

 EventStore

 v1.4.4

 Table of contents

 	Changelog

 	Introduction

 	Getting started

 	Using the EventStore

 	Subscriptions

 	Serialization

 	Event serialization

 	Deployment

 	Running on a cluster of nodes

 	Upgrades

 	Upgrading an EventStore

 	Upgrade guide v0.17.x to 1.0

 	Modules

 	EventStore

 	EventStore.Config

 	EventStore.Notifications.Publisher.State

 	EventStore.Page

 	EventStore.PubSub

 	EventStore.Streams.StreamInfo

 	EventStore.Tasks.Migration

 	EventStore.Tasks.Migrations

 	Mix.EventStore

 	EventStore.EventData

 	EventStore.RecordedEvent

 	EventStore.Snapshots.SnapshotData

 	EventStore.JsonSerializer

 	EventStore.JsonbSerializer

 	EventStore.Serializer

 	EventStore.TermSerializer

 	EventStore.Tasks.Create

 	EventStore.Tasks.Drop

 	EventStore.Tasks.Init

 	EventStore.Tasks.Migrate

 	Mix Tasks

 	mix event_store.create

 	mix event_store.drop

 	mix event_store.init

 	mix event_store.migrate

 	mix event_store.migrations

Changelog

 v1.4.4

 Bug fixes

	Handle DBConnection.ConnectionError errors when appending events to storage (#261).

 v1.4.3

 Enhancements

	Support Elixir v1.11 and later.
	Parse url with encoded hash in password (#275).
	Allow configuring the default database (#277).
	Fix Elixir Logger.warn/2 warning deprecation message (#278).
	Quote schema names in SQL (#266).
	Fix unused read batch size (#279).

 v1.4.2

 Enhancements

	Allow disconnect_on_error_codes to be passed to the event store Postgrex connection (#263).
	Support all Postgrex and DBConnection options when configuring an event store (#273).

 Bug fixes

	Dialyzer error when calling EventStore.subscribe/2 with :name option (#268).
	Terminate a monitored process only if there are no other processes registered to use it (#272).

 v1.4.1

 Enhancements

	Allow :parameters to be passed to the EventStore database connection (#257).
	Use configurable :timeout option for subscription database queries (#259).

 v1.4.0

	List running event store instances (#244).
	Paginate streams (#246).
	Add stream_info/2 function (#247).
	Remove unmaintained elixir_uuid dependency (#253).
	Add option to use EventStore with PgBouncer (#249).

 v1.3.2

 Enhancements

	Add postgrex socket_options option (#242).

 Bug fixes

	Fix bug with subscriptions trigger in older Postgres versions (#241).

 Upgrading

This release includes a database migration to be run. Please read the Upgrading an EventStore guide for details on how to migrate an existing database.

 v1.3.1

 Bug fixes

	Support running event store migrations when using a schema (#239).

 v1.3.0

	Improve performance of appending events under normal and degraded network conditions (#230).
	Subscription checkpoint tuning (#237).

 Bug fixes

	Fix bug with catch-up all streams subscription where the checkpoint is not committed for hard deleted streams (#238).

 Upgrading

This release requires a database migration to be run. Please read the Upgrading an EventStore guide for details on how to migrate an existing database.

 v1.2.3

	Add :configure to postgrex connection options (#233).
	Use runtime configuration in Mix tasks (#236).

 v1.2.2

	Read stream and stream events backward (#234).

 v1.2.1

	Allow optional event_id to be included in EventStore.EventData struct (#229).
	Adds an option to supply an existing database connection or transaction to EventStore functions (#231).

 v1.2.0

 Enhancements

	Delete event stream (#203).
	Introduce mix event_store.migrations task to list migration status (#207).
	Remove distributed registry (#210).
	Hibernate subscription process after inactivity (#214).
	Runtime event store configuration (#217).
	Shared database connection pools (#216).
	Shared database connection for notifications (#225).
	Transient subscriptions (#215)
	Improve resilience when database connection is unavailable (#226).

 Upgrading

This release requires a database migration to be run. Please read the Upgrading an EventStore guide for details on how to migrate an existing database.

 Breaking changes

Usage of EventStore.Tasks.Init task to initialise an event store database has been changed as follows:
Previous usage:
:ok = EventStore.Tasks.Init.exec(MyApp.EventStore, config, opts)
Usage now:
:ok = EventStore.Tasks.Init.exec(config)
:ok = EventStore.Tasks.Init.exec(config, opts)

 Bug fixes

	Support appending events to a stream with :any_version concurrently (#209).

 v1.1.0

 Enhancements

	Support Postgres schemas (#182).
	Dynamic event store (#184).
	Add timeout option to config (#189).
	Namespace advisory lock to prevent clash with other applications (#166).
	Use database lock to prevent migrations from running concurrently (#204).

 Breaking changes

The following EventStore API functions have been changed where previously (in v1.0 and earlier) the last argument was an optional timeout (a non-negative integer or :infinity). This has been changed to be an optional Keyword list, which may include a timeout (e.g. [timeout: 5_000]). The stream_forward and stream_all_forward functions now also require the optional read_batch_size argument to be provided as part of the options Keyword list.
These changes were required to support dynamic event stores where an event store name can be included in the options to each function. If you did not provide a timeout to any of these functions then you will not need to make any changes to your code. See the example usages below for details.
	EventStore.append_to_stream
	EventStore.link_to_stream
	EventStore.read_stream_forward
	EventStore.read_all_streams_forward
	EventStore.stream_forward
	EventStore.stream_all_forward

Previous usage:
EventStore.append_to_stream(stream_uuid, expected_version, events, timeout)
EventStore.link_to_stream(stream_uuid, expected_version, events_or_event_ids, timeout)
EventStore.read_stream_forward(stream_uuid, start_version, count, timeout)
EventStore.read_all_streams_forward(start_version, count, timeout)
EventStore.stream_forward(stream_uuid, start_version, read_batch_size, timeout)
EventStore.stream_all_forward(start_version, read_batch_size, timeout)
Usage now:
EventStore.append_to_stream(stream_uuid, expected_version, events, timeout: timeout)
EventStore.link_to_stream(stream_uuid, expected_version, events_or_event_ids, timeout: timeout)
EventStore.read_stream_forward(stream_uuid, start_version, count, timeout: timeout)
EventStore.read_all_streams_forward(start_version, count, timeout: timeout)
EventStore.stream_forward(stream_uuid, start_version, read_batch_size: read_batch_size, timeout: timeout)
EventStore.stream_all_forward(start_version, read_batch_size: read_batch_size, timeout: timeout)

 Upgrading

This release requires a database migration to be run. Please read the Upgrading an EventStore guide for details on how to migrate an existing database.

 v1.0.3

 Bug fixes

	Use event's stream version when appending events to a stream (#202).

 v1.0.2

Enhancements
	Prevent double supervision by starting / stopping supervisor manually (#194).
	Use DynamicSupervisor for subscriptions.

 v1.0.1

 Bug fixes

	Fix EventStore.Registration.DistributedForwarder state when running multiple nodes (#186).

 v1.0.0

 Enhancements

	Support multiple event stores (#168).
	Add support for queue_target and queue_interval database connection settings (#172).
	Add support for created_at values to be of type NaiveDateTime (#175).

 Bug fixes

	Fix function clause error on DBConnection.ConnectionError (#167).

 Upgrading

Follow the upgrade guide to define and use your own application specific event store].

 v0.17.0

 Enhancements

	SSL support including Mix tasks (#161).
	Use timestamp with time zone for timestamp fields (#150).

 Upgrading

Upgrade your existing EventStore database by running:
mix event_store.migrate

Note: The migrate command is idempotent and can be safely run multiple times.
You can drop and recreate an EventStore database by running:
mix do event_store.drop, event_store.create, event_store.init

 v0.16.2

 Bug fixes

	Fix issue with concurrent subscription partitioning (#162).
	Reliably start EventStore.Notifications.Supervisor on :global name clash (#165).

 v0.16.1

 Bug fixes

	Stop Postgrex database connection process in mix event_store.init and event_store.migrate tasks after use to prevent IEx shutdown when tasks are run together (as mix do event_store.init, event_store.migrate).
	Ensure the event store application doesn't crash when the database connection is lost (#159).

 v0.16.0

 Enhancements

	Add :socket and :socket_dir config options (#132).
	Rename uuid dependency to elixir_uuid (#135).
	Subscription concurrency (#134).
	Send :subscribed message to all subscribers connected to a subscription (#136).
	Update to postgrex v0.14 (#143).

 Breaking changes

	Replace :poison with :jason for JSON event data & metadata serialization (#144).
To support this change you will need to derive the Jason.Encoder protocol for all of your events.
This can be done by adding @derive Jason.Encoder before defining the struct in every event module.
defmodule Event1 do
 @derive Jason.Encoder
 defstruct [:id, :data]
end
Or using Protocol.derive/2 for each event, as shown below.
require Protocol

for event <- [Event1, Event2, Event3] do
 Protocol.derive(Jason.Encoder, event)
end

 0.15.1

 Enhancements

	Use a timeout of :infinity for the migration task (mix event_store.migrate) to allow database migration to run longer than the default 15 seconds.

 Bug fixes

	Socket closing causes the event store to never receive notifications (#130).
	Subscription with selector function should notify pending events after all filtered (#131).

 0.15.0

	Support system environment variables for all config (#115).
	Allow subscriptions to filter the events they receive (#114).
	Allow callers to omit event_type when event data is a struct (#118).
	Remove dependency on psql for event_store.create, event_store.init, event_store.migrate, and event_store.drop mix tasks (#117).
	Supports query parameters in URL for database connection (#119).
	Improve typespecs and include Dialyzer in Travis CI build (#121).

 0.14.0

	Add JSONB support (#86).
	Add :ssl and :ssl_opts config params (#88).
	Make mix event_store.init task do nothing if events table already exists (#89).
	Timeout issue when using EventStore.read_stream_forward (#92).
	Replace :info level logging with :debug (#90).
	Dealing better with Poison dependency (#91).
	Publish events directly to subscriptions (#93).
	Use PostgreSQL advisory locks to enforce only one subscription instance (#98).
	Remove stream process (#99).
	Use PostgreSQL's NOTIFY / LISTEN for event pub/sub (#100).
	Link existing events to another stream (#103).
	Subscription notification message once successfully subscribed (#104).
	Transient subscriptions (#105).
	Transient subscription event mapping function (#108).
	Turn EventStore mix tasks into generic tasks for use with Distillery during deployment (#111).

 Upgrading

Upgrade your existing EventStore database by running:
mix event_store.migrate

You can drop and recreate an EventStore database by running:
mix do event_store.drop, event_store.create, event_store.init

 v0.13.2

 Bug fixes

	Use Supervisor.child_spec with an explicit id for Registry processes to support Elixir v1.5.0 and v1.5.1 (v1.5.2 contains a fix for this issue).

 v0.13.1

 Bug fixes

	EventStore migrate mix task read migration SQL scripts from app dir (Application.app_dir(:eventstore)).

 v0.13.0

 Enhancements

	Use a UUID field for the event_id column, rename existing field to event_number (#75).
	Use uuid data type for event correlation_id and causation_id (#57).
	Mix task to migrate an existing EventStore database (mix event_store.migrate).

 Bug fixes

	Append to stream is limited to 7,281 events in a single request (#77).

 Upgrading

Upgrade your existing EventStore database by running: mix event_store.migrate
Or you can drop and recreate the EventStore database by running: mix do event_store.drop, event_store.create, event_store.init

 v0.12.1

 Bug fixes

	Publisher only notifies first pending event batch (#81).

 v0.12.0

 Enhancements

	Allow optimistic concurrency check on write to be optional (#31).

 Bug fixes

	Fix issue where subscription doesn't immediately receive events published while transitioning between catch-up and subscribed. Any missed events would be noticed and replayed upon next event publish.

 v0.11.0

 Enhancements

	Support for running on a cluster of nodes using Swarm for process distribution (#53).

	Add stream_version column to streams table. It is used for stream info querying and optimistic concurrency checks, instead of querying the events table.

 Upgrading

Run the schema migration v0.11.0.sql script against your event store database.

 v0.10.1

 Bug fixes

	Fix for ack of last seen event in stream subscription (#66).

 v0.10.0

 Enhancements

	Writer per event stream (#55).
You must run the schema migration v0.10.0.sql script against your event store database.

	Use DBConnection's built in support for connection pools (using poolboy).

 v0.9.0

 Enhancements

	Adds causation_id alongside correlation_id for events (#48).
To migrate an existing event store database execute v0.9.0.sql script.

	Allow single stream, and all streams, subscriptions to provide a mapper function that maps every received event before sending to the subscriber.
EventStore.subscribe_to_stream(stream_uuid, "subscription", subscriber, mapper: fn event -> event.data end)

	Subscribers now receive an {:events, events} tuple and should acknowledge receipt by: EventStore.ack(subscription, events)

 v0.8.1

 Enhancements

	Add Access functions to EventStore.EventData and EventStore.RecordedEvent modules (#37).
	Allow database connection URL to be provided as a system variable (#39).

 Bug fixes

	Writer not parsing database connection URL from config (#38).

 v0.8.0

 Enhancements

	Stream events from a single stream forward.

 v0.7.4

 Enhancements

	Subscriptions use Elixir streams to read events when catching up.

 v0.7.3

 Enhancements

	Upgrade fsm dependency to v0.3.0 to remove Elixir 1.4 compiler warnings.

 v0.7.2

 Enhancements

	Stream all events forward (#34).

 v0.7.1

 Enhancements

	Allow snapshots to be deleted (#26).

 v0.7.0

 Enhancements

	Subscribe to a single stream, or all streams, from a specified start position (#17).

 v0.6.2

 Bug fixes

	Subscriptions that are at max capacity should wait until all pending events have been acknowledged by the subscriber being catching up with any unseen events.

 v0.6.1

 Enhancements

	Use IO lists to build insert events SQL statement (#23).

 v0.6.0

 Enhancements

	Use NaiveDateTime for each recorded event's created_at property.

 v0.5.2

 Enhancements

	Provide typespecs for the public API (#16)
	Fix compilation warnings in mix database task (#14)

 Bug fixes

	Read stream forward does not use count to limit returned events (#10)

 v0.5.0

 Enhancements

	Ack handled events in subscribers (#18).
	Buffer events between publisher and subscriber (#19).

Getting started

EventStore is available in Hex and can be installed as follows:
	Add eventstore to your list of dependencies in mix.exs:
 def deps do
 [{:eventstore, "~> 1.4"}]
 end
 Run mix deps.get to install the new dependency.

	Define an event store module for your application:
 defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app

 # Optional `init/1` function to modify config at runtime.
 def init(config) do
 {:ok, config}
 end
 end

	Add a config entry containing the PostgreSQL database connection details for your event store module to each environment's mix config file (e.g. config/dev.exs):
 config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer,
 username: "postgres",
 password: "postgres",
 database: "eventstore",
 hostname: "localhost"

 # OR use a URL to connect instead
 config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer,
 url: "postgres://postgres:postgres@localhost/eventstore"
 Note: Some managed database providers (such as DigitalOcean) don't provide access to the default postgres database. In such case, you can specify a default database in the following way:
 config :my_app, MyApp.EventStore,
 default_database: "defaultdb",
 Note: To use an EventStore with Commanded you should configure the event
 store to use Commanded's JSON serializer which provides additional support for
 JSON decoding:
 config :my_app, MyApp.EventStore, serializer: Commanded.Serialization.JsonSerializer
 Configure optional database connection settings:
 config :my_app, MyApp.EventStore,
 pool_size: 10
 queue_target: 50
 queue_interval: 1_000,
 schema: "schema_name"
 The database connection pool configuration options are:
	:pool_size - The number of connections (default: 10).

 Handling requests is done through a queue. When DBConnection is started, there are two relevant options to control the queue:
	:queue_target - in milliseconds (default: 50ms).
	:queue_interval - in milliseconds (default: 1,000ms).

 Additional options:
	:schema - define the Postgres schema to use (default: public schema).
	:timeout - set the default database query timeout in milliseconds (default: 15,000ms).
	:shared_connection_pool - allows a database connection pool to be shared amongst multiple event store instances (default: nil).

 Subscription options:
	:subscription_retry_interval - interval between subscription connection retry attempts (default: 60,000ms).
	:subscription_hibernate_after - subscriptions will automatically hibernate to save memory after a period of inactivity (default: 15,000ms).

	Add your event store module to the event_stores list for your app in mix config:
 # config/config.exs
 config :my_app, event_stores: [MyApp.EventStore]
 This ensures the event store mix tasks can be run without specifying the event store as a command line argument (e.g. mix event_store.init -e MyApp.EventStore).

	Create and initialize the event store database and tables using the mix tasks:
 $ mix do event_store.create, event_store.init

	The final piece of configuration is to setup your event store as a supervisor within your application's supervision tree (e.g. in lib/my_app/application.ex, inside the start/2 function):
 defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 MyApp.EventStore
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
 end

 Using an existing database

You can use an existing PostgreSQL database with EventStore by running the following mix task to create and initialize the event store tables:
$ mix event_store.init

 Reset an existing database

To drop an existing EventStore database and recreate it you can run the following mix tasks:
$ mix do event_store.drop, event_store.create, event_store.init

Warning This will drop the database and delete all data.

 Initialize a database using an Elixir release

If you're using an Elixir release build by the task mix release you won't have mix available therefore you won't be able to run the following command in order to initialize a new database.
$ mix do event_store.create, event_store.init

To do that you can use task modules defined inside EventStore (in lib/mix/tasks):
	EventStore.Tasks.Create
	EventStore.Tasks.Init

 So you can take advantage of the running one-off commands supported by Mix release, using a helper module defined like this:
defmodule MyApp.ReleaseTasks do
 def init_event_store do
 {:ok, _} = Application.ensure_all_started(:postgrex)
 {:ok, _} = Application.ensure_all_started(:ssl)

 :ok = Application.load(:my_app)

 config = MyApp.EventStore.config()

 :ok = EventStore.Tasks.Create.exec(config, [])
 :ok = EventStore.Tasks.Init.exec(config, [])
 end
end

 Using Postgres schemas

A Postgres database contains one or more named schemas, which in turn contain tables. By default tables are defined in a schema named "public".
An EventStore can be configured to use a different schema name. Specify the schema when using the EventStore macro in your event store module:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app, schema: "example"
end
Or provide the schema as an option in the init/1 callback function:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app

 def init(config) do
 {:ok, Keyword.put(config, :schema, "example")}
 end
end
Or define it in environment config when configuring the database connection settings:
config/config.exs
config :my_app, MyApp.EventStore, schema: "example"
This feature allows you to define and start multiple event stores sharing a single Postgres database, but with their data isolated and segregated by schema.
Note the mix event_store.<task> tasks to create, initialize, and drop an event store database will also handle creating and/or dropping the schema.

 Event data and metadata data type

EventStore has support for persisting event data and metadata as either:
	Binary data, using the bytea data type, designed for storing binary strings.
	JSON data, using the jsonb data type, specifically designed for storing JSON encoded data.

The default data type is bytea. This can be used with any binary serializer, such as the Erlang Term format, JSON data encoded to binary, and other serialization formats.

 Using the jsonb data type

The advantage this format is that it allows you to execute ad-hoc SQL queries against the event data or metadata using PostgreSQL's native JSON query support.
To enable native JSON support you need to configure your event store to use the jsonb data type. You must also use the EventStore.JsonbSerializer serializer, to ensure event data and metadata is correctly serialized to JSON, and include the Postgres types module (EventStore.PostgresTypes) for the Postgrex library to support JSON.
config/config.exs
config :my_app, MyApp.EventStore,
 column_data_type: "jsonb",
 serializer: EventStore.JsonbSerializer,
 types: EventStore.PostgresTypes
Finally, you need to include the Jason library as a dependency in mix.exs to enable Postgrex JSON support and then run mix deps.get to install.
mix.exs
defp deps do
 [{:jason, "~> 1.2"}]
end
These settings must be configured before creating the EventStore database. It's not possible to migrate between bytea and jsonb data types once you've created the database. This must be decided in advance.

 Using with PgBouncer

EventStore uses LISTEN/NOTIFY and pg_advisory_locks Postgres capabilities. Unfortunately, they are not compatible with PgBouncer running in transaction (most typical) mode.
As a workaround, you can provide an additional session_mode_url parameter to the EventStore config:
config :my_app, MyApp.EventStore,
 url: "postgres://postgres:pgbouncer-in-transaction-mode@localhost/eventstore"
 session_mode_url: "postgres://postgres:pgbouncer-in-session-mode@localhost/eventstore"
This will allow the EventStore to use your regular pool settings to connect to the database defined in url for most database operations. It will separately establish connections using the session_mode_url where necessary which you should point to PgBouncer in session mode or connected directly to the Postgres instance.

Using the EventStore

First you need to define your own event store module:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app
end

 Writing to a stream

Create a unique identity for each stream. It must be a string. This example uses the elixir_uuid package.
stream_uuid = EventStore.UUID.uuid4()
Set the expected version of the stream. This is used for optimistic concurrency. A new stream will be created when the expected version is zero.
expected_version = 0
Build a list of events to persist. The data and metadata fields will be serialized to binary data. This uses your own serializer, as defined in config, that implements the EventStore.Serializer behaviour.
alias EventStore.EventData
alias MyApp.EventStore

defmodule ExampleEvent do
 defstruct [:key]
end

events = [
 %EventData{
 event_type: "Elixir.ExampleEvent",
 data: %ExampleEvent{key: "value"},
 metadata: %{user: "someuser@example.com"},
 }
]
Append the events to the stream:
:ok = EventStore.append_to_stream(stream_uuid, expected_version, events)

 Appending events to an existing stream

The expected version should equal the number of events already persisted to the stream when appending to an existing stream.
This can be set as the length of events returned from reading the stream:
alias MyApp.EventStore

events =
 stream_uuid
 |> EventStore.stream_forward()
 |> Enum.to_list()

stream_version = length(events)
Append new events to the existing stream:
alias EventStore.EventData
alias MyApp.EventStore

new_events = [%EventData{..}, ...]

:ok = EventStore.append_to_stream(stream_uuid, stream_version, new_events)
Why must you provide the expected stream version?
This is to ensure that no events have been appended to the stream by another process between your read and subsequent write.
The EventStore.append_to_stream/4 function will return {:error, :wrong_expected_version} when the version you provide is mismatched with the stream. You can resolve this error by reading the stream's events again, then attempt to append your new events using the latest stream version.

 Optional concurrency check

You can choose to append events to a stream without using the concurrency check, or having first read them from the stream, by using one of the following values instead of the expected version:
	:any_version - No concurrency checking; allow any stream version (including no stream).
	:no_stream - Ensure the stream does not exist.
	:stream_exists - Ensure the stream exists.

alias MyApp.EventStore

:ok = EventStore.append_to_stream(stream_uuid, :any_version, events)

 Reading from a stream

Read all events from a single stream, starting at the stream's first event:
alias MyApp.EventStore

{:ok, events} = EventStore.read_stream_forward(stream_uuid)

 Reading from all streams

Read all events from all streams:
alias MyApp.EventStore

{:ok, events} = EventStore.read_all_streams_forward()
By default this will be limited to read the first 1,000 events from all streams only.

 Stream from all streams

Stream all events from all streams:
alias MyApp.EventStore

all_events = EventStore.stream_all_forward() |> Enum.to_list()
This will read all events into memory, it is for illustration only. Use the Stream functions to process the events in a memory efficient way.

 Linking events between streams

Event linking allows you to include events in multiple streams, such as copying an event from one stream to another, but only a reference to the original event is stored.
An event may be present in a stream only once, but may be linked into as many streams as required.
Linked events are used to build the $all stream containing every persisted event, globally ordered.
Use each recorded event's event_number field for the position of the event within the read/received stream. The stream_uuid and stream_version fields refer to the event's original stream.
Read source events:
alias MyApp.EventStore

{:ok, events} = EventStore.read_stream_forward(source_stream_uuid)
Link read events to another stream:
alias MyApp.EventStore

:ok = EventStore.link_to_stream(target_stream_uuid, 0, events)
You can also pass a list of event_ids instead of recorded event structs to link events.

Subscriptions

There are two types of subscriptions provided by EventStore:
	Transient subscriptions where new events are broadcast to subscribers immediately after they have been appended to storage.
	Persistent subscriptions which guarantee at-least-once delivery of every persisted event, provide back-pressure, and can be started, paused, and resumed from any position, including from the stream's origin.

 Event pub/sub

PostgreSQL's LISTEN and NOTIFY commands are used to pub/sub event notifications from the database. An after update trigger on the streams table is used to execute NOTIFY for each batch of inserted events. The notification payload contains the stream uuid, stream id, and first / last stream versions (e.g. stream-12345,1,1,5).
A single process will connect to the database to listen for these notifications. It fetches the event data and broadcasts to all interested subscriptions. This approach supports running an EventStore on multiple nodes, regardless of whether they are connected together to form a cluster using distributed Erlang. One connection per node is used for single node and multi-node deployments.

 Transient subscriptions

Use EventStore.subscribe/2 to create a transient subscription to a single stream identified by its stream_uuid. Events will be received in batches as an {:events, events} message, where events is a collection of EventStore.RecordedEvent structs.
You can use $all as the stream identity to subscribe to events appended to all streams. With transient subscriptions you do not need to acknowledge receipt of the published events. The subscription will terminate when the subscriber process stops running.
Subscribe to single stream events
Subscribe to events appended to a single stream:
alias MyApp.EventStore

:ok = EventStore.subscribe(stream_uuid)

receive first batch of events
receive do
 {:events, events} ->
 IO.puts("Received events: " <> inspect(events))
end
Filtering events
You can provide an event selector function that filters each RecordedEvent before sending it to the subscriber:
alias EventStore.RecordedEvent
alias MyApp.EventStore

EventStore.subscribe(stream_uuid, selector: fn
 %RecordedEvent{data: data} -> data != nil
end)

receive first batch of mapped event data
receive do
 {:events, %RecordedEvent{} = event_data} ->
 IO.puts("Received non nil event data: " <> inspect(event_data))
end
Mapping events
You can provide an event mapping function that maps each RecordedEvent before sending it to the subscriber:
alias EventStore.RecordedEvent
alias MyApp.EventStore

EventStore.subscribe(stream_uuid, mapper: fn
 %RecordedEvent{data: data} -> data
end)

receive first batch of mapped event data
receive do
 {:events, event_data} ->
 IO.puts("Received event data: " <> inspect(event_data))
end

 Persistent subscriptions

Persistent subscriptions to a stream will guarantee at least once delivery of every persisted event. Each subscription may be independently paused, then later resumed from where it stopped. The last received and acknowledged event is stored by the EventStore to support resuming at a later time or whenever the subscriber process restarts.
A subscription can be created to receive events appended to a single or all streams.
Subscriptions must be uniquely named. By default a subscription only supports a single subscriber. Attempting to connect two subscribers to the same subscription will return {:error, :subscription_already_exists}. You can optionally create a competing consumer subscription with multiple subscribers.

 :subscribed message

Once the subscription has successfully subscribed to the stream it will send the subscriber a {:subscribed, subscription} message. This indicates the subscription succeeded and you will begin receiving events.
Only one instance of a named subscription to a stream can connect to the database. This guarantees that starting the same subscription on each node when run on a cluster, or when running multiple single instance nodes, will only allow one subscription to actually connect. Therefore you can defer any initialisation until receipt of the {:subscribed, subscription} message to prevent duplicate effort by multiple nodes racing to create or subscribe to the same subscription.

 :events message

For each batch of events appended to the event store your subscriber will receive a {:events, events} message. The events list is a collection of EventStore.RecordedEvent structs.

 Subscription start from

By default subscriptions are created from the stream origin; they will receive all events from the stream. You can optionally specify a given start position:
	:origin - subscribe to events from the start of the stream (identical to using 0). This is the default behaviour.
	:current - subscribe to events from the current version.
	event_number (integer) - specify an exact event number to subscribe from. This will be the same as the stream version for single stream subscriptions.

 Acknowledge received events

Receipt of each event by the subscriber must be acknowledged. This allows the subscription to resume on failure without missing an event and to indicate the subscription is ready to receive the next event.
The subscriber receives an {:events, events} tuple containing the published events. A subscription is returned when subscribing to the stream. This should be used to send the acknowledgement to using the EventStore.ack/2 function:
 alias MyApp.EventStore

 :ok = EventStore.ack(subscription, events)
A subscriber can confirm receipt of each event in a batch by sending multiple acks, one per event. The subscriber may confirm receipt of the last event in the batch in a single ack.
A subscriber will not receive further published events until it has confirmed receipt of all received events. This provides back pressure to the subscription to prevent the subscriber from being overwhelmed with messages if it cannot keep up. The subscription will buffer events until the subscriber is ready to receive, or an overflow occurs. At which point it will move into a catch-up mode and query events and replay them from storage until caught up.
Subscribe to all events
Subscribe to events appended to all streams:
alias MyApp.EventStore

{:ok, subscription} = EventStore.subscribe_to_all_streams("example_all_subscription", self())

Wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts("Successfully subscribed to all streams")
end

receive do
 {:events, events} ->
 IO.puts "Received events: #{inspect events}"

 # Acknowledge receipt
 :ok = EventStore.ack(subscription, events)
end
Unsubscribe from all streams:
alias MyApp.EventStore

:ok = EventStore.unsubscribe_from_all_streams("example_all_subscription")
Subscribe to single stream events
Subscribe to events appended to a single stream:
alias MyApp.EventStore

stream_uuid = EventStore.UUID.uuid4()
{:ok, subscription} = EventStore.subscribe_to_stream(stream_uuid, "example_single_subscription", self())

Wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts("Successfully subscribed to single stream")
end

receive do
 {:events, events} ->
 # Process events & acknowledge receipt
 :ok = EventStore.ack(subscription, events)
end
Unsubscribe from a single stream:
alias MyApp.EventStore

:ok = EventStore.unsubscribe_from_stream(stream_uuid, "example_single_subscription")
Start subscription from a given position
You can choose to receive events from a given starting position.
The supported options are:
	:origin - Start receiving events from the beginning of the stream or all streams (default).
	:current - Subscribe to newly appended events only, skipping already persisted events.
	event_number (integer) - Specify an exact event number to subscribe from. This will be the same as the stream version for single stream subscriptions.

Example all stream subscription that will receive new events appended after the subscription has been created:
alias MyApp.EventStore

{:ok, subscription} = EventStore.subscribe_to_all_streams("example_subscription", self(), start_from: :current)
Event Filtering
You can provide an event selector function that run in the subscription process, before sending the event to your mapper and subscriber. You can use this to filter events before dispatching to a subscriber.
Subscribe to all streams and provide a selector function that only sends data that the selector function returns true for.
alias EventStore.RecordedEvent
alias MyApp.EventStore

selector = fn %RecordedEvent{event_number: event_number} ->
 rem(event_number) == 0
end

{:ok, subscription} = EventStore.subscribe_to_all_streams("example_subscription", self(), selector: selector)

wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts("Successfully subscribed to all streams")
end

receive do
 {:events, filtered_events} ->
 # ... process events & ack receipt using last `event_number`
 RecordedEvent{event_number: event_number} = List.last(filtered_events)

 :ok = EventStore.ack(subscription, event_number)
end
Mapping events
You can provide an event mapping function that runs in the subscription process, before sending the event to your subscriber. You can use this to change the data received.
Subscribe to all streams and provide a mapper function that sends only the event data:
alias EventStore.RecordedEvent
alias MyApp.EventStore

mapper = fn %RecordedEvent{event_number: event_number, data: data} ->
 {event_number, data}
end

{:ok, subscription} = EventStore.subscribe_to_all_streams("example_subscription", self(), mapper: mapper)

wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts("Successfully subscribed to all streams")
end

receive do
 {:events, mapped_events} ->
 # ... process events & ack receipt using last `event_number`
 {event_number, _data} = List.last(mapped_events)

 :ok = EventStore.ack(subscription, event_number)
end

 Subscription concurrency

A single persistent subscription can support multiple subscribers. Events will be distributed to subscribers evenly using a round-robin algorithm. The competing consumers pattern enables multiple subscribers to process events concurrently to optimise throughput, to improve scalability and availability, and to balance the workload.
By default a subscription will only allow a single subscriber but you can opt-in to concurrent subscriptions be providing a non-negative concurrency_limit as a subscription option.
Subscription concurrency configuration options
	concurrency_limit defines the maximum number of concurrent subscribers allowed to connect to the subscription. By default only one subscriber may connect. If too many subscribers attempt to connect to the
subscription an {:error, :too_many_subscribers} is returned.

	buffer_size limits how many in-flight events will be sent to the subscriber process before acknowledgement of successful processing. This limits the number of messages sent to the subscriber and stops their message queue from getting filled with events. Defaults to one in-flight event.

	partition_by is an optional function used to partition events to subscribers. It can be used to guarantee processing order when multiple subscribers have subscribed to a single subscription as described in Ordering guarantee below. The function is passed a single argument (an EventStore.RecordedEvent struct) and must return the partition key. As an example to guarantee events for a single stream are processed serially, but different streams are processed concurrently, you could use the stream_uuid as the partition key.

 Ordering guarantee

With multiple subscriber processes connected to a single subscription the ordering of event processing is no longer guaranteed since events may be processed in differing amounts of time. This can cause problems if your event handling code expects events to be processed in the order they were originally appended to a steam.
You can use a partition_by function to guarantee ordering of events within a particular group (e.g. per stream) but still allow events for different groups to be processed concurrently.
Partitioning gives you the benefits of competing consumers but still allows event ordering by partition where required.
Partition by example
alias EventStore.RecordedEvent
alias MyApp.EventStore

by_stream = fn %RecordedEvent{stream_uuid: stream_uuid} -> stream_uuid end

{:ok, _subscription} =
 EventStore.subscribe_to_stream(stream_uuid, "example", self(),
 concurrency_limit: 10,
 partition_by: by_stream
)
The above subscription would ensure that events for each stream are processed serially (by a single subscriber) in the order they were appended to the stream, but events for any other stream can be processed concurrently by another subscriber.

 Example persistent subscriber

Use a GenServer process to subscribe to the event store and track all notified events:
An example subscriber
defmodule Subscriber do
 use GenServer

 alias MyApp.EventStore

 def start_link do
 GenServer.start_link(__MODULE__, [])
 end

 def received_events(subscriber) do
 GenServer.call(subscriber, :received_events)
 end

 def init(events) do
 # Subscribe to events from all streams
 {:ok, subscription} = EventStore.subscribe_to_all_streams("example_subscription", self())

 {:ok, %{events: events, subscription: subscription}}
 end

 # Successfully subscribed to all streams
 def handle_info({:subscribed, subscription}, %{subscription: subscription} = state) do
 {:noreply, state}
 end

 # Event notification
 def handle_info({:events, events}, state) do
 %{events: existing_events, subscription: subscription} = state

 # Confirm receipt of received events
 :ok = EventStore.ack(subscription, events)

 {:noreply, %{state | events: existing_events ++ events}}
 end

 def handle_call(:received_events, _from, %{events: events} = state) do
 {:reply, events, state}
 end
end
Start your subscriber process, which subscribes to all streams in the event store:
{:ok, subscriber} = Subscriber.start_link()

 Deleting a persistent subscription

You can delete a single stream or all stream subscription without requiring an active subscriber:
alias MyApp.EventStore

:ok = EventStore.delete_subscription(stream_uuid, subscription_name)
:ok = EventStore.delete_all_streams_subscription(subscription_name)
Deleting the subscription will remove the subscription checkpoint allowing you to later create a subscription with the same name, using any start point.
If there is an active subscriber when deleting the subscription it will be stopped.

Event serialization

The default serialization of event data and metadata uses Erlang's external term format. This is not a recommended serialization format for production usage as backwards compatibility is only guaranteed going back at least two major releases.
You must implement the EventStore.Serializer behaviour to provide your preferred serialization format.

 JSON serialization using Jason

EventStore includes a JSON serializer using Jason in the EventStore.JsonSerializer module. To include it, add {:jason, "~> 1.1"} to your application's mix dependencies and configure your EventStore as below.
config :eventstore, MyApp.EventStore, serializer: EventStore.JsonSerializer

 Example JSON serializer using Poison

The example serializer below serializes event data and metadata to JSON using the Poison library.
defmodule JsonSerializer do
 @moduledoc """
 A serializer that uses the JSON format.
 """

 @behaviour EventStore.Serializer

 @doc """
 Serialize given term to JSON binary data.
 """
 def serialize(term) do
 Poison.encode!(term)
 end

 @doc """
 Deserialize given JSON binary data to the expected type.
 """
 def deserialize(binary, config) do
 type = case Keyword.get(config, :type, nil) do
 nil -> []
 type -> type |> String.to_existing_atom |> struct
 end
 Poison.decode!(binary, as: type)
 end
end
Configure the JSON serializer for your event store by setting the serializer option in the mix environment configuration file (e.g. config/dev.exs):
config :eventstore, MyApp.EventStore, serializer: JsonSerializer
You must set the event_type field to a string representing the type of event being persisted when using this serializer:
%EventStore.EventData{
 event_type: "Elixir.ExampleEvent",
 data: %ExampleEvent{key: "value"},
 metadata: %{user: "someuser@example.com"},
}
You can use Atom.to_string/1 to get a string representation of a given event struct compatible with the example JsonSerializer module:
event = %ExampleEvent{key: "value"}
event_type = Atom.to_string(event.__struct__) #=> "Elixir.ExampleEvent"

Running on a cluster of nodes

EventStore supports running on multiple nodes as either a distributed Erlang cluster or as multiple single instance nodes.

 Event publication

PostgreSQL's LISTEN / NOTIFY is used to pub/sub event notifications. A listener database connection process is started on each node. It connects to the database to listen for events and publishes them to interested subscription processes running on the node. The approach is the same regardless of whether distributed Erlang is used or not.

 Subscriptions

PostgreSQL's advisory locks are used to limit each uniquely named subscription to run at most once. This prevents multiple instances of a subscription from running on different nodes. Advisory locks are faster than table locks, are stored in memory to avoid table bloat, and are automatically cleaned up by the server at the end of the session.

 Automatic cluster formation

You can use libcluster to automatically form clusters of Erlang nodes, with either static or dynamic node membership.
You will need to include libcluster as an additional dependency in mix.exs:
defp deps do
 [{:libcluster, "~> 2.2"}]
end
Then configure your preferred cluster topology in the environment config (e.g. config/config.exs). An example is shown below using the standard Erlang epmd daemon strategy:
config :libcluster,
 topologies: [
 example: [
 strategy: Cluster.Strategy.Epmd,
 config: [hosts: [:"node1@127.0.0.1", :"node2@127.0.0.1", :"node3@127.0.0.1"]],
]
]
Please refer to the libcluster documentation for more detail.

 Starting a cluster

	Run an Erlang Port Mapper Daemon (epmd):
 $ epmd -d

	Start an iex console per node:
 $ MIX_ENV=distributed iex --name node1@127.0.0.1 -S mix

 $ MIX_ENV=distributed iex --name node2@127.0.0.1 -S mix

 $ MIX_ENV=distributed iex --name node3@127.0.0.1 -S mix

The cluster will be automatically formed as soon as the nodes start.

 Static cluster topology and formation

Instead of using libcluster you can configure the :kernel application to wait for cluster formation before starting your application during node start up. This approach is useful when you have a static cluster topology that can be defined in config.
The sync_nodes_optional configuration specifies which nodes to attempt to connect to within the sync_nodes_timeout window, defined in milliseconds, before continuing with startup. There is also a sync_nodes_mandatory setting which can be used to enforce all nodes are connected within the timeout window or else the node terminates.
Each node requires its own individual configuration, listing the other nodes in the cluster:
node1 config
config :kernel,
 sync_nodes_optional: [:"node2@192.168.1.1", :"node3@192.168.1.2"],
 sync_nodes_timeout: 30_000
The sync_nodes_timeout can be configured as :infinity to wait indefinitely for all nodes to
connect. All involved nodes must have the same value for sync_nodes_timeout.
The above approach will only work for Elixir releases. You will need to use Erlang's sys.config file for development purposes.
The Erlang equivalent of the :kernerl mix config, as above, is:
% node1.sys.config
[{kernel,
 [
 {sync_nodes_optional, ['node2@127.0.0.1', 'node3@127.0.0.1']},
 {sync_nodes_timeout, 30000}
]}
].

 Starting a cluster

	Run an Erlang Port Mapper Daemon (epmd):
 $ epmd -d

	Start an iex console per node:
 $ MIX_ENV=distributed iex --name node1@127.0.0.1 --erl "-config cluster/node1.sys.config" -S mix

 $ MIX_ENV=distributed iex --name node2@127.0.0.1 --erl "-config cluster/node2.sys.config" -S mix

 $ MIX_ENV=distributed iex --name node3@127.0.0.1 --erl "-config cluster/node3.sys.config" -S mix

The node specific <node>.sys.config files ensure the cluster is formed before starting your application, assuming this occurs within the 30 seconds timeout.
Once the cluster has formed, you can use your event store module from any node.

 Usage

Using the event store when run on a cluster of nodes is identical to single node usage. You can subscribe to a stream, or all streams, on one node and append events to the stream on another. The subscription will be notified of the appended events.

 Append events to a stream

alias EventStore.EventData
alias MyApp.EventStore

defmodule ExampleEvent do
 defstruct [:key]
end

stream_uuid = EventStore.UUID.uuid4()

events = [
 %EventData{
 event_type: "Elixir.ExampleEvent",
 data: %ExampleEvent{key: "value"},
 metadata: %{user: "someuser@example.com"},
 }
]

:ok = EventStore.append_to_stream(stream_uuid, 0, events)

 Read all events

alias MyApp.EventStore

recorded_events = EventStore.stream_all_forward() |> Enum.to_list()

 Subscribe to all Streams

alias MyApp.EventStore

{:ok, subscription} = EventStore.subscribe_to_all_streams("example-subscription", self(), start_from: :origin)

receive do
 {:subscribed, ^subscription} ->
 IO.puts("Successfully subscribed to all streams")
end

receive do
 {:events, events} ->
 IO.puts("Received events: #{inspect(events)}")

 :ok = EventStore.ack(subscription, events)
end

Upgrading an EventStore

The CHANGELOG is used to indicate when a schema migration is required for a given version of the EventStore.

 Migrating a database with mix

You can upgrade an existing EventStore database using the following mix task:
mix event_store.migrate

The above command expects you to have configured the event store(s) for your application, as shown in the following example:
config/config.exs
config :my_app, event_stores: [MyApp.EventStore]
Or use mix event_store.migrate -e MyApp.EventStore to specify an event store as an argument.
Run this command each time you need to upgrade. The command is idempotent and will only run pending migrations if there are any and can be safely run multiple times. It can also be run concurrently as a database lock is used to ensure only one migration is run at at time.
It is always worth taking a full backup of the EventStore database before applying an upgrade.
Creating an EventStore database, using the mix event_store.create task, will always use the latest database schema.

 Migrating a database using an Elixir release

If you're using an Elixir release built with mix release you won't have mix available and won't be able to run the above command to migrate the database.
Instead you can use the EventStore.Tasks.Migrate task module and running one-off commands supported by Mix release, using a helper module defined like this:
defmodule MyApp.ReleaseTasks do
 def migrate_event_store do
 {:ok, _} = Application.ensure_all_started(:postgrex)
 {:ok, _} = Application.ensure_all_started(:ssl)

 :ok = Application.load(:my_app)

 config = MyApp.EventStore.config()

 :ok = EventStore.Tasks.Migrate.exec(config, [])
 end
end
Then run:
bin/RELEASE_NAME eval "MyApp.ReleaseTasks.migrate_event_store()"

Upgrade guide v0.17.x to v1.0

In v0.17.x and earlier EventStore was a singleton application with all functionality exposed by the EventStore module. To support multiple event stores in a single Elixir application you must now define your own event store module using the EventStore macro. You can define as many event stores as you like, each one is isolated and can be configured to use its own Postgres database.

 Getting started

First, you must define your own event store module using the EventStore macro:
lib/my_app/event_store.ex
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app

 # Optional `init/1` function to modify config at runtime.
 def init(config) do
 {:ok, config}
 end
end
You can name your event store module however you like and optionally implement an init/1 callback function.
Secondly, configure the MyApp.EventStore module (in config/config.exs or each environment's config):
config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer,
 username: "postgres",
 password: "postgres",
 database: "myapp_eventstore",
 hostname: "localhost",
 pool_size: 10
Note: To use an EventStore with Commanded you should configure the event
store to use Commanded's JSON serializer which provides additional support for
JSON decoding:
config :my_app, MyApp.EventStore, serializer: Commanded.Serialization.JsonSerializer
Finally, the event store module must be included within your application's supervision tree, inside the start/2 function:
lib/my_app/application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 MyApp.EventStore
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Optionally, you can configure the event store modules in config/config.exs to allow running the event store mix tasks without providing the event store module as a command line argument:
config :my_app, event_stores: [MyApp.EventStore]
The above configuration allows you to run mix event_store.init instead of mix event_store.init -e MyApp.EventStore (as an example).

 Usage

Use your event store module exactly as you would have previously used the EventStore itself.
:ok = MyApp.EventStore.append_to_stream(stream_uuid, expected_version, events)
For ease of upgrading you can alias your own event store module as EventStore allowing you to use it without making any further code changes:
alias MyApp.EventStore, as: EventStore

:ok = EventStore.append_to_stream(stream_uuid, expected_version, events)

EventStore behaviour

EventStore allows you to define one or more event store modules to append,
read, and subscribe to streams of events.
It uses PostgreSQL (v9.5 or later) as the underlying storage engine.

 Defining an event store

An event store module is defined in your own application as follows:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app

 # Optional `init/1` function to modify config at runtime.
 def init(config) do
 {:ok, config}
 end
end
Where the configuration for the event store must be in your application
environment, usually defined in config/config.exs:
config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer,
 username: "postgres",
 password: "postgres",
 database: "eventstore",
 hostname: "localhost"
Or use a URL to connect instead:
config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer,
 url: "postgres://postgres:postgres@localhost/eventstore"
Note: To use an EventStore with Commanded you should configure the event
store to use Commanded's JSON serializer which provides additional support for
JSON decoding:
config :my_app, MyApp.EventStore,
 serializer: Commanded.Serialization.JsonSerializer
The event store module defines a start_link/1 function that needs to be
invoked before using the event store. In general, this function is not
called directly, but included as part of your application supervision tree.
If your application was generated with a supervisor (by passing --sup
to mix new) you will have a lib/my_app/application.ex file
containing the application start callback that defines and starts your
supervisor. You just need to edit the start/2 function to start the event
store in your application's supervisor:
 def start(_type, _args) do
 children = [
 MyApp.EventStore
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
Each event store module (e.g. MyApp.EventStore) provides a public API to
read events from and write events to an event stream, and subscribe to event
notifications.

 Postgres schema

By default the public schema will be used for event store tables. An event
store can be configured to use an alternate Postgres schema:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app, schema: "schema_name"
end
Or provide the schema as an option in the init/1 callback function:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app

 def init(config) do
 {:ok, Keyword.put(config, :schema, "schema_name")}
 end
end
Or define it in environment config when configuring the database connection
settings:
config/config.exs
config :my_app, MyApp.EventStore, schema: "schema_name"
This feature allows you to define and start multiple event stores sharing a
single Postgres database, but with their data isolated and segregated by
schema.
Note the mix event_store.<task> tasks to create, initialize, and drop an
event store database will also handle creating and/or dropping the schema.

 Dynamic named event store

An event store can be started multiple times by providing a name when
starting. The name must be provided as an option to all event store operations
to identify the correct instance.

 Example

Define an event store:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app
end
Start multiple instances of the event store, each with a unique name:
{:ok, _pid} = EventStore.start_link(name: :eventstore1)
{:ok, _pid} = EventStore.start_link(name: :eventstore2)
{:ok, _pid} = EventStore.start_link(name: :eventstore3)
Use a dynamic event store by providing its name as an option to each function:
:ok = EventStore.append_to_stream(stream_uuid, expected_version, events, name: :eventstore1)

{:ok, events} = EventStore.read_stream_forward(stream_uuid, 0, 1_000, name: :eventstore1)

 Dynamic schemas

This feature also allows you to start each event store instance using a
different schema:
{:ok, _pid} = EventStore.start_link(name: :tenant1, schema: "tenant1")
{:ok, _pid} = EventStore.start_link(name: :tenant2, schema: "tenant2")
Or start supervised:
children =
 for tenant <- [:tenant1, :tenant2, :tenant3] do
 {MyApp.EventStore, name: tenant, schema: "#{tenant}"}
 end

opts = [strategy: :one_for_one, name: MyApp.Supervisor]

Supervisor.start_link(children, opts)
The above can be used for multi-tenancy where the data for each tenant is
stored in a separate, isolated schema.

 Shared database connection pools

By default each event store will start its own Postgrex database connection
pool. The size of the pool is configured with the pool_size config option.
When you have multiple event stores running you will also end up with multiple
connection pools. If they are all connecting to the same physical Postgres
database then it can be useful to share a single pool amongst all event
stores. Use the shared_connection_pool config option to specify a name for
the shared connection pool. Then configure the event stores you'd like to
share the pool with the same name.
This can be done in config:
config/config.exs
config :my_app, MyApp.EventStore, shared_connection_pool: :shared_pool
Or when starting the event stores, such as via a Supervisor:
Supervisor.start_link(
 [
 {MyApp.EventStore, name: :eventstore1, shared_connection_pool: :shared_pool},
 {MyApp.EventStore, name: :eventstore2, shared_connection_pool: :shared_pool},
 {MyApp.EventStore, name: :eventstore3, shared_connection_pool: :shared_pool}
], opts)

 Using an existing database connection or transaction

In some situations you might want to execute the event store operations using
an existing Postgres database connection or transaction. For instance, if you
want to persist changes to one or more other tables, such as a read-model
projection.
To do this you can provide a Postgrex connection process or transaction as a
:conn option to any of the supported EventStore functions.
{:ok, pid} = Postgrex.start_link(config)

Postgrex.transaction(pid, fn conn ->
 :ok = EventStore.append_to_stream(stream_uuid, expected_version, events, conn: conn)
end)
This can also be used with an Ecto Repo which is configured to use the
Postgres SQL adapter. The connection process may be looked up as follows:
Repo.transaction(fn ->
 %{pid: pool} = Ecto.Adapter.lookup_meta(Repo)

 conn = Process.get({Ecto.Adapters.SQL, pool})

 :ok = EventStore.append_to_stream(stream_uuid, expected_version, events, conn: conn)
end)

 Guides

Please refer to the following guides to learn more:
	Getting started
	Usage
	Subscriptions
	Running on a cluster of nodes
	Event serialization
	Upgrading an existing EventStore database

 Summary

 Types

 expected_version()

 option()

 options()

 pagination_option()

 pagination_options()

 persistent_subscription_option()

 persistent_subscription_options()

 start_from()

 t()

 transient_subscribe_option()

 transient_subscribe_options()

 Callbacks

 ack(subscription, arg2)

 Acknowledge receipt of the given events received from a subscription.

 append_to_stream(stream_uuid, expected_version, events, opts)

 Append one or more events to a stream atomically.

 config()

 Returns the event store configuration stored in the :otp_app environment.

 delete_all_streams_subscription(subscription_name, opts)

 Delete an existing persistent subscription to all streams.

 delete_snapshot(source_uuid, opts)

 Delete a previously recorded snapshop for a given source.

 delete_stream(stream_uuid, expected_version, type, opts)

 Delete an existing stream.

 delete_subscription(stream_uuid, subscription_name, opts)

 Delete an existing persistent subscription.

 init(config)

 A callback executed when the event store starts or when configuration is read.

 link_to_stream(stream_uuid, expected_version, events, opts)

 Link one or more existing events to another stream.

 paginate_streams(opts)

 Paginate all streams.

 read_all_streams_backward(start_version, count, opts)

 Reads the requested number of events from all streams in the reverse order
from which they were originally written.

 read_all_streams_forward(start_version, count, opts)

 Reads the requested number of events from all streams in the order in which
they were originally written.

 read_snapshot(source_uuid, opts)

 Read a snapshot, if available, for a given source.

 read_stream_backward(stream_uuid, start_version, count, opts)

 Reads the requested number of events from the given stream in the reverse
order from which they were originally written.

 read_stream_forward(stream_uuid, start_version, count, opts)

 Reads the requested number of events from the given stream in the order in
which they were originally written.

 record_snapshot(snapshot, opts)

 Record a snapshot of the data and metadata for a given source.

 start_link(opts)

 Starts any connection pooling or supervision and return {:ok, pid}
or just :ok if nothing needs to be done.

 stop(supervisor, timeout)

 Shuts down the event store.

 stream_all_backward(start_version, opts)

 Streams events from all streams in the reverse order from which they were
originally written.

 stream_all_forward(start_version, opts)

 Streams events from all streams in the order in which they were originally
written.

 stream_backward(stream_uuid, start_version, opts)

 Streams events from the given stream in the reverse order from which they
were originally written.

 stream_forward(stream_uuid, start_version, opts)

 Streams events from the given stream in the order in which they were
originally written.

 stream_info(stream_uuid, opts)

 Get basic information about a stream, including its version, status, and
created date.

 subscribe(stream_uuid, opts)

 Create a transient subscription to a given stream.

 subscribe_to_all_streams(subscription_name, subscriber, opts)

 Create a subscription to all streams. By default the subscription is persistent.

 subscribe_to_stream(stream_uuid, subscription_name, subscriber, opts)

 Create a subscription to a single stream. By default the subscription is persistent.

 unsubscribe_from_all_streams(subscription_name, opts)

 Unsubscribe an existing subscriber from all event notifications.

 unsubscribe_from_stream(stream_uuid, subscription_name, opts)

 Unsubscribe an existing subscriber from event notifications.

 Functions

 all_instances()

 Returns all running EventStore instances.

 Types

 Link to this type

 expected_version()

 View Source

 @type expected_version() ::
 :any_version | :no_stream | :stream_exists | non_neg_integer()

 Link to this type

 option()

 View Source

 @type option() ::
 {:name, atom()}
 | {:conn, Postgrex.conn() | DBConnection.t()}
 | {:timeout, timeout()}

 Link to this type

 options()

 View Source

 @type options() :: [option()]

 Link to this type

 pagination_option()

 View Source

 @type pagination_option() ::
 option()
 | {:page_size, pos_integer()}
 | {:page_number, pos_integer()}
 | {:search, String.t()}
 | {:sort_by,
 :stream_uuid
 | :stream_id
 | :stream_version
 | :created_at
 | :deleted_at
 | :status}
 | {:sort_dir, :asc | :desc}

 Link to this type

 pagination_options()

 View Source

 @type pagination_options() :: [pagination_option()]

 Link to this type

 persistent_subscription_option()

 View Source

 @type persistent_subscription_option() ::
 transient_subscribe_option()
 | {:buffer_size, pos_integer()}
 | {:checkpoint_after, non_neg_integer()}
 | {:checkpoint_threshold, pos_integer()}
 | {:concurrency_limit, pos_integer()}
 | {:max_size, pos_integer()}
 | {:partition_by, (EventStore.RecordedEvent.t() -> any())}
 | {:start_from, :origin | :current | non_neg_integer()}
 | {:timeout, timeout()}
 | {:transient, boolean()}

 Link to this type

 persistent_subscription_options()

 View Source

 @type persistent_subscription_options() :: [persistent_subscription_option()]

 Link to this type

 start_from()

 View Source

 @type start_from() :: :origin | :current | non_neg_integer()

 Link to this type

 t()

 View Source

 @type t() :: module()

 Link to this type

 transient_subscribe_option()

 View Source

 @type transient_subscribe_option() ::
 {:name, atom()}
 | {:selector, (EventStore.RecordedEvent.t() -> any())}
 | {:mapper, (EventStore.RecordedEvent.t() -> any())}

 Link to this type

 transient_subscribe_options()

 View Source

 @type transient_subscribe_options() :: [transient_subscribe_option()]

 Callbacks

 Link to this callback

 ack(subscription, arg2)

 View Source

 @callback ack(
 subscription :: pid(),
 EventStore.RecordedEvent.t()
 | [EventStore.RecordedEvent.t()]
 | non_neg_integer()
) :: :ok | {:error, reason :: term()}

Acknowledge receipt of the given events received from a subscription.
Accepts a single EventStore.RecordedEvent struct, a list of
EventStore.RecordedEvents, or the event number of the recorded event to
acknowledge.

 Link to this callback

 append_to_stream(stream_uuid, expected_version, events, opts)

 View Source

 @callback append_to_stream(
 stream_uuid :: String.t(),
 expected_version(),
 events :: [EventStore.EventData.t()],
 opts :: options()
) ::
 :ok
 | {:error, :cannot_append_to_all_stream}
 | {:error, :stream_exists}
 | {:error, :stream_not_found}
 | {:error, :wrong_expected_version}
 | {:error, :stream_deleted}
 | {:error, reason :: term()}

Append one or more events to a stream atomically.
	stream_uuid is used to uniquely identify a stream.

	expected_version is used for optimistic concurrency checks.
You can provide a non-negative integer to specify the expected stream
version. This is used to ensure you can only append to the stream if it is
at exactly that version.
You can also provide one of the following values to alter the concurrency
check behaviour:
	:any_version - No concurrency checking and allow any stream version
(including no stream).
	:no_stream - Ensure the stream does not exist.
	:stream_exists - Ensure the stream exists.

	events is a list of %EventStore.EventData{} structs.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database transaction, in
milliseconds. Defaults to 15,000ms.

Returns :ok on success, or an {:error, reason} tagged tuple. The returned
error may be due to one of the following reasons:
	{:error, :wrong_expected_version} when the actual stream version differs
from the provided expected version.
	{:error, :stream_exists} when the stream exists, but expected version
was :no_stream.
	{:error, :stream_not_found} when the stream does not exist, but
expected version was :stream_exists.

 Link to this callback

 config()

 View Source

 @callback config() :: Keyword.t()

Returns the event store configuration stored in the :otp_app environment.

 Link to this callback

 delete_all_streams_subscription(subscription_name, opts)

 View Source

 @callback delete_all_streams_subscription(
 subscription_name :: String.t(),
 opts :: options()
) ::
 :ok | {:error, term()}

Delete an existing persistent subscription to all streams.
	subscription_name is used to identify the existing subscription to
remove.

Returns :ok on success.

 Link to this callback

 delete_snapshot(source_uuid, opts)

 View Source

 @callback delete_snapshot(source_uuid :: String.t(), opts :: options()) ::
 :ok | {:error, reason :: term()}

Delete a previously recorded snapshop for a given source.
Returns :ok on success, or when the snapshot does not exist.

 Link to this callback

 delete_stream(stream_uuid, expected_version, type, opts)

 View Source

 @callback delete_stream(
 stream_uuid :: String.t(),
 expected_version :: :any_version | :stream_exists | non_neg_integer(),
 type :: :soft | :hard,
 opts :: Keyword.t()
) ::
 :ok
 | {:error, :stream_not_found}
 | {:error, :stream_deleted}
 | {:error, term()}

Delete an existing stream.
	stream_uuid identity of the stream to be deleted.

	expected_version is used for optimistic concurrency checking.
You can provide a non-negative integer to specify the expected stream
version. This is used to ensure you can only delete a stream if it is
at exactly that version.
You can also provide one of the following values to alter the concurrency
checking behaviour:
	:any_version - No concurrency check, allow any stream version.
	:stream_exists - Ensure the stream exists, at any version.

	type - used to indicate how the stream is deleted:
	:soft - the stream is marked as deleted, but no events are removed.
	:hard - the stream and its events are permanently deleted from the
database.

Soft deletion is the default if the type is not provided.

Returns :ok on success or an error tagged tuple on failure.

 Soft delete

Will mark the stream as deleted, but will not delete its events. Events from
soft deleted streams will still appear in the globally ordered all events
($all) stream and in any linked streams.
A soft deleted stream cannot be read nor appended to. Subscriptions to the
deleted stream will not receive any events but subscriptions containing linked
events from the deleted stream, such as the global all events stream, will
still receive events from the deleted stream.

 Hard delete

Will permanently delete the stream and its events. This is irreversible and
will remove data. Events will be removed from the globally ordered all
events stream and any linked streams.
After being hard deleted, a stream can later be appended to and read as if it
had never existed.

 Examples

Soft delete a stream
Delete a stream at any version:
:ok = MyApp.EventStore.delete_stream("stream1", :any_version, :soft)
Delete a stream at an expected version:
:ok = MyApp.EventStore.delete_stream("stream2", 3, :soft)
Delete stream will use soft delete by default so you can omit the type:
:ok = MyApp.EventStore.delete_stream("stream1", :any_version)
Hard delete a stream
Since hard deletes are destructive and irreversible they are disabled by
default. To use hard deletes you must first enable them for the event store:
defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app, enable_hard_deletes: true
end
Or via config:
config/config.exs
config :my_app, MyApp.EventStore, enable_hard_deletes: true
Hard delete a stream at any version:
:ok = MyApp.EventStore.delete_stream("stream1", :any_version, :hard)
Hard delete a stream that should exist:
:ok = MyApp.EventStore.delete_stream("stream2", :stream_exists, :hard)

 Link to this callback

 delete_subscription(stream_uuid, subscription_name, opts)

 View Source

 @callback delete_subscription(
 stream_uuid :: String.t(),
 subscription_name :: String.t(),
 opts :: options()
) :: :ok | {:error, term()}

Delete an existing persistent subscription.
	stream_uuid is the stream the subscription is subscribed to.

	subscription_name is used to identify the existing subscription to
remove.

Returns :ok on success.

 Link to this callback

 init(config)

 View Source

 (optional)

 @callback init(config :: Keyword.t()) :: {:ok, Keyword.t()}

A callback executed when the event store starts or when configuration is read.
It must return {:ok, keyword} with the updated list of configuration.

 Link to this callback

 link_to_stream(stream_uuid, expected_version, events, opts)

 View Source

 @callback link_to_stream(
 stream_uuid :: String.t(),
 expected_version(),
 events :: [EventStore.RecordedEvent.t()] | [non_neg_integer()],
 opts :: options()
) ::
 :ok
 | {:error, :cannot_append_to_all_stream}
 | {:error, :stream_exists}
 | {:error, :stream_not_found}
 | {:error, :wrong_expected_version}
 | {:error, :stream_deleted}
 | {:error, reason :: term()}

Link one or more existing events to another stream.
Allows you to construct streams containing events already appended to any
other stream. This is more efficient than copying events between streams since
only a reference to the existing event is created.
	stream_uuid is used to uniquely identify the target stream.

	expected_version is used for optimistic concurrency checks.
You can provide a non-negative integer to specify the expected stream
version. This is used to ensure you can only append to the stream if it is
at exactly that version.
You can also provide one of the following values to affect the concurrency
check behaviour:
	:any_version - No concurrency checking; allow any stream version
(including no stream).
	:no_stream - Ensure the stream does not exist.
	:stream_exists - Ensure the stream exists.

	events_or_event_ids is a list of %EventStore.EventData{} structs or
event ids.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database transaction, in
milliseconds. Defaults to 15,000ms.

Returns :ok on success, or an {:error, reason} tagged tuple. The returned
error may be due to one of the following reasons:
	{:error, :wrong_expected_version} when the actual stream version differs
from the provided expected version.
	{:error, :stream_exists} when the stream exists, but expected version
was :no_stream.
	{:error, :stream_not_found} when the stream does not exist, but
expected version was :stream_exists.

 Link to this callback

 paginate_streams(opts)

 View Source

 @callback paginate_streams(opts :: pagination_options()) ::
 {:ok, EventStore.Page.t(EventStore.Streams.StreamInfo.t())} | {:error, any()}

Paginate all streams.
	opts an optional keyword list containing:
	page_size the total number of streams per page. Defaults to 50.

	page_number the current page number. Defaults to page 1.

	search search for a stream by its identity.

	sort_by sort the streams by the given field.
Defaults to sorting by the stream's internal id (:stream_id field)

	sort_dir direction to sort streams by, either :asc or :desc.
Defaults to :asc.

	name the name of the event store if provided to start_link/1.
Defaults to the event store module name (e.g. MyApp.EventStore).

	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

Returns an {:ok, page} result containing a list of StreamInfo structs, or
an error tagged tuple on failure.

 Example

alias EventStore.Page

{:ok, %Page{entries: streams}} = MyApp.EventStore.paginate_streams()

 Link to this callback

 read_all_streams_backward(start_version, count, opts)

 View Source

 @callback read_all_streams_backward(
 start_version :: integer(),
 count :: non_neg_integer(),
 opts :: options()
) :: {:ok, [EventStore.RecordedEvent.t()]} | {:error, reason :: term()}

Reads the requested number of events from all streams in the reverse order
from which they were originally written.
	start_version optionally, the stream version of the first event to read.
Use -1 to indicate starting from the end of the stream. Defaults to the
end of the stream if not set.

	count optionally, the maximum number of events to read.
Defaults to returning 1,000 events from all streams.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

 Link to this callback

 read_all_streams_forward(start_version, count, opts)

 View Source

 @callback read_all_streams_forward(
 start_version :: non_neg_integer(),
 count :: non_neg_integer(),
 opts :: options()
) :: {:ok, [EventStore.RecordedEvent.t()]} | {:error, reason :: term()}

Reads the requested number of events from all streams in the order in which
they were originally written.
	start_version optionally, the stream version of the first event to read.
Defaults to the beginning of the stream if not set.

	count optionally, the maximum number of events to read.
Defaults to returning 1,000 events from all streams.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

 Link to this callback

 read_snapshot(source_uuid, opts)

 View Source

 @callback read_snapshot(source_uuid :: String.t(), opts :: options()) ::
 {:ok, EventStore.Snapshots.SnapshotData.t()} | {:error, :snapshot_not_found}

Read a snapshot, if available, for a given source.
Returns {:ok, %EventStore.Snapshots.SnapshotData{}} on success, or
{:error, :snapshot_not_found} when unavailable.

 Link to this callback

 read_stream_backward(stream_uuid, start_version, count, opts)

 View Source

 @callback read_stream_backward(
 stream_uuid :: String.t(),
 start_version :: non_neg_integer(),
 count :: non_neg_integer(),
 opts :: options()
) ::
 {:ok, [EventStore.RecordedEvent.t()]}
 | {:error, :stream_deleted}
 | {:error, reason :: term()}

Reads the requested number of events from the given stream in the reverse
order from which they were originally written.
	stream_uuid is used to uniquely identify a stream.

	start_version optionally, the stream version of the first event to read.
Use -1 to indicate starting from the end of the stream. Defaults to the
end of the stream if not set.

	count optionally, the maximum number of events to read.
Defaults to to returning 1,000 events from the stream.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

 Link to this callback

 read_stream_forward(stream_uuid, start_version, count, opts)

 View Source

 @callback read_stream_forward(
 stream_uuid :: String.t(),
 start_version :: non_neg_integer(),
 count :: non_neg_integer(),
 opts :: options()
) ::
 {:ok, [EventStore.RecordedEvent.t()]}
 | {:error, :stream_deleted}
 | {:error, reason :: term()}

Reads the requested number of events from the given stream in the order in
which they were originally written.
	stream_uuid is used to uniquely identify a stream.

	start_version optionally, the stream version of the first event to read.
Defaults to the beginning of the stream if not set.

	count optionally, the maximum number of events to read.
Defaults to to returning 1,000 events from the stream.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

 Link to this callback

 record_snapshot(snapshot, opts)

 View Source

 @callback record_snapshot(
 snapshot :: EventStore.Snapshots.SnapshotData.t(),
 opts :: options()
) ::
 :ok | {:error, reason :: term()}

Record a snapshot of the data and metadata for a given source.
Returns :ok on success.

 Link to this callback

 start_link(opts)

 View Source

 @callback start_link(opts :: Keyword.t()) ::
 {:ok, pid()} | {:error, {:already_started, pid()}} | {:error, term()}

Starts any connection pooling or supervision and return {:ok, pid}
or just :ok if nothing needs to be done.
Returns {:error, {:already_started, pid}} if the event store is already
started or {:error, term} in case anything else goes wrong.

 Link to this callback

 stop(supervisor, timeout)

 View Source

 @callback stop(Supervisor.supervisor(), timeout()) :: :ok

Shuts down the event store.

 Link to this callback

 stream_all_backward(start_version, opts)

 View Source

 @callback stream_all_backward(
 start_version :: non_neg_integer(),
 opts :: [options() | {:read_batch_size, non_neg_integer()}]
) :: Enumerable.t() | {:error, :stream_deleted} | {:error, reason :: term()}

Streams events from all streams in the reverse order from which they were
originally written.
	start_version optionally, the stream version of the first event to read.
Use -1 to indicate starting from the end of the stream. Defaults to the
end of the stream if not set.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.
	read_batch_size optionally, the number of events to read at a time from
storage. Defaults to reading 1,000 events per batch.

 Link to this callback

 stream_all_forward(start_version, opts)

 View Source

 @callback stream_all_forward(
 start_version :: non_neg_integer(),
 opts :: [options() | {:read_batch_size, non_neg_integer()}]
) :: Enumerable.t() | {:error, :stream_deleted} | {:error, reason :: term()}

Streams events from all streams in the order in which they were originally
written.
	start_version optionally, the stream version of the first event to read.
Defaults to the beginning of the stream if not set.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.
	read_batch_size optionally, the number of events to read at a time from
storage. Defaults to reading 1,000 events per batch.

 Link to this callback

 stream_backward(stream_uuid, start_version, opts)

 View Source

 @callback stream_backward(
 stream_uuid :: String.t(),
 start_version :: integer(),
 opts :: [options() | {:read_batch_size, non_neg_integer()}]
) :: Enumerable.t() | {:error, :stream_deleted} | {:error, reason :: term()}

Streams events from the given stream in the reverse order from which they
were originally written.
	start_version optionally, the stream version of the first event to read.
Use -1 to indicate starting from the end of the stream. Defaults to the
end of the stream if not set.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.
	read_batch_size optionally, the number of events to read at a time
from storage. Defaults to reading 1,000 events per batch.

 Link to this callback

 stream_forward(stream_uuid, start_version, opts)

 View Source

 @callback stream_forward(
 stream_uuid :: String.t(),
 start_version :: integer(),
 opts :: [options() | {:read_batch_size, non_neg_integer()}]
) :: Enumerable.t() | {:error, :stream_deleted} | {:error, reason :: term()}

Streams events from the given stream in the order in which they were
originally written.
	start_version optionally, the stream version of the first event to read.
Defaults to the beginning of the stream if not set.

	opts an optional keyword list containing:
	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.
	read_batch_size optionally, the number of events to read at a time
from storage. Defaults to reading 1,000 events per batch.

 Link to this callback

 stream_info(stream_uuid, opts)

 View Source

 @callback stream_info(stream_uuid :: String.t() | :all, opts :: options()) ::
 {:ok, EventStore.Streams.StreamInfo.t()}
 | {:error, :stream_not_found}
 | {:error, :stream_deleted}
 | {:error, reason :: term()}

Get basic information about a stream, including its version, status, and
created date.
	opts an optional keyword list containing:	name the name of the event store if provided to start_link/1.
	timeout an optional timeout for the database query, in milliseconds.
Defaults to 15,000ms.

Returns {:ok, StreamInfo.t()} on success, or an {:error, reason} tagged
tuple. The returned error may be due to one of the following reasons:
	{:error, :stream_not_found} when the stream does not exist.
	{:error, :stream_deleted} when the stream was soft deleted.

 Example

alias EventStore.Streams.StreamInfo

{:ok, %StreamInfo{stream_version: stream_version}} =
 MyApp.EventStore.stream_info("stream-1234")

 Link to this callback

 subscribe(stream_uuid, opts)

 View Source

 @callback subscribe(stream_uuid :: String.t(), opts :: transient_subscribe_options()) ::
 :ok | {:error, term()}

Create a transient subscription to a given stream.
	stream_uuid is the stream to subscribe to.
Use the $all identifier to subscribe to events from all streams.

	opts is an optional keyword list providing additional subscription
configuration:
	name the name of the event store if provided to start_link/1.
	selector to define a function to filter each event, i.e. returns
only those elements for which fun returns a truthy value
	mapper to define a function to map each recorded event before sending
to the subscriber.

The calling process will be notified whenever new events are appended to
the given stream_uuid.
As the subscription is transient you do not need to acknowledge receipt of
each event. The subscriber process will miss any events if it is restarted
and resubscribes. If you need a persistent subscription with guaranteed
at-least-once event delivery and back-pressure you should use
EventStore.subscribe_to_stream/4.

 Notification message

Events will be sent to the subscriber, in batches, as {:events, events}
where events is a collection of EventStore.RecordedEvent structs.

 Example

{:ok, subscription} = EventStore.subscribe(stream_uuid)

receive first batch of events
receive do
 {:events, events} ->
 IO.puts "Received events: " <> inspect(events)
end

 Link to this callback

 subscribe_to_all_streams(subscription_name, subscriber, opts)

 View Source

 @callback subscribe_to_all_streams(
 subscription_name :: String.t(),
 subscriber :: pid(),
 opts :: persistent_subscription_options()
) ::
 {:ok, subscription :: pid()}
 | {:error, :already_subscribed}
 | {:error, :subscription_already_exists}
 | {:error, :too_many_subscribers}
 | {:error, reason :: term()}

Create a subscription to all streams. By default the subscription is persistent.
See EventStore.subscribe_to_stream/4 for options.

 Example

{:ok, subscription} = EventStore.subscribe_to_all_streams("all_subscription", self())

wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts "Successfully subscribed to all streams"
end

receive do
 {:events, events} ->
 IO.puts "Received events: " <> inspect(events)

 # acknowledge receipt
 EventStore.ack(subscription, events)
end

 Link to this callback

 subscribe_to_stream(stream_uuid, subscription_name, subscriber, opts)

 View Source

 @callback subscribe_to_stream(
 stream_uuid :: String.t(),
 subscription_name :: String.t(),
 subscriber :: pid(),
 opts :: persistent_subscription_options()
) ::
 {:ok, subscription :: pid()}
 | {:error, :already_subscribed}
 | {:error, :subscription_already_exists}
 | {:error, :too_many_subscribers}
 | {:error, reason :: term()}

Create a subscription to a single stream. By default the subscription is persistent.
The subscriber process will be notified of each batch of events appended to
the single stream identified by stream_uuid.
	stream_uuid is the stream to subscribe to.
Use the $all identifier to subscribe to events from all streams.

	subscription_name is used to uniquely identify the subscription.

	subscriber is a process that will be sent {:events, events}
notification messages.

	opts is an optional keyword list providing additional subscription
configuration:
	name the name of the event store if provided to start_link/1.

	start_from is a pointer to the first event to receive.
It must be one of:
	:origin for all events from the start of the stream (default).
	:current for any new events appended to the stream after the
subscription has been created.
	any positive integer for a stream version to receive events after.

	selector to define a function to filter each event, i.e. returns
only those elements for which the function returns a truthy value.

	mapper to define a function to map each recorded event before sending
to the subscriber.

	concurrency_limit defines the maximum number of concurrent subscribers
allowed to connect to the subscription. By default only one subscriber
may connect. If too many subscribers attempt to connect to the
subscription an {:error, :too_many_subscribers} is returned.

	buffer_size limits how many in-flight events will be sent to the
subscriber process before acknowledgement of successful processing. This
limits the number of messages sent to the subscriber and stops their
message queue from getting filled with events. Defaults to one in-flight
event.

	checkpoint_threshold determines how frequently a checkpoint is written
to the database for the subscription after events are acknowledged.
Increasing the threshold will reduce the number of database writes for
busy subscriptions, but means that events might be replayed when the
subscription resumes if the checkpoint cannot be written.
The default is to persist the checkpoint after each acknowledgement.

	checkpoint_after (milliseconds) used to ensure a checkpoint is written
after a period of inactivity even if the checkpoint threshold has not
been met. This ensures checkpoints are consistently written during
less busy periods. It is only applicable when a checkpoint threshold has
been set as the default subscription behaviour is to checkpoint after
each acknowledgement.

	max_size limits the number of events queued in memory by the
subscription process to prevent excessive memory usage. If the in-memory
queue exceeds the max size - because the subscriber cannot keep up -
then events will not be queued in memory, but instead will be read from
the database on demand once the subscriber process has processed the
queue. This limit also determines how many events are read from the
database at a time during catch-up. Defaults to 1,000 events.

	partition_by is an optional function used to partition events to
subscribers. It can be used to guarantee processing order when multiple
subscribers have subscribed to a single subscription. The function is
passed a single argument (an EventStore.RecordedEvent struct) and must
return the partition key. As an example to guarantee events for a single
stream are processed serially, but different streams are processed
concurrently, you could use the stream_uuid as the partition key.
 by_stream = fn %EventStore.RecordedEvent{stream_uuid: stream_uuid} -> stream_uuid end

 {:ok, _subscription} =
 EventStore.subscribe_to_stream(stream_uuid, "example", self(),
 concurrency_limit: 10,
 partition_by: by_stream
)

	timeout an optional timeout for database queries, in milliseconds.
Defaults to 15,000ms.

	transient is an optional boolean flag to create a transient subscription.
By default this is set to false. If you want to create a transient
subscription set this flag to true. Your subscription will not be
persisted, so if the subscription is restarted, you will receive the events
again starting from start_from.
An example usage are short lived event handlers that keep their state in
memory but still want to have the guarantee to have received all events.
It's possible to create a persistent subscription with some name,
stop it and later create a transient subscription with the same name. The
transient subscription will now receive all events starting from start_from.
If you later stop this transient subscription and start a persistent
subscription again with the same name, you will receive the events again
as if the transient subscription never existed.

The subscription will resume from the last acknowledged event if it already
exists. It will ignore the start_from argument in this case.
Returns {:ok, subscription} when subscription succeeds.

 Notification messages

Subscribers will initially receive a {:subscribed, subscription} message
once the subscription has successfully subscribed.
After this message events will be sent to the subscriber, in batches, as
{:events, events} where events is a collection of EventStore.RecordedEvent
structs.

 Example

{:ok, subscription} = EventStore.subscribe_to_stream(stream_uuid, "example", self())

wait for the subscription confirmation
receive do
 {:subscribed, ^subscription} ->
 IO.puts "Successfully subscribed to stream: " <> inspect(stream_uuid)
end

receive do
 {:events, events} ->
 IO.puts "Received events: " <> inspect(events)

 # acknowledge receipt
 EventStore.ack(subscription, events)
end

 Subscription tuning

Use the checkpoint_threshold and checkpoint_after options to configure how
frequently checkpoints are written to the database. By default a subscription
will persist a checkpoint after each acknowledgement. This can cause high
write load on the database for busy subscriptions which receive a large number
of events. This problem is known as write amplification where each event
written to a stream causes many additional writes as subscriptions acknowledge
processing of the event.
The checkpoint_threshold controls how frequently checkpoints are persisted.
Increasing the threshold reduces the number of database writes. For example
using a threshold of 100 means that a checkpoint is written at most once for
every 100 events processed. The checkpoint_after ensures that a checkpoint
will still be written after a period of inactivity even when the threshold has
not been met. This ensures bursts of event processing can be safely handled.

 Link to this callback

 unsubscribe_from_all_streams(subscription_name, opts)

 View Source

 @callback unsubscribe_from_all_streams(subscription_name :: String.t(), opts :: options()) ::
 :ok

Unsubscribe an existing subscriber from all event notifications.
	subscription_name is used to identify the existing subscription process
to stop.

Returns :ok on success.

 Link to this callback

 unsubscribe_from_stream(stream_uuid, subscription_name, opts)

 View Source

 @callback unsubscribe_from_stream(
 stream_uuid :: String.t(),
 subscription_name :: String.t(),
 opts :: options()
) :: :ok

Unsubscribe an existing subscriber from event notifications.
	stream_uuid is the stream to unsubscribe from.

	subscription_name is used to identify the existing subscription process
to stop.

Returns :ok on success.

 Functions

 Link to this function

 all_instances()

 View Source

 @spec all_instances() :: [{event_store :: module(), [{:name, atom()}]}]

Returns all running EventStore instances.
Note that order is not guaranteed.

EventStore.Config

Provides access to the EventStore configuration.

 Summary

 Functions

 advisory_locks_postgrex_opts(config)

 Stop the Postgrex process when the database connection is lost.

 column_data_type(event_store, config)

 Get the data type used to store event data and metadata.

 default_postgrex_opts(config)

 get(event_store, otp_app)

 Get the event store configuration for the environment.

 get_pool()

 Get the connection pool module for postgrex.

 parse(config)

 Normalizes the event store configuration.

 parsed(event_store, otp_app)

 Get the event store configuration for the environment.

 postgrex_notifications_opts(config, name)

 postgrex_opts(config, name)

 Functions

 Link to this function

 advisory_locks_postgrex_opts(config)

 View Source

Stop the Postgrex process when the database connection is lost.
Stopping the process allows a subscription to be notified when it has lost its
advisory lock.

 Link to this function

 column_data_type(event_store, config)

 View Source

Get the data type used to store event data and metadata.
Supported data types are:
	"bytea" - Allows storage of binary strings.
	"jsonb" - Native JSON type, data is stored in a decomposed binary format
that makes it slightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing is needed.

 Link to this function

 default_postgrex_opts(config)

 View Source

 Link to this function

 get(event_store, otp_app)

 View Source

Get the event store configuration for the environment.

 Link to this function

 get_pool()

 View Source

Get the connection pool module for postgrex.

 Link to this function

 parse(config)

 View Source

Normalizes the event store configuration.

 Link to this function

 parsed(event_store, otp_app)

 View Source

Get the event store configuration for the environment.

 Link to this function

 postgrex_notifications_opts(config, name)

 View Source

 Link to this function

 postgrex_opts(config, name)

 View Source

EventStore.Notifications.Publisher.State

 Summary

 Functions

 new(opts)

 Functions

 Link to this function

 new(opts)

 View Source

EventStore.Page

A page of results from a paginated query.

 Summary

 Types

 t()

 t(entry)

 Functions

 total_pages(total_entries, page_size)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %EventStore.Page{
 entries: list(),
 page_number: pos_integer(),
 page_size: integer(),
 total_entries: integer(),
 total_pages: pos_integer()
}

 Link to this type

 t(entry)

 View Source

 @type t(entry) :: %EventStore.Page{
 entries: [entry],
 page_number: pos_integer(),
 page_size: integer(),
 total_entries: integer(),
 total_pages: pos_integer()
}

 Functions

 Link to this function

 total_pages(total_entries, page_size)

 View Source

EventStore.PubSub

Pub/sub using Elixir's local Registry module.

 Summary

 Functions

 broadcast(event_store, topic, message)

 Broadcasts message on given topic.

 child_spec(event_store)

 Return the child spec.

 subscribe(event_store, topic, opts \\ [])

 Subscribes the caller to the given topic.

 Functions

 Link to this function

 broadcast(event_store, topic, message)

 View Source

 @spec broadcast(EventStore.t(), binary(), term()) :: :ok

Broadcasts message on given topic.

 Link to this function

 child_spec(event_store)

 View Source

 @spec child_spec(EventStore.t()) :: [:supervisor.child_spec()]

Return the child spec.

 Link to this function

 subscribe(event_store, topic, opts \\ [])

 View Source

 @spec subscribe(
 EventStore.t(),
 binary(),
 selector: (EventStore.RecordedEvent.t() -> any()),
 mapper: (EventStore.RecordedEvent.t() -> any())
) :: :ok | {:error, term()}

Subscribes the caller to the given topic.

EventStore.Streams.StreamInfo

 Summary

 Types

 t()

 Functions

 new(stream_uuid)

 validate_expected_version(stream, expected_version)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %EventStore.Streams.StreamInfo{
 created_at: DateTime.t(),
 deleted_at: DateTime.t() | nil,
 status: :created | :deleted | nil,
 stream_id: non_neg_integer() | nil,
 stream_uuid: String.t(),
 stream_version: non_neg_integer()
}

 Functions

 Link to this function

 new(stream_uuid)

 View Source

 Link to this function

 validate_expected_version(stream, expected_version)

 View Source

EventStore.Tasks.Migration

EventStore.Tasks.Migrations

Task to show the migration status of EventStore

 Summary

 Functions

 exec(config, opts \\ [])

 Run task

 Functions

 Link to this function

 exec(config, opts \\ [])

 View Source

Run task

 Parameters

	config: the parsed EventStore config

 Opts

	is_mix: set to true if running as part of a Mix task

Mix.EventStore

Conveniences for writing EventStore related Mix tasks.

 Summary

 Functions

 ensure_event_store!(event_store, args)

 Ensures the given module is an EventStore.

 implements?(module, behaviour)

 Returns true if module implements behaviour.

 parse_event_store(args)

 Parses the event store option from the given command line args list.

 Functions

 Link to this function

 ensure_event_store!(event_store, args)

 View Source

 @spec ensure_event_store!(module(), list()) :: EventStore.t()

Ensures the given module is an EventStore.

 Link to this function

 implements?(module, behaviour)

 View Source

Returns true if module implements behaviour.

 Link to this function

 parse_event_store(args)

 View Source

 @spec parse_event_store([term()]) :: [EventStore.t()]

Parses the event store option from the given command line args list.
If no event store option is given, it is retrieved from the application
environment.

EventStore.EventData

EventData contains the data for a single event before being persisted to storage

 Summary

 Types

 t()

 uuid()

 Functions

 fetch(map, key)

 get_and_update(map, key, fun)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %EventStore.EventData{
 causation_id: uuid() | nil,
 correlation_id: uuid() | nil,
 data: term(),
 event_id: uuid() | nil,
 event_type: String.t(),
 metadata: term() | nil
}

 Link to this type

 uuid()

 View Source

 @type uuid() :: String.t()

 Functions

 Link to this function

 fetch(map, key)

 View Source

 Link to this function

 get_and_update(map, key, fun)

 View Source

EventStore.RecordedEvent

EventStore.RecordedEvent contains the persisted data and metadata for a
single event.
Events are immutable once recorded.

 Recorded event fields

	event_number - position of the event within the stream.
This will be identical to the stream_version when fetching events from a
single stream. For the $all stream it will be the globally ordered event
number.
	event_id - a globally unique UUID to identify the event.
	stream_uuid - the original stream identity for the event.
	stream_version - the original version of the stream for the event.
	correlation_id - an optional UUID identifier used to correlate related
messages.
	causation_id - an optional UUID identifier used to identify which
message you are responding to.
	data - the deserialized event data.
	metadata - a deserialized map of event metadata.
	created_at - a DateTime (in UTC) indicating when the event was
created.

 Summary

 Types

 t()

 uuid()

 Functions

 deserialize(recorded_event, serializer)

 fetch(map, key)

 get_and_update(map, key, fun)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %EventStore.RecordedEvent{
 causation_id: uuid() | nil,
 correlation_id: uuid() | nil,
 created_at: DateTime.t(),
 data: any(),
 event_id: uuid(),
 event_number: non_neg_integer(),
 event_type: String.t(),
 metadata: map() | nil,
 stream_uuid: String.t(),
 stream_version: non_neg_integer()
}

 Link to this type

 uuid()

 View Source

 @type uuid() :: String.t()

 Functions

 Link to this function

 deserialize(recorded_event, serializer)

 View Source

 Link to this function

 fetch(map, key)

 View Source

 Link to this function

 get_and_update(map, key, fun)

 View Source

EventStore.Snapshots.SnapshotData

Snapshot data.

 Summary

 Types

 t()

 Functions

 deserialize(snapshot, serializer)

 serialize(snapshot, serializer)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %EventStore.Snapshots.SnapshotData{
 created_at: DateTime.t(),
 data: binary(),
 metadata: binary(),
 source_type: String.t(),
 source_uuid: String.t(),
 source_version: non_neg_integer()
}

 Functions

 Link to this function

 deserialize(snapshot, serializer)

 View Source

 Link to this function

 serialize(snapshot, serializer)

 View Source

EventStore.JsonSerializer

A serializer that uses the JSON format.

 Summary

 Functions

 deserialize(binary, config)

 Deserialize given JSON binary data to the expected type.

 serialize(term)

 Serialize given term to JSON binary data.

 Functions

 Link to this function

 deserialize(binary, config)

 View Source

Deserialize given JSON binary data to the expected type.

 Link to this function

 serialize(term)

 View Source

Serialize given term to JSON binary data.

EventStore.JsonbSerializer

Serialize to/from PostgreSQL's native jsonb format.

 Summary

 Functions

 deserialize(term, config)

 Callback implementation for EventStore.Serializer.deserialize/2.

 serialize(term)

 Callback implementation for EventStore.Serializer.serialize/1.

 to_struct(type, term)

 Functions

 Link to this function

 deserialize(term, config)

 View Source

Callback implementation for EventStore.Serializer.deserialize/2.

 Link to this function

 serialize(term)

 View Source

Callback implementation for EventStore.Serializer.serialize/1.

 Link to this function

 to_struct(type, term)

 View Source

EventStore.Serializer behaviour

Specification of a serializer to convert between an Elixir term and its
representation in the database.

 Summary

 Types

 config()

 t()

 Callbacks

 deserialize(arg1, config)

 Deserialize the given data to the corresponding term.

 serialize(any)

 Serialize the given term to a representation that can be stored by the
database.

 Functions

 serializer(event_store, config)

 Get the serializer module from the given config for the event store.

 Types

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t()

 Link to this type

 t()

 View Source

 @type t() :: module()

 Callbacks

 Link to this callback

 deserialize(arg1, config)

 View Source

 @callback deserialize(binary() | map(), config()) :: any()

Deserialize the given data to the corresponding term.

 Link to this callback

 serialize(any)

 View Source

 @callback serialize(any()) :: binary() | map()

Serialize the given term to a representation that can be stored by the
database.

 Functions

 Link to this function

 serializer(event_store, config)

 View Source

Get the serializer module from the given config for the event store.

EventStore.TermSerializer

A serializer that uses Erlang's external term format (http://erlang.org/doc/apps/erts/erl_ext_dist.html)

 Summary

 Functions

 deserialize(binary, config)

 Deserialize given binary data in Erlang's external term format.

 serialize(term)

 Serialize given term to binary data.

 Functions

 Link to this function

 deserialize(binary, config)

 View Source

Deserialize given binary data in Erlang's external term format.

 Link to this function

 serialize(term)

 View Source

Serialize given term to binary data.

EventStore.Tasks.Create

Task to create the EventStore

 Summary

 Functions

 exec(config, opts \\ [])

 Runs database and schema create task.

 Functions

 Link to this function

 exec(config, opts \\ [])

 View Source

Runs database and schema create task.

 Parameters

	config: the parsed EventStore config

 Opts

	is_mix: set to true if running as part of a Mix task
	quiet: set to true to silence output

EventStore.Tasks.Drop

Task to drop the EventStore database.

 Summary

 Functions

 exec(config, opts \\ [])

 Runs task

 Functions

 Link to this function

 exec(config, opts \\ [])

 View Source

Runs task

 Parameters

	config: the parsed EventStore config

 Opts

	is_mix: set to true if running as part of a Mix task
	quiet: set to true to silence output

EventStore.Tasks.Init

Task to initalize the EventStore database

 Summary

 Functions

 exec(config, opts \\ [])

 Runs task

 Functions

 Link to this function

 exec(config, opts \\ [])

 View Source

Runs task

 Parameters

	config: the parsed EventStore config

 Opts

	is_mix: set to true if running as part of a Mix task
	quiet: set to true to silence output

EventStore.Tasks.Migrate

Task to migrate EventStore

 Summary

 Functions

 exec(config, opts \\ [])

 Run task

 Functions

 Link to this function

 exec(config, opts \\ [])

 View Source

Run task

 Parameters

	config: the parsed EventStore config

 Opts

	is_mix: set to true if running as part of a Mix task
	quiet: set to true to silence output

mix event_store.create

Create the database for the EventStore.
The event stores to create are the ones specified under the
:event_stores option in the current app configuration. However,
if the -e option is given, it replaces the :event_stores config.

 Examples

mix event_store.create -e MyApp.EventStore

 Command line options

	-e, --eventstore - the event store to create
	--quiet - do not log output

mix event_store.drop

Drop the database for the EventStore.
The event stores to drop are the ones specified under the
:event_stores option in the current app configuration. However,
if the -e option is given, it replaces the :event_stores config.

 Examples

mix event_store.drop -e MyApp.EventStore

 Command line options

	-e, --eventstore - the event store to drop
	--quiet - do not log output

mix event_store.init

Initialize the database for the EventStore.
The event stores to initialize are the ones specified under the
:event_stores option in the current app configuration. However,
if the -e option is given, it replaces the :event_stores config.

 Examples

mix event_store.init -e MyApp.EventStore

 Command line options

	-e, --eventstore - the event store to create
	--quiet - do not log output

mix event_store.migrate

Migrate an existing EventStore database.
The event stores to migrate are the ones specified under the
:event_stores option in the current app configuration. However,
if the -e option is given, it replaces the :event_stores config.

 Examples

mix event_store.migrate -e MyApp.EventStore

 Command line options

	-e, --eventstore - the event store to create
	--quiet - do not log output

mix event_store.migrations

Show the migration status of an existing EventStore database.
The event stores to inspect are the ones specified under the
:event_stores option in the current app configuration. However,
if the -e option is given, it replaces the :event_stores config.

 Examples

mix event_store.migrations -e MyApp.EventStore

 Command line options

	-e, --eventstore - the event store to create
	--quiet - do not log output

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

