

 erlang_python

 v1.2.0

 Table of contents

 	erlang_python

 	Guides

 	Getting Started

 	Add AI to Your Erlang App

 	Type Conversion

 	Context Affinity

 	Streaming

 	Memory Management

 	Advanced

 	Scalability and Parallelism

 	Threading Support

 	Testing with Free-Threaded Python

 	
 Modules

 	py

 	py_semaphore

 	py_state

 erlang_python

[image: Hex.pm]
[image: Hex Docs]
[image: License]
Combine Python's ML/AI ecosystem with Erlang's concurrency.
Run Python code from Erlang or Elixir with true parallelism, async/await support,
and seamless integration. Build AI-powered applications that scale.
Overview
erlang_python embeds Python into the BEAM VM, letting you call Python functions,
evaluate expressions, and stream from generators - all without blocking Erlang
schedulers.
Three paths to parallelism:
	Sub-interpreters (Python 3.12+) - Each interpreter has its own GIL
	Free-threaded Python (3.13+) - No GIL at all
	BEAM processes - Fan out work across lightweight Erlang processes

Key features:
	Async/await - Call Python async functions, gather results, stream from async generators
	Dirty NIF execution - Python runs on dirty schedulers, never blocking the BEAM
	Elixir support - Works seamlessly from Elixir via the :py module
	Bidirectional calls - Python can call back into registered Erlang/Elixir functions
	Type conversion - Automatic conversion between Erlang and Python types
	Streaming - Iterate over Python generators chunk-by-chunk
	Virtual environments - Activate venvs for dependency isolation
	AI/ML ready - Examples for embeddings, semantic search, RAG, and LLMs

Requirements
	Erlang/OTP 27+
	Python 3.12+ (3.13+ for free-threading)
	C compiler (gcc, clang)

Building
rebar3 compile

Quick Start
Erlang
%% Start the application
application:ensure_all_started(erlang_python).

%% Call a Python function
{ok, 4.0} = py:call(math, sqrt, [16]).

%% With keyword arguments
{ok, Json} = py:call(json, dumps, [#{foo => bar}], #{indent => 2}).

%% Evaluate an expression
{ok, 45} = py:eval(<<"sum(range(10))">>).

%% Evaluate with local variables
{ok, 25} = py:eval(<<"x * y">>, #{x => 5, y => 5}).

%% Async calls
Ref = py:call_async(math, factorial, [100]),
{ok, Result} = py:await(Ref).

%% Streaming from generators
{ok, [0,1,4,9,16]} = py:stream_eval(<<"(x**2 for x in range(5))">>).
Elixir
Start the application
{:ok, _} = Application.ensure_all_started(:erlang_python)

Call Python functions
{:ok, 4.0} = :py.call(:math, :sqrt, [16])

Evaluate expressions
{:ok, result} = :py.eval("2 + 2")

With variables
{:ok, 100} = :py.eval("x * y", %{x: 10, y: 10})

Call with keyword arguments
{:ok, json} = :py.call(:json, :dumps, [%{name: "Elixir"}], %{indent: 2})
Erlang/Elixir Functions Callable from Python
Register Erlang or Elixir functions that Python code can call back into:
Erlang
%% Register a function
py:register_function(my_func, fun([X, Y]) -> X + Y end).

%% Call from Python - native import syntax (recommended)
{ok, Result} = py:exec(<<"
from erlang import my_func
result = my_func(10, 20)
">>).
%% Result = 30

%% Or use attribute-style access
{ok, 30} = py:eval(<<"erlang.my_func(10, 20)">>).

%% Legacy syntax still works
{ok, 30} = py:eval(<<"erlang.call('my_func', 10, 20)">>).

%% Unregister when done
py:unregister_function(my_func).
Elixir
Register an Elixir function
:py.register_function(:factorial, fn [n] ->
 Enum.reduce(1..n, 1, &*/2)
end)

Call from Python - native import syntax
{:ok, 3628800} = :py.exec("""
from erlang import factorial
result = factorial(10)
""")

Or use attribute-style access
{:ok, 3628800} = :py.eval("erlang.factorial(10)")
Python Calling Syntax
From Python code, registered Erlang functions can be called in three ways:
1. Import syntax (most Pythonic)
from erlang import my_func
result = my_func(10, 20)

2. Attribute syntax
import erlang
result = erlang.my_func(10, 20)

3. Explicit call (legacy)
import erlang
result = erlang.call('my_func', 10, 20)
All three methods are equivalent. The import and attribute syntaxes provide
a more natural Python experience.
Reentrant Callbacks
Python→Erlang→Python callbacks are fully supported. When Python code calls
an Erlang function that in turn calls back into Python, the system handles
this transparently without deadlocking:
%% Register an Erlang function that calls Python
py:register_function(double_via_python, fun([X]) ->
 {ok, Result} = py:call('__main__', double, [X]),
 Result
end).

%% Define Python functions
py:exec(<<"
def double(x):
 return x * 2

def process(x):
 from erlang import call
 # This calls Erlang, which calls Python's double()
 doubled = call('double_via_python', x)
 return doubled + 1
">>).

%% Test the full round-trip
{ok, 21} = py:call('__main__', process, [10]).
%% 10 → double_via_python → double(10)=20 → +1 = 21
The implementation uses a suspension/resume mechanism that frees the dirty
scheduler while the Erlang callback executes, preventing deadlocks even with
multiple levels of nesting.
Shared State Between Workers
Python workers don't share namespace state, but you can share data via the
built-in state API:
From Python
from erlang import state_set, state_get, state_delete, state_keys
from erlang import state_incr, state_decr

Store data (survives across calls, shared between workers)
state_set('my_key', {'data': [1, 2, 3], 'count': 42})

Retrieve data
value = state_get('my_key') # {'data': [1, 2, 3], 'count': 42}

Atomic counters (thread-safe, great for metrics)
state_incr('requests') # returns 1
state_incr('requests', 10) # returns 11
state_decr('requests') # returns 10

List keys
keys = state_keys() # ['my_key', 'requests', ...]

Delete
state_delete('my_key')
From Erlang/Elixir
%% Store and fetch
py:state_store(<<"my_key">>, #{value => 42}).
{ok, #{value := 42}} = py:state_fetch(<<"my_key">>).

%% Atomic counters
1 = py:state_incr(<<"hits">>).
11 = py:state_incr(<<"hits">>, 10).
10 = py:state_decr(<<"hits">>).

%% List keys and clear
Keys = py:state_keys().
py:state_clear().
This is backed by ETS with {write_concurrency, true}, so counters are atomic and fast.
Async/Await Support
Call Python async functions without blocking:
%% Call an async function
Ref = py:async_call(aiohttp, get, [<<"https://api.example.com/data">>]),
{ok, Response} = py:async_await(Ref).

%% Gather multiple async calls concurrently
{ok, Results} = py:async_gather([
 {aiohttp, get, [<<"https://api.example.com/users">>]},
 {aiohttp, get, [<<"https://api.example.com/posts">>]},
 {aiohttp, get, [<<"https://api.example.com/comments">>]}
]).

%% Stream from async generators
{ok, Chunks} = py:async_stream(mymodule, async_generator, [args]).
Parallel Execution with Sub-interpreters
True parallelism without GIL contention using Python 3.12+ sub-interpreters:
%% Execute multiple calls in parallel across sub-interpreters
{ok, Results} = py:parallel([
 {math, factorial, [100]},
 {math, factorial, [200]},
 {math, factorial, [300]},
 {math, factorial, [400]}
]).
%% Each call runs in its own interpreter with its own GIL
Parallel Processing with BEAM Processes
Leverage Erlang's lightweight processes for massive parallelism:
%% Register parallel map function
py:register_function(parallel_map, fun([FuncName, Items]) ->
 Parent = self(),
 Refs = [begin
 Ref = make_ref(),
 spawn(fun() ->
 Result = execute(FuncName, Item),
 Parent ! {Ref, Result}
 end),
 Ref
 end || Item <- Items],
 [receive {Ref, R} -> R after 5000 -> timeout end || Ref <- Refs]
end).

%% Call from Python - processes 10 items in parallel
{ok, Results} = py:eval(
 <<"__import__('erlang').call('parallel_map', 'compute', items)">>,
 #{items => lists:seq(1, 10)}
).
Benchmark Results (from examples/erlang_concurrency.erl):
Sequential: 10 Python calls × 100ms each = 1.01 seconds
Parallel: 10 BEAM processes calling Python = 0.10 seconds
The speedup is linear with the number of items when work is I/O-bound or
distributed across sub-interpreters.
Virtual Environment Support
%% Activate a venv
ok = py:activate_venv(<<"/path/to/venv">>).

%% Use packages from venv
{ok, Model} = py:call(sentence_transformers, 'SentenceTransformer', [<<"all-MiniLM-L6-v2">>]).

%% Deactivate when done
ok = py:deactivate_venv().
Examples
The examples/ directory contains runnable demonstrations:
Semantic Search
Setup
python3 -m venv /tmp/ai-venv
/tmp/ai-venv/bin/pip install sentence-transformers numpy

Run
escript examples/semantic_search.erl

RAG (Retrieval-Augmented Generation)
Setup (also install Ollama and pull a model)
/tmp/ai-venv/bin/pip install sentence-transformers numpy requests
ollama pull llama3.2

Run
escript examples/rag_example.erl

AI Chat
escript examples/ai_chat.erl

Erlang Concurrency from Python
Demonstrates 10x speedup with BEAM processes
escript examples/erlang_concurrency.erl

Elixir Integration
elixir --erl "-pa _build/default/lib/erlang_python/ebin" examples/elixir_example.exs

API Reference
Function Calls
{ok, Result} = py:call(Module, Function, Args).
{ok, Result} = py:call(Module, Function, Args, KwArgs).
{ok, Result} = py:call(Module, Function, Args, KwArgs, Timeout).

%% Async
Ref = py:call_async(Module, Function, Args).
{ok, Result} = py:await(Ref).
{ok, Result} = py:await(Ref, Timeout).
Expression Evaluation
{ok, 42} = py:eval(<<"21 * 2">>).
{ok, 100} = py:eval(<<"x * y">>, #{x => 10, y => 10}).
{ok, Result} = py:eval(Expression, Locals, Timeout).
Streaming
{ok, Chunks} = py:stream(Module, GeneratorFunc, Args).
{ok, [0,1,4,9,16]} = py:stream_eval(<<"(x**2 for x in range(5))">>).
Callbacks
py:register_function(Name, fun([Args]) -> Result end).
py:register_function(Name, Module, Function).
py:unregister_function(Name).
Memory and GC
{ok, Stats} = py:memory_stats().
{ok, Collected} = py:gc().
ok = py:tracemalloc_start().
ok = py:tracemalloc_stop().
Type Mappings
Erlang to Python
	Erlang	Python
	integer()	int
	float()	float
	binary()	str
	atom()	str
	true / false	True / False
	none / nil	None
	list()	list
	tuple()	tuple
	map()	dict

Python to Erlang
	Python	Erlang
	int	integer()
	float	float()
	str	binary()
	bytes	binary()
	True / False	true / false
	None	none
	list	list()
	tuple	tuple()
	dict	map()

Configuration
%% sys.config
[
 {erlang_python, [
 {num_workers, 4}, %% Python worker pool size
 {max_concurrent, 17}, %% Max concurrent operations (default: schedulers * 2 + 1)
 {num_executors, 4} %% Executor threads (multi-executor mode)
]}
].
Execution Modes
The library auto-detects the best execution mode:
	Mode	Python Version	Parallelism
	Free-threaded	3.13+ (nogil)	True parallel, no GIL
	Sub-interpreter	3.12+	Per-interpreter GIL
	Multi-executor	Any	GIL contention

Check current mode:
py:execution_mode(). %% => free_threaded | subinterp | multi_executor
Error Handling
{error, {'NameError', "name 'x' is not defined"}} = py:eval(<<"x">>).
{error, {'ZeroDivisionError', "division by zero"}} = py:eval(<<"1/0">>).
{error, timeout} = py:eval(<<"sum(range(10**9))">>, #{}, 100).
Documentation
	Getting Started
	AI Integration Guide
	Type Conversion
	Context Affinity
	Scalability
	Streaming
	Threading
	Changelog

License
Apache-2.0

 Getting Started

This guide walks you through using erlang_python to execute Python code from Erlang.
Installation
Add to your rebar.config:
{deps, [
 {erlang_python, {git, "https://github.com/benoitc/erlang-python.git", {tag, "v1.2.0"}}}
]}.
Starting the Application
1> application:ensure_all_started(erlang_python).
{ok, [erlang_python]}
The application starts a pool of Python worker processes that handle requests.
Basic Usage
Calling Python Functions
%% Call math.sqrt(16)
{ok, 4.0} = py:call(math, sqrt, [16]).

%% Call json.dumps with keyword arguments
{ok, Json} = py:call(json, dumps, [#{name => <<"Alice">>}], #{indent => 2}).
Evaluating Expressions
%% Simple arithmetic
{ok, 42} = py:eval(<<"21 * 2">>).

%% Using Python built-ins
{ok, 45} = py:eval(<<"sum(range(10))">>).

%% With local variables
{ok, 100} = py:eval(<<"x * y">>, #{x => 10, y => 10}).

%% Note: Python locals aren't accessible in nested scopes (lambda/comprehensions).
%% Use default arguments to capture values:
{ok, [2, 4, 6]} = py:eval(<<"list(map(lambda x, m=multiplier: x * m, items))">>,
 #{items => [1, 2, 3], multiplier => 2}).
Executing Statements
Use py:exec/1 to execute Python statements:
ok = py:exec(<<"
import random

def roll_dice(sides=6):
 return random.randint(1, sides)
">>).
Note: Definitions made with exec are local to the worker that executes them.
Subsequent calls may go to different workers. Use Shared State to
share data between workers, or Context Affinity to bind to a
dedicated worker.
Working with Timeouts
All operations support optional timeouts:
%% 5 second timeout
{ok, Result} = py:call(mymodule, slow_func, [], #{}, 5000).

%% Timeout error
{error, timeout} = py:eval(<<"sum(range(10**9))">>, #{}, 100).
Async Calls
For non-blocking operations:
%% Start async call
Ref = py:call_async(math, factorial, [1000]).

%% Do other work...

%% Wait for result
{ok, HugeNumber} = py:await(Ref).
Streaming from Generators
Python generators can be streamed efficiently:
%% Stream a generator expression
{ok, [0,1,4,9,16]} = py:stream_eval(<<"(x**2 for x in range(5))">>).

%% Stream from a generator function (if defined)
{ok, Chunks} = py:stream(mymodule, generate_data, [arg1, arg2]).
Shared State
Python workers don't share namespace state, but you can share data via the
built-in state API:
%% Store from Erlang
py:state_store(<<"config">>, #{api_key => <<"secret">>, timeout => 5000}).

%% Read from Python
ok = py:exec(<<"
from erlang import state_get
config = state_get('config')
print(config['api_key'])
">>).
From Python
from erlang import state_set, state_get, state_delete, state_keys
from erlang import state_incr, state_decr

Key-value storage
state_set('my_key', {'data': [1, 2, 3]})
value = state_get('my_key')

Atomic counters (thread-safe)
state_incr('requests') # +1, returns new value
state_incr('requests', 10) # +10
state_decr('requests') # -1

Management
keys = state_keys()
state_delete('my_key')
From Erlang
py:state_store(Key, Value).
{ok, Value} = py:state_fetch(Key).
py:state_remove(Key).
Keys = py:state_keys().

%% Atomic counters
1 = py:state_incr(<<"hits">>).
11 = py:state_incr(<<"hits">>, 10).
10 = py:state_decr(<<"hits">>).
Type Conversions
Values are automatically converted between Erlang and Python:
%% Numbers
{ok, 42} = py:eval(<<"42">>). %% int -> integer
{ok, 3.14} = py:eval(<<"3.14">>). %% float -> float

%% Strings
{ok, <<"hello">>} = py:eval(<<"'hello'">>). %% str -> binary

%% Collections
{ok, [1,2,3]} = py:eval(<<"[1,2,3]">>). %% list -> list
{ok, {1,2,3}} = py:eval(<<"(1,2,3)">>). %% tuple -> tuple
{ok, #{<<"a">> := 1}} = py:eval(<<"{'a': 1}">>). %% dict -> map

%% Booleans and None
{ok, true} = py:eval(<<"True">>).
{ok, false} = py:eval(<<"False">>).
{ok, none} = py:eval(<<"None">>).
Context Affinity
By default, each call may go to a different worker. To preserve Python state across
calls (variables, imports, objects), bind to a dedicated worker:
%% Bind current process to a worker
ok = py:bind(),

%% State persists across calls
ok = py:exec(<<"counter = 0">>),
ok = py:exec(<<"counter += 1">>),
{ok, 1} = py:eval(<<"counter">>),

%% Release the worker
ok = py:unbind().
Or use the scoped helper for automatic cleanup:
Result = py:with_context(fun() ->
 ok = py:exec(<<"x = 10">>),
 py:eval(<<"x * 2">>)
end),
{ok, 20} = Result.
See Context Affinity for explicit contexts and advanced usage.
Execution Mode and Scalability
Check the current execution mode:
%% See how Python is being executed
py:execution_mode().
%% => free_threaded | subinterp | multi_executor

%% Check rate limiting status
py_semaphore:max_concurrent(). %% Maximum concurrent calls
py_semaphore:current(). %% Currently executing
See Scalability for details on execution modes and performance tuning.
Using from Elixir
erlang_python works seamlessly with Elixir. The :py module can be called directly:
Start the application
{:ok, _} = Application.ensure_all_started(:erlang_python)

Call Python functions
{:ok, 4.0} = :py.call(:math, :sqrt, [16])

Evaluate expressions
{:ok, result} = :py.eval("2 + 2")

With variables
{:ok, 100} = :py.eval("x * y", %{x: 10, y: 10})

Call with keyword arguments
{:ok, json} = :py.call(:json, :dumps, [%{name: "Elixir"}], %{indent: 2})
Register Elixir Functions for Python
Register an Elixir function
:py.register_function(:factorial, fn [n] ->
 Enum.reduce(1..n, 1, &*/2)
end)

Call from Python
{:ok, 3628800} = :py.eval("__import__('erlang').call('factorial', 10)")

Cleanup
:py.unregister_function(:factorial)
Parallel Processing with BEAM
Register parallel map using BEAM processes
:py.register_function(:parallel_map, fn [func_name, items] ->
 parent = self()

 refs = Enum.map(items, fn item ->
 ref = make_ref()
 spawn(fn ->
 result = apply_function(func_name, item)
 send(parent, {ref, result})
 end)
 ref
 end)

 Enum.map(refs, fn ref ->
 receive do
 {^ref, result} -> result
 after
 5000 -> {:error, :timeout}
 end
 end)
end)
Running the Elixir Example
A complete working example is available:
elixir --erl "-pa _build/default/lib/erlang_python/ebin" examples/elixir_example.exs

This demonstrates basic calls, data conversion, callbacks, parallel processing (10x speedup), and AI integration.
Next Steps
	See Type Conversion for detailed type mapping
	See Context Affinity for preserving Python state
	See Streaming for working with generators
	See Memory Management for GC and debugging
	See Scalability for parallelism and performance
	See AI Integration for ML/AI examples

 Add AI to Your Erlang App

This guide shows how to integrate AI and machine learning capabilities into your Erlang application using erlang_python.
Overview
Erlang excels at building distributed, fault-tolerant systems. Python dominates the AI/ML ecosystem with libraries like PyTorch, TensorFlow, sentence-transformers, and OpenAI clients. erlang_python bridges these worlds, letting you:
	Generate text embeddings for semantic search
	Call LLM APIs (OpenAI, Anthropic, local models)
	Run inference with pre-trained models
	Build RAG (Retrieval-Augmented Generation) systems
	Leverage Erlang's concurrency from Python (10x+ speedups)

Setup
1. Create a Virtual Environment
Create venv with AI dependencies
python3 -m venv ai_venv
source ai_venv/bin/activate

Install common AI libraries
pip install sentence-transformers numpy openai anthropic

2. Activate in Erlang
1> application:ensure_all_started(erlang_python).
{ok, [erlang_python]}

2> py:activate_venv(<<"/path/to/ai_venv">>).
ok
Text Embeddings
Embeddings convert text into numerical vectors, enabling semantic search, clustering, and similarity comparisons.
Using sentence-transformers
%% Load a model - NOTE: This loads in one worker only.
%% Each worker will lazy-load the model on first use.
init_embedding_model() ->
 py:exec(<<"
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
">>).

%% Better pattern: use a module that lazy-loads
%% and cache embeddings in shared state

%% Generate embedding for a single text
embed(Text) ->
 {ok, Embedding} = py:eval(
 <<"model.encode(text).tolist()">>,
 #{text => Text}
),
 Embedding.

%% Generate embeddings for multiple texts (more efficient)
embed_batch(Texts) ->
 {ok, Embeddings} = py:eval(
 <<"model.encode(texts).tolist()">>,
 #{texts => Texts}
),
 Embeddings.
Example: Semantic Search
-module(semantic_search).
-export([index/1, search/2]).

%% Index documents with their embeddings
index(Documents) ->
 Embeddings = embed_batch(Documents),
 lists:zip(Documents, Embeddings).

%% Search for similar documents
search(Query, Index) ->
 QueryEmb = embed(Query),
 Scored = [{Doc, cosine_similarity(QueryEmb, DocEmb)}
 || {Doc, DocEmb} <- Index],
 lists:reverse(lists:keysort(2, Scored)).

%% Cosine similarity in Erlang
cosine_similarity(A, B) ->
 Dot = lists:sum([X * Y || {X, Y} <- lists:zip(A, B)]),
 NormA = math:sqrt(lists:sum([X * X || X <- A])),
 NormB = math:sqrt(lists:sum([X * X || X <- B])),
 Dot / (NormA * NormB).
Example: Using the Search
1> semantic_search:init_embedding_model().
ok

2> Docs = [
 <<"Erlang is great for building distributed systems">>,
 <<"Python excels at machine learning">>,
 <<"The BEAM VM provides fault tolerance">>,
 <<"Neural networks require GPU acceleration">>
].

3> Index = semantic_search:index(Docs).

4> semantic_search:search(<<"concurrent programming">>, Index).
[{<<"Erlang is great for building distributed systems">>, 0.42},
 {<<"The BEAM VM provides fault tolerance">>, 0.38},
 ...]
Calling LLM APIs
OpenAI
%% Initialize OpenAI client
init_openai() ->
 py:exec(<<"
import os
from openai import OpenAI
client = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'))
">>).

%% Chat completion
chat(Messages) ->
 %% Convert Erlang messages to Python format
 PyMessages = [#{role => Role, content => Content}
 || {Role, Content} <- Messages],
 {ok, Response} = py:eval(<<"
response = client.chat.completions.create(
 model='gpt-4',
 messages=messages
)
response.choices[0].message.content
">>, #{messages => PyMessages}),
 Response.

%% Usage
chat([{system, <<"You are a helpful assistant.">>},
 {user, <<"What is Erlang?">>}]).
%% => <<"Erlang is a programming language designed for...">>
Anthropic Claude
init_anthropic() ->
 py:exec(<<"
import os
import anthropic
client = anthropic.Anthropic(api_key=os.environ.get('ANTHROPIC_API_KEY'))
">>).

claude_chat(Prompt) ->
 {ok, Response} = py:eval(<<"
message = client.messages.create(
 model='claude-sonnet-4-20250514',
 max_tokens=1024,
 messages=[{'role': 'user', 'content': prompt}]
)
message.content[0].text
">>, #{prompt => Prompt}),
 Response.
Local Models with Ollama
init_ollama() ->
 py:exec(<<"
import requests

def ollama_generate(prompt, model='llama3.2'):
 response = requests.post(
 'http://localhost:11434/api/generate',
 json={'model': model, 'prompt': prompt, 'stream': False}
)
 return response.json()['response']
">>).

ollama_chat(Prompt) ->
 {ok, Response} = py:eval(
 <<"ollama_generate(prompt)">>,
 #{prompt => Prompt}
),
 Response.
Building a RAG System
Retrieval-Augmented Generation combines semantic search with LLM generation.
-module(rag).
-export([init/0, add_document/2, query/2]).

-record(state, {
 index = [] :: [{binary(), [float()]}]
}).

init() ->
 %% Initialize embedding model
 py:exec(<<"
from sentence_transformers import SentenceTransformer
from openai import OpenAI
import os

embedder = SentenceTransformer('all-MiniLM-L6-v2')
llm = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'))

def embed(text):
 return embedder.encode(text).tolist()

def embed_batch(texts):
 return embedder.encode(texts).tolist()

def generate(prompt, context):
 response = llm.chat.completions.create(
 model='gpt-4',
 messages=[
 {'role': 'system', 'content': f'Use this context to answer: {context}'},
 {'role': 'user', 'content': prompt}
]
)
 return response.choices[0].message.content
">>),
 #state{}.

add_document(Doc, #state{index = Index} = State) ->
 {ok, Embedding} = py:eval(<<"embed(doc)">>, #{doc => Doc}),
 State#state{index = [{Doc, Embedding} | Index]}.

query(Question, #state{index = Index}) ->
 %% 1. Embed the question
 {ok, QueryEmb} = py:eval(<<"embed(q)">>, #{q => Question}),

 %% 2. Find top-k similar documents
 Scored = [{Doc, cosine_sim(QueryEmb, DocEmb)} || {Doc, DocEmb} <- Index],
 TopK = lists:sublist(lists:reverse(lists:keysort(2, Scored)), 3),
 Context = iolist_to_binary([Doc || {Doc, _} <- TopK]),

 %% 3. Generate answer with context
 {ok, Answer} = py:eval(
 <<"generate(question, context)">>,
 #{question => Question, context => Context}
),
 Answer.

cosine_sim(A, B) ->
 Dot = lists:sum([X * Y || {X, Y} <- lists:zip(A, B)]),
 NormA = math:sqrt(lists:sum([X * X || X <- A])),
 NormB = math:sqrt(lists:sum([X * X || X <- B])),
 Dot / (NormA * NormB).
Using the RAG System
1> State0 = rag:init().

2> State1 = rag:add_document(<<"Erlang was created at Ericsson in 1986.">>, State0).
3> State2 = rag:add_document(<<"The BEAM VM runs Erlang and Elixir code.">>, State1).
4> State3 = rag:add_document(<<"OTP provides behaviors like gen_server.">>, State2).

5> rag:query(<<"When was Erlang created?">>, State3).
<<"Erlang was created at Ericsson in 1986.">>
Parallel Embedding with Sub-interpreters
For high-throughput embedding, use parallel execution:
%% Embed many documents in parallel
embed_parallel(Documents) ->
 %% Split into batches
 BatchSize = 100,
 Batches = partition(Documents, BatchSize),

 %% Build parallel calls
 Calls = [{mymodule, embed_batch, [Batch]} || Batch <- Batches],

 %% Execute in parallel across sub-interpreters
 {ok, Results} = py:parallel(Calls),

 %% Flatten results
 lists:flatten([R || {ok, R} <- Results]).

partition([], _) -> [];
partition(L, N) ->
 {H, T} = lists:split(min(N, length(L)), L),
 [H | partition(T, N)].
Leveraging Erlang's Concurrency from Python
A powerful pattern is to let Python call Erlang functions and leverage Erlang's lightweight processes for parallelism. This is especially useful when you need to:
	Process multiple items concurrently
	Fan out work to many workers
	Combine Python AI with Erlang's fault-tolerant concurrency

Registering Erlang Functions
%% Register functions that Python can call
init_erlang_functions() ->
 %% Simple computation
 py:register_function(process_item, fun([Item]) ->
 %% Your Erlang processing logic
 do_heavy_computation(Item)
 end),

 %% Parallel map: spawn one process per item
 py:register_function(parallel_map, fun([FuncName, Items]) ->
 Parent = self(),
 Refs = [begin
 Ref = make_ref(),
 spawn(fun() ->
 Result = execute_function(FuncName, Item),
 Parent ! {Ref, Result}
 end),
 Ref
 end || Item <- Items],
 %% Collect results in order
 [receive {Ref, R} -> R after 5000 -> {error, timeout} end
 || Ref <- Refs]
 end),

 %% Parallel HTTP fetches using Erlang processes
 py:register_function(parallel_fetch, fun([Urls]) ->
 Parent = self(),
 Refs = [begin
 Ref = make_ref(),
 spawn(fun() ->
 Result = http_fetch(Url), % Your HTTP client
 Parent ! {Ref, Result}
 end),
 Ref
 end || Url <- Urls],
 [receive {Ref, R} -> R after 30000 -> {error, timeout} end
 || Ref <- Refs]
 end).
Calling Erlang from Python
The erlang module is automatically available in Python code executed via py:eval:
In Python (via py:eval)
import erlang

Call a single Erlang function
result = erlang.call('process_item', data)

Process multiple items in parallel using Erlang processes
results = erlang.call('parallel_map', 'process_item', items)

Fetch multiple URLs concurrently
responses = erlang.call('parallel_fetch', urls)
Example: AI Pipeline with Erlang Parallelism
Combine AI embeddings with Erlang's concurrent processing:
-module(ai_pipeline).
-export([init/0, process_documents/1]).

init() ->
 %% Initialize embedding model
 ok = py:exec(<<"
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')

def embed_doc(doc):
 import erlang
 # Get metadata from Erlang (processed in parallel)
 metadata = erlang.call('fetch_metadata', doc['id'])
 # Generate embedding
 embedding = model.encode(doc['text']).tolist()
 return {'id': doc['id'], 'embedding': embedding, 'metadata': metadata}
">>),

 %% Register Erlang functions
 py:register_function(fetch_metadata, fun([DocId]) ->
 %% Simulate database lookup (could be actual DB call)
 timer:sleep(50),
 #{id => DocId, fetched_at => erlang:system_time(millisecond)}
 end),

 py:register_function(parallel_embed, fun([Docs]) ->
 %% Spawn a process for each document
 Parent = self(),
 Refs = [begin
 Ref = make_ref(),
 spawn(fun() ->
 {ok, Result} = py:eval(<<"embed_doc(doc)">>, #{doc => Doc}),
 Parent ! {Ref, Result}
 end),
 Ref
 end || Doc <- Docs],
 [receive {Ref, R} -> R after 30000 -> {error, timeout} end
 || Ref <- Refs]
 end).

process_documents(Docs) ->
 %% Process all documents in parallel
 {ok, Results} = py:eval(
 <<"__import__('erlang').call('parallel_embed', docs)">>,
 #{docs => Docs}
),
 Results.
Performance: Sequential vs Parallel
The Erlang concurrency model provides dramatic speedups:
%% Sequential: 10 items × 100ms = 1 second
Sequential = [process(Item) || Item <- Items].

%% Parallel with Erlang processes: ~100ms total (10x speedup!)
Parallel = py:eval(<<"erlang.call('parallel_map', 'process', items)">>,
 #{items => Items}).
Real-world results from the example:
Sequential (10 items × 100ms): 1.01 seconds
Parallel (10 Erlang processes): 0.10 seconds
Speedup: 10x faster!
Batch AI Operations with Erlang Workers
For high-throughput AI workloads, combine batching with Erlang workers:
%% Register a worker pool function
py:register_function(spawn_workers, fun([Tasks]) ->
 Parent = self(),
 Refs = [begin
 Ref = make_ref(),
 spawn(fun() ->
 %% Each worker can call Python AI functions
 Result = case Task of
 #{type := embed, text := Text} ->
 {ok, Emb} = py:eval(<<"model.encode(t).tolist()">>,
 #{t => Text}),
 #{type => embedding, result => Emb};
 #{type := classify, text := Text} ->
 {ok, Class} = py:eval(<<"classify(t)">>, #{t => Text}),
 #{type => classification, result => Class}
 end,
 Parent ! {Ref, Result}
 end),
 Ref
 end || Task <- Tasks],
 [receive {Ref, R} -> R after 60000 -> {error, timeout} end
 || Ref <- Refs]
end).

%% Usage from Python
process_ai_batch(Tasks) ->
 {ok, Results} = py:eval(
 <<"erlang.call('spawn_workers', tasks)">>,
 #{tasks => Tasks}
),
 Results.
Running the Example
A complete working example is available:
Run the Erlang concurrency example
escript examples/erlang_concurrency.erl

This demonstrates:
	Registering Erlang functions (echo, slow_compute, fib, etc.)
	Calling them from Python via erlang.call()
	Parallel processing with parallel_map
	Spawning worker pools with spawn_workers
	Simulated parallel HTTP fetches

Async LLM Calls
For non-blocking LLM calls:
%% Start async LLM call
ask_async(Question) ->
 py:call_async('__main__', generate, [Question, <<"">>]).

%% Gather multiple responses
ask_many(Questions) ->
 Refs = [ask_async(Q) || Q <- Questions],
 [py:await(Ref, 30000) || Ref <- Refs].
Streaming LLM Responses
For streaming responses from LLMs:
init_streaming() ->
 py:exec(<<"
from openai import OpenAI
import os

client = OpenAI(api_key=os.environ.get('OPENAI_API_KEY'))

def stream_chat(prompt):
 stream = client.chat.completions.create(
 model='gpt-4',
 messages=[{'role': 'user', 'content': prompt}],
 stream=True
)
 for chunk in stream:
 if chunk.choices[0].delta.content:
 yield chunk.choices[0].delta.content
">>).

stream_response(Prompt) ->
 {ok, Chunks} = py:stream('__main__', stream_chat, [Prompt]),
 %% Chunks is a list of text fragments
 iolist_to_binary(Chunks).
Performance Tips
1. Batch Operations
%% Slow: one call per embedding
[embed(Doc) || Doc <- Documents].

%% Fast: batch embedding
embed_batch(Documents).
2. Reuse Models
%% Load model once at startup
init() ->
 py:exec(<<"model = SentenceTransformer('...')">>).

%% Reuse in each request
embed(Text) ->
 py:eval(<<"model.encode(text).tolist()">>, #{text => Text}).
3. Use GPU When Available
init_gpu_model() ->
 py:exec(<<"
import torch
from sentence_transformers import SentenceTransformer

device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
">>).
4. Cache Embeddings in Shared State
Avoid recomputing embeddings for the same text:
%% Check cache before computing
embed_cached(Text) ->
 Key = <<"emb:", (crypto:hash(md5, Text))/binary>>,
 case py:state_fetch(Key) of
 {ok, Embedding} ->
 {ok, Embedding};
 {error, not_found} ->
 {ok, Embedding} = py:eval(
 <<"model.encode(text).tolist()">>,
 #{text => Text}
),
 py:state_store(Key, Embedding),
 {ok, Embedding}
 end.
Or from Python:
from erlang import state_get, state_set
import hashlib

def embed_cached(text):
 key = f"emb:{hashlib.md5(text.encode()).hexdigest()}"
 cached = state_get(key)
 if cached is not None:
 return cached
 embedding = model.encode(text).tolist()
 state_set(key, embedding)
 return embedding
5. Monitor Rate Limits
%% Check current load before heavy operations
check_capacity() ->
 Current = py_semaphore:current(),
 Max = py_semaphore:max_concurrent(),
 case Current / Max of
 Ratio when Ratio > 0.8 ->
 {error, high_load};
 _ ->
 ok
 end.
Error Handling
safe_embed(Text) ->
 try
 case py:eval(<<"model.encode(text).tolist()">>, #{text => Text}) of
 {ok, Embedding} -> {ok, Embedding};
 {error, Reason} -> {error, {python_error, Reason}}
 end
 catch
 error:timeout -> {error, timeout}
 end.

%% With retry
embed_with_retry(Text, Retries) when Retries > 0 ->
 case safe_embed(Text) of
 {ok, _} = Result -> Result;
 {error, _} ->
 timer:sleep(1000),
 embed_with_retry(Text, Retries - 1)
 end;
embed_with_retry(_, 0) ->
 {error, max_retries}.
Complete Example: AI-Powered Search Service
-module(ai_search).
-behaviour(gen_server).

-export([start_link/0, index/1, search/2]).
-export([init/1, handle_call/3, handle_cast/2]).

-record(state, {
 documents = #{} :: #{binary() => [float()]}
}).

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

index(Documents) ->
 gen_server:call(?MODULE, {index, Documents}, 60000).

search(Query, TopK) ->
 gen_server:call(?MODULE, {search, Query, TopK}, 10000).

init([]) ->
 %% Initialize embedding model
 ok = py:exec(<<"
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
">>),
 {ok, #state{}}.

handle_call({index, Documents}, _From, State) ->
 {ok, Embeddings} = py:eval(
 <<"model.encode(docs).tolist()">>,
 #{docs => Documents}
),
 NewDocs = maps:from_list(lists:zip(Documents, Embeddings)),
 {reply, ok, State#state{documents = maps:merge(State#state.documents, NewDocs)}};

handle_call({search, Query, TopK}, _From, #state{documents = Docs} = State) ->
 {ok, QueryEmb} = py:eval(
 <<"model.encode(q).tolist()">>,
 #{q => Query}
),
 Scored = [{Doc, cosine_sim(QueryEmb, Emb)} || {Doc, Emb} <- maps:to_list(Docs)],
 Results = lists:sublist(lists:reverse(lists:keysort(2, Scored)), TopK),
 {reply, {ok, Results}, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

cosine_sim(A, B) ->
 Dot = lists:sum([X * Y || {X, Y} <- lists:zip(A, B)]),
 NormA = math:sqrt(lists:sum([X * X || X <- A])),
 NormB = math:sqrt(lists:sum([X * X || X <- B])),
 Dot / (NormA * NormB).
Using from Elixir
All AI examples work seamlessly from Elixir:
Start erlang_python
{:ok, _} = Application.ensure_all_started(:erlang_python)

Activate venv with AI libraries
:ok = :py.activate_venv("/path/to/ai_venv")

Generate embeddings using ai_helpers module
{:ok, embeddings} = :py.call(:ai_helpers, :embed_texts, [
 ["Elixir is functional", "Python does ML", "BEAM is concurrent"]
])

Semantic search
{:ok, query_emb} = :py.call(:ai_helpers, :embed_single, ["concurrent programming"])

Calculate similarity in Elixir
similarities = Enum.zip(texts, embeddings)
|> Enum.map(fn {text, emb} -> {text, cosine_similarity(query_emb, emb)} end)
|> Enum.sort_by(fn {_, score} -> score end, :desc)
Parallel AI with BEAM Processes
Register parallel embedding function
:py.register_function(:parallel_embed, fn [texts] ->
 parent = self()

 refs = Enum.map(texts, fn text ->
 ref = make_ref()
 spawn(fn ->
 {:ok, emb} = :py.call(:ai_helpers, :embed_single, [text])
 send(parent, {ref, emb})
 end)
 ref
 end)

 Enum.map(refs, fn ref ->
 receive do
 {^ref, result} -> result
 after
 30_000 -> {:error, :timeout}
 end
 end)
end)
Running the Elixir AI Example
Full Elixir example with AI integration
elixir --erl "-pa _build/default/lib/erlang_python/ebin" examples/elixir_example.exs

The example demonstrates:
	Basic Python calls from Elixir
	Data type conversion
	Registering Elixir callbacks for Python
	Parallel processing (10x speedup)
	Semantic search with embeddings

See Also
	Getting Started - Basic usage
	Type Conversion - How data is converted
	Scalability - Parallel execution and rate limiting
	Streaming - Working with generators

 Type Conversion

This guide details how values are converted between Erlang and Python.
Erlang to Python
When calling Python functions or evaluating expressions, Erlang values are automatically converted:
	Erlang	Python	Notes
	integer()	int	Arbitrary precision supported
	float()	float	IEEE 754 double precision
	binary()	str	UTF-8 encoded
	atom()	str	Converted to string (except special atoms)
	true	True	Boolean
	false	False	Boolean
	none	None	Null value
	nil	None	Null value (Elixir compatibility)
	undefined	None	Null value
	list()	list	Recursively converted
	tuple()	tuple	Recursively converted
	map()	dict	Keys and values recursively converted

Examples
%% Integers
py:call(mymod, func, [42]). %% Python receives: 42
py:call(mymod, func, [123456789012345678901234567890]). %% Big integers work

%% Floats
py:call(mymod, func, [3.14159]). %% Python receives: 3.14159

%% Strings (binaries)
py:call(mymod, func, [<<"hello">>]). %% Python receives: "hello"

%% Atoms become strings
py:call(mymod, func, [foo]). %% Python receives: "foo"

%% Booleans
py:call(mymod, func, [true, false]). %% Python receives: True, False

%% None equivalents
py:call(mymod, func, [none]). %% Python receives: None
py:call(mymod, func, [nil]). %% Python receives: None
py:call(mymod, func, [undefined]). %% Python receives: None

%% Lists
py:call(mymod, func, [[1, 2, 3]]). %% Python receives: [1, 2, 3]

%% Tuples
py:call(mymod, func, [{1, 2, 3}]). %% Python receives: (1, 2, 3)

%% Maps become dicts
py:call(mymod, func, [#{a => 1, b => 2}]). %% Python receives: {"a": 1, "b": 2}
Python to Erlang
Return values from Python are converted back to Erlang:
	Python	Erlang	Notes
	int	integer()	Arbitrary precision supported
	float	float()	IEEE 754 double precision
	float('nan')	nan	Atom for Not-a-Number
	float('inf')	infinity	Atom for positive infinity
	float('-inf')	neg_infinity	Atom for negative infinity
	str	binary()	UTF-8 encoded
	bytes	binary()	Raw bytes
	True	true	Boolean
	False	false	Boolean
	None	none	Null value
	list	list()	Recursively converted
	tuple	tuple()	Recursively converted
	dict	map()	Keys and values recursively converted
	generator	internal	Used with streaming functions

Examples
%% Integers
{ok, 42} = py:eval(<<"42">>).
{ok, 123456789012345678901234567890} = py:eval(<<"123456789012345678901234567890">>).

%% Floats
{ok, 3.14} = py:eval(<<"3.14">>).

%% Special floats
{ok, nan} = py:eval(<<"float('nan')">>).
{ok, infinity} = py:eval(<<"float('inf')">>).
{ok, neg_infinity} = py:eval(<<"float('-inf')">>).

%% Strings
{ok, <<"hello">>} = py:eval(<<"'hello'">>).

%% Bytes
{ok, <<72,101,108,108,111>>} = py:eval(<<"b'Hello'">>).

%% Booleans
{ok, true} = py:eval(<<"True">>).
{ok, false} = py:eval(<<"False">>).

%% None
{ok, none} = py:eval(<<"None">>).

%% Lists
{ok, [1, 2, 3]} = py:eval(<<"[1, 2, 3]">>).

%% Tuples
{ok, {1, 2, 3}} = py:eval(<<"(1, 2, 3)">>).

%% Dicts become maps
{ok, #{<<"a">> := 1, <<"b">> := 2}} = py:eval(<<"{'a': 1, 'b': 2}">>).
Special Cases
NumPy Arrays
NumPy arrays are converted to nested Erlang lists:
%% 1D array
{ok, [1.0, 2.0, 3.0]} = py:eval(<<"import numpy as np; np.array([1, 2, 3]).tolist()">>).

%% 2D array
{ok, [[1, 2], [3, 4]]} = py:eval(<<"import numpy as np; np.array([[1,2],[3,4]]).tolist()">>).
For best performance with large arrays, consider using .tolist() in Python before returning.
Nested Structures
Nested data structures are recursively converted:
%% Nested dict
{ok, #{<<"user">> := #{<<"name">> := <<"Alice">>, <<"age">> := 30}}} =
 py:eval(<<"{'user': {'name': 'Alice', 'age': 30}}">>).

%% List of tuples
{ok, [{1, <<"a">>}, {2, <<"b">>}]} = py:eval(<<"[(1, 'a'), (2, 'b')]">>).

%% Mixed nesting
{ok, #{<<"items">> := [1, 2, 3], <<"meta">> := {<<"ok">>, 200}}} =
 py:eval(<<"{'items': [1, 2, 3], 'meta': ('ok', 200)}">>).
Map Keys
Erlang maps support any term as key, but Python dicts are more restricted:
%% Erlang atom keys become Python strings
py:call(json, dumps, [#{foo => 1, bar => 2}]).
%% Python sees: {"foo": 1, "bar": 2}

%% Binary keys stay as strings
py:call(json, dumps, [#{<<"foo">> => 1}]).
%% Python sees: {"foo": 1}
When Python returns dicts, string keys become binaries:
{ok, #{<<"foo">> := 1}} = py:eval(<<"{'foo': 1}">>).
Keyword Arguments
Maps can be used for Python keyword arguments:
%% Call with kwargs
{ok, Json} = py:call(json, dumps, [Data], #{indent => 2, sort_keys => true}).

%% Equivalent Python: json.dumps(data, indent=2, sort_keys=True)
Unsupported Types
Some Python types cannot be directly converted:
	Python Type	Workaround
	set	Convert to list: list(my_set)
	frozenset	Convert to tuple: tuple(my_frozenset)
	datetime	Use .isoformat() or timestamp
	Decimal	Use float() or str()
	Custom objects	Implement __iter__ or serialization

Example Workarounds
%% Sets - convert to list in Python
{ok, [1, 2, 3]} = py:eval(<<"sorted(list({3, 1, 2}))">>).

%% Datetime - use ISO format
{ok, <<"2024-01-15T10:30:00">>} =
 py:eval(<<"from datetime import datetime; datetime(2024,1,15,10,30).isoformat()">>).

%% Decimal - convert to string for precision
{ok, <<"3.14159265358979323846">>} =
 py:eval(<<"from decimal import Decimal; str(Decimal('3.14159265358979323846'))">>).
Performance Considerations
	Large strings: Binary conversion is efficient, but very large strings may cause memory pressure
	Deep nesting: Deeply nested structures require recursive traversal
	Big integers: Arbitrary precision integers work but large ones are slower
	NumPy arrays: Call .tolist() for explicit conversion; direct array conversion may be slower

For large data transfers, consider:
	Using streaming for iterables
	Serializing to JSON/msgpack in Python
	Processing data in chunks

 Context Affinity

Context affinity allows you to bind an Erlang process to a dedicated Python worker, preserving Python state (variables, imports, objects) across multiple py:call/eval/exec invocations.
Why Context Affinity?
By default, each call to py:call, py:eval, or py:exec may be handled by a different worker from the pool. This means:
	Variables defined in one call are not available in the next
	Imported modules must be re-imported
	Objects created in one call cannot be accessed later

Context affinity solves this by dedicating a worker to your process, ensuring all calls go to the same Python interpreter with preserved state.
Process-Implicit Binding
The simplest approach binds the current Erlang process to a worker:
%% Bind current process to a dedicated worker
ok = py:bind(),

%% Now all calls use the same worker - state persists!
ok = py:exec(<<"counter = 0">>),
ok = py:exec(<<"counter += 1">>),
{ok, 1} = py:eval(<<"counter">>),

ok = py:exec(<<"counter += 1">>),
{ok, 2} = py:eval(<<"counter">>),

%% Release the worker back to the pool
ok = py:unbind().
Checking Binding Status
false = py:is_bound(),
ok = py:bind(),
true = py:is_bound(),
ok = py:unbind(),
false = py:is_bound().
Explicit Contexts
For more control, create explicit context handles. This allows multiple independent Python contexts within a single Erlang process:
%% Create two independent contexts
{ok, Ctx1} = py:bind(new),
{ok, Ctx2} = py:bind(new),

%% Each context has its own namespace
ok = py:ctx_exec(Ctx1, <<"x = 'context one'">>),
ok = py:ctx_exec(Ctx2, <<"x = 'context two'">>),

%% Values are isolated
{ok, <<"context one">>} = py:ctx_eval(Ctx1, <<"x">>),
{ok, <<"context two">>} = py:ctx_eval(Ctx2, <<"x">>),

%% Release both
ok = py:unbind(Ctx1),
ok = py:unbind(Ctx2).
Context-Aware Functions
When using explicit contexts, use these functions:
	Function	Description
	py:ctx_call(Ctx, Module, Func, Args)	Call with context
	py:ctx_call(Ctx, Module, Func, Args, Kwargs)	Call with kwargs
	py:ctx_call(Ctx, Module, Func, Args, Kwargs, Timeout)	Call with timeout
	py:ctx_eval(Ctx, Code)	Evaluate expression
	py:ctx_eval(Ctx, Code, Locals)	Evaluate with locals
	py:ctx_eval(Ctx, Code, Locals, Timeout)	Evaluate with timeout
	py:ctx_exec(Ctx, Code)	Execute statements

Scoped Helper
The with_context/1 function provides automatic bind/unbind with cleanup on exception:
Implicit Binding (arity-0 function)
Result = py:with_context(fun() ->
 ok = py:exec(<<"total = 0">>),
 ok = py:exec(<<"for i in range(10): total += i">>),
 py:eval(<<"total">>)
end),
{ok, 45} = Result.
%% Process is automatically unbound here
Explicit Context (arity-1 function)
Result = py:with_context(fun(Ctx) ->
 ok = py:ctx_exec(Ctx, <<"import json">>),
 ok = py:ctx_exec(Ctx, <<"data = {'key': 'value'}">>),
 py:ctx_eval(Ctx, <<"json.dumps(data)">>)
end),
{ok, <<"{\"key\": \"value\"}">>} = Result.
Automatic Cleanup
Process Death
If a bound process dies, the worker is automatically returned to the pool:
Pid = spawn(fun() ->
 ok = py:bind(),
 %% Do some work...
 exit(normal) %% Worker automatically returned
end).
Worker Crash
If a bound worker crashes, the binding is cleaned up and a new worker is created:
ok = py:bind(),
%% If the worker crashes, binding is cleaned up
%% Next bind() will get a fresh worker
Use Cases
Stateful Computation
py:with_context(fun() ->
 %% Load a model once
 py:exec(<<"
import pickle
with open('model.pkl', 'rb') as f:
 model = pickle.load(f)
">>),

 %% Use it multiple times
 {ok, Pred1} = py:eval(<<"model.predict([[1, 2, 3]])">>),
 {ok, Pred2} = py:eval(<<"model.predict([[4, 5, 6]])">>),
 {Pred1, Pred2}
end).
Database Connections
ok = py:bind(),

%% Establish connection once
py:exec(<<"
import sqlite3
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()
cursor.execute('CREATE TABLE users (id INTEGER, name TEXT)')
">>),

%% Use the connection across multiple calls
py:exec(<<"cursor.execute('INSERT INTO users VALUES (1, \"Alice\")')">>),
py:exec(<<"cursor.execute('INSERT INTO users VALUES (2, \"Bob\")')">>),
{ok, Users} = py:eval(<<"cursor.execute('SELECT * FROM users').fetchall()">>),

%% Clean up
py:exec(<<"conn.close()">>),
py:unbind().
Incremental Processing
{ok, Ctx} = py:bind(new),

%% Initialize accumulator
py:ctx_exec(Ctx, <<"results = []">>),

%% Process items one at a time
lists:foreach(fun(Item) ->
 py:ctx_exec(Ctx, <<"results.append(process_item(item))">>,
 #{item => Item})
end, Items),

%% Get final results
{ok, Results} = py:ctx_eval(Ctx, <<"results">>),

py:unbind(Ctx).
Performance Considerations
	Binding overhead: bind() requires a gen_server call to checkout a worker
	Lookup overhead: Once bound, routing adds only an O(1) ETS lookup
	Pool exhaustion: Each bound context removes a worker from the pool
	Recommendation: Use with_context/1 for short-lived operations; explicit bind/unbind for long-lived sessions

Pool Statistics
Check how many workers are bound:
Stats = py_pool:get_stats(),
#{
 num_workers := 8,
 available_workers := 6, %% 2 workers are checked out
 checked_out := 2,
 pending_requests := 0
} = Stats.
Error Handling
No Workers Available
%% If all workers are bound
{error, no_workers_available} = py:bind().
Context Not Bound
%% Using a context after unbind raises an error
{ok, Ctx} = py:bind(new),
ok = py:unbind(Ctx),
%% This will crash with context_not_bound
py:ctx_eval(Ctx, <<"1 + 1">>). %% error(context_not_bound)
Best Practices
	Always unbind: Use with_context/1 or ensure unbind in a try/after block
	Minimize binding time: Don't hold workers longer than necessary
	Watch pool size: Monitor py_pool:get_stats() to avoid exhaustion
	Use explicit contexts: When you need multiple independent namespaces
	Prefer implicit binding: For simple sequential operations in a single process

 Streaming

This guide covers working with Python generators from Erlang.
Overview
Python generators allow processing large datasets or infinite sequences
efficiently by yielding values one at a time. erlang_python supports
streaming these values back to Erlang.
Generator Expressions
The simplest way to stream is with generator expressions:
%% Stream squares of numbers 0-9
{ok, Squares} = py:stream_eval(<<"(x**2 for x in range(10))">>).
%% Squares = [0,1,4,9,16,25,36,49,64,81]

%% Stream uppercase characters
{ok, Upper} = py:stream_eval(<<"(c.upper() for c in 'hello')">>).
%% Upper = [<<"H">>,<<"E">>,<<"L">>,<<"L">>,<<"O">>]

%% Stream filtered values
{ok, Evens} = py:stream_eval(<<"(x for x in range(20) if x % 2 == 0)">>).
%% Evens = [0,2,4,6,8,10,12,14,16,18]
Iterator Objects
Any Python iterator can be streamed:
%% Stream from range
{ok, Numbers} = py:stream_eval(<<"iter(range(5))">>).
%% Numbers = [0,1,2,3,4]

%% Stream dictionary items
{ok, Items} = py:stream_eval(<<"iter({'a': 1, 'b': 2}.items())">>).
%% Items = [{<<"a">>, 1}, {<<"b">>, 2}]
Generator Functions
Define generator functions with yield:
%% Define a generator function
ok = py:exec(<<"
def fibonacci(n):
 a, b = 0, 1
 for _ in range(n):
 yield a
 a, b = b, a + b
">>).

%% Stream from it
%% Note: Functions defined with exec are local to the worker that executes them.
%% Subsequent calls may go to different workers in the pool.
{ok, Fib} = py:stream('__main__', fibonacci, [10]).
%% Fib = [0,1,1,2,3,5,8,13,21,34]
For reliable inline generators, use lambda with walrus operator (Python 3.8+):
%% Fibonacci using inline lambda - works reliably across workers
{ok, Fib} = py:stream_eval(<<"(lambda: ((fib := [0, 1]), [fib.append(fib[-1] + fib[-2]) for _ in range(8)], iter(fib))[-1])()">>).
%% Fib = [0,1,1,2,3,5,8,13,21,34]
Streaming Protocol
Internally, streaming uses these messages:
{py_chunk, Ref, Value} %% Each yielded value
{py_end, Ref} %% Generator exhausted
{py_error, Ref, Error} %% Exception occurred
You can build custom streaming consumers:
start_stream(Code) ->
 Ref = make_ref(),
 py_pool:request({stream_eval, Ref, self(), Code, #{}}),
 process_stream(Ref).

process_stream(Ref) ->
 receive
 {py_chunk, Ref, Value} ->
 io:format("Got: ~p~n", [Value]),
 process_stream(Ref);
 {py_end, Ref} ->
 io:format("Done~n");
 {py_error, Ref, Error} ->
 io:format("Error: ~p~n", [Error])
 after 30000 ->
 io:format("Timeout~n")
 end.
Memory Considerations
	Values are collected into a list by stream_eval/1,2
	For large datasets, consider processing chunks as they arrive
	Generators are garbage collected after exhaustion

Use Cases
Data Processing Pipelines
%% Process file lines (if defined in Python)
{ok, Lines} = py:stream(mymodule, read_lines, [<<"data.txt">>]).

%% Transform each line
Results = [process_line(L) || L <- Lines].
Infinite Sequences
%% Define infinite counter
ok = py:exec(<<"
def counter():
 n = 0
 while True:
 yield n
 n += 1
">>).

%% Take first 100 (use your own take function)
%% Can't use stream/3 directly for infinite - need custom handling
Batch Processing
%% Process in batches
ok = py:exec(<<"
def batches(data, size):
 for i in range(0, len(data), size):
 yield data[i:i+size]
">>).

 Memory Management

This guide covers Python memory monitoring and garbage collection from Erlang.
Memory Statistics
Get current Python memory statistics:
{ok, Stats} = py:memory_stats().
The returned map contains:
	gc_stats - List of per-generation statistics (collected, collections, uncollectable)
	gc_count - Tuple of object counts per generation {gen0, gen1, gen2}
	gc_threshold - Collection thresholds per generation

Example output:
#{gc_stats =>
 [#{<<"collected">> => 0, <<"collections">> => 0, <<"uncollectable">> => 0},
 #{<<"collected">> => 0, <<"collections">> => 0, <<"uncollectable">> => 0},
 #{<<"collected">> => 145, <<"collections">> => 1, <<"uncollectable">> => 0}],
 gc_count => {1837, 0, 0},
 gc_threshold => {2000, 10, 0}}
Garbage Collection
Manual Collection
Force Python garbage collection:
%% Full collection (all generations)
{ok, Collected} = py:gc().

%% Collection by generation
{ok, _} = py:gc(0). %% Youngest objects only
{ok, _} = py:gc(1). %% Generations 0 and 1
{ok, _} = py:gc(2). %% Full collection
When to Force GC
	After processing large datasets
	Before measuring memory usage
	When memory pressure is detected

Memory Tracing
For detailed memory debugging, use tracemalloc:
%% Start tracing
ok = py:tracemalloc_start().

%% Do some work
{ok, _} = py:eval(<<"[x**2 for x in range(100000)]">>).

%% Check memory
{ok, Stats} = py:memory_stats().
%% Stats now includes:
%% traced_memory_current => 1234567, %% Current bytes
%% traced_memory_peak => 2345678 %% Peak bytes

%% Stop tracing
ok = py:tracemalloc_stop().
Frame Depth
For more detailed tracebacks, specify frame depth:
ok = py:tracemalloc_start(10). %% Store 10 frames per allocation
Higher frame counts provide more detail but use more memory.
Memory Best Practices
1. Use Streaming for Large Data
Instead of loading everything into memory:
%% Bad - loads entire list
{ok, Huge} = py:eval(<<"list(range(10000000))">>).

%% Good - processes incrementally
{ok, Chunks} = py:stream_eval(<<"(x for x in range(10000000))">>).
2. Clear Large Objects
Python objects are cleaned up when their references are released.
Force cleanup with explicit GC:
process_large_data(Data) ->
 Result = py:call(processor, handle, [Data]),
 {ok, _} = py:gc(), %% Clean up Python side
 Result.
3. Monitor Pool Memory
Track memory across workers:
monitor_memory() ->
 {ok, Stats} = py:memory_stats(),
 Count = element(1, maps:get(gc_count, Stats)),
 Threshold = element(1, maps:get(gc_threshold, Stats)),
 if Count > Threshold * 0.8 ->
 logger:warning("Python memory pressure: ~p/~p", [Count, Threshold]),
 py:gc();
 true ->
 ok
 end.
Understanding GC Stats
Generations
Python uses generational garbage collection:
	Generation 0: Newly created objects. Collected frequently.
	Generation 1: Objects that survived one collection. Collected less often.
	Generation 2: Long-lived objects. Collected rarely.

Thresholds
Default thresholds are {700, 10, 10}:
	Gen 0 collects after 700 new allocations
	Gen 1 collects after 10 Gen 0 collections
	Gen 2 collects after 10 Gen 1 collections

Uncollectable Objects
Objects with circular references and __del__ methods may be uncollectable.
Monitor the uncollectable count in gc_stats.
Troubleshooting
High Memory Usage
	Enable tracemalloc to identify allocations
	Check for large objects not being released
	Force GC and re-measure
	Consider streaming large datasets

Memory Leaks
	Check uncollectable count in gc_stats
	Look for circular references in Python code
	Ensure generators are fully consumed or explicitly closed

Worker Memory Growth
Each worker maintains its own namespace. Objects defined via exec persist:
%% This grows worker memory over time
[py:exec(<<"x", N, " = [0] * 1000000">>) || N <- lists:seq(1, 100)].

%% Consider using eval with locals instead
[py:eval(<<"len(data)">>, #{data => LargeList}) || _ <- lists:seq(1, 100)].

 Scalability and Parallelism

This guide covers the scalability features of erlang_python, including execution modes, rate limiting, and parallel execution.
Execution Modes
erlang_python automatically detects the optimal execution mode based on your Python version:
%% Check current execution mode
py:execution_mode().
%% => free_threaded | subinterp | multi_executor

%% Check number of executor threads
py:num_executors().
%% => 4 (default)
Mode Comparison
	Mode	Python Version	Parallelism	GIL Behavior	Best For
	free_threaded	3.13+ (nogil build)	True N-way	None	Maximum throughput
	subinterp	3.12+	True N-way	Per-interpreter	CPU-bound, isolation
	multi_executor	Any	GIL contention	Shared, round-robin	I/O-bound, compatibility

Free-Threaded Mode (Python 3.13+)
When running on a free-threaded Python build (compiled with --disable-gil), erlang_python executes Python calls directly without any executor routing. This provides maximum parallelism for CPU-bound workloads.
Sub-interpreter Mode (Python 3.12+)
Uses Python's sub-interpreter feature with per-interpreter GIL. Each sub-interpreter has its own GIL, allowing true parallel execution across interpreters.
Note: Each sub-interpreter has isolated state. Use the Shared State API to share data between workers.
Multi-Executor Mode (Python < 3.12)
Runs N executor threads that share the GIL. Requests are distributed round-robin across executors. Good for I/O-bound workloads where Python releases the GIL during I/O operations.
Rate Limiting
All Python calls pass through an ETS-based counting semaphore that prevents overload:
%% Check semaphore status
py_semaphore:max_concurrent(). %% => 29 (schedulers * 2 + 1)
py_semaphore:current(). %% => 0 (currently running)

%% Dynamically adjust limit
py_semaphore:set_max_concurrent(50).
How It Works
┌───┐
│ py_semaphore │
│ │
│ ┌─────────┐ ┌─────────────────────────────────────┐ │
│ │ Counter │◄───│ ets:update_counter (atomic) │ │
│ │ [29] │ │ {write_concurrency, true} │ │
│ └─────────┘ └─────────────────────────────────────┘ │
│ │
│ acquire(Timeout) ──► increment ──► check ≤ max? │
│ │ │ │
│ │ yes │ no │
│ │ │ │ │
│ │ ok │ └──► backoff │
│ │ │ loop │
│ release() ──────────►└──── decrement ──┘ │
└───┘
Overload Protection
When the semaphore is exhausted, py:call returns an overload error instead of blocking forever:
{error, {overloaded, Current, Max}} = py:call(module, func, []).
This allows your application to implement backpressure or shed load gracefully.
Configuration
%% sys.config
[
 {erlang_python, [
 %% Maximum concurrent Python operations (semaphore limit)
 %% Default: erlang:system_info(schedulers) * 2 + 1
 {max_concurrent, 50},

 %% Number of executor threads (multi_executor mode only)
 %% Default: 4
 {num_executors, 8},

 %% Worker pool sizes
 {num_workers, 4},
 {num_async_workers, 2},
 {num_subinterp_workers, 4}
]}
].
Parallel Execution with Sub-interpreters
For CPU-bound workloads on Python 3.12+, use explicit parallel execution:
%% Check if supported
true = py:subinterp_supported().

%% Execute multiple calls in parallel
{ok, Results} = py:parallel([
 {math, sqrt, [16]},
 {math, sqrt, [25]},
 {math, sqrt, [36]}
]).
%% => {ok, [{ok, 4.0}, {ok, 5.0}, {ok, 6.0}]}
Each call runs in its own sub-interpreter with its own GIL, enabling true parallelism.
Testing with Free-Threading
To test with a free-threaded Python build:
1. Install Python 3.13+ with Free-Threading
macOS with Homebrew
brew install python@3.13 --with-freethreading

Or build from source
./configure --disable-gil
make && make install

Or use pyenv
PYTHON_CONFIGURE_OPTS="--disable-gil" pyenv install 3.13.0

2. Verify Free-Threading is Enabled
python3 -c "import sys; print('GIL disabled:', hasattr(sys, '_is_gil_enabled') and not sys._is_gil_enabled())"

3. Rebuild erlang_python
Clean and rebuild with free-threaded Python
rebar3 clean
PYTHON_CONFIG=/path/to/python3.13-config rebar3 compile

4. Verify Mode
1> application:ensure_all_started(erlang_python).
2> py:execution_mode().
free_threaded
Performance Tuning
For CPU-Bound Workloads
	Use py:parallel/1 with sub-interpreters (Python 3.12+)
	Or use free-threaded Python (3.13+)
	Increase max_concurrent to match available CPU cores

For I/O-Bound Workloads
	Multi-executor mode works well (GIL released during I/O)
	Increase num_executors to handle more concurrent I/O
	Use asyncio integration for async I/O

For Mixed Workloads
	Balance max_concurrent based on memory constraints
	Monitor py_semaphore:current() for load metrics
	Implement application-level backpressure based on overload errors

Monitoring
%% Current load
Load = py_semaphore:current(),
Max = py_semaphore:max_concurrent(),
Utilization = Load / Max * 100,
io:format("Python load: ~.1f%~n", [Utilization]).

%% Execution mode info
Mode = py:execution_mode(),
Executors = py:num_executors(),
io:format("Mode: ~p, Executors: ~p~n", [Mode, Executors]).

%% Memory stats
{ok, Stats} = py:memory_stats(),
io:format("GC stats: ~p~n", [maps:get(gc_stats, Stats)]).
Shared State
Since workers (and sub-interpreters) have isolated namespaces, erlang_python provides
ETS-backed shared state accessible from both Python and Erlang:
from erlang import state_set, state_get, state_incr, state_decr

Share configuration across workers
config = state_get('app_config')

Thread-safe metrics
state_incr('requests_total')
state_incr('bytes_processed', len(data))
%% Set config that all workers can read
py:state_store(<<"app_config">>, #{model => <<"gpt-4">>, timeout => 30000}).

%% Read metrics
{ok, Total} = py:state_fetch(<<"requests_total">>).
The state is backed by ETS with {write_concurrency, true}, making atomic
counter operations fast and lock-free. See Getting Started
for the full API.
Reentrant Callbacks
erlang_python supports reentrant callbacks where Python code calls Erlang functions
that themselves call back into Python. This is handled without deadlocking through
a suspension/resume mechanism:
%% Register an Erlang function that calls Python
py:register_function(compute_via_python, fun([X]) ->
 {ok, Result} = py:call('__main__', complex_compute, [X]),
 Result * 2 %% Erlang post-processing
end).

%% Python code that uses the callback
py:exec(<<"
def process(x):
 from erlang import call
 # Calls Erlang, which calls Python's complex_compute
 result = call('compute_via_python', x)
 return result + 1
">>).
How Reentrant Callbacks Work
┌───┐
│ Reentrant Callback Flow │
│ │
│ 1. Python calls erlang.call('func', args) │
│ └──► Returns suspension marker, frees dirty scheduler │
│ │
│ 2. Erlang executes the registered callback │
│ └──► May call py:call() to run Python (on different worker) │
│ │
│ 3. Erlang calls resume_callback with result │
│ └──► Schedules dirty NIF to return result to Python │
│ │
│ 4. Python continues with the callback result │
│ │
└───┘
Benefits
	No Deadlocks: Dirty schedulers are freed during callback execution
	Nested Callbacks: Multiple levels of Python→Erlang→Python→... are supported
	Transparent: From Python's perspective, erlang.call() appears synchronous
	No Configuration: Works automatically with all execution modes

Performance Considerations
	Reentrant callbacks have slightly higher overhead due to suspension/resume
	For tight loops, consider batching operations to reduce callback overhead
	Concurrent reentrant calls are fully supported and scale well

Example: Nested Callbacks
%% Each level alternates between Erlang and Python
py:register_function(level, fun([N, Max]) ->
 case N >= Max of
 true -> N;
 false ->
 {ok, Result} = py:call('__main__', next_level, [N + 1, Max]),
 Result
 end
end).

py:exec(<<"
def next_level(n, max):
 from erlang import call
 return call('level', n, max)

def start(max):
 from erlang import call
 return call('level', 1, max)
">>).

%% Test 10 levels of nesting
{ok, 10} = py:call('__main__', start, [10]).
Example
See examples/reentrant_demo.erl and examples/reentrant_demo.py for a complete
demonstration including:
	Basic reentrant calls with arithmetic expressions
	Fibonacci with Erlang memoization
	Deeply nested callbacks (10+ levels)
	OOP-style class method callbacks

Run the demo
rebar3 shell
1> reentrant_demo:start().
2> reentrant_demo:demo_all().

See Also
	Getting Started - Basic usage
	Memory Management - GC and memory debugging
	Streaming - Working with generators

 Threading Support

erlang_python supports calling erlang.call() from Python threads, enabling
concurrent Erlang callbacks from multithreaded Python code.
Supported Thread Types
	threading.Thread - Standard Python threads
	concurrent.futures.ThreadPoolExecutor - Thread pool workers
	Any other spawned Python threads

Usage
With threading.Thread
import threading
import erlang

def worker():
 result = erlang.call('my_function', arg1, arg2)
 print(f"Got: {result}")

thread = threading.Thread(target=worker)
thread.start()
thread.join()
With ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor
import erlang

def call_erlang(x):
 return erlang.call('double_it', x)

with ThreadPoolExecutor(max_workers=4) as executor:
 results = list(executor.map(call_erlang, range(10)))
Multiple Calls from Same Thread
A single thread can make multiple sequential erlang.call() invocations:
import threading
import erlang

def worker():
 # Chain multiple Erlang calls
 x = erlang.call('add_one', 0)
 x = erlang.call('add_one', x)
 x = erlang.call('add_one', x)
 return x # Returns 3

thread = threading.Thread(target=worker)
thread.start()
thread.join()
Architecture
Each Python thread that calls erlang.call() gets:
	A dedicated response pipe - For receiving results from Erlang
	A lightweight Erlang process - Handles callbacks for that thread
	Automatic cleanup - Resources released when the thread exits

This allows multiple Python threads to make concurrent Erlang calls without
blocking each other.
┌───┐
│ Python Process │
├───┤
│ Thread 1 Thread 2 Thread 3 │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Worker │ │ Worker │ │ Worker │ │
│ │ Pipe │ │ Pipe │ │ Pipe │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ │
│ │ │ │ │
└───────┼──────────────────┼──────────────────┼───────────────────┘
 │ │ │
 ▼ ▼ ▼
┌───┐
│ Erlang VM (BEAM) │
├───┤
│ Handler 1 Handler 2 Handler 3 │
│ (process) (process) (process) │
│ │ │ │ │
│ └──────────────────┼──────────────────┘ │
│ │ │
│ ┌──────▼──────┐ │
│ │ Coordinator │ │
│ │ (process) │ │
│ └─────────────┘ │
└───┘
Thread Safety
	Isolated state - Each thread has its own worker channel, no locks needed
	Concurrent calls - Multiple threads can call erlang.call() simultaneously
	Correct delivery - Results are delivered to the correct thread via per-thread pipes

Lifecycle
	First call - When a Python thread first calls erlang.call():
	A thread worker is acquired from the pool (or created if none available)
	An Erlang handler process is spawned for this worker
	The worker is associated with the thread via pthread_key_t

	Subsequent calls - The same worker is reused for all calls from that thread

	Thread exit - When the Python thread terminates:
	The pthread_key_t destructor is invoked automatically
	The worker is released back to the pool
	The Erlang handler process continues to exist for potential reuse

Performance Considerations
	Worker reuse - Workers are pooled and reused across thread lifetimes
	Lazy initialization - Handlers are only spawned when first needed
	No GIL blocking - The GIL is released while waiting for Erlang responses
	Lightweight processes - Each Erlang handler is a lightweight BEAM process

Limitations
	Threads must be Python threads (not C threads that don't hold the GIL)
	The thread coordinator must be started (happens automatically with application start)

Registering Erlang Functions
Before Python threads can call Erlang functions, register them:
%% In Erlang
py:register_function(double_it, fun([X]) -> X * 2 end).
py:register_function(add_one, fun([X]) -> X + 1 end).
Then call from Python threads:
import threading
import erlang

def worker(n):
 return erlang.call('double_it', n)

threads = [threading.Thread(target=worker, args=(i,)) for i in range(10)]
for t in threads:
 t.start()
for t in threads:
 t.join()
Error Handling
Errors from Erlang functions are raised as Python exceptions:
import threading
import erlang

def worker():
 try:
 result = erlang.call('maybe_fail', 42)
 except RuntimeError as e:
 print(f"Erlang error: {e}")

thread = threading.Thread(target=worker)
thread.start()
thread.join()

 Testing with Free-Threaded Python

This guide explains how to test erlang_python with Python's experimental free-threading mode (no GIL).
Overview
Python 3.13+ can be built with --disable-gil to create a "free-threaded" build where the Global Interpreter Lock is removed. This allows true parallel execution of Python code across multiple threads.
erlang_python automatically detects free-threaded Python and uses direct execution (no executor thread) for maximum performance.
Installing Free-Threaded Python
Option 1: Using pyenv (Recommended)
Install pyenv if not already installed
curl https://pyenv.run | bash

Install free-threaded Python 3.13+
PYTHON_CONFIGURE_OPTS="--disable-gil" pyenv install 3.13.0

Or for 3.14+
PYTHON_CONFIGURE_OPTS="--disable-gil" pyenv install 3.14.0

Option 2: Build from Source
Download Python source
wget https://www.python.org/ftp/python/3.13.0/Python-3.13.0.tar.xz
tar xf Python-3.13.0.tar.xz
cd Python-3.13.0

Configure with --disable-gil
./configure --prefix=$HOME/python-nogil --disable-gil --enable-optimizations

Build and install
make -j$(nproc)
make install

Option 3: macOS with Homebrew
Check if free-threading option is available
brew info python@3.13

If available:
brew install python@3.13 --with-freethreading

Option 4: Using Docker
FROM python:3.13-rc

Python RC images may include free-threading
Check with: python -c "import sys; print(hasattr(sys, '_is_gil_enabled'))"
Verifying Free-Threading is Enabled
Check if GIL is disabled
python3 -c "
import sys
if hasattr(sys, '_is_gil_enabled'):
 print('Free-threading supported:', not sys._is_gil_enabled())
else:
 print('Free-threading not available (Python < 3.13 or GIL enabled)')
"

Expected output for free-threaded Python:
Free-threading supported: True
Building erlang_python for Free-Threading
Clean previous builds
rebar3 clean

Set Python config path (adjust for your installation)
export PYTHON_CONFIG=$HOME/python-nogil/bin/python3-config

Or if using pyenv
export PYTHON_CONFIG=$(pyenv prefix 3.13.0)/bin/python3-config

Build
rebar3 compile

Verifying Free-Threading Mode
1> application:ensure_all_started(erlang_python).
{ok, [erlang_python]}

2> py:execution_mode().
free_threaded % Should show 'free_threaded' instead of 'subinterp' or 'multi_executor'

3> py:num_executors().
1 % In free_threaded mode, no executor pool is used
Running Tests
Run the test suite
rebar3 ct --suite=py_SUITE

Run benchmarks
escript examples/benchmark.erl --full

Performance Comparison
Run benchmarks with both standard and free-threaded Python to compare:
Standard Python (with GIL)
Use standard Python
export PYTHON_CONFIG=/usr/bin/python3-config
rebar3 clean && rebar3 compile
escript examples/benchmark.erl --concurrent

Free-Threaded Python
Use free-threaded Python
export PYTHON_CONFIG=$HOME/python-nogil/bin/python3-config
rebar3 clean && rebar3 compile
escript examples/benchmark.erl --concurrent

Expected results:
	Free-threaded mode should show higher throughput for concurrent CPU-bound workloads
	The difference is most noticeable with many concurrent processes making Python calls

Caveats
Extension Compatibility
Not all Python C extensions are compatible with free-threading. Extensions that rely on the GIL for thread safety may crash or produce incorrect results.
Known compatible:
	Standard library modules
	NumPy (recent versions)

May have issues:
	Older C extensions
	Extensions using non-thread-safe C libraries

Memory Model
Free-threaded Python uses a different memory model. Be aware of:
	Increased memory usage (per-object locks)
	Different garbage collection behavior
	Potential for data races in Python code

Testing Recommendations
	Start with unit tests: Ensure basic functionality works
	Test concurrency: Run concurrent benchmarks
	Check for crashes: Monitor for segfaults during heavy load
	Profile memory: Watch for memory leaks or bloat

Troubleshooting
Build Fails
error: Python.h not found
Ensure PYTHON_CONFIG points to the free-threaded Python installation:
ls $(dirname $(which python3))/../include/*/Python.h

Mode Shows 'multi_executor' Instead of 'free_threaded'
The Python build may not have Py_GIL_DISABLED defined. Verify:
python3 -c "import sysconfig; print(sysconfig.get_config_var('Py_GIL_DISABLED'))"

Should print 1 for free-threaded builds.
Crashes Under Load
Some extensions may not be thread-safe. Try:
	Isolate the problematic extension
	Check if a thread-safe version exists
	Fall back to sub-interpreter mode for those calls

See Also
	PEP 703 - Making the GIL Optional
	Python Free-Threading Documentation
	Scalability Guide

py

High-level API for executing Python code from Erlang.
This module provides a simple interface to call Python functions, execute Python code, and stream results from Python generators.
[bookmark: Examples]Examples
 %% Call a Python function
 {ok, Result} = py:call(json, dumps, [#{foo => bar}]).

 %% Call with keyword arguments
 {ok, Result} = py:call(json, dumps, [Data], #{indent => 2}).

 %% Execute raw Python code
 {ok, Result} = py:eval("1 + 2").

 %% Stream from a generator
 {ok, Stream} = py:stream(mymodule, generate_tokens, [Prompt]),
 lists:foreach(fun(Token) -> io:format("~s", [Token]) end, Stream).

 Summary

 Types

 py_args/0

 py_ctx/0

 py_func/0

 py_kwargs/0

 py_module/0

 py_ref/0

 py_result/0

 Functions

 activate_venv(VenvPath)

 Activate a Python virtual environment. This modifies sys.path to use packages from the specified venv. The venv path should be the root directory (containing bin/lib folders).

 async_await(Ref)

 Wait for an async call to complete.

 async_await(Ref, Timeout)

 Wait for an async call with timeout. Note: Identical to await/2 - provided for API symmetry with async_call.

 async_call(Module, Func, Args)

 Call a Python async function (coroutine). Returns immediately with a reference. Use async_await/1,2 to get the result. This is for calling functions defined with async def in Python.

 async_call(Module, Func, Args, Kwargs)

 Call a Python async function with keyword arguments.

 async_gather(Calls)

 Execute multiple async calls concurrently using asyncio.gather. Takes a list of {Module, Func, Args} tuples and executes them all concurrently, returning when all are complete.

 async_stream(Module, Func, Args)

 Stream results from a Python async generator. Returns a list of all yielded values.

 async_stream(Module, Func, Args, Kwargs)

 Stream results from a Python async generator with kwargs.

 await(Ref)

 Wait for an async call to complete.

 await(Ref, Timeout)

 Wait for an async call with timeout.

 bind()

 Bind current process to a dedicated Python worker. All subsequent py:call/eval/exec operations from this process will use the same worker, preserving Python state (variables, imports) across calls.

 bind(_)

 Create an explicit context with a dedicated worker. Returns a context handle that can be passed to call/eval/exec variants. Multiple contexts can exist per process.

 call(Module, Func, Args)

 Call a Python function synchronously.

 call(Module, Func, Args, Kwargs)

 Call a Python function with keyword arguments.

 call(Module, Func, Args, Kwargs, Timeout)

 Call a Python function with keyword arguments and custom timeout. Timeout is in milliseconds. Use infinity for no timeout. Rate limited via ETS-based semaphore to prevent overload.

 call_async(Module, Func, Args)

 Call a Python function asynchronously, returns immediately with a ref.

 call_async(Module, Func, Args, Kwargs)

 Call a Python function asynchronously with kwargs.

 ctx_call(Ctx, Module, Func, Args)

 Call with explicit context.

 ctx_call(Ctx, Module, Func, Args, Kwargs)

 Call with explicit context and kwargs.

 ctx_call(Py_ctx, Module, Func, Args, Kwargs, Timeout)

 Call with explicit context, kwargs, and timeout.

 ctx_eval(Ctx, Code)

 Eval with explicit context.

 ctx_eval(Ctx, Code, Locals)

 Eval with explicit context and locals.

 ctx_eval(Py_ctx, Code, Locals, Timeout)

 Eval with explicit context, locals, and timeout.

 ctx_exec(Py_ctx, Code)

 Exec with explicit context.

 deactivate_venv()

 Deactivate the current virtual environment. Restores sys.path to its original state.

 eval(Code)

 Evaluate a Python expression and return the result.

 eval(Code, Locals)

 Evaluate a Python expression with local variables.

 eval(Code, Locals, Timeout)

 Evaluate a Python expression with local variables and timeout. Timeout is in milliseconds. Use infinity for no timeout.

 exec(Code)

 Execute Python statements (no return value expected).

 execution_mode()

 Get the current execution mode. Returns one of: - free_threaded: Python 3.13+ with no GIL (Py_GIL_DISABLED) - subinterp: Python 3.12+ with per-interpreter GIL - multi_executor: Traditional Python with N executor threads

 gc()

 Force Python garbage collection. Performs a full collection (all generations). Returns the number of unreachable objects collected.

 gc(Generation)

 Force garbage collection of a specific generation. Generation 0 collects only the youngest objects. Generation 1 collects generations 0 and 1. Generation 2 (default) performs a full collection.

 is_bound()

 Check if current process is bound.

 memory_stats()

 Get Python memory statistics. Returns a map containing: - gc_stats: List of per-generation GC statistics - gc_count: Tuple of object counts per generation - gc_threshold: Collection thresholds per generation - traced_memory_current: Current traced memory (if tracemalloc enabled) - traced_memory_peak: Peak traced memory (if tracemalloc enabled)

 num_executors()

 Get the number of executor threads. For multi_executor mode, this is the number of executor threads. For other modes, returns 1.

 parallel(Calls)

 Execute multiple Python calls in true parallel using sub-interpreters. Each call runs in its own sub-interpreter with its own GIL, allowing CPU-bound Python code to run in parallel.

 register_function(Name, Fun)

 Register an Erlang function to be callable from Python. Python code can then call: erlang.call('name', arg1, arg2, ...) The function should accept a list of arguments and return a term.

 register_function(Name, Module, Function)

 Register an Erlang module:function to be callable from Python. The function will be called as Module:Function(Args).

 reload(Module)

 Reload a Python module across all workers. This uses importlib.reload() to refresh the module from disk. Useful during development when Python code changes.

 state_clear()

 Clear all shared state.

 state_decr(Key)

 Atomically decrement a counter by 1.

 state_decr(Key, Amount)

 Atomically decrement a counter by Amount.

 state_fetch(Key)

 Fetch a value from shared state. This state is accessible from Python workers via state_get('key').

 state_incr(Key)

 Atomically increment a counter by 1.

 state_incr(Key, Amount)

 Atomically increment a counter by Amount.

 state_keys()

 Get all keys in shared state.

 state_remove(Key)

 Remove a key from shared state.

 state_store(Key, Value)

 Store a value in shared state. This state is accessible from Python workers via state_set('key', value).

 stream(Module, Func, Args)

 Stream results from a Python generator. Returns a list of all yielded values.

 stream(Module, Func, Args, Kwargs)

 Stream results from a Python generator with kwargs.

 stream_eval(Code)

 Stream results from a Python generator expression. Evaluates the expression and if it returns a generator, streams all values.

 stream_eval(Code, Locals)

 Stream results from a Python generator expression with local variables.

 subinterp_supported()

 Check if true parallel execution is supported. Returns true on Python 3.12+ which supports per-interpreter GIL.

 tracemalloc_start()

 Start memory allocation tracing. After starting, memory_stats() will include traced_memory_current and traced_memory_peak values.

 tracemalloc_start(NFrame)

 Start memory tracing with specified frame depth. Higher frame counts provide more detailed tracebacks but use more memory.

 tracemalloc_stop()

 Stop memory allocation tracing.

 unbind()

 Release bound worker for current process.

 unbind(Py_ctx)

 Release explicit context's worker.

 unregister_function(Name)

 Unregister a previously registered function.

 venv_info()

 Get information about the currently active virtual environment. Returns a map with venv_path and site_packages, or none if no venv is active.

 version()

 Get Python version string.

 with_context(Fun)

 Execute function with temporary bound context. Automatically binds before and unbinds after (even on exception).

 Types

 py_args/0

 -type py_args() :: [term()].

 py_ctx/0

 -opaque py_ctx()

 py_func/0

 -type py_func() :: atom() | binary() | string().

 py_kwargs/0

 -type py_kwargs() :: #{atom() | binary() => term()}.

 py_module/0

 -type py_module() :: atom() | binary() | string().

 py_ref/0

 -type py_ref() :: reference().

 py_result/0

 -type py_result() :: {ok, term()} | {error, term()}.

 Functions

 activate_venv(VenvPath)

 -spec activate_venv(string() | binary()) -> ok | {error, term()}.

Activate a Python virtual environment. This modifies sys.path to use packages from the specified venv. The venv path should be the root directory (containing bin/lib folders).
Example:
 ok = py:activate_venv(<<"/path/to/myenv">>).
 {ok, _} = py:call(sentence_transformers, 'SentenceTransformer', [<<"all-MiniLM-L6-v2">>]).

 async_await(Ref)

 -spec async_await(py_ref()) -> py_result().

Wait for an async call to complete.

 async_await(Ref, Timeout)

 -spec async_await(py_ref(), timeout()) -> py_result().

Wait for an async call with timeout. Note: Identical to await/2 - provided for API symmetry with async_call.

 async_call(Module, Func, Args)

 -spec async_call(py_module(), py_func(), py_args()) -> py_ref().

Call a Python async function (coroutine). Returns immediately with a reference. Use async_await/1,2 to get the result. This is for calling functions defined with async def in Python.
Example:
 Ref = py:async_call(aiohttp, get, [<<"https://example.com">>]),
 {ok, Response} = py:async_await(Ref).

 async_call(Module, Func, Args, Kwargs)

 -spec async_call(py_module(), py_func(), py_args(), py_kwargs()) -> py_ref().

Call a Python async function with keyword arguments.

 async_gather(Calls)

 -spec async_gather([{py_module(), py_func(), py_args()}]) -> py_result().

Execute multiple async calls concurrently using asyncio.gather. Takes a list of {Module, Func, Args} tuples and executes them all concurrently, returning when all are complete.
Example:
 {ok, Results} = py:async_gather([
 {aiohttp, get, [Url1]},
 {aiohttp, get, [Url2]},
 {aiohttp, get, [Url3]}
]).

 async_stream(Module, Func, Args)

 -spec async_stream(py_module(), py_func(), py_args()) -> py_result().

Stream results from a Python async generator. Returns a list of all yielded values.

 async_stream(Module, Func, Args, Kwargs)

 -spec async_stream(py_module(), py_func(), py_args(), py_kwargs()) -> py_result().

Stream results from a Python async generator with kwargs.

 await(Ref)

 -spec await(py_ref()) -> py_result().

Wait for an async call to complete.

 await(Ref, Timeout)

 -spec await(py_ref(), timeout()) -> py_result().

Wait for an async call with timeout.

 bind()

 -spec bind() -> ok | {error, term()}.

Bind current process to a dedicated Python worker. All subsequent py:call/eval/exec operations from this process will use the same worker, preserving Python state (variables, imports) across calls.
Example:
 ok = py:bind(),
 ok = py:exec(<<"x = 42">>),
 {ok, 42} = py:eval(<<"x">>), % Same worker, x persists
 ok = py:unbind().

 bind(_)

 -spec bind(new) -> {ok, py_ctx()} | {error, term()}.

Create an explicit context with a dedicated worker. Returns a context handle that can be passed to call/eval/exec variants. Multiple contexts can exist per process.
Example:
 {ok, Ctx1} = py:bind(new),
 {ok, Ctx2} = py:bind(new),
 ok = py:exec(Ctx1, <<"x = 1">>),
 ok = py:exec(Ctx2, <<"x = 2">>),
 {ok, 1} = py:eval(Ctx1, <<"x">>), % Isolated
 {ok, 2} = py:eval(Ctx2, <<"x">>), % Isolated
 ok = py:unbind(Ctx1),
 ok = py:unbind(Ctx2).

 call(Module, Func, Args)

 -spec call(py_module(), py_func(), py_args()) -> py_result().

Call a Python function synchronously.

 call(Module, Func, Args, Kwargs)

 -spec call(py_module(), py_func(), py_args(), py_kwargs()) -> py_result().

Call a Python function with keyword arguments.

 call(Module, Func, Args, Kwargs, Timeout)

 -spec call(py_module(), py_func(), py_args(), py_kwargs(), timeout()) -> py_result().

Call a Python function with keyword arguments and custom timeout. Timeout is in milliseconds. Use infinity for no timeout. Rate limited via ETS-based semaphore to prevent overload.

 call_async(Module, Func, Args)

 -spec call_async(py_module(), py_func(), py_args()) -> py_ref().

Call a Python function asynchronously, returns immediately with a ref.

 call_async(Module, Func, Args, Kwargs)

 -spec call_async(py_module(), py_func(), py_args(), py_kwargs()) -> py_ref().

Call a Python function asynchronously with kwargs.

 ctx_call(Ctx, Module, Func, Args)

 -spec ctx_call(py_ctx(), py_module(), py_func(), py_args()) -> py_result().

Call with explicit context.

 ctx_call(Ctx, Module, Func, Args, Kwargs)

 -spec ctx_call(py_ctx(), py_module(), py_func(), py_args(), py_kwargs()) -> py_result().

Call with explicit context and kwargs.

 ctx_call(Py_ctx, Module, Func, Args, Kwargs, Timeout)

 -spec ctx_call(py_ctx(), py_module(), py_func(), py_args(), py_kwargs(), timeout()) -> py_result().

Call with explicit context, kwargs, and timeout.

 ctx_eval(Ctx, Code)

 -spec ctx_eval(py_ctx(), string() | binary()) -> py_result().

Eval with explicit context.

 ctx_eval(Ctx, Code, Locals)

 -spec ctx_eval(py_ctx(), string() | binary(), map()) -> py_result().

Eval with explicit context and locals.

 ctx_eval(Py_ctx, Code, Locals, Timeout)

 -spec ctx_eval(py_ctx(), string() | binary(), map(), timeout()) -> py_result().

Eval with explicit context, locals, and timeout.

 ctx_exec(Py_ctx, Code)

 -spec ctx_exec(py_ctx(), string() | binary()) -> ok | {error, term()}.

Exec with explicit context.

 deactivate_venv()

 -spec deactivate_venv() -> ok | {error, term()}.

Deactivate the current virtual environment. Restores sys.path to its original state.

 eval(Code)

 -spec eval(string() | binary()) -> py_result().

Evaluate a Python expression and return the result.

 eval(Code, Locals)

 -spec eval(string() | binary(), map()) -> py_result().

Evaluate a Python expression with local variables.

 eval(Code, Locals, Timeout)

 -spec eval(string() | binary(), map(), timeout()) -> py_result().

Evaluate a Python expression with local variables and timeout. Timeout is in milliseconds. Use infinity for no timeout.

 exec(Code)

 -spec exec(string() | binary()) -> ok | {error, term()}.

Execute Python statements (no return value expected).

 execution_mode()

 -spec execution_mode() -> free_threaded | subinterp | multi_executor.

Get the current execution mode. Returns one of: - free_threaded: Python 3.13+ with no GIL (Py_GIL_DISABLED) - subinterp: Python 3.12+ with per-interpreter GIL - multi_executor: Traditional Python with N executor threads

 gc()

 -spec gc() -> {ok, integer()} | {error, term()}.

Force Python garbage collection. Performs a full collection (all generations). Returns the number of unreachable objects collected.

 gc(Generation)

 -spec gc(0..2) -> {ok, integer()} | {error, term()}.

Force garbage collection of a specific generation. Generation 0 collects only the youngest objects. Generation 1 collects generations 0 and 1. Generation 2 (default) performs a full collection.

 is_bound()

 -spec is_bound() -> boolean().

Check if current process is bound.

 memory_stats()

 -spec memory_stats() -> {ok, map()} | {error, term()}.

Get Python memory statistics. Returns a map containing: - gc_stats: List of per-generation GC statistics - gc_count: Tuple of object counts per generation - gc_threshold: Collection thresholds per generation - traced_memory_current: Current traced memory (if tracemalloc enabled) - traced_memory_peak: Peak traced memory (if tracemalloc enabled)

 num_executors()

 -spec num_executors() -> pos_integer().

Get the number of executor threads. For multi_executor mode, this is the number of executor threads. For other modes, returns 1.

 parallel(Calls)

 -spec parallel([{py_module(), py_func(), py_args()}]) -> py_result().

Execute multiple Python calls in true parallel using sub-interpreters. Each call runs in its own sub-interpreter with its own GIL, allowing CPU-bound Python code to run in parallel.
Requires Python 3.12+. Use subinterp_supported/0 to check availability.
Example:
 %% Run numpy matrix operations in parallel
 {ok, Results} = py:parallel([
 {numpy, dot, [MatrixA, MatrixB]},
 {numpy, dot, [MatrixC, MatrixD]},
 {numpy, dot, [MatrixE, MatrixF]}
]).
On older Python versions, returns {error, subinterpreters_not_supported}.

 register_function(Name, Fun)

 -spec register_function(Name :: atom() | binary(), Fun :: fun((list()) -> term())) -> ok.

Register an Erlang function to be callable from Python. Python code can then call: erlang.call('name', arg1, arg2, ...) The function should accept a list of arguments and return a term.

 register_function(Name, Module, Function)

 -spec register_function(Name :: atom() | binary(), Module :: atom(), Function :: atom()) -> ok.

Register an Erlang module:function to be callable from Python. The function will be called as Module:Function(Args).

 reload(Module)

 -spec reload(py_module()) -> ok | {error, [{worker, term()}]}.

Reload a Python module across all workers. This uses importlib.reload() to refresh the module from disk. Useful during development when Python code changes.
Note: This only affects already-imported modules. If the module hasn't been imported in a worker yet, the reload is a no-op for that worker.
Example:
 %% After modifying mymodule.py on disk:
 ok = py:reload(mymodule).
Returns ok if reload succeeded in all workers, or {error, Reasons} if any workers failed.

 state_clear()

 -spec state_clear() -> ok.

Clear all shared state.

 state_decr(Key)

 -spec state_decr(term()) -> integer().

Atomically decrement a counter by 1.

 state_decr(Key, Amount)

 -spec state_decr(term(), integer()) -> integer().

Atomically decrement a counter by Amount.

 state_fetch(Key)

 -spec state_fetch(term()) -> {ok, term()} | {error, not_found}.

Fetch a value from shared state. This state is accessible from Python workers via state_get('key').

 state_incr(Key)

 -spec state_incr(term()) -> integer().

Atomically increment a counter by 1.

 state_incr(Key, Amount)

 -spec state_incr(term(), integer()) -> integer().

Atomically increment a counter by Amount.

 state_keys()

 -spec state_keys() -> [term()].

Get all keys in shared state.

 state_remove(Key)

 -spec state_remove(term()) -> ok.

Remove a key from shared state.

 state_store(Key, Value)

 -spec state_store(term(), term()) -> ok.

Store a value in shared state. This state is accessible from Python workers via state_set('key', value).

 stream(Module, Func, Args)

 -spec stream(py_module(), py_func(), py_args()) -> py_result().

Stream results from a Python generator. Returns a list of all yielded values.

 stream(Module, Func, Args, Kwargs)

 -spec stream(py_module(), py_func(), py_args(), py_kwargs()) -> py_result().

Stream results from a Python generator with kwargs.

 stream_eval(Code)

 -spec stream_eval(string() | binary()) -> py_result().

Stream results from a Python generator expression. Evaluates the expression and if it returns a generator, streams all values.

 stream_eval(Code, Locals)

 -spec stream_eval(string() | binary(), map()) -> py_result().

Stream results from a Python generator expression with local variables.

 subinterp_supported()

 -spec subinterp_supported() -> boolean().

Check if true parallel execution is supported. Returns true on Python 3.12+ which supports per-interpreter GIL.

 tracemalloc_start()

 -spec tracemalloc_start() -> ok | {error, term()}.

Start memory allocation tracing. After starting, memory_stats() will include traced_memory_current and traced_memory_peak values.

 tracemalloc_start(NFrame)

 -spec tracemalloc_start(pos_integer()) -> ok | {error, term()}.

Start memory tracing with specified frame depth. Higher frame counts provide more detailed tracebacks but use more memory.

 tracemalloc_stop()

 -spec tracemalloc_stop() -> ok | {error, term()}.

Stop memory allocation tracing.

 unbind()

 -spec unbind() -> ok.

Release bound worker for current process.

 unbind(Py_ctx)

 -spec unbind(py_ctx()) -> ok.

Release explicit context's worker.

 unregister_function(Name)

 -spec unregister_function(Name :: atom() | binary()) -> ok.

Unregister a previously registered function.

 venv_info()

 -spec venv_info() -> {ok, map() | none} | {error, term()}.

Get information about the currently active virtual environment. Returns a map with venv_path and site_packages, or none if no venv is active.

 version()

 -spec version() -> {ok, binary()} | {error, term()}.

Get Python version string.

 with_context(Fun)

 -spec with_context(fun(() -> Result) | fun((py_ctx()) -> Result)) -> Result.

Execute function with temporary bound context. Automatically binds before and unbinds after (even on exception).
With arity-0 function (uses implicit process binding):
 Result = py:with_context(fun() ->
 ok = py:exec(<<"total = 0">>),
 ok = py:exec(<<"total += 1">>),
 py:eval(<<"total">>)
 end).
 %% {ok, 1}
With arity-1 function (receives explicit context):
 Result = py:with_context(fun(Ctx) ->
 ok = py:exec(Ctx, <<"x = 10">>),
 py:eval(Ctx, <<"x * 2">>)
 end).
 %% {ok, 20}

py_semaphore

ETS-based counting semaphore for rate limiting Python operations.
Based on the Discord semaphore pattern. Uses atomic ETS operations for high concurrency without a gen_server bottleneck.
The semaphore limits concurrent Python operations to prevent: - Memory exhaustion from unbounded request queuing - Dirty scheduler pool starvation - System overload under burst traffic

 Summary

 Functions

 acquire(Timeout)

 Acquire a slot in the semaphore. Blocks with exponential backoff until a slot is available or timeout. Returns ok on success, {error, max_concurrent} on timeout.

 current()

 Get the current number of operations in flight.

 init()

 Initialize the semaphore ETS table. Safe to call multiple times - will not recreate if already exists.

 max_concurrent()

 Get the maximum concurrent operations allowed.

 release()

 Release a slot in the semaphore. Must be called after acquire/1 completes, typically in an after clause.

 set_max_concurrent(Max)

 Dynamically set the maximum concurrent operations. Takes effect immediately for new acquire calls.

 Functions

 acquire(Timeout)

 -spec acquire(timeout()) -> ok | {error, max_concurrent}.

Acquire a slot in the semaphore. Blocks with exponential backoff until a slot is available or timeout. Returns ok on success, {error, max_concurrent} on timeout.

 current()

 -spec current() -> non_neg_integer().

Get the current number of operations in flight.

 init()

 -spec init() -> ok.

Initialize the semaphore ETS table. Safe to call multiple times - will not recreate if already exists.

 max_concurrent()

 -spec max_concurrent() -> pos_integer().

Get the maximum concurrent operations allowed.

 release()

 -spec release() -> ok.

Release a slot in the semaphore. Must be called after acquire/1 completes, typically in an after clause.

 set_max_concurrent(Max)

 -spec set_max_concurrent(pos_integer()) -> ok.

Dynamically set the maximum concurrent operations. Takes effect immediately for new acquire calls.

py_state

Shared state storage for Python workers.
This module provides a simple key-value store backed by ETS that Python code can use to share state between workers. Since each Python worker has its own namespace, this provides a way to share data across calls.
[bookmark: Python_Usage]Python Usage
 python
 from erlang import state_set, state_get, state_delete, state_keys
 from erlang import state_incr, state_decr

 # Store data
 state_set('my_key', {'data': [1, 2, 3]})

 # Retrieve data
 value = state_get('my_key') # {'data': [1, 2, 3]}

 # Atomic counters (thread-safe)
 state_incr('hits') # increment by 1, returns new value
 state_incr('hits', 10) # increment by 10
 state_decr('hits') # decrement by 1
 state_decr('hits', 5) # decrement by 5

 # Delete data
 state_delete('my_key')

 # List all keys
 keys = state_keys() # ['other_key', ...]
[bookmark: Erlang_Usage]Erlang Usage
 erlang
 py_state:store(<<"my_key">>, #{data => [1, 2, 3]}).
 {ok, Value} = py_state:fetch(<<"my_key">>).

 %% Atomic counters
 1 = py_state:incr(<<"counter">>).
 11 = py_state:incr(<<"counter">>, 10).
 10 = py_state:decr(<<"counter">>).

 Summary

 Functions

 clear()

 Clear all entries from the shared state.

 decr(Key)

 Atomically decrement a counter by 1.

 decr(Key, Amount)

 Atomically decrement a counter by Amount.

 fetch(Key)

 Fetch a value from the shared state.

 incr(Key)

 Atomically increment a counter by 1. Initializes to 1 if not exists.

 incr(Key, Amount)

 Atomically increment a counter by Amount. Initializes to Amount if not exists.

 init_tab()

 Initialize the ETS table for shared state. Called by supervisor for resilience - table survives process crashes.

 keys()

 Get all keys in the shared state.

 register_callbacks()

 Register state functions as callbacks for Python access. Called after py_callback is started.

 remove(Key)

 Remove a key from the shared state.

 store(Key, Value)

 Store a value in the shared state.

 Functions

 clear()

 -spec clear() -> ok.

Clear all entries from the shared state.

 decr(Key)

 -spec decr(Key :: term()) -> integer().

Atomically decrement a counter by 1.

 decr(Key, Amount)

 -spec decr(Key :: term(), Amount :: integer()) -> integer().

Atomically decrement a counter by Amount.

 fetch(Key)

 -spec fetch(Key :: term()) -> {ok, term()} | {error, not_found}.

Fetch a value from the shared state.

 incr(Key)

 -spec incr(Key :: term()) -> integer().

Atomically increment a counter by 1. Initializes to 1 if not exists.

 incr(Key, Amount)

 -spec incr(Key :: term(), Amount :: integer()) -> integer().

Atomically increment a counter by Amount. Initializes to Amount if not exists.

 init_tab()

 -spec init_tab() -> ok.

Initialize the ETS table for shared state. Called by supervisor for resilience - table survives process crashes.

 keys()

 -spec keys() -> [term()].

Get all keys in the shared state.

 register_callbacks()

 -spec register_callbacks() -> ok.

Register state functions as callbacks for Python access. Called after py_callback is started.

 remove(Key)

 -spec remove(Key :: term()) -> ok.

Remove a key from the shared state.

 store(Key, Value)

 -spec store(Key :: term(), Value :: term()) -> ok.

Store a value in the shared state.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

