

 Esc

 v0.9.0

 Table of contents

 	
 Modules

 	Esc

 	Esc.Border

 	Esc.Color

 	Esc.Color.Adaptive

 	Esc.Color.Complete

 	Esc.Filter

 	Esc.List

 	Esc.MultiSelect

 	Esc.MultiSelectTable

 	Esc.Select

 	Esc.SelectTable

 	Esc.Spinner

 	Esc.Style

 	Esc.Table

 	Esc.Theme

 	Esc.Theme.Palette

 	Esc.Theme.Store

 	Esc.Tree

Esc

Declarative terminal styling for Elixir.
Esc provides an expressive API for styling terminal output with colors,
borders, padding, margins, and text alignment.
Example
import Esc

style()
|> foreground(:red)
|> bold()
|> padding(1, 2)
|> border(:rounded)
|> render("Hello, World!")
Colors
Esc supports multiple color formats:
	Named colors: :red, :green, :blue, :cyan, :magenta, :yellow, :white, :black
	Bright variants: :bright_red, :bright_green, etc.
	ANSI 256 palette: integers 0..255
	True color: {r, g, b} tuples or hex strings like "#ff5733"

Borders
Available border styles: :normal, :rounded, :thick, :double, :hidden

 Summary

 Types

 style()

 Functions

 align(s, alignment)

 Sets horizontal text alignment.

 background(s, color)

 Sets the background color.

 blink(s)

 Enables blinking text.

 bold(s)

 Enables bold text.

 border(s, style)

 Sets the border style.

 border_background(s, color)

 Sets the border background color.

 border_bottom(s, enabled)

 Enables or disables the bottom border.

 border_foreground(s, color)

 Sets the border foreground color.

 border_left(s, enabled)

 Enables or disables the left border.

 border_right(s, enabled)

 Enables or disables the right border.

 border_top(s, enabled)

 Enables or disables the top border.

 clear_theme()

 Clears the current global theme.

 color_profile()

 Detects the color profile supported by the terminal.

 copy(s)

 Creates a copy of a style.

 custom_border(s, opts)

 Sets a custom border with user-defined characters.

 faint(s)

 Enables faint/dim text.

 foreground(s, color)

 Sets the foreground (text) color.

 get_height(text)

 Returns the height (line count) of text.

 get_theme()

 Gets the current global theme, or nil if not set.

 get_width(text)

 Returns the visible width of text, ignoring ANSI escape codes.

 has_dark_background?()

 Detects if the terminal has a dark background.

 height(s, h)

 Sets a fixed height for the output.

 inherit(s, base)

 Inherits unset properties from another style.

 inline(s, enabled)

 Enables or disables inline mode.

 italic(s)

 Enables italic text.

 join_horizontal(blocks, align \\ :top)

 Joins multiple text blocks horizontally (side by side).

 join_vertical(blocks, align \\ :left)

 Joins multiple text blocks vertically (stacked).

 margin(s, all)

 Sets margin on all sides.

 margin(s, vertical, horizontal)

 Sets vertical and horizontal margin.

 margin(s, top, right, bottom, left)

 Sets margin for each side individually.

 max_height(s, height)

 Sets the maximum height for rendered content.

 max_width(s, width)

 Sets the maximum width for rendered content.

 no_color(s, enabled)

 Enables or disables color output.

 padding(s, all)

 Sets padding on all sides.

 padding(s, vertical, horizontal)

 Sets vertical and horizontal padding.

 padding(s, top, right, bottom, left)

 Sets padding for each side individually.

 place(width, height, h_align, v_align, text)

 Places text within a box of specified dimensions.

 place_horizontal(width, align, text)

 Places text horizontally within a specified width.

 place_vertical(height, align, text)

 Places text vertically within a specified height.

 render(style, text)

 Renders text with the given style applied.

 renderer(s, render_fn)

 Sets a custom renderer function.

 reverse(s)

 Enables reverse video (swap foreground/background).

 set_theme(theme)

 Sets the global theme.

 strikethrough(s)

 Enables strikethrough text.

 style()

 Creates a new empty style.

 style(theme_name)

 Creates a new style with a theme attached.

 tab_width(s, width)

 Sets the tab width for tab-to-space conversion.

 theme_background(s, color_name)

 Sets background color from the current theme.

 theme_border_background(s, color_name)

 Sets border background color from the current theme.

 theme_border_foreground(s, color_name)

 Sets border foreground color from the current theme.

 theme_color(name)

 Gets a color from the current theme by name.

 theme_foreground(s, color_name)

 Sets foreground color from the current theme.

 themes()

 Lists all available built-in theme names.

 underline(s)

 Enables underlined text.

 unset_background(s)

 Removes the background color.

 unset_blink(s)

 Disables blink.

 unset_bold(s)

 Disables bold.

 unset_border(s)

 Removes the border.

 unset_faint(s)

 Disables faint.

 unset_foreground(s)

 Removes the foreground color.

 unset_height(s)

 Removes the height constraint.

 unset_italic(s)

 Disables italic.

 unset_margin(s)

 Removes all margin.

 unset_padding(s)

 Removes all padding.

 unset_reverse(s)

 Disables reverse.

 unset_strikethrough(s)

 Disables strikethrough.

 unset_underline(s)

 Disables underline.

 unset_width(s)

 Removes the width constraint.

 vertical_align(s, alignment)

 Sets vertical text alignment.

 width(s, w)

 Sets a fixed width for the output.

 Types

 style()

 @type style() :: Esc.Style.t()

 Functions

 align(s, alignment)

 @spec align(style(), :left | :center | :right) :: style()

Sets horizontal text alignment.

 background(s, color)

 @spec background(style(), Esc.Style.color()) :: style()

Sets the background color.
When the style has a theme attached, color atoms are resolved to theme RGB values.

 blink(s)

 @spec blink(style()) :: style()

Enables blinking text.

 bold(s)

 @spec bold(style()) :: style()

Enables bold text.

 border(s, style)

 @spec border(style(), atom()) :: style()

Sets the border style.
Available styles: :normal, :rounded, :thick, :double, :hidden

 border_background(s, color)

 @spec border_background(style(), Esc.Style.color()) :: style()

Sets the border background color.
When the style has a theme attached, color atoms are resolved to theme RGB values.

 border_bottom(s, enabled)

 @spec border_bottom(style(), boolean()) :: style()

Enables or disables the bottom border.

 border_foreground(s, color)

 @spec border_foreground(style(), Esc.Style.color()) :: style()

Sets the border foreground color.
When the style has a theme attached, color atoms are resolved to theme RGB values.

 border_left(s, enabled)

 @spec border_left(style(), boolean()) :: style()

Enables or disables the left border.

 border_right(s, enabled)

 @spec border_right(style(), boolean()) :: style()

Enables or disables the right border.

 border_top(s, enabled)

 @spec border_top(style(), boolean()) :: style()

Enables or disables the top border.

 clear_theme()

 @spec clear_theme() :: :ok

Clears the current global theme.
After clearing, get_theme/0 will return nil (or fall back to Application config).

 color_profile()

 @spec color_profile() :: :no_color | :ansi | :ansi256 | :true_color

Detects the color profile supported by the terminal.
Returns one of:
	:no_color - No color support (NO_COLOR env set or not a TTY)
	:ansi - Basic 16 colors
	:ansi256 - 256 color palette
	:true_color - 24-bit true color

 copy(s)

 @spec copy(style()) :: style()

Creates a copy of a style.
Since Elixir data is immutable, this is technically just returning
the same struct, but it's provided for API parity with Lipgloss.

 custom_border(s, opts)

 @spec custom_border(
 style(),
 keyword()
) :: style()

Sets a custom border with user-defined characters.
Options
	:top - Top edge character
	:bottom - Bottom edge character
	:left - Left edge character
	:right - Right edge character
	:top_left - Top-left corner character
	:top_right - Top-right corner character
	:bottom_left - Bottom-left corner character
	:bottom_right - Bottom-right corner character

Examples
style()
|> custom_border(
 top: "=",
 bottom: "=",
 left: "|",
 right: "|",
 top_left: "+",
 top_right: "+",
 bottom_left: "+",
 bottom_right: "+"
)
|> render("Custom box")

 faint(s)

 @spec faint(style()) :: style()

Enables faint/dim text.

 foreground(s, color)

 @spec foreground(style(), Esc.Style.color()) :: style()

Sets the foreground (text) color.
When the style has a theme attached, color atoms (:red, :bright_magenta, etc.)
are resolved to the theme's RGB values. Without a theme, atoms pass through
for standard ANSI rendering.

 get_height(text)

 @spec get_height(String.t()) :: non_neg_integer()

Returns the height (line count) of text.
Examples
iex> Esc.get_height("Single line")
1

iex> Esc.get_height("Line 1\nLine 2\nLine 3")
3

 get_theme()

 @spec get_theme() :: Esc.Theme.t() | nil

Gets the current global theme, or nil if not set.
Examples
Esc.set_theme(:nord)
Esc.get_theme()
#=> %Esc.Theme{name: :nord, ...}

 get_width(text)

 @spec get_width(String.t()) :: non_neg_integer()

Returns the visible width of text, ignoring ANSI escape codes.
For multiline text, returns the width of the widest line.
Examples
iex> Esc.get_width("Hello")
5

iex> Esc.get_width("Short\nMuch longer")
11

 has_dark_background?()

 @spec has_dark_background?() :: boolean()

Detects if the terminal has a dark background.
Returns true for dark backgrounds, false for light backgrounds.
This is a best-effort detection and may not be accurate on all terminals.

 height(s, h)

 @spec height(style(), non_neg_integer()) :: style()

Sets a fixed height for the output.

 inherit(s, base)

 @spec inherit(style(), style()) :: style()

Inherits unset properties from another style.
Only properties that are at their default values in the current style
will be inherited from the base style.
Examples
base = style() |> foreground(:red) |> bold()
derived = style() |> foreground(:blue) |> inherit(base)
derived has blue foreground (not inherited) and bold (inherited)

 inline(s, enabled)

 @spec inline(style(), boolean()) :: style()

Enables or disables inline mode.
In inline mode:
	Newlines are stripped from content
	Width and height constraints are ignored

 italic(s)

 @spec italic(style()) :: style()

Enables italic text.

 join_horizontal(blocks, align \\ :top)

 @spec join_horizontal([String.t()], :top | :middle | :bottom) :: String.t()

Joins multiple text blocks horizontally (side by side).
Options
The second argument specifies vertical alignment:
	:top (default) - Align blocks to the top
	:middle - Center blocks vertically
	:bottom - Align blocks to the bottom

Examples
left = "A\nB"
right = "1\n2"
Esc.join_horizontal([left, right])
"A1\nB2"

 join_vertical(blocks, align \\ :left)

 @spec join_vertical([String.t()], :left | :center | :right) :: String.t()

Joins multiple text blocks vertically (stacked).
Options
The second argument specifies horizontal alignment:
	:left (default) - Align blocks to the left
	:center - Center blocks horizontally
	:right - Align blocks to the right

Examples
top = "AAA"
bottom = "B"
Esc.join_vertical([top, bottom], :center)
"AAA\n B "

 margin(s, all)

 @spec margin(style(), non_neg_integer()) :: style()

Sets margin on all sides.

 margin(s, vertical, horizontal)

 @spec margin(style(), non_neg_integer(), non_neg_integer()) :: style()

Sets vertical and horizontal margin.

 margin(s, top, right, bottom, left)

 @spec margin(
 style(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer()
) :: style()

Sets margin for each side individually.

 max_height(s, height)

 @spec max_height(style(), non_neg_integer()) :: style()

Sets the maximum height for rendered content.
Content exceeding this height will be truncated.

 max_width(s, width)

 @spec max_width(style(), non_neg_integer()) :: style()

Sets the maximum width for rendered content.
Content exceeding this width will be truncated.

 no_color(s, enabled)

 @spec no_color(style(), boolean()) :: style()

Enables or disables color output.
When disabled, all ANSI color codes are stripped from output.
Layout (borders, padding) is preserved.

 padding(s, all)

 @spec padding(style(), non_neg_integer()) :: style()

Sets padding on all sides.

 padding(s, vertical, horizontal)

 @spec padding(style(), non_neg_integer(), non_neg_integer()) :: style()

Sets vertical and horizontal padding.

 padding(s, top, right, bottom, left)

 @spec padding(
 style(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer()
) :: style()

Sets padding for each side individually.

 place(width, height, h_align, v_align, text)

 @spec place(
 non_neg_integer(),
 non_neg_integer(),
 :left | :center | :right,
 :top | :middle | :bottom,
 String.t()
) :: String.t()

Places text within a box of specified dimensions.
Examples
Esc.place(20, 5, :center, :middle, "X")
Returns a 20x5 box with "X" centered

 place_horizontal(width, align, text)

 @spec place_horizontal(non_neg_integer(), :left | :center | :right, String.t()) ::
 String.t()

Places text horizontally within a specified width.
Examples
Esc.place_horizontal(20, :center, "Hi")
" Hi "

 place_vertical(height, align, text)

 @spec place_vertical(non_neg_integer(), :top | :middle | :bottom, String.t()) ::
 String.t()

Places text vertically within a specified height.
Examples
Esc.place_vertical(5, :middle, "X")
Returns 5 lines with "X" on the middle line

 render(style, text)

 @spec render(style(), String.t()) :: String.t()

Renders text with the given style applied.

 renderer(s, render_fn)

 @spec renderer(style(), (String.t(), Esc.Style.t() -> String.t())) :: style()

Sets a custom renderer function.
The renderer receives the text and style, and returns the rendered output.
Examples
upcase_renderer = fn text, _style -> String.upcase(text) end

style()
|> renderer(upcase_renderer)
|> render("hello")
"HELLO"

 reverse(s)

 @spec reverse(style()) :: style()

Enables reverse video (swap foreground/background).

 set_theme(theme)

 @spec set_theme(atom() | Esc.Theme.t()) :: :ok | {:error, :unknown_theme}

Sets the global theme.
Themes provide a consistent color palette including 16 ANSI colors,
background/foreground colors, and semantic colors for common UI purposes.
Examples
Esc.set_theme(:nord)
Esc.set_theme(:dracula)
Available Themes
:dracula, :nord, :gruvbox, :one, :solarized, :monokai, :material, :github, :aura, :dolphin, :chalk, :cobalt

 strikethrough(s)

 @spec strikethrough(style()) :: style()

Enables strikethrough text.

 style()

 @spec style() :: style()

Creates a new empty style.

 style(theme_name)

 @spec style(atom() | Esc.Theme.t()) :: style()

Creates a new style with a theme attached.
When a theme is attached, color atoms (:red, :bright_magenta, etc.) are
resolved to the theme's RGB values instead of standard ANSI codes.
Examples
With theme name
style(:nord) |> foreground(:red) |> render("Error")

With theme struct
theme = Esc.Theme.Palette.get(:dracula)
style(theme) |> foreground(:cyan) |> render("Info")

 tab_width(s, width)

 @spec tab_width(style(), non_neg_integer()) :: style()

Sets the tab width for tab-to-space conversion.
A value of 0 preserves tabs as-is. Default is 4.

 theme_background(s, color_name)

 @spec theme_background(style(), atom()) :: style()

Sets background color from the current theme.
If no theme is set or the color is not defined, the style is unchanged.
Examples
style() |> theme_background(:success) |> render("Success!")

 theme_border_background(s, color_name)

 @spec theme_border_background(style(), atom()) :: style()

Sets border background color from the current theme.
If no theme is set or the color is not defined, the style is unchanged.

 theme_border_foreground(s, color_name)

 @spec theme_border_foreground(style(), atom()) :: style()

Sets border foreground color from the current theme.
If no theme is set or the color is not defined, the style is unchanged.
Examples
style() |> border(:rounded) |> theme_border_foreground(:muted) |> render("Box")

 theme_color(name)

 @spec theme_color(atom()) :: Esc.Style.color() | nil

Gets a color from the current theme by name.
Returns nil if no theme is set or the color is not defined.
Semantic Colors
	:header - Headers, titles (defaults to cyan)
	:emphasis - Important text (defaults to blue)
	:warning - Warning messages (defaults to yellow)
	:error - Error messages (defaults to red)
	:success - Success messages (defaults to green)
	:muted - Subdued text, borders (defaults to gray)

ANSI Colors
:ansi_0 through :ansi_15, :background, :foreground
Examples
Esc.set_theme(:nord)
Esc.theme_color(:error)
#=> {191, 97, 106}

 theme_foreground(s, color_name)

 @spec theme_foreground(style(), atom()) :: style()

Sets foreground color from the current theme.
If no theme is set or the color is not defined, the style is unchanged.
Examples
style() |> theme_foreground(:error) |> render("Error!")

 themes()

 @spec themes() :: [atom()]

Lists all available built-in theme names.
Examples
Esc.themes()
#=> [:dracula, :nord, :gruvbox, :one, :solarized, :monokai,
:material, :github, :aura, :dolphin, :chalk, :cobalt]

 underline(s)

 @spec underline(style()) :: style()

Enables underlined text.

 unset_background(s)

 @spec unset_background(style()) :: style()

Removes the background color.

 unset_blink(s)

 @spec unset_blink(style()) :: style()

Disables blink.

 unset_bold(s)

 @spec unset_bold(style()) :: style()

Disables bold.

 unset_border(s)

 @spec unset_border(style()) :: style()

Removes the border.

 unset_faint(s)

 @spec unset_faint(style()) :: style()

Disables faint.

 unset_foreground(s)

 @spec unset_foreground(style()) :: style()

Removes the foreground color.

 unset_height(s)

 @spec unset_height(style()) :: style()

Removes the height constraint.

 unset_italic(s)

 @spec unset_italic(style()) :: style()

Disables italic.

 unset_margin(s)

 @spec unset_margin(style()) :: style()

Removes all margin.

 unset_padding(s)

 @spec unset_padding(style()) :: style()

Removes all padding.

 unset_reverse(s)

 @spec unset_reverse(style()) :: style()

Disables reverse.

 unset_strikethrough(s)

 @spec unset_strikethrough(style()) :: style()

Disables strikethrough.

 unset_underline(s)

 @spec unset_underline(style()) :: style()

Disables underline.

 unset_width(s)

 @spec unset_width(style()) :: style()

Removes the width constraint.

 vertical_align(s, alignment)

 @spec vertical_align(style(), :top | :middle | :bottom) :: style()

Sets vertical text alignment.

 width(s, w)

 @spec width(style(), non_neg_integer()) :: style()

Sets a fixed width for the output.

Esc.Border

Border styles for terminal boxes.

 Summary

 Types

 t()

 Functions

 custom(opts)

 Creates a custom border from a keyword list of characters.

 get(arg1)

 Returns a border style by name.

 styles()

 Lists all available border style names.

 Types

 t()

 @type t() :: %Esc.Border{
 bottom: String.t(),
 bottom_left: String.t(),
 bottom_mid: String.t(),
 bottom_right: String.t(),
 cross: String.t(),
 left: String.t(),
 left_mid: String.t(),
 right: String.t(),
 right_mid: String.t(),
 top: String.t(),
 top_left: String.t(),
 top_mid: String.t(),
 top_right: String.t()
}

 Functions

 custom(opts)

 @spec custom(keyword()) :: t()

Creates a custom border from a keyword list of characters.
Unspecified characters default to the :normal border style.
Options
	:top - Top edge character
	:bottom - Bottom edge character
	:left - Left edge character
	:right - Right edge character
	:top_left - Top-left corner character
	:top_right - Top-right corner character
	:bottom_left - Bottom-left corner character
	:bottom_right - Bottom-right corner character

Examples
iex> Border.custom(top: "=", bottom: "=")
%Border{top: "=", bottom: "=", ...}

 get(arg1)

 @spec get(atom()) :: t() | nil

Returns a border style by name.
Available styles: :normal, :rounded, :thick, :double, :hidden

 styles()

 @spec styles() :: [atom()]

Lists all available border style names.

Esc.Color

Color handling for terminal output.
Color Formats
Esc supports multiple color formats:
	Named ANSI colors: :red, :green, :blue, etc.
	ANSI 256 palette: integers 0-255
	True color (24-bit): {r, g, b} tuples or hex strings like "#ff0000"

Adaptive Colors
Adaptive colors automatically select between two color options based on
whether the terminal has a light or dark background:
color = Color.adaptive("#000000", "#ffffff")
Uses dark text on light backgrounds, light text on dark backgrounds
Complete Colors
Complete colors specify exact values for each color profile level,
preventing automatic degradation:
color = Color.complete(
 ansi: :red,
 ansi256: 196,
 true_color: {255, 0, 0}
)
Color Degradation
When a terminal doesn't support a color profile, colors are automatically
degraded to the best available alternative using rgb_to_ansi256/3 and
ansi256_to_ansi16/1.

 Summary

 Functions

 adaptive(light, dark)

 Creates an adaptive color that selects between light and dark variants.

 ansi256_to_ansi16(n)

 Converts an ANSI 256 palette color to the nearest ANSI 16 color.

 background(color)

 Converts a color value to ANSI escape sequence for background.

 complete(opts)

 Creates a complete color with explicit values for each profile level.

 foreground(color)

 Converts a color value to ANSI escape sequence for foreground.

 resolve_adaptive(adaptive, atom)

 Resolves an adaptive color based on the background mode.

 resolve_complete(color, atom)

 Resolves a complete color for a specific profile level.

 rgb_to_ansi256(r, g, b)

 Converts an RGB color to the nearest ANSI 256 palette color.

 Functions

 adaptive(light, dark)

 @spec adaptive(Esc.Style.color(), Esc.Style.color()) :: Esc.Color.Adaptive.t()

Creates an adaptive color that selects between light and dark variants.
The light variant is used when the terminal has a light background.
The dark variant is used when the terminal has a dark background.
Examples
iex> Color.adaptive("#000000", "#ffffff")
%Color.Adaptive{light: "#000000", dark: "#ffffff"}

 ansi256_to_ansi16(n)

 @spec ansi256_to_ansi16(integer()) :: integer()

Converts an ANSI 256 palette color to the nearest ANSI 16 color.
Examples
iex> Color.ansi256_to_ansi16(196)
1 # Red

iex> Color.ansi256_to_ansi16(21)
4 # Blue

 background(color)

 @spec background(atom() | integer() | {integer(), integer(), integer()} | String.t()) ::
 String.t()

Converts a color value to ANSI escape sequence for background.

 complete(opts)

 @spec complete(keyword()) :: Esc.Color.Complete.t()

Creates a complete color with explicit values for each profile level.
Options
	:ansi - Color for basic 16-color terminals (atom like :red)
	:ansi256 - Color for 256-color terminals (integer 0-255)
	:true_color - Color for true color terminals (RGB tuple or hex string)

Examples
iex> Color.complete(ansi: :red, ansi256: 196, true_color: {255, 0, 0})
%Color.Complete{ansi: :red, ansi256: 196, true_color: {255, 0, 0}}

 foreground(color)

 @spec foreground(atom() | integer() | {integer(), integer(), integer()} | String.t()) ::
 String.t()

Converts a color value to ANSI escape sequence for foreground.

 resolve_adaptive(adaptive, atom)

 @spec resolve_adaptive(Esc.Color.Adaptive.t(), :light | :dark) :: Esc.Style.color()

Resolves an adaptive color based on the background mode.
Examples
iex> color = Color.adaptive(:black, :white)
iex> Color.resolve_adaptive(color, :light)
:black
iex> Color.resolve_adaptive(color, :dark)
:white

 resolve_complete(color, atom)

 @spec resolve_complete(Esc.Color.Complete.t(), :ansi | :ansi256 | :true_color) ::
 Esc.Style.color() | nil

Resolves a complete color for a specific profile level.
Falls back to lower profile levels if the requested level is not specified.
Examples
iex> color = Color.complete(ansi: :red, true_color: {255, 0, 0})
iex> Color.resolve_complete(color, :ansi256)
:red # Falls back to ansi since ansi256 not specified

 rgb_to_ansi256(r, g, b)

 @spec rgb_to_ansi256(integer(), integer(), integer()) :: integer()

Converts an RGB color to the nearest ANSI 256 palette color.
The ANSI 256 palette consists of:
	0-15: Standard colors (same as ANSI 16)
	16-231: 6x6x6 color cube
	232-255: Grayscale ramp

Examples
iex> Color.rgb_to_ansi256(255, 0, 0)
196 # Bright red in the color cube

iex> Color.rgb_to_ansi256(128, 128, 128)
244 # Gray in the grayscale ramp

Esc.Color.Adaptive

Represents an adaptive color that changes based on terminal background.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Esc.Color.Adaptive{dark: Esc.Style.color(), light: Esc.Style.color()}

Esc.Color.Complete

Represents a color with explicit values for each profile level.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Esc.Color.Complete{
 ansi: atom() | nil,
 ansi256: integer() | nil,
 true_color: {integer(), integer(), integer()} | nil
}

Esc.Filter

Shared filtering logic for interactive select components.
Supports glob-style wildcard matching with * and case-insensitive substring matching.
Pattern Matching
	Without *: Substring match (implicit *pattern*)
	With *: Glob-style match where * matches any characters

Examples
Substring match
Filter.matches?("redwood", "red") # true
Filter.matches?("darkred", "red") # true

Glob patterns
Filter.matches?("redwood", "red*") # true
Filter.matches?("darkred", "red*") # false
Filter.matches?("readme.md", "*.md") # true

 Summary

 Functions

 clamp_page(current_page, items, filter_text, page_size)

 Ensures current_page is valid for the given item count.

 compile_pattern(filter_text)

 Compiles filter text into a pattern for matching.

 filter_items(items, filter_text)

 Filters items by pattern, returning only those that match.

 get_display_text(text)

 Extracts display text from an item.

 matches?(text, regex)

 Checks if text matches the compiled pattern.

 matching_indices(items, filter_text)

 Returns indices of items that match the filter pattern.

 page_indices(items, filter_text, page_size, current_page)

 Returns the indices of items visible on the current page.

 render_filter_input(filter_text, filter_mode, opts \\ [])

 Renders the filter input line.

 render_pagination(current_page, total, opts)

 Renders the pagination indicator.

 total_pages(items, filter_text, page_size)

 Returns the total number of pages for the given items and filter.

 Functions

 clamp_page(current_page, items, filter_text, page_size)

 @spec clamp_page(non_neg_integer(), [item], String.t(), non_neg_integer() | nil) ::
 non_neg_integer()
when item: String.t() | {String.t(), term()}

Ensures current_page is valid for the given item count.
Clamps page to valid range [0, total_pages - 1].

 compile_pattern(filter_text)

 @spec compile_pattern(String.t()) :: {:substring, String.t()} | Regex.t()

Compiles filter text into a pattern for matching.
Returns {:substring, pattern} for simple substring matching,
or a compiled %Regex{} for glob patterns with *.

 filter_items(items, filter_text)

 @spec filter_items([item], String.t()) :: [item]
when item: String.t() | {String.t(), term()}

Filters items by pattern, returning only those that match.
Items can be strings or {display_text, return_value} tuples.
Matching is done on the display text only.

 get_display_text(text)

 @spec get_display_text(String.t() | {String.t(), term()}) :: String.t()

Extracts display text from an item.

 matches?(text, regex)

 @spec matches?(String.t(), {:substring, String.t()} | Regex.t()) :: boolean()

Checks if text matches the compiled pattern.

 matching_indices(items, filter_text)

 @spec matching_indices([item], String.t()) :: [non_neg_integer()]
when item: String.t() | {String.t(), term()}

Returns indices of items that match the filter pattern.
Useful for preserving cursor position when filtering.

 page_indices(items, filter_text, page_size, current_page)

 @spec page_indices([item], String.t(), non_neg_integer() | nil, non_neg_integer()) ::
 [
 non_neg_integer()
]
when item: String.t() | {String.t(), term()}

Returns the indices of items visible on the current page.
Takes into account filtering - pagination applies to filtered results.
Returns all matching indices if page_size is 0 or nil (pagination disabled).

 render_filter_input(filter_text, filter_mode, opts \\ [])

 @spec render_filter_input(String.t(), boolean(), keyword()) :: String.t()

Renders the filter input line.
Options
	:prompt - The prompt text (default: "Filter: ")
	:prompt_style - Style for the prompt
	:text_style - Style for the filter text
	:show_cursor - Whether to show cursor indicator (default: true when in filter mode)
	:match_count - Tuple of {matched, total} to show count
	:count_style - Style for match count

 render_pagination(current_page, total, opts)

 @spec render_pagination(non_neg_integer(), pos_integer(), keyword()) :: String.t()

Renders the pagination indicator.
Returns empty string if only one page exists.

 total_pages(items, filter_text, page_size)

 @spec total_pages([item], String.t(), non_neg_integer() | nil) :: pos_integer()
when item: String.t() | {String.t(), term()}

Returns the total number of pages for the given items and filter.
Returns 1 if pagination is disabled (page_size is 0 or nil).

Esc.List

Styled hierarchical lists for terminal output.
Lists support various enumerator styles and can be nested.
Example
List.new(["First item", "Second item", "Third item"])
|> List.enumerator(:arabic)
|> List.render()
Enumerators
Available built-in enumerators:
	:bullet - Bullet points (•)
	:dash - Dashes (-)
	:arabic - Arabic numerals (1., 2., 3.)
	:roman - Roman numerals (i., ii., iii.)
	:alphabet - Alphabetic (a., b., c.)

Custom enumerators can be functions that take an index and return a string.
Nesting
Lists can contain other lists for nested structures:
nested = List.new(["Sub-item 1", "Sub-item 2"])
List.new(["Main item", nested])
|> List.render()
Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default),
the list automatically uses theme colors:
	Enumerators: theme :muted color

Explicit styles override theme colors. Use use_theme(list, false) to disable.

 Summary

 Types

 item()

 t()

 Functions

 enumerator(list, enum)

 Sets the enumerator style.

 enumerator_style(list, style)

 Sets the style for enumerators.

 indent(list, spaces)

 Sets the base indentation level.

 item(list, item)

 Adds an item to the list.

 item_style(list, style)

 Sets the style for list items.

 new(items \\ [])

 Creates a new list with the given items.

 render(list)

 Renders the list to a string.

 use_theme(list, enabled)

 Enables or disables automatic theme colors.

 Types

 item()

 @type item() :: String.t() | t()

 t()

 @type t() :: %Esc.List{
 enumerator: atom() | (non_neg_integer() -> String.t()),
 enumerator_style: Esc.Style.t() | nil,
 indent: non_neg_integer(),
 item_style: Esc.Style.t() | nil,
 items: [item()],
 use_theme: boolean()
}

 Functions

 enumerator(list, enum)

 @spec enumerator(t(), atom() | (non_neg_integer() -> String.t())) :: t()

Sets the enumerator style.
Built-in options: :bullet, :dash, :arabic, :roman, :alphabet
Can also be a function that takes an index and returns a string.

 enumerator_style(list, style)

 @spec enumerator_style(t(), Esc.Style.t()) :: t()

Sets the style for enumerators.

 indent(list, spaces)

 @spec indent(t(), non_neg_integer()) :: t()

Sets the base indentation level.

 item(list, item)

 @spec item(t(), item()) :: t()

Adds an item to the list.

 item_style(list, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for list items.

 new(items \\ [])

 @spec new([item()]) :: t()

Creates a new list with the given items.

 render(list)

 @spec render(t()) :: String.t()

Renders the list to a string.

 use_theme(list, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the list uses theme colors for:
	Enumerators (:muted color)

Explicit styles (via enumerator_style/2) override theme colors.
Examples
Disable theme colors
List.new(["Item 1", "Item 2"]) |> List.use_theme(false)

Esc.MultiSelect

Interactive multi-selection list for terminal applications.
MultiSelect provides a navigable list where users can move a cursor with arrow keys,
toggle selections with Space, and confirm their choices with Enter.
Example
alias Esc.MultiSelect

case MultiSelect.new(["Option 1", "Option 2", "Option 3"]) |> MultiSelect.run() do
 {:ok, selected} -> IO.puts("You selected: #{inspect(selected)}")
 :cancelled -> IO.puts("Selection cancelled")
end
Items with Custom Return Values
Items can be tuples of {display_text, return_value}:
MultiSelect.new([
 {"Production", :prod},
 {"Staging", :staging},
 {"Development", :dev}
])
|> MultiSelect.run()
Returns {:ok, [:prod, :dev]} when those items are selected
Keyboard Controls
	Up / k - Move cursor up
	Down / j - Move cursor down
	Space - Toggle selection on current item
	Enter - Confirm selections (if minimum met)
	Escape / q - Cancel selection (or exit filter mode)
	Home / g - Jump to first item
	End / G - Jump to last item
	a - Select all visible items (filtered items only when filtering)
	n - Clear selections on visible items (filtered items only when filtering)
	/ - Enter filter mode
	Ctrl+F /] - Next page
	Ctrl+B / [- Previous page

Filtering
Press / to enter filter mode and type to filter items. Supports glob-style
wildcards with * (e.g., *.md, test*, *api*).
When filtering is active, a and n only affect the displayed items.
Escape exits filter mode; press again to clear the filter.
Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default),
the multi-select automatically uses theme colors:
	Cursor: theme :emphasis color
	Focused item: theme :header color
	Selected marker: theme :success color
	Unselected marker: theme :muted color
	Help text: theme :muted color

Explicit styles override theme colors. Use use_theme(multi_select, false) to disable.

 Summary

 Types

 item()

 t()

 Functions

 cursor(multi_select, cursor)

 Sets the cursor string shown next to the focused item.

 cursor_style(multi_select, style)

 Sets the style for the cursor.

 filter_style(multi_select, style)

 Sets the style for the filter input line.

 focused_style(multi_select, style)

 Sets the style for the currently focused item text.

 help_style(multi_select, style)

 Sets the style for help text.

 item(multi_select, item)

 Adds an item to the multi-select list.

 item_style(multi_select, style)

 Sets the style for non-focused, non-selected items.

 marker_styles(multi_select, selected_style, unselected_style)

 Sets styles for selection markers.

 markers(multi_select, selected, unselected)

 Sets both selected and unselected markers.

 max_selections(multi_select, max)

 Sets maximum allowed selections.

 min_selections(multi_select, min)

 Sets minimum required selections.

 new(items \\ [])

 Creates a new multi-select with the given items.

 page_size(multi_select, size)

 Sets the number of items displayed per page.

 preselect(multi_select, selections)

 Pre-selects items by index or value.

 render(multi_select)

 Renders the multi-select list at its current state (non-interactive).

 run(multi_select)

 Runs the interactive multi-selection loop.

 selected_item_style(multi_select, style)

 Sets the style for selected (but not currently focused) item text.

 selected_marker(multi_select, marker)

 Sets the marker shown for selected items.

 show_help(multi_select, enabled)

 Shows or hides the help text at bottom.

 unselected_marker(multi_select, marker)

 Sets the marker shown for unselected items.

 use_theme(multi_select, enabled)

 Enables or disables automatic theme colors.

 Types

 item()

 @type item() :: String.t() | {String.t(), term()}

 t()

 @type t() :: %Esc.MultiSelect{
 current_page: non_neg_integer(),
 cursor: String.t(),
 cursor_index: non_neg_integer(),
 cursor_style: Esc.Style.t() | nil,
 filter_mode: boolean(),
 filter_style: Esc.Style.t() | nil,
 filter_text: String.t(),
 focused_style: Esc.Style.t() | nil,
 help_style: Esc.Style.t() | nil,
 item_style: Esc.Style.t() | nil,
 items: [item()],
 max_selections: non_neg_integer() | nil,
 min_selections: non_neg_integer(),
 page_size: non_neg_integer() | nil,
 selected_indices: MapSet.t(non_neg_integer()),
 selected_item_style: Esc.Style.t() | nil,
 selected_marker: String.t(),
 selected_marker_style: Esc.Style.t() | nil,
 show_help: boolean(),
 unselected_marker: String.t(),
 unselected_marker_style: Esc.Style.t() | nil,
 use_theme: boolean()
}

 Functions

 cursor(multi_select, cursor)

 @spec cursor(t(), String.t()) :: t()

Sets the cursor string shown next to the focused item.
Default is "> ".

 cursor_style(multi_select, style)

 @spec cursor_style(t(), Esc.Style.t()) :: t()

Sets the style for the cursor.

 filter_style(multi_select, style)

 @spec filter_style(t(), Esc.Style.t()) :: t()

Sets the style for the filter input line.

 focused_style(multi_select, style)

 @spec focused_style(t(), Esc.Style.t()) :: t()

Sets the style for the currently focused item text.

 help_style(multi_select, style)

 @spec help_style(t(), Esc.Style.t()) :: t()

Sets the style for help text.

 item(multi_select, item)

 @spec item(t(), item()) :: t()

Adds an item to the multi-select list.

 item_style(multi_select, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for non-focused, non-selected items.

 marker_styles(multi_select, selected_style, unselected_style)

 @spec marker_styles(t(), Esc.Style.t() | nil, Esc.Style.t() | nil) :: t()

Sets styles for selection markers.

 markers(multi_select, selected, unselected)

 @spec markers(t(), String.t(), String.t()) :: t()

Sets both selected and unselected markers.
Both markers should have the same display width for proper alignment.
Examples
MultiSelect.new(items) |> MultiSelect.markers("[x] ", "[] ") # Checkbox style
MultiSelect.new(items) |> MultiSelect.markers("* ", " ") # Asterisk style

 max_selections(multi_select, max)

 @spec max_selections(t(), non_neg_integer() | nil) :: t()

Sets maximum allowed selections.
Space toggle is ignored when adding would exceed limit.

 min_selections(multi_select, min)

 @spec min_selections(t(), non_neg_integer()) :: t()

Sets minimum required selections.
Submit is blocked until minimum is met.

 new(items \\ [])

 @spec new([item()]) :: t()

Creates a new multi-select with the given items.
Items can be strings or {display_text, return_value} tuples.
Examples
MultiSelect.new(["Option 1", "Option 2", "Option 3"])

MultiSelect.new([
 {"Enable logging", :logging},
 {"Enable metrics", :metrics}
])

 page_size(multi_select, size)

 @spec page_size(t(), non_neg_integer() | nil) :: t()

Sets the number of items displayed per page.
Default is 100 items per page. Set to 0 or nil to disable pagination.

 preselect(multi_select, selections)

 @spec preselect(t(), [non_neg_integer()] | [term()]) :: t()

Pre-selects items by index or value.
Examples
By indices
MultiSelect.new(items) |> MultiSelect.preselect([0, 2])

By return values
MultiSelect.new([{"A", :a}, {"B", :b}]) |> MultiSelect.preselect([:a])

 render(multi_select)

 @spec render(t()) :: String.t()

Renders the multi-select list at its current state (non-interactive).
This is useful for previewing the multi-select or for testing.

 run(multi_select)

 @spec run(t()) :: {:ok, [term()]} | :cancelled

Runs the interactive multi-selection loop.
Returns {:ok, selected_values} when the user confirms,
or :cancelled if the user presses Escape or q.
For items defined as {display_text, return_value} tuples,
the return_values are returned. For string items, the strings themselves are returned.

 selected_item_style(multi_select, style)

 @spec selected_item_style(t(), Esc.Style.t()) :: t()

Sets the style for selected (but not currently focused) item text.

 selected_marker(multi_select, marker)

 @spec selected_marker(t(), String.t()) :: t()

Sets the marker shown for selected items.
Default is "[x] ".

 show_help(multi_select, enabled)

 @spec show_help(t(), boolean()) :: t()

Shows or hides the help text at bottom.

 unselected_marker(multi_select, marker)

 @spec unselected_marker(t(), String.t()) :: t()

Sets the marker shown for unselected items.
Default is "[] ".

 use_theme(multi_select, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the multi-select uses theme colors for:
	Cursor (:emphasis color)
	Focused item (:header color)
	Selected marker (:success color)
	Unselected marker (:muted color)
	Help text (:muted color)

Explicit styles override theme colors.

Esc.MultiSelectTable

Interactive table-based multi-selection for terminal applications.
MultiSelectTable displays items in a grid layout and allows users to navigate
with arrow keys (or h/j/k/l), toggle selections with Space, and confirm with Enter.
Example
alias Esc.MultiSelectTable

tags = ~w(elixir phoenix ecto liveview tailwind alpine docker kubernetes)

case MultiSelectTable.new(tags) |> MultiSelectTable.run() do
 {:ok, selected} -> IO.puts("Selected: #{Enum.join(selected, ", ")}")
 :cancelled -> IO.puts("Cancelled")
end
Keyboard Controls
	Left / h / Shift+Tab - Move cursor left
	Down / j - Move cursor down
	Up / k - Move cursor up
	Right / l / Tab - Move cursor right
	Space - Toggle selection on current item
	Enter - Confirm selections (if minimum met)
	Escape / q - Cancel selection (or exit filter mode)
	Home / g - Jump to first item
	End / G - Jump to last item
	a - Select all visible items (filtered items only when filtering)
	n - Clear selections on visible items (filtered items only when filtering)
	/ - Enter filter mode
	Ctrl+F /] - Next page
	Ctrl+B / [- Previous page

Filtering
Press / to enter filter mode and type to filter items. Supports glob-style
wildcards with * (e.g., *.md, test*, *api*).
When filtering is active, a and n only affect the displayed items.
Escape exits filter mode; press again to clear the filter.
Theme Integration
When a global theme is set and use_theme is enabled (default),
the table automatically uses theme colors for cursor, selections, and borders.

 Summary

 Types

 item()

 t()

 Functions

 border(table, style)

 Sets the table border style.

 columns(table, cols)

 Sets the number of columns.

 cursor_style(table, style)

 Sets the style for the currently focused cell.

 filter_style(table, style)

 Sets the style for the filter input line.

 help_style(table, style)

 Sets the style for help text.

 item(table, item)

 Adds an item to the multi-select table.

 item_style(table, style)

 Sets the style for non-focused, non-selected cells.

 max_selections(table, max)

 Sets maximum allowed selections.

 min_selections(table, min)

 Sets minimum required selections.

 new(items \\ [])

 Creates a new multi-select table with the given items.

 page_size(table, size)

 Sets the number of items displayed per page.

 preselect(table, selections)

 Pre-selects items by index or value.

 render(table)

 Renders the multi-select table at its current state (non-interactive).

 run(table)

 Runs the interactive multi-selection loop.

 selected_marker(table, marker)

 Sets the marker shown in selected cells.

 selected_style(table, style)

 Sets the style for selected cells (not currently focused).

 show_help(table, enabled)

 Shows or hides the help text.

 use_theme(table, enabled)

 Enables or disables automatic theme colors.

 Types

 item()

 @type item() :: String.t() | {String.t(), term()}

 t()

 @type t() :: %Esc.MultiSelectTable{
 border: atom() | nil,
 columns: :auto | pos_integer(),
 current_page: non_neg_integer(),
 cursor_index: non_neg_integer(),
 cursor_style: Esc.Style.t() | nil,
 filter_mode: boolean(),
 filter_style: Esc.Style.t() | nil,
 filter_text: String.t(),
 help_style: Esc.Style.t() | nil,
 item_style: Esc.Style.t() | nil,
 items: [item()],
 max_selections: non_neg_integer() | nil,
 min_selections: non_neg_integer(),
 page_size: non_neg_integer() | nil,
 selected_indices: MapSet.t(non_neg_integer()),
 selected_marker: String.t(),
 selected_style: Esc.Style.t() | nil,
 show_help: boolean(),
 use_theme: boolean()
}

 Functions

 border(table, style)

 @spec border(t(), atom() | nil) :: t()

Sets the table border style.

 columns(table, cols)

 @spec columns(t(), :auto | pos_integer()) :: t()

Sets the number of columns.
Use :auto (default) to calculate based on terminal width and item widths.

 cursor_style(table, style)

 @spec cursor_style(t(), Esc.Style.t()) :: t()

Sets the style for the currently focused cell.

 filter_style(table, style)

 @spec filter_style(t(), Esc.Style.t()) :: t()

Sets the style for the filter input line.

 help_style(table, style)

 @spec help_style(t(), Esc.Style.t()) :: t()

Sets the style for help text.

 item(table, item)

 @spec item(t(), item()) :: t()

Adds an item to the multi-select table.

 item_style(table, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for non-focused, non-selected cells.

 max_selections(table, max)

 @spec max_selections(t(), non_neg_integer() | nil) :: t()

Sets maximum allowed selections.

 min_selections(table, min)

 @spec min_selections(t(), non_neg_integer()) :: t()

Sets minimum required selections.

 new(items \\ [])

 @spec new([item()]) :: t()

Creates a new multi-select table with the given items.
Items can be strings or {display_text, return_value} tuples.

 page_size(table, size)

 @spec page_size(t(), non_neg_integer() | nil) :: t()

Sets the number of items displayed per page.
Default is 100 items per page. Set to 0 or nil to disable pagination.

 preselect(table, selections)

 @spec preselect(t(), [non_neg_integer()] | [term()]) :: t()

Pre-selects items by index or value.

 render(table)

 @spec render(t()) :: String.t()

Renders the multi-select table at its current state (non-interactive).

 run(table)

 @spec run(t()) :: {:ok, [term()]} | :cancelled

Runs the interactive multi-selection loop.
Returns {:ok, selected_values} when the user confirms,
or :cancelled if the user presses Escape or q.

 selected_marker(table, marker)

 @spec selected_marker(t(), String.t()) :: t()

Sets the marker shown in selected cells.
Default is "*".

 selected_style(table, style)

 @spec selected_style(t(), Esc.Style.t()) :: t()

Sets the style for selected cells (not currently focused).

 show_help(table, enabled)

 @spec show_help(t(), boolean()) :: t()

Shows or hides the help text.

 use_theme(table, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.

Esc.Select

Interactive selection list for terminal applications.
Select provides a navigable list where users can move a cursor with arrow keys
and confirm their selection with Enter.
Example
alias Esc.Select

case Select.new(["Option 1", "Option 2", "Option 3"]) |> Select.run() do
 {:ok, selected} -> IO.puts("You selected: #{selected}")
 :cancelled -> IO.puts("Selection cancelled")
end
Items with Custom Return Values
Items can be tuples of {display_text, return_value}:
Select.new([
 {"Production", :prod},
 {"Development", :dev}
])
|> Select.run()
Returns {:ok, :prod} or {:ok, :dev}
Keyboard Controls
	Up / k - Move cursor up
	Down / j - Move cursor down
	Enter / Space - Confirm selection
	Escape / q - Cancel selection (or exit filter mode)
	Home / g - Jump to first item
	End / G - Jump to last item
	/ - Enter filter mode
	Ctrl+F /] - Next page
	Ctrl+B / [- Previous page

Filtering
Press / to enter filter mode and type to filter items:
Filter narrows visible items as you type
Select.new(["apple", "apricot", "banana", "cherry"])
|> Select.run()
Type "ap" to show only "apple" and "apricot"
Supports glob-style wildcards with *:
"*.md" matches "readme.md", "CHANGELOG.md"
"test*" matches "testing", "test_helper"
"*api*" matches "api_client", "rest_api", "api"
Escape exits filter mode. Press Escape again to clear the filter.
Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default),
the select automatically uses theme colors:
	Cursor: theme :emphasis color
	Selected item: theme :header color

Explicit styles override theme colors. Use use_theme(select, false) to disable.

 Summary

 Types

 item()

 t()

 Functions

 cursor(select, cursor)

 Sets the cursor string shown next to the selected item.

 cursor_style(select, style)

 Sets the style for the cursor.

 filter_style(select, style)

 Sets the style for the filter input line.

 item(select, item)

 Adds an item to the select list.

 item_style(select, style)

 Sets the style for non-selected items.

 new(items \\ [])

 Creates a new select with the given items.

 page_size(select, size)

 Sets the number of items displayed per page.

 render(select)

 Renders the select list at its current state (non-interactive).

 run(select)

 Runs the interactive selection loop.

 selected_style(select, style)

 Sets the style for the currently highlighted item text.

 use_theme(select, enabled)

 Enables or disables automatic theme colors.

 Types

 item()

 @type item() :: String.t() | {String.t(), term()}

 t()

 @type t() :: %Esc.Select{
 current_page: non_neg_integer(),
 cursor: String.t(),
 cursor_style: Esc.Style.t() | nil,
 filter_mode: boolean(),
 filter_style: Esc.Style.t() | nil,
 filter_text: String.t(),
 item_style: Esc.Style.t() | nil,
 items: [item()],
 page_size: non_neg_integer() | nil,
 selected_index: non_neg_integer(),
 selected_style: Esc.Style.t() | nil,
 use_theme: boolean()
}

 Functions

 cursor(select, cursor)

 @spec cursor(t(), String.t()) :: t()

Sets the cursor string shown next to the selected item.
Default is "> ".

 cursor_style(select, style)

 @spec cursor_style(t(), Esc.Style.t()) :: t()

Sets the style for the cursor.

 filter_style(select, style)

 @spec filter_style(t(), Esc.Style.t()) :: t()

Sets the style for the filter input line.

 item(select, item)

 @spec item(t(), item()) :: t()

Adds an item to the select list.

 item_style(select, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for non-selected items.

 new(items \\ [])

 @spec new([item()]) :: t()

Creates a new select with the given items.
Items can be strings or {display_text, return_value} tuples.

 page_size(select, size)

 @spec page_size(t(), non_neg_integer() | nil) :: t()

Sets the number of items displayed per page.
Default is 100 items per page. Set to 0 or nil to disable pagination
and show all items.
Examples
Custom page size
Select.new(items) |> Select.page_size(25)

Disable pagination
Select.new(items) |> Select.page_size(0)

 render(select)

 @spec render(t()) :: String.t()

Renders the select list at its current state (non-interactive).
This is useful for previewing the select or for testing.

 run(select)

 @spec run(t()) :: {:ok, term()} | :cancelled

Runs the interactive selection loop.
Returns {:ok, selected_value} when the user confirms a selection,
or :cancelled if the user presses Escape or q.
For items defined as {display_text, return_value} tuples,
the return_value is returned. For string items, the string itself is returned.

 selected_style(select, style)

 @spec selected_style(t(), Esc.Style.t()) :: t()

Sets the style for the currently highlighted item text.

 use_theme(select, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the select uses theme colors for:
	Cursor (:emphasis color)
	Selected item (:header color)

Explicit styles override theme colors.

Esc.SelectTable

Interactive table-based single selection for terminal applications.
SelectTable displays items in a grid layout and allows users to navigate
with arrow keys (or h/j/k/l) and select with Enter.
Example
alias Esc.SelectTable

colors = ~w(red orange yellow green blue indigo violet)

case SelectTable.new(colors) |> SelectTable.run() do
 {:ok, color} -> IO.puts("Selected: #{color}")
 :cancelled -> IO.puts("Cancelled")
end
Keyboard Controls
	Left / h / Shift+Tab - Move cursor left
	Down / j - Move cursor down
	Up / k - Move cursor up
	Right / l / Tab - Move cursor right
	Enter / Space - Confirm selection
	Escape / q - Cancel selection (or exit filter mode)
	Home / g - Jump to first item
	End / G - Jump to last item
	/ - Enter filter mode
	Ctrl+F /] - Next page
	Ctrl+B / [- Previous page

Filtering
Press / to enter filter mode and type to filter items. Supports glob-style
wildcards with * (e.g., *.md, test*, *api*).
Escape exits filter mode; press again to clear the filter.
Theme Integration
When a global theme is set and use_theme is enabled (default),
the table automatically uses theme colors for cursor highlighting and borders.

 Summary

 Types

 item()

 t()

 Functions

 border(table, style)

 Sets the table border style.

 columns(table, cols)

 Sets the number of columns.

 cursor_style(table, style)

 Sets the style for the currently focused cell.

 filter_style(table, style)

 Sets the style for the filter input line.

 help_style(table, style)

 Sets the style for help text.

 item(table, item)

 Adds an item to the select table.

 item_style(table, style)

 Sets the style for non-focused cells.

 new(items \\ [])

 Creates a new select table with the given items.

 page_size(table, size)

 Sets the number of items displayed per page.

 render(table)

 Renders the select table at its current state (non-interactive).

 run(table)

 Runs the interactive selection loop.

 show_help(table, enabled)

 Shows or hides the help text.

 use_theme(table, enabled)

 Enables or disables automatic theme colors.

 Types

 item()

 @type item() :: String.t() | {String.t(), term()}

 t()

 @type t() :: %Esc.SelectTable{
 border: atom() | nil,
 columns: :auto | pos_integer(),
 current_page: non_neg_integer(),
 cursor_index: non_neg_integer(),
 cursor_style: Esc.Style.t() | nil,
 filter_mode: boolean(),
 filter_style: Esc.Style.t() | nil,
 filter_text: String.t(),
 help_style: Esc.Style.t() | nil,
 item_style: Esc.Style.t() | nil,
 items: [item()],
 page_size: non_neg_integer() | nil,
 show_help: boolean(),
 use_theme: boolean()
}

 Functions

 border(table, style)

 @spec border(t(), atom() | nil) :: t()

Sets the table border style.
Available styles: :normal, :rounded, :thick, :double, :ascii, nil (no border)

 columns(table, cols)

 @spec columns(t(), :auto | pos_integer()) :: t()

Sets the number of columns.
Use :auto (default) to calculate based on terminal width and item widths.

 cursor_style(table, style)

 @spec cursor_style(t(), Esc.Style.t()) :: t()

Sets the style for the currently focused cell.

 filter_style(table, style)

 @spec filter_style(t(), Esc.Style.t()) :: t()

Sets the style for the filter input line.

 help_style(table, style)

 @spec help_style(t(), Esc.Style.t()) :: t()

Sets the style for help text.

 item(table, item)

 @spec item(t(), item()) :: t()

Adds an item to the select table.

 item_style(table, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for non-focused cells.

 new(items \\ [])

 @spec new([item()]) :: t()

Creates a new select table with the given items.
Items can be strings or {display_text, return_value} tuples.

 page_size(table, size)

 @spec page_size(t(), non_neg_integer() | nil) :: t()

Sets the number of items displayed per page.
Default is 100 items per page. Set to 0 or nil to disable pagination.

 render(table)

 @spec render(t()) :: String.t()

Renders the select table at its current state (non-interactive).

 run(table)

 @spec run(t()) :: {:ok, term()} | :cancelled

Runs the interactive selection loop.
Returns {:ok, selected_value} when the user confirms,
or :cancelled if the user presses Escape or q.

 show_help(table, enabled)

 @spec show_help(t(), boolean()) :: t()

Shows or hides the help text.

 use_theme(table, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.

Esc.Spinner

Indeterminate loading indicator for terminal applications.
Spinner provides animated feedback during long-running operations with
multiple animation styles and full theme integration.
Example
alias Esc.Spinner

Spinner.new()
|> Spinner.text("Loading...")
|> Spinner.run(fn ->
 fetch_remote_data()
end)
Block-based Execution
The simplest way to use Spinner is with run/2, which handles all
terminal state management automatically:
result = Spinner.new(:arc)
|> Spinner.text("Compiling...")
|> Spinner.run(fn -> compile_project() end)
Manual Start/Stop
For operations where you need to update text during execution:
pid = Spinner.new() |> Spinner.text("Starting...") |> Spinner.start()

Spinner.update_text(pid, "Step 1 of 3...")
do_step_1()

Spinner.update_text(pid, "Step 2 of 3...")
do_step_2()

Spinner.stop(pid)
Built-in Styles
	:dots - Braille dots (default)
	:line - Classic ASCII line
	:circle - Quarter circles
	:arc - Smooth arc
	:bounce - Bouncing dot
	:arrows - Rotating arrow
	:box - Rotating box quadrant
	:pulse - Pulsing block
	:moon - Moon phases
	:clock - Clock faces

Or provide custom frames as a list of strings.
Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default):
	Spinner frames: theme :emphasis color
	Text: theme :muted color

Explicit styles override theme colors.

 Summary

 Types

 t()

 Functions

 frame_rate(spinner, rate)

 Sets the frame delay in milliseconds.

 new()

 Creates a new spinner with the default style (:dots).

 new(style)

 Creates a new spinner with the given style.

 render(spinner)

 Renders a single frame of the spinner (for testing or custom loops).

 render(spinner, frame_index)

 Renders a specific frame of the spinner by index.

 run(spinner, fun)

 Runs the spinner while executing a function.

 spinner_style(spinner, style)

 Sets the style for the spinner frames.

 start(spinner)

 Starts the spinner animation in a separate process.

 stop(pid)

 Stops a running spinner and restores terminal state.

 style(spinner, style)

 Sets the spinner animation style.

 styles()

 Returns a list of available built-in spinner style names.

 text(spinner, text)

 Sets the text shown alongside the spinner.

 text_position(spinner, position)

 Sets whether text appears to the left or right of the spinner.

 text_style(spinner, style)

 Sets the style for the text.

 update_text(pid, text)

 Updates the text of a running spinner.

 use_theme(spinner, enabled)

 Enables or disables automatic theme colors.

 Types

 t()

 @type t() :: %Esc.Spinner{
 frame_rate: pos_integer(),
 spinner_style: Esc.Style.t() | nil,
 style: atom() | [String.t()],
 text: String.t(),
 text_position: :left | :right,
 text_style: Esc.Style.t() | nil,
 use_theme: boolean()
}

 Functions

 frame_rate(spinner, rate)

 @spec frame_rate(t(), pos_integer()) :: t()

Sets the frame delay in milliseconds.
Default is 80ms.
Examples
Spinner.new() |> Spinner.frame_rate(100) # Slower
Spinner.new() |> Spinner.frame_rate(50) # Faster

 new()

 @spec new() :: t()

Creates a new spinner with the default style (:dots).

 new(style)

 @spec new(atom() | [String.t()]) :: t()

Creates a new spinner with the given style.
Style can be an atom (built-in style) or a list of strings (custom frames).
Examples
Spinner.new(:arrows)
Spinner.new([".", "..", "...", "...."])

 render(spinner)

 @spec render(t()) :: String.t()

Renders a single frame of the spinner (for testing or custom loops).
Returns the first frame by default.

 render(spinner, frame_index)

 @spec render(t(), non_neg_integer()) :: String.t()

Renders a specific frame of the spinner by index.

 run(spinner, fun)

 @spec run(t(), (-> result)) :: result when result: var

Runs the spinner while executing a function.
The spinner animates until the function completes, then stops and returns
the function's result. Terminal state is always restored, even if the
function raises an exception.
Example
result = Spinner.new()
|> Spinner.text("Fetching data...")
|> Spinner.run(fn ->
 Process.sleep(2000)
 {:ok, data}
end)

 spinner_style(spinner, style)

 @spec spinner_style(t(), Esc.Style.t()) :: t()

Sets the style for the spinner frames.

 start(spinner)

 @spec start(t()) :: pid()

Starts the spinner animation in a separate process.
Returns the process ID which can be used with stop/1 and update_text/2.
Example
pid = Spinner.new() |> Spinner.text("Working...") |> Spinner.start()
... do work ...
Spinner.stop(pid)

 stop(pid)

 @spec stop(pid()) :: :ok

Stops a running spinner and restores terminal state.
This is idempotent - calling it multiple times or with an invalid pid is safe.

 style(spinner, style)

 @spec style(t(), atom() | [String.t()]) :: t()

Sets the spinner animation style.
Examples
Spinner.new() |> Spinner.style(:circle)
Spinner.new() |> Spinner.style(["⣾", "⣽", "⣻", "⢿"])

 styles()

 @spec styles() :: [atom()]

Returns a list of available built-in spinner style names.

 text(spinner, text)

 @spec text(t(), String.t()) :: t()

Sets the text shown alongside the spinner.

 text_position(spinner, position)

 @spec text_position(t(), :left | :right) :: t()

Sets whether text appears to the left or right of the spinner.
Default is :right.
Examples
Spinner.new() |> Spinner.text("Working") |> Spinner.text_position(:left)
Output: "Working ⠋"

 text_style(spinner, style)

 @spec text_style(t(), Esc.Style.t()) :: t()

Sets the style for the text.

 update_text(pid, text)

 @spec update_text(pid(), String.t()) :: :ok

Updates the text of a running spinner.
Example
pid = Spinner.new() |> Spinner.start()
Spinner.update_text(pid, "Step 1 of 3...")
... work ...
Spinner.update_text(pid, "Step 2 of 3...")

 use_theme(spinner, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the spinner uses theme colors for:
	Spinner frames (:emphasis color)
	Text (:muted color)

Explicit styles override theme colors.

Esc.Style

A style definition for terminal output.
Styles are immutable structs that define how text should be rendered.
Use the functions in Esc to build styles via pipelines.

 Summary

 Types

 color()

 t()

 Types

 color()

 @type color() :: atom() | integer() | {integer(), integer(), integer()} | String.t()

 t()

 @type t() :: %Esc.Style{
 align_horizontal: :left | :center | :right,
 align_vertical: :top | :middle | :bottom,
 background: color() | nil,
 blink: boolean(),
 bold: boolean(),
 border: atom() | Esc.Border.t() | nil,
 border_background: color() | nil,
 border_bottom: boolean(),
 border_foreground: color() | nil,
 border_left: boolean(),
 border_right: boolean(),
 border_top: boolean(),
 faint: boolean(),
 foreground: color() | nil,
 height: non_neg_integer() | nil,
 inline: boolean(),
 italic: boolean(),
 margin_bottom: non_neg_integer(),
 margin_left: non_neg_integer(),
 margin_right: non_neg_integer(),
 margin_top: non_neg_integer(),
 max_height: non_neg_integer() | nil,
 max_width: non_neg_integer() | nil,
 no_color: boolean(),
 padding_bottom: non_neg_integer(),
 padding_left: non_neg_integer(),
 padding_right: non_neg_integer(),
 padding_top: non_neg_integer(),
 renderer: (String.t(), t() -> String.t()) | nil,
 reverse: boolean(),
 strikethrough: boolean(),
 tab_width: non_neg_integer(),
 theme: Esc.Theme.t() | nil,
 underline: boolean(),
 width: non_neg_integer() | nil
}

Esc.Table

Styled tables for terminal output.
Tables support headers, rows, borders, per-cell styling, and automatic text wrapping.
Example
Table.new()
|> Table.headers(["Name", "Age", "City"])
|> Table.row(["Alice", "30", "New York"])
|> Table.row(["Bob", "25", "Los Angeles"])
|> Table.border(:rounded)
|> Table.render()
Automatic Terminal Width
Tables automatically detect terminal width and wrap text within cells to fit.
Long content wraps at word boundaries while preserving table structure.
When any row wraps, horizontal separator lines are added between rows for readability.
To set a specific width instead of auto-detecting:
Table.new()
|> Table.max_width(100) # Fixed 100 columns
|> Table.render()
Control row separators with row_separator/2:
	:auto (default) - Add separators only when rows wrap
	:always - Always add separators
	:never - Never add separators

Column Width Control
Control individual column widths:
Table.new()
|> Table.width(0, 20) # Minimum 20 chars for column 0
|> Table.max_column_width(2, 30) # Maximum 30 chars for column 2
|> Table.render()
Wrap Modes
Control how text wraps with wrap_mode/2:
	:word (default) - Wrap at word boundaries
	:char - Wrap at character boundaries (for CJK text or long words)
	:truncate - Truncate with ellipsis instead of wrapping

Styling
Tables support multiple styling options:
	header_style/2 - Style for header row
	row_style/2 - Style for all data rows
	style_func/2 - Function for per-cell styling based on row/column

Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default),
the table automatically uses theme colors:
	Header text: theme :header color (bold)
	Border: theme :muted color

Explicit styles override theme colors. Use use_theme(table, false) to disable.

 Summary

 Types

 row_separator()

 t()

 wrap_mode()

 Functions

 border(table, style)

 Sets the border style.

 header_style(table, style)

 Sets the style for header cells.

 headers(table, headers)

 Sets the table headers.

 max_column_width(table, column, max_width)

 Sets the maximum width for a column.

 max_width(table, width)

 Sets the maximum width for the entire table.

 new()

 Creates a new empty table.

 render(table)

 Renders the table to a string.

 row(table, row)

 Adds a single row to the table.

 row_separator(table, mode)

 Controls horizontal separator lines between data rows.

 row_style(table, style)

 Sets the style for all data rows.

 rows(table, rows)

 Sets all rows at once.

 style_func(table, func)

 Sets a function for per-cell styling.

 use_theme(table, enabled)

 Enables or disables automatic theme colors.

 width(table, column, min_width)

 Sets the minimum width for a column.

 wrap_mode(table, mode)

 Sets the text wrapping mode for cells.

 Types

 row_separator()

 @type row_separator() :: :auto | :always | :never

 t()

 @type t() :: %Esc.Table{
 border: atom() | nil,
 column_widths: %{required(non_neg_integer()) => non_neg_integer()},
 header_style: Esc.Style.t() | nil,
 headers: [String.t()],
 max_column_widths: %{required(non_neg_integer()) => non_neg_integer()},
 max_width: non_neg_integer() | :terminal | nil,
 row_separator: row_separator(),
 row_style: Esc.Style.t() | nil,
 rows: [[String.t()]],
 style_func: (non_neg_integer(), non_neg_integer() -> Esc.Style.t()) | nil,
 use_theme: boolean(),
 wrap_mode: wrap_mode()
}

 wrap_mode()

 @type wrap_mode() :: :word | :char | :truncate

 Functions

 border(table, style)

 @spec border(t(), atom()) :: t()

Sets the border style.
Available styles: :normal, :rounded, :thick, :double, :ascii, :markdown

 header_style(table, style)

 @spec header_style(t(), Esc.Style.t()) :: t()

Sets the style for header cells.

 headers(table, headers)

 @spec headers(t(), [String.t()]) :: t()

Sets the table headers.

 max_column_width(table, column, max_width)

 @spec max_column_width(t(), non_neg_integer(), non_neg_integer()) :: t()

Sets the maximum width for a column.
Text exceeding this width will be wrapped according to the wrap_mode setting.
Examples
Table.new()
|> Table.max_column_width(1, 30) # Limit column 1 to 30 characters

 max_width(table, width)

 @spec max_width(t(), non_neg_integer() | :terminal) :: t()

Sets the maximum width for the entire table.
When set, columns will be sized proportionally to fit within this width,
and text will wrap within cells as needed.
Pass :terminal to use the current terminal width (with fallback to 80 columns).
Examples
Table.new()
|> Table.max_width(80) # Fixed 80-column width

Table.new()
|> Table.max_width(:terminal) # Use terminal width

 new()

 @spec new() :: t()

Creates a new empty table.

 render(table)

 @spec render(t()) :: String.t()

Renders the table to a string.

 row(table, row)

 @spec row(t(), [String.t()]) :: t()

Adds a single row to the table.

 row_separator(table, mode)

 @spec row_separator(t(), row_separator()) :: t()

Controls horizontal separator lines between data rows.
Available modes:
	:auto (default) - Add separators only when any row has wrapped text
	:always - Always add separators between rows
	:never - Never add separators between rows

Examples
Table.new()
|> Table.row_separator(:always) # Always show row lines

 row_style(table, style)

 @spec row_style(t(), Esc.Style.t()) :: t()

Sets the style for all data rows.

 rows(table, rows)

 @spec rows(t(), [[String.t()]]) :: t()

Sets all rows at once.

 style_func(table, func)

 @spec style_func(t(), (non_neg_integer(), non_neg_integer() -> Esc.Style.t())) :: t()

Sets a function for per-cell styling.
The function receives (row_index, column_index) and returns a style.
Row index 0 is the first data row (headers are not included).

 use_theme(table, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the table uses theme colors for:
	Header text (:header color, bold)
	Borders (:muted color)

Explicit styles (via header_style/2, row_style/2) override theme colors.
Examples
Disable theme colors
Table.new() |> Table.use_theme(false)

Re-enable theme colors
Table.new() |> Table.use_theme(true)

 width(table, column, min_width)

 @spec width(t(), non_neg_integer(), non_neg_integer()) :: t()

Sets the minimum width for a column.

 wrap_mode(table, mode)

 @spec wrap_mode(t(), wrap_mode()) :: t()

Sets the text wrapping mode for cells.
Available modes:
	:word (default) - Wrap at word boundaries when possible
	:char - Wrap at character boundaries (for CJK text or long words)
	:truncate - Truncate with ellipsis instead of wrapping

Examples
Table.new()
|> Table.max_width(60)
|> Table.wrap_mode(:word)

Esc.Theme

Theme definitions for terminal styling.
Themes provide a consistent color palette including:
	16 ANSI colors (ansi_0 through ansi_15)
	Background and foreground colors
	Semantic colors for common UI purposes

Semantic Colors
Semantic colors provide meaningful names for common use cases:
	:header - Headers, titles (defaults to cyan/ansi_6)
	:emphasis - Important text (defaults to blue/ansi_4)
	:warning - Warning messages (defaults to yellow/ansi_3)
	:error - Error messages (defaults to red/ansi_1)
	:success - Success messages (defaults to green/ansi_2)
	:muted - Subdued text, borders (defaults to bright black/ansi_8)

Usage
Esc.set_theme(:nord)

Use semantic colors in styles
style() |> theme_foreground(:error) |> render("Error!")

 Summary

 Types

 rgb()

 t()

 Functions

 color(theme, name)

 Gets a color from a theme by name.

 Types

 rgb()

 @type rgb() :: {0..255, 0..255, 0..255}

 t()

 @type t() :: %Esc.Theme{
 ansi_0: rgb(),
 ansi_1: rgb(),
 ansi_10: rgb(),
 ansi_11: rgb(),
 ansi_12: rgb(),
 ansi_13: rgb(),
 ansi_14: rgb(),
 ansi_15: rgb(),
 ansi_2: rgb(),
 ansi_3: rgb(),
 ansi_4: rgb(),
 ansi_5: rgb(),
 ansi_6: rgb(),
 ansi_7: rgb(),
 ansi_8: rgb(),
 ansi_9: rgb(),
 background: rgb(),
 emphasis: rgb() | nil,
 error: rgb() | nil,
 foreground: rgb(),
 header: rgb() | nil,
 muted: rgb() | nil,
 name: atom(),
 success: rgb() | nil,
 warning: rgb() | nil
}

 Functions

 color(theme, name)

 @spec color(t(), atom()) :: rgb() | nil

Gets a color from a theme by name.
Handles both direct palette colors (ansi_0..ansi_15, background, foreground)
and semantic colors (header, emphasis, warning, error, success, muted).
Semantic colors are derived from the ANSI palette if not explicitly set.
Examples
iex> theme = Esc.Theme.Palette.get(:nord)
iex> Esc.Theme.color(theme, :error)
{191, 97, 106}

iex> Esc.Theme.color(theme, :ansi_4)
{129, 161, 193}

Esc.Theme.Palette

Built-in theme palettes based on popular terminal color schemes.
All themes are derived from iTerm2 color scheme files with RGB values
converted from float (0.0-1.0) to integer (0-255) format.
Available Themes
	:dracula - Dark theme with purple/pink accents
	:nord - Arctic, bluish theme with pastel colors
	:gruvbox - Retro groove with warm earth tones
	:one - Atom One Dark inspired theme
	:solarized - Solarized Dark with higher contrast
	:monokai - Classic Monokai color scheme
	:material - Material Design dark theme
	:github - GitHub's light color scheme
	:aura - Dark theme with purple/teal accents
	:dolphin - Blue Dolphin ocean-inspired theme
	:chalk - Chalkboard-style muted colors
	:cobalt - Cobalt Next Dark theme

 Summary

 Functions

 get(arg1)

 Returns a theme by name.

 list()

 Returns all available theme names.

 Functions

 get(arg1)

 @spec get(atom()) :: Esc.Theme.t() | nil

Returns a theme by name.
Returns nil if the theme name is not recognized.
Examples
iex> theme = Esc.Theme.Palette.get(:nord)
iex> theme.name
:nord

iex> Esc.Theme.Palette.get(:unknown)
nil

 list()

 @spec list() :: [atom()]

Returns all available theme names.
Examples
iex> Esc.Theme.Palette.list()
[:dracula, :nord, :gruvbox, :one, :solarized, :monokai,
 :material, :github, :aura, :dolphin, :chalk, :cobalt]

Esc.Theme.Store

Global theme state management.
Uses persistent_term for efficient reads (themes are read frequently,
set rarely). Falls back to application config for static configuration.
Usage
Set theme by name
Esc.Theme.Store.set(:nord)

Set custom theme
Esc.Theme.Store.set(%Esc.Theme{...})

Get current theme
Esc.Theme.Store.get()

Clear theme
Esc.Theme.Store.clear()

 Summary

 Functions

 clear()

 Clears the current theme.

 get()

 Gets the current theme, or nil if not set.

 set(theme_name)

 Sets the global theme.

 Functions

 clear()

 @spec clear() :: :ok

Clears the current theme.
After clearing, get/0 will fall back to application config or return nil.
Examples
iex> Esc.Theme.Store.set(:nord)
iex> Esc.Theme.Store.clear()
:ok
iex> Esc.Theme.Store.get()
nil

 get()

 @spec get() :: Esc.Theme.t() | nil

Gets the current theme, or nil if not set.
First checks persistent_term, then falls back to Application.get_env(:esc, :theme).
Examples
iex> Esc.Theme.Store.set(:nord)
iex> Esc.Theme.Store.get()
%Esc.Theme{name: :nord, ...}

iex> Esc.Theme.Store.clear()
iex> Esc.Theme.Store.get()
nil

 set(theme_name)

 @spec set(atom() | Esc.Theme.t()) :: :ok | {:error, :unknown_theme}

Sets the global theme.
Accepts either a theme name atom (e.g., :nord) or a %Esc.Theme{} struct.
Examples
iex> Esc.Theme.Store.set(:nord)
:ok

iex> Esc.Theme.Store.set(:unknown)
{:error, :unknown_theme}

Esc.Tree

Styled tree structures for terminal output.
Trees display hierarchical data with branch connectors.
Example
Tree.root("Project")
|> Tree.child("src")
|> Tree.child("lib")
|> Tree.child("test")
|> Tree.render()
Enumerators
Available enumerator styles:
	:default - Standard box-drawing characters (├──, └──, │)
	:rounded - Rounded final branch (├──, ╰──, │)

Nesting
Trees can contain other trees for nested structures:
subtree = Tree.root("Nested") |> Tree.child("Leaf")
Tree.root("Root") |> Tree.child(subtree) |> Tree.render()
Theme Integration
When a global theme is set (via Esc.set_theme/1) and use_theme is enabled (default),
the tree automatically uses theme colors:
	Root text: theme :emphasis color (bold)
	Connectors: theme :muted color

Explicit styles override theme colors. Use use_theme(tree, false) to disable.

 Summary

 Types

 child()

 t()

 Functions

 child(tree, child)

 Adds a child to the tree.

 enumerator(tree, style)

 Sets the enumerator style.

 enumerator_style(tree, style)

 Sets the style for tree connectors (├──, └──, │).

 item_style(tree, style)

 Sets the style for child items.

 new()

 Creates a new empty tree.

 render(tree)

 Renders the tree to a string.

 root(label)

 Creates a tree with a root label.

 root_style(tree, style)

 Sets the style for the root node.

 use_theme(tree, enabled)

 Enables or disables automatic theme colors.

 Types

 child()

 @type child() :: String.t() | t()

 t()

 @type t() :: %Esc.Tree{
 children: [child()],
 enumerator: :default | :rounded,
 enumerator_style: Esc.Style.t() | nil,
 item_style: Esc.Style.t() | nil,
 root: String.t() | nil,
 root_style: Esc.Style.t() | nil,
 use_theme: boolean()
}

 Functions

 child(tree, child)

 @spec child(t(), child()) :: t()

Adds a child to the tree.
Children can be strings or nested trees.

 enumerator(tree, style)

 @spec enumerator(t(), :default | :rounded) :: t()

Sets the enumerator style.
	:default - Standard characters (├──, └──)
	:rounded - Rounded last branch (├──, ╰──)

 enumerator_style(tree, style)

 @spec enumerator_style(t(), Esc.Style.t()) :: t()

Sets the style for tree connectors (├──, └──, │).

 item_style(tree, style)

 @spec item_style(t(), Esc.Style.t()) :: t()

Sets the style for child items.

 new()

 @spec new() :: t()

Creates a new empty tree.

 render(tree)

 @spec render(t()) :: String.t()

Renders the tree to a string.

 root(label)

 @spec root(String.t()) :: t()

Creates a tree with a root label.

 root_style(tree, style)

 @spec root_style(t(), Esc.Style.t()) :: t()

Sets the style for the root node.

 use_theme(tree, enabled)

 @spec use_theme(t(), boolean()) :: t()

Enables or disables automatic theme colors.
When enabled (default), the tree uses theme colors for:
	Root text (:emphasis color, bold)
	Connectors (:muted color)

Explicit styles (via root_style/2, enumerator_style/2) override theme colors.
Examples
Disable theme colors
Tree.root("Project") |> Tree.use_theme(false)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

