

 erlang_doctor

 v0.2.6

 Table of contents

 	Erlang Doctor

 	Modules

 	erlang_doctor_app

 	erlang_doctor_sup

 	tr

Erlang Doctor

[image: Hex.pm Version]
[image: Hex Docs]
[image: GitHub Actions]
Lightweight tracing, debugging and profiling tool, which collects traces in an ETS table, putting minimal impact on your system.
After collecting the traces, you can query and analyse them.
By separating data collection from analysis, this tool helps you limit unnecessary repetition and guesswork.
There is ExDoctor for Elixir as well.

 Quick start

To quickly try it out right now, copy & paste the following to your Erlang shell:
P = "/tmp/tr.erl", ssl:start(), inets:start(), {ok, {{_, 200, _}, _, Src}} = httpc:request("https://git.io/fj024"), file:write_file(P, Src), {ok, tr, B} = compile:file(P, binary), code:load_binary(tr, P, B), rr(P), tr:start().
This snippet downloads, compiles and starts the tr module from the master branch.
Your Erlang Doctor is now ready to use!
The easiest way to use it is the following:
tr:trace([your_module]).
your_module:some_function().
tr:select().
You should see the collected traces for the call and return of your_module:some_function/0.
This compact tool is capable of much more - see below.

 Include it as a dependency

To avoid copy-pasting the snippet shown above, you can include erlang_doctor in your dependencies in rebar.config.
There is a Hex package as well.

 Use it during development

You can make Erlang Doctor available in the Erlang/Rebar3 shell during development by cloning it to ERLANG_DOCTOR_PATH,
calling rebar3 compile, and loading it in your ~/.erlang file:
code:add_path("ERLANG_DOCTOR_PATH/erlang_doctor/_build/default/lib/erlang_doctor/ebin").
code:load_file(tr).

 Tracing: data collection

The test suite helpers from tr_SUITE.erl are used here as examples.
You can follow these examples on your own - just call rebar3 as test shell in ERLANG_DOCTOR_PATH.

 Setting up: start, start_link

The first thing to do is to start the tracer with tr:start/0.
There is also tr:start/1, which accepts a map of options, including:
	tab: collected traces are stored in an ETS table with this name (default: trace),
	limit: maximum number of traces in the table - when it is reached, tracing is stopped (default: no limit).

There are tr:start_link/0 and tr:start_link/1 as well, and they are intended for use with the whole erlang_doctor application.
For this tutorial we start the tr module in the simplest way:
1> tr:start().
{ok, <0.218.0>}

 Tracing with trace

To trace function calls for given modules, use tr:trace/1, providing a list of traced modules:
2> tr:trace([tr_SUITE]).
ok
You can provide {Module, Function, Arity} tuples in the list as well.
The function tr:trace_app/1 traces an application, and tr:trace_apps/1 traces multiple ones.
If you need to trace an application and some additional modules, use tr:app_modules/1 to get the list of modules for an application:
tr:trace([Module1, Module2 | tr:app_modules(YourApp)]).
If you want to trace selected processes instead of all of them, you can use tr:trace/2:
tr:trace([Module1, Module2], [Pid1, Pid2]).
The tr:trace/1 function accepts a map of options, which include:
	modules: a list of module names or {Module, Function, Arity} tuples. The list is empty by default.
	pids: a list of Pids of processes to trace, or the atom all (default) to trace all processes.
	msg: none (default), all, send or recv. Specifies which message events will be traced. By default no messages are traced.
	msg_trigger: after_traced_call (default) or always. By default, traced messages in each process are stored after the first traced function call in that process. The goal is to limit the number of traced messages, which can be huge in the entire Erlang system. If you want all messages, set it to always.

 Calling the traced function

Now we can call some functions - let's trace the following function call.
It calculates the factorial recursively and sleeps 1 ms between each step.
3> tr_SUITE:sleepy_factorial(3).
6

 Stopping tracing

You can stop tracing with the following function:
4> tr:stop_tracing().
ok
It's good to stop it as soon as possible to avoid accumulating too many traces in the ETS table.
Usage of tr on production systems is risky, but if you have to do it, start and stop the tracer in the same command,
e.g. for one second with:
tr:trace(Modules), timer:sleep(1000), tr:stop_tracing().

 Debugging: data analysis

The collected traces are stored in an ETS table (default name: trace).
They are stored as tr records with the following fields:
	index: trace identifier, auto-incremented for each received trace.
	pid: process identifier associated with the trace.
	event: call, return or exception for function traces; send or recv for messages.
	mfa: {Module, Function, Arity} for function traces; no_mfa for messages.
	data: argument list (for calls), returned value (for returns) or class and value (for exceptions).
	timestamp in microseconds.
	info: For function traces and recv events it is no_info. For send events it is a {To, Exists} tuple, where To is the recipient pid, and Exists is a boolean indicating if the recipient process existed.

It's useful to read the record definitions before trace analysis:
5> rr(tr).
[node,tr]
The snippet shown at the top of this page includes this already.

 Trace selection: select

Use tr:select/0 to select all collected traces.
6> tr:select().
[#tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info},
 #tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 4,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [0],
 ts = 1705475521748499,info = no_info},
 #tr{index = 5,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 1,ts = 1705475521750451,info = no_info},
 #tr{index = 6,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 1,ts = 1705475521750453,info = no_info},
 #tr{index = 7,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 2,ts = 1705475521750454,info = no_info},
 #tr{index = 8,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 6,ts = 1705475521750455,info = no_info}]
The tr:select/1 function accepts a fun that is passed to ets:fun2ms/1.
This way you can limit the selection to specific items and select only some fields from the tr record:
7> tr:select(fun(#tr{event = call, data = [N]}) -> N end).
[3, 2, 1, 0]
Use tr:select/2 to further filter the results by searching for a term in #tr.data (recursively searching in lists, tuples and maps).
8> tr:select(fun(T) -> T end, 2).
[#tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 7,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 2,ts = 1705475521750454,info = no_info}]

 Trace filtering: filter

Sometimes it might be easier to use tr:filter/1, because it can accept any function as the argument.
You can use tr:contains_data/2 to search for the same term as in the example above.
9> Traces = tr:filter(fun(T) -> tr:contains_data(2, T) end).
[#tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 7,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 2,ts = 1705475521750454,info = no_info}]
The provided function is a predicate, which has to return true for the matching traces.
For other traces it can return another value, or even raise an exception:
10> tr:filter(fun(#tr{data = [2]}) -> true end).
[#tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info}]
There is also tr:filter/2, which can be used to search in a different table than the current one - or in a list:
11> tr:filter(fun(#tr{event = call}) -> true end, Traces).
[#tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info}]

 Tracebacks for filtered traces: tracebacks

To find the tracebacks (stack traces) for matching traces, use tr:tracebacks/1:
12> tr:tracebacks(fun(#tr{data = 1}) -> true end).
[[#tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info}]]
Note, that by specifying data = 1 we are only matching return traces, as call traces always have a list in data.
Only one traceback is returned. It starts with a call that returned 1. What follows is the stack trace for this call.
One can notice that the call for 0 also returned 1, but the call tree got pruned - whenever two tracebacks overlap, only the shorter one is left.
You can change this by returning tracebacks for all matching traces even if they overlap, setting the output option to all. All options are specified in the second argument, which is a map:
13> tr:tracebacks(fun(#tr{data = 1}) -> true end, #{output => all}).
[[#tr{index = 4,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [0],
 ts = 1705475521748499,info = no_info},
 #tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info}],
 [#tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info}]]
The third possibility is output => longest which does the opposite of pruning, leaving only the longest tracabecks when they overlap:
14> tr:tracebacks(fun(#tr{data = 1}) -> true end, #{output => longest}).
[[#tr{index = 4,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [0],
 ts = 1705475521748499,info = no_info},
 #tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 2,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [2],
 ts = 1705475521744690,info = no_info},
 #tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info}]]
Possible options for tr:tracebacks/2 include:
	tab is the table or list which is like the second argument of tr:filter/2,
	output - shortest (default), all, longest - see above.
	format - list (default), tree - returns a call tree instead of a list of tracebacks. Trees don't distinguish between all and longest output formats.
	order - top_down (default), bottom_up - call order in each tracaback; only for the list format.
	limit - positive integer or infinity (default) - limits the number of matched traces. The actual number of tracebacks returned can be smaller unless output => all

There are also functions tr:traceback/1 and tr:traceback/2. They set limit to one and return only one trace if it exists. The options for tr:traceback/2 are the same as for tr:traceback/2 except limit and format. Additionally, it is possible to pass a tr record (or an index) directly to tr:traceback/1 to obtain the traceback for the provided trace event.

 Trace ranges for filtered traces: ranges

To get a list of traces between each matching call and the corresponding return, use tr:ranges/1:
15> tr:ranges(fun(#tr{data = [1]}) -> true end).
[[#tr{index = 3,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [1],
 ts = 1705475521746470,info = no_info},
 #tr{index = 4,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [0],
 ts = 1705475521748499,info = no_info},
 #tr{index = 5,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 1,ts = 1705475521750451,info = no_info},
 #tr{index = 6,pid = <0.395.0>,event = return,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = 1,ts = 1705475521750453,info = no_info}]]
There is also tr:ranges/2 - it accepts a map of options, including:
	tab is the table or list which is like the second argument of tr:filter/2,
	max_depth is the maximum depth of nested calls. A message event also adds 1 to the depth.
 You can use #{max_depth => 1} to see only the top-level call and the corresponding return.

There are two additional function: tr:range/1 and tr:range/2, which return only one range if it exists. It is possible to pass a tr record or an index to tr:range/1 as well.

 Calling function from a trace: do

It is easy to replay a particular function call with tr:do/1:
16> [T] = tr:filter(fun(#tr{data = [3]}) -> true end).
[#tr{index = 1,pid = <0.395.0>,event = call,
 mfa = {tr_SUITE,sleepy_factorial,1},
 data = [3],
 ts = 1705475521743239,info = no_info}]
17> tr:do(T).
6
This is useful e.g. for checking if a bug has been fixed without running the whole test suite.
This function can be called with an index as the argument.

 Getting a single trace for the index: lookup

Use tr:lookup/1 to obtain the trace for an index.

 Profiling

You can quickly get a hint about possible bottlenecks and redundancies in your system with function call statistics.

 Call statistics: call_stat

The argument of tr:call_stat/1 is a function that returns a key by which the traces are grouped.
The simplest way to use this function is to look at the total number of calls and their time.
To do this, we group all calls under one key, e.g. total:
18> tr:call_stat(fun(_) -> total end).
#{total => {4,7216,7216}}
Values of the returned map have the following format (time is in microseconds):
{call_count(), acc_time(), own_time()}
In the example there are four calls, which took 7216 microseconds in total.
For nested calls we only take into account the outermost call, so this means that the whole calculation took 7.216 ms.
Let's see how this looks like for individual steps - we can group the stats by the function argument:
19> tr:call_stat(fun(#tr{data = [N]}) -> N end).
#{0 => {1,1952,1952},
 1 => {1,3983,2031},
 2 => {1,5764,1781},
 3 => {1,7216,1452}}
You can use the provided function to do filtering as well:
20> tr:call_stat(fun(#tr{data = [N]}) when N < 3 -> N end).
#{0 => {1,1952,1952},1 => {1,3983,2031},2 => {1,5764,1781}}

 Sorted call statistics: sorted_call_stat

You can sort the call stat by accumulated time (descending) with tr:sorted_call_stat/1:
21> tr:sorted_call_stat(fun(#tr{data = [N]}) -> N end).
[{3,1,7216,1452},
 {2,1,5764,1781},
 {1,1,3983,2031},
 {0,1,1952,1952}]
The first element of each tuple is the key, the rest is the same as above.
To pretty-print it, use tr:print_sorted_call_stat/2.
The second argument limits the table row number, e.g. we can only print the top 3 items:
22> tr:print_sorted_call_stat(fun(#tr{data = [N]}) -> N end, 3).
3 1 7216 1452
2 1 5764 1781
1 1 3983 2031
ok

 Call tree statistics: top_call_trees

The function tr:top_call_trees/0 makes it possible to detect complete call trees that repeat several times,
where corresponding function calls and returns have the same arguments and return values, respectively.
When such functions take a lot of time and do not have useful side effects, they can be often optimized.
As an example, let's trace the call to a function which calculates the 4th element of the Fibonacci Sequence
in a recursive way. The trace table should be empty, so let's clean it up first:
23> tr:clean().
ok
24> tr:trace([tr_SUITE]).
ok
25> tr_SUITE:fib(4).
3
26> tr:stop_tracing().
ok
Now it is possible to print the most time consuming call trees that repeat at least twice:
27> tr:top_call_trees().
[{13,2,
 #node{module = tr_SUITE,function = fib,
 args = [2],
 children = [#node{module = tr_SUITE,function = fib,
 args = [1],
 children = [],
 result = {return,1}},
 #node{module = tr_SUITE,function = fib,
 args = [0],
 children = [],
 result = {return,0}}],
 result = {return,1}}},
 {5,3,
 #node{module = tr_SUITE,function = fib,
 args = [1],
 children = [],
 result = {return,1}}}]
The resulting list contains tuples {Time, Count, Tree} where Time is the accumulated time (in microseconds) spent in the tree,
and Count is the number of times the tree repeated. The list is sorted by Time, descending.
In the example above fib(2) was called twice and fib(1) was called 3 times,
what already shows that the recursive implementation is suboptimal.
There is also tr:top_call_trees/1, which takes a map of options, including:
	output is reduced by default, but it can be set to complete where subtrees of already listed trees are also listed.
	min_count is the minimum number of times a tree has to occur to be listed, the default is 2.
	min_time is the minimum accumulated time for a tree, by default there is no minimum.
	max_size is the maximum number of trees presented, the default is 10.

As an exercise, try calling tr:top_call_trees(#{min_count => 1000}) for fib(20).

 Exporting and importing traces

To get the current table name, use tr:tab/0:
28> tr:tab().
trace
To switch to a new table, use tr:set_tab/1. The table need not exist.
29> tr:set_tab(tmp).
ok
Now you can collect traces to the new table without changing the original one.
30> tr:trace([lists]), lists:seq(1, 10), tr:stop_tracing().
ok
31> tr:select().
[#tr{index = 1, pid = <0.175.0>, event = call,
 mfa = {lists, ukeysort, 2},
 data = [1,
 [{'Traces', [#tr{index = 2, pid = <0.175.0>, event = call,
 mfa = {tr_SUITE, sleepy_factorial, 1},
 data = [2],
(...)
You can dump a table to file with tr:dump/1 - let's dump the tmp table:
32> tr:dump("tmp.ets").
ok
In a new Erlang session we can load the data with tr:load/1. This will set the current table name to tmp.
1> tr:start().
{ok, <0.181.0>}
2> tr:load("tmp.ets").
{ok, tmp}
3> tr:select().
(...)
4> tr:tab().
tmp
Finally, you can remove all traces from the ETS table with tr:clean/0.
5> tr:clean().
ok
To stop tr, just call tr:stop/0.
Example use cases

 Debugging a vague error

While reworking the LDAP connection layer in MongooseIM, the following error occured in the logs:
14:46:35.002 [warning] lager_error_logger_h dropped 79 messages in the last second that exceeded the limit of 50 messages/sec
14:46:35.002 [error] gen_server 'wpool_pool-mongoose_wpool$ldap$global$bind-1' terminated with reason: no case clause matching {badkey,handle} in wpool_process:handle_info/2 line 123
14:46:35.003 [error] CRASH REPORT Process 'wpool_pool-mongoose_wpool$ldap$global$bind-1' with 1 neighbours crashed with reason: no case clause matching {badkey,handle} in wpool_process:handle_info/2 line 123
14:46:35.003 [error] Supervisor 'wpool_pool-mongoose_wpool$ldap$global$bind-process-sup' had child 'wpool_pool-mongoose_wpool$ldap$global$bind-1' started with wpool_process:start_link('wpool_pool-mongoose_wpool$ldap$global$bind-1', mongoose_ldap_worker, [{port,3636},{encrypt,tls},{tls_options,[{verify,verify_peer},{cacertfile,"priv/ssl/cacert.pem"},...]}], [{queue_manager,'wpool_pool-mongoose_wpool$ldap$global$bind-queue-manager'},{time_checker,'wpool_pool-mongoose_wpool$ldap$global$bind-time-checker'},...]) at <0.28894.0> exit with reason no case clause matching {badkey,handle} in wpool_process:handle_info/2 line 123 in context child_terminated
14:46:35.009 [info] Connected to LDAP server
14:46:35.009 [error] gen_server 'wpool_pool-mongoose_wpool$ldap$global$default-1' terminated with reason: no case clause matching {badkey,handle} in wpool_process:handle_info/2 line 123
14:46:35.009 [error] CRASH REPORT Process 'wpool_pool-mongoose_wpool$ldap$global$default-1' with 1 neighbours crashed with reason: no case clause matching {badkey,handle} in wpool_process:handle_info/2 line 123
As this messages appear every 10 seconds (on each attempt to reconnect to LDAP), we can start tracing.
The most lkely culprit is the mongoose_ldap_worker module, so let's trace it:
(mongooseim@localhost)16> tr:trace([mongoose_ldap_worker]).
ok
A few seconds (and error messages) later we can check the traces for the badkey value we saw in the logs:
(mongooseim@localhost)17> tr:filter(fun(T) -> tr:contains_data(badkey, T) end).
[#tr{index = 255, pid = <0.8118.1>, event = exception,
 mfa = {mongoose_ldap_worker, connect, 1},
 data = {error, {badkey, handle}},
 ts = 1557838064073778},
 (...)
This means that the key handle was missing from a map.
Let's see the traceback to find the exact place in the code:
(mongooseim@localhost)18> tr:traceback(fun(T) -> tr:contains_data(badkey, T) end).
[#tr{index = 254, pid = <0.8118.1>, event = call,
 mfa = {mongoose_ldap_worker, connect, 1},
 data = [#{connect_interval => 10000, encrypt => tls, password => <<>>,
 port => 3636, root_dn => <<>>,
 servers => ["localhost"],
 tls_options =>
 [{verify, verify_peer},
 {cacertfile, "priv/ssl/cacert.pem"},
 {certfile, "priv/ssl/fake_cert.pem"},
 {keyfile, "priv/ssl/fake_key.pem"}]}],
 ts = 1557838064052121}, ...]
We can see that the handle key is missing from the map passed to mongoose_ldap_worker:connect/1.
After looking at the source code of this function and searching for handle we can see only one matching line:
 State#{handle := Handle};
The := operator assumes that the key is already present in the map.
The solution would be to either change it to => or ensure that the map already contains that key.

 Loading traces to the trace table after tracing to file

It's possible to use tr with a file generated by dbg:trace_port/2 tracing.
The file may be generated on another system.
1> {ok, St} = tr:init({}).
{ok, #{index => 0, traced_modules => []}}
2> dbg:trace_client(file, "/Users/erszcz/work/myproject/long-pong.dbg.trace", {fun tr:handle_trace/2, St}).
<0.178.0>
3> tr:select().
[#tr{index = 1, pid = <14318.7477.2537>, event = call,
 mfa = {mod_ping, user_ping_response_metric, 3},
 data = [{jid, <<"user1">>, <<"myproject.com">>, <<"res1">>,
 <<"user1">>, <<"myproject.com">>, <<"res1">>},
 {iq, <<"EDC1944CF88F67C6">>, result, <<>>, <<"en">>, []},
 5406109],
 ts = 1553517330696515},
...

erlang_doctor_app

erlang_doctor public API

 Summary

 Functions

 start(StartType, StartArgs)

 stop(State)

 Functions

 Link to this function

 start(StartType, StartArgs)

 View Source

 Link to this function

 stop(State)

 View Source

erlang_doctor_sup

erlang_doctor top level supervisor.

 Summary

 Functions

 init(_)

 start_link()

 Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

tr

Erlang Doctor API module.

 Summary

 Types

 acc_time/0

 Total accumulated time.

 call/0

 call_count/0

 Total number of aggregated calls.

 call_tree_count/0

 Number of occurrences of a given call tree.

 call_tree_stat_options/0

 call_tree_stat_state/0

 erlang_trace_flags/0

 index/0

 Unique, auto-incremented identifier of a tr/0 record.

 init_options/0

 Initialization options.

 limit/0

 Maximum number of items.

 message_event_types/0

 Message event types to trace. Default: none.

 mfargs/0

 Module, function and arguments.

 module_spec/0

 Specifies traced modules and/or individual functions. Default: [].

 msg_trigger/0

 Condition checked before collecting message traces for a process.

 own_time/0

 Total own time (without other called functions).

 pid_call_state/0

 pids/0

 A list of processes to trace. Default: all.

 pred/0

 Predicate returning true for matching traces.

 range_options/0

 Options for trace ranges.

 recipient/0

 Recipient pid with a boolean indicating if it exists.

 result/0

 Result of a function call.

 selector/1

 Trace selector function.

 simple_tr/0

 state/0

 table/0

 ETS table name.

 tb_acc/0

 tb_acc_list/0

 tb_acc_tree/0

 tb_format/0

 Merge tracebacks into a tree or return a list (default) of them.

 tb_options/0

 Traceback options.

 tb_order/0

 Order of calls in each returned traceback. Default: top_down.

 tb_output/0

 Which tracebacks to return if they overlap. Default: shortest.

 tb_tree/0

 Multiple tracebacks merged into a tree structure.

 top_call_trees_options/0

 Options for repeated call tree statistics.

 top_call_trees_output/0

 Specifies the behaviour for overlapping call trees.

 tr/0

 Trace record, storing one collected trace event.

 tr_source/0

 Source of traces: an ETS table or a list of traces. Default: tab/0.

 trace_options/0

 Options for tracing.

 trace_spec/0

 traced_pids_tab/0

 tree/0

 Function call tree node.

 tree_item/0

 Function call tree with its accumulated time and number of repetitions.

 Functions

 app_modules(AppName)

 Returns all module names for an application.

 call_stat(KeyF)

 Returns call time statistics for traces selected from tab/0.See also: call_stat/2.

 call_stat(KeyF, Tab)

 Returns call time statistics for traces selected from tr_source/0.

 clean()

 Removes all traces from the current ETS table.

 contains_data(DataVal, Tr)

 Looks for DataVal in #tr.data.

 do(Index)

 Executes the function call for the provided tr/0 record or index.

 dump(File)

 Dumps the tab/0 table to a file.

 filter(F)

 Returns matching traces from tab/0.

 filter(F, Tab)

 Returns matching traces from tr_source/0.

 load(File)

 Loads an ETS trace table from a file, and makes it the current table.

 lookup(Index)

 Returns the tr/0 record from tab/0 for an index.

 mfargs(_, Args)

 Replaces arity with Args in an MFA tuple.

 mfarity(_)

 Replaces arguments with arity in an MFA tuple.

 print_sorted_call_stat(KeyF, Limit)

 Prints sorted call time statistics for the selected traces from tab/0.

 range(PredF)

 Returns a list of traces from tab/0 between the first matched call and the corresponding return.

 range(PredF, Options)

 Returns a list of traces from tr_source/0 between the first matched call and the corresponding return.

 ranges(PredF)

 Returns lists of traces from tab/0 between matched calls and corresponding returns.See also: ranges/2.

 ranges(PredF, Options)

 Returns lists of traces from tr_source/0 between matched calls and corresponding returns.

 reduce_call_trees(TreeTab)

 select()

 Returns a list of all collected traces from tab/0.

 select(F)

 Selects data from matching traces from tab/0 with ets:fun2ms(F).

 select(F, DataVal)

 Selects data from matching traces from tab/0 with ets:fun2ms(F).

 set_tab(Tab)

 Sets a new ETS table for collecting traces, creating it if it doesn't exist.

 sorted_call_stat(KeyF)

 Returns sorted call time statistics for the selected traces from tab/0.

 start()

 Starts tr as a stand-alone gen_server. Intended for interactive use.See also: start/1.

 start(Opts)

 Starts tr as a stand-alone gen_server. Intended for interactive use.

 start_link()

 Starts tr as part of a supervision tree.See also: start/1.

 start_link(Opts)

 Start tr as part of a supervision tree.See also: start/1.

 stop()

 Stops the whole tr server process.

 stop_tracing()

 Stops tracing, disabling all trace specs.

 tab()

 Returns the name of the current ETS trace table in use.

 top_call_trees()

 Returns statistics of repeated function call trees that took most time.See also: top_call_trees/1.

 top_call_trees(Options)

 Returns statistics of repeated function call trees that took most time.

 trace(Modules)

 Starts tracing of the specified functions/modules and/or message events.

 trace(Modules, Pids)

 Starts tracing of the specified functions/modules in specific processes.

 trace_app(App)

 Starts tracing of all modules in an application.

 trace_apps(Apps)

 Starts tracing of all modules in all provided applications.

 traceback(PredF)

 Returns traceback of the first matching trace from tr_source/0.

 traceback(PredF, Options)

 Returns traceback of the first matching trace from tr_source/0.

 tracebacks(PredF)

 Returns tracebacks of all matching traces from tab/0.See also: tracebacks/2.

 tracebacks(PredF, Options)

 Returns tracebacks of all matching traces from tr_source/0.

 ts(Tr)

 Returns human-readable timestamp according to RFC 3339.

 Types

 Link to this type

 acc_time/0

 View Source

 -type acc_time() :: non_neg_integer().

Total accumulated time.

 Link to this type

 call/0

 View Source

 -type call() :: {call, {module(), atom(), list()}}.

 Link to this type

 call_count/0

 View Source

 -type call_count() :: non_neg_integer().

Total number of aggregated calls.

 Link to this type

 call_tree_count/0

 View Source

 -type call_tree_count() :: pos_integer().

Number of occurrences of a given call tree.

 Link to this type

 call_tree_stat_options/0

 View Source

 -type call_tree_stat_options() :: #{tab => table()}.

 Link to this type

 call_tree_stat_state/0

 View Source

 -type call_tree_stat_state() :: #{pid_states := map(), tab := ets:tid()}.

 Link to this type

 erlang_trace_flags/0

 View Source

 -type erlang_trace_flags() :: [call | timestamp | send | 'receive'].

 Link to this type

 index/0

 View Source

 -type index() :: pos_integer().

Unique, auto-incremented identifier of a tr/0 record.

 Link to this type

 init_options/0

 View Source

 -type init_options() :: #{tab => table(), index => index(), limit => limit()}.

Initialization options.
tab is the ETS table used for storing traces (default: trace). index is the index value of the first inserted trace (default: 1). When size of tab reaches the optional limit, tracing is stopped.

 Link to this type

 limit/0

 View Source

 -type limit() :: pos_integer() | infinity.

Maximum number of items.

 Link to this type

 message_event_types/0

 View Source

 -type message_event_types() :: send | recv | all | none.

Message event types to trace. Default: none.

 Link to this type

 mfargs/0

 View Source

 -type mfargs() :: {module(), atom(), list()}.

Module, function and arguments.

 Link to this type

 module_spec/0

 View Source

 -type module_spec() :: [module() | mfa()].

Specifies traced modules and/or individual functions. Default: [].

 Link to this type

 msg_trigger/0

 View Source

 -type msg_trigger() :: after_traced_call | always.

Condition checked before collecting message traces for a process.
after_traced_call (default) means that a process needs to call at least one traced function before its message events start being collected. always means that messages for all traced processes are collected.

 Link to this type

 own_time/0

 View Source

 -type own_time() :: non_neg_integer().

Total own time (without other called functions).

 Link to this type

 pid_call_state/0

 View Source

 -type pid_call_state() :: [tree() | call()].

 Link to this type

 pids/0

 View Source

 -type pids() :: [pid()] | all.

A list of processes to trace. Default: all.

 Link to this type

 pred/0

 View Source

 -type pred() :: fun((tr()) -> boolean()).

Predicate returning true for matching traces.
For other traces it can return a different value or fail.

 Link to this type

 range_options/0

 View Source

 -type range_options() :: #{tab => tr_source(), max_depth => limit()}.

Options for trace ranges.
Optional limit is the maximum depth of calls in the returned ranges. All traces (including messages) exceeding that depth are skipped.

 Link to this type

 recipient/0

 View Source

 -type recipient() :: {pid(), boolean()}.

Recipient pid with a boolean indicating if it exists.

 Link to this type

 result/0

 View Source

 -type result() :: {return | exception, any()}.

Result of a function call.

 Link to this type

 selector/1

 View Source

 -type selector(Data) :: fun((tr()) -> Data).

Trace selector function.
For selected traces, it returns Data. For other traces, it should fail.

 Link to this type

 simple_tr/0

 View Source

 -type simple_tr() :: call() | result().

 Link to this type

 state/0

 View Source

 -type state() ::
 #{tab := table(),
 index := index(),
 limit := limit(),
 trace := none | trace_spec(),
 tracer_pid := none | pid()}.

 Link to this type

 table/0

 View Source

 -type table() :: atom().

ETS table name.

 Link to this type

 tb_acc/0

 View Source

 -type tb_acc() :: tb_acc_tree() | tb_acc_list().

 Link to this type

 tb_acc_list/0

 View Source

 -type tb_acc_list() :: [[tr()]].

 Link to this type

 tb_acc_tree/0

 View Source

 -type tb_acc_tree() :: [{tr(), tb_acc_tree()}].

 Link to this type

 tb_format/0

 View Source

 -type tb_format() :: tree | list.

Merge tracebacks into a tree or return a list (default) of them.

 Link to this type

 tb_options/0

 View Source

 -type tb_options() ::
 #{tab => tr_source(),
 output => tb_output(),
 format => tb_format(),
 order => tb_order(),
 limit => limit()}.

Traceback options.
Optional limit is the maximum number of tracebacks to collect before filtering them according to output.

 Link to this type

 tb_order/0

 View Source

 -type tb_order() :: top_down | bottom_up.

Order of calls in each returned traceback. Default: top_down.

 Link to this type

 tb_output/0

 View Source

 -type tb_output() :: shortest | longest | all.

Which tracebacks to return if they overlap. Default: shortest.

 Link to this type

 tb_tree/0

 View Source

 -type tb_tree() :: [tr() | {tr(), tb_tree()}].

Multiple tracebacks merged into a tree structure.

 Link to this type

 top_call_trees_options/0

 View Source

 -type top_call_trees_options() ::
 #{max_size => pos_integer(),
 min_count => call_tree_count(),
 min_time => acc_time(),
 output => top_call_trees_output()}.

Options for repeated call tree statistics.
min_time is an optional minimum accumulated time of a tree. min_count (default: 2) specifies minimum number of repetitions of a tree. max_size (default: 10) specifies maximum number of listed call trees.

 Link to this type

 top_call_trees_output/0

 View Source

 -type top_call_trees_output() :: reduced | complete.

Specifies the behaviour for overlapping call trees.
reduced (default) hides subtrees, while complete keeps them.

 Link to this type

 tr/0

 View Source

 -type tr() :: #tr{}.

Trace record, storing one collected trace event.
Record fields:	index - index/0
	pid - process in which the traced event occurred, erlang:pid()
	event - call, return or exception for function traces; send or recv for messages.
	mfa - erlang:mfa() for function traces; no_mfa for messages.
	data - Argument list (for calls), returned value (for returns) or class and value (for exceptions).
	ts - Timestamp in microseconds.
	info - For send events it is a recipient/0 tuple; otherwise no_info.

 Link to this type

 tr_source/0

 View Source

 -type tr_source() :: table() | [tr()].

Source of traces: an ETS table or a list of traces. Default: tab/0.

 Link to this type

 trace_options/0

 View Source

 -type trace_options() ::
 #{modules => module_spec(),
 pids => pids(),
 msg => message_event_types(),
 msg_trigger => msg_trigger()}.

Options for tracing.

 Link to this type

 trace_spec/0

 View Source

 -type trace_spec() ::
 #{modules := module_spec(),
 pids := pids(),
 msg := message_event_types(),
 msg_trigger := msg_trigger()}.

 Link to this type

 traced_pids_tab/0

 View Source

 -type traced_pids_tab() :: none | ets:table().

 Link to this type

 tree/0

 View Source

 -type tree() :: #node{}.

Function call tree node.
Record fields:	module - module name
	function - function name
	args - argument list
	children - a list of child nodes, each of them being tree/0
	result - return value or exception, result/0

 Link to this type

 tree_item/0

 View Source

 -type tree_item() :: {acc_time(), call_tree_count(), tree()}.

Function call tree with its accumulated time and number of repetitions.

 Functions

 Link to this function

 app_modules(AppName)

 View Source

 -spec app_modules(atom()) -> [module()].

Returns all module names for an application.

 Link to this function

 call_stat(KeyF)

 View Source

 -spec call_stat(selector(Key)) -> #{Key => {call_count(), acc_time(), own_time()}}.

Returns call time statistics for traces selected from tab/0.See also: call_stat/2.

 Link to this function

 call_stat(KeyF, Tab)

 View Source

 -spec call_stat(selector(Key), tr_source()) -> #{Key => {call_count(), acc_time(), own_time()}}.

Returns call time statistics for traces selected from tr_source/0.
Calls are aggregated by Key returned by KeyF.

 Link to this function

 clean()

 View Source

 -spec clean() -> ok.

Removes all traces from the current ETS table.

 Link to this function

 contains_data(DataVal, Tr)

 View Source

 -spec contains_data(term(), tr()) -> boolean().

Looks for DataVal in #tr.data.
DataVal can occur in (possibly nested) tuples, maps or lists.

 Link to this function

 do(Index)

 View Source

 -spec do(tr()) -> term().

Executes the function call for the provided tr/0 record or index.

 Link to this function

 dump(File)

 View Source

 -spec dump(file:name_all()) -> ok | {error, any()}.

Dumps the tab/0 table to a file.

 Link to this function

 filter(F)

 View Source

 -spec filter(pred()) -> [tr()].

Returns matching traces from tab/0.

 Link to this function

 filter(F, Tab)

 View Source

 -spec filter(pred(), tr_source()) -> [tr()].

Returns matching traces from tr_source/0.

 Link to this function

 load(File)

 View Source

 -spec load(file:name_all()) -> {ok, table()} | {error, any()}.

Loads an ETS trace table from a file, and makes it the current table.
Fails if the table already exists.

 Link to this function

 lookup(Index)

 View Source

 -spec lookup(index()) -> tr().

Returns the tr/0 record from tab/0 for an index.

 Link to this function

 mfargs(_, Args)

 View Source

 -spec mfargs(mfa(), list()) -> mfargs().

Replaces arity with Args in an MFA tuple.

 Link to this function

 mfarity(_)

 View Source

 -spec mfarity(mfa() | mfargs()) -> mfa().

Replaces arguments with arity in an MFA tuple.

 Link to this function

 print_sorted_call_stat(KeyF, Limit)

 View Source

 -spec print_sorted_call_stat(selector(_), limit()) -> ok.

Prints sorted call time statistics for the selected traces from tab/0.
The statistics are sorted according to acc_time/0, descending. Only top Limit rows are printed.See also: sorted_call_stat/1.

 Link to this function

 range(PredF)

 View Source

 -spec range(pred() | index() | tr()) -> [tr()].

Returns a list of traces from tab/0 between the first matched call and the corresponding return.
Matching can be done with a predicate function, an index value or a tr/0 record. Fails if no trace is matched.See also: range/2.

 Link to this function

 range(PredF, Options)

 View Source

 -spec range(pred(), range_options()) -> [tr()].

Returns a list of traces from tr_source/0 between the first matched call and the corresponding return.
Fails if no call is matched.

 Link to this function

 ranges(PredF)

 View Source

 -spec ranges(pred()) -> [[tr()]].

Returns lists of traces from tab/0 between matched calls and corresponding returns.See also: ranges/2.

 Link to this function

 ranges(PredF, Options)

 View Source

 -spec ranges(pred(), range_options()) -> [[tr()]].

Returns lists of traces from tr_source/0 between matched calls and corresponding returns.

 Link to this function

 reduce_call_trees(TreeTab)

 View Source

 -spec reduce_call_trees(ets:tid()) -> true.

 Link to this function

 select()

 View Source

 -spec select() -> [tr()].

Returns a list of all collected traces from tab/0.

 Link to this function

 select(F)

 View Source

 -spec select(selector(Data)) -> [Data].

Selects data from matching traces from tab/0 with ets:fun2ms(F).

 Link to this function

 select(F, DataVal)

 View Source

 -spec select(selector(Data), term()) -> [Data].

Selects data from matching traces from tab/0 with ets:fun2ms(F).
Additionally, the selected traces have to contain DataVal in #tr.data. DataVal can occur in (possibly nested) tuples, maps or lists.

 Link to this function

 set_tab(Tab)

 View Source

 -spec set_tab(table()) -> ok.

Sets a new ETS table for collecting traces, creating it if it doesn't exist.

 Link to this function

 sorted_call_stat(KeyF)

 View Source

 -spec sorted_call_stat(selector(Key)) -> [{Key, call_count(), acc_time(), own_time()}].

Returns sorted call time statistics for the selected traces from tab/0.
The statistics are sorted according to acc_time/0, descending.See also: call_stat/1.

 Link to this function

 start()

 View Source

 -spec start() -> {ok, pid()}.

Starts tr as a stand-alone gen_server. Intended for interactive use.See also: start/1.

 Link to this function

 start(Opts)

 View Source

 -spec start(init_options()) -> {ok, pid()}.

Starts tr as a stand-alone gen_server. Intended for interactive use.
You can override the selected Opts.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()}.

Starts tr as part of a supervision tree.See also: start/1.

 Link to this function

 start_link(Opts)

 View Source

 -spec start_link(init_options()) -> {ok, pid()}.

Start tr as part of a supervision tree.See also: start/1.

 Link to this function

 stop()

 View Source

 -spec stop() -> ok.

Stops the whole tr server process.

 Link to this function

 stop_tracing()

 View Source

 -spec stop_tracing() -> ok | {error, not_tracing}.

Stops tracing, disabling all trace specs.
Any future messages from the Erlang tracer will be ignored.

 Link to this function

 tab()

 View Source

 -spec tab() -> table().

Returns the name of the current ETS trace table in use.

 Link to this function

 top_call_trees()

 View Source

 -spec top_call_trees() -> [tree_item()].

Returns statistics of repeated function call trees that took most time.See also: top_call_trees/1.

 Link to this function

 top_call_trees(Options)

 View Source

 -spec top_call_trees(top_call_trees_options()) -> [tree_item()].

Returns statistics of repeated function call trees that took most time.
Two call trees repeat if they contain the same function calls and returns in the same order taking the same arguments and returning the same values, respectively. The results are sorted according to accumulated time.

 Link to this function

 trace(Modules)

 View Source

 -spec trace(module_spec() | trace_options()) -> ok | {error, already_tracing}.

Starts tracing of the specified functions/modules and/or message events.
You can either provide a list of modules/functions or a more generic map of options.

 Link to this function

 trace(Modules, Pids)

 View Source

 -spec trace(module_spec(), pids()) -> ok | {error, already_tracing}.

Starts tracing of the specified functions/modules in specific processes.

 Link to this function

 trace_app(App)

 View Source

 -spec trace_app(atom()) -> ok | {error, already_tracing}.

Starts tracing of all modules in an application.

 Link to this function

 trace_apps(Apps)

 View Source

 -spec trace_apps([atom()]) -> ok | {error, already_tracing}.

Starts tracing of all modules in all provided applications.

 Link to this function

 traceback(PredF)

 View Source

 -spec traceback(pred() | index() | tr()) -> [tr()].

Returns traceback of the first matching trace from tr_source/0.
Matching can be done with a predicate function, an index value or a tr record. Fails if no trace is matched.See also: traceback/2.

 Link to this function

 traceback(PredF, Options)

 View Source

 -spec traceback(pred(), tb_options()) -> [tr()].

Returns traceback of the first matching trace from tr_source/0.
Fails if no trace is matched. The options limit and format do not apply.

 Link to this function

 tracebacks(PredF)

 View Source

 -spec tracebacks(pred()) -> [[tr()]] | tb_tree().

Returns tracebacks of all matching traces from tab/0.See also: tracebacks/2.

 Link to this function

 tracebacks(PredF, Options)

 View Source

 -spec tracebacks(pred(), tb_options()) -> [[tr()]] | tb_tree().

Returns tracebacks of all matching traces from tr_source/0.

 Link to this function

 ts(Tr)

 View Source

 -spec ts(tr()) -> string().

Returns human-readable timestamp according to RFC 3339.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

