/O intensive
	Monitor space - Track storage savings via telemetry

Related Guides
	Snapshots - Required for safe scavenging
	Temporal Queries - Query by timestamp before scavenging
	Event Sourcing - Core concepts

 Causation Tracking

This guide explains how to track the lineage of events through your system, enabling debugging, auditing, and visualization of event relationships.
[image: Causation Graph]
Prerequisites
Before reading this guide, you should understand:
	Event sourcing concepts (Event Sourcing Guide)
	How events propagate through process managers and sagas
	The difference between commands (requests) and events (facts)

The Problem: Understanding "Why?"
In event-driven systems, a single user action can trigger a cascade of events across multiple streams:
User clicks "Place Order"
 → OrderPlaced event
 → PaymentRequested event
 → PaymentFailed event
 → OrderCancelled event
When debugging, you need to answer:
	"What caused this PaymentFailed event?"
	"What effects did the OrderPlaced event have?"
	"Show me all events related to this order"

Without causation tracking, you're searching through logs hoping to find connections.
The Solution: Causation and Correlation IDs
Every event carries metadata that links it to its origin:
	Field	Purpose	Example
	causation_id	The ID of the event/command that directly caused this event	"evt-001"
	correlation_id	A shared ID grouping all events in a business process	"order-12345"

[image: Causation Chain]

Where Does This Code Run?
	Operation	Location	Module
	Set causation/correlation IDs	Your Application	Your command handlers
	Append events with metadata	Your Application	esdb_gater_api
	Query causation relationships	Your Application	esdb_gater_api
	Build causation graph	erl-esdb Server	erl_esdb_causation
	Generate DOT visualization	erl-esdb Server	esdb_graph_nif

API Reference
Setting Causation Metadata
%%--
%% This code runs in: YOUR APPLICATION (command handler)
%% Purpose: Create events with proper causation chain
%%--

-module(order_handler).

handle_command(Command, State) ->
 CommandId = maps:get(id, Command),
 %% Correlation ID groups all events in this business process
 CorrelationId = maps:get(correlation_id, Command, CommandId),

 Events = [
 #{
 event_type => <<"OrderCreated">>,
 data => #{order_id => <<"order-123">>, items => [...]},
 metadata => #{
 causation_id => CommandId, %% This command caused this event
 correlation_id => CorrelationId %% Part of this business process
 }
 }
],

 {ok, _} = esdb_gater_api:append_events(my_store, StreamId, Events).
Get Effects (What Did This Event Cause?)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Find all events caused by a specific event
%%--

%% What events did OrderCreated cause?
{ok, Effects} = esdb_gater_api:get_effects(my_store, <<"evt-001">>).

%% Returns events where causation_id = "evt-001"
[
 #{event_type => <<"PaymentInitiated">>, id => <<"evt-002">>, ...},
 #{event_type => <<"InventoryReserved">>, id => <<"evt-003">>, ...}
]
Get Cause (What Caused This Event?)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Find the parent event in the causation chain
%%--

%% What caused PaymentInitiated?
{ok, Cause} = esdb_gater_api:get_cause(my_store, <<"evt-002">>).

%% Returns the parent event
#{event_type => <<"OrderCreated">>, id => <<"evt-001">>, ...}
Get Causation Chain (Root to Current)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Trace the full causation path back to the root cause
%%--

%% Trace PaymentFailed back to its origin
{ok, Chain} = esdb_gater_api:get_causation_chain(my_store, <<"evt-007">>).

%% Returns events from root to this event
[
 #{event_type => <<"CreateOrderCommand">>, id => <<"cmd-001">>, ...}, %% Root
 #{event_type => <<"OrderCreated">>, id => <<"evt-001">>, ...},
 #{event_type => <<"PaymentInitiated">>, id => <<"evt-002">>, ...},
 #{event_type => <<"PaymentFailed">>, id => <<"evt-007">>, ...} %% Current
]
Get Correlated Events (Entire Business Process)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Find all events sharing the same correlation ID
%%--

%% Get all events for order processing
{ok, Events} = esdb_gater_api:get_correlated(my_store, <<"order-12345">>).

%% Returns all events with correlation_id = "order-12345"
Build Causation Graph (For Visualization)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Build a graph structure for visualization tools
%%--

{ok, Graph} = esdb_gater_api:build_causation_graph(my_store, <<"evt-001">>).

%% Returns a graph structure
#{
 nodes => [
 #{id => <<"evt-001">>, type => <<"OrderCreated">>, ...},
 #{id => <<"evt-002">>, type => <<"PaymentInitiated">>, ...},
 ...
],
 edges => [
 #{from => <<"evt-001">>, to => <<"evt-002">>},
 #{from => <<"evt-001">>, to => <<"evt-003">>},
 ...
],
 roots => [<<"evt-001">>],
 leaves => [<<"evt-005">>, <<"evt-006">>, <<"evt-007">>]
}

Use Cases
1. Debugging Failed Processes
When a payment fails, trace back to understand the full context:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Debug a failure by tracing its causation chain
%%--

-module(incident_investigator).

debug_failure(StoreId, FailedEventId) ->
 %% Get the causation chain (how we got here)
 {ok, Chain} = esdb_gater_api:get_causation_chain(StoreId, FailedEventId),

 %% Get all related events (what else happened)
 {ok, FailedEvent} = get_event(StoreId, FailedEventId),
 CorrelationId = maps:get(correlation_id, maps:get(metadata, FailedEvent)),
 {ok, AllEvents} = esdb_gater_api:get_correlated(StoreId, CorrelationId),

 #{
 causation_chain => Chain, %% Direct ancestors
 all_related_events => AllEvents, %% Everything in this process
 root_cause => hd(Chain) %% Where it all started
 }.
2. Process Manager/Saga Tracking
Track saga execution across multiple aggregates:
%%--
%% This code runs in: YOUR APPLICATION (process manager)
%% Purpose: Create events with saga correlation
%%--

-module(order_saga).

start_saga(OrderId) ->
 %% Order ID becomes the correlation ID for the entire saga
 CorrelationId = OrderId,
 SagaStartCommand = #{
 id => generate_id(),
 correlation_id => CorrelationId,
 order_id => OrderId
 },
 handle_command(SagaStartCommand).

%% Later: check saga progress
get_saga_status(OrderId) ->
 {ok, Events} = esdb_gater_api:get_correlated(my_store, OrderId),
 analyze_saga_state(Events).
3. Visualization with Graphviz
Export causation graphs for visual analysis:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Generate a visual diagram of event relationships
%%--

visualize_causation(StoreId, EventId) ->
 {ok, Graph} = esdb_gater_api:build_causation_graph(StoreId, EventId),

 %% Convert to DOT format (using esdb_graph_nif on server)
 DOT = esdb_graph_nif:to_dot(Graph),

 %% Write to file and render with Graphviz
 file:write_file("causation.dot", DOT),
 os:cmd("dot -Tpng causation.dot -o causation.png").

Event Metadata Schema
Recommended metadata structure for all events:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Standard metadata structure for causation tracking
%%--

create_event_metadata(CausingId, CorrelationId, ActorId) ->
 #{
 %% Causation tracking (required for lineage)
 causation_id => CausingId, %% ID of the causing event/command
 correlation_id => CorrelationId, %% Business process ID

 %% Additional context (optional but recommended)
 actor_id => ActorId, %% Who/what triggered this
 timestamp => erlang:system_time(microsecond), %% When it happened
 source => atom_to_binary(node()) %% Which node/service
 }.

Common Pitfalls
1. Missing Causation in Event Handlers
%% BAD: Event handler creates new events without causation link
handle_event(OrderCreated, State) ->
 NewEvent = #{event_type => <<"PaymentRequested">>, data => ...},
 %% Missing causation_id! Lineage is broken.
 esdb_gater_api:append_events(Store, Stream, [NewEvent]).

%% GOOD: Preserve causation chain
handle_event(OrderCreated = #{id := EventId, metadata := Meta}, State) ->
 CorrelationId = maps:get(correlation_id, Meta),
 NewEvent = #{
 event_type => <<"PaymentRequested">>,
 data => ...,
 metadata => #{
 causation_id => EventId, %% This event caused the new one
 correlation_id => CorrelationId %% Same business process
 }
 },
 esdb_gater_api:append_events(Store, Stream, [NewEvent]).
2. Using Wrong ID for Correlation
%% BAD: Using event ID as correlation (changes with each event)
metadata => #{
 causation_id => EventId,
 correlation_id => EventId %% Wrong! Each event has different correlation
}

%% GOOD: Use stable business ID as correlation
metadata => #{
 causation_id => EventId,
 correlation_id => OrderId %% Same for all events in this order
}
3. Not Generating Unique IDs
%% BAD: Predictable IDs can collide
EventId = <<"event-1">>,

%% GOOD: Use UUIDs or similar
EventId = uuid:uuid_to_string(uuid:get_v4()),

When NOT to Use Causation Queries
	Simple aggregate reads - Just read the stream by version
	High-frequency queries - Causation queries traverse indexes; use sparingly
	Real-time monitoring - Use subscriptions instead

Causation queries are designed for debugging, auditing, and analysis, not hot-path operations.

Best Practices
	Always set causation_id - Every event should reference its cause
	Use correlation_id for business processes - Group related events across streams
	Generate unique IDs - Use UUIDs to avoid collisions
	Include in command metadata - Pass correlation through commands to events
	Log causation in errors - Include the chain in error reports for debugging

Related Guides
	Event Sourcing - Core concepts
	Subscriptions - React to events in real-time
	CQRS - Command/Query separation patterns

 Schema Evolution

This guide explains how to evolve event schemas over time while maintaining backward compatibility. Old events are automatically "upcasted" to the current schema version when read.
[image: Schema Upcasting]
Prerequisites
Before reading this guide, you should understand:
	Event sourcing concepts (Event Sourcing Guide)
	The immutable nature of events (events are never modified after being written)
	Why backward compatibility matters in event-driven systems

The Problem: Business Requirements Change
In event sourcing, events are immutable facts. But business requirements evolve:
	New fields are added (phone added to UserCreated)
	Field names are renamed (amount_cents → amount)
	Data formats change (cents as integer → dollars as decimal)
	Fields are split (full_name → first_name + last_name)

You cannot migrate events - they're immutable historical records. Changing them would break the audit trail.
The Solution: Schema Registry + Upcasting
Instead of migrating events, we transform them on read:
Write (immutable): Read (transformed):
┌──────────────────┐ ┌──────────────────┐
│ UserCreated v1 │ │ UserCreated v3 │
│ { │ ──────→ │ { │
│ name: "Alice", │ upcast │ name: "Alice", │
│ email: "..." │ │ email: "...", │
│ } │ │ phone: null, │
└──────────────────┘ │ verified: false│
 │ } │
 └──────────────────┘
Key insight: Events stay as written. Transformation happens at read time. Consumers always see the current schema.

Where Does This Code Run?
	Operation	Location	Module
	Register schema	Your Application	esdb_gater_api
	Define upcast functions	Your Application	Your schema module
	Store schema definitions	erl-esdb Server	erl_esdb_schema_store
	Apply upcasting on read	erl-esdb Server	erl_esdb_upcaster

API Reference
Register a Schema
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Register initial schema version for an event type
%%--

esdb_gater_api:register_schema(my_store, <<"UserCreated">>, #{
 version => 1,
 fields => [
 #{name => <<"name">>, type => string, required => true},
 #{name => <<"email">>, type => string, required => true}
]
}).
Register New Version with Upcast
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Add new schema version with transformation from v1
%%--

esdb_gater_api:register_schema(my_store, <<"UserCreated">>, #{
 version => 2,
 fields => [
 #{name => <<"name">>, type => string, required => true},
 #{name => <<"email">>, type => string, required => true},
 #{name => <<"phone">>, type => string, required => false} %% New field
],
 upcast_from => #{
 1 => fun(V1Data) ->
 %% Transform v1 → v2: add missing phone field
 V1Data#{<<"phone">> => undefined}
 end
 }
}).
Get Schema Information
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Query registered schemas
%%--

%% Get current schema for an event type
{ok, Schema} = esdb_gater_api:get_schema(my_store, <<"UserCreated">>).

%% Get current version number
{ok, Version} = esdb_gater_api:get_schema_version(my_store, <<"UserCreated">>).
%% => {ok, 2}

%% List all registered schemas
{ok, Schemas} = esdb_gater_api:list_schemas(my_store).
%% => [
%% #{event_type => <<"UserCreated">>, version => 2},
%% #{event_type => <<"OrderPlaced">>, version => 3},
%% ...
%%]
Upcast Events Explicitly
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Manually upcast events to current schema version
%%--

%% Read old events
{ok, OldEvents} = esdb_gater_api:stream_forward(my_store, StreamId, 0, 100),

%% Upcast to current schema versions
{ok, UpcastedEvents} = esdb_gater_api:upcast_events(my_store, OldEvents).

%% Events are now in current schema version
Unregister Schema
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Remove a deprecated event type's schema
%%--

esdb_gater_api:unregister_schema(my_store, <<"DeprecatedEvent">>).

Upcast Chain
When multiple schema versions exist, upcasting chains automatically:
v1 event → upcast_v1_v2() → v2 data → upcast_v2_v3() → v3 data (current)
Example with 3 versions:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Register schema with full upcast chain
%%--

esdb_gater_api:register_schema(my_store, <<"OrderPlaced">>, #{
 version => 3,
 fields => [
 #{name => <<"order_id">>, type => string},
 #{name => <<"amount">>, type => decimal}, %% Changed from cents in v1
 #{name => <<"currency">>, type => string}, %% Added in v2
 #{name => <<"customer_id">>, type => string} %% Added in v3
],
 upcast_from => #{
 1 => fun(V1) ->
 %% v1 had amount_cents (integer), no currency
 #{
 <<"order_id">> => maps:get(<<"order_id">>, V1),
 <<"amount">> => maps:get(<<"amount_cents">>, V1) / 100,
 <<"currency">> => <<"USD">>, %% Default for old events
 <<"customer_id">> => undefined
 }
 end,
 2 => fun(V2) ->
 %% v2 had amount + currency, no customer
 V2#{<<"customer_id">> => undefined}
 end
 }
}).

Common Transformation Patterns
Adding Fields (Most Common)
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Add new field with default value
%%--

upcast_from => #{
 1 => fun(V1) ->
 V1#{<<"new_field">> => default_value}
 end
}
Renaming Fields
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Rename a field while preserving data
%%--

upcast_from => #{
 1 => fun(V1) ->
 OldValue = maps:get(<<"old_name">>, V1),
 maps:remove(<<"old_name">>, V1#{<<"new_name">> => OldValue})
 end
}
Changing Data Types
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Convert data format (cents → dollars)
%%--

upcast_from => #{
 1 => fun(V1) ->
 %% Convert cents (integer) to dollars (decimal)
 Cents = maps:get(<<"amount_cents">>, V1),
 maps:remove(<<"amount_cents">>, V1#{<<"amount">> => Cents / 100})
 end
}
Splitting Fields
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Split one field into multiple fields
%%--

upcast_from => #{
 1 => fun(V1) ->
 %% Split "full_name" into "first_name" and "last_name"
 FullName = maps:get(<<"full_name">>, V1),
 [First | Rest] = binary:split(FullName, <<" ">>),
 Last = iolist_to_binary(lists:join(<<" ">>, Rest)),
 maps:remove(<<"full_name">>, V1#{
 <<"first_name">> => First,
 <<"last_name">> => Last
 })
 end
}
Merging Fields
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Combine multiple fields into one
%%--

upcast_from => #{
 1 => fun(V1) ->
 Street = maps:get(<<"street">>, V1),
 City = maps:get(<<"city">>, V1),
 Combined = <<Street/binary, ", ", City/binary>>,
 maps:without([<<"street">>, <<"city">>], V1#{<<"address">> => Combined})
 end
}

Common Pitfalls
1. Modifying Existing Schema Version
%% BAD: Changing v1 schema after events are written
esdb_gater_api:register_schema(Store, <<"Event">>, #{
 version => 1,
 fields => [...different fields...] %% Breaks existing v1 events!
}).

%% GOOD: Create new version instead
esdb_gater_api:register_schema(Store, <<"Event">>, #{
 version => 2,
 fields => [...new fields...],
 upcast_from => #{1 => fun(V1) -> ... end}
}).
2. Upcast Functions with Side Effects
%% BAD: Side effects in upcast function
upcast_from => #{
 1 => fun(V1) ->
 log("Upcasting event!"), %% Side effect!
 http:post(webhook, V1), %% Network call!
 V1#{<<"new_field">> => fetch_from_db()} %% Database read!
 end
}

%% GOOD: Pure transformation only
upcast_from => #{
 1 => fun(V1) ->
 V1#{<<"new_field">> => <<"default">>} %% Deterministic
 end
}
3. Lossy Transformations Without Documentation
%% BAD: Silent data loss
upcast_from => #{
 1 => fun(V1) ->
 %% Precision loss: cents truncated
 Cents = maps:get(<<"amount_cents">>, V1),
 V1#{<<"amount_dollars">> => Cents div 100} %% 199 cents → 1 dollar
 end
}

%% GOOD: Document and minimize loss
%% @doc Converts cents to dollars. Note: sub-dollar precision is preserved.
upcast_from => #{
 1 => fun(V1) ->
 Cents = maps:get(<<"amount_cents">>, V1),
 V1#{<<"amount">> => Cents / 100.0} %% 199 cents → 1.99
 end
}
4. Missing Schema Version in Event
%% BAD: No way to know which version this event uses
Event = #{
 event_type => <<"UserCreated">>,
 data => #{name => <<"Alice">>}
}.

%% GOOD: Include schema version in metadata
Event = #{
 event_type => <<"UserCreated">>,
 data => #{name => <<"Alice">>},
 metadata => #{schema_version => 2}
}.

Best Practices
	Always increment versions - Never modify existing schema versions
	Keep upcast functions pure - No side effects, deterministic results
	Test upcast chains - Verify v1→v3 produces correct results
	Document breaking changes - Note when upcasting loses information
	Store version in event metadata - Makes debugging easier
	Register schemas at application startup - Ensure schemas are available before reads

Event Metadata with Schema Version
Include version in event metadata for traceability:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Include schema version when creating events
%%--

create_event(Type, Data, Metadata) ->
 {ok, Version} = esdb_gater_api:get_schema_version(my_store, Type),
 #{
 event_type => Type,
 data => Data,
 metadata => Metadata#{schema_version => Version}
 }.

When NOT to Use Schema Evolution
	Breaking changes requiring re-processing - If you need to change the meaning of old events, consider creating a new event type instead
	Simple field additions - If all consumers can handle missing fields, you might not need formal schemas
	Performance-critical hot paths - Upcasting adds processing overhead

Related Guides
	Event Sourcing - Core concepts
	Subscriptions - Events are upcasted on delivery
	Snapshots - Snapshots use current schema

 Stream Links

This guide explains how to create derived streams from source streams using filters and transformations, enabling specialized views without duplicating event storage.
[image: Stream Links]
Prerequisites
Before reading this guide, you should understand:
	Event sourcing concepts (Event Sourcing Guide)
	Stream subscriptions (Subscriptions Guide)
	CQRS and read model patterns (CQRS Guide)

The Problem: Filtering Events Across Streams
In a real application, you often need to work with subsets of events:
	"Show me all high-value orders across all order streams"
	"Give me all payment events regardless of which stream they're in"
	"I only care about events from US customers"

Without stream links, you'd need to:
	Subscribe to all source streams
	Filter events in your application code
	Build and maintain your own derived storage

This is complex, error-prone, and duplicates effort across applications.
The Solution: Stream Links
Stream links create derived streams that:
	Subscribe to source streams (with pattern matching)
	Filter events based on criteria
	Optionally transform/enrich events
	Make results available as a regular stream

Source Streams: Link: Derived Stream:
┌──────────────────┐
│ orders-001 │─────┐ ┌───────────────────┐ ┌──────────────────┐
│ amount: 500 │ │ │ │ │ $link:high-value │
├──────────────────┤ ├──→│ filter: │──→│ │
│ orders-002 │ │ │ amount > 1000 │ │ orders-002 │
│ amount: 2500 │─────┤ │ │ │ orders-003 │
├──────────────────┤ │ │ transform: │ │ │
│ orders-003 │─────┘ │ add priority │ └──────────────────┘
│ amount: 1500 │ │ │
└──────────────────┘ └───────────────────┘

Where Does This Code Run?
	Operation	Location	Module
	Create/configure links	Your Application	esdb_gater_api
	Store link definitions	erl-esdb Server	erl_esdb_links
	Filter/transform processing	erl-esdb Server	erl_esdb_link_worker
	Subscribe to derived stream	Your Application	esdb_gater_api

API Reference
Create a Link
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Create a derived stream for high-value orders
%%--

esdb_gater_api:create_link(my_store, #{
 name => <<"high-value-orders">>,
 source => #{
 type => stream_pattern,
 pattern => <<"orders-*">> %% Watch all order streams
 },
 filter => #{
 field => <<"amount">>,
 op => '>',
 value => 1000
 },
 transform => #{
 add_fields => #{
 <<"priority">> => <<"high">>,
 <<"flagged_at">> => {fn, fun() -> erlang:system_time(microsecond) end}
 }
 }
}).
Get Link Info
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Check link configuration and status
%%--

{ok, Link} = esdb_gater_api:get_link(my_store, <<"high-value-orders">>).
%% => #{
%% name => <<"high-value-orders">>,
%% source => #{type => stream_pattern, pattern => <<"orders-*">>},
%% filter => #{...},
%% status => running,
%% events_processed => 12345
%% }
List All Links
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Get all configured links for a store
%%--

{ok, Links} = esdb_gater_api:list_links(my_store).
Start/Stop a Link
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Pause and resume link processing
%%--

%% Stop processing (link remains configured, will resume from last position)
esdb_gater_api:stop_link(my_store, <<"high-value-orders">>).

%% Resume processing
esdb_gater_api:start_link(my_store, <<"high-value-orders">>).
Delete a Link
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Remove a link and its derived stream
%%--

esdb_gater_api:delete_link(my_store, <<"high-value-orders">>).
Detailed Link Statistics
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Get detailed processing statistics
%%--

{ok, Info} = esdb_gater_api:link_info(my_store, <<"high-value-orders">>).
%% => #{
%% status => running,
%% events_processed => 12345, %% Events that matched filter
%% events_filtered => 45678, %% Events that didn't match
%% last_processed_at => 1703001600000000,
%% lag => 0, %% Events behind real-time
%% source_streams => [<<"orders-001">>, <<"orders-002">>, ...]
%% }

Subscribing to Links
Links create streams prefixed with $link::
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Subscribe to derived stream events
%%--

%% Subscribe to the derived stream via gateway (just like any other stream)
ok = esdb_gater_api:save_subscription(
 my_store,
 stream,
 <<"$link:high-value-orders">>,
 <<"my-handler">>,
 self(),
 #{}
).

%% Read from the derived stream
{ok, Events} = esdb_gater_api:stream_forward(
 my_store,
 <<"$link:high-value-orders">>,
 0,
 100
).

Filter Operators
	Operator	Description	Example
	=	Equals	#{field => <<"status">>, op => '=', value => <<"active">>}
	!=	Not equals	#{field => <<"type">>, op => '!=', value => <<"test">>}
	>	Greater than	#{field => <<"amount">>, op => '>', value => 100}
	>=	Greater or equal	#{field => <<"count">>, op => '>=', value => 5}
	<	Less than	#{field => <<"age">>, op => '<', value => 30}
	<=	Less or equal	#{field => <<"priority">>, op => '<=', value => 3}
	in	In list	#{field => <<"country">>, op => in, value => [<<"US">>, <<"UK">>]}
	contains	String contains	#{field => <<"email">>, op => contains, value => <<"@company.com">>}
	matches	Regex match	#{field => <<"sku">>, op => matches, value => <<"^SKU-\\d+">>}

Compound Filters
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Combine multiple filter conditions
%%--

%% AND filter (all conditions must match)
filter => #{
 type => 'and',
 filters => [
 #{field => <<"amount">>, op => '>', value => 1000},
 #{field => <<"status">>, op => '=', value => <<"completed">>}
]
}

%% OR filter (any condition matches)
filter => #{
 type => 'or',
 filters => [
 #{field => <<"priority">>, op => '=', value => <<"high">>},
 #{field => <<"amount">>, op => '>', value => 5000}
]
}

Transform Options
Add Static Fields
transform => #{
 add_fields => #{
 <<"processed_by">> => <<"link-worker">>,
 <<"link_version">> => 1
 }
}
Add Dynamic Fields
transform => #{
 add_fields => #{
 <<"processed_at">> => {fn, fun() -> erlang:system_time(microsecond) end},
 <<"random_id">> => {fn, fun() -> crypto:strong_rand_bytes(16) end}
 }
}
Remove Fields (Sanitize)
transform => #{
 remove_fields => [<<"internal_id">>, <<"debug_info">>, <<"password_hash">>]
}
Rename Fields
transform => #{
 rename_fields => #{
 <<"old_name">> => <<"new_name">>,
 <<"legacy_field">> => <<"modern_field">>
 }
}

Use Cases
1. Category-Based Views
Create per-category views from a mixed stream:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Separate streams by product category
%%--

%% Electronics orders
esdb_gater_api:create_link(my_store, #{
 name => <<"electronics-orders">>,
 source => #{type => stream_pattern, pattern => <<"orders-*">>},
 filter => #{field => <<"category">>, op => '=', value => <<"electronics">>}
}).

%% Clothing orders
esdb_gater_api:create_link(my_store, #{
 name => <<"clothing-orders">>,
 source => #{type => stream_pattern, pattern => <<"orders-*">>},
 filter => #{field => <<"category">>, op => '=', value => <<"clothing">>}
}).
2. Event Type Aggregation
Group events by type across all streams:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: All payment events in one stream
%%--

esdb_gater_api:create_link(my_store, #{
 name => <<"all-payments">>,
 source => #{type => stream_pattern, pattern => <<"*">>},
 filter => #{field => <<"event_type">>, op => in, value => [
 <<"PaymentReceived">>,
 <<"PaymentFailed">>,
 <<"RefundIssued">>
]}
}).
3. Compliance Flagging
Automatically flag events for review:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Flag high-value transactions for compliance review
%%--

esdb_gater_api:create_link(my_store, #{
 name => <<"flagged-transactions">>,
 source => #{type => stream_pattern, pattern => <<"transactions-*">>},
 filter => #{field => <<"amount">>, op => '>', value => 10000},
 transform => #{
 add_fields => #{
 <<"requires_review">> => true,
 <<"flagged_at">> => {fn, fun() -> erlang:system_time(microsecond) end},
 <<"review_queue">> => <<"compliance">>
 }
 }
}).

Common Pitfalls
1. Overly Broad Patterns
%% BAD: Watching everything can be expensive
source => #{type => stream_pattern, pattern => <<"*">>}

%% GOOD: Be specific about what you need
source => #{type => stream_pattern, pattern => <<"orders-*">>}
2. Complex Filters on Hot Paths
%% BAD: Regex on every event is expensive
filter => #{field => <<"data">>, op => matches, value => complex_regex}

%% GOOD: Use simple equality checks when possible
filter => #{field => <<"type">>, op => '=', value => <<"payment">>}
3. Not Monitoring Lag
%% BAD: Ignoring link health
esdb_gater_api:create_link(my_store, #{...}).
%% ... never check if it's keeping up

%% GOOD: Monitor lag for real-time requirements
check_link_health(LinkName) ->
 {ok, Info} = esdb_gater_api:link_info(my_store, LinkName),
 Lag = maps:get(lag, Info),
 if Lag > 1000 ->
 logger:warning("Link ~p is ~p events behind", [LinkName, Lag]);
 true -> ok
 end.
4. Transforming Critical Data
%% BAD: Removing fields you might need later
transform => #{remove_fields => [<<"metadata">>]}

%% GOOD: Be conservative about data removal
transform => #{
 remove_fields => [<<"internal_debug">>, <<"temp_marker">>]
 %% Keep metadata, causation_id, correlation_id, etc.
}

When NOT to Use Stream Links
	Simple subscriptions - If you just need to react to events, use regular subscriptions
	One-time queries - For ad-hoc analysis, use temporal queries instead
	Complex transformations - If transformation logic is complex, build a proper projection
	Cross-store aggregation - Links work within a single store

Performance Considerations
	Links process events asynchronously (won't block writers)
	Backpressure-aware (won't overwhelm consumers)
	Can be paused/resumed for maintenance
	Monitor lag metric for real-time requirements
	Use specific patterns over wildcards when possible

Related Guides
	Subscriptions - Subscribe to derived streams
	Event Sourcing - Core concepts
	CQRS - Links as lightweight projections

 Memory Pressure

This guide explains how to monitor and respond to system memory pressure, enabling your application to adapt its behavior and prevent out-of-memory conditions.
Prerequisites
Before reading this guide, you should understand:
	Basic Erlang/OTP memory concepts (processes, ETS, binaries)
	Subscription patterns (Subscriptions Guide)
	Why backpressure matters in event-driven systems

The Problem: Unbounded Memory Growth
Event-driven systems can experience memory pressure from many sources:
	Slow consumers - Events queue up faster than they're processed
	Large projections - Read models grow beyond available memory
	Binary accumulation - Large event payloads aren't garbage collected
	Cache bloat - Unbounded caches grow indefinitely

Without monitoring, these issues lead to OOM crashes, taking down your entire node.
The Solution: Adaptive Behavior
Memory pressure monitoring enables:
	Early warning - Detect problems before they crash the system
	Graceful degradation - Reduce load when memory is scarce
	Automatic recovery - Resume normal operation when pressure eases

Memory Usage:
100% ┌───┐
 │ ▓▓▓ CRITICAL │
 85% │─ ─│
 │ ███████████████ │
 70% │─ ─│
 │ ░░░░░░░░░░░░░░░░░░░░░░ ELEVATED │
 │░░░░░░░░ │
 0% │ NORMAL │
 └───┘
 Time →

Where Does This Code Run?
	Operation	Location	Module
	Query pressure level	Your Application	esdb_gater_api
	Monitor memory	erl-esdb Server	erl_esdb_memory
	Emit telemetry	erl-esdb Server	erl_esdb_telemetry
	Adaptive behavior	Your Application	Your handlers

API Reference
Get Memory Level
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Check current memory pressure level
%%--

{ok, Level} = esdb_gater_api:get_memory_level(my_store).
%% => {ok, normal}
%% => {ok, elevated}
%% => {ok, critical}
Get Detailed Memory Stats
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Get detailed memory breakdown
%%--

{ok, Stats} = esdb_gater_api:get_memory_stats(my_store).
%% => #{
%% level => normal,
%% used => 4294967296, %% 4 GB total used
%% total => 17179869184, %% 16 GB total available
%% percentage => 25.0, %% 25% used
%% processes => 1073741824, %% 1 GB in Erlang processes
%% binary => 536870912, %% 512 MB in binaries
%% ets => 268435456, %% 256 MB in ETS tables
%% atom => 1048576 %% 1 MB in atoms
%% }

Pressure Levels
	Level	Threshold	Description	Recommended Action
	normal	< 70%	System operating normally	No action needed
	elevated	70-85%	Memory usage is high	Reduce batch sizes, evict caches
	critical	> 85%	Memory pressure severe	Pause subscriptions, aggressive cleanup

Configuration
Configure thresholds in sys.config:
%%--
%% This configuration lives in: sys.config (deployment)
%% Purpose: Set memory pressure thresholds
%%--

[{erl_esdb, [
 {memory_pressure, [
 {elevated_threshold, 0.70}, %% 70% = elevated
 {critical_threshold, 0.85}, %% 85% = critical
 {check_interval, 10000} %% Check every 10 seconds
]}
]}].

Use Cases
1. Adaptive Batch Sizes
Reduce processing load when memory is constrained:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Adjust batch sizes based on memory pressure
%%--

-module(adaptive_processor).

get_batch_size(StoreId) ->
 {ok, Level} = esdb_gater_api:get_memory_level(StoreId),
 case Level of
 normal -> 1000; %% Full speed
 elevated -> 500; %% Half speed
 critical -> 100 %% Minimal processing
 end.

process_events(StoreId, StreamId) ->
 BatchSize = get_batch_size(StoreId),
 {ok, Events} = esdb_gater_api:stream_forward(StoreId, StreamId, 0, BatchSize),
 lists:foreach(fun process_event/1, Events).
2. Memory-Aware Caching
Evict caches when memory pressure rises:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Clear caches based on memory pressure
%%--

-module(cache_manager).

handle_memory_pressure(normal) ->
 ok; %% Keep caches

handle_memory_pressure(elevated) ->
 %% Evict 50% of cache
 cache:evict_percentage(50),
 logger:info("Evicted 50% of cache due to elevated memory pressure");

handle_memory_pressure(critical) ->
 %% Clear entire cache
 cache:clear(),
 logger:warning("Cleared cache due to critical memory pressure").
3. Gating Expensive Operations
Reject expensive operations when memory is scarce:
%%--
%% This code runs in: YOUR APPLICATION
%% Purpose: Refuse expensive work during memory pressure
%%--

-module(resource_guard).

maybe_run_expensive_operation(StoreId, Fun) ->
 {ok, Level} = esdb_gater_api:get_memory_level(StoreId),
 case Level of
 critical ->
 {error, memory_pressure};
 _ ->
 Fun()
 end.

%% Usage
handle_request(Req) ->
 case maybe_run_expensive_operation(my_store, fun() ->
 process_large_report(Req)
 end) of
 {error, memory_pressure} ->
 {503, <<"Service temporarily unavailable due to memory pressure">>};
 Result ->
 Result
 end.
4. Process Manager Deferral
Pause saga processing during pressure:
%%--
%% This code runs in: YOUR APPLICATION (process manager)
%% Purpose: Defer event processing when memory is critical
%%--

-module(order_saga).

handle_event(Event, State) ->
 {ok, Level} = esdb_gater_api:get_memory_level(State#state.store_id),
 case Level of
 critical ->
 %% Defer processing until memory recovers
 logger:info("Deferring event due to memory pressure"),
 {defer, Event, State};
 _ ->
 do_handle_event(Event, State)
 end.

Monitoring with Telemetry
Memory pressure changes emit telemetry events:
%%--
%% This code runs in: YOUR APPLICATION (startup)
%% Purpose: Alert on memory pressure changes
%%--

setup_memory_alerts() ->
 telemetry:attach(
 <<"memory-pressure-handler">>,
 [erl_esdb, memory, pressure_changed],
 fun handle_pressure_change/4,
 #{}
).

handle_pressure_change(
 _Event,
 _Measurements,
 #{old_level := Old, new_level := New},
 _Config
) ->
 case New of
 critical ->
 send_alert("CRITICAL: Memory pressure is severe"),
 logger:error("Memory pressure: ~p -> ~p", [Old, New]);
 elevated ->
 logger:warning("Memory pressure: ~p -> ~p", [Old, New]);
 normal ->
 logger:info("Memory pressure returned to normal")
 end.

Common Pitfalls
1. Ignoring Memory Levels
%% BAD: Processing without checking memory
process_all_events(StoreId) ->
 {ok, Events} = esdb_gater_api:stream_forward(StoreId, Stream, 0, 10000),
 lists:foreach(fun process/1, Events). %% May OOM!

%% GOOD: Respect memory pressure
process_all_events(StoreId) ->
 {ok, Level} = esdb_gater_api:get_memory_level(StoreId),
 case Level of
 critical -> {error, memory_pressure};
 _ ->
 BatchSize = get_batch_size(Level),
 {ok, Events} = esdb_gater_api:stream_forward(StoreId, Stream, 0, BatchSize),
 lists:foreach(fun process/1, Events)
 end.
2. Polling Too Frequently
%% BAD: Checking memory on every operation
process_event(Event) ->
 {ok, _} = esdb_gater_api:get_memory_level(Store), %% Every event!
 do_process(Event).

%% GOOD: Check periodically or rely on telemetry
-record(state, {memory_level = normal}).

init() ->
 telemetry:attach(..., fun update_cached_level/4, ...),
 {ok, #state{}}.

process_event(Event, #state{memory_level = critical}) ->
 {defer, Event};
process_event(Event, State) ->
 do_process(Event),
 {ok, State}.
3. Not Recovering from Pressure
%% BAD: Entering degraded mode permanently
handle_pressure(critical, State) ->
 State#state{degraded = true}. %% Never recovers!

%% GOOD: State based on current level
handle_event(Event, State) ->
 {ok, Level} = esdb_gater_api:get_memory_level(Store),
 case Level of
 critical -> {defer, Event, State};
 elevated -> process_slowly(Event, State);
 normal -> process_normally(Event, State)
 end.

When NOT to Query Memory Pressure
	On every event - Too expensive; use cached level or telemetry
	In tight loops - Check once at start of batch, not per-item
	For simple operations - Only matters for memory-intensive work

Best Practices
	Monitor pressure levels - Alert on elevated/critical via telemetry
	Implement adaptive behavior - Reduce load automatically when pressure rises
	Test under pressure - Verify system handles high memory gracefully
	Set appropriate thresholds - Tune based on your hardware and workload
	Use backpressure - Slow down producers instead of dropping work
	Cache the level - Don't query on every operation

Related Guides
	Subscriptions - Backpressure in subscriptions
	Stream Links - Links adapt to memory pressure
	Scavenging - Free memory by removing old events

erl_esdb_gater_app

Application module for erl-esdb-gater
The gateway provides distributed worker registration and load balancing for erl-esdb event stores.

 Summary

 Functions

 start(StartType, StartArgs)

 stop(State)

 Functions

 start(StartType, StartArgs)

 stop(State)

erl_esdb_gater_sup

Top-level supervisor for erl-esdb-gater
[bookmark: Supervision_Tree]Supervision Tree
erl_esdb_gater_sup (one_for_one) - esdb_gater_cluster_sup (rest_for_one) - esdb_gater_worker_registry - esdb_gater_cluster_monitor - esdb_channel_sup (one_for_one) - 10x channel workers
Note: esdb_gater_api is a stateless API module, not a supervised process.

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

esdb_capability

Capability token creation, signing, and delegation
Provides functions for creating UCAN-inspired capability tokens that grant specific permissions to specific audiences. Tokens can be delegated with attenuation (reduced permissions).
[bookmark: Token_Lifecycle]Token Lifecycle
1. Create: Build a capability with issuer, audience, and grants 2. Sign: Sign with issuer's private key 3. Encode: Serialize to JWT or Erlang binary format 4. Transmit: Send with request to server 5. (Server) Verify: Check signature, expiry, revocation, permissions
[bookmark: Delegation]Delegation
Tokens can be delegated to create child tokens with reduced permissions. The child token includes a proof reference to the parent token. Permissions can only be attenuated (reduced), never expanded.
[bookmark: Example]Example
Create and sign a capability:
Issuer = esdb_identity:generate(), Audience = esdb_identity:generate(), Grants = [esdb_capability:grant(Resource, Action)], Cap = esdb_capability:create(Issuer, Audience, Grants, #{ttl => 900}), SignedCap = esdb_capability:sign(Cap, esdb_identity:private_key(Issuer)), Token = esdb_capability:encode(SignedCap, jwt).

 Summary

 Types

 capability/0

 capability_grant/0

 identity/0

 Functions

 attenuate(ChildGrants, ParentGrants)

 Check if grants are attenuated (subset of parent)

 audience(Capability)

 Get the audience DID

 create(Issuer, Audience, Grants)

 Create a capability token with default TTL

 create(Issuer, Audience, Grants, Opts)

 Create a capability token with options

 decode(Bin)

 Decode a capability from either format (auto-detected)

 delegate(ParentCap, NewAudience, AttenuatedGrants)

 Delegate a capability to a new audience with attenuated grants

 delegate(Capability, NewAudience, AttenuatedGrants, Opts)

 Delegate with options

 encode(Cap)

 Encode capability to default format (Erlang binary)

 encode(Capability, Format)

 Encode capability to specified format

 expires_at(Capability)

 Get the expiration timestamp

 grant(Resource, Action)

 Create a capability grant

 grants(Capability)

 Get the capability grants

 is_expired(Capability)

 Check if the capability is expired

 issuer(Capability)

 Get the issuer DID

 proof_chain(Capability)

 Get the proof chain (parent token CIDs)

 sign(Capability, PrivateKey)

 Sign a capability token with the issuer's private key

 Types

 capability/0

 -type capability() ::
 #capability{alg :: binary(),
 typ :: binary(),
 iss :: binary(),
 aud :: binary(),
 nbf :: integer() | undefined,
 exp :: integer(),
 iat :: integer(),
 nnc :: binary(),
 att :: [capability_grant()],
 fct :: map(),
 prf :: [binary()],
 sig :: binary() | undefined}.

 capability_grant/0

 -type capability_grant() :: #{with := binary(), can := binary()}.

 identity/0

 -type identity() ::
 #identity{did :: binary(), public_key :: binary(), private_key :: binary() | undefined}.

 Functions

 attenuate(ChildGrants, ParentGrants)

 -spec attenuate([capability_grant()], [capability_grant()]) ->
 {ok, [capability_grant()]} | {error, term()}.

Check if grants are attenuated (subset of parent)

 audience(Capability)

 -spec audience(capability()) -> binary().

Get the audience DID

 create(Issuer, Audience, Grants)

 -spec create(identity(), identity() | binary(), [capability_grant()]) -> capability().

Create a capability token with default TTL

 create(Issuer, Audience, Grants, Opts)

 -spec create(identity(), identity() | binary(), [capability_grant()], map()) -> capability().

Create a capability token with options
Options: - ttl: Time to live in seconds (default: 900 = 15 minutes) - nbf: Not before timestamp (default: now) - facts: Additional claims map (default: #{})

 decode(Bin)

 -spec decode(binary()) -> {ok, capability()} | {error, term()}.

Decode a capability from either format (auto-detected)

 delegate(ParentCap, NewAudience, AttenuatedGrants)

 -spec delegate(capability(), identity() | binary(), [capability_grant()]) -> capability().

Delegate a capability to a new audience with attenuated grants
The new capability will include a proof reference to the parent capability. The grants must be a subset of (or equal to) the parent's grants.

 delegate(Capability, NewAudience, AttenuatedGrants, Opts)

 -spec delegate(capability(), identity() | binary(), [capability_grant()], map()) -> capability().

Delegate with options

 encode(Cap)

 -spec encode(capability()) -> binary().

Encode capability to default format (Erlang binary)

 encode(Capability, Format)

 -spec encode(capability(), binary | jwt) -> binary().

Encode capability to specified format
Formats: - binary: Erlang term_to_binary (compact, fast, BEAM-only) - jwt: JSON Web Token format (interoperable)

 expires_at(Capability)

 -spec expires_at(capability()) -> integer().

Get the expiration timestamp

 grant(Resource, Action)

 -spec grant(binary(), binary()) -> capability_grant().

Create a capability grant

 grants(Capability)

 -spec grants(capability()) -> [capability_grant()].

Get the capability grants

 is_expired(Capability)

 -spec is_expired(capability()) -> boolean().

Check if the capability is expired

 issuer(Capability)

 -spec issuer(capability()) -> binary().

Get the issuer DID

 proof_chain(Capability)

 -spec proof_chain(capability()) -> [binary()].

Get the proof chain (parent token CIDs)

 sign(Capability, PrivateKey)

 -spec sign(capability(), binary()) -> capability().

Sign a capability token with the issuer's private key

esdb_channel behaviour

Channel behavior for erl-esdb-gater PubSub API SET
Defines the behavior that all channel implementations must follow. Each channel handles a specific type of message (events, metrics, etc.)
Channel priorities: - critical: alerts, security (no rate limit, HMAC required) - high: events, health - normal: metrics, system - low: logging, diagnostics

 Summary

 Types

 channel_name/0

 priority/0

 topic/0

 Functions

 behaviour_info(Other)

 get_subscribers(Channel, Topic)

 Get all subscribers for a topic

 publish(Channel, Topic, Message)

 Publish a message to a channel topic

 publish(Channel, Topic, Message, CapabilityToken)

 Publish with capability token for authorization

 start_link(Module, Opts)

 Start a channel

 subscribe(Channel, Topic, Pid)

 Subscribe to a channel topic

 subscribe(Channel, Topic, Pid, CapabilityToken)

 Subscribe with capability token for authorization

 unsubscribe(Channel, Topic, Pid)

 Unsubscribe from a channel topic

 Types

 channel_name/0

 -type channel_name() :: atom().

 priority/0

 -type priority() :: critical | high | normal | low.

 topic/0

 -type topic() :: binary().

 Functions

 behaviour_info(Other)

 get_subscribers(Channel, Topic)

 -spec get_subscribers(channel_name(), topic()) -> [pid()].

Get all subscribers for a topic

 publish(Channel, Topic, Message)

 -spec publish(channel_name(), topic(), term()) -> ok | {error, term()}.

Publish a message to a channel topic

 publish(Channel, Topic, Message, CapabilityToken)

 -spec publish(channel_name(), topic(), term(), binary()) -> ok | {error, term()}.

Publish with capability token for authorization

 start_link(Module, Opts)

 -spec start_link(module(), map()) -> {ok, pid()} | {error, term()}.

Start a channel

 subscribe(Channel, Topic, Pid)

 -spec subscribe(channel_name(), topic(), pid()) -> ok | {error, term()}.

Subscribe to a channel topic

 subscribe(Channel, Topic, Pid, CapabilityToken)

 -spec subscribe(channel_name(), topic(), pid(), binary()) -> ok | {error, term()}.

Subscribe with capability token for authorization

 unsubscribe(Channel, Topic, Pid)

 -spec unsubscribe(channel_name(), topic(), pid()) -> ok.

Unsubscribe from a channel topic

esdb_channel_alerts

Alerts channel for erl-esdb-gater
Critical-priority channel for alert notifications. Requires HMAC signature for message authenticity.
Topics: alerts.critical - Critical alerts alerts.warning - Warning alerts alerts.info - Informational alerts

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_audit

Audit channel for erl-esdb-gater
Normal-priority channel for audit trail events. Records all significant operations for compliance.
Topics: audit.store.StoreId - Store operations audit audit.user.UserId - User actions audit audit.admin - Administrative actions audit

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_diagnostics

Diagnostics channel for erl-esdb-gater
Low-priority channel for diagnostic information. Used for debugging and troubleshooting.
Topics: diag.trace - Trace information diag.profile - Profiling data diag.debug - Debug information

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_events

Events channel for erl-esdb-gater
High-priority channel for business event delivery. Events are the core of the event sourcing system.
Topics: events.stream.StreamId - Events for a specific stream events.store.StoreId - All events for a store events.type.EventType - Events by type

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_health

Health channel for erl-esdb-gater
High-priority channel for health status updates. Used for monitoring node and service health across the cluster.
Topics: health.node.NodeName - Node health status health.store.StoreId - Store health status health.cluster - Overall cluster health

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_lifecycle

Lifecycle channel for erl-esdb-gater
Normal-priority channel for lifecycle events. Tracks service and component lifecycle changes.
Topics: lifecycle.store.StoreId - Store lifecycle events lifecycle.node.NodeName - Node lifecycle events lifecycle.worker - Worker lifecycle events

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_logging

Logging channel for erl-esdb-gater
Low-priority channel for log message delivery. Used for centralized logging across distributed nodes.
Topics: log.debug - Debug level logs log.info - Info level logs log.warning - Warning level logs log.error - Error level logs

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_metrics

Metrics channel for erl-esdb-gater
Normal-priority channel for metrics delivery. Used for performance monitoring and statistics.
Topics: metrics.store.StoreId - Store metrics metrics.stream.StreamId - Stream metrics metrics.gateway - Gateway metrics

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_security

Security channel for erl-esdb-gater
Critical-priority channel for security-related events. Requires HMAC signature for message authenticity.
Topics: security.auth - Authentication events security.access - Access control events security.audit - Security audit events

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_channel_server

Generic channel server for erl-esdb-gater
Implements the common server logic for all channels. Delegates channel-specific behavior to the callback module.
Features: - Topic-based pub/sub using pg groups - Rate limiting (configurable per channel) - HMAC signature verification (for critical channels) - Telemetry integration

 Summary

 Functions

 get_subscribers(Channel, Topic)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Message, State)

 init(_)

 publish(Channel, Topic, Message)

 publish(Channel, Topic, Message, CapabilityToken)

 Publish with capability token for authorization

 start_link(Module, Opts)

 subscribe(Channel, Topic, Pid)

 subscribe(Channel, Topic, Pid, CapabilityToken)

 Subscribe with capability token for authorization

 terminate(Reason, State)

 unsubscribe(Channel, Topic, Pid)

 Functions

 get_subscribers(Channel, Topic)

 -spec get_subscribers(atom(), binary()) -> [pid()].

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Message, State)

 init(_)

 publish(Channel, Topic, Message)

 -spec publish(atom(), binary(), term()) -> ok | {error, term()}.

 publish(Channel, Topic, Message, CapabilityToken)

 -spec publish(atom(), binary(), term(), binary()) -> ok | {error, term()}.

Publish with capability token for authorization

 start_link(Module, Opts)

 -spec start_link(module(), map()) -> {ok, pid()} | {error, term()}.

 subscribe(Channel, Topic, Pid)

 -spec subscribe(atom(), binary(), pid()) -> ok | {error, term()}.

 subscribe(Channel, Topic, Pid, CapabilityToken)

 -spec subscribe(atom(), binary(), pid(), binary()) -> ok | {error, term()}.

Subscribe with capability token for authorization

 terminate(Reason, State)

 unsubscribe(Channel, Topic, Pid)

 -spec unsubscribe(atom(), binary(), pid()) -> ok.

esdb_channel_sup

Channel supervisor for erl-esdb-gater PubSub API SET
Supervises all 10 channel implementations: - esdb_channel_events (high priority) - esdb_channel_health (high priority) - esdb_channel_alerts (critical, HMAC required) - esdb_channel_security (critical, HMAC required) - esdb_channel_system (normal priority) - esdb_channel_metrics (normal priority) - esdb_channel_audit (normal priority) - esdb_channel_lifecycle (normal priority) - esdb_channel_logging (low priority) - esdb_channel_diagnostics (low priority)

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

esdb_channel_system

System channel for erl-esdb-gater
Normal-priority channel for system-level messages. Used for internal coordination and status updates.
Topics: system.status - System status updates system.config - Configuration changes system.maintenance - Maintenance notifications

 Summary

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

 Functions

 handle_message(Message, State)

 handle_publish(Topic, Message, State)

 handle_subscribe(Topic, Pid, State)

 handle_unsubscribe(Topic, Pid, State)

 init(Opts)

 max_rate()

 priority()

 requires_signature()

 terminate(Reason, State)

esdb_gater_api

Main API for erl-esdb-gater
Provides the primary interface for accessing erl-esdb event stores through the gateway with automatic load balancing and retry.
This module mirrors the ExESDBGater.API pattern from the original Elixir implementation, providing specific functions for each operation rather than a generic call interface.
[bookmark: Stream_Operations]Stream Operations
{ok, Version} = esdb_gater_api:append_events(my_store, StreamId, Events). {ok, Events} = esdb_gater_api:get_events(my_store, StreamId, 0, 100, forward). {ok, Version} = esdb_gater_api:get_version(my_store, StreamId).
[bookmark: Subscription_Operations]Subscription Operations
ok = esdb_gater_api:save_subscription(my_store, by_stream, Selector, Name). ok = esdb_gater_api:remove_subscription(my_store, by_stream, Selector, Name).
[bookmark: Snapshot_Operations]Snapshot Operations
ok = esdb_gater_api:record_snapshot(my_store, SourceId, StreamId, Version, Data). {ok, Snapshot} = esdb_gater_api:read_snapshot(my_store, SourceId, StreamId, Version).

 Summary

 Types

 worker_entry/0

 Functions

 ack_event(StoreId, SubscriptionName, SubscriberPid, Event)

 Acknowledge receipt of an event by a subscriber

 append_events(StoreId, StreamId, Events)

 Append events to a stream (auto-versioned)

 append_events(StoreId, StreamId, ExpectedVersion, Events)

 Append events to a stream with expected version

 build_causation_graph(StoreId, Id)

 Build a causation graph for visualization

 check_raft_log_consistency(StoreId)

 Check Raft log consistency for a store

 create_link(StoreId, LinkSpec)

 Create a new link

 delete_link(StoreId, LinkName)

 Delete a link

 delete_snapshot(StoreId, SourceUuid, StreamUuid, Version)

 Delete a snapshot

 delete_stream(StoreId, StreamId)

 Delete a stream and all its events

 get_causation_chain(StoreId, EventId)

 Get the full causation chain for an event

 get_cause(StoreId, EventId)

 Get the event that caused another

 get_correlated(StoreId, CorrelationId)

 Get all events with the same correlation ID

 get_effects(StoreId, EventId)

 Get events caused by an event

 get_events(StoreId, StreamId, StartVersion, Count, Direction)

 Get events from a stream

 get_link(StoreId, LinkName)

 Get a link by name

 get_memory_level(StoreId)

 Get current memory pressure level

 get_memory_stats(StoreId)

 Get memory statistics

 get_schema(StoreId, EventType)

 Get a schema by event type

 get_schema_version(StoreId, EventType)

 Get the version of a schema

 get_streams(StoreId)

 Get all streams in a store

 get_subscription(StoreId, SubscriptionName)

 Get a specific subscription by name

 get_subscriptions(StoreId)

 Get all subscriptions for a store

 get_version(StoreId, StreamId)

 Get the current version of a stream

 get_workers(StoreId)

 Get all registered workers for a store

 health()

 Get gateway health status

 link_info(StoreId, LinkName)

 Get detailed info about a link

 list_links(StoreId)

 List all links

 list_schemas(StoreId)

 List all schemas

 list_snapshots(StoreId, SourceUuid, StreamUuid)

 List snapshots

 list_stores()

 List all managed stores in the cluster

 quick_health_check(StoreId)

 Quick health check for a store

 read_by_event_types(StoreId, EventTypes, BatchSize)

 Read events by type using native Khepri filtering

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp)

 Read events in a time range

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp, Opts)

 Read events in a time range with options

 read_snapshot(StoreId, SourceUuid, StreamUuid, Version)

 Read a snapshot

 read_until(StoreId, StreamId, Timestamp)

 Read events up to a timestamp

 read_until(StoreId, StreamId, Timestamp, Opts)

 Read events up to a timestamp with options

 record_snapshot(StoreId, SourceUuid, StreamUuid, Version, SnapshotRecord)

 Record a snapshot

 register_schema(StoreId, EventType, Schema)

 Register a schema

 register_worker(StoreId)

 Register current process as a worker for a store

 register_worker(StoreId, Pid)

 Register a specific process as a worker for a store

 remove_subscription(StoreId, Type, Selector, SubscriptionName)

 Remove a subscription

 save_subscription(StoreId, Type, Selector, SubscriptionName, StartFrom, Subscriber)

 Save a subscription

 scavenge(StoreId, StreamId, Opts)

 Scavenge a stream (delete old events)

 scavenge_dry_run(StoreId, StreamId, Opts)

 Dry-run scavenge (preview what would be deleted)

 scavenge_matching(StoreId, Pattern, Opts)

 Scavenge streams matching a pattern

 start_link(StoreId, LinkName)

 Start a link

 stop_link(StoreId, LinkName)

 Stop a link

 stream_backward(StoreId, StreamId, StartVersion, Count)

 Stream events backward from a version

 stream_forward(StoreId, StreamId, StartVersion, Count)

 Stream events forward from a version

 unregister_schema(StoreId, EventType)

 Unregister a schema

 unregister_worker(StoreId)

 Unregister current process as a worker for a store

 unregister_worker(StoreId, Pid)

 Unregister a specific process as a worker for a store

 upcast_events(StoreId, Events)

 Upcast events to current schema version

 verify_cluster_consistency(StoreId)

 Verify cluster consistency for a store

 verify_membership_consensus(StoreId)

 Verify membership consensus for a store

 version_at(StoreId, StreamId, Timestamp)

 Get stream version at a specific timestamp

 Types

 worker_entry/0

 -type worker_entry() ::
 #worker_entry{store_id :: atom(), node :: node(), pid :: pid(), registered_at :: integer()}.

 Functions

 ack_event(StoreId, SubscriptionName, SubscriberPid, Event)

 -spec ack_event(atom(), binary(), pid(), map()) -> ok.

Acknowledge receipt of an event by a subscriber

 append_events(StoreId, StreamId, Events)

 -spec append_events(atom(), binary(), list()) -> {ok, integer()} | {error, term()}.

Append events to a stream (auto-versioned)

 append_events(StoreId, StreamId, ExpectedVersion, Events)

 -spec append_events(atom(), binary(), integer() | any, list()) ->
 {ok, integer()} | {error, term()} | {error, {wrong_expected_version, integer()}}.

Append events to a stream with expected version

 build_causation_graph(StoreId, Id)

 -spec build_causation_graph(atom(), binary()) -> {ok, map()} | {error, term()}.

Build a causation graph for visualization

 check_raft_log_consistency(StoreId)

 -spec check_raft_log_consistency(atom()) -> {ok, map()} | {error, term()}.

Check Raft log consistency for a store

 create_link(StoreId, LinkSpec)

 -spec create_link(atom(), map()) -> ok.

Create a new link

 delete_link(StoreId, LinkName)

 -spec delete_link(atom(), binary()) -> ok.

Delete a link

 delete_snapshot(StoreId, SourceUuid, StreamUuid, Version)

 -spec delete_snapshot(atom(), binary(), binary(), non_neg_integer()) -> ok.

Delete a snapshot

 delete_stream(StoreId, StreamId)

 -spec delete_stream(atom(), binary()) -> ok | {error, term()}.

Delete a stream and all its events

 get_causation_chain(StoreId, EventId)

 -spec get_causation_chain(atom(), binary()) -> {ok, list()} | {error, term()}.

Get the full causation chain for an event

 get_cause(StoreId, EventId)

 -spec get_cause(atom(), binary()) -> {ok, map()} | {error, term()}.

Get the event that caused another

 get_correlated(StoreId, CorrelationId)

 -spec get_correlated(atom(), binary()) -> {ok, list()} | {error, term()}.

Get all events with the same correlation ID

 get_effects(StoreId, EventId)

 -spec get_effects(atom(), binary()) -> {ok, list()} | {error, term()}.

Get events caused by an event

 get_events(StoreId, StreamId, StartVersion, Count, Direction)

 -spec get_events(atom(), binary(), integer(), integer(), forward | backward) ->
 {ok, list()} | {error, term()}.

Get events from a stream

 get_link(StoreId, LinkName)

 -spec get_link(atom(), binary()) -> {ok, map()} | {error, term()}.

Get a link by name

 get_memory_level(StoreId)

 -spec get_memory_level(atom()) -> {ok, atom()} | {error, term()}.

Get current memory pressure level

 get_memory_stats(StoreId)

 -spec get_memory_stats(atom()) -> {ok, map()} | {error, term()}.

Get memory statistics

 get_schema(StoreId, EventType)

 -spec get_schema(atom(), binary()) -> {ok, map()} | {error, term()}.

Get a schema by event type

 get_schema_version(StoreId, EventType)

 -spec get_schema_version(atom(), binary()) -> {ok, integer()} | {error, term()}.

Get the version of a schema

 get_streams(StoreId)

 -spec get_streams(atom()) -> {ok, list()} | {error, term()}.

Get all streams in a store

 get_subscription(StoreId, SubscriptionName)

 -spec get_subscription(atom(), binary()) -> {ok, map()} | {error, term()}.

Get a specific subscription by name
Returns the subscription details including the checkpoint.

 get_subscriptions(StoreId)

 -spec get_subscriptions(atom()) -> {ok, list()} | {error, term()}.

Get all subscriptions for a store

 get_version(StoreId, StreamId)

 -spec get_version(atom(), binary()) -> {ok, integer()} | {error, term()}.

Get the current version of a stream

 get_workers(StoreId)

 -spec get_workers(atom()) -> {ok, [worker_entry()]} | {error, term()}.

Get all registered workers for a store

 health()

 -spec health() -> {ok, map()}.

Get gateway health status

 link_info(StoreId, LinkName)

 -spec link_info(atom(), binary()) -> {ok, map()} | {error, term()}.

Get detailed info about a link

 list_links(StoreId)

 -spec list_links(atom()) -> {ok, list()} | {error, term()}.

List all links

 list_schemas(StoreId)

 -spec list_schemas(atom()) -> {ok, list()} | {error, term()}.

List all schemas

 list_snapshots(StoreId, SourceUuid, StreamUuid)

 -spec list_snapshots(atom(), binary() | any, binary() | any) -> {ok, [map()]} | {error, term()}.

List snapshots

 list_stores()

 -spec list_stores() -> {ok, list()} | {error, term()}.

List all managed stores in the cluster

 quick_health_check(StoreId)

 -spec quick_health_check(atom()) -> {ok, map()} | {error, term()}.

Quick health check for a store

 read_by_event_types(StoreId, EventTypes, BatchSize)

 -spec read_by_event_types(atom(), [binary()], pos_integer()) -> {ok, list()} | {error, term()}.

Read events by type using native Khepri filtering
This uses the server-side read_by_event_types which performs efficient filtering at the database level rather than loading all events.

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp)

 -spec read_range(atom(), binary(), integer(), integer()) -> {ok, list()} | {error, term()}.

Read events in a time range

 read_range(StoreId, StreamId, FromTimestamp, ToTimestamp, Opts)

 -spec read_range(atom(), binary(), integer(), integer(), map()) -> {ok, list()} | {error, term()}.

Read events in a time range with options

 read_snapshot(StoreId, SourceUuid, StreamUuid, Version)

 -spec read_snapshot(atom(), binary(), binary(), non_neg_integer()) -> {ok, map()} | {error, term()}.

Read a snapshot

 read_until(StoreId, StreamId, Timestamp)

 -spec read_until(atom(), binary(), integer()) -> {ok, list()} | {error, term()}.

Read events up to a timestamp

 read_until(StoreId, StreamId, Timestamp, Opts)

 -spec read_until(atom(), binary(), integer(), map()) -> {ok, list()} | {error, term()}.

Read events up to a timestamp with options

 record_snapshot(StoreId, SourceUuid, StreamUuid, Version, SnapshotRecord)

 -spec record_snapshot(atom(), binary(), binary(), non_neg_integer(), map()) -> ok.

Record a snapshot

 register_schema(StoreId, EventType, Schema)

 -spec register_schema(atom(), binary(), map()) -> ok.

Register a schema

 register_worker(StoreId)

 -spec register_worker(atom()) -> ok | {error, term()}.

Register current process as a worker for a store

 register_worker(StoreId, Pid)

 -spec register_worker(atom(), pid()) -> ok | {error, term()}.

Register a specific process as a worker for a store

 remove_subscription(StoreId, Type, Selector, SubscriptionName)

 -spec remove_subscription(atom(), atom(), binary() | map(), binary()) -> ok.

Remove a subscription

 save_subscription(StoreId, Type, Selector, SubscriptionName, StartFrom, Subscriber)

 -spec save_subscription(atom(),
 atom(),
 binary() | map(),
 binary(),
 non_neg_integer(),
 pid() | undefined) ->
 ok.

Save a subscription

 scavenge(StoreId, StreamId, Opts)

 -spec scavenge(atom(), binary(), map()) -> {ok, map()} | {error, term()}.

Scavenge a stream (delete old events)

 scavenge_dry_run(StoreId, StreamId, Opts)

 -spec scavenge_dry_run(atom(), binary(), map()) -> {ok, map()} | {error, term()}.

Dry-run scavenge (preview what would be deleted)

 scavenge_matching(StoreId, Pattern, Opts)

 -spec scavenge_matching(atom(), binary(), map()) -> {ok, list()} | {error, term()}.

Scavenge streams matching a pattern

 start_link(StoreId, LinkName)

 -spec start_link(atom(), binary()) -> ok.

Start a link

 stop_link(StoreId, LinkName)

 -spec stop_link(atom(), binary()) -> ok.

Stop a link

 stream_backward(StoreId, StreamId, StartVersion, Count)

 -spec stream_backward(atom(), binary(), integer(), non_neg_integer()) -> {ok, list()} | {error, term()}.

Stream events backward from a version

 stream_forward(StoreId, StreamId, StartVersion, Count)

 -spec stream_forward(atom(), binary(), integer(), integer()) -> {ok, list()} | {error, term()}.

Stream events forward from a version

 unregister_schema(StoreId, EventType)

 -spec unregister_schema(atom(), binary()) -> ok.

Unregister a schema

 unregister_worker(StoreId)

 -spec unregister_worker(atom()) -> ok | {error, term()}.

Unregister current process as a worker for a store

 unregister_worker(StoreId, Pid)

 -spec unregister_worker(atom(), pid()) -> ok | {error, term()}.

Unregister a specific process as a worker for a store

 upcast_events(StoreId, Events)

 -spec upcast_events(atom(), list()) -> {ok, list()} | {error, term()}.

Upcast events to current schema version

 verify_cluster_consistency(StoreId)

 -spec verify_cluster_consistency(atom()) -> {ok, map()} | {error, term()}.

Verify cluster consistency for a store

 verify_membership_consensus(StoreId)

 -spec verify_membership_consensus(atom()) -> {ok, map()} | {error, term()}.

Verify membership consensus for a store

 version_at(StoreId, StreamId, Timestamp)

 -spec version_at(atom(), binary(), integer()) -> {ok, integer()} | {error, term()}.

Get stream version at a specific timestamp

esdb_gater_cluster_monitor

Cluster monitor for erl-esdb-gater
Monitors node health and manages cluster membership: - Tracks node up/down events - Emits telemetry for cluster changes - Maintains connected node list

 Summary

 Functions

 get_nodes()

 Get list of connected nodes

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 is_healthy()

 Check if cluster is healthy

 start_link()

 terminate(Reason, State)

 Functions

 get_nodes()

 -spec get_nodes() -> [node()].

Get list of connected nodes

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 is_healthy()

 -spec is_healthy() -> boolean().

Check if cluster is healthy

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

esdb_gater_cluster_sup

Cluster supervisor for erl-esdb-gater
Supervises cluster-related components: - Worker registry (Ra-based distributed registry) - Cluster monitor (node health monitoring)

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

esdb_gater_config

Global configuration for erl-esdb-gater
Manages gateway-wide configuration including capability security modes.
Capability modes:
	disabled - Capabilities never checked (development/testing)
	optional - Capabilities verified if provided, allowed if not
	required - Capabilities always required for protected operations

Configuration is read from application environment with capability_mode set to disabled, optional, or required.
Per-channel overrides take precedence. If a channel has requires_capability/0 returning true, that channel always requires capabilities regardless of the global setting.

 Summary

 Types

 capability_mode/0

 Functions

 capability_mode()

 Get the global capability mode Defaults to disabled for backwards compatibility.

 effective_capability_mode(_)

 Get effective mode considering channel override

 set_capability_mode(Mode)

 Set the global capability mode at runtime Use for testing or dynamic configuration.

 Types

 capability_mode/0

 -type capability_mode() :: disabled | optional | required.

 Functions

 capability_mode()

 -spec capability_mode() -> capability_mode().

Get the global capability mode Defaults to disabled for backwards compatibility.

 effective_capability_mode(_)

 -spec effective_capability_mode(boolean()) -> capability_mode().

Get effective mode considering channel override
If the channel explicitly requires capabilities (ChannelOverride = true`), the mode is always `required. Otherwise the global mode applies.
This implements a "most restrictive wins" policy: - Channel override true + any global mode = required - Channel override false + global mode = global mode

 set_capability_mode(Mode)

 -spec set_capability_mode(capability_mode()) -> ok.

Set the global capability mode at runtime Use for testing or dynamic configuration.

esdb_gater_crypto_nif

NIF acceleration for cryptographic operations (Enterprise Edition)
This module provides high-performance native implementations of compute-intensive cryptographic operations used in capability tokens.
[bookmark: Community_vs_Enterprise_Edition]Community vs Enterprise Edition
- Community Edition (hex.pm): NIF not available, pure Erlang fallbacks used - Enterprise Edition: Add erl_esdb_nifs dependency for 5-10x faster NIFs
The NIF is optional and auto-detected at runtime. All operations have pure Erlang fallbacks in their respective modules (esdb_identity, etc.).
[bookmark: Enabling_NIF_Acceleration]Enabling NIF Acceleration
Add erl_esdb_nifs to your dependencies: {erl_esdb_nifs, {git, "git@github.com:macula-io/erl-esdb-nifs.git", {tag, "0.4.0"}}}
The NIFs are automatically loaded when the erl_esdb_nifs application starts.
[bookmark: Functions]Functions
- base58_encode/1: Base58btc encoding for DIDs (5-10x faster) - base58_decode/1: Base58btc decoding for DID parsing (5-10x faster) - match_resource_pattern/2: Resource URI pattern matching (3-5x faster)

 Summary

 Functions

 base58_decode(Base58)

 Decode Base58 to binary

 base58_encode(Data)

 Encode binary to Base58 (Bitcoin alphabet)

 is_loaded()

 Check if NIF acceleration is available

 match_resource_pattern(Pattern, Resource)

 Match a resource pattern against a resource URI

 Functions

 base58_decode(Base58)

 -spec base58_decode(binary()) -> {ok, binary()} | {error, term()}.

Decode Base58 to binary
Fast native implementation of Base58 decoding for DID parsing. Falls back to esdb_identity:base58_decode/1 if NIF unavailable.

 base58_encode(Data)

 -spec base58_encode(binary()) -> binary().

Encode binary to Base58 (Bitcoin alphabet)
Fast native implementation of Base58 encoding for DID generation. Falls back to esdb_identity:base58_encode/1 if NIF unavailable.

 is_loaded()

 -spec is_loaded() -> boolean().

Check if NIF acceleration is available
Returns true if the Rust NIF is loaded, false otherwise. Use this to check before calling NIF functions directly.

 match_resource_pattern(Pattern, Resource)

 -spec match_resource_pattern(binary(), binary()) -> boolean().

Match a resource pattern against a resource URI
Supports: - Exact match: Pattern equals Resource - Wildcard suffix: "esdb://realm/*" matches any path - Prefix match: "esdb://realm/orders-*" matches prefix

esdb_gater_repl

Interactive REPL for erl-esdb-gater
Provides an interactive shell for exploring event stores, streams, causation chains, and temporal queries.
Start the REPL:
 esdb_gater_repl:start(). %% No store selected
 esdb_gater_repl:start(my_store). %% With store pre-selected
Commands:
 STORE COMMANDS
 stores List all stores
 use STORE Set current store context

 STREAM COMMANDS
 streams List streams in current store
 stream STREAM Set current stream context
 read [N] Read N events from current stream (default 10)
 read STREAM [N] Read N events from specified stream
 version Get version of current stream
 version STREAM Get version of specified stream

 CAUSATION COMMANDS
 effects ID Get events caused by event ID
 cause ID Get event that caused this event
 chain ID Get full causation chain
 graph ID Build causation graph
 dot ID FILE Export causation graph as DOT file

 TEMPORAL COMMANDS
 until TS Read events until timestamp
 range T1 T2 Read events in time range

 SCHEMA COMMANDS
 schemas List all schemas
 schema TYPE Get schema for event type

 SUBSCRIPTION COMMANDS
 subscriptions List all subscriptions
 subscription NAME Get subscription details

 HEALTH COMMANDS
 health Gateway health status
 memory Memory statistics

 OTHER
 help, h, ? Show help
 exit, quit, q Exit REPL

 Summary

 Functions

 graph_to_dot(_)

 start()

 Start the REPL without a store selected

 start(Store)

 Start the REPL with a store pre-selected

 Functions

 graph_to_dot(_)

 start()

 -spec start() -> ok.

Start the REPL without a store selected

 start(Store)

 -spec start(atom() | undefined) -> ok.

Start the REPL with a store pre-selected

esdb_gater_retry

Retry logic with exponential backoff for erl-esdb-gater
Provides configurable retry behavior with: - Exponential backoff with jitter - Maximum delay cap - Maximum retry count - Telemetry integration

 Summary

 Types

 retry_config/0

 retry_result/0

 Functions

 calculate_delay(Attempt, Retry_config)

 Calculate delay for a given attempt (useful for testing)

 default_config()

 Get default retry configuration from application environment

 with_retry(StoreId, Fun)

 Execute a function with default retry configuration

 with_retry(StoreId, Fun, Config)

 Execute a function with custom retry configuration

 Types

 retry_config/0

 -type retry_config() ::
 #retry_config{base_delay_ms :: pos_integer(),
 max_delay_ms :: pos_integer(),
 max_retries :: non_neg_integer()}.

 retry_result/0

 -type retry_result() :: {ok, term()} | {error, term()}.

 Functions

 calculate_delay(Attempt, Retry_config)

 -spec calculate_delay(non_neg_integer(), retry_config()) -> non_neg_integer().

Calculate delay for a given attempt (useful for testing)

 default_config()

 -spec default_config() -> retry_config().

Get default retry configuration from application environment

 with_retry(StoreId, Fun)

 -spec with_retry(atom(), fun(() -> retry_result())) -> retry_result().

Execute a function with default retry configuration

 with_retry(StoreId, Fun, Config)

 -spec with_retry(atom(), fun(() -> retry_result()), retry_config()) -> retry_result().

Execute a function with custom retry configuration

esdb_gater_telemetry

Telemetry handler for erl-esdb-gater
Provides logging handler for telemetry events and utilities for attaching/detaching handlers.
[bookmark: Usage]Usage
Attach the default logger handler: ok = esdb_gater_telemetry:attach_default_handler().
Attach a custom handler: ok = esdb_gater_telemetry:attach(my_handler, fun my_module:handle/4, #{}).
Emit an event: esdb_gater_telemetry:emit(?GATER_REQUEST_STOP, #{duration => 1000}, #{store_id => my_store}).

 Summary

 Functions

 attach(HandlerId, HandlerFun, Config)

 Attach a custom handler for all esdb_gater events

 attach_default_handler()

 Attach the default logger handler for all esdb_gater events

 detach(HandlerId)

 Detach a handler by ID

 detach_default_handler()

 Detach the default logger handler

 emit(Event, Measurements, Metadata)

 Emit a telemetry event

 handle_event(Event, Measurements, Meta, Config)

 Handle telemetry events (logger handler)

 Functions

 attach(HandlerId, HandlerFun, Config)

 -spec attach(term(),
 fun((telemetry:event_name(),
 telemetry:event_measurements(),
 telemetry:event_metadata(),
 term()) ->
 ok),
 term()) ->
 ok | {error, already_exists}.

Attach a custom handler for all esdb_gater events

 attach_default_handler()

 -spec attach_default_handler() -> ok | {error, already_exists}.

Attach the default logger handler for all esdb_gater events

 detach(HandlerId)

 -spec detach(term()) -> ok | {error, not_found}.

Detach a handler by ID

 detach_default_handler()

 -spec detach_default_handler() -> ok | {error, not_found}.

Detach the default logger handler

 emit(Event, Measurements, Metadata)

 -spec emit(telemetry:event_name(), telemetry:event_measurements(), telemetry:event_metadata()) -> ok.

Emit a telemetry event

 handle_event(Event, Measurements, Meta, Config)

 -spec handle_event(telemetry:event_name(),
 telemetry:event_measurements(),
 telemetry:event_metadata(),
 term()) ->
 ok.

Handle telemetry events (logger handler)

esdb_gater_worker_registry

pg-based distributed worker registry for erl-esdb-gater
Provides cluster-wide worker registration and discovery using Erlang's built-in pg (process groups) module.
[bookmark: Cluster-Wide_Discovery]Cluster-Wide Discovery
Workers registered on any node are discoverable from all nodes:
- pg:join/3` broadcasts group membership to all connected nodes - `pg:get_members/2` returns PIDs from ALL nodes in the cluster - When a node fails, pg automatically removes its members from groups == Design Rationale == This implementation uses pg instead of Ra because: 1. **Simplicity** - pg is built into OTP, no external dependencies 2. **Sufficient consistency** - Gateway worker discovery doesnt require strong consistency; finding "any available worker" is fine 3. **No conflicts** - Avoids Ra cluster ID conflicts with Khepri stores 4. **Automatic cleanup** - pg handles node failures automatically
[bookmark: Eventual_Consistency]Eventual Consistency
pg provides eventual consistency. During network partitions, different nodes may briefly see different worker lists. This is acceptable for gateway workers since:
- Workers are stateless proxies to the event store - Requests are retried with exponential backoff - Any available worker can handle any request
[bookmark: Key_Features]Key Features
- Register gateway workers for specific stores - Cluster-wide worker discovery via pg groups - Automatic cleanup on worker death (local monitor) - Automatic cleanup on node failure (pg membership) - Load balancing via round-robin worker selection

 Summary

 Types

 worker_entry/0

 Functions

 get_all_workers()

 Get all registered workers

 get_workers(StoreId)

 Get all workers for a store

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 register_worker(StoreId, Pid)

 Register a worker for a store

 start_link()

 terminate(Reason, State)

 unregister_worker(StoreId, Pid)

 Unregister a worker for a store

 Types

 worker_entry/0

 -type worker_entry() ::
 #worker_entry{store_id :: atom(), node :: node(), pid :: pid(), registered_at :: integer()}.

 Functions

 get_all_workers()

 -spec get_all_workers() -> {ok, #{atom() => [worker_entry()]}} | {error, term()}.

Get all registered workers

 get_workers(StoreId)

 -spec get_workers(atom()) -> {ok, [worker_entry()]} | {error, term()}.

Get all workers for a store

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 register_worker(StoreId, Pid)

 -spec register_worker(atom(), pid()) -> ok | {error, term()}.

Register a worker for a store

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unregister_worker(StoreId, Pid)

 -spec unregister_worker(atom(), pid()) -> ok | {error, term()}.

Unregister a worker for a store

esdb_identity

Identity management for capability-based security
Provides Ed25519 keypair generation and DID (Decentralized Identifier) encoding/decoding using the did:key method.
[bookmark: DID_Key_Method]DID Key Method
DIDs are encoded as: did:key:z{base58btc(multicodec_prefix + public_key)}
For Ed25519: multicodec prefix is 0xed01
[bookmark: NIF_Acceleration]NIF Acceleration
Base58 encoding/decoding can be accelerated via optional Rust NIFs. When the NIF is available (Enterprise Edition), operations are 5-10x faster. Pure Erlang fallbacks are always available (Community Edition).
[bookmark: Example]Example
Generate new identity and get DID:
Identity = esdb_identity:generate(), DID = esdb_identity:did(Identity), {ok, PubKey} = esdb_identity:public_key_from_did(DID).

 Summary

 Types

 identity/0

 Functions

 base58_decode(Base58)

 Decode Base58 to binary

 base58_encode(Bin)

 Encode binary to Base58 (Bitcoin alphabet)

 did(Identity)

 Get the DID from an identity

 from_keypair(PubKey, PrivKey)

 Create an identity from an existing Ed25519 keypair

 from_public_key(PubKey)

 Create an identity from a public key only (for verification)

 generate()

 Generate a new Ed25519 identity with random keypair

 is_nif_available()

 Check if NIF acceleration is available

 is_valid_did(DID)

 Check if a binary is a valid did:key DID

 private_key(Identity)

 Get the private key from an identity (may be undefined)

 public_key(Identity)

 Get the public key from an identity

 public_key_from_did(DID)

 Extract public key from a did:key DID

 Types

 identity/0

 -type identity() ::
 #identity{did :: binary(), public_key :: binary(), private_key :: binary() | undefined}.

 Functions

 base58_decode(Base58)

 -spec base58_decode(binary()) -> {ok, binary()} | {error, term()}.

Decode Base58 to binary
Uses NIF acceleration when available, otherwise pure Erlang.

 base58_encode(Bin)

 -spec base58_encode(binary()) -> binary().

Encode binary to Base58 (Bitcoin alphabet)
Uses NIF acceleration when available, otherwise pure Erlang.

 did(Identity)

 -spec did(identity()) -> binary().

Get the DID from an identity

 from_keypair(PubKey, PrivKey)

 -spec from_keypair(binary(), binary()) -> identity().

Create an identity from an existing Ed25519 keypair

 from_public_key(PubKey)

 -spec from_public_key(binary()) -> identity().

Create an identity from a public key only (for verification)

 generate()

 -spec generate() -> identity().

Generate a new Ed25519 identity with random keypair

 is_nif_available()

 -spec is_nif_available() -> boolean().

Check if NIF acceleration is available
Returns true if the Rust NIF is loaded and functional. When false, pure Erlang implementations are used.

 is_valid_did(DID)

 -spec is_valid_did(binary()) -> boolean().

Check if a binary is a valid did:key DID

 private_key(Identity)

 -spec private_key(identity()) -> binary() | undefined.

Get the private key from an identity (may be undefined)

 public_key(Identity)

 -spec public_key(identity()) -> binary().

Get the public key from an identity

 public_key_from_did(DID)

 -spec public_key_from_did(binary()) -> {ok, binary()} | {error, term()}.

Extract public key from a did:key DID

esdb_pubsub_security

HMAC security utilities for erl-esdb-gater PubSub
Provides message signing and verification for critical channels. Uses HMAC-SHA256 for message authentication.
[bookmark: Usage]Usage
Sign a message: SignedMsg = esdb_pubsub_security:sign(Message).
Verify a signed message: ok = esdb_pubsub_security:verify(SignedMsg).
Verify with explicit secret: ok = esdb_pubsub_security:verify(SignedMsg, Secret).

 Summary

 Functions

 get_secret()

 Get the configured HMAC secret

 set_secret(Secret)

 Set the HMAC secret

 sign(Message)

 Sign a message map using the configured secret

 sign(Message, Secret)

 Sign a message map using a specific secret

 verify(Message)

 Verify a signed message using the configured secret

 verify(Message, Secret)

 Verify a signed message using a specific secret

 Functions

 get_secret()

 -spec get_secret() -> binary().

Get the configured HMAC secret

 set_secret(Secret)

 -spec set_secret(binary() | string()) -> ok.

Set the HMAC secret

 sign(Message)

 -spec sign(map()) -> map().

Sign a message map using the configured secret

 sign(Message, Secret)

 -spec sign(map(), binary()) -> map().

Sign a message map using a specific secret

 verify(Message)

 -spec verify(map()) -> ok | {error, term()}.

Verify a signed message using the configured secret

 verify(Message, Secret)

 -spec verify(map(), binary()) -> ok | {error, term()}.

Verify a signed message using a specific secret

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

