

 erlfdb

 v0.3.1

 Table of contents

 	An Erlang Binding to FoundationDB

 	LICENSE

 	Changelog

 	FDB Client Threads

 	KvQueue - A distributed durable queue with erlfdb

 	Tutorial - Elixir

 	

 	Modules

 	erlfdb

 	erlfdb_directory

 	erlfdb_float

 	erlfdb_key

 	erlfdb_nif

 	erlfdb_sandbox

 	erlfdb_subspace

 	erlfdb_tenant_management

 	erlfdb_tuple

An Erlang Binding to FoundationDB

[image: CI]
An Erlang library that wraps the FoundationDB C API with a NIF.
We also provide a conforming implementation of the Tuple and Directory layers.
This project originated as apache/couchdb-erlfdb. This fork
was created in early 2024 to continue development.

 Dependencies

Refer to FoundationDB's Getting Started on Linux or Getting Started on macOS.
Install the foundationdb-clients package to run erlfdb as a client to an existing
FoundationDB database.
Install the foundationdb-server package for running a test fdbserver on your local device.
This package is required to run the unit tests.

 Usage

 Erlang's rebar3

Add erlfdb as a dependency in your Erlang project's rebar.config:
% rebar.config
{deps, [
 {erlfdb, "0.3.1"}
]}.

 Elixir's Mix

Add erlfdb as a dependency in your Elixir project's mix.exs:
mix.exs
defp deps do
 [
 {:erlfdb, "~> 0.3"}
]
end

 Example

A simple example showing how to open a database and read and write keys.
See the erlfdb Documentation for more.

 Erlang

1> Db = erlfdb:open(<<"/usr/local/etc/foundationdb/fdb.cluster">>).
{erlfdb_database,#Ref<0.2859661758.3941466120.85406>}
2> ok = erlfdb:set(Db, <<"foo">>, <<"bar">>).
ok
3> erlfdb:get(Db, <<"foo">>).
<<"bar">>
4> erlfdb:get(Db, <<"bar">>).
not_found

 Elixir

iex> db = :erlfdb.open("/usr/local/etc/foundationdb/fdb.cluster")
{:erlfdb_database, #Reference<0.2859661758.3941466120.85406>}
iex> :ok = :erlfdb.set(db, "foo", "bar")
:ok
iex> :erlfdb.get(db, "foo")
"bar"
iex> :erlfdb.get(db, "bar")
:not_found

 Binding Tester

FoundationDB has a custom binding tester that can be used to test whether
changes have broken compatibility. The GitHub Action runs the Binding Tester
against the most recent supported version of FoundationDB.

 Developing erlfdb

 Building

$ rebar3 compile

 Testing

rebar3 eunit

 Bypassing dependency checks

When you execute a rebar command, erlfdb attempts to detect the version of the fdbcli
installed on your system. If it cannot be detected, the rebar command is aborted.
To disable the abort, use ERLFDB_ASSERT_FDBCLI=0. For example, you can safely use
this for the fmt command, which does not do a compile action.
ERLFDB_ASSERT_FDBCLI=0 rebar3 fmt

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Changelog

 v0.3.3 (TBD)

 Enhancements

	(#50) Add support for caller to provide local target pid for watch and get_versionstamp ready messages. (e.g, erlfdb:watch(Tx, <<"key>>, [{to, Pid}]))

 v0.3.2 (2025-06-13)

 Bug fixes

	Fix type spec for key_selector

 v0.3.1 (2025-04-04)

 Bug fixes

	Use external_client_library instead of external_client_directory in default configuration. Using the directory should
be reserved for when the operator has a collection of libfdb_c isolated from other libraries on the system.

 v0.3 (2025-04-03)

 API Change

	erlfdb:open* functions now retrieve database objects from persistent_term. Operators that wish to maintain their own
database objects should use erlfdb:create_database/1 instead.

 Enhancements

	(#46) Add support for client_threads_per_version config. See FDB Client Threads for details.

 New contributors

Thank you to the following new contributors! :)
	weaversam8

 v0.2.4 (2025-03-23)

 Bug fixes

	(#43) For OTP >= 26, erlfdb NIF will no longer segfault on VM halt.

 v0.2.3 (2025-03-15)

 Bug fixes

	(#36) Starting in v0.2.2, the ready message from a get_versionstamp future included
the ref from the transaction, putting it at risk of being flushed in the after the
transaction completes. Now, the ready message behaves much like the watch, where it
is not tied to the transaction ref.
	Sandboxes can now be specified with a subdirectory, allowing concurrent
creation (erlfdb_sandbox)

 Enhancements

	Livebook | KvQueue: An interactive notebook that
demonstrates the creation of a durable queue in FoundationDB.

 v0.2.2 (2024-01-16)

 Bug fixes

	(#31) Previously, erlfdb could leak {reference(), ready} messages to the caller if
the transaction UserFun was executed more than once. We will now flush such messages before
transactional/2 returns control to the caller. Watches are unaffected.
	(#32) Fixed documentation for versionstamps in erlfdb_tuple.

 Enhancements

	erlfdb_sandbox: Creates and starts a database on your local filesystem that is to be
used as a sandbox. That is, it can be useful for development tasks like tutorials and unit tests.
It should not be used in a production setting.

 New contributors

Thank you to the following new contributors! :)
	drowzy

 v0.2.1 (2024-11-20)

 Testing

	The FDB Bindings Tester now runs under GitHub Actions
	Added macOS GitHub Action

 v0.2.0 (2024-09-21)

 Bug fixes

	Several type specs in erlfdb were corrected.

 Enhancements

	erlfdb:wait_for_all_interleaving/2: Given a list of fold_future() or future(), calling this function will wait
on the futures at once, and then continue to issue any remaining get_range or get_mapped_range until
the result set is exhausted. This allows fdbserver to process multiple get_ranges at the same time,
in a pipelined fashion.
	erlfdb:get_range_split_points/4: Companion to wait_for_all_interleaving, this is an fdbserver-supported function
that will split a given key range into a partitioning set of ranges for which the key-values for each section are
approximately equal to the provided chunk_size option. There are limitations to this, namely that a hard
maximum of 100 shards can be traversed. The default chunk_size is 10000000 (in Bytes).
	erlfdb:get_range*: The default behavior of get_range is now more explicit in the type specs and with the wait
option, with defaults to true. A value of false will return a fold_future(), and interleaving is
an experimental feature that will use both get_range_split_points and wait_for_all_interleaving to retrieve the range.

FDB Client Threads

The default configuration of erlfdb includes the creation and management of a single OS thread that is responsible for all database work created by processes in the Erlang VM. As your workload increases in size, you will need to configure the erlfdb client for horizontal scaling. Otherwise, a sufficiently sized system with a sufficiently sized workload can saturate the single client thread with work, which will lead to high latency on individual requests, and a ceiling on throughput.
This page will guide you through the configuration necessary to scale the FDB client to several worker threads on a single BEAM VM.

 Network options configuration

The configuration will be done via the erlfdb network_options environment variable. In erlfdb >= 0.3, defaults are chosen that are meant to ease the configuration burden. The options are described in detail below, but the main takeaway is the following:
Tip
In order to double your client's maximum throughput, set
client_threads_per_version to 2.

[
 {erlfdb, [
 {network_options, [
 {client_threads_per_version, 2}
]}
]}
].
Please read on for details about the scaling implementation.

 Version 0.3 and above

In versions 0.3 and above, the env var network_options defaults to
[
 {erlfdb, [
 {network_options, [
 % `callbacks_on_external_threads`:
 % Allows libfdb_c to apply future callbacks on external threads,
 % which increases the throughput of future resolution. erlfdb
 % simply sends the result to the required Erlang process, so the
 % default behavior of executing on the main thread is not
 % desirable
 {callbacks_on_external_threads, true},

 % `external_client_library`:
 % Points libfdb_c to the dynamic library to be loaded. libfdb_c
 % will copy this .so N times to temporary files on the filesystem
 % so that they can be individually loaded. Normally the value is
 % a binary string of the filepath on the filesystem.
 %
 % You may also provide an `{M, F, A}` tuple. If you do, the function
 % is executed at the time the `erlfdb_nif` module is loaded. The
 % return must be a binary string. This value is used as the
 % permanent value for `external_client_library` for the lifetime
 % of the VM.
 {external_client_library, {erlfdb_network_options, compile_time_external_client_library, []}},

 % `client_threads_per_version`:
 % Number of threads to create per dynamic library. This is the
 % value to tweak in order to scale the number of client threads
 % horizontally. This value is used as the permanent value
 % for the lifetime of the BEAM VM.
 %
 % When the value is 1, only the local client is used. When the
 % value is N > 1, then N external client threads are used.
 %
 % You may also provide an `{M, F, A}` tuple. If you do, the
 % function is executed at the time the `erlfdb_nif` module is
 % loaded. The return must be a positive integer.
 %
 % Note: For each thread, libfdb_c will create a tcp
 % connection for each coordinator in the cluster file.
 {client_threads_per_version, 1}
]}
]}
].
When the erlfdb NIF is loaded, any network_options defined by your config are merged into the defaults, so that yours always take precedence. The final set of resolved network_options is stored in env var network_options_resolved.
application:get_env(erlfdb, network_options_resolved).

 How to choose the correct value for client_threads_per_version

The ideal approach is to choose an integer value that is sufficient for your workload, and no more. It's not recommended to choose a value that is larger than the number of online schedulers.
Instead of choosing a specific value, you may wish for erlfdb to scale dynamically along with your scaling of the Erlang VM itself. Consider the following MFA-tuple choices.
	{erlang, system_info, [schedulers_online]}
	{erlang, system_info, [dirty_io_schedulers]}

Info
These suggestions are made simply as a convenience for automatic scaling, and none of these choices will associate erlfdb external client threads with Erlang's schdeulers or dirty_io_schedulers. External client threads will always be created in addition to and not replacements for any of the Erlang VM's OS threads.

 Making use of External Client Threads

 Distributing your workfload

So you've configured the client to create multiple external client threads. Now, you need to make sure your application distributes the workload among these threads.
The function erlfdb:open/2 provides your application with a convenient way to distribute your workload. Whenever you need a database object from which to create a transaction, call open to retrieve one very quickly (via persistent_term storage). With the default work distribution strategy (scheduler_id), erlfdb will create and keep track of N database objects where N is the number of schedulers on your system. Each of these database objects will automatically be assigned to one of the external client threads in libfdb_c.
Info
This strategy does not claim that a particular item of work will remain on an Erlang scheduler -- only that the scheduler_id itself is helpful in distributing work in a roughly even fashion.

It may be beneficial to create all database objects during startup. The function erlfdb:open_all/2 is provided for this purpose.

 Thread lifecycle

When client_threads_per_version == 1,
	enif_thread_create is called exactly once. This is the 'local client network thread' a.k.a. the libfdb_c Main Thread. This thread is given the name fdb:network_thread.
	Shutdown: The erlfdb NIF uses enif callbacks to ensure the event loop is stopped and the thread is joined before the VM is terminated.

When client_threads_per_version > 1, the behavior described above is true; additionally:
	libfdb_c creates N copies of the dynamic library into temp files on the filesystem. Each copy will house 1 of the external threads.
	N threads are created by libfdb_c. These threads are not created with enif_thread_create, because the creation is contained in logic internal to libfdb_c. Each of these threads is given the name fdb-<vsn>-<index>. If the thread name is longer than 15 chars, it's instead given the name fdb-<vsn>. If this is longer than 15 chars, it's given the name fdb-external. On a Linux system, these threads are visible with top -H -p $beam_pid.
	Each database object (via erlfdb:create_database/1) is linked to a client thread at the time of creation. The threads are distributed in a round-robin fashion. Therefore, to make use of N client threads, you must have N database objects.
	Shutdown: Each external thread is waited upon immediately after the local client network event loop returns. Thus, you may consider the external client threads as "children" of the local client network thread created by enif_thread_create. This relationship is necessary and sufficient for the Erlang VM and its operator to maintain control over the OS threads on the system.

 Tracing

To enable client tracing (C API Option FDB_NET_OPTION_TRACE_ENABLE), set the following:
[
 {erlfdb, [
 {network_options, [
 % `trace_enable`:
 % A directory on the filesystem where trace files will be written.
 {trace_enable, <<"/path/to/existing/directory">>},

 % `trace_format`:
 % The format of the trace files. Supported formats are `<<"xml">>` (the default) and `<<"json">>`.
 {trace_format, <<"xml">>}
]}
]}
].

 Past Versions 0.0 - 0.2

In versions 0.0.x - 0.2.x, the env var network_options defaults to []. The behavior of the erlfdb NIF with respect to thread creation is equivalent to having client_threads_per_version == 1, as decribed above.
In these erlfdb versions, the client_threads_per_version env var is not supported, so horizontal scaling of a single client is not possible. Instead, consider starting multiple Erlang VMs in order to distribute your workload, or upgrade to erlfdb >= 0.3.

 References

A short list of suggested reading in the FoundationDB source that will help the reader understand the details of the client threading model.
	fdbclient/MultiVersionTransaction.actor.cpp: implements the management of the local and external clients.
	bindings/c/fdb_c.cpp: defines MultiVersionApi as the default implementation
	fdbclient/NativeAPI.actor.cpp: implements the client (local or external). Specifically, maintains the reference to the thread.
	flow/Net2.actor.cpp: implements the event loop

KvQueue - A distributed durable queue with erlfdb

Mix.install([
 {:erlfdb, "~> 0.3"}
])

 Introduction

The FoundationDB Layer Concept means that our query execution is detached from our storage servers, allowing a database operator to dynamically scale compute nodes according to current query workloads. However, there is also an advantage for application developers: when combined with transactions, a Layer allows us to create powerful data structures as building blocks for an application.
In this tutorial, we'll create a Layer that is a performant durable queue. Then, we'll consume items from this queue using a gen_server.
Our queue will prioritize throughput of the producer. This is a common design choice for a durable queue because it ensures our producer can quickly move on to other operations in our application, without costly locks or conflicts to slow it down.
With transactional isolation guarantees from FDB, we can create as many parallel and distributed producers and consumers as we like; a given message will always be consumed exactly once.

 Start a sandbox

First, we'll create a sandbox database that we can freely write to and delete from. erlfdb_sandbox starts a single fdbserver process and writes data to a temporary directory. It may take a few seconds the first time you execute it.
Db = erlfdb_sandbox:open().

 Defining the Queue

We'll define a standard FIFO queue with push and pop operations. Our main challenge is laying out the queue onto FDB key-value pairs. It's up to us to design a keyspace that will fit our design specifications. So, let's discuss it now.

 Key-value binary format

Our keyspace will use the FDB Tuple Layer for constructing the key format. We'll document our keys and values with this simple notation:
{<some-tuple-key>} => <some-binary-value>

 Queue name

We're ready to talk keys! First, we'll hard-code the name of our queue to <<"q">>. This makes our queue a singleton in the database, which keeps our code concise for this tutorial. The data structures you create should allow a developer to specify certain details like the name to avoid key conflicts.
All our key-values will be of the form:
{q, ...} => <some-value>

 Queue length

Next, in order to keep track of the length of the queue, we'll keep track of counter values called <<"npush">> and <<"npop">>, which are the total number of pushes and pops executed,
respectively. Splitting the counters is an important part of how the consumer works, which we'll get to later.
{q, npush} => <push-count>
{q, npop} => <pop-count>
At any given time, the length of the queue is equal to <push-count> - <pop-count>. We'll have to make sure these counters are safely managed so that there are no race conditions. (We don't want negative values!)

 Queue items

Finally, keys for items in the queue include <<"val">> in the key:
{q, val, <vs>} => <item>
where <vs> is a placeholder for a versionstamp, and <item> is the content of item stored in the queue.
A Versionstamp is a unique monotinically increasing integer generated by FDB at commit-time. We have to use special client-side functions that operate on "incomplete versionstamps" because the client cannot know what the value of the versionstamp is before the commit.
Using a versionstamp for pushing items onto the queue ensures that there is no key contention for parallel pushes, which greatly increases producer throughput.

 Code time!

Once you have a good grasp of the keyspace, writing the code becomes pretty straightforward!
-module(kv_queue).
-export([
 delete/1,
 push/2,
 consume_k/2,
 pop/1,
 pop_k/2,
 len/1,
 queue/1,
 watch/1
]).

-define(NAME, <<"q">>).
-define(VAL, <<"val">>).
-define(NPOP, <<"npop">>).
-define(NPUSH, <<"npush">>).

% This is known as an "incomplete versionstamp"
-define(VS(Tx), {
 versionstamp,
 16#ffffffffffffffff,
 16#ffff,
 erlfdb:get_next_tx_id(Tx)
 }).

delete(Tx) ->
 {S, E} = erlfdb_tuple:range({?NAME}),
 erlfdb:clear_range(Tx, S, E).

push(Tx, Val) ->
 Key = erlfdb_tuple:pack_vs({?NAME, ?VAL, ?VS(Tx)}),
 erlfdb:set_versionstamped_key(Tx, Key, Val),
 erlfdb:add(Tx, erlfdb_tuple:pack({?NAME, ?NPUSH}), 1).

pop(Tx) ->
 case pop_k(Tx, 1) of
 {_, [Val]} -> {ok, Val};
 {_, []} -> error
 end.

pop_k(Tx, K) ->
 {QS, QE} = erlfdb_tuple:range({?NAME, ?VAL}),
 case erlfdb:get_range(Tx, QS, QE, [{limit, K}, {wait, true}]) of
 [] ->
 {{error, empty}, []};
 KVs=[{S, _}|_] ->
 N = length(KVs),
 {E, _} = lists:last(KVs),
 erlfdb:clear_range(Tx, S, erlfdb_key:strinc(E)),
 erlfdb:add(Tx, erlfdb_tuple:pack({?NAME, ?NPOP}), N),

 Status = if N == K -> ok; true -> {error, empty} end,
 {Status, [V || {_, V} <- KVs]}
 end.

len(Tx) ->
 F = [
 erlfdb:get(Tx, erlfdb_tuple:pack({?NAME, ?NPUSH})),
 erlfdb:get(Tx, erlfdb_tuple:pack({?NAME, ?NPOP}))
],
 [Npush, Npop] = [decode_as_int(X, 0) || X <- erlfdb:wait_for_all(F)],
 Npush - Npop.

queue(Tx) ->
 {QS, QE} = erlfdb_tuple:range({?NAME, ?VAL}),
 KVs = erlfdb:get_range(Tx, QS, QE, [{wait, true}]),
 [V || {_, V} <- KVs].

decode_as_int(not_found, Default) -> Default;
decode_as_int(Val, _Default) -> binary:decode_unsigned(Val, little).

consume_k(Tx, K) ->
 case pop_k(Tx, K) of
 {ok, Vals} ->
 {Vals, undefined};
 {{error, empty}, Vals} ->
 {Vals, watch(Tx)}
 end.

watch(Tx) ->
 erlfdb:watch(Tx, erlfdb_tuple:pack({?NAME, ?NPUSH})).

Functions push/2 and pop_k/2 are the two most important functions to focus on for now.
We'll discuss consume_k/2, and watch/1 later, when we define our consumer.

 Queue push

When we push an item onto the queue, we want to make sure that there is no key contention. So,
	We insert the item into the val keyspace with an incomplete versionstamp in the key. This ensures that n parallel transactions will get n unique versionstamps and insert into the queue in the order of the serialized commits, with no key conflicts.
	We do an atomic add on the npush key. FDB atomic operations are CRDTs. That is, FDB can resolve parallel atomic operations without key conflicts. An interesting consequence of this is that our client does not know the value of the counter when incrementing it.

 Queue pop

When we pop k items from the front of the queue, we want to make sure we safely delete them in the same transaction.
	A get_range with limit will read up to k items in the range and then stop.
	When values are found, we use clear_range carefully to only touch those we've retrieved, and increment the npop counter accordingly.
	Smart return values will help our consumer know when to keep consuming and when to wait.

 Try it out!

We can push any item represented by a binary() onto the queue. If you execute this multiple times, a <<"hello">> item will be added each time.
erlfdb:transactional(Db, fun(Tx) -> kv_queue:push(Tx, <<"hello">>) end).
We can view the entire queue at once. This is not how we will be consuming items, but it's nice to see them all at the same time.
erlfdb:transactional(Db, fun kv_queue:queue/1).
We can pop a single item from the front of the queue. If you execute this until the queue is empty, you'll receive error as the response. That just means that the queue is empty.
erlfdb:transactional(Db, fun kv_queue:pop/1).
If you've emptied the queue, the length will be 0. Feel free to go back and add some more items.
erlfdb:transactional(Db, fun kv_queue:len/1).

 Defining the Consumer

Our consumer is a gen_server. We'll start any number of them, and each one will monitor the queue for items. There is no coordination between consumers. They will each try to empty the queue as quickly as possible, and then wait for a signal to start once again.
The consumer will be configurable to consume K items from a single transaction. Increasing K increases consumer throughput quite dramatically.
Note: consumers will have lots of key conflicts with each other because they are all vying for the items at the front of the queue. Other clever optimizations can be done to reduce conflicts, but we're skipping that for now.
-module(kv_consumer).
-export([
 start_link/1,
 init/1,
 handle_cast/2,
 handle_call/3,
 handle_info/2
]).

-behaviour(gen_server).

start_link(InitArgs) ->
 gen_server:start_link(?MODULE, InitArgs, []).

init([Db, K]) ->
 gen_server:cast(self(), consume),
 {ok, #{db => Db, k => K, watch => undefined}}.

handle_cast(consume, S) ->
 #{db := Db, k := K} = S,
 {Items, Watch} =
 erlfdb:transactional(Db,
 fun(Tx) -> kv_queue:consume_k(Tx, K) end
),
 [log("Consumed items ~p~n", [Items]) || Items =/= []],
 case Watch of
 undefined ->
 gen_server:cast(self(), consume);
 _ ->
 log("Waiting for push~n", [])
 end,
 {noreply, S#{watch => Watch}}.

handle_call(_Call, _From, _S) ->
 erlang:error(function_clause).

handle_info({Ref, ready}, S=#{watch := {erlfdb_future, Ref, _}}) ->
 gen_server:cast(self(), consume),
 {noreply, S#{watch => undefined}};
handle_info(_Info, S) ->
 {noreply, S}.

log(F, A) ->
 io:format("~p: " ++ F, [self()|A]).

 Watch for pushes

Up above we skipped over the watch/2 function. Here it shines. Via consume_k/2, when the queue is empty, the consumer receives a "watch" on the npush counter. Whenever the npush key's value is changed, FDB resolves all watches on that key: each process that created a watch receives a {reference(), ready} message on its message queue.
Remember earlier we decided to track the queue length with two counters instead of one? This is why: we don't want our consumers to be signaled by other consumers; we only want to know when new items are available. By splitting the queue length into npush and npop, we allow watch creation only on npush.
The consumer uses the watch to enter an idle state while the queue is empty, so we don't have to continuously poll for the existence of queue items.
In summary, consume_k/2 will attempt to consume K items from the front of the queue. If any number less than K is found, then a watch is created, and the consumer goes into an idle state.

 Processing queue items

It's critically important to do all processing of queue items outside of the FDB transaction. For our simple case, we're just logging the items, but notice that our log is not within the erlfdb:transactional/2 function. Because a transaction function can execute multiple times for a single commit (e.g. when there are key conflicts), side-effects inside transactions are quite dangerous.

 Supervisor

This is a standard simple_one_for_one supervisor. Nothing special about it. We're defining it here to help us keep track of all the consumers we're about to start.
-module(kv_consumer_sup).
-behaviour(supervisor).

-export([start_link/0, start_child/2, terminate_all_children/0, init/1]).

start_link() -> supervisor:start_link({local, ?MODULE}, ?MODULE, []).

start_child(Db, K) ->
 supervisor:start_child(?MODULE, [[Db, K]]).

terminate_all_children() ->
 [supervisor:terminate_child(?MODULE, X)
 || {_, X, _, _} <- supervisor:which_children(?MODULE)].

init([]) ->
 SupFlags = #{strategy => simple_one_for_one},
 ChildSpec = #{
 id => kv_consumer,
 start => {kv_consumer, start_link, []}
 },
 {ok, {SupFlags, [ChildSpec]}}.

Let's get our supervisor running.
kv_consumer_sup:start_link().
Now, we can start any number of consumers we want. You can even create them with different K values if you'd like. If your queue has any items in it, the consumer will process them immediately once it's started.
kv_consumer_sup:start_child(Db, 1).

 Defining the Producer

Finally, we need a bit of code that will throw items onto the queue with reckless abandon. Good thing we have BEAM.
When you execute this, you should expect the producer to finish before the consumers, assuming you've kept the consumers' K value in the single digits. Either way, the producer should be very quick because there are no key conflicts.
You'll see the log output from each consumer in the meantime, and a "Waiting for push" log when each goes idle.
PushFun = fun(X) ->
 erlfdb:transactional(Db, fun(Tx) -> kv_queue:push(Tx, integer_to_binary(X)) end)
end,

Seq = lists:seq(1, 1000),

timer:tc(fun() ->
 Self = self(),
 [spawn(fun() -> PushFun(X), Self ! ok end) || X <- Seq],
 (fun
 Recv(0) -> ok;
 Recv(N) -> receive ok -> Recv(N-1) end
 end)(length(Seq))
 end).

 Cleanup (optional)

To cleanup, you can stop the supervisor and delete the queue.
catch(gen_server:stop(whereis(kv_consumer_sup))),
erlfdb:transactional(Db, fun kv_queue:delete/1).

Tutorial - Elixir

Mix.install([
 {:erlfdb, "~> 0.3"}
])

 Class Scheduling

This tutorial provides a walkthrough of designing and building a simple application in Elixir using FoundationDB. In this tutorial, we use a few simple data modeling techniques. For a more in-depth discussion of data modeling in FoundationDB, see Data Modeling.
The tutorial is a copy of the official Class Scheduling Tutorial tailored for Elixir.
erlfdb requires FoundationDB to be installed on your system. If you received an error on the Mix.install setup, please make sure you have both foundationdb-server and foundationdb-clients packages installed on your system. Also, ensure that your Livebook PATH environment variable includes the directory containing the fdbcli executable.

The concepts in this tutorial are applicable to all the languages officially supported by FoundationDB and for Erlang and Elixir via :erlfdb. If you prefer, you can see a version of this tutorial in:
	Python
	Ruby
	Java
	Go

 First Steps

Let's begin with "Hello world."
If you have not yet installed FoundationDB, see Getting Started on macOS or Getting Started on Linux.
You can execute the commands in this tutorial within iex or from Livebook.
The Python tutorial indicates that you must select the API version. Because the erlfdb library is compiled on your system, the library automatically detects the correct API version and applies it behind the scenes, so you don't have to.
First, we open a FoundationDB database. :erlfdb_sandbox is provided to start a single fdbserver process with data stored in a temporary directory.
db = :erlfdb_sandbox.open()
If you wish to connect to a real database, you must use :erlfdb.open/0 to connect to the default cluster file or :erlfdb.open/1.
Connect to the default cluster file
db = :erlfdb.open()

Connect to a database specified in the file
db = :erlfdb.open("/etc/foundationdb/fdb.cluster")
We are ready to use the database. First, let's simply write a key-value pair:
:erlfdb.set(db, "hello", "world")
When this command returns without exception, the modification is durably stored in FoundationDB! Under the covers, this function creates a transation with a single modification. We'll see later how to do multiple operations in a single transaction. For now, let's read back the data:
IO.puts("hello " <> :erlfdb.get(db, "hello"))
If this is all working, it looks like we are ready to start building a real application. For reference, here's the full code for "hello world":
In mix.exs deps, add: `{:erlfdb, "~> 0.3"}`
db = :erlfdb.open()
:erlfdb.set(db, "hello", "world")
IO.puts("hello " <> :erlfdb.get(db, "hello"))

 Class scheduling application

Let’s say we’ve been asked to build a class scheduling system for students and administrators. We’ll walk through the design and implementation of this application. Instead of typing everything in as you follow along, consider executing this file in Livebook!

 Requirements

We’ll need to let users list available classes and track which students have signed up for which classes. Here’s a first cut at the functions we’ll need to implement:
available_classes() # returns list of classes
signup(student_id, class) # signs up a student for a class
drop(student_id, class) # drops a student from a class

 Data model

First, we need to design a data model. A data model is just a method for storing our application data using keys and values in FoundationDB. We seem to have two main types of data: (1) a list of classes and (2) a record of which students will attend which classes. Let’s keep attending data like this:
{"attends", student, class} = ""
We’ll just store the key with a blank value to indicate that a student is signed up for a particular class. For this application, we’re going to think about a key-value pair’s key as a tuple. Encoding a tuple of data elements into a key is a very common pattern for an ordered key-value store.
We’ll keep data about classes like this:
{"class", class} = seats_available
Similarly, each such key will represent an available class. We’ll use seats_available to record the number of seats available.

 Directories and Subspaces

FoundationDB includes a few tools that make it easy to model data using this approach. Let’s begin by opening a directory in the database:
root = :erlfdb_directory.root()
scheduling = :erlfdb_directory.create_or_open(db, root, ["scheduling"])
The create_or_open/3 function returns a map that includes a subspace where we’ll store our application data. Each subspace has a fixed prefix it uses when defining keys. The prefix corresponds to the first element of a tuple. We decided that we wanted "attends" and "class" as our prefixes, so we’ll create new subspaces for them within the scheduling subspace:
course =
 scheduling
 |> :erlfdb_directory.get_subspace()
 |> :erlfdb_subspace.create({"class"})

attends =
 scheduling
 |> :erlfdb_directory.get_subspace()
 |> :erlfdb_subspace.create({"attends"})
Subspaces have a pack/2 function for defining keys. To store the records for our data model, we can use :erlfdb_subspace.pack(attends, {student, class}) and :erlfdb_subspace.pack(course, {class}).

 Transactions

We’re going to rely on the powerful guarantees of transactions to help keep all of our modifications straight, so let’s look at how erlfdb lets you write a transactional function. Let’s write the very simple add_class function we will use to populate the database’s class list:
defmodule Scheduling1 do
 @total_seats_available 100

 def add_class(db_or_tr, course, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 key = :erlfdb_subspace.pack(course, {class})
 value = :erlfdb_tuple.pack({@total_seats_available})
 :erlfdb.set(tr, key, value)
 end)
 end
end
In the add_class/3 function, the argument tr represents the transactional context that the function executes within. Nearly all :erlfdb functions accept this as the first argument.
For a FoundationDB database db:
Scheduling1.add_class(db, course, "class1")
is equivalent to something like:
defmodule ManualAddClassTransaction do

 def commit(db, course, class) do
 tr = :erlfdb.create_transaction(db)
 commit(tr, course, class)
 end

 def commit(tr, course, class) do
 try do
 Scheduling.add_class(tr, course, class)

 tr
 |> :erlfdb.commit()
 |> :erlfdb.wait()
 catch
 :error, {:erlfdb_error, code} ->

 tr
 |> :erlfdb.on_error(code)
 |> :erlfdb.wait()

 commit(tr, course, class)
 end
 end

end

If instead you pass a transaction for the db_or_tx argument, the transaction will be used directly, and it is assumed that the caller implements appropriate retry logic for errors. This permits transactionally decorated functions to be composed into larger transactions.
For example:
:erlfdb.transactional(db, fn tr ->
 Scheduling.add_class(tr, course, "class1")
 # ... and more
end)
Note that by default, the operation will be retried an infinite number of times and the transaction will never time out. It is therefore recommended that the client choose a default timeout value that is suitable for their application. This can be set either at the transaction level using the timeout transaction option or at the database level with the timeout database option. For example, one can set a one minute timeout on each transaction by calling:
60,000 ms = 1 minute
:erlfdb.set_option(db, :timeout, <<60000::little-integer-size(64)>>)

 Making some sample classes

Let's make some sample classes and put them in the class_names variable.
Generate 1,620 classes like '9:00 chem for dummies'
levels = ["intro", "for dummies", "remedial", "101", "201", "301", "mastery", "lab", "seminar"]
types = ["chem", "bio", "cs", "geometry", "calc", "alg", "film", "music", "art", "dance"]
times = for h <- 2..20, do: "#{h}:00"
class_names = for i <- times, t <- types, l <- levels, do: "#{i} #{t} #{l}"

 Initializing the database

We initialize the database with our class list:
defmodule Scheduling2 do
 @total_seats_available 100

 def init(db_or_tr, scheduling, course, class_names) do
 {range_start, range_end} = :erlfdb_directory.range(scheduling) |> dbg()

 :erlfdb.transactional(db_or_tr, fn tr ->
 # Clear the directory
 :erlfdb.clear_range(tr, range_start, range_end)

 for class_name <- class_names,
 do: add_class(tr, course, class_name)
 end)
 end

 # Same as Scheduling1
 def add_class(db_or_tr, course, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 key = :erlfdb_subspace.pack(course, {class})
 value = :erlfdb_tuple.pack({@total_seats_available})
 :erlfdb.set(tr, key, value)
 end)
 end
end
Scheduling2.init(db, scheduling, course, class_names)

 How FoundationDB Actually Stores Your Data

You may be wondering what these keys and values actually look like. Let's take a brief moment to inspect the encodings of the keys. To use :erlfdb you are not required to know these encodings, so feel free to come back to this section later on if you'd like.
Internally, the data stored from the code above would look like:
\x15)\x01class\x00\x019:00 music seminar\x00
\xfe\x01\xfe\x00\x14\x02scheduling\x00
When we created our directory with :erlfdb_directory.create_or_open(db, root, ["scheduling"]), FoundationDB assigned the compact two-byte identifier \x15) (or <<21, 41>> in Elixir binary syntax) to represent the scheduling directory in all subsequent entries. You can see exactly what prefix your directory received from the dbg() output in our init function - it might show something like {<<21, 41, 0>>, <<21, 41, 255>>}. This <<21, 41>> (which is \x15) in hex notation) is the prefix allocated for your scheduling directory.
This compaction makes a significant difference at scale. Storing the word "scheduling" in a million entries would use 10 million bytes just on that prefix alone, compared with 2 million bytes with a 2-byte prefix.
The next segment, \x01class\x00\x01, identifies the "class" subspace. The \x00 and \x01 bytes are chosen by the FDB Subspace Layer to ensure our keys sort correctly and can't accidentally overlap with each other. Having all class data share the same prefix also keeps it physically grouped together on disk, which is why the range reads in available_classes() are so efficient.
The second key (starting with \xfe) is FoundationDB's internal metadata that maps the compact prefix \x15) (or <<21, 41>>) back to the human-readable name "scheduling".
This is how FoundationDB translates between what we write in our code and what it stores on disk.

 Listing available classes

Before students can do anything else, they need to be able to retrieve a list of available classes from the database. Because FoundationDB sorts its data by key and therefore has efficient range-read capability, we can retrieve all of the classes in a single database call. We find this range of keys with :erlfdb_subspace.range(course):
defmodule Scheduling3 do
 # ** New **
 def available_classes(db_or_tr, course) do
 {range_start, range_end} = :erlfdb_subspace.range(course)

 :erlfdb.transactional(db_or_tr, fn tr ->
 tr
 |> :erlfdb.get_range(range_start, range_end)
 |> Stream.map(fn {encoded_class, _v} ->
 {class} = :erlfdb_subspace.unpack(course, encoded_class)
 class
 end)
 |> Enum.to_list()
 end)
 end

 def init(_db_or_tr, _scheduling, _course, _class_names) do
 # Omitted for this step
 end

 def add_class(_db_or_tr, _course, _c) do
 # Omitted for this step
 end
end
Scheduling3.available_classes(db, course)
The :erlfdb_subspace.range/1 function returns a 2-tuple containing binaries that represent the start and end (exclusive) of the subspace key range:
:erlfdb_subspace.range(course) #=> {<<21, 41, 1, 99, 108, 97, 115, 115, 0, 0>>, <<21, 41, 1, 99, 108, 97, 115, 115, 0, 255>>}
We retrieve all key-value pairs and unpack the key to extract the class name. The technique used here will hold all key-value pairs in system memory. :erlfdb.fold_range/5 can be used for a memory-safe reduce operation.
Note: :erlfdb.get_range/4 with the option wait: false can be used to control at what point in your transaction the wait occurs. The default is wait: true.
f = :erlfdb.get_range(tr, s, e, wait: false)
... other code ...
kvs = :erlfdb.wait(f)
Deciding when to wait is an important part of designing your FDB transactions and keeping good performance characteristics. :erlfdb provides other wait-related functions that are worth exploring.

 Signing up for a class and Dropping a class

We finally get to the crucial function. A student has decided on a class (by name) and wants to sign up. The signup function will take a student and a class:
defmodule Scheduling4 do
 # ** New **
 def signup(db_or_tr, attends, student, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 rec = :erlfdb_subspace.pack(attends, {student, class})
 :erlfdb.set(tr, rec, "")
 end)
 end

 # ** New **
 def drop(db_or_tr, attends, student, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 rec = :erlfdb_subspace.pack(attends, {student, class})
 :erlfdb.clear(tr, rec)
 end)
 end

 def available_classes(_db_or_tr, _course) do
 # Omitted for this step
 end

 def init(_db_or_tr, _scheduling, _course, _class_names) do
 # Omitted for this step
 end

 def add_class(_db_or_tr, _course, _c) do
 # Omitted for this step
 end
end
For signup, we simply insert the appropriate record (with a blank value).
For drop, we need to be able to delete a record from the database. We do this with the clear/2 function.
Scheduling4.signup(db, attends, "Alice", "10:00 bio 301")
Scheduling4.drop(db, attends, "Alice", "10:00 bio 301")

 Done?

We report back to the project leader that our application is done—students can sign up for, drop, and list classes. Unfortunately, we learn that a new problem has been discovered: popular classes are being over-subscribed. Our application now needs to enforce the class size constraint as students add and drop classes.

 Seats are limited!

Let’s go back to the data model. Remember that we stored the number of seats in the class in the value of the key-value entry in the class list. Let’s refine that a bit to track the remaining number of seats in the class. The initialization can work the same way. (In our example, all classes initially have 100 seats), but the available_classes, signup, and drop functions are going to have to change. We're going to define the whole final module. New sections of code are marked with comments. Below the module definition, we'll have some additional discussion about the changes.
defmodule Scheduling do
 @total_seats_available 100

 def signup(db_or_tr, attends, course, student, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 rec = :erlfdb_subspace.pack(attends, {student, class})

 # ** New **
 with :not_found <- :erlfdb.wait(:erlfdb.get(tr, rec)) do
 {seats_left} =
 tr
 |> :erlfdb.get(:erlfdb_subspace.pack(course, {class}))
 |> :erlfdb.wait()
 |> :erlfdb_tuple.unpack()

 if seats_left == 0, do: raise("No remaining seats")

 :erlfdb.set(
 tr,
 :erlfdb_subspace.pack(course, {class}),
 :erlfdb_tuple.pack({seats_left - 1})
)

 :erlfdb.set(tr, rec, "")
 else
 _ ->
 # already signed up
 :ok
 end
 end)
 end

 def drop(db_or_tr, attends, course, student, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 rec = :erlfdb_subspace.pack(attends, {student, class})

 # ** New **
 with :not_found <- :erlfdb.wait(:erlfdb.get(tr, rec)) do
 # not taking this class
 :ok
 else
 _ ->
 {seats_left} = :erlfdb_tuple.unpack(:erlfdb_subspace.pack(course, {class}))

 :erlfdb.set(
 tr,
 :erlfdb_subspace.pack(course, {class}),
 :erlfdb_tuple.pack({seats_left + 1})
)

 :erlfdb.clear(tr, rec)
 end
 end)
 end

 def available_classes(db_or_tr, course) do
 {range_start, range_end} = :erlfdb_subspace.range(course)

 :erlfdb.transactional(db_or_tr, fn tr ->
 # ** New **
 tr
 |> :erlfdb.get_range(range_start, range_end)
 |> Stream.map(fn {packed_class, packed_seats} ->
 {class} = :erlfdb_subspace.unpack(course, packed_class)
 {availability} = :erlfdb_tuple.unpack(packed_seats)
 {class, availability}
 end)
 |> Stream.filter(fn {_class, availability} -> availability > 0 end)
 |> Stream.map(fn {class, _availability} -> class end)
 |> Enum.to_list()
 end)
 end

 def init(db_or_tr, scheduling, course, class_names) do
 {range_start, range_end} = :erlfdb_directory.range(scheduling)

 :erlfdb.transactional(db_or_tr, fn tr ->
 # Clear the directory
 :erlfdb.clear_range(tr, range_start, range_end)

 for class_name <- class_names,
 do: add_class(tr, course, class_name)
 end)
 end

 def add_class(db_or_tr, course, class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 key = :erlfdb_subspace.pack(course, {class})
 value = :erlfdb_tuple.pack({@total_seats_available})
 :erlfdb.set(tr, key, value)
 end)
 end
end
	available_classes: This is easy – we simply add a condition to check that the value is non-zero.

	signup: We now have to check that we aren’t already signed up, since we don’t want a double sign up to decrease the number of seats twice. Then we look up how many seats are left to make sure there is a seat remaining so we don’t push the counter into the negative. If there is a seat remaining, we decrement the counter.

	drop: Once again we check to see if the student is signed up and if not, we can just return as we don’t want to incorrectly increase the number of seats. We then adjust the number of seats by one by taking the current value, incrementing it by one, and then storing back.

	Also notice that signup and drop now require both the attends and course subspaces, whereas previously they only required attends.

Let's try it out. We choose a course for 100 students named "Bob", and sign them all up. Then, when Charlie attemps to signup, we get the exception.
popular_class =
 Scheduling.available_classes(db, course)
 |> hd()
the_bobs = for i <- 1..100, do: "Bob #{i}"
Enum.each(
 the_bobs,
 &Scheduling.signup(db, attends, course, &1, popular_class)
)
RuntimeError: "No remaining seats" is expected
Scheduling.signup(db, attends, course, "Charlie", popular_class)

 Concurrency and consistency

The signup function is starting to get a bit complex; it now reads and writes a few different key-value pairs in the database. One of the tricky issues in this situation is what happens as multiple clients/students read and modify the database at the same time. Couldn’t two students both see one remaining seat and sign up at the same time?
These are tricky issues without simple answers—unless you have transactions! Because these functions are defined as FoundationDB transactions, we can have a simple answer: Each transactional function behaves as if it is the only one modifying the database. There is no way for a transaction to ‘see’ another transaction change the database, and each transaction ensures that either all of its modifications occur or none of them do.
Looking deeper, it is, of course, possible for two transactions to conflict. For example, if two people both see a class with one seat and sign up at the same time, FoundationDB must allow only one to succeed. This causes one of the transactions to fail to commit (which can also be caused by network outages, crashes, etc.). To ensure correct operation, applications need to handle this situation, usually via retrying the transaction. In this case, the conflicting transaction will be retried automatically by the :erlfdb.transactional/2 function and will eventually lead to the correct result, a "No remaining seats" exception.
Let's try it out with some aggressive concurrency:
next_popular_class =
 Scheduling.available_classes(db, course)
 |> hd()
the_dans = for i <- 1..100, do: "Dan #{i}"
the_dans
|> Task.async_stream(&Scheduling.signup(db, attends, course, &1, next_popular_class))
|> Stream.run()
RuntimeError: "No remaining seats" is expected
Scheduling.signup(db, attends, course, "Charlie", next_popular_class)
As expected, the next_popular_class is no longer returned by available_classes.
Scheduling.available_classes(db, course)
|> hd()

 Idempotence

Occasionally, a transaction might be retried even after it succeeds (for example, if the client loses contact with the cluster at just the wrong moment). This can cause problems if transactions are not written to be idempotent, i.e. to have the same effect if committed twice as if committed once. There are generic design patterns for making any transaction idempotent, but many transactions are naturally idempotent. For example, all of the transactions in this tutorial are idempotent.

 More features?!

Of course, as soon as our new version of the system goes live, we hear of a trick that certain students are using. They are signing up for all classes immediately, and only later dropping those that they don’t want to take. This has led to an unusable system, and we have been asked to fix it. We decide to limit students to five classes:
 def signup(db_or_tr, attends, course, student, class) do
 # ... snipped ...

 if seats_left == 0, do:
 raise "No remaining seats"

 {sk, ek} = :erlfdb_subspace.range(attends, {student})
 if length(:erlfdb.get_range(tr, sk, ek)) == 5, do:
 raise "Too many classes"

 # ... snipped ...
 end

 end)
 end
Fortunately, we decided on a data model that keeps all of the attending records for a single student together. With this approach, we can use a single range read in the attends subspace to retrieve all the classes that a student is signed up for. We simply throw an exception if the number of classes has reached the limit of five.
Feel free to add this new logic to the Scheduling module above.

 Composing transactions

Oh, just one last feature, we’re told. We have students that are trying to switch from one popular class to another. By the time they drop one class to free up a slot for themselves, the open slot in the other class is gone. By the time they see this and try to re-add their old class, that slot is gone too! So, can we make it so that a student can switch from one class to another without this worry?
Fortunately, we have FoundationDB, and this sounds an awful lot like the transactional property of atomicity—the all-or-nothing behavior that we already rely on. All we need to do is to compose the drop and signup functions into a new switch function. This makes the switch function exceptionally easy:
def switch(db_or_tr, student, old_class, new_class) do
 :erlfdb.transactional(db_or_tr, fn tr ->
 drop(tr, student, old_class)
 singup(tr, student, new_class)
 end)
end
The simplicity of this implementation belies the sophistication of what FoundationDB is taking care of for us.
By dropping the old class and signing up for the new one inside a single transaction, we ensure that either both steps happen, or that neither happens. The first notable thing about the switch function is that it calls :erlfdb.transactional/2 decorated, but it also calls the functions signup and drop, which each call :erlfdb.transactional/2 themselves. Because these functions can accept either a database or an existing transaction as the tr argument, the switch function can be called with a database by a simple client, and a new transaction will be automatically created. However, once this transaction is created and passed in as tr, the calls to drop and signup both share the same tr. This ensures that they see each other’s modifications to the database, and all of the changes that both of them make in sequence are made transactionally when the switch function returns. This compositional capability is very powerful.
Also note that, if an exception is raised, for example, in signup, the exception is not caught by switch and so will be thrown to the calling function. In this case, the transaction object is destroyed, automatically rolling back all database modifications, leaving the database completely unchanged by the half-executed function.

 Are we done?

Yep, we’re done and ready to deploy. If you want to see this entire application from the Python tutorial in one place plus some multithreaded testing code to simulate concurrency, look at the Appendix: SchedulingTutorial.py.

 Deploying and scaling

Since we store all state for this application in FoundationDB, deploying and scaling this solution up is impressively painless. Just run a web server, the UI, this back end, and point the whole thing at FoundationDB. We can run as many computers with this setup as we want, and they can all hit the database at the same time because of the transactional integrity of FoundationDB. Also, since all of the state in the system is stored in the database, any of these computers can fail without any lasting consequences.

 Next steps

	See Data Modeling for guidance on using tuple and subspaces to enable effective storage and retrieval of data.
	See Developer Guide for general guidance on development using FoundationDB.
	See the API References for detailed API documentation.
	See the KV Queue Livebook for a sample implemenation of a queue data structure built using :erlfdb

 Reminder

This tutorial is a copy of FDB | Class Scheduling, hosted on the official FoundationDB website.

erlfdb

The primary API for interacting with a FoundationDB database.
Please refer to the FoundationDB C API documentation
for the full specification of the functions we use. In this module documentation,
we won't duplicate all the content from the C API docs. Instead, we'll point out any differences
where relevant, and provide usage examples.
You will usually be interacting with erlfdb functions in the proximity of an
FDB Transaction.
This example shows a basic transaction. See transactional/2 for more.

 Erlang

% Writes to <<"foo">> if it doesn't exist, and keeps track of the number of times we do so.
1> Db = erlfdb:open().
2> erlfdb:transactional(Db, fun(Tx) ->
.. Future = erlfdb:get(Tx, <<"foo">>),
.. case erlfdb:wait(Future) of
.. not_found ->
.. erlfdb:add(Tx, <<"count">>, 1),
.. erlfdb:set(Tx, <<"foo">>, <<"bar">>);
.. _Val ->
.. ok
.. end
.. end).

 Elixir

Writes to "foo" if it doesn't exist, and keeps track of the number of times we do so.
iex> db = :erlfdb.open()
iex> :erlfdb.transactional(db, fn tx ->
...>
...> val = tx
...> |> :erlfdb.get("foo")
...> |> :erlfdb.wait()
...>
...> case val do
...> :not_found ->
...> :erlfdb.add(tx, "count", 1)
...> :erlfdb.set(tx, "foo", "bar")
...> _val ->
...> :ok
...> end
...> end).

 Summary

 Types

 erlfdb_directory - erlfdb v0.3.1

erlfdb_directory

Directory Layer

 Summary

 Functions

 erlfdb_float - erlfdb v0.3.1

erlfdb_float

Advanced floating point number encoding for erlfdb_tuple.

 Summary

 Functions

 erlfdb_key - erlfdb v0.3.1

erlfdb_key

Operations on keys, either by your client Layer, or by the FoundationDB server itself.

 Summary

 Functions

 erlfdb_nif - erlfdb v0.3.1

erlfdb_nif

The NIF wrapper around all FoundationDB C API function calls.
Tip
Use erlfdb instead.

 Summary

 Types

 erlfdb_sandbox - erlfdb v0.3.1

erlfdb_sandbox

Creates a database that is to be used as a sandbox.
The sandbox database is constructed using a single
fdbserver process and some default settings are selected.

 Summary

 Functions

 erlfdb_subspace - erlfdb v0.3.1

erlfdb_subspace

Subspace Layer

 Summary

 Functions

 erlfdb_tenant_management - erlfdb v0.3.1

erlfdb_tenant_management

Managing Tenants
Warning
Tenants are currently experimental and are not recommended for use in production.

 Summary

 Functions

 erlfdb_tuple - erlfdb v0.3.1

erlfdb_tuple

Tuple Layer
Data Modeling with Tuples

 Summary

 Functions

 OEBPS/dist/epub-N2MDDSYJ.js
