

 erldns

 v10.0.0-rc4

 Table of contents

 	Erlang DNS Server

 	Zones

 	Admin API

 	Design Decisions

 	Contributing to erldns

 	Benchmarking

 	Changelog

 	Copyright (c) 2012-2025 DNSimple Corporation

 	
 Modules

 	erldns

 	erldns_config

 	erldns_edns_ede

 	erldns_handler

 	Listeners

 	erldns_listeners

 	Packet pipeline

 	erldns_axfr

 	erldns_dnssec

 	erldns_edns_max_payload_size

 	erldns_empty_verification

 	erldns_packet_cache

 	erldns_pipeline

 	erldns_query_throttle

 	erldns_questions

 	erldns_resolver

 	erldns_resolver_recursive

 	erldns_section_counter

 	erldns_sorter

 	Zones

 	erldns_zone_cache

 	erldns_zone_codec

 	erldns_zone_loader

 	erldns_zones

 	Admin API

 	erldns_admin

 	erldns_admin_root_handler

 	erldns_admin_zone_handler

 	erldns_admin_zone_records_handler

 Erlang DNS Server

Serve DNS authoritative responses... with Erlang.
[image: Erlang/OTP Versions]
[image: Build Status]
[image: Module Version]
[image: Hex Docs]
[image: Hex Downloads]
[image: Coverage Status]
This application consists of three main subsystems:
	erldns_zones
The system responsible for loading and caching zone data.

	erldns_pipeline
The system responsible for processing incoming DNS queries, including resolution and any extension thereof.

	erldns_listeners
The system responsible for listening for incoming DNS queries. The system is designed to be able to listen on multiple ports and interfaces and supports both UDP and TCP, Unix network stack optimisations, and high parallelism.

There is also an Admin API for querying the current zone cache and for basic control.
Instrumentation
Telemetry is used to instrument the code.
All events are divided in the following namespaces:
	[erldns, pipeline | _] are triggered by the erldns_pipeline subsystem.

	[erldns, request | _] are triggered by the erldns_listeners subsystem.

Getting started
You can use this application as a standalone service or embedded into your OTP application. In both
cases, you'll need to: configure it, and load zones.
Zones
Zones are loaded from JSON files in the priv/zones/ directory. The path is configured in erldns.config using the zones.path setting. For more details about zone file format and configuration, see priv/zones/ZONES.
Configuration
An example configuration file can be found in erldns.example.config. For more details, see the
subsystems and the admin API documentation.
To get started, copy it into your own erldns.config and modify as needed.
Building
To build:
make

To start fresh:
make fresh
make

Running
Launch directly
overmind start

To get an interactive Erlang REPL
rebar3 shell

Build a distribution with and run the release
rebar3 release
_build/default/rel/erldns/bin/erldns foreground

Usage
DNS Queries
Here are some queries to try:
dig -p 8053 @127.0.0.1 example.com a
dig -p 8053 @127.0.0.1 example.com cname
dig -p 8053 @127.0.0.1 example.com ns
dig -p 8053 @127.0.0.1 example.com mx
dig -p 8053 @127.0.0.1 example.com txt
dig -p 8053 @127.0.0.1 example.com sshfp
dig -p 8053 @127.0.0.1 example.com soa
dig -p 8053 @127.0.0.1 example.com naptr
dig -p 8053 @127.0.0.1 -x 127.0.0.1 ptr

Admin API
The Admin API provides a RESTful HTTP interface for managing zones at runtime. By default, it listens on port 8083.
List all zones
curl http://localhost:8083/

Get zone details
curl http://localhost:8083/zones/example.com

Get specific records
curl "http://localhost:8083/zones/example.com/records/example.com?type=A"

For complete documentation including authentication, TLS configuration, and extensibility options, see the Admin API documentation.
Performance
If you want to perform some benchmarks, see the benchmarking guide.
AXFR Support
AXFR zone transfers are not currently implemented. The current implementation (erldns_axfr) is a stub.
Tests
To run automated tests:
make test

This runs the following:
	erlfmt
	Elvis linter
	xref
	dialyzer
	ExDoc
	Common Tests
	Coverage

 Zones

erldns reads zone files from this folder, and loads them on start. Zones can be formatted as JSON (.json files) or as standard DNS zonefiles (.zone files).
Default zones
All .json files within this folder are default zones, packaged with the default erldns distribution. They are used to bootstrap the state when you start the project.
Custom zones
You can place your custom zones files inside the priv/zones/local directory. The content of this folder is not tracked by version control, and you can use it freely to add more zones for any purpose.
Zone File Formats
JSON Format
A JSON zone file contains an array of 1 or more zones. Each zone has a name and an array of records. Each record has a name, type, ttl and data field. The data field contains a JSON object with one or more attributes that are appropriate for the specific record type.
Zonefile Format
Zonefiles follow the standard DNS zonefile format as defined in RFC 1035 and RFC 3597. Unknown record types are represented using the RFC3597 TYPE<number> format with hex-encoded data. Custom codecs can be used to handle these unknown types, similar to JSON format.
The format can be configured in erldns.config:
{erldns, [
 {zones, #{
 path => "priv/zones",
 format => zonefile, % or json (default), or auto
 codecs => [sample_custom_zone_codec]
 }},
]}
When format is set to auto, erldns will automatically detect the format based on file extension (.json for JSON, .zone for zonefiles).
Contexts
Each record can optionally contain a context field, that can be used to restrict the record to a specific subset of nodes. These are specified by the context_options configuration option of each node. This field is used for global node provisioning, and not part of any DNS specification.
For example, if you have multiple nodes across many datacentres, and one of them, deployed in a datacenter in Amsterdam, declares the following section in the config:
{erldns, [
 {zones, #{
 context_options => #{match_empty => true, allow => [<<"AMS">>]}
 }},
]}
You can then declare a JSON entry with "context": ["AMS"], and this specific record will be loaded only in the node that is configured as deployed in Amsterdam, and not in others.
Note that these strings are opaque to erldns, and you can use any string you want, as long as there's a sensible matching between the configuration and the values in the JSON entry.
match_empty means if a record with an empty context should match by default.
DNSSEC keys
A zone can also declare a set of keys, as stated in the example below. In such case, records will be
pre-signed during loading with the given keys.
Supported DNSSEC algorithms:
	RSA (algorithm 5, 7, 8)
	ECDSA P-256 (algorithm 13, ECDSAP256SHA256)
	ECDSA P-384 (algorithm 14, ECDSAP384SHA384)
	Ed25519 (algorithm 15)
	Ed448 (algorithm 16)

Private keys must be provided in PEM format. For Ed25519 and Ed448, use -----BEGIN PRIVATE KEY----- format.
Example
The follow is an example of a collection of zones with a single zone in the collection:
[
 {
 "name": "example.com",
 "records": [
 {
 "name": "example.com",
 "type": "SOA",
 "ttl": 3600,
 "data": {
 "mname": "ns1.example.com",
 "rname": "admin.example.com",
 "serial": 1234567,
 "refresh": 1,
 "retry": 1,
 "expire": 1,
 "minimum": 1
 }
 },
 {
 "name": "example.com",
 "type": "A",
 "ttl": 3600,
 "data": {
 "ip": "1.2.3.4"
 }
 },
 {
 "name": "example.com",
 "type": "MX",
 "ttl": 3600,
 "data": {
 "preference": 10,
 "exchange": "mail.example.com"
 }
 }
],
 "keys": [
 {
 "ksk": "-----BEGIN RSA PRIVATE KEY-----\nMIICXAIBAAKBgQCn9Iv82vkFiv8ts8K9jzUzfp3UEZx+76r+X9A4GOFfYbx3USCh\nEW0fLYT/QkAM8/SiTkEXzZPqhrV083mp5VLYNLxic2ii6DrwvyGpENVPJnDQMu+C\nfKMyb9IWcm9MkeHh8t/ovsCQAEJWIPTnzv8rlQcDU44c3qgTpHSU8htjdwICBAEC\ngYEAlpYTHWYrcd0HQXO3F9lPqwwfHUt7VBaSEUYrk3N3ZYCWvmV1qyKbB/kb1SBs\n4GfW1vP966HXCffnX92LDXYxi7It3TJaKmo8aF/leN7w8WLNJXUayEoQKUfKLprj\nN14Jx/tgMu7I/BOoHId8b7e57pBKtDiSF6WWn3K7tNPbfmkCQQDST41m62mC4MAa\nDsUdyM0Vg/tjduGqnygryCDEXDabdg95a3wMk0SQCQzZFHGNYnsXcffTqGs/y+5w\nQWxyOGSNAkEAzHFkDJla30NiiKvhu7dY+0+dGrfMA7pNUh+LGdXe5QFdjwwxqPbF\n7NMGXKMdB8agSCxGZC3bxdvYNF9LULzhEwJABpDYNSoQx+UMvaEN5XTpLmCHuS1r\nsmhfKZPcDx8Z7mAYda3wZEuHQq+cf6i5XhOO9P5QKpKeslHLAMHa7NaNgQJBAI03\nGGacYLwui32fbzb8BYRg82Kga/OW6btY+O6hNs6iSR2gBlQ9j3Tgrzo+N4R/NQSl\nc05wGO2RnBUwlu0XUckCQHfHsWHVrrADTpalbv+FTDyWd0ouHXBmDecVZh3e7/ue\ncdMoblzeasvgp8CjFa9U+uDozY+aL6TNIpG++nn4lNw=\n-----END RSA PRIVATE KEY-----\n",
 "ksk_keytag": 37440,
 "ksk_alg": 8,
 "zsk": "-----BEGIN RSA PRIVATE KEY-----\nMIIBOgIBAAJBAK8YnU+YqBxD/EDwVeHZsJillAJ80PCnLU+/rlGrlzgw+eabF8jT\nCaEwnpE74YHCLegKAAn+efeZrT/EBBrzlacCAgIBAkBh9VGFW2SJk1I9SBQaDIA9\nchdrrx+PHibSyozwT4eAPmd6OFoLausc7ls6v9evPeb+Yj3g0JXvTGp6BgNhFqLR\nAiEA1+ievAEBVM6IlOmpiTwlaWe/HV6MokBBq1G/tvJS0M8CIQDPm/DUsoTEv/Jj\n6O3U9hNcPLbvKMMGld2wbf7nrQmzqQIhAJrhwTaFdjnXhmfUB9a33vRIbSaIsLxA\nDyuM+03XP+YhAiEAmJIJz7WX9uPkCIy8wO655Hh4dt4UkBFRE98OqkHIwGkCIFFv\nN8rJojI+oEiJyNjEjWZD4qoUMUp3+YBl0htAJUE2\n-----END RSA PRIVATE KEY-----\n",
 "zsk_keytag": 49016,
 "zsk_alg": 8,
 "inception": "2016-11-14T11:36:58.851612Z",
 "until": "2046-02-12T11:36:58.849384Z"
 }
]

 }
]

 Admin API

The erldns Admin API provides a RESTful HTTP interface for managing and querying DNS zones at runtime. It allows you to inspect zone data, query individual records, and perform administrative operations on the DNS server.
Overview
The Admin API is built on Cowboy, a high-performance HTTP server for Erlang/OTP. It supports:
	JSON, HTML, and plain text responses via content negotiation
	Optional TLS encryption
	Optional HTTP Basic Authentication
	Custom middleware and route extensions

Default Configuration
	Setting	Default Value
	Host	0.0.0.0 (all interfaces)
	Port	8083 (clear) / 8483 (TLS)
	TLS	Disabled
	Authentication	Disabled

Endpoints
List All Zones
Returns metadata about all zones currently loaded in the cache.
GET /
Response
{
 "erldns": {
 "zones": {
 "count": 2,
 "versions": [
 {
 "name": "example.com",
 "version": "1"
 },
 {
 "name": "example.org",
 "version": "2"
 }
]
 }
 }
}
Fields
	Field	Type	Description
	count	integer	Total number of zones in cache
	versions	array	List of zone metadata objects
	versions[].name	string	Zone name (domain)
	versions[].version	string	Zone version identifier

Reset Listener Queues
Resets all DNS listener queues. This can be useful for clearing backlogged requests.
DELETE /
Response
HTTP/1.1 204 No Content
Get Zone
Returns detailed information about a specific zone, including all its DNS records.
GET /zones/:zonename
Path Parameters
	Parameter	Type	Description
	zonename	string	The zone name (e.g., example.com)

Query Parameters
	Parameter	Type	Default	Description
	metaonly	string	false	Set to true to return only metadata without records

Response (Full)
{
 "erldns": {
 "zone": {
 "name": "example.com",
 "version": "1",
 "records_count": 5,
 "records": [
 {
 "name": "example.com.",
 "type": "SOA",
 "ttl": 3600,
 "content": "ns1.example.com. admin.example.com. 2024010101 3600 900 604800 86400"
 },
 {
 "name": "example.com.",
 "type": "NS",
 "ttl": 3600,
 "content": "ns1.example.com."
 },
 {
 "name": "example.com.",
 "type": "A",
 "ttl": 3600,
 "content": "192.0.2.1"
 }
]
 }
 }
}
Response (Metadata Only)
When ?metaonly=true:
{
 "erldns": {
 "zone": {
 "name": "example.com",
 "version": "1",
 "records_count": 5
 }
 }
}
Fields
	Field	Type	Description
	name	string	Zone name
	version	string	Zone version identifier
	records_count	integer	Total number of records in the zone
	records	array	List of DNS records (omitted when metaonly=true)
	records[].name	string	Fully qualified record name
	records[].type	string	DNS record type (A, AAAA, CNAME, MX, etc.)
	records[].ttl	integer	Time-to-live in seconds
	records[].content	string	Record data (format varies by type)

Error Response
If the zone is not found:
HTTP/1.1 404 Not Found
Delete Zone
Removes a zone from the cache.
DELETE /zones/:zonename
Path Parameters
	Parameter	Type	Description
	zonename	string	The zone name to delete

Response
HTTP/1.1 204 No Content
Error Response
If the zone is not found:
HTTP/1.1 400 Bad Request
Content-Type: application/json

{"error": "zone not found"}
List Zone Records
Returns all DNS records in a zone.
GET /zones/:zonename/records
Path Parameters
	Parameter	Type	Description
	zonename	string	The zone name

Response
[
 {
 "name": "example.com.",
 "type": "SOA",
 "ttl": 3600,
 "content": "ns1.example.com. admin.example.com. 2024010101 3600 900 604800 86400"
 },
 {
 "name": "example.com.",
 "type": "A",
 "ttl": 3600,
 "content": "192.0.2.1"
 },
 {
 "name": "www.example.com.",
 "type": "CNAME",
 "ttl": 300,
 "content": "example.com."
 }
]
Get Records by Name
Returns DNS records matching a specific name within a zone.
GET /zones/:zonename/records/:record_name
Path Parameters
	Parameter	Type	Description
	zonename	string	The zone name
	record_name	string	The record name to filter by (e.g., www or www.example.com)

Query Parameters
	Parameter	Type	Description
	type	string	Filter by DNS record type (e.g., A, AAAA, CNAME, MX)

Examples
Get all records for www.example.com:
GET /zones/example.com/records/www.example.com
Get only A records for www.example.com:
GET /zones/example.com/records/www.example.com?type=A
Response
[
 {
 "name": "www.example.com.",
 "type": "A",
 "ttl": 300,
 "content": "192.0.2.1"
 }
]
Authentication
The Admin API supports HTTP Basic Authentication. When enabled, all endpoints require valid credentials. Authentication is disabled by default.
How Authentication Works
Authentication is implemented as a Cowboy middleware (erldns_admin_auth_middleware). When credentials are configured, the middleware is automatically injected into the request processing pipeline before any handlers are invoked. This ensures that all endpoints are protected without requiring changes to individual handlers.
The middleware:
	Intercepts every incoming request
	Parses the Authorization header for Basic Auth credentials
	Returns 401 Unauthorized if credentials are missing or invalid
	Allows the request to proceed if credentials are valid

Enabling Authentication
To enable authentication, configure the credentials option in your sys.config or erldns.config:
{erldns, [
 {admin, [
 {credentials, {<<"admin">>, <<"secret">>}}
]}
]}
Both username and password must be binary strings (using <<"...">> syntax).
Disabling Authentication
Authentication is disabled by default. To explicitly disable it (or to disable it after it was enabled), set credentials to false:
{erldns, [
 {admin, [
 {credentials, false}
]}
]}
When authentication is disabled, the auth middleware is not added to the request pipeline, and all endpoints are publicly accessible.
Making Authenticated Requests
Include the Authorization header with Base64-encoded credentials:
curl -u admin:secret http://localhost:8083/zones/example.com

Or manually construct the header:
curl -H "Authorization: Basic YWRtaW46c2VjcmV0" http://localhost:8083/zones/example.com

The Base64-encoded value is username:password encoded. For example, admin:secret encodes to YWRtaW46c2VjcmV0.
Unauthorized Response
When authentication fails or credentials are missing:
HTTP/1.1 401 Unauthorized
WWW-Authenticate: basic realm="erldns admin"
Security Considerations
	Use TLS in production: HTTP Basic Authentication transmits credentials encoded (not encrypted). Always enable TLS when using authentication in production to protect credentials in transit.
	Strong credentials: Use long, random passwords. Consider using a password generator for production deployments.

Example with both TLS and authentication:
{erldns, [
 {admin, [
 {port, 8483},
 {tls, {true, [
 {certfile, "/path/to/cert.pem"},
 {keyfile, "/path/to/key.pem"}
]}},
 {credentials, {<<"admin">>, <<"strong-random-password">>}}
]}
]}
TLS Configuration
Enable HTTPS by configuring TLS options:
{erldns, [
 {admin, [
 {port, 8483},
 {tls, {true, [
 {certfile, "/path/to/cert.pem"},
 {keyfile, "/path/to/key.pem"}
]}}
]}
]}
The TLS options are passed directly to Erlang's ssl module. See the ssl documentation for all available options.
Common TLS Options
	Option	Description
	certfile	Path to the PEM-encoded certificate file
	keyfile	Path to the PEM-encoded private key file
	cacertfile	Path to the CA certificate file for client verification
	verify	verify_peer or verify_none for client certificate verification

Configuration Reference
All configuration options are set under {erldns, [{admin, [...]}]}:
{erldns, [
 {admin, [
 {port, 8083},
 {tls, false},
 {credentials, false},
 {middleware, []},
 {routes, []}
]}
]}
Options
	Option	Type	Default	Description
	port	integer	8083 / 8483	Port to listen on (1-65535)
	tls	false | {true, SslOpts}	false	TLS configuration
	credentials	false | {User, Pass}	false	HTTP Basic Auth credentials (binaries)
	middleware	list	[]	Custom Cowboy middleware modules
	routes	list	[]	Additional Cowboy routes

Extending the Admin API
Custom Middleware
Middleware modules intercept all requests before they reach the handlers. This is useful for logging, metrics, custom authentication, or request modification.
Creating Middleware
Implement the cowboy_middleware behavior:
-module(my_admin_middleware).
-behaviour(cowboy_middleware).

-export([execute/2]).

execute(Req, Env) ->
 %% Log the request
 logger:info("Admin API request: ~s ~s", [
 cowboy_req:method(Req),
 cowboy_req:path(Req)
]),

 %% Add a custom response header
 Req2 = cowboy_req:set_resp_header(<<"x-custom-header">>, <<"value">>, Req),

 %% Continue processing
 {ok, Req2, Env}.
Return Values
	Return	Effect
	{ok, Req, Env}	Continue to next middleware/handler
	{stop, Req}	Stop processing and return response

Registering Middleware
Add the module to the middleware configuration:
{admin, [
 {middleware, [my_admin_middleware]}
]}
Middleware executes in order, before the built-in authentication middleware.
Custom Routes
Add new HTTP endpoints without modifying the core erldns code.
Creating a Handler
Implement a Cowboy REST handler:
-module(my_custom_handler).
-behaviour(cowboy_rest).

-export([
 init/2,
 allowed_methods/2,
 content_types_provided/2,
 to_json/2
]).

init(Req, State) ->
 {cowboy_rest, Req, State}.

allowed_methods(Req, State) ->
 {[<<"GET">>], Req, State}.

content_types_provided(Req, State) ->
 {[
 {<<"application/json">>, to_json}
], Req, State}.

to_json(Req, State) ->
 Action = cowboy_req:binding(action, Req),
 Body = json:encode(#{action => Action, status => <<"ok">>}),
 {Body, Req, State}.
Registering Routes
Add routes to the configuration:
{admin, [
 {routes, [
 {"/custom/:action", my_custom_handler, #{}}
]}
]}
Custom routes are prepended to the default routes, so they take precedence if paths overlap.
Route Path Syntax
Routes use Cowboy's path matching:
	Pattern	Example Match	Binding
	/static	/static	None
	/zones/:name	/zones/example.com	name = "example.com"
	/files/[...]	/files/a/b/c	Rest = ["a", "b", "c"]

Content Negotiation
All endpoints support content negotiation via the Accept header:
	Accept Header	Response Format
	application/json	JSON (default)
	text/html	HTML
	text/plain	Plain text

Example:
curl -H "Accept: text/html" http://localhost:8083/

Error Handling
The API uses standard HTTP status codes:
	Code	Meaning
	200 OK	Request successful
	204 No Content	Delete operation successful
	400 Bad Request	Invalid request or operation failed
	401 Unauthorized	Authentication required or failed
	404 Not Found	Zone or record not found

Error responses include a JSON body with details:
{
 "error": "zone not found"
}
Examples
List All Zones
curl http://localhost:8083/

Get Zone with Authentication
curl -u admin:secret http://localhost:8083/zones/example.com

Get Zone Metadata Only
curl "http://localhost:8083/zones/example.com?metaonly=true"

Get All MX Records
curl "http://localhost:8083/zones/example.com/records/example.com?type=MX"

Delete a Zone
curl -X DELETE http://localhost:8083/zones/example.com

Reset Listener Queues
curl -X DELETE http://localhost:8083/

Using with jq
Get zone count
curl -s http://localhost:8083/ | jq '.erldns.zones.count'

List all zone names
curl -s http://localhost:8083/ | jq -r '.erldns.zones.versions[].name'

Get all A records from a zone
curl -s http://localhost:8083/zones/example.com/records | jq '[.[] | select(.type == "A")]'

Architecture
The Admin API consists of:
	erldns_admin - Main supervisor and startup module
	erldns_admin_root_handler - Handles / endpoint
	erldns_admin_zone_handler - Handles /zones/:zonename endpoint
	erldns_admin_zone_records_handler - Handles /zones/:zonename/records[/:record_name] endpoint
	erldns_admin_auth_middleware - HTTP Basic Authentication middleware

All handlers implement the cowboy_rest behavior and use the built-in OTP json module for encoding/decoding.

 Design Decisions

This document captures key architectural decisions made in the erldns project. Each section follows a "what and why" structure, first describing the technical implementation details and then explaining the rationale behind these choices. This approach helps maintain a clear record of our design decisions and their motivations for future reference.
Resolution algorithm
Once a payload has arrived to the nameserver and after all binary parsing has succeeded (see dns for details),
the payload is put into a pipeline of transformations over the DNS message. When all pipes have finished resolution, the resulting DNS message will be put back into the socket as the answer and the request will be considered done. See erldns_pipeline for details.
UDP Payload Size Handling
DNS over UDP has traditionally been limited to 512 bytes per message. However, with the introduction of EDNS (Extension Mechanisms for DNS), clients can specify larger UDP payload sizes through the OPT RR (Resource Record) in the additional section of the DNS message.
In erldns, we've implemented a pipeline handler that allows to ensure compatibility and prevent potential issues, see erldns_edns_max_payload_size for details.
Questions
As multiple questions in a single query are generally not well defined, this nameserver only supports a single question per query. If more than one is provided, only the first one will be answered and the remaining will be dropped, raising an event. See erldns_questions for details.

 Contributing to erldns

Getting Started
Prerequisites
	Erlang/OTP 27 or 28
	Rebar3
	Git

Setup
	Clone the repository:
git clone git@github.com:dnsimple/erldns.git
cd erldns

	Install dependencies:
make

To update dependencies:
rebar3 upgrade --all

Development Workflow
Formatting
Format code before committing:
make format

Linting
Check code style:
make lint

Testing
Run the full test suite:
make test

This runs formatting checks, linting, static analysis (xref, dialyzer), documentation generation, tests (Common Test), and coverage.
Interactive Development
Start an Erlang shell with the application loaded:
rebar3 shell

Release Process
	Ensure all tests pass: make test

	Update CHANGELOG.md - finalize the ## main section with the version number

	Use semantic versioning: vMAJOR.MINOR.PATCH:
Example
export VERSION=v1.2.3

	Commit and push:
git commit -a -m "Release $VERSION"
git push origin main

	Wait for CI to complete successfully

	Create and push a signed tag:
git tag -a v$VERSION -s -m "Release $VERSION"
git push origin --tags

	GitHub Actions will automatically publish to Hex.pm

Code Standards
Follow the Inaka Erlang Guidelines as the primary coding convention. The guidelines below supplement and emphasize project-specific patterns.
Erlang Style
	Pattern matching: Prefer pattern matching and function-head dispatch over nested conditionals	Use case ... of or pattern-matching function heads instead of if expressions
	Use case {Cond1, Cond2, ...} of for multiple conditionals where it helps instead of if expressions

	Functions: Keep functions short with single responsibilities; break complex logic into helpers
	Traceability: Favour named functions over anonymous ones, as naming enhances debugging

Types & Specs
	Always provide -spec definitions for exported functions
	Always provide types in record definitions
	Dialyzer is required (runs in CI)

Testing
	Common Test (ct): For unit and integration tests (strictly preferred over eunit), use parallel test cases when possible.

Observability
	Prefer emitting telemetry events under the erldns list head when needed
	Emit logs with logger sporadically,	Use structured logging with contextual keys:	what: mandatory, should point to an atom with a short explanation of the issue
	message: optional, if present should contain a utf8 binary with a human-friendly explanation

	Provide the log domain in the metadata scoped to this repository (#{domain => [erldns, ...]})

Commit Messages
Use conventional, descriptive commit messages:
Short summary (<= 72 chars)

Detailed description explaining:
- The reason for the change
- Any side effects
- How it was tested
Submitting Changes
	Format code with make format
	Write tests for your changes, every change should be automatically tested comprehensively
	Ensure make test passes locally
	Submit a PR targeting main, CI will run the full test suite automatically

 Benchmarking

This guide contains some information on how to benchmark erldns locally.
Install dnsperf
The recommended benchmarking tool is dnsperf. You can compile it from source or, if on macOS, install it with:
brew install dnsperf

Create a Queries File
dnsperf requires DNS queries to run in order to perform benchmarks. You can use whatever queries to test different aspects of erldns, such as how it behaves when mostly responding to unknown records or when you execute the same query many times in a row.
A good start is a small file with some example.com-related queries, as example.com domains are the default in the sample config file.
Put this in queries.txt:
thumbs2.ebaystatic.com. AAAA
sip.hotmail.com. A
google.com. A
cache.defamer.com. A
example.com. A
www.example.com. CNAME
Start the Server
Important
Start erldns as a release to make sure it gets compiled with production-like settings, rather than dev settings (as in rebar3 shell).
First, create a release:
rebar3 release

Then, start the release in the foreground:
./_build/default/rel/erldns/bin/erldns foreground

Run the Benchmark
Now you're ready to run benchmarks. For example:
dnsperf -p 8053 -d ./queries.txt -T 4 -c 20 -n 10000

See dnsperf -h for an explanation of the flags.
Latest Benchmark
The latest benchmark was run on 2025/06/06 by @nelsonvides, on an 2023 Apple MacBook Pro, 16-inch, M3 Pro CPU, 36GB of memory.
In these conditions, erldns can serve around 85k QPS, in a mix of resolvable and
non-authoritative cases; and around 71k QPS when all queries are resolvable
The details of the benchmark are below.
A mix of resolvable and non-authoritative
With this query file:
thumbs2.ebaystatic.com. AAAA
sip.hotmail.com. A
google.com. A
cache.defamer.com. A
example.com. A
www.example.com. CNAME
The results are as follows:
DNS Performance Testing Tool
Version 2.14.0

[Status] Command line: dnsperf -p 8053 -d ./queries.txt -T 6 -c 256 -l 30
[Status] Sending queries (to 127.0.0.1:8053)
[Status] Started at: Fri Jun 6 20:49:49 2025
[Status] Stopping after 30.000000 seconds
[Status] Testing complete (time limit)

Statistics:

 Queries sent: 2558497
 Queries completed: 2558497 (100.00%)
 Queries lost: 0 (0.00%)

 Response codes: NOERROR 852832 (33.33%), REFUSED 1705665 (66.67%)
 Average packet size: request 33, response 43
 Run time (s): 30.000527
 Queries per second: 85281.735218

 Average Latency (s): 0.000934 (min 0.000039, max 0.022900)
 Latency StdDev (s): 0.000513
All resolvable
With this query file:
example.com A
example.com NS
example.com AAAA
example.com CAA
example.com CNAME
ldap.example.com A
ns2.test.com A
www.test.com CNAME
The results are as follows:
DNS Performance Testing Tool
Version 2.14.0

[Status] Command line: dnsperf -p 8053 -d ./queries.txt -T 6 -c 256 -l 30
[Status] Sending queries (to 127.0.0.1:8053)
[Status] Started at: Fri Jun 6 20:47:56 2025
[Status] Stopping after 30.000000 seconds
[Status] Testing complete (time limit)

Statistics:

 Queries sent: 2143197
 Queries completed: 2143197 (100.00%)
 Queries lost: 0 (0.00%)

 Response codes: NOERROR 1875298 (87.50%), NXDOMAIN 267899 (12.50%)
 Average packet size: request 29, response 74
 Run time (s): 30.001319
 Queries per second: 71436.759164

 Average Latency (s): 0.001183 (min 0.000035, max 0.057426)
 Latency StdDev (s): 0.001117

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
main
v10.0.0-rc4
Fixed
	Remove API blocking use of keyNNNN in SVCB records
	Fix keyNNNN content encoding
	Always quote values in svcb params

v10.0.0-rc3
Added
	Codec support for many new record types introduced in dns_erlang v4.9.0 (#312):	OPENPGPKEY (Type 61) — RFC 7929
	SMIMEA (Type 53) — RFC 8162
	URI (Type 256) — RFC 7553
	WALLET (Type 262) — IANA Registration
	EUI48 (Type 108) and EUI64 (Type 109) — RFC 7043
	CSYNC (Type 62) — RFC 7477
	DSYNC (Type 66) — RFC 9859

Fixed
	Fix wrong dot logic around SVCB and HTTPS records in the codec (#319)

Documentation
	Add initial documentation regarding the Admin API (#316)

v10.0.0-rc2
Added
	Codec support for SVCB and HTTPS record types (#313)

Removed
	rfc_compliant_ent configuration option. RFC 4592 compliant empty non-terminal (ENT) handling is now always enabled (#308)

Fixed
	Fix false error raised in TCP listener initialization when gen_server exits normally (#311)

v10.0.0-rc1
Added
	RFC7766 pipelining support for TCP/TLS with concurrent request processing (#300)
	DNS over TLS (DoT) support per RFC 7858 (#300)
	Configurable request timeout monitoring for TCP workers with SERVFAIL responses (#300)

Changed
	Move TCP and UDP ingress timeout configuration to per-listener opts map (#300)
	Rename transport type both to standard for clarity (#300)

Removed
	Global ingress_tcp_request_timeout and ingress_udp_request_timeout application environment variables (#300)

Updated
	Upgrade dns_erlang dependency (#305)	Includes small performance optimisations
	Adds support for many new record types
	Adds dns:decode_query/1 for early stop of bad input

v9.1.0
Added
	Implement basic RFC8914 extended errors (#290)
	Add support for standard DNS zone files (RFC-style) in addition to JSON format, this also improves loading times and initialisation (#291)
	Admin API now adds extensibility points to include custom HTTP handlers and TLS configuration (#294)

Updated
	Update root hints with current values and IPv6 records (#292)
	Update dependencies (#299)

v9.0.0
Added
	Add support for RFC6605: ECDSA for DNSSEC.
	Add support for RFC8080: Ed22519/Ed448 for DNSSEC.
	Add support for RFC9077: NSEC/NSEC3 TTLs.

Changed
	Logic for handling DS type queries is changed to be RFC compliant, see: #285.

Removed
	Support for encoding/decoding records of type SPF.

Fixed
	Implement ENTs compliant with RFC4592

v8.1.0
Changed
	Add ENT support for wildcard synthesis meeting RFC 4592 specification requirements (#279).
The behaviour is currently opt-in using the rfc_compliant_ent option in erdns.zones config.

v8.0.0
This release has many optimisations, documentation and code quality improvements.
Changed
	Rework erldns_zone_cache and erldns_resolver: algorithm is extensively optimised and now supports ENT correctly.
	Rework erldns_handler: behaviour is now improved and clearly defined. Minimum supported handler version is now 2.
	Split erldns_resolver pipe into more granular steps, adding erldns_resolver_recursive,
erldns_dnssec, erldns_sorter, and erldns_section_counter.
	Add erldns_questions questions filter to the packet pipeline.
	Update dns_erlang to v4.3 and remove erldns_records:name_type/1.
	Accept no SOA record if no RRSIG are required.
	Documentation improvements (#267)
	Separate edns payload size over UDP as a configurable pipe (#267)
	Extend pipelines with halt and secondary pipelines (#268)

Added
	[erldns, pipeline, questions] telemetry event with #{count => non_neg_integer()} where count is the number of questions removed.
	Document some design decisions (#265)
	Add TLSA record support (#270)

Deprecated
	SPF record support will be removed in the upcoming releases (https://blog.dnsimple.com/2025/07/discontinuing-spf-record-type/)

Fixed
	Stop overwriting SOA RRSIG TTLs (#264)
	Fix bug with SOA records not updating correctly (#266)

v7.0.0
This is a big release full of massive performance improvements and protocol compliance,
but also of breaking changes. Read carefully the changelog and the documentation before migrating.
Changed
The application is now divided in three core subsystems, that is, listeners, packet pipelines,
and zones, which are configured differently and will require migration.
See erldns_listeners. erldns_pipeline and erldns_zones respectively for documentation
on how to reconfigure.
Telemetry events, as well as logger events, are entirely scoped within these respective subsystems,
that means, that the events are now prefixed with [erldns, request, _], for listener workers,
and [erldns, pipeline] for pipeline processing. Similarly, logger events are tagged with
domain => [erldns, admin | listeners | pipeline | zones] metadata, and all are structured.
Custom parsers and encoders
If you had any custom parser or encoder, you will need to update them to the new API, which unifies
both into a single module. See erldns_zone_codec for more information on its callbacks. Note
that the zone_to_erlang/1,2 callbacks are now decode/1 and zone_*/x callbacks are now
encode/2, and they all take only maps as input and output respectively.
TXT and SPF record formats
TXT and SPF record formats have changed, from a single string, to an array, to support
more complex DNS records & use cases, so that the following:
{
 ...
 "type": "TXT",
 "data": {
 "txt": "\"Hi, this is some text\" \"with extras\""
 }
},
becomes
{
 ...
 "type": "TXT",
 "data": {
 "txts": ["Hi, this is some text", "with extras"]
 }
},
A warning will be logged for each invalid record, but they will be skipped, and not loaded.
For more important changes, see:
	Refactor the query processing pipeline #224
	Reimplement the network stack #225
	Rework zones loader #230
	Rework zones codecs #231
	Rework zones cache #232
	Rework documentation and internals #233
	Fix overriding packet size in optrr record #242
	Upgrade dns_erlang to v4.
	Use segmented_cache for the zone cache and the throttle modules.

Added
	Support for OTP28 #220
	Support for dns_erlang v4, which enforces strings as binaries and options as maps
	Introduce domain tag in logger events #244
	zone cache put_rrset_zone accepts zone records #243
	Add statistic functionality to listeners #227

Removed
	Support for TXT and SPF records with data as a single string, they must be a list of strings instead.
	Support for the erldns_txt parser #248
	Support for zone parsers taking input as lists #231

Fixed
	Fix DNSSEC timestamps #234
	Fix (C)DNS/(C)DNSKEY signing #235
	Fix cache non-normalised match bug #241

Security
	Introduce backpressure and load shedding #240

6.0.2
	Add mailbox length telemetry events.
	Keep the handlers state in an ets table and avoid the singleton gen_server call.

6.0.1
	Add terminating context to telemetry span events

6.0.0
	Instrument code using telemetry in a metrics agnostic way.

5.0.0
	Introduce support for Logger
	Remove lager
	Remove the erldns_events singleton.

4.3.1
	Export dnssec internal new API endpoint

4.3.0
	Add support for NSEC compact denial of existence

4.2.4
	Add support for zone records directory loading
	Add the latest dnstest version fixing almost all tests

4.2.3
	Update dns_erlang: fix EDNS0 compliance for truncated records and unsupported versions

4.2.2
	Test admin API and fix bugs related to authentication and json encoding

4.2.1
	Ensure supervision tree starts correctly

4.2.0
	Merge admin and metrics APIs into this repository.

4.1.2
	Hide SPF/TXT multipart handling behind a feature flag
	Fix a bug mixing SPF and TXT records

4.1.1
	Bugfix handling null in the zone parser json payloads

4.1.0
	Introduce SPF/TXT multipart handling (#150)

4.0.0
	Add ex_doc support
	Remove support for OpenTelemetry.

3.0.0
Changed
	Bumps to OTP/27
	Replaced "jsx" with "json"
	Bumps to dns_erlang/v2.0.0

Added
	erlfmt
	CONTRIBUTING.md
	CHANGELOG.md
	release process to hex.pm

2.2.0
	...

 Copyright (c) 2012-2025 DNSimple Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

erldns

Convenience API to start erldns directly.

 Summary

 Types

 keyset()

 zone()

 Functions

 start()

 Types

 keyset()

 -type keyset() ::
 #keyset{key_signing_key :: dynamic(),
 key_signing_key_tag :: non_neg_integer(),
 key_signing_alg :: non_neg_integer(),
 zone_signing_key :: dynamic(),
 zone_signing_key_tag :: non_neg_integer(),
 zone_signing_alg :: non_neg_integer(),
 inception :: integer(),
 valid_until :: integer()}.

 zone()

 -type zone() ::
 #zone{labels :: dns:labels(),
 name :: dns:dname(),
 version :: erldns_zones:version(),
 authority :: dns:authority(),
 record_count :: non_neg_integer(),
 records :: [dns:rr()],
 keysets :: [erldns:keyset()]}.

 Functions

 start()

 -spec start() -> term().

erldns_config

Provide application-wide configuration access.

 Summary

 Functions

 use_root_hints()

 Use IANA DNS root servers as hints

 Functions

 use_root_hints()

 -spec use_root_hints() -> boolean().

Use IANA DNS root servers as hints

erldns_edns_ede

Add Extended DNS Error (EDE) options to DNS responses.
This pipeline handler implements RFC 8914 Extended DNS Errors, which provides
additional error information in DNS responses through EDNS0 options. This helps
clients better understand why a query failed or why a particular response was returned.
Configuration
The handler can be configured through application configuration:
{erldns, [
 {packet_pipeline, [
 ...,
 erldns_edns_ede,
 ...
]},
 {edns_ede, #{
 enabled => true, %% Enable/disable EDE support (default: true)
 add_text => true %% Include EXTRA-TEXT in EDE (default: false)
 }
]}
Behavior
This handler examines the DNS response and adds appropriate EDE options based on:
	Response code (SERVFAIL, REFUSED, FORMERR, etc.)
	DNSSEC validation failures
	Resolver errors stored in options

EDE codes are only added for error responses (SERVFAIL, REFUSED, FORMERR).
Valid negative responses like NXDOMAIN do not include EDE codes.
The handler automatically creates an OPT RR if one doesn't exist
and appends EDE options to existing OPT RR.
References
	RFC 8914 - Extended DNS Errors

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 prepare(Opts)

 erldns_pipeline:prepare/1 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

 prepare(Opts)

 -spec prepare(erldns_pipeline:opts()) -> erldns_pipeline:opts().

erldns_pipeline:prepare/1 callback.

erldns_handler behaviour

The module that handles the resolution of a single DNS question.
The meat of the resolution occurs in erldns_resolver:resolve/3
Configuration
{erldns, [
 {packet_handlers, [
 {my_custom_handler_module, [?DNS_TYPE_A, ?DNS_TYPE_AAAA], 3}
]},
]}
Record types can be given in their integer codes or binary representations,
meaning, the following are equivalent:
 {my_custom_handler_module, [?DNS_TYPE_A, ?DNS_TYPE_AAAA], 3}
 ...
 {my_custom_handler_module, [?DNS_TYPE_A, ~"AAAA"], 3}
 ...
 {my_custom_handler_module, [~"A", ~"AAAA"], 3}
The minimum supported version is 2.
Version 2's handler signature is
handle(dns:message(), dns:labels(), dns:type(), [dns:rr()]) -> [dns:rr()]
Version 3's handler signature is
handle(dns:dname(), dns:type(), [dns:rr()], dns:message()) -> [dns:rr()].

 Summary

 Types

 handler()

 state()

 versioned_handler()

 Callbacks

 filter/1

 Filter the given record set, returning replacement records.

 handle/4

 Filter out records not related to the given handler

 nsec_rr_type_mapper/2

 Map handler's record types to NSEC bit types.

 Functions

 call_filters(Records)

 Filter records through registered handlers.

 call_handlers(Message, QLabels, QType, Records)

 Call all registered handlers.

 call_map_nsec_rr_types(Types)

 call_map_nsec_rr_types(QType, Types)

 get_versioned_handlers()

 Get all registered handlers along with the DNS types they handle and associated versions

 register_handler(RecordTypes, Module)

 Register a record handler with the default version of 1

 register_handler(RecordTypes, Module, Version)

 Register a record handler with version

 start_link()

 Start the handler registry process

 Types

 handler()

 -type handler() :: {module(), [dns:type()]}.

 state()

 -opaque state()

 versioned_handler()

 -type versioned_handler() ::
 {fun((dns:message(), dns:labels(), dns:type(), [dns:rr()]) -> [dns:rr()]),
 fun(([dns:rr()]) -> [dns:rr()]),
 fun((dns:type(), dns:type()) -> [dns:type()]),
 module(),
 [dns:type()],
 integer()}.

 Callbacks

 filter/1

 -callback filter([dns:rr()]) -> [dns:rr()].

Filter the given record set, returning replacement records.

 handle/4

 -callback handle(dns:message(), dns:labels(), dns:type(), [dns:rr()]) -> [dns:rr()].

Filter out records not related to the given handler

 nsec_rr_type_mapper/2

 -callback nsec_rr_type_mapper(dns:type(), dns:type()) -> [dns:type()].

Map handler's record types to NSEC bit types.

 Functions

 call_filters(Records)

 -spec call_filters([dns:rr()]) -> [dns:rr()].

Filter records through registered handlers.

 call_handlers(Message, QLabels, QType, Records)

 -spec call_handlers(dns:message(), dns:labels(), dns:type(), [dns:rr()]) -> [dns:rr()].

Call all registered handlers.

 call_map_nsec_rr_types(Types)

 -spec call_map_nsec_rr_types([dns:type()]) -> [dns:type()].

 call_map_nsec_rr_types(QType, Types)

 -spec call_map_nsec_rr_types(dns:type(), [dns:type()]) -> [dns:type()].

 get_versioned_handlers()

 -spec get_versioned_handlers() -> [versioned_handler()].

Get all registered handlers along with the DNS types they handle and associated versions

 register_handler(RecordTypes, Module)

 -spec register_handler([dns:type()], module()) -> ok.

Register a record handler with the default version of 1

 register_handler(RecordTypes, Module, Version)

 -spec register_handler([dns:type()], module(), integer()) -> ok.

Register a record handler with version

 start_link()

 -spec start_link() -> gen_server:start_ret().

Start the handler registry process

erldns_listeners

DNS listeners configuration.
In order to configure, add to the application environment:
{erldns, [
 {listeners, [
 #{name => Name, transport => Protocol, ip => IP, port => Port, parallel_factor => PFactor}
]}
]}
See the type config/0 for details.
Telemetry events
Emits the following telemetry events:
[erldns, request, start]
	Measurements:monotonic_time := integer()
request_size := non_neg_integer()

	Metadata:transport := udp | tcp

[erldns, request, stop]
	Measurements:monotonic_time := integer()
duration := non_neg_integer()
response_size := non_neg_integer()

	Metadata:transport := udp | tcp
dnssec := boolean()

[erldns, request, error]
	Measurements:count := non_neg_integer()

	Metadata:transport := udp | tcp
kind => exit | error | throw
reason => term()
stacktrace => [term()]

[erldns, request, timeout]
	Measurements:count := non_neg_integer()

	Metadata:transport := udp | tcp

[erldns, request, dropped]
	Measurements:count := non_neg_integer()

	Metadata:transport := udp | tcp

[erldns, request, delayed]
	Measurements:count := non_neg_integer()

	Metadata:transport := udp | tcp

 Summary

 Types

 config()

 Configuration map for a listener.

 name()

 Name of the listener, a required parameter.

 parallel_factor()

 A multiplying factor for parallelisation.

 stats()

 Statistics about each listener.

 transport()

 Transport protocol. Default is standard which creates both UDP and TCP listeners.

 Functions

 get_stats()

 Get statistics about all listeners.

 reset_queues()

 Reset all queues by restarting all listeners.

 Types

 config()

 -type config() ::
 #{name := name(),
 transport => transport(),
 ip => inet:ip_address() | string() | any,
 port => inet:port_number(),
 parallel_factor => parallel_factor(),
 opts => #{atom() => term()}}.

Configuration map for a listener.
It can contain the following keys:
	Name is any desired name in the form of an atom,
	IP is any, in which case it will listen on all interfaces,
 or a valid ip address in tuple or string format. Default is any.
	Port is a valid port number. Default is 53.
	Transport is the transport protocol: udp, tcp, tls, or standard
 (creates both UDP and TCP). Default is standard.
	Opts is a map of transport-specific options:	For TCP/TLS listeners:	ingress_request_timeout (optional): Timeout in milliseconds for receiving
a complete request packet. Defaults to 500ms.
	max_concurrent_queries (optional): Maximum number of parallel request
workers per connection. Defaults to 50 workers.
	idle_timeout_ms (optional): Timeout in milliseconds for idle connections
(no data in buffer). Defaults to 2s.
	request_timeout_ms (optional): Timeout in milliseconds for individual
request processing. If a request exceeds this timeout, it will be killed and
a SERVFAIL response will be sent to the client. Defaults to 1000ms.
	max_connections (optional): Maximum number of concurrent TCP/TLS connections.
When this limit is reached, new connections trigger load shedding. Defaults to 1000.
	tcp_opts (optional): List of TCP socket options (e.g., [{nodelay, true}]).
These are passed directly to gen_tcp and merged with the default socket options.

	For TLS listeners (when transport => tls):	tls_opts (required): List of SSL/TLS options as expected by the Erlang ssl
library. These options are appended to the socket_opts list and passed to
ranch_ssl. Common options include:	{certfile, Path} - Path to the server certificate file (required)
	{keyfile, Path} - Path to the private key file (required)
	{versions, [tlsv1.2, tlsv1.3]} - Allowed TLS versions
	{alpn_preferred_protocols, [<<"dot">>]} - ALPN protocols
	{reuse_sessions, true} - Enable session reuse
	See ssl module documentation for the complete list of SSL options.

	For UDP listeners:	ingress_request_timeout (optional): Timeout in milliseconds for receiving
a complete request packet. Defaults to 500ms.
	udp_opts (optional): List of UDP socket options (e.g., [{recbuf, 65536}]).
These are passed directly to gen_udp and merged with the default socket options.

	ParallelFactor is a multiplying factor for parallelisation. Default is 1.

Example TCP listener:
#{
 name => my_tcp_listener,
 transport => tcp,
 port => 8053,
 opts => #{
 ingress_request_timeout => 1000,
 max_concurrent_queries => 100,
 tcp_opts => [{nodelay, true}, {keepalive, true}]
 }
}
Example TLS listener:
#{
 name => my_tls_listener,
 transport => tls,
 port => 853,
 opts => #{
 ingress_request_timeout => 1000,
 tls_opts => [
 {certfile, "priv/server.crt"},
 {keyfile, "priv/server.key"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
 {alpn_preferred_protocols, [<<"dot">>]},
 {reuse_sessions, true}
]
 }
}

 name()

 -type name() :: atom().

Name of the listener, a required parameter.

 parallel_factor()

 -type parallel_factor() :: 1..512.

A multiplying factor for parallelisation.
The number of schedulers is multiplied by this factor when creating worker pools.
By default, it is 1. The number of TCP and UDP acceptors will be of this size,
while the number of UDP workers will be 4x and the maximum number of TCP workers will be 1024x.
Note that the UDP pool is static, while the TCP pool is dynamic.
See wpool and ranch respectively for details.

 stats()

 -type stats() :: #{{name(), tls | tcp | udp} => #{queue_length := non_neg_integer()}}.

Statistics about each listener.

 transport()

 -type transport() :: udp | tcp | tls | standard.

Transport protocol. Default is standard which creates both UDP and TCP listeners.

 Functions

 get_stats()

 -spec get_stats() -> stats().

Get statistics about all listeners.

 reset_queues()

 -spec reset_queues() -> boolean().

Reset all queues by restarting all listeners.

erldns_axfr

Implementation of AXFR with IP address whitelisting required.
AXFR Support
AXFR zone transfers are not currently implemented. The current "implementation" is just a stub.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 is_enabled(_, _)

 Determine if AXFR is enabled for the given request host.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

 is_enabled(_, _)

 -spec is_enabled(_, _) -> boolean().

Determine if AXFR is enabled for the given request host.

erldns_dnssec

DNSSEC implementation.
If you want to enable DNSSEC, you need to add this module to the packet pipeline after a resolver,
that being an authoritative (e.g. erldns_resolver) or recursive
(e.g. erldns_resolver_recursive).
You also need to provide the zone keys for signing, during loading,
see ZONES for more details.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 deps()

 erldns_pipeline:deps/0 callback.

 get_signed_records/1

 Get signed records from a zone

 get_signed_zone_records/1

 Get signed records from a zone

 prepare(Opts)

 erldns_pipeline:prepare/1 callback.

 rrsig_for_zone_rrset(Zone, RRs)

 Given a zone and a set of records, return the RRSIG records.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

 deps()

 -spec deps() -> erldns_pipeline:deps().

erldns_pipeline:deps/0 callback.

 get_signed_records/1

 -spec get_signed_records(erldns:zone()) -> #{atom() => [dns:rr()]}.

Get signed records from a zone

 get_signed_zone_records/1

 -spec get_signed_zone_records(erldns:zone()) -> [dns:rr()].

Get signed records from a zone

 prepare(Opts)

 -spec prepare(erldns_pipeline:opts()) -> erldns_pipeline:opts().

erldns_pipeline:prepare/1 callback.

 rrsig_for_zone_rrset(Zone, RRs)

 -spec rrsig_for_zone_rrset(erldns:zone(), [dns:rr()]) -> [dns:rr()].

Given a zone and a set of records, return the RRSIG records.

erldns_edns_max_payload_size

Set the UDP payload size in answers.
DNS over UDP has traditionally been limited to 512 bytes per message. However, with the introduction
of EDNS (Extension Mechanisms for DNS), clients can specify larger UDP payload sizes through the OPT
 RR (Resource Record) in the additional section of the DNS message.
In Erldns, we've implemented a strict enforcement of UDP payload sizes to ensure compatibility and
prevent potential issues:
	Minimum Size: We enforce a minimum UDP payload size of 512 bytes (?MIN_PACKET_SIZE),
 which is the traditional DNS UDP message size limit.
	Maximum Size: We enforce a maximum UDP payload size of 1232 bytes (?MAX_PACKET_SIZE),
 which is the recommended maximum size for DNS over UDP to avoid IP fragmentation.
	Payload Size Adjustment: When a client sends a DNS request with an OPT RR containing
 an invalid UDP payload size (either too small or too large), we automatically adjust it
 to the maximum allowed size (1232 bytes) rather than rejecting the request.

This design decision prioritizes graceful degradation by automatically adjusting
invalid payload sizes rather than rejecting requests, while simultaneously protecting
against potential DoS attacks through oversized packets.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

erldns_empty_verification

Raise an event if the given message is empty or refused.
May emit the following telemetry events:
	[erldns, pipeline, refused], with measurements #{count => 1}
	[erldns, pipeline, empty], with measurements #{count => 1}

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

erldns_packet_cache

A basic packet cache that is used to avoid multiple lookups for the
same question received within the cache TTL.
In order to work correctly, it should be added to the packet pipeline twice,
once early in the processing pipeline, and once after the resolver.
Configuration
{erldns, [
 {packet_cache, #{
 enabled => boolean(), %% defaults to true
 ttl => non_neg_integer(), %% Seconds, defaults to 30
 }}
]}
Telemetry events
	[erldns, pipeline, cache] spans as triggered by segmented_cache.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 clear()

 Clear the cache

 prepare(Opts)

 erldns_pipeline:prepare/1 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

 clear()

 -spec clear() -> true.

Clear the cache

 prepare(Opts)

 -spec prepare(erldns_pipeline:opts()) -> disabled | erldns_pipeline:opts().

erldns_pipeline:prepare/1 callback.

erldns_pipeline behaviour

The pipeline specification.
It declares a pipeline of sequential transformations to apply to the
incoming query until a response is constructed.
This module is responsible for handling the pipeline of pipes that will be
executed when a DNS message is received. Handlers in this pipeline will be
executed sequentially, accumulating the result of each handler and passing
it to the next. This designs a pluggable framework where new behaviour can
be injected as a new pipe handler in the right order.
Default pipes
The following are enabled by default, see their documentation for details:
	erldns_questions
	erldns_edns_max_payload_size
	erldns_query_throttle
	erldns_packet_cache
	erldns_resolver_recursive
	erldns_resolver
	erldns_dnssec
	erldns_sorter
	erldns_section_counter
	erldns_empty_verification

Types of pipelines
There are two kind of pipes: function pipes and module pipes.
Function pipes
A function pipe is by definition any function that receives a dns:message/0
and a set of options and returns a dns:message/0. Function pipes must have
the following type signature:
-type pipe() :: fun((dns:message(), opts()) -> return()
Module pipes
The preferred mechanism, a module pipe is an extension of the function pipe.
It is a module that exports:
	a prepare/1 function which takes a set of options and initializes it, or disables the pipe.
	a call/2 function with the signature defined as in the function pipe.

The API expected by a module pipe is defined as a behaviour by this module.
Configuration
{erldns, [
 {packet_pipeline, [
 erldns_questions,
 erldns_edns_max_payload_size,
 erldns_query_throttle,
 erldns_packet_cache,
 erldns_resolver_recursive,
 erldns_resolver,
 erldns_dnssec,
 erldns_sorter,
 erldns_section_counter,
 erldns_packet_cache,
 erldns_empty_verification
]},
]}
Telemetry events
Emits the following telemetry events:
[erldns, pipeline, error]
	Measurements:count := non_neg_integer()

	Metadata:
If it is an exception, the metadata will contain:kind => exit | error | throw
reason => term()
stacktrace => [term()]
otherwise, it will contain:reason => term()

Examples
Here's an example of a function pipe that arbitrarily sets the truncated bit
on a message if the query is directed to the "example.com" domain:
-module(erldns_packet_pipe_example_set_truncated).
-behaviour(erldns_pipeline).

-export([prepare/1, call/2]).

-spec prepare(erldns_pipeline:opts()) -> disabled | erldns_pipeline:opts().
prepare(Opts) ->
 case enabled() of
 false -> disabled;
 true -> Opts
 end.

-spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().
call(#dns_message{questions = [#dns_query{name = <<"example.com">>} | _]} = Msg, _Opts) ->
 Msg#dns_message{tc = true}.
call(Msg, _Opts) ->
 Msg.

 Summary

 Types

 deps()

 The dependencies of a pipe module.

 host()

 The host that originated the request.

 opts()

 Options that can be passed and accumulated to the pipeline.

 pipe()

 A pipe in the pipeline, either a module or a function.

 return()

 The return type of a pipe.

 transport()

 The underlying request transport protocol. All requests come either through UDP or TCP.

 Callbacks

 call/2

 Trigger the pipeline at run-time.

 deps()

 Declare dependencies on other pipes.

 prepare/1

 Initialise the pipe handler, triggering side-effects and preparing any necessary metadata.

 Functions

 call(Msg, Opts)

 Call the main application packet pipeline with the pipes configured in the system configuration.

 call_custom(Msg, Opts, PipelineName)

 Call a custom pipeline by name.

 delete_pipeline(PipelineName)

 Remove a custom pipeline from storage.

 is_pipe_configured(Pipe)

 Check if a pipe is configured in the main pipeline.

 is_pipe_configured/2

 Check if a pipe is configured in a specific pipeline. Returns false if the pipeline doesn't exist.

 store_pipeline(PipelineName, Pipes)

 Verify and store a custom pipeline.

 Types

 deps()

 -type deps() :: #{prerequisites => [module()], dependents => [module()]}.

The dependencies of a pipe module.
Contains the following keys:
	prerequisites is a list of module pipes that must appear earlier in the pipeline
	dependents is a list of module pipes that must appear later in the pipeline

 host()

 -type host() :: inet:ip_address() | inet:hostname().

The host that originated the request.

 opts()

 -type opts() ::
 #{query_labels := dns:labels(),
 query_type := dns:type(),
 monotonic_time := integer(),
 resolved := boolean(),
 transport := transport(),
 port := inet:port_number(),
 host := host(),
 socket := gen_tcp:socket() | {gen_udp:socket(), inet:port_number()},
 atom() => dynamic()}.

Options that can be passed and accumulated to the pipeline.

 pipe()

 -type pipe() :: module() | fun((dns:message(), opts()) -> return()).

A pipe in the pipeline, either a module or a function.
See Module pipes and Function pipes for details.

 return()

 -type return() :: halt | dns:message() | {dns:message(), opts()} | {stop, dns:message()}.

The return type of a pipe.
It can return halt, a new dns:message/0, with or without new opts/0,
or put a stop to the pipeline execution.

 transport()

 -type transport() :: tcp | udp.

The underlying request transport protocol. All requests come either through UDP or TCP.

 Callbacks

 call/2

 -callback call(dns:message(), opts()) ->
 halt | dns:message() | {dns:message(), opts()} | {stop, dns:message()}.

Trigger the pipeline at run-time.
This callback can return
	a possibly new dns:message/0;
	a tuple containing a new dns:message/0 and a new set of opts/0;
	a {stop, t:dns:message/0} tuple to stop the pipeline execution altogether.
	a halt atom, in which case the pipeline will be halted and no further pipes will be executed.
 The socket workers won't respond nor trigger any events, and it's fully the responsibility of
 a handler to deal with all the edge cases. This could be useful for either dropping the request
 entirely, or for stealing the request from a given worker to answer separately.
 Note that the pipe options will contain the UDP or TCP socket to answer to, so in the case
 of UDP the client can be answered using gen_udp:send/4 with the socket, host and port;
 and in the case of TCP it would be required to first steal the socket using
 gen_tcp:controlling_process/2 so that the connection is not closed.

 deps()

 (optional)

 -callback deps() -> deps().

Declare dependencies on other pipes.
This pipe will only work correctly if the listed pipes appear earlier in the pipeline configuration.
The pipeline will fail to start if dependencies are not satisfied.
Example:
-module(erldns_dnssec).
-behaviour(erldns_pipeline).
-export([deps/0, prepare/1, call/2]).

-spec deps() -> deps().
deps() ->
 #{prerequisites => [erldns_questions, erldns_resolver], dependents => []}.

 prepare/1

 (optional)

 -callback prepare(opts()) -> disabled | opts().

Initialise the pipe handler, triggering side-effects and preparing any necessary metadata.
This will be called during the pipeline initialisation phase, which should happen at application
startup provided you added the pipeline to your application's supervision tree. This will be called
only once during application startup and therefore it is an opportunity to do any necessary
preparations that can reduce the amount of work at runtime and therefore improve performance.
This callback can return disabled, and then the call/2 callback won't be added to the
pipeline.

 Functions

 call(Msg, Opts)

 -spec call(dns:message(), #{atom() => dynamic()}) -> halt | dns:message().

Call the main application packet pipeline with the pipes configured in the system configuration.

 call_custom(Msg, Opts, PipelineName)

 -spec call_custom(dns:message(), #{atom() => dynamic()}, dynamic()) -> halt | dns:message().

Call a custom pipeline by name.
The pipeline should have been verifiend and stored previously with store_pipeline/2.

 delete_pipeline(PipelineName)

 -spec delete_pipeline(term()) -> boolean().

Remove a custom pipeline from storage.
Should be used to clean up a custom pipeline stored with store_pipeline/2.

 is_pipe_configured(Pipe)

 -spec is_pipe_configured(pipe()) -> boolean().

Check if a pipe is configured in the main pipeline.

 is_pipe_configured/2

 -spec is_pipe_configured(pipe(), term()) -> boolean().

Check if a pipe is configured in a specific pipeline. Returns false if the pipeline doesn't exist.

 store_pipeline(PipelineName, Pipes)

 -spec store_pipeline(term(), [pipe()]) -> ok.

Verify and store a custom pipeline.
Can be used to prepare a custom pipeline that can be triggered using call_custom/3.
Validates that pipe dependencies (declared via deps/0) are satisfied by the given order.
Raises an error if a pipe's dependencies don't appear earlier in the pipeline.

erldns_query_throttle

Stateful query throttling. Currently only throttles ANY queries.
We should throttle ANY and RRSIG queries to discourage use of our authoritative name servers
for reflection/amplification attacks.
Configuration
{erldns, [
 {query_throttle, #{
 enabled := boolean(), %% defaults to true
 limit := non_neg_integer(), %% Number of queries to allow, defaults to 1
 ttl := non_neg_integer(), %% Seconds, defaults to 30
 }}
]}
Telemetry events
	[erldns, pipeline, throttle] spans with host in the metadata
 as triggered by segmented_cache.
	[erldns, pipeline, throttle] with host in the metadata.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 clear()

 Clear the cache

 prepare(Opts)

 erldns_pipeline:prepare/1 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

 clear()

 -spec clear() -> true.

Clear the cache

 prepare(Opts)

 -spec prepare(erldns_pipeline:opts()) -> disabled | erldns_pipeline:opts().

erldns_pipeline:prepare/1 callback.

erldns_questions

Remove all redundant questions from a DNS message,
and parses the first question into a list of labels.
Telemetry events
	[erldns, pipeline, questions] with #{count => non_neg_integer()}
where count is the number of questions removed.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

erldns_resolver

Resolve a DNS query.
Assumes that the DNS message contains exactly one query.
Emits the following telemetry events:
	[erldns, pipeline, resolver, error] with #{rc := dns:rcode/0} metadata.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 deps()

 erldns_pipeline:deps/0 callback.

 prepare(Opts)

 erldns_pipeline:prepare/1 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

 deps()

 -spec deps() -> erldns_pipeline:deps().

erldns_pipeline:deps/0 callback.

 prepare(Opts)

 -spec prepare(erldns_pipeline:opts()) -> erldns_pipeline:opts().

erldns_pipeline:prepare/1 callback.

erldns_resolver_recursive

DNS recursion.
Stub module, as erldns does not implement recursion (yet),
this module simply sets the recursion bit as false.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> erldns_pipeline:return().

erldns_pipeline:call/2 callback.

erldns_section_counter

Counts the sections and updates the respective header fields at once.
Should be ran after all resolvers are ran.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

erldns_sorter

Sorts the answers, ensuring that CNAME RRs are ordered first.
Should be ran after all resolvers are ran.

 Summary

 Functions

 call/2

 erldns_pipeline:call/2 callback.

 Functions

 call/2

 -spec call(dns:message(), erldns_pipeline:opts()) -> dns:message().

erldns_pipeline:call/2 callback.

erldns_zone_cache

A cache holding all of the zone data.
This module expects all input to use normalised (that is, lowercase) names, therefore it is the
responsibility of the client to call this API with normalised names.
This is to avoid normalising already normalised names, which can result into computational waste.
As the client might need to call multiple points of this API, the client can ensure to normalise
once and use multiple times.

 Summary

 API: Boolean Operations

 is_in_any_zone/1

 Check if the name is in any available zone.

 is_name_in_zone/2

 Check if the exact record name is in the zone, without recursing nor traversing the zone tree.

 is_record_name_in_zone/2

 Check if the record name, or any wildcard or parent wildcard, is in the zone.

 is_record_name_in_zone_strict/2

 Check if the record name, or any wildcard, or parent wildcard, or descendant, is in the zone.

 API: Lookups

 get_authoritative_zone/1

 Find an authoritative zone for a given qname.

 get_authoritative_zone/2

 Find an authoritative zone for a given qname and qtype.

 get_delegations/1

 Get the list of NS and glue records for the given name.

 get_records_by_name/1

 Return the record set for the given dname.

 get_records_by_name/2

 Return the record set for the given dname in the given zone.

 get_records_by_name_and_type/2

 Get all records for the given type and given name.

 get_records_by_name_and_type/3

 Get all records for the given name and type in the given zone.

 get_records_by_name_ent/2

 Return the full record set for the tree below the given dname

 get_records_by_name_wildcard/2

 Return the record set for the given dname in the given zone, including parent wildcard matches.

 get_records_by_name_wildcard_strict/2

 Return the record set for the given dname in the given zone,
including parent exact and wildcard matches.

 get_rrset_sync_counter(NormalizedZoneName, RRFqdn, Type)

 Return current sync counter

 get_zone_records/1

 Get all records for the given zone.

 lookup_zone/1

 Get a zone for the specific name.

 API: Mutations

 delete_zone/1

 Remove a zone from the cache without waiting for a response.

 delete_zone_rrset(ZoneName, Digest, RRFqdn, Type, Counter)

 Remove zone RRSet

 put_zone/1

 Put a name and its records into the cache, along with a SHA which can be
used to determine if the zone requires updating.

 put_zone_rrset(RRSet, RRFqdn, Type, Counter)

 Put zone RRSet

 update_zone_records_and_digest(ZLabels, RecordsCount, Digest)

 Given a zone name, list of records, and a digest, update the zone metadata in cache.

 API: Utilities

 zone_names_and_versions()

 Return a list of tuples with each tuple as a name and the version SHA for the zone.

 API: Boolean Operations

 is_in_any_zone/1

 -spec is_in_any_zone(dns:dname() | dns:labels()) -> boolean().

Check if the name is in any available zone.

 is_name_in_zone/2

 -spec is_name_in_zone(erldns:zone(), dns:dname() | dns:labels()) -> boolean().

Check if the exact record name is in the zone, without recursing nor traversing the zone tree.

 is_record_name_in_zone/2

 -spec is_record_name_in_zone(erldns:zone(), dns:dname() | dns:labels()) -> boolean().

Check if the record name, or any wildcard or parent wildcard, is in the zone.

 is_record_name_in_zone_strict/2

 -spec is_record_name_in_zone_strict(erldns:zone(), dns:dname() | dns:labels()) -> boolean().

Check if the record name, or any wildcard, or parent wildcard, or descendant, is in the zone.
Will also return true if a wildcard is present at the node,
or if any descendant has existing records (and the queried name is an ENT).

 API: Lookups

 get_authoritative_zone/1

 -spec get_authoritative_zone(dns:dname() | dns:labels()) ->
 erldns:zone() | zone_not_found | not_authoritative.

Find an authoritative zone for a given qname.

 get_authoritative_zone/2

 -spec get_authoritative_zone(dns:labels(), dns:type()) ->
 erldns:zone() | zone_not_found | not_authoritative.

Find an authoritative zone for a given qname and qtype.

 get_delegations/1

 -spec get_delegations(dns:dname() | dns:labels()) -> [dns:rr()].

Get the list of NS and glue records for the given name.
This function will always return a list, even if it is empty.

 get_records_by_name/1

 -spec get_records_by_name(dns:dname() | dns:labels()) -> [dns:rr()].

Return the record set for the given dname.

 get_records_by_name/2

 -spec get_records_by_name(erldns:zone(), dns:dname() | dns:labels()) -> [dns:rr()].

Return the record set for the given dname in the given zone.

 get_records_by_name_and_type/2

 -spec get_records_by_name_and_type(dns:dname() | dns:labels(), dns:type()) -> [dns:rr()].

Get all records for the given type and given name.

 get_records_by_name_and_type/3

 -spec get_records_by_name_and_type(erldns:zone(), dns:dname() | dns:labels(), dns:type()) -> [dns:rr()].

Get all records for the given name and type in the given zone.

 get_records_by_name_ent/2

 -spec get_records_by_name_ent(erldns:zone(), dns:dname() | dns:labels()) -> [dns:rr()].

Return the full record set for the tree below the given dname

 get_records_by_name_wildcard/2

 -spec get_records_by_name_wildcard(erldns:zone(), dns:dname() | dns:labels()) -> [dns:rr()].

Return the record set for the given dname in the given zone, including parent wildcard matches.
Note that this helper is not RFC compliant with ENT handling - they will get expanded if covered by
wildcards. Whether a node is an ENT has to be checked beforehand by is_record_name_in_zone/2.

 get_records_by_name_wildcard_strict/2

 -spec get_records_by_name_wildcard_strict(erldns:zone(), dns:dname() | dns:labels()) -> [dns:rr()].

Return the record set for the given dname in the given zone,
including parent exact and wildcard matches.

 get_rrset_sync_counter(NormalizedZoneName, RRFqdn, Type)

 -spec get_rrset_sync_counter(dns:dname(), dns:dname(), dns:type()) -> integer().

Return current sync counter

 get_zone_records/1

 -spec get_zone_records(erldns:zone() | dns:dname() | dns:labels()) -> [dns:rr()].

Get all records for the given zone.

 lookup_zone/1

 -spec lookup_zone(dns:dname() | dns:labels()) -> erldns:zone() | zone_not_found.

Get a zone for the specific name.
This function will not attempt to resolve the dname in any way,
it will simply look up the name in the underlying data store.

 API: Mutations

 delete_zone/1

 -spec delete_zone(dns:dname() | dns:labels()) -> term().

Remove a zone from the cache without waiting for a response.

 delete_zone_rrset(ZoneName, Digest, RRFqdn, Type, Counter)

 -spec delete_zone_rrset(dns:dname(), erldns_zones:version(), dns:dname(), integer(), integer()) ->
 ok | zone_not_found.

Remove zone RRSet

 put_zone/1

 -spec put_zone(Zone | {Name, Sha, Records} | {Name, Sha, Records, Keys}) -> ok
 when
 Zone :: erldns:zone(),
 Name :: dns:dname(),
 Sha :: erldns_zones:version(),
 Records :: [dns:rr()],
 Keys :: [erldns:keyset()].

Put a name and its records into the cache, along with a SHA which can be
used to determine if the zone requires updating.
This function will build the necessary Zone record before inserting.
The name of each record must be the fully qualified domain name (including the zone part).
Here's an example:
erldns_zone_cache:put_zone({
 <<"example.com">>, <<"someDigest">>, [
 #dns_rr{
 name = <<"example.com">>,
 type = ?DNS_TYPE_A,
 ttl = 3600,
 data = #dns_rrdata_a{ip = {1,2,3,4}}
 },
 #dns_rr{
 name = <<"www.example.com">>,
 type = ?DNS_TYPE_CNAME,
 ttl = 3600,
 data = #dns_rrdata_cname{dname = <<"example.com">>}
 }
]}).

 put_zone_rrset(RRSet, RRFqdn, Type, Counter)

 -spec put_zone_rrset(RRSet, RRFqdn, Type, Counter) -> ok | zone_not_found
 when
 RRSet ::
 erldns:zone() |
 {dns:dname(), erldns_zones:version(), [dns:rr()]} |
 {dns:dname(), erldns_zones:version(), [dns:rr()], [term()]},
 RRFqdn :: dns:dname(),
 Type :: dns:type(),
 Counter :: integer().

Put zone RRSet

 update_zone_records_and_digest(ZLabels, RecordsCount, Digest)

 -spec update_zone_records_and_digest(dns:labels(), non_neg_integer(), erldns_zones:version()) ->
 ok | zone_not_found.

Given a zone name, list of records, and a digest, update the zone metadata in cache.

 API: Utilities

 zone_names_and_versions()

 -spec zone_names_and_versions() -> [{dns:dname(), erldns_zones:version()}].

Return a list of tuples with each tuple as a name and the version SHA for the zone.

erldns_zone_codec behaviour

Encoding and decoding of zone data in JSON format.
To write custom codecs, you need to implement the callbacks exposed by this module,
and register the codec in the configuration.
Configuration
{erldns, [
 {zones, #{
 codecs => [sample_custom_zone_codec]
 }},
]}
Custom codecs
-module(sample_custom_zone_codec).
-behaviour(erldns_zone_codec).

-include_lib("dns_erlang/include/dns.hrl").
-include_lib("erldns/include/erldns.hrl").

-export([decode/1, encode/1]).

-define(DNS_TYPE_SAMPLE, 40000).

decode(#{~"name" := Name, ~"type" := ~"SAMPLE", ~"ttl" := Ttl, ~"data" := Data}) ->
 #dns_rr{
 name = Name,
 type = ?DNS_TYPE_SAMPLE,
 data = maps:get(~"dname", Data),
 ttl = Ttl
 };
decode(_) ->
 not_implemented.

encode(#dns_rr{name = Name, type = ?DNS_TYPE_SAMPLE, ttl = Ttl, data = Data}) ->
 #{
 ~"name" => Name,
 ~"type" => ~"SAMPLE",
 ~"ttl" => Ttl,
 ~"content" => erlang:iolist_to_binary(io_lib:format("~s", [Data]))
 };
encode(_) ->
 not_implemented.

 Summary

 Types

 decoder()

 encoder()

 state()

 Callbacks

 decode/1

 encode/1

 Functions

 build_zone(Name, Version, Records, Keys)

 decode(Zone)

 Takes a JSON map and turns it into a zone.

 decode_record(Record)

 Takes a JSON record and turns it into a dns:rr/0.

 encode(Zone)

 Equivalent to encode(Zone, #{mode => zone_to_json}).

 encode(Zone, Opts)

 Takes a zone and turns it into a map.

 list_codecs()

 Get the list of registered zone parsers.

 register_codec(Module)

 Register a custom parser module.

 register_codecs(Modules)

 Register a list of custom parser modules.

 Types

 decoder()

 -type decoder() :: fun((dynamic()) -> not_implemented | dns:rr()).

 encoder()

 -type encoder() :: fun((dns:rr()) -> not_implemented | json:encode_value()).

 state()

 -type state() :: #state{encoders :: [encoder()], decoders :: [decoder()]}.

 Callbacks

 decode/1

 -callback decode(json:encode_value()) -> not_implemented | dns:rr().

 encode/1

 -callback encode(dns:rr()) -> not_implemented | json:encode_value().

 Functions

 build_zone(Name, Version, Records, Keys)

 -spec build_zone(dns:dname(), binary(), [dns:rr()], [erldns:keyset()]) -> erldns:zone().

 decode(Zone)

 -spec decode(json:decode_value()) -> erldns:zone().

Takes a JSON map and turns it into a zone.

 decode_record(Record)

 -spec decode_record(#{binary() => json:decode_value()}) -> not_implemented | dns:rr().

Takes a JSON record and turns it into a dns:rr/0.

 encode(Zone)

 -spec encode(erldns:zone()) -> json:encode_value().

Equivalent to encode(Zone, #{mode => zone_to_json}).

 encode(Zone, Opts)

 -spec encode(erldns:zone(), #{atom() => dynamic()}) -> json:encode_value().

Takes a zone and turns it into a map.

 list_codecs()

 -spec list_codecs() -> {[encoder()], [decoder()]}.

Get the list of registered zone parsers.

 register_codec(Module)

 -spec register_codec(module()) -> ok.

Register a custom parser module.

 register_codecs(Modules)

 -spec register_codecs([module()]) -> ok.

Register a list of custom parser modules.

erldns_zone_loader

Functions for loading zones from local or remote sources.
Configuration
{erldns, [
 {zones, #{
 path => "zones.json",
 strict => true
 }
]}
See the type erldns_zones:config/0 for details.

 Summary

 Functions

 get_config()

 get_config/1

 load_zones()

 Load zones.

 load_zones(ConfigOrPath)

 Load zones from a given configuration, see erldns_zones:config/0 for details.

 Functions

 get_config()

 -spec get_config() -> erldns_zones:config().

 get_config/1

 -spec get_config(map() | file:name()) -> erldns_zones:config().

 load_zones()

 -spec load_zones() -> non_neg_integer().

Load zones.

 load_zones(ConfigOrPath)

 -spec load_zones(erldns_zones:config() | file:name()) -> non_neg_integer().

Load zones from a given configuration, see erldns_zones:config/0 for details.

erldns_zones

The system responsible for loading and caching zone data.
Zones are loaded by default from JSON files in the priv/zones/ directory.
The path is configured in erldns.config using the zones.path setting.
For more details about zone file format and configuration, see ZONES.
For more details about its subsections, see:
	erldns_zone_cache
	erldns_zone_codec
	erldns_zone_loader

Configuration
{erldns, [
 {zones, #{
 path => "zones.json",
 keys_path => "/root/dnssec/",
 strict => true,
 format => auto,
 timeout => timer:minutes(5),
 codecs => [sample_custom_zone_codec],
 context_options => #{match_empty => true, allow => [<<"anycast">>, <<"AMS">>, <<"TKO">>]}
 }},
]}
See the type config/0 for details.

 Summary

 Types

 config()

 Zone configuration.

 format()

 version()

 Types

 config()

 -type config() ::
 #{path => undefined | file:name(),
 keys_path => undefined | file:name(),
 strict => boolean(),
 format => format(),
 timeout => timeout(),
 codecs => [module()],
 context_options => #{match_empty => boolean(), allow => [binary()]}}.

Zone configuration.
	path: can be a file or a directory:
	If it is a file, format will be ignored
	If it is a directory, it will find all nested files matching the format specified in format

	strict: declares whether any loading error should crash the whole loading process or be ignored.

	keys_path: specifies the path to DNSSEC keys used for signing and validating zones.
These file should be named after the zone name with the .private file extension
(i.e.: "example.com.private") and should contain a JSON formatted list of keysets as in the
JSON zone format documentation.

	format: specifies the zone file format to look for.
Both formats support custom codecs for handling unknown record types.
Valid values are:
	json: zones are parsed using erldns's JSON zone format.
	zonefile: zones are parsed using the zone format.
	auto: both filetypes will be loaded depending on their file extension.

	timeout: specify how long zone loading can take before being aborted. Defaults to 30 minutes.

	codecs: a list of modules that implement the erldns_zone_codec behaviour.

	context_options: allow you to filter loading certain records in a zone
depending on configuration details. See ZONES for more details.

See erldns_zone_loader for more details.

 format()

 -type format() :: json | zonefile | auto.

 version()

 -type version() :: binary().

erldns_admin

Erldns admin API.
Configuration:
This application will read from your sys.config the following example:
{erldns, [
 {admin, [
 {port, 8083},
 {tls, false},
 {credentials, {~"username", ~"password"}},
 {middleware, [my_custom_middleware, another_middleware]},
 {routes, [{~"/custom/:action", my_custom_route_handler, #{}}]}
]}
]}
The accepted values are:
	port: an integer between 1 and 65535 indicating the port to listen on
 (default: 8083 without TLS and 8483 when TLS is enabled).
	tls: false, or {true, SslOpts} where SslOpts is a list of ssl:tls_server_option/0,
 indicating whether to use TLS (default: false).
	credentials: false if no authentication is required, or a tuple of {Username, Password}
 binary strings. If configured, all routes will require authentication (default: false).
	middleware: an optional list of cowboy compliant middleware modules to apply
 to all admin API requests (default: []).
	routes: an optional list of additional routes to add to the admin API.
 This is a list of cowboy_router:route_path() elements that will be prepended
 to the default routes (default: []).

 Summary

 Functions

 maybe_start()

 Functions

 maybe_start()

 -spec maybe_start() -> ok | {ok, pid()} | {error, term()}.

erldns_admin_root_handler

Support for the erldns Admin API root resource at path /.
The following is implemented:
	DELETE: Reset all listener queues

	GET: Returns name and version information for all zones in the cache.
 The response JSON body looks like the following:
 {
 "erldns": {
 "zones": {
 "count": 2,
 "versions": [
 {
 "name": "example.com",
 "version": "v1.2.3"
 },
 {
 "name": "example.org",
 "version": "v4.5.6"
 }
]
 }
 }
 }

erldns_admin_zone_handler

Support for the erldns Admin API root resource at path /zones/:name.
The following is implemented:
	DELETE: Deletes a zone from cache.

	GET: Returns information about records in a given zone cached in erldns.
 Acceps an optional query parameter metaonly, that takes a boolean: if set to true
 only zone metadata is returned, without the actual "records".
 The response JSON body looks like the following:
 {
 "erldns": {
 "zone": {
 "name": "example.com",
 "version": "v1.2.3",
 "records_count": 11,
 "records": [
 {
 "name": "example.com.",
 "type": "A",
 "ttl": 3600,
 "content": "1.2.3.4"
 },
 {
 "name": "example.com.",
 "type": "AAAA",
 "ttl": 3600,
 "content": "2001:6A8:0:1:210:4BFF:FE4B:4C61"
 },
 ...
]
 }
 }
 }

erldns_admin_zone_records_handler

Support for the erldns Admin API root resource at path /zones/:zonename/records[/:record_name].
The following is implemented:
	GET: Returns information about records in a given zone cached in erldns.
 The response JSON body looks like the following: [
 {
 "name": "www.example.com.",
 "type": "CNAME",
 "ttl": 120,
 "content": "example.com."
 },
 {
 "name": "mail.example.com.",
 "type": "MX",
 "ttl": 3600,
 "content": "10 mail.example.com."
 }
]

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

