

 Evision

 v0.1.39

 Table of contents

 	Changelog

 	Evision Quick Start

 	README

 	getting_started

 	qrcode

 	Evision Example - Warp Perspective

 	warp_polar

 	find_and_draw_contours

 	stitching

 	pca

 	photo-hdr

 	sudoku

 	cifar10

 	dnn-googlenet

 	dnn-detection-model

 	densenet121_benchmark

 	ml-svm

 	ml-decision_tree_and_random_forest

 	Modules

 	Evision

 	Evision.AKAZE

 	Evision.AffineFeature

 	Evision.AffineTransformer

 	Evision.AgastFeatureDetector

 	Evision.Algorithm

 	Evision.AlignExposures

 	Evision.AlignMTB

 	Evision.ArUco

 	Evision.ArUco.ArucoDetector

 	Evision.ArUco.Board

 	Evision.ArUco.CharucoBoard

 	Evision.ArUco.CharucoDetector

 	Evision.ArUco.CharucoParameters

 	Evision.ArUco.DetectorParameters

 	Evision.ArUco.Dictionary

 	Evision.ArUco.EstimateParameters

 	Evision.ArUco.GridBoard

 	Evision.ArUco.RefineParameters

 	Evision.AsyncArray

 	Evision.BFMatcher

 	Evision.BOWImgDescriptorExtractor

 	Evision.BOWKMeansTrainer

 	Evision.BOWTrainer

 	Evision.BRISK

 	Evision.Backend

 	Evision.BackgroundSubtractor

 	Evision.BackgroundSubtractorKNN

 	Evision.BackgroundSubtractorMOG2

 	Evision.Barcode

 	Evision.Barcode.BarcodeDetector

 	Evision.BaseCascadeClassifier

 	Evision.BgSegm

 	Evision.BgSegm.BackgroundSubtractorCNT

 	Evision.BgSegm.BackgroundSubtractorGMG

 	Evision.BgSegm.BackgroundSubtractorGSOC

 	Evision.BgSegm.BackgroundSubtractorLSBP

 	Evision.BgSegm.BackgroundSubtractorLSBPDesc

 	Evision.BgSegm.BackgroundSubtractorMOG

 	Evision.BgSegm.SyntheticSequenceGenerator

 	Evision.Bioinspired

 	Evision.Bioinspired.Retina

 	Evision.Bioinspired.RetinaFastToneMapping

 	Evision.Bioinspired.TransientAreasSegmentationModule

 	Evision.CCM

 	Evision.CCM.ColorCorrectionModel

 	Evision.CLAHE

 	Evision.CUDA

 	Evision.CUDA.BackgroundSubtractorMOG

 	Evision.CUDA.BackgroundSubtractorMOG2

 	Evision.CUDA.BufferPool

 	Evision.CUDA.CLAHE

 	Evision.CUDA.CannyEdgeDetector

 	Evision.CUDA.CascadeClassifier

 	Evision.CUDA.Convolution

 	Evision.CUDA.CornernessCriteria

 	Evision.CUDA.CornersDetector

 	Evision.CUDA.DFT

 	Evision.CUDA.DescriptorMatcher

 	Evision.CUDA.DeviceInfo

 	Evision.CUDA.DisparityBilateralFilter

 	Evision.CUDA.Event

 	Evision.CUDA.FastFeatureDetector

 	Evision.CUDA.Feature2DAsync

 	Evision.CUDA.Filter

 	Evision.CUDA.GpuData

 	Evision.CUDA.GpuMat

 	Evision.CUDA.GpuMat.Allocator

 	Evision.CUDA.GpuMatND

 	Evision.CUDA.HOG

 	Evision.CUDA.HostMem

 	Evision.CUDA.HoughCirclesDetector

 	Evision.CUDA.HoughLinesDetector

 	Evision.CUDA.HoughSegmentDetector

 	Evision.CUDA.LookUpTable

 	Evision.CUDA.ORB

 	Evision.CUDA.SURFCUDA

 	Evision.CUDA.StereoBM

 	Evision.CUDA.StereoBeliefPropagation

 	Evision.CUDA.StereoConstantSpaceBP

 	Evision.CUDA.StereoSGM

 	Evision.CUDA.Stream

 	Evision.CUDA.TargetArchs

 	Evision.CUDA.TemplateMatching

 	Evision.CUDACodec

 	Evision.CUDACodec.EncodeQp

 	Evision.CUDACodec.EncoderCallback

 	Evision.CUDACodec.EncoderParams

 	Evision.CUDACodec.FormatInfo

 	Evision.CUDACodec.RawVideoSource

 	Evision.CUDACodec.VideoReader

 	Evision.CUDACodec.VideoReaderInitParams

 	Evision.CUDACodec.VideoWriter

 	Evision.CalibrateCRF

 	Evision.CalibrateDebevec

 	Evision.CalibrateRobertson

 	Evision.CascadeClassifier

 	Evision.ChiHistogramCostExtractor

 	Evision.CirclesGridFinderParameters

 	Evision.ColoredKinFu

 	Evision.ColoredKinFu.ColoredKinFu

 	Evision.ColoredKinFu.Params

 	Evision.Constant

 	Evision.DISOpticalFlow

 	Evision.DMatch

 	Evision.DNN

 	Evision.DNN.ClassificationModel

 	Evision.DNN.DetectionModel

 	Evision.DNN.DictValue

 	Evision.DNN.Image2BlobParams

 	Evision.DNN.KeypointsModel

 	Evision.DNN.Layer

 	Evision.DNN.Model

 	Evision.DNN.Net

 	Evision.DNN.SegmentationModel

 	Evision.DNN.TextDetectionModel

 	Evision.DNN.TextDetectionModelDB

 	Evision.DNN.TextDetectionModelEAST

 	Evision.DNN.TextRecognitionModel

 	Evision.DNNSuperRes

 	Evision.DNNSuperRes.DNNSuperResImpl

 	Evision.DenseOpticalFlow

 	Evision.DescriptorMatcher

 	Evision.Detail

 	Evision.Detail.AffineBasedEstimator

 	Evision.Detail.AffineBestOf2NearestMatcher

 	Evision.Detail.BestOf2NearestMatcher

 	Evision.Detail.BestOf2NearestRangeMatcher

 	Evision.Detail.Blender

 	Evision.Detail.BlocksChannelsCompensator

 	Evision.Detail.BlocksCompensator

 	Evision.Detail.BlocksGainCompensator

 	Evision.Detail.BundleAdjusterAffine

 	Evision.Detail.BundleAdjusterAffinePartial

 	Evision.Detail.BundleAdjusterBase

 	Evision.Detail.BundleAdjusterRay

 	Evision.Detail.BundleAdjusterReproj

 	Evision.Detail.CameraParams

 	Evision.Detail.ChannelsCompensator

 	Evision.Detail.DpSeamFinder

 	Evision.Detail.Estimator

 	Evision.Detail.ExposureCompensator

 	Evision.Detail.FeatherBlender

 	Evision.Detail.FeaturesMatcher

 	Evision.Detail.GainCompensator

 	Evision.Detail.GraphCutSeamFinder

 	Evision.Detail.HomographyBasedEstimator

 	Evision.Detail.ImageFeatures

 	Evision.Detail.MatchesInfo

 	Evision.Detail.MultiBandBlender

 	Evision.Detail.NoBundleAdjuster

 	Evision.Detail.NoExposureCompensator

 	Evision.Detail.NoSeamFinder

 	Evision.Detail.PairwiseSeamFinder

 	Evision.Detail.ProjectorBase

 	Evision.Detail.SeamFinder

 	Evision.Detail.SphericalProjector

 	Evision.Detail.Timelapser

 	Evision.Detail.TimelapserCrop

 	Evision.Detail.VoronoiSeamFinder

 	Evision.DynaFu

 	Evision.DynaFu.DynaFu

 	Evision.EMDHistogramCostExtractor

 	Evision.EMDL1HistogramCostExtractor

 	Evision.Face

 	Evision.Face.BIF

 	Evision.Face.BasicFaceRecognizer

 	Evision.Face.EigenFaceRecognizer

 	Evision.Face.FaceRecognizer

 	Evision.Face.Facemark

 	Evision.Face.FacemarkAAM

 	Evision.Face.FacemarkKazemi

 	Evision.Face.FacemarkLBF

 	Evision.Face.FacemarkTrain

 	Evision.Face.FisherFaceRecognizer

 	Evision.Face.LBPHFaceRecognizer

 	Evision.Face.MACE

 	Evision.Face.PredictCollector

 	Evision.Face.StandardCollector

 	Evision.FaceDetectorYN

 	Evision.FaceRecognizerSF

 	Evision.FarnebackOpticalFlow

 	Evision.FastFeatureDetector

 	Evision.Feature2D

 	Evision.FileNode

 	Evision.FileStorage

 	Evision.FishEye

 	Evision.Flann

 	Evision.Flann.Index

 	Evision.FlannBasedMatcher

 	Evision.Ft

 	Evision.GFTTDetector

 	Evision.GeneralizedHough

 	Evision.GeneralizedHoughBallard

 	Evision.GeneralizedHoughGuil

 	Evision.GraphicalCodeDetector

 	Evision.HFS

 	Evision.HFS.HfsSegment

 	Evision.HOGDescriptor

 	Evision.HausdorffDistanceExtractor

 	Evision.HighGui

 	Evision.HistogramCostExtractor

 	Evision.HistogramPhaseUnwrapping

 	Evision.HistogramPhaseUnwrapping.Params

 	Evision.ImgHash

 	Evision.ImgHash.AverageHash

 	Evision.ImgHash.BlockMeanHash

 	Evision.ImgHash.ColorMomentHash

 	Evision.ImgHash.ImgHashBase

 	Evision.ImgHash.MarrHildrethHash

 	Evision.ImgHash.PHash

 	Evision.ImgHash.RadialVarianceHash

 	Evision.Intensitytransform

 	Evision.Ipp

 	Evision.KAZE

 	Evision.KalmanFilter

 	Evision.KeyPoint

 	Evision.KinFu

 	Evision.KinFu.Detail.PoseGraph

 	Evision.KinFu.KinFu

 	Evision.KinFu.Params

 	Evision.KinFu.Volume

 	Evision.KinFu.VolumeParams

 	Evision.LargeKinfu

 	Evision.LargeKinfu.LargeKinfu

 	Evision.LargeKinfu.Params

 	Evision.Legacy

 	Evision.Legacy.MultiTracker

 	Evision.Legacy.Tracker

 	Evision.Legacy.TrackerBoosting

 	Evision.Legacy.TrackerCSRT

 	Evision.Legacy.TrackerKCF

 	Evision.Legacy.TrackerMIL

 	Evision.Legacy.TrackerMOSSE

 	Evision.Legacy.TrackerMedianFlow

 	Evision.Legacy.TrackerTLD

 	Evision.LineDescriptor

 	Evision.LineDescriptor.BinaryDescriptor

 	Evision.LineDescriptor.BinaryDescriptorMatcher

 	Evision.LineDescriptor.DrawLinesMatchesFlags

 	Evision.LineDescriptor.KeyLine

 	Evision.LineDescriptor.LSDDetector

 	Evision.LineDescriptor.LSDParam

 	Evision.LineMod

 	Evision.LineMod.ColorGradient

 	Evision.LineMod.DepthNormal

 	Evision.LineMod.Detector

 	Evision.LineMod.Feature

 	Evision.LineMod.Match

 	Evision.LineMod.Modality

 	Evision.LineMod.QuantizedPyramid

 	Evision.LineMod.Template

 	Evision.LineSegmentDetector

 	Evision.MCC

 	Evision.MCC.CChecker

 	Evision.MCC.CCheckerDetector

 	Evision.MCC.CCheckerDraw

 	Evision.MCC.DetectorParameters

 	Evision.ML

 	Evision.ML.ANNMLP

 	Evision.ML.Boost

 	Evision.ML.DTrees

 	Evision.ML.EM

 	Evision.ML.KNearest

 	Evision.ML.LogisticRegression

 	Evision.ML.NormalBayesClassifier

 	Evision.ML.ParamGrid

 	Evision.ML.RTrees

 	Evision.ML.SVM

 	Evision.ML.SVMSGD

 	Evision.ML.StatModel

 	Evision.ML.TrainData

 	Evision.MSER

 	Evision.Mat

 	Evision.MergeDebevec

 	Evision.MergeExposures

 	Evision.MergeMertens

 	Evision.MergeRobertson

 	Evision.NormHistogramCostExtractor

 	Evision.OCL

 	Evision.OCL.Device

 	Evision.OCL.OpenCLExecutionContext

 	Evision.ORB

 	Evision.Omnidir

 	Evision.PPFMatch3D

 	Evision.PPFMatch3D.ICP

 	Evision.PPFMatch3D.PPF3DDetector

 	Evision.PPFMatch3D.Pose3D

 	Evision.PPFMatch3D.PoseCluster3D

 	Evision.Parallel

 	Evision.PhaseUnwrapping

 	Evision.PhaseUnwrapping.HistogramPhaseUnwrapping.Params

 	Evision.PhaseUnwrapping.PhaseUnwrapping

 	Evision.Plot

 	Evision.Plot.Plot2d

 	Evision.PyRotationWarper

 	Evision.QRCodeDetector

 	Evision.QRCodeDetectorAruco

 	Evision.QRCodeDetectorAruco.Params

 	Evision.QRCodeEncoder

 	Evision.QRCodeEncoder.Params

 	Evision.Quality

 	Evision.Quality.QualityBRISQUE

 	Evision.Quality.QualityBase

 	Evision.Quality.QualityGMSD

 	Evision.Quality.QualityMSE

 	Evision.Quality.QualityPSNR

 	Evision.Quality.QualitySSIM

 	Evision.RGBD

 	Evision.RGBD.DepthCleaner

 	Evision.RGBD.FastICPOdometry

 	Evision.RGBD.ICPOdometry

 	Evision.RGBD.Odometry

 	Evision.RGBD.OdometryFrame

 	Evision.RGBD.RgbdFrame

 	Evision.RGBD.RgbdICPOdometry

 	Evision.RGBD.RgbdNormals

 	Evision.RGBD.RgbdOdometry

 	Evision.RGBD.RgbdPlane

 	Evision.Rapid

 	Evision.Rapid.GOSTracker

 	Evision.Rapid.OLSTracker

 	Evision.Rapid.Rapid

 	Evision.Rapid.Tracker

 	Evision.Reg

 	Evision.Reg.Map

 	Evision.Reg.MapAffine

 	Evision.Reg.MapProjec

 	Evision.Reg.MapShift

 	Evision.Reg.MapTypeCaster

 	Evision.Reg.Mapper

 	Evision.Reg.MapperGradAffine

 	Evision.Reg.MapperGradEuclid

 	Evision.Reg.MapperGradProj

 	Evision.Reg.MapperGradShift

 	Evision.Reg.MapperGradSimilar

 	Evision.Reg.MapperPyramid

 	Evision.RotatedRect

 	Evision.SIFT

 	Evision.Saliency

 	Evision.Saliency.MotionSaliency

 	Evision.Saliency.MotionSaliencyBinWangApr2014

 	Evision.Saliency.Objectness

 	Evision.Saliency.ObjectnessBING

 	Evision.Saliency.Saliency

 	Evision.Saliency.StaticSaliency

 	Evision.Saliency.StaticSaliencyFineGrained

 	Evision.Saliency.StaticSaliencySpectralResidual

 	Evision.Samples

 	Evision.Segmentation

 	Evision.Segmentation.IntelligentScissorsMB

 	Evision.ShapeContextDistanceExtractor

 	Evision.ShapeDistanceExtractor

 	Evision.ShapeTransformer

 	Evision.SimpleBlobDetector

 	Evision.SimpleBlobDetector.Params

 	Evision.SmartCell

 	Evision.SmartCell.ML.DTrees

 	Evision.SmartCell.ML.RTrees

 	Evision.SmartCell.ML.SVM

 	Evision.SmartCell.ML.TrainData

 	Evision.SmartCell.SimpleList

 	Evision.SparseOpticalFlow

 	Evision.SparsePyrLKOpticalFlow

 	Evision.Stereo

 	Evision.Stereo.MatchQuasiDense

 	Evision.Stereo.PropagationParameters

 	Evision.Stereo.QuasiDenseStereo

 	Evision.StereoBM

 	Evision.StereoMatcher

 	Evision.StereoSGBM

 	Evision.Stitcher

 	Evision.StructuredLight

 	Evision.StructuredLight.GrayCodePattern

 	Evision.StructuredLight.SinusoidalPattern

 	Evision.StructuredLight.SinusoidalPattern.Params

 	Evision.StructuredLight.StructuredLightPattern

 	Evision.Subdiv2D

 	Evision.Text

 	Evision.Text.BaseOCR

 	Evision.Text.ERFilter

 	Evision.Text.OCRBeamSearchDecoder

 	Evision.Text.OCRBeamSearchDecoder.ClassifierCallback

 	Evision.Text.OCRHMMDecoder

 	Evision.Text.OCRHMMDecoder.ClassifierCallback

 	Evision.Text.OCRTesseract

 	Evision.Text.TextDetector

 	Evision.Text.TextDetectorCNN

 	Evision.ThinPlateSplineShapeTransformer

 	Evision.TickMeter

 	Evision.Tonemap

 	Evision.TonemapDrago

 	Evision.TonemapMantiuk

 	Evision.TonemapReinhard

 	Evision.Tracker

 	Evision.TrackerCSRT

 	Evision.TrackerCSRT.Params

 	Evision.TrackerDaSiamRPN

 	Evision.TrackerDaSiamRPN.Params

 	Evision.TrackerGOTURN

 	Evision.TrackerGOTURN.Params

 	Evision.TrackerKCF

 	Evision.TrackerKCF.Params

 	Evision.TrackerMIL

 	Evision.TrackerMIL.Params

 	Evision.TrackerNano

 	Evision.TrackerNano.Params

 	Evision.TrackerVit

 	Evision.TrackerVit.Params

 	Evision.UMat

 	Evision.UsacParams

 	Evision.Utils

 	Evision.Utils.ClassWithKeywordProperties

 	Evision.Utils.Nested

 	Evision.Utils.Nested.OriginalClassName

 	Evision.Utils.Nested.OriginalClassName.Params

 	Evision.UtilsFS

 	Evision.VariationalRefinement

 	Evision.VideoCapture

 	Evision.VideoIORegistry

 	Evision.VideoWriter

 	Evision.WarperCreator

 	Evision.WeChatQRCode

 	Evision.WeChatQRCode.WeChatQRCode

 	Evision.Wx

 	Evision.XFeatures2D

 	Evision.XFeatures2D.AffineFeature2D

 	Evision.XFeatures2D.BEBLID

 	Evision.XFeatures2D.BoostDesc

 	Evision.XFeatures2D.BriefDescriptorExtractor

 	Evision.XFeatures2D.DAISY

 	Evision.XFeatures2D.FREAK

 	Evision.XFeatures2D.HarrisLaplaceFeatureDetector

 	Evision.XFeatures2D.LATCH

 	Evision.XFeatures2D.LUCID

 	Evision.XFeatures2D.MSDDetector

 	Evision.XFeatures2D.PCTSignatures

 	Evision.XFeatures2D.PCTSignaturesSQFD

 	Evision.XFeatures2D.SURF

 	Evision.XFeatures2D.StarDetector

 	Evision.XFeatures2D.TBMR

 	Evision.XFeatures2D.TEBLID

 	Evision.XFeatures2D.VGG

 	Evision.XImgProc

 	Evision.XImgProc.AdaptiveManifoldFilter

 	Evision.XImgProc.ContourFitting

 	Evision.XImgProc.DTFilter

 	Evision.XImgProc.DisparityFilter

 	Evision.XImgProc.DisparityWLSFilter

 	Evision.XImgProc.EdgeAwareInterpolator

 	Evision.XImgProc.EdgeBoxes

 	Evision.XImgProc.EdgeDrawing

 	Evision.XImgProc.EdgeDrawing.Params

 	Evision.XImgProc.FastBilateralSolverFilter

 	Evision.XImgProc.FastGlobalSmootherFilter

 	Evision.XImgProc.FastLineDetector

 	Evision.XImgProc.GraphSegmentation

 	Evision.XImgProc.GuidedFilter

 	Evision.XImgProc.RFFeatureGetter

 	Evision.XImgProc.RICInterpolator

 	Evision.XImgProc.RidgeDetectionFilter

 	Evision.XImgProc.ScanSegment

 	Evision.XImgProc.Segmentation.SelectiveSearchSegmentation

 	Evision.XImgProc.SelectiveSearchSegmentation

 	Evision.XImgProc.SelectiveSearchSegmentationStrategy

 	Evision.XImgProc.SelectiveSearchSegmentationStrategyColor

 	Evision.XImgProc.SelectiveSearchSegmentationStrategyFill

 	Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple

 	Evision.XImgProc.SelectiveSearchSegmentationStrategySize

 	Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture

 	Evision.XImgProc.SparseMatchInterpolator

 	Evision.XImgProc.StructuredEdgeDetection

 	Evision.XImgProc.SuperpixelLSC

 	Evision.XImgProc.SuperpixelSEEDS

 	Evision.XImgProc.SuperpixelSLIC

 	Evision.XPhoto

 	Evision.XPhoto.GrayworldWB

 	Evision.XPhoto.LearningBasedWB

 	Evision.XPhoto.SimpleWB

 	Evision.XPhoto.TonemapDurand

 	Evision.XPhoto.WhiteBalancer

 	Evision.Zoo

 	Evision.Zoo.FaceDetection

 	Evision.Zoo.FaceDetection.YuNet

 	Evision.Zoo.FaceRecognition

 	Evision.Zoo.FaceRecognition.SFace

 	Evision.Zoo.ImageClassification

 	Evision.Zoo.ImageClassification.MobileNetV1

 	Evision.Zoo.ImageClassification.MobileNetV2

 	Evision.Zoo.ImageClassification.PPResNet

 	Evision.Zoo.ImageSegmentation

 	Evision.Zoo.ImageSegmentation.PPHumanSeg

 	Evision.Zoo.TextDetection

 	Evision.Zoo.TextDetection.DB

 	Evision.Zoo.TextDetection.PPOCRV3

 	Evision.Zoo.TextRecognition

 	Evision.Zoo.TextRecognition.CRNN

 	Mix Tasks

 	mix evision.fetch

Changelog

v0.1.39 (2024-06-01)
Browse the Repository | Released Assets
Changes
	Validate allowed keyword arguments.
	List all allowed keyword arguments in the function specs.

v0.1.38 (2024-03-30)
Browse the Repository | Released Assets
Fix
	[videocapture] fixed an issue where invoking Evision.VideoCapture.waitAny/{1,2} reports a NIF error "cv::VideoCapture::waitAny not loaded".

v0.1.37 (2024-02-17)
Browse the Repository | Released Assets
Changes
	[nerves-build] use fwup v1.10.1
	[precompiled] support armv6-linux-gnueabihf target
	[precompiled] precompiled binaries are now built with Erlang/OTP NIF version 2.16, and they are compatible with NIF version 2.16 and later.
	[model_zoo] use permanent URLs for all models.

Added
	[experimental] support aarch64-windows-msvc target
	[nerves-build] added rpi5 and srhub
	[model_zoo] added PP-OCR V3 text detection models
	[model_zoo] added image classification mobilenet v2 models

v0.1.36 (2024-02-16)
Browse the Repository | Released Assets
Fix
	Allow implicitly cast to Evision.Feature2D from the following types:	Evision.AKAZE
	Evision.AffineFeature
	Evision.AgastFeatureDetector
	Evision.BRISK
	Evision.FastFeatureDetector
	Evision.GFTTDetector
	Evision.KAZE
	Evision.MSER
	Evision.ORB
	Evision.SimpleBlobDetector
	Evision.XFeatures2D.BEBLID
	Evision.XFeatures2D.BoostDesc
	Evision.XFeatures2D.BriefDescriptorExtractor
	Evision.XFeatures2D.DAISY
	Evision.XFeatures2D.FREAK
	Evision.XFeatures2D.LATCH
	Evision.XFeatures2D.LUCID
	Evision.XFeatures2D.MSDDetector
	Evision.XFeatures2D.StarDetector
	Evision.XFeatures2D.TBMR
	Evision.XFeatures2D.TEBLID
	Evision.XFeatures2D.VGG

Added
	[experimental] Support compiling for iOS. Precompiled binaries are also available for iOS, but they are not tested yet, and they require a few more steps to use. Please see this guide for more information.

v0.1.35 (2024-02-14)
Browse the Repository | Released Assets
Changed
	Detect and use env var HTTP_PROXY and HTTPS_PROXY when downloading precompiled binaries.
	Updated to OpenCV 4.9.0. Some APIs may have changed, please see OpenCV's release note for more information.
	Use embedded :evision_windows_fix instead of :dll_loader_helper.
	Updated CUDA versions for precompiled binaries. Now we only have EVISION_CUDA_VERSION=118 and EVISION_CUDA_VERSION=121.

v0.1.34 (2023-11-18)
Browse the Repository | Released Assets
Changed
	[compatibilities] Make it compatible with newer versions of Kino. Thanks for the contribution from @jonatanklosko.

v0.1.32 (2023-08-01)
Browse the Repository | Released Assets
Changed
	Updated to OpenCV 4.8.0. Some APIs have changed, please see OpenCV's release note for more information.
	Using manylinux2014 to build precompiled binaries for x86_64-linux-gnu (w/ and w/o contrib, except for the cuda ones). This allows us to only require glibc version to be at least 2.17.

v0.1.31 (2023-04-17)
Browse the Repository | Released Assets
Changed
	[Evision.DNN] Added support for passing Nx.Tensor or Evision.Mat as the input argument of bboxes in
	Evision.DNN.nmsBoxes/{4,5}
iex> Evision.DNN.nmsBoxes([{0,1,2,3}], [1], 0.4, 0.3)
[0]
iex> Evision.DNN.nmsBoxes(Nx.tensor([[0,1,2,3]]), [1], 0.4, 0.3)
[0]
iex> Evision.DNN.nmsBoxes(Evision.Mat.literal([[0,1,2,3]], :f64), [1], 0.4, 0.3)
[0]

	Evision.DNN.nmsBoxesBatched/{5,6}
iex> Evision.DNN.nmsBoxesBatched([{0,1,2,3}], [1], [1], 0.4, 0.3)
[0]
iex> Evision.DNN.nmsBoxesBatched(Nx.tensor([[0,1,2,3]]), [1], [1], 0.4, 0.3)
[0]
iex> Evision.DNN.nmsBoxesBatched(Evision.Mat.literal([[0,1,2,3]], :f64), [1], [1], 0.4, 0.3)
[0]

	Evision.DNN.softNMSBoxes/{4,5}
iex> Evision.DNN.softNMSBoxes([{0,1,2,3}], [1], 0.4, 0.3)
{[1.0], [0]}
iex> Evision.DNN.softNMSBoxes(Nx.tensor([[0,1,2,3]]), [1], 0.4, 0.3)
{[1.0], [0]}
iex> Evision.DNN.softNMSBoxes(Evision.Mat.literal([[0,1,2,3]], :s32), [1], 0.4, 0.3)
{[1.0], [0]}

v0.1.30 (2023-03-24)
Browse the Repository | Released Assets
Fixed
	[smartcell] Fixed outputBlob is embedded in a list for CRNN and MobileNetV1 models.

v0.1.29 (2023-03-13)
Browse the Repository | Released Assets
Fixed
	[py_src] Fixed incorrect typespec for Saclar. Thanks @tusqasi and @Nicd.
	[smartcell] Fixed PPResnet based models.
	[smartcell] Fixed invalid charset URLs as they were removed in the upstream repo. CRNN models URLs to commit 12817b80.

v0.1.28 (2023-01-25)
Browse the Repository | Released Assets
Fixed
	[py_src] ArgInfo.has_default is now set to true if a.defval is f"{a.tp}()". Fixed #174.
	[ci-win-precompile-core] Removed the line that deletes the priv/x64 directory. It should be removed in the last version because we will add priv/x64 to the DLL search path instead of copying all opencv dll files to the priv directory.

v0.1.27 (2023-01-23)
Browse the Repository | Released Assets
Breaking Changes
	[Evision.Constant] Constant values are all relocated to the Evision.Constant module. To use them, either do
Evision.Constant.cv_IMREAD_ANY()
or
import Evision.Constant
cv_IMREAD_ANY()

	[Evision] Evision.__enabled_modules__/0 => Evision.enabled_modules/0. Result will now be computed using HAVE_OPENCV_{MODULE_NAME} macros.

Fixed
	[Evision.Mat] fixed Evision.Mat.update_roi/3.
	[py_src] fix incorrect typespecs.
	[py_src] VideoCaptureAPIs should be a single number instead of a list of number.

Changed
	[c_src] check if we can use existing atom from enif_make_existing_atom before calling to enif_make_atom.

Added
	OpenCV contrib modules.
	For users who prefer using precompiled binaries, almost all modules in opencv_contrib is included in precompiled archives (except for CUDA related ones, please see the next bullet point), and this will be the new default for precompiled users.
However, we do provide precompiled binaries that only include core modules. Please see the next paragraph.

	For all users, to use core modules only, please set env var EVISION_ENABLE_CONTRIB=false.

	CUDA 11 + cudnn 8 support with precompiled binaries.
Note that CUDA 11 and cudnn 8 runtime libraries/dll files are not included in the precompiled archive.
Please following the installation guide on NVIDIA's website.
	For precompiled binaries users, please set EVISION_ENABLE_CUDA to true. Besides that, there are 3 CUDA versions to choose:
	EVISION_CUDA_VERSION=111
	EVISION_CUDA_VERSION=114
	EVISION_CUDA_VERSION=118

Please choose the one that matches your local CUDA versions, and set this EVISION_CUDA_VERSION env var correspondingly.

	For users who prefer compiling from source, you'll only need to set EVISION_ENABLE_CUDA to true, and OpenCV will detect and use (if possible) your local CUDA/cudnn runtime.

Lastly, if EVISION_ENABLE_CUDA is true while EVISION_ENABLE_CONTRIB is false, CUDA related modules will not be compiled/downloaded.

v0.1.26 (2023-01-21)
Please use v0.1.27 as precompilation binaries for targets x86_64-windows-msvc-contrib-cuda* and x86_64-linux-gnu-contrib-cuda* were incorrect.
v0.1.25 (2022-12-18)
Browse the Repository | Released Assets
Fixed
	[smartcell] fixed a typo in SFace.

v0.1.23/v0.1.24 (2022-12-17)
Browse the Repository | Released Assets
Fixed
	[smartcell] fixed charset loading when initialising FP16/INT8 CRNN models. #144
	[smartcell] fixed OpenCL target label.

Changed
	[smartcell] register the model zoo smart cell (Evision.SmartCell.Zoo) on starting. Thanks to @josevalim.

	[smartcell] make :kino and :progress_bar optional dependencies.

	[ci] added one more step to make sure it compiles without optional deps. Thanks to @josevalim.

	[smartcell] hide all FP16 models of CRNN because they were not supported until opencv/opencv #22337, which was after the release date of OpenCV 4.6.0.
See more on https://github.com/opencv/opencv/issues/18735#issuecomment-1273125970.

	[smartcell] hide CRNN CH (INT8) and CRNN EN (INT8) because OpenCV 4.6.0 seemed to have problems loading/parsing them even with the demo.py script in the official opencv_zoo repo.

v0.1.22 (2022-12-16)
Browse the Repository | Released Assets
Added
	[smartcell] OpenCV Model Zoo. Evision.SmartCell.Zoo

v0.1.21 (2022-11-25)
Browse the Repository | Released Assets
Fixed
	[py_src] fixed functions in dnn that return *this.
For this part, this original code (as in python-opencv) would case a new object to be allocated in C++ like
TextDetectionModel_DB retval;
retval = self.setSomeValue(...)
return pyopencv_from(retval);
Noticing the address of the object has changed (because it's a new one) after calling m.setBinaryThreshold.
>>> import cv2'
>>> m = cv2.dnn_TextDetectionModel_DB("DB_IC15_resnet18.onnx")
>>> m
< cv2.dnn.TextDetectionModel_DB 0x1064cf210>
>>> m.setBinaryThreshold(0.5)
< cv2.dnn.TextDetectionModel_DB 0x11ecda7f0>

v0.1.20 (2022-11-24)
Browse the Repository | Released Assets
Fixed
	[Precompiled] fixed incorrect checksum for x86_64-linux-gnu.

v0.1.19 (2022-11-14)
Browse the Repository | Released Assets
Changed
	[py_src/c_src] Added has_default field to ArgInfo.

v0.1.18 (2022-11-12)
Browse the Repository | Released Assets
Fixes
	[precompile] Fixed Mix.Tasks.Compile.EvisionPrecompiled.read_checksum_map/1
	[py_src] Fixed code generation for derived classes in namespace cv::dnn
	[test] added test for Evision.DNN.DetectionModel.

v0.1.17 (2022-11-11)
Browse the Repository | Released Assets
Fixes
	[py_src] Fixed a code generation bug when all the input arguments of a function are optional.

Changed
	[example] Req.get! should only raise on 4xx and 5xx. Thanks @wojtekmach

Added
	[example] Added two examples:
	find and draw contours in an image.
	extracting sudoku puzzle from an image.

	[erlang] Structurised/recordized all #references that have their own Erlang module.

	[erlang] Download precompiled binaries using evision_precompiled.erl.

	[erlang] Generate typespecs.

v0.1.16 (2022-10-30)
Browse the Repository | Released Assets
Fixes
	[deps] :kino will be an optional dependency, if we use if before defmodule. This reverts the changes in in v0.1.15.
Thanks @josevalim for helping me figuring out why using if before defmodule would solve the problem. More details can be found here.

Changes
	[config.exs] Added configurable parameters related to rendering Evision.Mat in Kino. (They are optional and can also be adjusted in runtime)	config :evision, kino_render_image_encoding: :png
	config :evision, kino_render_image_max_size: {8192, 8192}
	config :evision, kino_render_tab_order: [:image, :raw, :numerical]

Added
	[Evision.Mat] Added a few functions related to Kino.Render
	Function	Description
	Evision.Mat.kino_render_tab_order/0	Get preferred order of Kino.Layout tabs for Evision.Mat in Livebook.
	Evision.Mat.set_kino_render_tab_order/1	Set preferred order of Kino.Layout tabs for Evision.Mat in Livebook.
	Evision.Mat.kino_render_image_max_size/0	Get the maximum allowed image size to render in Kino.
	Evision.Mat.set_kino_render_image_max_size/1	Set the maximum allowed image size to render in Kino.
	Evision.Mat.kino_render_image_encoding/0	Get preferred image encoding when rendering in Kino.
	Evision.Mat.set_kino_render_image_encoding/1	Set preferred image encoding when rendering in Kino.

v0.1.15 (2022-10-26)
Browse the Repository | Released Assets
Changes
	[mix compile] Suppress logs if evision.so is already presented when compiling from source.
	[Precompile] Added precompile target aarch64-windows-msvc.

Fixes
	[deps] :kino should be a required dependency

v0.1.14 (2022-10-22)
Browse the Repository | Released Assets
Breaking Changes
	[Precompile] Linux: remove GTK support in precompiled binaries. (This change only affects users on Linux.)
This means functions in the Evision.HighGui module will return error if you are using precompiled binaries. This follows the convention in opencv-python.
Workarounds for this:
	compile evision from source so that OpenCV will try to use the GUI backends they support on your system.
	use Evision.Wx. still in development, but basic functions like imshow/2 are available. However, it requires Erlang to be compiled with wxWidgets.
	use Livebook with :kino >= 0.7. evision has built-in support for Kino.Render which can automatically give a visualised result in Livebook. This requires :kino >= 0.7.

	[Evision.Nx] Module Evision.Nx is now removed. Functions in Evision.Nx were moved to Evision.Mat in v0.1.13. Many thanks to @zacky1972 and @josevalim for their contributions to this module in very early days of the development.
	Old	New
	Evision.Nx.to_mat/{1,2}	Evision.Mat.from_nx/{1,2}
	Evision.Nx.to_mat/5	Evision.Mat.from_binary/5
	Evision.Nx.to_mat_2d/1	Evision.Mat.from_nx_2d/1
	Evision.Nx.to_nx/1	Evision.Mat.to_nx/1

Added
	[Evision.Wx] implemented imshow/2, destroyWindow/1 and destroyAllWindows/0.

	[SmartCell] Added SmartCells. They are optional and :kino >= 0.7 will be required to use them.
If you'd like to use smartcells, please add :kino to deps in the mix.exs file.
defp deps do
 [
 # ...
 {:kino, "~> 0.7"},
 # ...
]
end
And then please register smartcells to :kino by invoking Evision.SmartCell.register_smartcells().
Evision.SmartCell.available_smartcells/0 will return all available smartcells.
(Optional step) It's also possible to add only some of these smartcells, for example,
Evision.SmartCell.register_smartcells([
 Evision.SmartCell.ML.TrainData,
 Evision.SmartCell.ML.SVM
])

v0.1.13 (2022-10-19)
Browse the Repository | Released Assets
Fixes
	[csrc] Specialised function `evision_to [with Tp=cv::UMat]`.
	[Evision.Backend] ensure that an Evision.Mat is returned from reject_error/1.

Changed
	[c_src] parseSequence will only handle tuples.

	[Evision.Mat] Evision.Mat.quicklook will use alternative escaping sequence to avoid having a dedicate function in NIF. Thanks to @akash-akya and @kipcole9 (vix#68).
ST means either BEL (hex code 0x07) or ESC \\.

	[nx-integration] Functions in Evision.Nx are now moved to Evision.Mat.
	Old	New
	Evision.Nx.to_mat/{1,2}	Evision.Mat.from_nx/{1,2}
	Evision.Nx.to_mat/5	Evision.Mat.from_binary/5
	Evision.Nx.to_mat_2d/1	Evision.Mat.from_nx_2d/1
	Evision.Nx.to_nx/1	Evision.Mat.to_nx/1

As of v0.1.13, calls to these old functions will be forwarded to the corresponding new ones.
In the next release (v0.1.14), Evision.Nx will be removed.
	[Evision.Mat] Evision.Mat.tranpose will use cv::transposeND if possible.
	[Precompile] Try to compile OpenCV with gtk3 support.

Added
	[test] Added a test for Evision.warpPerspective.
	[example] Added an example for Evision.warpPerspective.
	[example] Added some examples for Evision.warpPolar.
	[example] Added QRCode encoding and decoding example.
	[docs] Added a cheatsheet.

v0.1.12 (2022-10-15)
Browse the Repository | Released Assets
Breaking Changes
	[Evision.QRCodeEncoder.Params] Renamed Evision.QRCodeEncoder.Params.qrcodeencoder_params/0 to Evision.QRCodeEncoder.Params.params/0.

Fixes
	Function guard should also allow Nx.Tensor when the corresponding input argument is Evision.Mat.maybe_mat_in().
	[Evision.Mat] Evision.Mat.quicklook/1 should also check the number of channels is one of [1, 3, 4] when dims == 2.
	[c_src] evision_cv_mat_broadcast_to should call enif_free((void *)dst_data); if void * tmp_data = (void *)enif_alloc(elem_size * count_new_elem); failed.
	[py_src] Fixed the template of simple call constructor.

Changed
	[Docs] Example Livebooks is now included in docs as extras.

	[Evision.Mat] Evision.Mat.roi/{2,3} now supports Elixir Range.

	[Evision.Mat] Implemented Access behaviour.
	Access.fetch/2 examples:
iex> img = Evision.imread("test/qr_detector_test.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {300, 300, 3},
 ref: #Reference<0.809884129.802291734.78316>
}

Same behaviour as Nx.
Also, img[0] gives the same result as img[[0]]
For this example, they are both equvilent of img[[0, :all, :all]]
iex> img[[0]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 300, 3},
 ref: #Reference<0.809884129.802291731.77296>
}

same as img[[0..100, 50..200, :all]]
however, currently we only support ranges with step size 1
#
IMPORTANT NOTE
#
also, please note that we are using Elixir.Range here
and Elixir.Range is **inclusive**, i.e, [start, end]
while cv::Range `{integer(), integer()}` is `[start, end)`
the difference can be observed in the `shape` field
iex> img[[0..100, 50..200]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {101, 151, 3},
 ref: #Reference<0.809884129.802291731.77297>
}
iex> img[[{0, 100}, {50, 200}]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {100, 150, 3},
 ref: #Reference<0.809884129.802291731.77297>
}

for this example, the result is the same as `Evision.extractChannel(img, 0)`
iex> img[[:all, :all, 0]]
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {300, 300},
 ref: #Reference<0.809884129.802291731.77298>
}
iex> img[[:all, :all, 0..1]]
%Evision.Mat{
 channels: 2,
 dims: 2,
 type: {:u, 8},
 raw_type: 8,
 shape: {300, 300, 2},
 ref: #Reference<0.809884129.802291731.77299>
}

when index is out of bounds
iex> img[[:all, :all, 42]]
{:error, "index 42 is out of bounds for axis 2 with size 3"}

it works the same way for any dimensional Evision.Mat
iex> mat = Evision.Mat.ones({10, 10, 10, 10, 10}, :u8)
iex> mat[[1..7, :all, 2..6, 3..9, :all]]
%Evision.Mat{
 channels: 1,
 dims: 5,
 type: {:u, 8},
 raw_type: 0,
 shape: {7, 10, 5, 7, 10},
 ref: #Reference<0.3015448455.3766878228.259075>
}

	Access.get_and_update/3 examples:
iex> mat = Evision.Mat.zeros({5, 5}, :u8)
iex> Evision.Nx.to_nx(mat)
#Nx.Tensor<
 u8[5][5]
 Evision.Backend
 [
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]
]
>
iex> {old, new} = Evision.Mat.get_and_update(mat, [1..3, 1..3], fn roi ->
 {roi, Nx.broadcast(Nx.tensor(255, type: roi.type), roi.shape)}
end)
iex> Evision.Nx.to_nx(new)
#Nx.Tensor<
 u8[5][5]
 Evision.Backend
 [
 [0, 0, 0, 0, 0],
 [0, 255, 255, 255, 0],
 [0, 255, 255, 255, 0],
 [0, 255, 255, 255, 0],
 [0, 0, 0, 0, 0]
]
>

v0.1.11 (2022-10-13)
Browse the Repository | Released Assets
Important Note
In v0.1.10, an invalid checksum file was pushed to hex.pm, please read the changelog, especially the breaking changes in v0.1.10. Changelog for v0.1.10.
Fixed
	[Precompile] Mix.Tasks.Evision.Fetch should always download and oerwrite existing files.

v0.1.10 (2022-10-13)
Browse the Repository | Released Assets
Important Note
Invalid checksum file was pushed to hex.pm, please use v0.1.11 instead.
Breaking Changes
	Say goodbye to the bang(!) version functions!
Thanks to @josevalim who wrote me this Errorize module back in Feb 2022, and in v0.1.10 this module will be removed. There are two main reasons for this:
	I've managed to structurise all #references that have their own modules in #101.
	After generating function specs, dialyzer seems to be really upset about these bang(!) version functions, and would emit a few thousand warnings.

	[Precompile] Include NIF version in precompiled tarball filename.
"evision-nif_#{nif_version}-#{target}-#{version}"

	Return value changed if the first return type of the function is bool
	If the function only returns a bool, the updated return value will simple be true or false.
before
iex> :ok = Evision.imwrite("/path/to/image.png", img)
iex> :error = Evision.imwrite("/path/to/image.png", invalid_img)
after
iex> true = Evision.imwrite("/path/to/image.png", img)
iex> false = Evision.imwrite("/path/to/image.png", invalid_img)

	If the first return type is bool, and there is another value to return:
before
iex> frame = Evision.VideoCapture.read(capture) # has a frame available
iex> :error = Evision.VideoCapture.read(capture) # cannot read / no more available frames
after
iex> frame = Evision.VideoCapture.read(capture) # has a frame available
iex> false = Evision.VideoCapture.read(capture) # cannot read / no more available frames

	If the first return type is bool, and there are more than one value to return:
before
iex> {val1, val2} = Evision.SomeModule.some_function(arg1) # when succeeded
iex> :error = Evision.SomeModule.some_function(capture) # when failed
after
iex> {val1, val2} = Evision.SomeModule.some_function(arg1) # when succeeded
iex> false = Evision.SomeModule.some_function(capture) # when failed

	std::string and cv::String will be wrapped in a binary term instead of a list.
For example,
before
iex> {'detected text', _, _} = Evision.QRCodeDetector.detectAndDecode(qr, img)
after
iex> {"detected text", _, _} = Evision.QRCodeDetector.detectAndDecode(qr, img)

	Structurised all #references that have their own module.
A list of modules that are now wrapped in structs can be found in the appendix section.

	[Evision.DNN] As it's not possible to distinguish std::vector<uchar> and String in Elixir, Evision.DNN::readNet* functions that load a model from in-memoy buffer will be renamed to Evision.DNN::readNet*Buffer.
For example,
@spec readNetFromONNX(binary()) :: Evision.DNN.Net.t() | {:error, String.t()}
def readNetFromONNX(onnxFile)

@spec readNetFromONNXBuffer(binary()) :: Evision.DNN.Net.t() | {:error, String.t()}
def readNetFromONNXBuffer(buffer)

Changed
	[Evision.Backend] raise a better error message for callbacks that haven't been implemented in Evision.Backend. Thanks to @josevalim
An example of the updated error message:
iex> Evision.Backend.slice(1,2,3,4,5)
** (RuntimeError) operation slice is not yet supported on Evision.Backend.
Please use another backend like Nx.BinaryBackend or Torchx.Backend.
 To use Torchx.Backend, :torchx should be added to your app's deps.
 Please see https://github.com/elixir-nx/nx/tree/main/torchx for more information on how to install and use it.
To convert the tensor to another backend, please use Evision.Nx.to_nx(tensor, Backend.ModuleName)
 for example, Evision.Nx.to_nx(tensor, Nx.BinaryBackend) or Evision.Nx.to_nx(tensor, Torchx.Backend).
Pull request would be more than welcomed if you'd like to implmenent this function and make contributions.
 (evision 0.1.10-dev) lib/evision/backend.ex:815: Evision.Backend.slice/5
 iex:1: (file)

	[Docs] Improved cross reference in inline docs. For example,
Before
@doc """
...
@see setCVFolds
...
"""
def getCVFolds(self) do
After
@doc """
...
@see `setCVFolds/2`
...
"""
def getCVFolds(self) do
In this way, you can navigate to the referenced function in the generated html docs.

Fixed
	Docs: included retval and self in the Return section.

Added
	[Spec] Function spec for all Elixir functions, including generated ones.

	[Evision.Mat] Added Evision.Mat.roi/{2,3}.
iex> img = Evision.imread("test/qr_detector_test.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {300, 300, 3},
 ref: #Reference<0.3957900973.802816029.173984>
}

Mat operator()(const Rect& roi) const;
iex> sub_img = Evision.Mat.roi(img, {10, 10, 100, 200})
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {200, 100, 3},
 ref: #Reference<0.3957900973.802816020.173569>
}

Mat operator()(Range rowRange, Range colRange) const;
iex> sub_img = Evision.Mat.roi(img, {10, 100}, {20, 200})
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {90, 180, 3},
 ref: #Reference<0.3957900973.802816020.173570>
}
iex> sub_img = Evision.Mat.roi(img, :all, {20, 200})
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {300, 180, 3},
 ref: #Reference<0.3957900973.802816020.173571>
}

Mat operator()(const std::vector<Range>& ranges) const;
iex> sub_img = Evision.Mat.roi(img, [{10, 100}, {10, 100}])
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {90, 90, 3},
 ref: #Reference<0.3957900973.802816020.173567>
}
iex> sub_img = Evision.Mat.roi(img, [{10, 100}, :all])
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {90, 300, 3},
 ref: #Reference<0.3957900973.802816020.173568>
}

	[Evision.Mat] Added Evision.Mat.quicklook/1.
This function will check the value of :display_inline_image_iterm2 in the application config. If is true,
then it will detect if current session is running in iTerm2 (by checking the environment variable LC_TERMINAL).
If both are true, we next check if the image is a 2D image, also if its size is within the limits. The maximum size can be set in the application config, for example,
config :evision, display_inline_image_iterm2: true
config :evision, display_inline_image_max_size: {8192, 8192}
If it passes all the checks, then it will be displayed as an inline image in iTerm2.

Appendix
List of modules that are now wrapped in structs.
	Evision.AKAZE
	Evision.AffineFeature
	Evision.AgastFeatureDetector
	Evision.Algorithm
	Evision.AlignExposures
	Evision.AlignMTB
	Evision.AsyncArray
	Evision.BFMatcher
	Evision.BOWImgDescriptorExtractor
	Evision.BOWKMeansTrainer
	Evision.BOWTrainer
	Evision.BRISK
	Evision.BackgroundSubtractor
	Evision.BackgroundSubtractorKNN
	Evision.BackgroundSubtractorMOG2
	Evision.CLAHE
	Evision.CUDA
	Evision.CUDA.BufferPool
	Evision.CUDA.DeviceInfo
	Evision.CUDA.Event
	Evision.CUDA.GpuMat
	Evision.CUDA.HostMem
	Evision.CUDA.Stream
	Evision.CUDA.TargetArchs
	Evision.CalibrateCRF
	Evision.CalibrateDebevec
	Evision.CalibrateRobertson
	Evision.CascadeClassifier
	Evision.CirclesGridFinderParameters
	Evision.DISOpticalFlow
	Evision.DMatch
	Evision.DNN.ClassificationModel
	Evision.DNN.DetectionModel
	Evision.DNN.DictValue
	Evision.DNN.KeypointsModel
	Evision.DNN.Layer
	Evision.DNN.Model
	Evision.DNN.Net
	Evision.DNN.SegmentationModel
	Evision.DNN.TextDetectionModel
	Evision.DNN.TextDetectionModelDB
	Evision.DNN.TextDetectionModelEAST
	Evision.DNN.TextRecognitionModel
	Evision.DenseOpticalFlow
	Evision.DescriptorMatcher
	Evision.Detail.AffineBasedEstimator
	Evision.Detail.AffineBestOf2NearestMatcher
	Evision.Detail.BestOf2NearestMatcher
	Evision.Detail.BestOf2NearestRangeMatcher
	Evision.Detail.Blender
	Evision.Detail.BlocksChannelsCompensator
	Evision.Detail.BlocksCompensator
	Evision.Detail.BlocksGainCompensator
	Evision.Detail.BundleAdjusterAffine
	Evision.Detail.BundleAdjusterAffinePartial
	Evision.Detail.BundleAdjusterBase
	Evision.Detail.BundleAdjusterRay
	Evision.Detail.BundleAdjusterReproj
	Evision.Detail.CameraParams
	Evision.Detail.ChannelsCompensator
	Evision.Detail.DpSeamFinder
	Evision.Detail.Estimator
	Evision.Detail.ExposureCompensator
	Evision.Detail.FeatherBlender
	Evision.Detail.FeaturesMatcher
	Evision.Detail.GainCompensator
	Evision.Detail.GraphCutSeamFinder
	Evision.Detail.HomographyBasedEstimator
	Evision.Detail.ImageFeatures
	Evision.Detail.MatchesInfo
	Evision.Detail.MultiBandBlender
	Evision.Detail.NoBundleAdjuster
	Evision.Detail.NoExposureCompensator
	Evision.Detail.NoSeamFinder
	Evision.Detail.PairwiseSeamFinder
	Evision.Detail.SeamFinder
	Evision.Detail.SphericalProjector
	Evision.Detail.Timelapser
	Evision.Detail.VoronoiSeamFinder
	Evision.FaceDetectorYN
	Evision.FaceRecognizerSF
	Evision.FarnebackOpticalFlow
	Evision.FastFeatureDetector
	Evision.Feature2D
	Evision.FileNode
	Evision.FileStorage
	Evision.Flann.Index
	Evision.FlannBasedMatcher
	Evision.GFTTDetector
	Evision.GeneralizedHough
	Evision.GeneralizedHoughBallard
	Evision.GeneralizedHoughGuil
	Evision.HOGDescriptor
	Evision.KAZE
	Evision.KalmanFilter
	Evision.KeyPoint
	Evision.LineSegmentDetector
	Evision.ML.ANNMLP
	Evision.ML.Boost
	Evision.ML.DTrees
	Evision.ML.EM
	Evision.ML.KNearest
	Evision.ML.LogisticRegression
	Evision.ML.NormalBayesClassifier
	Evision.ML.ParamGrid
	Evision.ML.RTrees
	Evision.ML.SVM
	Evision.ML.SVMSGD
	Evision.ML.StatModel
	Evision.ML.TrainData
	Evision.MSER
	Evision.MergeDebevec
	Evision.MergeExposures
	Evision.MergeMertens
	Evision.MergeRobertson
	Evision.OCL
	Evision.OCL.Device
	Evision.ORB
	Evision.Parallel
	Evision.PyRotationWarper
	Evision.QRCodeDetector
	Evision.QRCodeEncoder
	Evision.QRCodeEncoder.Params
	Evision.SIFT
	Evision.Samples
	Evision.Segmentation.IntelligentScissorsMB
	Evision.SimpleBlobDetector
	Evision.SimpleBlobDetector.Params
	Evision.SparseOpticalFlow
	Evision.SparsePyrLKOpticalFlow
	Evision.StereoBM
	Evision.StereoMatcher
	Evision.StereoSGBM
	Evision.Stitcher
	Evision.Subdiv2D
	Evision.TickMeter
	Evision.Tonemap
	Evision.TonemapDrago
	Evision.TonemapMantiuk
	Evision.TonemapReinhard
	Evision.Tracker
	Evision.TrackerDaSiamRPN
	Evision.TrackerDaSiamRPN.Params
	Evision.TrackerGOTURN
	Evision.TrackerGOTURN.Params
	Evision.TrackerMIL
	Evision.TrackerMIL.Params
	Evision.UMat
	Evision.UsacParams
	Evision.Utils.Nested.OriginalClassName
	Evision.Utils.Nested.OriginalClassName.Params
	Evision.VariationalRefinement
	Evision.VideoCapture
	Evision.VideoWriter

v0.1.9 (2022-10-09)
Browse the Repository | Released Assets
Bug Fixes
	Mix.Tasks.Compile.EvisionPrecompiled: using File.cp_r/2 instead of calling cp -a via System.cmd/3.

	Fixed TLS warnings when downloading precompiled tarball file. Thanks to @kipcole9!

	Only include evision_custom_headers/evision_ml.hpp if the HAVE_OPENCV_ML macro is defined.

	Support parsing RefWrapper<T> (&value)[N] from list or tuple. (#99)
See the function in c_src/evision.cpp.
bool parseSequence(ErlNifEnv *env, ERL_NIF_TERM obj, RefWrapper<T> (&value)[N], const ArgInfo& info)
`RotatedRect` has to be a tuple, {centre, size, angle}
Evision.boxPoints!({{224.0, 262.5}, {343.0, 344.0}, 90.0})

while `Point`/`Size` can be either a list, `[x, y]`, or a tuple, `{x, y}`
Evision.boxPoints!({[224.0, 262.5], [343.0, 344.0], 90.0})

	Fixed the mapping from a type to the corresponding function guard in py_src/helper.py. (#99)

Changed
	Display RotatedRect type as {centre={x, y}, size={s1, s2}, angle} in docs.

v0.1.8 (2022-10-08)
Browse the Repository | Released Assets
Changed
	CMake and make (nmake if on Windows) will not be used to download and deploy precompiled binaries for Elixir users.
This means that evision can be downloaded and deployed once Erlang and Elixir are properly installed on the system.

v0.1.7 (2022-10-07)
Browse the Repository | Released Assets
Breaking Changes
	EVISION_PREFER_PRECOMPILED is set to true by default.
 :evision will try to use precompiled binaries if available. Otherwise, it will fallback to building from source.

	Precompiled binary filename changed:
arm64-apple-darwin => aarch64-apple-darwin
amd64-windows-msvc => x86_64-windows-msvc

Changed
	cv::VideoCapture will be wrapped in struct. For example:
iex> cap = Evision.VideoCapture.videoCapture!("test/videocapture_test.mp4")
%Evision.VideoCapture{
 fps: 43.2,
 frame_count: 18.0,
 frame_width: 1920.0,
 frame_height: 1080.0,
 isOpened: true,
 ref: #Reference<0.3650318819.3952214034.37793>
}
iex> frame = Evision.VideoCapture.read!(cap)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.3650318819.3952214042.38343>
}

	Evision.Mat.empty/0 will also return an Evision.Mat struct (was returning #Reference<some random numbers>).
iex> Evision.Mat.empty!()
%Evision.Mat{
 channels: 1,
 dims: 0,
 type: {:u, 8},
 raw_type: 0,
 shape: {},
 ref: #Reference<0.2351084001.2568618002.207930>
}

	raise RuntimeError for all unimplemented :nx callbacks.
raise RuntimeError, "not implemented yet"

	Elixir functions that have the same name and arity will be grouped together now.
This should massively reduce the number of warnings emitted by the elixir compiler.

	Only generate corresponding binding code.
	Only generate binding code for Elixir when compiling :evision using mix;
	Only generate binding code for erlang when compiling :evision using rebar;

It's possible to generate erlang and Elixir at the same time. However, currently it's only possible to do so when compiling evision using mix.
default value is `elixir` when compiling evision using `mix`
default value is `erlang` when compiling evision using `rebar`
#
expected format is a comma-separated string
export EVISION_GENERATE_LANG="erlang,elixir"

	Better inline docs.
	Inline docs will have a section for Positional Arguments and a section for Keyword Arguments. For example,
@doc """
Positional Arguments
- **bboxes**: vector_Rect2d.
- **scores**: vector_float.
- **score_threshold**: float.
- **nms_threshold**: float.

Keyword Arguments
- **eta**: float.
- **top_k**: int.

Performs non maximum suppression given boxes and corresponding scores.

Python prototype (for reference):
```
NMSBoxes(bboxes, scores, score_threshold, nms_threshold[, eta[, top_k]]) -> indices
```
"""
@doc namespace: :"cv.dnn"
def nmsBoxes(bboxes, scores, score_threshold, nms_threshold, opts)

	If a function (same name and arity) has multiple variants, the inline docs will show each of them in section ## Variant VAR_INDEX. For example,
@doc """
Variant 1:

Positional Arguments
- **dx**: UMat.
- **dy**: UMat.
- **threshold1**: double.
- **threshold2**: double.

Keyword Arguments
- **edges**: UMat.
- **l2gradient**: bool.

 \\overload
 Finds edges in an image using the Canny algorithm with custom image gradient.
 \\f$=\\sqrt{(dI/dx)^2 + (dI/dy)^2}\\f$ should be used to calculate the image gradient magnitude (
 L2gradient=true), or whether the default \\f$L_1\\f$ norm \\f$=|dI/dx|+|dI/dy|\\f$ is enough (
 L2gradient=false).

Python prototype (for reference):
```
Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges
```
Variant 2:

Positional Arguments
- **image**: UMat.
- **threshold1**: double.
- **threshold2**: double.

Keyword Arguments
- **edges**: UMat.
- **apertureSize**: int.
- **l2gradient**: bool.

Finds edges in an image using the Canny algorithm @cite Canny86 .
 The function finds edges in the input image and marks them in the output map edges using the
 Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
 largest value is used to find initial segments of strong edges. See
 <http://en.wikipedia.org/wiki/Canny_edge_detector>
 \\f$=\\sqrt{(dI/dx)^2 + (dI/dy)^2}\\f$ should be used to calculate the image gradient magnitude (
 L2gradient=true), or whether the default \\f$L_1\\f$ norm \\f$=|dI/dx|+|dI/dy|\\f$ is enough (
 L2gradient=false).

Python prototype (for reference):
```
Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges
```

"""
@doc namespace: :cv
def canny(image, threshold1, threshold2, opts)
when (is_reference(image) or is_struct(image)) and is_number(threshold1) and is_number(threshold2) and is_list(opts) and (opts == [] or is_tuple(hd(opts))), do: # variant 2

def canny(dx, dy, threshold1, threshold2)
when (is_reference(dx) or is_struct(dx)) and (is_reference(dy) or is_struct(dy)) and is_number(threshold1) and is_number(threshold2), do: # variant 1

	Better integration with :nx.
iex> t = Nx.tensor([[[0,0,0], [255, 255, 255]]], type: :u8)
#Nx.Tensor<
 u8[1][2][3]
 [
 [
 [0, 0, 0],
 [255, 255, 255]
]
]
>
iex> mat = Evision.imread!("test.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 2, 3},
 ref: #Reference<0.2067356221.74055707.218654>
}
iex> mat = Evision.Mat.channel_as_last_dim!(mat)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 2, 3},
 ref: #Reference<0.2067356221.74055698.218182>
}
iex> result = Evision.Mat.add!(t, mat)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 2, 3},
 ref: #Reference<0.2067356221.74055698.218184>
}
iex> Evision.Nx.to_nx!(result)
#Nx.Tensor<
 u8[1][2][3]
 Evision.Backend
 [
 [
 [255, 255, 255],
 [255, 255, 255]
]
]
>

	Implemented property setter for cv::Ptr<> wrapped types. For example,
iex> k = Evision.KalmanFilter.kalmanFilter!(1, 1)
#Reference<0.382162378.457572372.189094>
iex> Evision.KalmanFilter.get_gain!(k) |> Evision.Nx.to_nx!
#Nx.Tensor<
 f32[1][1]
 Evision.Backend
 [
 [0.0]
]
>
iex> Evision.KalmanFilter.set_gain!(k, Evision.Mat.literal!([1.0], :f32))
#Reference<0.382162378.457572372.189094>
iex> Evision.KalmanFilter.get_gain!(k) |> Evision.Nx.to_nx!
#Nx.Tensor<
 f32[1][1]
 Evision.Backend
 [
 [1.0]
]
>

	More detailed error message for property getter/setter. For example,
	When setting a property that is type A and value passed to the setter is type B, and there is no known conversion from B to A, then it will return an error-tuple
iex> k = Evision.KalmanFilter.kalmanFilter!(1, 1)
iex> Evision.KalmanFilter.set_gain(k, :p)
{:error, "cannot assign new value, mismatched type?"}
iex> Evision.KalmanFilter.set_gain(k, :p)
** (RuntimeError) cannot assign new value, mismatched type?
 (evision 0.1.7) lib/generated/evision_kalmanfilter.ex:175: Evision.KalmanFilter.set_gain!/2
 iex:7: (file)

	For property getter/setter, if the self passed in is a different type than what is expected, an error-tuple will be returned
iex> mat = Evision.Mat.literal!([1.0], :f32)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:f, 32},
 raw_type: 5,
 shape: {1, 1},
 ref: #Reference<0.1499445684.3682467860.58544>
}
iex> Evision.KalmanFilter.set_gain(mat, mat)
{:error,
"cannot get `Ptr<cv::KalmanFilter>` from `self`: mismatched type or invalid resource?"}
iex> Evision.KalmanFilter.set_gain!(mat, mat)
** (RuntimeError) cannot get `Ptr<cv::KalmanFilter>` from `self`: mismatched type or invalid resource?
 (evision 0.1.7) lib/generated/evision_kalmanfilter.ex:175: Evision.KalmanFilter.set_gain!/2
 iex:2: (file)

	evision_##NAME##_getp (in c_src/erlcompat.hpp) should just return true or false.
Returning a ERL_NIF_TERM (enif_make_badarg) in the macro (when enif_get_resource fails) will prevent the caller from returning an error-tuple with detailed error message.

	Improved the quality of generated inline docs.
Also displays what variable(s) will be returned (when applicable) in the ##### Return section.

Added
	Added Evision.Mat.literal/{1,2,3} to create Evision.Mat from list literals.
Creating Evision.Mat from empty list literal ([]) is the same as calling Evision.Mat.empty().
iex> Evision.Mat.literal!([])
%Evision.Mat{
 channels: 1,
 dims: 0,
 type: {:u, 8},
 raw_type: 0,
 shape: {},
 ref: #Reference<0.1204050731.2031747092.46781>
}
By default, the shape of the Mat will stay as is.
iex> Evision.Mat.literal!([[[1,1,1],[2,2,2],[3,3,3]]], :u8)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 3, 3},
 ref: #Reference<0.512519210.691404819.106300>
}
Evision.Mat.literal/3 will return a valid 2D image if the keyword argument, as_2d, is set to true and if the list literal can be represented as a 2D image.
iex> Evision.Mat.literal!([[[1,1,1],[2,2,2],[3,3,3]]], :u8, as_2d: true)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 3, 3},
 ref: #Reference<0.512519210.691404820.106293>
}

	Added Evision.Mat.channel_as_last_dim/1.
This function does the opposite as to Evision.Mat.last_dim_as_channel/1.
If the number of channels of the input Evision.Mat is greater than 1,
then this function would convert the input Evision.Mat with dims dims=list(int()) to a 1-channel Evision.Mat with dims [dims | channels].
If the number of channels of the input Evision.Mat is equal to 1,
	if dims == shape, then nothing happens
	otherwise, a new Evision.Mat that has dims=[dims | channels] will be returned

For example,
iex> mat = Evision.imread!("test.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 2, 3},
 ref: #Reference<0.2067356221.74055707.218654>
}
iex> mat = Evision.Mat.channel_as_last_dim!(mat)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 2, 3},
 ref: #Reference<0.2067356221.74055698.218182>
}

	Automatically displays a tabbed output in Livebook if the type of evaluated result is Evision.Mat.
This is an optional feature. To enable it, :kino should be added to deps, e.g.,
defp deps do
 [
 # ...
 {:kino, "~> 0.7"},
 # ...
]
end
Now, with :kino >= v0.7 available, a tabbed output will shown in Livebook if the evaluated result is an Evision.Mat.
A Raw tab will always be the first one, e.g.,
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 2, 3},
 ref: #Reference<0.3310236255.1057357843.168932>
}
For 2D images (dims == 2), the second tab will be Image, which displays the image.
For all Evision.Mat, the last tab will be Numerical, which shows the numbers behind the scene. Of course, for large size Evision.Mat, only part of the data will be shown. A example output in this tab:
#Nx.Tensor<
 u8[1][2][3]
 Evision.Backend
 [
 [
 [1, 2, 3],
 [1, 2, 3]
]
]
>

v0.1.6 (2022-09-29)
Browse the Repository | Released Assets
Breaking Changes
	Evision.imencode/{2,3} will now return encoded image as binary instead of a list.

	cv::Mat will be wrapped in struct. For example:
iex> Evision.imread!("path/to/image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {512, 512, 3},
 ref: #Reference<0.2992585850.4173463580.172624>
}
This should close #76.

v0.1.5 (2022-09-27)
Browse the Repository | Released Assets
Changed
	Always use Evision.Mat.from_binary_by_shape/3 for Evision.Nx.to_mat.
	Check cv::Mat::Mat.type() when fetching the shape of a Mat.
The number of channels will be included as the last dim of the shape if and only if cv::Mat::Mat.type() did not encode any channel information.

Bug Fixes
	Fixed Evision.Mat.transpose: should call shape! instead of shape. Thanks to @kipcole9 ! #77

Added
	Added Evision.Mat.last_dim_as_channel/1.
This method convert a tensor-like Mat to a "valid 2D image" with its channels equals to 3 or 1.

	Added Evision.Nx.to_mat/2.
This method convert a Nx.Tensor to a Mat. The second argument indicates the wanted/actual shape of the tensor.

	Added more Mat functions:
	Evision.Mat.as_shape/2.
	Evision.Mat.size/1.
	Evision.Mat.channels/1.
	Evision.Mat.depth/1.
	Evision.Mat.raw_type/1.
	Evision.Mat.isSubmatrix/1.
	Evision.Mat.isContinuous/1.
	Evision.Mat.elemSize/1.
	Evision.Mat.elemSize1/1.
	Evision.Mat.total/{1,2,3}.

	Added OpenCV types:
	Evision.cv_cn_shift/0.
	Evision.cv_depth_max/0.
	Evision.cv_mat_depth_mask/0.
	Evision.cv_maketype/2.
	Evision.cv_8U/0.
	Evision.cv_8UC/1.
	Evision.cv_8UC1/0.
	Evision.cv_8UC2/0.
	Evision.cv_8UC3/0.
	Evision.cv_8UC4/0.
	Evision.cv_8S/0.
	Evision.cv_8SC/1.
	Evision.cv_8SC1/0.
	Evision.cv_8SC2/0.
	Evision.cv_8SC3/0.
	Evision.cv_8SC4/0.
	Evision.cv_16U/0.
	Evision.cv_16UC/1.
	Evision.cv_16UC1/0.
	Evision.cv_16UC2/0.
	Evision.cv_16UC3/0.
	Evision.cv_16UC4/0.
	Evision.cv_16S/0.
	Evision.cv_16SC/1.
	Evision.cv_16SC1/0.
	Evision.cv_16SC2/0.
	Evision.cv_16SC3/0.
	Evision.cv_16SC4/0.
	Evision.cv_32S/0.
	Evision.cv_32SC/1.
	Evision.cv_32SC1/0.
	Evision.cv_32SC2/0.
	Evision.cv_32SC3/0.
	Evision.cv_32SC4/0.
	Evision.cv_32F/0.
	Evision.cv_32FC/1.
	Evision.cv_32FC1/0.
	Evision.cv_32FC2/0.
	Evision.cv_32FC3/0.
	Evision.cv_32FC4/0.
	Evision.cv_64F/0.
	Evision.cv_64FC/1.
	Evision.cv_64FC1/0.
	Evision.cv_64FC2/0.
	Evision.cv_64FC3/0.
	Evision.cv_64FC4/0.
	Evision.cv_16F/0.
	Evision.cv_16FC/1.
	Evision.cv_16FC1/0.
	Evision.cv_16FC2/0.
	Evision.cv_16FC3/0.
	Evision.cv_16FC4/0.

v0.1.4 (2022-09-10)
Browse the Repository | Released Assets
Changed
	Default to Evision.Backend for Evision.Nx.to_nx/2.

Bug Fixes
	Fixed class inheritance issue in py_src/class_info.py.
	Fixed missing comma in example livebooks' Mix.install. Thanks to @dbii.

Added
	Added decision tree and random forest example.

v0.1.3 (2022-09-01)
Browse the Repository | Released Assets
Bug Fixes
	Fixed issues in restoring files from precompiled package for macOS and Linux.	Paths are now quoted.
	using cp -RPf on macOS while cp -a on Linux.

	Fixed destroyAllWindows in NIF.
It was generated as 'erlang:destroyAllWindows/1' but it should be 'erlang:destroyAllWindows/0'.

v0.1.2 (2022-08-26)
Browse the Repository | Released Assets
Bug Fixes
	Fixed transpose.

Added
	Added x86_64 musl compilation CI test.
	Added a few precompilation musl targets:	x86_64-linux-musl
	aarch64-linux-musl
	armv7l-linux-musleabihf
	riscv64-linux-musl

v0.1.1 (2022-08-25)
Browse the Repository | Released Assets
Changed
	Use OpenCV 4.6.0 by default.

	Deprecated the use of the EVISION_PRECOMPILED_VERSION environment variable. The version information will be implied by the tag:
 def deps do
 [
 {:evision, "~> 0.1.1", github: "cocoa-xu/evision", tag: "v0.1.1"}
]
 end
The value of the environment variable EVISION_PREFER_PRECOMPILED decides whether the precompiled artefacts will be used or not.
From the next version (>=0.1.2), evision will set EVISION_PREFER_PRECOMPILED to true by default.

Added
	Implemented a few nx callbacks (remaining ones will be implemented in the next release).

v0.1.0 (2022-07-23)
First release.

Evision Quick Start

This document is a cheatsheet on how to use evision.
Read & Write An Image
Read An Image
Evision.imread
Read an image
iex> img = Evision.imread("image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.664400266.3733323795.187022>
}

Read and get the number of channels
iex> %Evision.Mat{channels: c} = img = Evision.imread("image.png")
iex> c
3
Read a color image as a grayscale one
Evision.imread with flags
iex> img = Evision.imread("image.png", flags: Evision.Constant.cv_IMREAD_GRAYSCALE())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {1080, 1920},
 ref: #Reference<0.664400266.3733323795.187022>
}
Read a PNG image that has an alpha channel
Evision.imread with flags
iex> img = Evision.imread("image.png", flags: Evision.Constant.cv_IMREAD_UNCHANGED())
%Evision.Mat{
 channels: 4,
 dims: 2,
 type: {:u, 8},
 raw_type: 24,
 shape: {1080, 1920, 4},
 ref: #Reference<0.664400266.3733323795.187022>
}
Write An Image
Evision.imwrite
The file extension decides the image encoder of the output image.
as PNG
Evision.imwrite("filename.png", image)

as JPEG
Evision.imwrite("filename.jpeg", image)
Access A Sub-region/matrix
Get A Sub-area of An Image
iex> img = Evision.imread("image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.664400266.3733323795.187022>
}

Note that Elixir Range is inclusive, 0..1 gives [0, 1]
iex> img[[0..100, 0..100]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {101, 101, 3},
 ref: #Reference<0.664400266.3733323795.187023>
}
Extract One Channel of An Image
iex> img = Evision.imread("image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.664400266.3733323795.187022>
}

by default OpenCV uses BGR format, therefore
the following code will extract the red-channel
iex> img[[:all, :all, 2]]
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {1080, 1920},
 ref: #Reference<0.664400266.3733323795.187023>
}
Extract An Abritray Continuous Sub-matrix
iex> img = Evision.imread("image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.664400266.3733323795.187022>
}

as of now, the step size has to be 1
iex> img[[100..200, 10..50, 0..1]]
%Evision.Mat{
 channels: 2,
 dims: 2,
 type: {:u, 8},
 raw_type: 8,
 shape: {101, 41, 2},
 ref: #Reference<0.664400266.3733323795.187024>
}
Interact with Nx.Tensor
Convert to Nx.Tensor
iex> img = Evision.imread("image.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1080, 1920, 3},
 ref: #Reference<0.664400266.3733323795.187022>
}

iex> t = Evision.Mat.to_nx(img)
#Nx.Tensor<
 u8[1080][1920][3]
 Evision.Backend
 [
 [
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, 0],
 [128, 128, ...],
 ...
],
 ...
]
>
It works the same for any Evision.Mat.
iex> mat = Evision.Mat.ones({2, 3, 4, 5}, :u8)
%Evision.Mat{
 channels: 1,
 dims: 4,
 type: {:u, 8},
 raw_type: 0,
 shape: {2, 3, 4, 5},
 ref: #Reference<0.2233780127.1059454995.175627>
}
iex> t = Evision.Mat.to_nx(mat)
#Nx.Tensor<
 u8[2][3][4][5]
 Evision.Backend
 [
 [
 [
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1]
],
 [
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1]
],
 [
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 ...
]
],
 ...
]
>
Convert From Nx.Tensor
From abritray Nx.Tensor.
iex> t = Nx.iota({3, 5, 7}, type: :u8)
iex> Evision.Mat.from_nx(t)
%Evision.Mat{
 channels: 1,
 dims: 4,
 type: {:u, 8},
 raw_type: 0,
 shape: {2, 3, 4, 5},
 ref: #Reference<0.2233780127.1059454995.175631>
}
However, please note that type :s64, :u32 and :u64 are not supported by OpenCV.
Another thing to note is that, some OpenCV functions expect the input to be a "valid 2D image",
in such cases, Evision.Mat.from_nx_2d/1 should be used instead. Please see the cheat below.
iex> image_tensor = Nx.broadcast(Nx.tensor(0, type: :u8), {720, 1280, 3})
iex> Evision.Mat.from_nx_2d(image_tensor)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {720, 1280, 3},
 ref: #Reference<0.2233780127.1059454995.175632>
}

compare the results
note the differences in `channels`, `dims` and `raw_type`
iex> Evision.Mat.from_nx(image_tensor)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {720, 1280, 3},
 ref: #Reference<0.2233780127.1059454995.175633>
}

README

[image: Logo]

 getting_started - Evision v0.1.39

getting_started

Evision Example - Get Started with Some Basic Functions
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Read an Image From File
alias Evision, as: Cv

Download the test image
lenna_test_image_path = Path.join(__DIR__, "lenna_test_image.png")
Helper.download!(
 "https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png",
 lenna_test_image_path
)

Read the test image
mat = Cv.imread(lenna_test_image_path)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {512, 512, 3},
 ref: #Reference<0.2845725607.2514092053.18350>
}
Encode an Image
encoded = Cv.imencode(".png", mat)
Kino.Image.new(encoded, :png)
Resize an Image
resized_mat = Cv.resize(mat, {_width = 256, _height = 128})
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {128, 256, 3},
 ref: #Reference<0.2845725607.2514092052.18171>
}
encoded = Cv.imencode(".png", resized_mat)
Kino.Image.new(encoded, :png)
Get a Subarea in an Image
Evision.Mat.roi
Cv.imencode(".png", Cv.Mat.roi(mat, {10, 10, 130, 200}))
|> Kino.Image.new(:png)
Encode and Decode Image in Memory
encode in memory
encoded_in_memory = Cv.imencode(".png", resized_mat)
<<137, 80, 78, 71, 13, 10, 26, 10, 0, 0, 0, 13, 73, 72, 68, 82, 0, 0, 1, 0, 0, 0, 0, 128, 8, 2, 0,
 0, 0, 107, 215, 32, 93, 0, 0, 32, 0, 73, 68, 65, 84, 120, 1, 20, 193, 93, 175, 110, 105, 118,
 ...>>
decode in memory
decoded_mat = Cv.imdecode(encoded_in_memory, Cv.Constant.cv_IMREAD_ANYCOLOR())
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {128, 256, 3},
 ref: #Reference<0.2845725607.2514092052.18187>
}
Read an PNG File With/Without Alpha Channel
download the test image (has alpha channel)
download_path = Path.join(__DIR__, "test.png")
Helper.download!("https://github.com/cocoa-xu/evision/raw/main/test/testdata/test.png", download_path)
:ok
without_alpha = Cv.imread(download_path)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {2, 3, 3},
 ref: #Reference<0.2845725607.2514092053.18729>
}
Cv.imread(download_path, flags: Cv.Constant.cv_IMREAD_UNCHANGED())
%Evision.Mat{
 channels: 4,
 dims: 2,
 type: {:u, 8},
 raw_type: 24,
 shape: {2, 3, 4},
 ref: #Reference<0.2845725607.2514092053.18730>
}
Read an Image and Convert It to Grayscale in a Single Call
gray_scale_mat = Cv.imread(lenna_test_image_path, flags: Cv.Constant.cv_IMREAD_GRAYSCALE())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {512, 512},
 ref: #Reference<0.2845725607.2514092053.18731>
}
gray_scale = Cv.imencode(".png", gray_scale_mat)
Kino.Image.new(gray_scale, :png)

 qrcode - Evision v0.1.39

qrcode

Evision Example - QRCode Encoding and Decoding
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Encode A String to QRCode
let's encode this example string
string_to_encode = "This is a string!"

the result image will be in minimal possible size
which is what it should be to avoid unnecessary memory allocations
because it would be easier to let the user to resize the result image
(most of the time we need to resize it to fit our needs anyway, this saves one call to resize)
%Evision.Mat{} =
 minimal_qrcode = Evision.QRCodeEncoder.encode(Evision.QRCodeEncoder.create(), string_to_encode)

for this example, we can resize it to 300x300
qrcode = Evision.resize(minimal_qrcode, {300, 300}, interpolation: Evision.Constant.cv_INTER_AREA())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {300, 300},
 ref: #Reference<0.2207498009.3335389204.191169>
}
Read the String Back From the Encoded QRCode
{decoded_string, points, straight_qrcode} =
 Evision.QRCodeDetector.detectAndDecode(Evision.QRCodeDetector.qrCodeDetector(), qrcode)

decoded_string
"This is a string!"
The Second Value In the Returned Tuple
`points` is the keypoints for the QRCode
the shape would be {1, 4, 2}, in which:
- 1: number of QRCode
- 4: always 4, 4 keypoints: top_left, bottom_left, bottom_right, top_right
- 2: always 2, (x, y)
points = Evision.Mat.to_nx(points, Nx.BinaryBackend)
#Nx.Tensor<
 f32[1][4][2]
 [
 [
 [24.0, 24.0],
 [275.0000305175781, 24.0],
 [275.0000305175781, 275.0000305175781],
 [24.0, 275.0000305175781]
]
]
>
here we take the first QRCode's keypoints
keypoints = Nx.as_type(points[0], :s32)

{top_left, bottom_right} = {
 List.to_tuple(Nx.to_flat_list(keypoints[0])),
 List.to_tuple(Nx.to_flat_list(keypoints[2]))
}
{{24, 24}, {275, 275}}
{{row_start, col_start}, {row_end, col_end}} = {top_left, bottom_right}
qrcode[[col_start..col_end, row_start..row_end]]
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {252, 252},
 ref: #Reference<0.2207498009.3335389204.191179>
}
The Third Value In the Returned Tuple
the third value is `straight_qrcode`, which is the minimal possible image
for the QRCode
Evision.resize(straight_qrcode, {300, 300}, interpolation: Evision.Constant.cv_INTER_AREA())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {300, 300},
 ref: #Reference<0.2207498009.3335389204.191182>
}

 Evision Example - Warp Perspective - Evision v0.1.39

Evision Example - Warp Perspective

Mix.install(
 [
 {:evision, "~> 0.1.31"},
 {:kino, "~> 0.9.0"},
 {:req, "~> 0.3.0"}
],
 system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 111
 # - 114
 # - 118
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
]
)
Introduction
This notebook will demonstrate how to perform perspective transformation.
It's useful to alias the module as something shorter when we make extensive use of the functions from certain modules.
alias Evision, as: Cv
Define Some Helper Functions
Let's prepare helper functions for preparing resources.
defmodule Helper do
 def download!(url, overwrite \\ false) do
 save_as = Path.join(System.tmp_dir!(), URI.encode_www_form(url))
 unless File.exists?(save_as) || overwrite, do: Req.get!(url, output: save_as)
 save_as
 end

end
Read the Test Image
Read the test image
test_img_mat =
 "https://raw.githubusercontent.com/cocoa-xu/evision/main/test/testdata/warp_perspective.png"
 |> Helper.download!()
 |> Cv.imread()
Function hypot: returns the Euclidean norm
This function calcululates the Euclidean norm, which is useful when we want to
know the length of a line segment between two points
(Euclidean distance).
hypot.(list(number())) function returns the Euclidean norm
hypot = fn l -> :math.sqrt(Enum.sum(Enum.map(l, fn i -> i * i end))) end
Calculate the Output Coordinates for Corners
specify input coordinates for corners of red quadrilateral
top_left = [136, 113]
top_right = [206, 130]
bottom_right = [173, 207]
bottom_left = [132, 196]

input_points = Nx.tensor([top_left, top_right, bottom_right, bottom_left], type: :f32)

get top and left dimensions and set to output dimensions of red rectangle
output_width =
 hypot.([
 Nx.to_number(Nx.subtract(input_points[[0, 0]], input_points[[1, 0]])),
 Nx.to_number(Nx.subtract(input_points[[0, 1]], input_points[[1, 1]]))
])
 |> round()

output_height =
 hypot.([
 Nx.to_number(Nx.subtract(input_points[[0, 0]], input_points[[3, 0]])),
 Nx.to_number(Nx.subtract(input_points[[0, 1]], input_points[[3, 1]]))
])
 |> round()

IO.puts("width: #{output_width}, height: #{output_height}")

set upper left coordinates for output rectangle
x = Nx.to_number(input_points[[0, 0]])
y = Nx.to_number(input_points[[0, 1]])

specify output coordinates for corners of red quadrilateral
top_left = [x, y]
top_right = [x + output_width - 1, y]
bottom_right = [x + output_width - 1, y + output_height - 1]
bottom_left = [x, y + output_height - 1]

output_points = Nx.tensor([top_left, top_right, bottom_right, bottom_left], type: :f32)
Compute Perspective Matrix
perspective_matrix = Cv.getPerspectiveTransform(input_points, output_points)
Kino.Tree.new(perspective_matrix)
Perspective Transformation
{img_height, img_width, _} = Cv.Mat.shape(test_img_mat)

do perspective transformation setting area outside input to black
Note that output size is the same as the input image size
output_img_mat =
 Cv.warpPerspective(
 test_img_mat,
 perspective_matrix,
 {img_width, img_height},
 flags: Cv.Constant.cv_INTER_LINEAR(),
 borderMode: Cv.Constant.cv_BORDER_CONSTANT(),
 borderValue: {0, 0, 0}
)

[
 ["Input image", test_img_mat],
 ["Output image", output_img_mat]
]
|> Enum.map(fn [label, img] ->
 Kino.Layout.grid([img, Kino.Markdown.new("**#{label}**")], boxed: true)
end)
|> Kino.Layout.grid(columns: 2)

 warp_polar - Evision v0.1.39

warp_polar

Evision Example - Warp Polar and Reverse
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Load the Test Image
test_image_path = Path.join(__DIR__, "warp_polar.png")

Helper.download!(
 "https://raw.githubusercontent.com/cocoa-xu/evision/main/test/testdata/warp_polar.png",
 test_image_path
)

Read the test image
%Evision.Mat{shape: {rows, cols, 3}} = src = Evision.imread(test_image_path)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {412, 561, 3},
 ref: #Reference<0.1535381621.3478519834.195361>
}
The centre point (relative to the source image) of the circle locates at {x=224, y=206}.
Of course, you might ask "how do we find the centre of that circle by code" or maybe first you wanna ask "how do we detect if there is any circle in any given image". And these questions fall outside the scope of this livebook, and there are really plenty of ways to do it.
Max Radius
max_radius decides the bounding circle. If some part of the bounding circle is outside the range of the source image, then we need to ask OpenCV to fill these outliners by adding another flag Evision.Constant.cv_WARP_FILL_OUTLIERS().
We can first plot the bounding circle for some visualisation.
centre = {x = 224, y = 206}
max_radius = 0.93 * min(x, y)
red_color = {0, 0, 255}

convert max_radius to an integer
because Evision.circle expects an integer input for the
radius parameter
int_max_radius = trunc(max_radius)

Evision.circle(src, centre, int_max_radius, red_color, thickness: 2)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {412, 561, 3},
 ref: #Reference<0.1535381621.3478519828.194184>
}
The processed image will look like this:
Evision.warpPolar(
 src,
 {0, 0},
 centre,
 int_max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {600, 191, 3},
 ref: #Reference<0.1535381621.3478519828.194187>
}
if the max radius is too large, then we will have some outliners, as you can see that the red circle (in the output below) is not entirely inside the source image
int_max_radius = trunc(1.2 * min(x, y))

Evision.circle(src, centre, int_max_radius, red_color, thickness: 2)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {412, 561, 3},
 ref: #Reference<0.1535381621.3478519828.194190>
}
And in such cases, OpenCV will have to fill outliners (in this example, filled outliners reside in the black areas on the right hand side of the output image)
Evision.warpPolar(
 src,
 {0, 0},
 centre,
 int_max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {776, 247, 3},
 ref: #Reference<0.1535381621.3478519828.194193>
}
dsize
The next thing is dsize={width, height}, and there are three options:
	if both values in dsize <=0 (default), the destination image will have (almost) same area of source bounding circle
$\begin{array}{l} dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \ dsize.width = \texttt{round}(maxRadius) \ dsize.height = \texttt{round}(maxRadius \cdot \Pi) \ \end{array}$

	if only dsize.height <= 0, the destination image area will be proportional to the bounding circle area but scaled by Kx * Kx:
$\begin{array}{l} dsize.height = \texttt{round}(dsize.width \cdot \Pi) \ \end{array}$

	if both values in dsize > 0, the destination image will have the given size therefore the area of the bounding circle will be scaled to dsize.

dsize - option 1
We can first try dsize={0, 0}.
dsize = {0, 0}
max_radius = 0.93 * min(x, y)

Evision.warpPolar(
 src,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {602, 192, 3},
 ref: #Reference<0.1535381621.3478519828.194205>
}
Looks good. What about dsize = {240, 800}
dsize - option 2
only dsize.height <= 0
dsize = {150, -1}
max_radius = 0.93 * min(x, y)

Evision.warpPolar(
 src,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {471, 150, 3},
 ref: #Reference<0.1535381621.3478519828.194208>
}
dsize - option 3
both values in dsize > 0
dsize = {240, 400}
max_radius = 0.93 * min(x, y)

Evision.warpPolar(
 src,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {400, 240, 3},
 ref: #Reference<0.1535381621.3478519828.194211>
}
Remaps to Semilog-Polar Coordinates Space
dsize = {0, 0}
max_radius = 0.93 * min(x, y)

log_polar_img =
 Evision.warpPolar(
 src,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS() + Evision.Constant.cv_WARP_POLAR_LOG()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {602, 192, 3},
 ref: #Reference<0.1535381621.3478519828.194229>
}
Reverse the Transformation
From Semilog-Polar Coordinates Space
log_polar_img is the result image in the cell above.
shape = Evision.Mat.shape(src)
dsize = {elem(shape, 1), elem(shape, 0)}

Evision.warpPolar(
 log_polar_img,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS() +
 Evision.Constant.cv_WARP_POLAR_LOG() + Evision.Constant.cv_WARP_INVERSE_MAP()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {412, 561, 3},
 ref: #Reference<0.1535381621.3478519828.194247>
}
From Polar Coordinates Space
dsize = {0, 0}
max_radius = 0.93 * min(x, y)

linear_polar_img =
 Evision.warpPolar(
 src,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS()
)

reverse the transformation
shape = Evision.Mat.shape(src)
dsize = {elem(shape, 1), elem(shape, 0)}

Evision.warpPolar(
 linear_polar_img,
 dsize,
 centre,
 max_radius,
 Evision.Constant.cv_INTER_LINEAR() + Evision.Constant.cv_WARP_FILL_OUTLIERS() +
 Evision.Constant.cv_WARP_INVERSE_MAP()
)

please click the "Image" tab in the output below to see the visualised result
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {412, 561, 3},
 ref: #Reference<0.1535381621.3478519828.194251>
}

 find_and_draw_contours - Evision v0.1.39

find_and_draw_contours

Find and Draw Contours in an Image
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Helper Function
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Helper.download!("https://docs.opencv.org/4.x/pca_test1.jpg", "pca_test.jpg")
:ok
Load Image As Gray Scale
gray = Evision.imread("pca_test.jpg", flags: Evision.Constant.cv_IMREAD_GRAYSCALE())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {600, 800},
 ref: #Reference<0.2172638371.2268463131.71223>
}
Get A Binary Image
import Bitwise so that we can use `|||` (bitwise or)
import Bitwise

binarization
{_, bw} =
 Evision.threshold(gray, 50, 255, Evision.Constant.cv_THRESH_BINARY() ||| Evision.Constant.cv_THRESH_OTSU())

bw
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {600, 800},
 ref: #Reference<0.2172638371.2268463122.70922>
}
Find All Contours in the Binary Image
Find all the contours in the thresholded image
{contours, _} = Evision.findContours(bw, Evision.Constant.cv_RETR_LIST(), Evision.Constant.cv_CHAIN_APPROX_NONE())

IO.puts("Find #{Enum.count(contours)} contour(s)")
Find 7 contour(s)
:ok
Ignore Contours That Are Too Small or Too Large
minimal_area = 100
maximal_area = 100_000

contours =
 Enum.reject(contours, fn c ->
 # Calculate the area of each contour
 area = Evision.contourArea(c)
 # Ignore contours that are too small or too large
 # (return true to reject)
 area < minimal_area or area > maximal_area
 end)

IO.puts("#{Enum.count(contours)} contour(s) remains")
6 contour(s) remains
:ok
Draw All Contours
color in {Blue, Green, Red}, range from 0-255
edge_color = {0, 0, 255}

draw all contours by setting `index` to `-1`
index = -1

Load image in color
src = Evision.imread("pca_test.jpg")

draw all contours on the color image
Evision.drawContours(src, contours, index, edge_color, thickness: 2)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {600, 800, 3},
 ref: #Reference<0.2172638371.2268463122.70944>
}

 stitching - Evision v0.1.39

stitching

Evision Example - Stitching Multiple Photos into A Panorama Photo
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Download Test Images
change to the file's directory
or somewhere you have write permission
File.cd!(__DIR__)

https://github.com/opencv/opencv_extra/tree/4.x/testdata/stitching
Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/stitching/a1.png",
 "a1.png"
)

Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/stitching/a2.png",
 "a2.png"
)

Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/stitching/a3.png",
 "a3.png"
)
:ok
Stitching
alias Evision, as: Cv

a1 = Cv.imread("./a1.png")
a2 = Cv.imread("./a2.png")
a3 = Cv.imread("./a3.png")
sticher = Cv.Stitcher.create()
{status_code, result} = Cv.Stitcher.stitch(sticher, [a1, a2, a3])
0 = status_code
status_code should be 0 (OK),
for other status_code, please refer to https://github.com/opencv/opencv/blob/4.5.4/modules/stitching/include/opencv2/stitching.hpp#L152

Cv.imencode(".png", result)
|> Kino.Image.new(:png)

 pca - Evision v0.1.39

pca

Evision Example - Principal Components Analysis
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Helper Function
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
alias
alias Evision, as: Cv
Evision
Download the test image
Helper.download!("https://docs.opencv.org/4.x/pca_test1.jpg", "pca_test.jpg")
:ok
import Bitwise

Load image in grayscale
gray = Cv.imread("pca_test.jpg", flags: Cv.Constant.cv_IMREAD_GRAYSCALE())

Convert image to binary
{_, bw} = Cv.threshold(gray, 50, 255, Cv.Constant.cv_THRESH_BINARY() ||| Cv.Constant.cv_THRESH_OTSU())

Find all the contours in the thresholded image
{contours, _} = Cv.findContours(bw, Cv.Constant.cv_RETR_LIST(), Cv.Constant.cv_CHAIN_APPROX_NONE())

contours =
 contours
 # Calculate the area of each contour
 |> Enum.map(&{Cv.contourArea(&1), &1})
 # Ignore contours that are too small or too large
 |> Enum.reject(fn {area, _c} -> area < 100 or area > 100_000 end)

area
Enum.map(contours, &elem(&1, 0))
[17192.0, 16830.0, 16150.5, 15367.5, 15571.0, 14842.0]
PCA analysis
contours = Enum.map(contours, &elem(&1, 1))

pca_analysis =
 for c <- contours, reduce: [] do
 acc ->
 # Construct a buffer used by the pca analysis
 %Evision.Mat{shape: shape, type: type} = c
 sz = elem(shape, 0)
 pts_binary = Cv.Mat.to_binary(c)
 data_pts = Cv.Mat.from_binary(pts_binary, type, sz, 2, 1)
 data_pts = Cv.Mat.as_type(data_pts, {:f, 64})

 # Perform PCA analysis
 {mean, eigenvectors, eigenvalues} = Cv.pcaCompute2(data_pts, Cv.Mat.empty())
 eigenvectors = Cv.Mat.to_nx(eigenvectors, Nx.BinaryBackend)
 eigenvalues = Cv.Mat.to_nx(eigenvalues, Nx.BinaryBackend)

 # Store the center of the object
 <<centre_x::float-size(64)-little, centre_y::float-size(64)-little, _::binary>> =
 Cv.Mat.to_binary(mean)

 centre_x = trunc(centre_x)
 centre_y = trunc(centre_y)

 # Store the eigenvalues and eigenvectors
 eval00 = Nx.slice(eigenvalues, [0, 0], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)
 eval10 = Nx.slice(eigenvalues, [1, 0], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)

 evec00 = Nx.slice(eigenvectors, [0, 0], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)
 evec01 = Nx.slice(eigenvectors, [0, 1], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)
 evec10 = Nx.slice(eigenvectors, [1, 0], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)
 evec11 = Nx.slice(eigenvectors, [1, 1], [1, 1]) |> Nx.to_flat_list() |> Enum.at(0)

 # Calculate the principal components
 p1 =
 {trunc(Float.round(centre_x + 0.02 * evec00 * eval00)),
 trunc(Float.round(centre_y + 0.02 * evec01 * eval00))}

 p2 =
 {trunc(Float.round(centre_x - 0.02 * evec10 * eval10)),
 trunc(Float.round(centre_y - 0.02 * evec11 * eval10))}

 cntr = {centre_x, centre_y}
 [{cntr, p1, p2} | acc]
 end

pca_analysis = Enum.reverse(pca_analysis)
[
 {{430, 407}, {691, 338}, {427, 397}},
 {{439, 326}, {697, 264}, {437, 317}},
 {{433, 239}, {683, 182}, {431, 230}},
 {{420, 169}, {666, 127}, {419, 161}},
 {{191, 291}, {176, 52}, {200, 290}},
 {{407, 90}, {645, 49}, {406, 82}}
]
visualisation
src = Cv.imread("pca_test.jpg")

Draw each contour
src =
 for index <- 0..(Enum.count(contours) - 1), reduce: src do
 src ->
 Cv.drawContours(src, contours, index, {0, 0, 255}, thickness: 2)
 end
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {600, 800, 3},
 ref: #Reference<0.1624340523.638451732.91783>
}
A helper function
defmodule PACHelper do
 def drawAxis(src, {px, py}, {qx, qy}, colour, scale) do
 angle = :math.atan2(py - qy, px - qx)
 hypotenuse = :math.sqrt((py - qy) * (py - qy) + (px - qx) * (px - qx))
 qx = trunc(px - scale * hypotenuse * :math.cos(angle))
 qy = trunc(py - scale * hypotenuse * :math.sin(angle))
 src = Cv.line(src, {px, py}, {qx, qy}, colour, thickness: 1, style: Cv.Constant.cv_LINE_AA())

 px = trunc(qx + 9 * :math.cos(angle + :math.pi() / 4))
 py = trunc(qy + 9 * :math.sin(angle + :math.pi() / 4))
 src = Cv.line(src, {px, py}, {qx, qy}, colour, thickness: 1, style: Cv.Constant.cv_LINE_AA())

 px = trunc(qx + 9 * :math.cos(angle - :math.pi() / 4))
 py = trunc(qy + 9 * :math.sin(angle - :math.pi() / 4))
 Cv.line(src, {px, py}, {qx, qy}, colour, thickness: 1, style: Cv.Constant.cv_LINE_AA())
 end
end
{:module, PACHelper, <<70, 79, 82, 49, 0, 0, 13, ...>>, {:drawAxis, 5}}
Draw the principal components
src =
 for {cntr, p1, p2} <- pca_analysis, reduce: src do
 src ->
 src = Cv.circle(src, cntr, 3, {255, 0, 255}, thickness: 2)
 src = PACHelper.drawAxis(src, cntr, p1, {0, 255, 0}, 1)
 PACHelper.drawAxis(src, cntr, p2, {255, 255, 0}, 5)
 end

result = Cv.imencode(".png", src)

Kino.Image.new(result, :png)

 photo-hdr - Evision v0.1.39

photo-hdr

Evision Example - High Dynamic Range Imaging
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end

 @doc """
 This function chunks binary data by every requested `chunk_size`

 To make it more general, this function allows the length of the last chunk
 to be less than the request `chunk_size`.

 For example, if you have a 7-byte binary data, and you'd like to chunk it by every
 4 bytes, then this function will return two chunks with the first gives you the
 byte 0 to 3, and the second one gives byte 4 to 6.
 """
 def chunk_binary(binary, chunk_size) when is_binary(binary) do
 total_bytes = byte_size(binary)
 full_chunks = div(total_bytes, chunk_size)

 chunks =
 if full_chunks > 0 do
 for i <- 0..(full_chunks - 1), reduce: [] do
 acc -> [:binary.part(binary, chunk_size * i, chunk_size) | acc]
 end
 else
 []
 end

 remaining = rem(total_bytes, chunk_size)

 chunks =
 if remaining > 0 do
 [:binary.part(binary, chunk_size * full_chunks, remaining) | chunks]
 else
 chunks
 end

 Enum.reverse(chunks)
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 16, ...>>, {:chunk_binary, 2}}
Download the Test Images
alias Evision, as: Cv

change to the file's directory
or somewhere you have write permission
File.cd!(__DIR__)

create a directory for storing the test images
File.mkdir_p!("photo_hdr_test")

exposure_filenames =
 0..15
 |> Enum.map(&Integer.to_string(&1))
 |> Enum.map(&String.pad_leading(&1, 2, "0"))
 |> Enum.map(&("memorial" <> &1 <> ".png"))

exposure_file_urls =
 exposure_filenames
 |> Enum.map(
 &("https://raw.githubusercontent.com/opencv/opencv_extra/4.x/testdata/cv/hdr/exposures/" <> &1)
)

exposure_file_save_paths =
 exposure_filenames
 |> Enum.map(&Path.join([__DIR__, "photo_hdr_test", &1]))

exposure_file_urls
|> Enum.zip(exposure_file_save_paths)
|> Enum.map(fn {url, save_as} -> Helper.download!(url, save_as) end)
|> Enum.all?(&(:ok = &1))
true
Download list.txt that Stores the Exposure Sequences
list_txt_file = Path.join([__DIR__, "photo_hdr_test", "list.txt"])

Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/4.x/testdata/cv/hdr/exposures/list.txt",
 list_txt_file
)
:ok
Load the Exposure Sequences
Firstly we load input images and exposure times from user-defined folder.
The folder should contain images and list.txt - file that contains file names and inverse exposure times.
exposure_sequences =
 list_txt_file
 |> File.read!()
 |> String.split("\n")
 |> Enum.reject(&(String.length(&1) == 0))
 |> Enum.map(&String.split(&1, " "))
 |> Enum.map(&List.to_tuple(&1))
 |> Enum.map(fn {image_filename, times} ->
 mat = Cv.imread(Path.join([__DIR__, "photo_hdr_test", image_filename]))
 {val, ""} = Float.parse(times)
 {mat, 1 / val}
 end)

images =
 exposure_sequences
 |> Enum.map(&elem(&1, 0))

`times` HAS to be float32, otherwise OpenCV will crash
times =
 exposure_sequences
 |> Enum.map(&elem(&1, 1))
 |> Enum.into(<<>>, fn d -> <<d::float-size(32)-little>> end)
 |> Cv.Mat.from_binary_by_shape({:f, 32}, {1, Enum.count(images)})
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:f, 32},
 raw_type: 5,
 shape: {1, 16},
 ref: #Reference<0.741743058.1175846932.38571>
}
Estimate Camera Response
It is necessary to know camera response function (CRF) for a lot of HDR construction algorithms.
We use one of the calibration algorithms to estimate inverse CRF for all 256 pixel values.
calibrate = Cv.createCalibrateDebevec()
response = Cv.CalibrateDebevec.process(calibrate, images, times)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:f, 32},
 raw_type: 21,
 shape: {256, 1, 3},
 ref: #Reference<0.741743058.1175846932.38575>
}
Process and Get the HDR Image
We use Debevec's weighting scheme to construct HDR image
using response calculated in the previous item.
merge_debevec = Cv.createMergeDebevec()
hdr = Cv.MergeDebevec.process(merge_debevec, images, times, response: response)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:f, 32},
 raw_type: 21,
 shape: {714, 484, 3},
 ref: #Reference<0.741743058.1175846932.38579>
}
Tonemap the HDR image
Since we want to see our results on common LDR display we have to map our HDR image to 8-bit range
preserving most details.
It is the main goal of tonemapping methods.
We use tonemapper with bilateral filtering and set 2.2 as the value for gamma correction.
tonemap = Cv.createTonemap(gamma: 2.2)
ldr = Cv.Tonemap.process(tonemap, hdr)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:f, 32},
 raw_type: 21,
 shape: {714, 484, 3},
 ref: #Reference<0.741743058.1175846932.38583>
}
Perform Exposure Fusions
There is an alternative way to merge our exposures in case when we don't need HDR image.
This process is called exposure fusion and produces LDR image that doesn't require gamma correction.
It also doesn't use exposure values of the photographs.
merge_mertens = Cv.createMergeMertens()
fusion = Cv.MergeMertens.process(merge_mertens, images)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:f, 32},
 raw_type: 21,
 shape: {714, 484, 3},
 ref: #Reference<0.741743058.1175846932.38587>
}
Write Fusion
output_fusion_file = Path.join([__DIR__, "photo_hdr_test", "fusion.png"])

result =
 fusion
 |> Cv.Mat.to_nx(Nx.BinaryBackend)
 |> Nx.multiply(255)
 |> Nx.clip(0, 255)
 |> Nx.as_type({:u, 8})
 |> Cv.Mat.from_nx_2d()
 |> then(fn result ->
 Cv.imwrite(output_fusion_file, result)
 result
 end)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {714, 484, 3},
 ref: #Reference<0.741743058.1175846932.38590>
}
result = Cv.imencode(".png", result)

Kino.Image.new(result, :png)
Write LDR Image
output_ldr_file = Path.join([__DIR__, "photo_hdr_test", "ldr.png"])
f32_shape = Cv.Mat.shape(ldr)
nan = <<0, 0, 192, 255>>
positive_inf = <<0, 0, 128, 127>>
negative_inf = <<0, 0, 128, 255>>

result =
 ldr
 |> Cv.Mat.to_binary()
 |> Helper.chunk_binary(4)
 |> Enum.map(fn f32 ->
 case f32 do
 ^nan ->
 <<0, 0, 0, 0>>

 ^positive_inf ->
 <<0, 0, 0, 0>>

 ^negative_inf ->
 <<0, 0, 0, 0>>

 # legal value
 _ ->
 f32
 end
 end)
 |> IO.iodata_to_binary()
 |> Nx.from_binary({:f, 32})
 |> Nx.reshape(f32_shape)
 |> Nx.multiply(255)
 |> Nx.clip(0, 255)
 |> Nx.as_type({:u, 8})
 |> Cv.Mat.from_nx_2d()

result = Cv.imencode(".png", result)

Kino.Image.new(result, :png)
Write HDR Image
output_hdr_file = Path.join([__DIR__, "photo_hdr_test", "hdr.hdr"])
Cv.imwrite(output_hdr_file, hdr)
true

 sudoku - Evision v0.1.39

sudoku

Sudoku Puzzle Extractor
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"},
 {:torchx, "~> 0.4"},
 {:nx, "~> 0.4"},
 {:scidata, "~> 0.1"},
 {:axon, "~> 0.3.0"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
References
Some code in this example was basically literal translation from the code in OpenCV Sudoku Solver and OCR - PyImageSearch. The sample input image is also taken from that post.
The code of the neural network was taken from https://github.com/elixir-nx/axon/blob/main/examples/vision/mnist.exs with some minor changes.
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
Download the test image.
Helper.download!(
 "https://raw.githubusercontent.com/cocoa-xu/evision/main/test/testdata/sudoku_puzzle.webp",
 "sudoku_puzzle.webp"
)
Load Original Image and Convert It to Gray Scale
read the original image
original = Evision.imread("sudoku_puzzle.webp")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1024, 962, 3},
 ref: #Reference<0.736436033.3583639578.183370>
}
convert it to grayscale
gray = Evision.cvtColor(original, Evision.Constant.cv_COLOR_BGR2GRAY())
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {1024, 962},
 ref: #Reference<0.736436033.3588096019.145887>
}
apply some Gaussian Blue to the image
we are doing so to reduce the noise and prepare it for the next step
blurred = Evision.gaussianBlur(gray, {7, 7}, 3)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {1024, 962},
 ref: #Reference<0.736436033.3588096019.145890>
}
binarization with Evision.adaptiveThreshold
bw =
 Evision.adaptiveThreshold(
 blurred,
 255,
 Evision.Constant.cv_ADAPTIVE_THRESH_GAUSSIAN_C(),
 Evision.Constant.cv_THRESH_BINARY(),
 11,
 2
)

bitwise not
threshold = Evision.Mat.bitwise_not(bw)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {1024, 962},
 ref: #Reference<0.736436033.3588096019.145894>
}
Find the Sudoku Puzzle
First thing first, we need to find all the contours in the thresholded image
{contours, _} =
 Evision.findContours(
 threshold,
 Evision.Constant.cv_RETR_EXTERNAL(),
 Evision.Constant.cv_CHAIN_APPROX_SIMPLE()
)

IO.puts("Find #{Enum.count(contours)} contour(s)")
Find 377 contour(s)
:ok
and our assumptions are that
1. the contour that contains the puzzle should be fairly large:
hence we are sorting them by their area in descending order
contours =
 Enum.sort_by(contours, fn c ->
 -Evision.contourArea(c)
 end)

IO.puts("area of the largest contour: #{Evision.contourArea(Enum.at(contours, 0))}")
area of the largest contour: 430559.5
:ok
2.the puzzle should be a rectangular
which means its contour should be approximately an rectangular
which means the approximated polygonal of the contour should have 4 corners (keypoints)
hence we will need to find the contour which its approximated polygonal's shape is {4, 1, 2}
puzzle_keypoints =
 Enum.reduce_while(contours, nil, fn c, _acc ->
 peri = Evision.arcLength(c, true)
 approx = Evision.approxPolyDP(c, 0.02 * peri, true)

 case approx.shape do
 {4, 1, 2} ->
 {:halt, approx}

 _ ->
 {:cont, nil}
 end
 end)

if puzzle_keypoints do
 IO.puts("Found puzzle")
 Evision.drawContours(original, [puzzle_keypoints], -1, {0, 255, 0}, thickness: 2)
else
 IO.puts("""
 Could not find Sudoku puzzle outline.
 Try debugging your thresholding and contour steps.
 """)
end
Found puzzle
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1024, 962, 3},
 ref: #Reference<0.736436033.3588096019.146280>
}
Extract the Puzzle
To extract the puzzle, we need to apply some affine transformations.
To apply any affine transformations, we will first need to know the four corners/points, namely,
	Top left
	Top right
	Bottom right
	Bottom left

And these four points have to be arranged in the order above -- so that when you connect them 1 => 2 => 3=> 4 => 1, they can form a closed rectangular.
this function will arrange the keypoints in the order discussed above
order_points = fn pts ->
 # the top-left point will have the smallest sum, whereas
 # the bottom-right point will have the largest sum
 sum = Nx.sum(pts, axes: [1])
 tl = pts[Nx.argmin(sum)]
 br = pts[Nx.argmax(sum)]

 # now, compute the difference between the points, the
 # top-right point will have the smallest difference,
 # whereas the bottom-left will have the largest difference
 diff = Nx.subtract(pts[[0..3, 1]], pts[[0..3, 0]])
 tr = pts[Nx.argmin(diff)]
 bl = pts[Nx.argmax(diff)]
 {tl, tr, br, bl}
end

input =
 Evision.Mat.as_shape(puzzle_keypoints, {4, 2})
 |> Evision.Mat.to_nx(Nx.BinaryBackend)
 |> Nx.as_type(:f32)

{tl, tr, br, bl} = order_points.(input)
rect = Nx.stack([tl, tr, br, bl])
#Nx.Tensor<
 f32[4][2]
 [
 [163.0, 206.0],
 [809.0, 180.0],
 [877.0, 785.0],
 [106.0, 809.0]
]
>
After that, we can calculate the expected output height and width.
point_distance = fn p1, p2 ->
 round(
 Nx.to_number(
 Nx.sqrt(
 Nx.add(
 Nx.power(Nx.subtract(p1[[0]], p2[[0]]), 2),
 Nx.power(Nx.subtract(p1[[1]], p2[[1]]), 2)
)
)
)
)
end

compute the width of the new image, which will be the
maximum distance between bottom-right and bottom-left
x-coordiates or the top-right and top-left x-coordinates
output_width =
 Nx.to_number(
 Nx.max(
 point_distance.(br, bl),
 point_distance.(tr, tl)
)
)

compute the height of the new image, which will be the
maximum distance between the top-right and bottom-right
y-coordinates or the top-left and bottom-left y-coordinates
output_height =
 Nx.to_number(
 Nx.max(
 point_distance.(tr, br),
 point_distance.(tl, bl)
)
)

{output_height, output_width}
{609, 771}
Then we specify output coordinates for corners of the puzzle, [top-left, top-right, bottom-right, bottom-left] as output.
output =
 Nx.tensor(
 [
 [0, 0],
 [output_width - 1, 0],
 [output_width - 1, output_height - 1],
 [0, output_height - 1]
],
 type: :f32
)
#Nx.Tensor<
 f32[4][2]
 Torchx.Backend(cpu)
 [
 [0.0, 0.0],
 [770.0, 0.0],
 [770.0, 608.0],
 [0.0, 608.0]
]
>
Get the perspective transformation matrix and warp perspective for both the original image and the grayscale one
matrix = Evision.getPerspectiveTransform(rect, output)

puzzle =
 Evision.warpPerspective(
 original,
 matrix,
 {output_width, output_height},
 flags: Evision.Constant.cv_INTER_LINEAR(),
 borderMode: Evision.Constant.cv_BORDER_CONSTANT(),
 borderValue: {0, 0, 0}
)

puzzle_gray =
 Evision.warpPerspective(
 gray,
 matrix,
 {output_width, output_height},
 flags: Evision.Constant.cv_INTER_LINEAR(),
 borderMode: Evision.Constant.cv_BORDER_CONSTANT(),
 borderValue: {0, 0, 0}
)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {609, 771},
 ref: #Reference<0.736436033.3588096019.146349>
}
Since the Sudoku puzzel is 9x9, we can resize it to a square
{h, w} = puzzle_gray.shape
len = max(h, w)
puzzle_gray = Evision.resize(puzzle_gray, {len, len})
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {771, 771},
 ref: #Reference<0.736436033.3588096019.146352>
}
Extract Digits in Each Cell of the Puzzle
Let's start with the basic case, the top-left one.
step = len / 9
current_cell = puzzle_gray[[0..round(step), 0..round(step)]]
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {87, 87},
 ref: #Reference<0.736436033.3588096019.146355>
}
import Bitwise so that we can use `|||` (bitwise or)
import Bitwise

extract_digit = fn cell ->
 # get a binary image of the cell
 {_, threshold} =
 Evision.threshold(cell, 10, 255, Evision.Constant.cv_THRESH_BINARY_INV() ||| Evision.Constant.cv_THRESH_OTSU())

 # cut off border
 {h, w} = threshold.shape
 threshold = threshold[[8..(h - 8), 8..(w - 8)]]

 # find contours in the thresholded cell
 {contours, _} =
 Evision.findContours(
 threshold,
 Evision.Constant.cv_RETR_EXTERNAL(),
 Evision.Constant.cv_CHAIN_APPROX_SIMPLE()
)

 # if no contours were found than this is an empty cell
 unless Enum.count(contours) == 0 do
 # otherwise, find the largest contour in the cell and create a
 # mask for the contour
 c = Enum.max_by(contours, &Evision.contourArea/1)
 mask = Evision.Mat.zeros(threshold.shape, :u8)
 mask = Evision.drawContours(mask, [c], -1, {255}, thickness: 2)

 # compute the percentage of masked pixels relative to the total
 # area of the image
 {h, w} = threshold.shape
 percent_filled = Evision.countNonZero(mask) / (w * h)

 # if less than 5% of the mask is filled then we are looking at
 # noise and can safely ignore the contour
 unless percent_filled < 0.05 do
 threshold
 end
 end
end
#Function<42.3316493/1 in :erl_eval.expr/6>
Let's try this for the top-left cell
current_cell = extract_digit.(current_cell)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {72, 72},
 ref: #Reference<0.736436033.3588096019.146359>
}
And it looks great!
Train A Neural Network that Recognizes Digits
Here I'm using :torchx as the backend
you can use :exla or other nx backend
Nx.default_backend(Torchx.Backend)
{Torchx.Backend, []}
Define the neural network module, MNIST.
Code from https://github.com/elixir-nx/axon/blob/main/examples/vision/mnist.exs with minor changes.
defmodule MNIST do
 require Axon

 def transform_images({bin, type, shape}) do
 bin
 |> Nx.from_binary(type, backend: Torchx.Backend)
 # 28, 28})
 |> Nx.reshape({elem(shape, 0), 784})
 |> Nx.as_type(:f32)
 |> Nx.divide(255.0)
 |> Nx.to_batched(500, leftover: :discard)
 |> Enum.to_list()
 # Test split
 |> Enum.split(-3)
 end

 def transform_labels({bin, type, _}) do
 bin
 |> Nx.from_binary(type, backend: Torchx.Backend)
 |> Nx.new_axis(-1)
 |> Nx.equal(Nx.tensor(Enum.to_list(0..9)))
 |> Nx.to_batched(500, leftover: :discard)
 |> Enum.to_list()
 # Test split
 |> Enum.split(-3)
 end

 def build_model(input_shape) do
 Axon.input("input", shape: input_shape)
 |> Axon.dense(128, activation: :relu)
 |> Axon.dropout()
 |> Axon.dense(10, activation: :softmax)
 end

 def train_model(model, train_images, train_labels, epochs) do
 model
 |> Axon.Loop.trainer(:categorical_cross_entropy, Axon.Optimizers.adamw(0.005))
 |> Axon.Loop.metric(:accuracy, "Accuracy")
 |> Axon.Loop.run(Stream.zip(train_images, train_labels), %{}, epochs: epochs)
 end

 def test_model(model, model_state, test_images, test_labels) do
 model
 |> Axon.Loop.evaluator()
 |> Axon.Loop.metric(:accuracy, "Accuracy")
 |> Axon.Loop.run(Stream.zip(test_images, test_labels), model_state)
 end
end
{:module, MNIST, <<70, 79, 82, 49, 0, 0, 16, ...>>, {:test_model, 4}}
Get the MNIST dataset and prepare the model.
{images, labels} = Scidata.MNIST.download()

{train_images, test_images} = MNIST.transform_images(images)
{train_labels, test_labels} = MNIST.transform_labels(labels)

model = MNIST.build_model({nil, 784})
#Axon<
 inputs: %{"input" => {nil, 784}}
 outputs: "softmax_0"
 nodes: 6
>
Train and Test the MNIST Model
IO.puts("Training Model...")
num_epoch = 5
model_state = MNIST.train_model(model, train_images, train_labels, num_epoch)
Training Model...
Epoch: 0, Batch: 100, Accuracy: 0.8545348 loss: 0.4818023
Epoch: 1, Batch: 100, Accuracy: 0.9332873 loss: 0.3481621
Epoch: 2, Batch: 100, Accuracy: 0.9500000 loss: 0.2871155
Epoch: 3, Batch: 100, Accuracy: 0.9596242 loss: 0.2489783
Epoch: 4, Batch: 100, Accuracy: 0.9664556 loss: 0.2216917
%{
 "dense_0" => %{
 "bias" => #Nx.Tensor<
 f32[128]
 Torchx.Backend(cpu)
 [-0.17988327145576477, 0.1716635376214981, 0.0018325354903936386, 0.1798122078180313, 0.09567301720380783, 0.10200180858373642, 0.008338148705661297, 0.10609600692987442, -0.0847468227148056, 0.08587154000997543, -7.477949257008731e-4, -0.03447800129652023, 0.03325527906417847, 0.029068496078252792, -0.1250336617231369, -0.030752241611480713, 0.08610563725233078, -0.03146626055240631, -0.09594535827636719, -0.02172447182238102, 0.058523084968328476, -0.03135503828525543, -0.002279756823554635, -0.027246493846178055, 0.05487725883722305, -0.28020963072776794, 0.1807883381843567, 0.039404697716236115, 0.17562659084796906, 0.10994528979063034, 0.11735761165618896, 0.19422295689582825, -0.027378687635064125, 0.0191771499812603, -0.031338877975940704, 0.06676501035690308, 0.10198114812374115, -0.0012608487159013748, 0.09346475452184677, 0.05980100482702255, -0.029884351417422295, 0.12892872095108032, 0.23887237906455994, 0.020879346877336502, -0.142303928732872, 0.1269598752260208, 0.11833193153142929, -0.04432889074087143, ...]
 >,
 "kernel" => #Nx.Tensor<
 f32[784][128]
 Torchx.Backend(cpu)
 [
 [-0.004997961223125458, -0.056927893310785294, 0.012524336576461792, -0.04678211361169815, -0.07006479054689407, 0.03179212659597397, 0.05232561379671097, -0.060292698442935944, 0.07966595143079758, -0.05596722662448883, 0.007738783955574036, 0.024696074426174164, -0.0667371079325676, -0.02877001464366913, -0.03603668883442879, -0.05976931005716324, 0.03925761580467224, -0.056572359055280685, -0.056350238621234894, 0.03452708572149277, 0.07506700605154037, 0.01048319786787033, 0.027114614844322205, -0.05841222405433655, 0.01039694994688034, -0.058553546667099, -0.02925030142068863, 0.03921818733215332, -0.009020909667015076, 0.0156695693731308, -0.021413378417491913, -0.03247242793440819, 0.04008222371339798, -0.05680907890200615, 0.06702771037817001, -0.03168267011642456, 0.04423173516988754, 0.06032135337591171, 0.0627024844288826, -0.018609225749969482, -0.07648104429244995, -0.015578106045722961, 0.06719689816236496, 1.7232447862625122e-4, -0.022565998136997223, 0.04633399099111557, 0.05553805083036423, ...],
 ...
]
 >
 },
 "dense_1" => %{
 "bias" => #Nx.Tensor<
 f32[10]
 Torchx.Backend(cpu)
 [-0.052650559693574905, 0.04494607821106911, -0.2200334221124649, -0.08993491530418396, -0.02432980388402939, -0.005615420173853636, -0.038794878870248795, 0.0233138520270586, 0.19364574551582336, 0.10583429038524628]
 >,
 "kernel" => #Nx.Tensor<
 f32[128][10]
 Torchx.Backend(cpu)
 [
 [-0.033295780420303345, 0.04774130508303642, 0.20219796895980835, -0.1599399298429489, -0.4607354402542114, 0.04164411500096321, 0.31128883361816406, -0.18477322161197662, 0.195823535323143, -0.2146347016096115],
 [-0.47767552733421326, 0.2479187399148941, 0.3272024393081665, -0.3602463901042938, -0.021782109513878822, 0.37739643454551697, -0.08139888197183609, 0.11731932312250137, -0.21786180138587952, -0.2060997635126114],
 [-0.29257020354270935, -0.27153488993644714, 0.3574492633342743, 0.25863510370254517, -0.7012501955032349, 0.09472404420375824, -0.376261442899704, 0.3126865029335022, 0.030163684859871864, 0.11671186238527298],
 [-0.1575060784816742, 0.35154038667678833, -0.5979138016700745, -0.21251395344734192, 0.08020816743373871, 0.47368210554122925, -0.09995336085557938, 0.17019565403461456, -0.10945288836956024, 0.027018314227461815],
 [0.2525313198566437, -0.153570294380188, 0.20948101580142975, 0.1662921905517578, -0.054898977279663086, 0.22147339582443237, ...],
 ...
]
 >
 }
}
IO.puts("Testing Model...")
MNIST.test_model(model, model_state, test_images, test_labels)
Testing Model...
Batch: 2, Accuracy: 0.9813333
%{
 0 => %{
 "Accuracy" => #Nx.Tensor<
 f32
 Torchx.Backend(cpu)
 0.981333315372467
 >
 }
}
Apply the Trained Neural Network to the Digits Extracted from the Puzzle
Get the predict function
{_init_fn, predict_fn} = Axon.build(model)

make a helper function for our use -- predict the digit in the cell
predict_cell = fn predict_fn, model_state, input_cell ->
 input_cell =
 Nx.as_type(Evision.Mat.to_nx(Evision.resize(input_cell, {28, 28}), Torchx.Backend), :f32)
 |> Nx.reshape({1, 784})
 |> Nx.divide(255.0)

 pred = predict_fn.(model_state, input_cell)
 Nx.to_number(Nx.argmax(pred))
end
#Function<40.3316493/3 in :erl_eval.expr/6>
Let's use the top-left one as input
pred = predict_cell.(predict_fn, model_state, current_cell)

IO.puts("Prediction: #{pred}")
current_cell
Prediction: 8
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {72, 72},
 ref: #Reference<0.736436033.3588096019.146359>
}
Looks good! Now if we do this for each cell in the puzzle, we can get what we want
step = trunc(step)

digits =
 for x <- 0..8, y <- 0..8 do
 x1 = step * x
 y1 = step * y

 # remember that we return nil if extract_digit thinks there is no
 # digits present in the cell
 current_cell = extract_digit.(puzzle_gray[[x1..(x1 + step), y1..(y1 + step)]])

 if current_cell do
 # if there is a digit, we use the neural network to predict its value
 predict_cell.(predict_fn, model_state, current_cell)
 else
 # otherwise we use `0` for empty ones
 # this should be okay since in normal sudoku puzzle we only use 1-9
 0
 end
 end

extracted_puzzle = Nx.reshape(Nx.tensor(digits), {9, 9})
IO.inspect(extracted_puzzle, limit: :infinity)
:ok
#Nx.Tensor<
 s64[9][9]
 Torchx.Backend(cpu)
 [
 [8, 0, 0, 0, 1, 0, 0, 0, 8],
 [0, 5, 0, 8, 0, 7, 0, 7, 0],
 [0, 0, 4, 0, 9, 0, 7, 0, 0],
 [0, 8, 0, 2, 0, 7, 0, 2, 0],
 [5, 0, 8, 0, 8, 0, 7, 0, 3],
 [0, 7, 0, 5, 0, 2, 0, 8, 0],
 [0, 0, 2, 0, 4, 0, 8, 0, 0],
 [0, 8, 0, 3, 0, 8, 0, 4, 0],
 [3, 0, 0, 0, 5, 0, 0, 0, 8]
]
>
:ok
Visualise the Results
{h, w, _} = puzzle.shape
len = max(h, w)
puzzle = Evision.resize(puzzle, {len, len})

for x <- 0..8, y <- 0..8, reduce: puzzle do
 vis ->
 # compute the coordinates of where the digit will be drawn
 # on the output puzzle image
 {x1, y1} = {step * x, step * y}
 {x2, y2} = {step + x1, step + y1}
 textX = trunc((x2 - x1) * 0.33) + x1
 textY = trunc((y2 - y1) * -0.2) + y2

 text = to_string(Nx.to_number(extracted_puzzle[[y, x]]))

 Evision.putText(
 vis,
 text,
 {textX, textY},
 Evision.Constant.cv_FONT_HERSHEY_SIMPLEX(),
 0.9,
 {0, 255, 255},
 thickness: 2
)
end
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {771, 771, 3},
 ref: #Reference<0.736436033.3588620308.228888>
}

 cifar10 - Evision v0.1.39

cifar10

Evision Example - Simple use of Evision in a Machine Learning Pipeline with Nx and torhcx
Mix.install([
 {:evision, "~> 0.1"},
 {:req, "~> 0.3"},
 {:torchx, "~> 0.3"},
 {:nx, "~> 0.3", override: true},
 {:kino, "~> 0.7"},
 {:scidata, "~> 0.1"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions and Download the Test Image
change to the file's directory
or somewhere you have write permission
File.cd!(__DIR__)

defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end

Helper.download!(
 "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/1200px-Cat03.jpg",
 "cat.jpg"
)
:ok
Read the Test Image
in real-life use cases, the input source might be a camera
instead of downloading a file and reading it

alias Evision, as: Cv

img = Cv.imread("cat.jpg", flags: Cv.Constant.cv_IMREAD_ANYCOLOR())
resized_img = Cv.resize(img, {128, 128})

Cv.imencode(".png", resized_img)
|> Kino.Image.new(:png)
Select a Default Nx Backend
by default we don't have the LibTorch backend
but if you listed :torchx as a dependency
then please uncomment the following line to use the LibTorch backend
Similarly for the EXLA backend
Nx.default_backend(Torchx.Backend)
nil
Write a Module for the CIFAR10 Dataset
defmodule CIFAR10Dataset do
 defp transform_images({bin, type, shape}, backend) do
 bin
 |> Nx.from_binary(type, backend: backend)
 |> Nx.reshape({elem(shape, 0), 3 * 32 * 32}, names: [:batch, :input])
 |> Nx.divide(255.0)
 end

 defp transform_labels({bin, type, _}, backend) do
 bin
 |> Nx.from_binary(type, backend: backend)
 end

 def fetch(backend \\ Torchx.Backend) do
 {images, labels} = Scidata.CIFAR10.download()
 {transform_images(images, backend), transform_labels(labels, backend)}
 end
end
{:module, CIFAR10Dataset, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:fetch, 1}}
Write A Tiny Linear Neural Network
training code
based on https://github.com/elixir-nx/nx/blob/e4454423f7be39d3adc9dea76526185fbfaf7a58/exla/examples/mnist.exs

defmodule DenseNN do
 import Nx.Defn

 defn init_random_params do
 # 3 layers
 # 1. Dense(32) with sigmoid
 # 2. Dense(24) with sigmoid
 # 3. Dense(10) with softmax
 w1 = Nx.random_normal({3072, 32}, 0.0, 0.1, names: [:input, :layer1])
 b1 = Nx.random_normal({32}, 0.0, 0.1, names: [:layer1])
 w2 = Nx.random_normal({32, 24}, 0.0, 0.1, names: [:layer1, :layer2])
 b2 = Nx.random_normal({24}, 0.0, 0.1, names: [:layer2])
 w3 = Nx.random_normal({24, 10}, 0.0, 0.1, names: [:layer2, :output])
 b3 = Nx.random_normal({10}, 0.0, 0.1, names: [:output])
 {w1, b1, w2, b2, w3, b3}
 end

 defn softmax(logits) do
 Nx.exp(logits) /
 Nx.sum(Nx.exp(logits), axes: [:output], keep_axes: true)
 end

 defn predict({w1, b1, w2, b2, w3, b3}, batch) do
 batch
 |> Nx.dot(w1)
 |> Nx.add(b1)
 |> Nx.sigmoid()
 |> Nx.dot(w2)
 |> Nx.add(b2)
 |> Nx.sigmoid()
 |> Nx.dot(w3)
 |> Nx.add(b3)
 |> softmax()
 end

 defn accuracy({w1, b1, w2, b2, w3, b3}, batch_images, batch_labels) do
 Nx.mean(
 Nx.equal(
 Nx.argmax(batch_labels, axis: :output),
 Nx.argmax(predict({w1, b1, w2, b2, w3, b3}, batch_images), axis: :output)
)
 |> Nx.as_type({:s, 8})
)
 end

 defn loss({w1, b1, w2, b2, w3, b3}, batch_images, batch_labels) do
 preds = predict({w1, b1, w2, b2, w3, b3}, batch_images)
 -Nx.sum(Nx.mean(Nx.log(preds) * batch_labels, axes: [:output]))
 end

 defn update({w1, b1, w2, b2, w3, b3} = params, batch_images, batch_labels, step) do
 {grad_w1, grad_b1, grad_w2, grad_b2, grad_w3, grad_b3} =
 grad(params, &loss(&1, batch_images, batch_labels))

 {
 w1 - grad_w1 * step,
 b1 - grad_b1 * step,
 w2 - grad_w2 * step,
 b2 - grad_b2 * step,
 w3 - grad_w3 * step,
 b3 - grad_b3 * step
 }
 end

 defn update_with_averages(
 {_, _, _, _, _, _} = cur_params,
 imgs,
 tar,
 avg_loss,
 avg_accuracy,
 total
) do
 batch_loss = loss(cur_params, imgs, tar)
 batch_accuracy = accuracy(cur_params, imgs, tar)
 avg_loss = avg_loss + batch_loss / total
 avg_accuracy = avg_accuracy + batch_accuracy / total
 {update(cur_params, imgs, tar, 0.01), avg_loss, avg_accuracy}
 end

 def train_epoch(cur_params, x, labels) do
 total_batches = Enum.count(x)

 x
 |> Enum.zip(labels)
 |> Enum.reduce({cur_params, Nx.tensor(0.0), Nx.tensor(0.0)}, fn
 {x, tar}, {cur_params, avg_loss, avg_accuracy} ->
 update_with_averages(cur_params, x, tar, avg_loss, avg_accuracy, total_batches)
 end)
 end

 def train(x, labels, params, opts \\ []) do
 epochs = opts[:epochs] || 5

 for epoch <- 1..epochs, reduce: params do
 cur_params ->
 {time, {new_params, epoch_avg_loss, epoch_avg_acc}} =
 :timer.tc(__MODULE__, :train_epoch, [cur_params, x, labels])

 epoch_avg_loss =
 epoch_avg_loss
 |> Nx.backend_transfer()
 |> Nx.to_number()

 epoch_avg_acc =
 epoch_avg_acc
 |> Nx.backend_transfer()
 |> Nx.to_number()

 IO.puts(
 "Epoch #{epoch} Time: #{time / 1_000_000}s, loss: #{Float.round(epoch_avg_loss, 3)}, acc: #{Float.round(epoch_avg_acc, 3)}"
)

 new_params
 end
 end
end
{:module, DenseNN, <<70, 79, 82, 49, 0, 0, 45, ...>>, {:train, 4}}
Convert Label to One-hot Encoding
defmodule Helper do
 def to_onehot_single(0, oh, _pos) do
 oh
 end

 def to_onehot_single(count, oh, pos) do
 cur = count - 1

 case cur == pos do
 true -> to_onehot_single(count - 1, [1] ++ oh, pos)
 _ -> to_onehot_single(count - 1, [0] ++ oh, pos)
 end
 end

 def to_onehot_single(0, _pos) do
 []
 end

 def to_onehot_single(count, pos) do
 to_onehot_single(count, [], pos)
 end

 def to_onehot(labels, unique_classes) do
 for(
 l <- Nx.to_flat_list(labels),
 do: Nx.tensor([to_onehot_single(unique_classes, l)])
)
 |> Nx.concatenate()
 |> Nx.reshape({:auto, unique_classes}, names: [:batch, :output])
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:to_onehot, 2}}
Train the Neural Network
defmodule Demo do
 require CIFAR10Dataset
 require DenseNN
 require Helper

 def load_dataset(backend) do
 {uSec, result} = :timer.tc(fn -> CIFAR10Dataset.fetch(backend) end)
 IO.puts("[Time] load dataset: #{uSec / 1000.0} ms")
 result
 end

 def to_batched_input(x_training, y_training, batch_size) do
 unique_classes = 10

 x_training_batched =
 x_training
 # uint8 to float
 |> Nx.as_type({:f, 32})
 # flatten
 |> Nx.reshape({:auto, 3072})
 |> Nx.to_batched(batch_size)

 y_training_batched =
 y_training
 |> Helper.to_onehot(unique_classes)
 |> Nx.as_type({:f, 32})
 |> Nx.to_batched(batch_size)

 {x_training_batched, y_training_batched}
 end

 def init_random_params do
 {uSec, result} = :timer.tc(fn -> DenseNN.init_random_params() end)
 IO.puts("[Time] init random params: #{uSec / 1000.0} ms")
 result
 end

 def run(opts \\ []) do
 epochs = opts[:epochs] || 5
 backend = opts[:backend] || Nx.BinaryBackend
 batch_size = opts[:batch_size] || 300
 Nx.default_backend(backend)

 params = init_random_params()
 {x_training, y_training} = load_dataset(backend)

 {x_training_batched, y_training_batched} =
 to_batched_input(x_training, y_training, batch_size)

 DenseNN.train(
 x_training_batched,
 y_training_batched,
 params,
 epochs: epochs
)
 end
end
{:module, Demo, <<70, 79, 82, 49, 0, 0, 18, ...>>, {:run, 1}}
params = Demo.run(backend: Torchx.Backend, epochs: 50)
[Time] init random params: 19.537 ms
[Time] load dataset: 8473.881 ms
Epoch 1 Time: 1.801972s, loss: 68.817, acc: 0.122
Epoch 2 Time: 1.526419s, loss: 64.754, acc: 0.183
Epoch 3 Time: 1.474312s, loss: 62.076, acc: 0.211
Epoch 4 Time: 1.463488s, loss: 60.709, acc: 0.247
Epoch 5 Time: 1.495513s, loss: 58.924, acc: 0.276
Epoch 6 Time: 1.50393s, loss: 57.685, acc: 0.296
Epoch 7 Time: 1.401566s, loss: 56.825, acc: 0.311
Epoch 8 Time: 1.552453s, loss: 56.041, acc: 0.325
Epoch 9 Time: 2.047746s, loss: 55.225, acc: 0.336
Epoch 10 Time: 1.500972s, loss: 54.438, acc: 0.346
Epoch 11 Time: 1.449009s, loss: 53.76, acc: 0.355
Epoch 12 Time: 1.456149s, loss: 53.171, acc: 0.361
Epoch 13 Time: 1.636981s, loss: 52.639, acc: 0.366
Epoch 14 Time: 1.519201s, loss: 52.153, acc: 0.372
Epoch 15 Time: 1.582178s, loss: 51.709, acc: 0.377
Epoch 16 Time: 1.524292s, loss: 51.303, acc: 0.381
Epoch 17 Time: 1.472452s, loss: 50.93, acc: 0.386
Epoch 18 Time: 1.500321s, loss: 50.584, acc: 0.39
Epoch 19 Time: 1.503371s, loss: 50.258, acc: 0.395
Epoch 20 Time: 1.504718s, loss: 49.949, acc: 0.399
Epoch 21 Time: 1.579238s, loss: 49.654, acc: 0.403
Epoch 22 Time: 1.571431s, loss: 49.373, acc: 0.407
Epoch 23 Time: 1.683039s, loss: 49.105, acc: 0.411
Epoch 24 Time: 1.526153s, loss: 48.852, acc: 0.414
Epoch 25 Time: 1.519478s, loss: 48.609, acc: 0.418
Epoch 26 Time: 1.417229s, loss: 48.374, acc: 0.42
Epoch 27 Time: 1.711816s, loss: 48.146, acc: 0.423
Epoch 28 Time: 1.628203s, loss: 47.925, acc: 0.427
Epoch 29 Time: 1.601898s, loss: 47.71, acc: 0.431
Epoch 30 Time: 1.552816s, loss: 47.503, acc: 0.434
Epoch 31 Time: 1.483635s, loss: 47.302, acc: 0.437
Epoch 32 Time: 1.500484s, loss: 47.104, acc: 0.44
Epoch 33 Time: 1.514314s, loss: 46.912, acc: 0.442
Epoch 34 Time: 1.560259s, loss: 46.731, acc: 0.445
Epoch 35 Time: 1.505326s, loss: 46.556, acc: 0.447
Epoch 36 Time: 1.492348s, loss: 46.388, acc: 0.45
Epoch 37 Time: 1.479754s, loss: 46.226, acc: 0.452
Epoch 38 Time: 1.556336s, loss: 46.069, acc: 0.454
Epoch 39 Time: 1.512166s, loss: 45.916, acc: 0.455
Epoch 40 Time: 1.525349s, loss: 45.765, acc: 0.458
Epoch 41 Time: 1.536424s, loss: 45.617, acc: 0.46
Epoch 42 Time: 1.496241s, loss: 45.656, acc: 0.46
Epoch 43 Time: 1.473638s, loss: 45.358, acc: 0.462
Epoch 44 Time: 1.504573s, loss: 45.18, acc: 0.465
Epoch 45 Time: 1.502319s, loss: 45.129, acc: 0.465
Epoch 46 Time: 1.515625s, loss: 45.035, acc: 0.466
Epoch 47 Time: 1.496521s, loss: 44.82, acc: 0.468
Epoch 48 Time: 1.501526s, loss: 44.838, acc: 0.468
Epoch 49 Time: 1.500548s, loss: 44.607, acc: 0.472
Epoch 50 Time: 1.522726s, loss: 44.57, acc: 0.471
{#Nx.Tensor<
 f32[input: 3072][layer1: 32]
 Torchx.Backend(cpu)
 [
 [0.06159350275993347, 0.12734365463256836, -0.04637990519404411, -0.14622245728969574, -0.026950793340802193, 0.18754519522190094, -0.11162003129720688, 0.03631016984581947, 0.06155526638031006, 0.05119727551937103, 0.12082687020301819, 0.0010204321006312966, -0.13074278831481934, -0.2162177860736847, -0.0529991090297699, -0.11709204316139221, 0.03308134153485298, 0.10344900190830231, -0.007962973788380623, 0.005867910571396351, 0.025203991681337357, -0.16794253885746002, -0.06448774039745331, 0.13841457664966583, -0.11046885699033737, 0.1314300000667572, 0.11232485622167587, 0.05331533029675484, -0.056031279265880585, -0.15944091975688934, 0.08177391439676285, -0.3181536793708801],
 [0.07542850077152252, 0.10426164418458939, -0.09150480479001999, 0.08607892692089081, -0.0802445337176323, 0.3077136278152466, 0.022843508049845695, -0.10194684565067291, 0.01955121010541916, 0.05440697446465492, 0.19110870361328125, -0.06551551818847656, 0.0012398258550092578, -0.07089567184448242, 0.005781807005405426, 0.032927487045526505, -0.15386459231376648, ...],
 ...
]
 >,
 #Nx.Tensor<
 f32[layer1: 32]
 Torchx.Backend(cpu)
 [-0.4782559275627136, -0.0953182652592659, 0.9538414478302002, -0.9563804864883423, 0.19684253633022308, 0.10464754700660706, 0.2017214596271515, 0.4398568272590637, 0.23314496874809265, 1.1341161727905273, -0.35619667172431946, 0.3896051347255707, -0.03676304966211319, -0.11970412731170654, 0.6443958282470703, 1.0974687337875366, -0.9757993817329407, -0.237301766872406, 0.6900271773338318, -1.0126398801803589, 0.8445910215377808, -0.06984522938728333, 0.6991291642189026, 0.4147650897502899, 0.5383307337760925, -1.6058013439178467, -0.6333990693092346, 0.9713459610939026, -1.1919199228286743, -0.6940388083457947, 0.43150636553764343, -0.07613875716924667]
 >,
 #Nx.Tensor<
 f32[layer1: 32][layer2: 24]
 Torchx.Backend(cpu)
 [
 [-0.33987560868263245, -0.2776806652545929, -0.3417806923389435, 0.2850123345851898, -0.08022978156805038, -0.5811548233032227, -0.17571184039115906, 0.018330495804548264, -0.13240738213062286, 0.46940329670906067, -0.38814595341682434, 0.344807505607605, -0.13484203815460205, 0.34233394265174866, 0.003809022717177868, -0.09918670356273651, -0.04311465099453926, 0.8633210062980652, 0.07081698626279831, -0.42742085456848145, 0.5656407475471497, -0.5184997320175171, -0.1400681883096695, -0.37492144107818604],
 [-0.18105199933052063, -0.26929351687431335, 0.455635666847229, -0.958427369594574, 0.6590504050254822, -0.9575876593589783, 0.03432007133960724, -0.3971480429172516, 0.2179064154624939, -0.31215599179267883, -0.15511885285377502, -0.7740356922149658, 0.7641487121582031, 0.0803070217370987, 0.2655712068080902, -0.23865076899528503, 0.5451679825782776, 0.16663742065429688, -0.08000250160694122, -0.42117956280708313, 0.026075761765241623, -0.07219810038805008, 0.5508838891983032, ...],
 ...
]
 >,
 #Nx.Tensor<
 f32[layer2: 24]
 Torchx.Backend(cpu)
 [0.12863606214523315, -0.39577043056488037, 0.2603394389152527, -0.4970460832118988, -0.12190719693899155, 0.11095257848501205, -0.11531135439872742, -0.055682189762592316, -0.013144372962415218, 0.13842496275901794, 0.05578012019395828, -0.47933924198150635, -0.05614984408020973, 0.03527414798736572, -0.3992805778980255, -0.11208709329366684, 0.13771165907382965, 0.0196288600564003, 0.008769847452640533, 0.34402191638946533, -0.20614822208881378, 0.12027487903833389, -0.06340263783931732, 0.12220388650894165]
 >,
 #Nx.Tensor<
 f32[layer2: 24][output: 10]
 Torchx.Backend(cpu)
 [
 [-0.7585468888282776, -0.21927006542682648, -0.4808247983455658, 0.5093653798103333, 0.19336795806884766, 0.8497358560562134, 0.7614853382110596, 0.9867469668388367, -0.18471986055374146, -1.8935502767562866],
 [-0.21348366141319275, -0.4031388461589813, 0.154790997505188, -1.302069902420044, 1.0026453733444214, -0.42505010962486267, 0.7698855400085449, 1.26364004611969, -0.5512898564338684, -0.5894452929496765],
 [-0.7507593631744385, 0.8991221189498901, -0.7759523391723633, -0.15009775757789612, -1.1441510915756226, 0.8113402128219604, -1.033116340637207, 0.48261716961860657, 0.3629790246486664, 1.512804388999939],
 [0.6820945143699646, -0.19330617785453796, 1.6458057165145874, -0.5821719765663147, 1.9896080493927002, -0.4230886399745941, -0.39437347650527954, -1.1041091680526733, -0.4087747037410736, -1.095003604888916],
 [0.32531166076660156, 0.8763105869293213, -0.4181594252586365, -0.3064834475517273, -0.9987258911132812, ...],
 ...
]
 >,
 #Nx.Tensor<
 f32[output: 10]
 Torchx.Backend(cpu)
 [-0.08992704749107361, 0.04459410160779953, -0.21699029207229614, -0.1284622699022293, -0.07085893303155899, 0.2854973077774048, -0.38408756256103516, 0.19632413983345032, 0.11082038283348083, -0.2601413130760193]
 >}
Classify the Test Image with the Neural Network
resized_img = Cv.resize(img, {128, 128})

Cv.imencode(".png", resized_img)
|> Kino.Image.new(:png)
classes = [:airplane, :automobile, :bird, :cat, :deer, :dog, :frog, :horse, :ship, :truck]

input_tensor =
 img
 |> Cv.resize({32, 32})
 |> Cv.Mat.to_nx(Nx.BinaryBackend)
 |> Nx.backend_transfer(Torchx.Backend)
 |> Nx.flatten()

pred =
 params
 |> DenseNN.predict(input_tensor)
 |> Nx.argmax()
 |> Nx.to_number()

Enum.at(classes, pred)
:cat

 dnn-googlenet - Evision v0.1.39

dnn-googlenet

Evision.DNN Example - Object Detection Task with GoogleNet
set `EVISION_PREFER_PRECOMPILED` to `false`
if you prefer `:evision` to be compiled from source
note that to compile from source, you may need at least 1GB RAM
System.put_env("EVISION_PREFER_PRECOMPILED", "false")

Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Download GoogLeNet Model and A Test Image
	Model parameters. bvlc_googlenet.caffemodel
	Model config. bvlc_googlenet.prototxt
	List of class names. classification_classes_ILSVRC2012.txt
	Test image. space_shuttle.jpg

change to the file's directory
or somewhere you have write permission
File.cd!(__DIR__)

Helper.download!(
 "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel",
 "bvlc_googlenet.caffemodel"
)

Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/bvlc_googlenet.prototxt",
 "bvlc_googlenet.prototxt"
)

Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/classification_classes_ILSVRC2012.txt",
 "classification_classes_ILSVRC2012.txt"
)

Helper.download!("https://docs.opencv.org/4.5.4/space_shuttle.jpg", "space_shuttle.jpg")
:ok
Read Class Names
classes =
 "classification_classes_ILSVRC2012.txt"
 |> File.read!()
 |> String.split("\n")
["tench, Tinca tinca", "goldfish, Carassius auratus",
 "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
 "tiger shark, Galeocerdo cuvieri", "hammerhead, hammerhead shark",
 "electric ray, crampfish, numbfish, torpedo", "stingray", "cock", "hen",
 "ostrich, Struthio camelus", "brambling, Fringilla montifringilla",
 "goldfinch, Carduelis carduelis", "house finch, linnet, Carpodacus mexicanus", "junco, snowbird",
 "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
 "robin, American robin, Turdus migratorius", "bulbul", "jay", "magpie", "chickadee",
 "water ouzel, dipper", "kite", "bald eagle, American eagle, Haliaeetus leucocephalus", "vulture",
 "great grey owl, great gray owl, Strix nebulosa",
 "European fire salamander, Salamandra salamandra", "common newt, Triturus vulgaris", "eft",
 "spotted salamander, Ambystoma maculatum", "axolotl, mud puppy, Ambystoma mexicanum",
 "bullfrog, Rana catesbeiana", "tree frog, tree-frog",
 "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
 "loggerhead, loggerhead turtle, Caretta caretta",
 "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea", "mud turtle", "terrapin",
 "box turtle, box tortoise", "banded gecko", "common iguana, iguana, Iguana iguana",
 "American chameleon, anole, Anolis carolinensis", "whiptail, whiptail lizard", "agama",
 "frilled lizard, Chlamydosaurus kingi", "alligator lizard", "Gila monster, Heloderma suspectum",
 "green lizard, Lacerta viridis", "African chameleon, Chamaeleo chamaeleon",
 "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
 "African crocodile, Nile crocodile, Crocodylus niloticus", ...]
Load the GoogLeNet Model
alias Evision, as: Cv

model =
 Cv.DNN.readNet("bvlc_googlenet.caffemodel",
 config: "bvlc_googlenet.prototxt",
 framework: ""
)
%Evision.DNN.Net{ref: #Reference<0.4003430890.1440088085.55917>}
Set Backend and Target
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation, "
"4: VKCOM, "
"5: CUDA
model = Cv.DNN.Net.setPreferableBackend(model, 0)

"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU, "
"4: Vulkan, "
"6: CUDA, "
"7: CUDA fp16 (half-float preprocess)
model = Cv.DNN.Net.setPreferableTarget(model, 0)
%Evision.DNN.Net{ref: #Reference<0.4003430890.1440088085.55917>}
Read the Test Image and Set It as the Input
mat = Cv.imread("space_shuttle.jpg")

blob =
 Cv.DNN.blobFromImage(mat,
 scalefactor: 1,
 swapRB: true,
 mean: [-104, -117, -123],
 size: [224, 224]
)

model = Cv.DNN.Net.setInput(model, blob, name: "", scalefactor: 1.0, mean: [0, 0, 0])
%Evision.DNN.Net{ref: #Reference<0.4003430890.1440088085.55917>}
Run the Forward Function
start_time = :os.system_time(:millisecond)
pred = Cv.DNN.Net.forward(model, outputName: "")
end_time = :os.system_time(:millisecond)
"Inference time=>#{end_time - start_time} ms"
"Inference time=>49 ms"
Get the Classification Result
pred = pred |> Cv.Mat.to_nx(Nx.BinaryBackend)
pred_class_id = pred |> Nx.argmax() |> Nx.to_flat_list() |> Enum.at(0)

confidence =
 pred
 |> Nx.take(Nx.tensor(pred_class_id), axis: 1)
 |> Nx.to_flat_list()
 |> Enum.at(0)

class_label =
 classes
 |> Enum.at(pred_class_id)

"Predict result: #{class_label}=>#{Float.round(confidence * 100, 2)}"
"Predict result: space shuttle=>99.13"

 dnn-detection-model - Evision v0.1.39

dnn-detection-model

Evision.DNN Example - Generic Object Detection Task
set `EVISION_PREFER_PRECOMPILED` to `false`
if you prefer `:evision` to be compiled from source
note that to compile from source, you may need at least 1GB RAM
System.put_env("EVISION_PREFER_PRECOMPILED", "false")

Mix.install([
 {:evision, "~> 0.1"},
 {:req, "~> 0.3"},
 {:kino, "~> 0.7"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
{:module, Helper, <<70, 79, 82, 49, 0, 0, 10, ...>>, {:download!, 3}}
Write the Generic DetectionModel Module
alias Evision, as: Cv

change to the file's directory
or somewhere you have write permission
File.cd!(__DIR__)

defmodule DetectionModel do
 def visualise_pred(mat, _labels, []), do: {:ok, mat}

 def visualise_pred(mat, labels, [translated_out | outs]) do
 {:ok, mat} = _visualise_pred(mat, labels, translated_out)
 visualise_pred(mat, labels, outs)
 end

 defp _visualise_pred(mat, _labels, []), do: {:ok, mat}

 defp _visualise_pred(mat, labels, [{class_id, confidence, l, t, r, b} | outs]) do
 confidence = "#{Float.round(confidence, 2)}"
 label = Enum.at(labels, class_id)
 text = "#{label}: #{confidence}"
 mat = Cv.rectangle(mat, {l, t}, {r, b}, {255, 0, 0})

 {{label_weight, label_height}, baseline} =
 Cv.getTextSize(text, Cv.Constant.cv_FONT_HERSHEY_SIMPLEX(), 0.5, 1)

 label_weight = trunc(label_weight)
 label_height = trunc(label_height)
 top = max(t, label_height)

 mat =
 Cv.rectangle(mat, {l, top - label_height}, {l + label_weight, top + baseline}, {
 255,
 255,
 255
 })

 mat = Cv.putText(mat, text, {l, top}, Cv.Constant.cv_FONT_HERSHEY_SIMPLEX(), 0.5, {0, 0, 255})

 _visualise_pred(mat, labels, outs)
 end

 def postprocess(mat, detections, net, confidence_threshold) do
 out_layers = Cv.DNN.Net.getUnconnectedOutLayers(net)
 out_layer = Cv.DNN.Net.getLayer(net, Enum.at(out_layers, 0))
 out_layer_type = Cv.DNN.Layer.get_type(out_layer) |> IO.iodata_to_binary()
 _postprocess(mat, detections, net, confidence_threshold, out_layer_type, [])
 end

 defp _postprocess(_mat, [], _net, _confidence_threshold, <<"DetectionOutput">>, acc),
 do: {:ok, Enum.reverse(acc)}

 defp _postprocess(
 %Evision.Mat{shape: {h, w, _}} = mat,
 [outs | detections],
 net,
 confidence_threshold,
 <<"DetectionOutput">>,
 acc
) do
 data = Cv.Mat.to_binary(outs)
 {:ok, translated_outs} = _translate_outs(confidence_threshold, data, h, w, [])

 _postprocess(mat, detections, net, confidence_threshold, "DetectionOutput", [
 translated_outs | acc
])
 end

 defp _translate_outs(_confidence_threshold, <<>>, _h, _w, acc), do: {:ok, acc}

 defp _translate_outs(
 confidence_threshold,
 <<_batch_id::float-size(32)-little, class_id::float-size(32)-little,
 confidence::float-size(32)-little, left::float-size(32)-little,
 top::float-size(32)-little, right::float-size(32)-little,
 bottom::float-size(32)-little, rest::binary>>,
 h,
 w,
 acc
) do
 if confidence > confidence_threshold do
 [class_id, l, t, r, b] =
 Enum.map([class_id, left, top, right, bottom], fn f -> trunc(f) end)

 width = r - l + 1
 height = b - t + 1

 [l, t, r, b] =
 if width <= 2 or height <= 2 do
 Enum.map([left * w, top * h, right * w, bottom * h], fn f -> trunc(f) end)
 else
 [l, t, r, b]
 end

 _translate_outs(confidence_threshold, rest, h, w, [
 {class_id - 1, confidence, l, t, r, b} | acc
])
 else
 _translate_outs(confidence_threshold, rest, h, w, acc)
 end
 end

 def get_labels(class_label_file) do
 class_label_file
 |> File.read!()
 |> String.split("\n")
 end

 def predict(mat, model, out_names, opts \\ []) do
 blob = Cv.DNN.blobFromImage(mat, opts)

 model = Cv.DNN.Net.setInput(model, blob, name: "", scalefactor: 1.0, mean: [0, 0, 0])

 start_time = :os.system_time(:millisecond)
 detections = Cv.DNN.Net.forward(model, outBlobNames: out_names)
 end_time = :os.system_time(:millisecond)
 IO.puts("Inference time=>#{end_time - start_time} ms")
 {:ok, mat, detections}
 end

 def predict_file(image_file, model, out_names, opts \\ []) do
 predict(Cv.imread(image_file), model, out_names, opts)
 end

 def get_model(params, config, framework \\ "") do
 net =
 Cv.DNN.readNet(params,
 config: config,
 framework: framework
)

 out_names = Cv.DNN.Net.getUnconnectedOutLayersNames(net)
 {:ok, net, out_names}
 end
end
{:module, DetectionModel, <<70, 79, 82, 49, 0, 0, 34, ...>>, {:get_model, 3}}
Example Detect Model: SSD MobileNetv2
Basic steps:
	Download model weights and config file, as well as a list of class names.
	DetectionModel.get_model.
	DetectionModel.get_labels.
	DetectionModel.predict and specify some preprocessing parameters.
	DetectionModel.postprocess. This translates nerual network outputs to data that is easier to read/use.
	DetectionModel.visualise_pred if you want to see the result.

defmodule SSDMobileNetV2 do
 defp download_model() do
 Helper.download!(
 "https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt",
 "ssd_mobilenet_v2_coco_2018_03_29.pbtxt"
)

 Helper.download!(
 "https://raw.githubusercontent.com/cocoa-xu/evision/main/test/testdata/models/coco_names.txt",
 "coco_names.txt"
)

 graph_pb = "ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb"

 if !File.exists?(graph_pb) do
 Helper.download!(
 "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz",
 "ssd_mobilenet_v2_coco_2018_03_29.tar.gz"
)

 "ssd_mobilenet_v2_coco_2018_03_29.tar.gz"
 |> File.read!()
 |> :zlib.gunzip()
 |> then(&:erl_tar.extract({:binary, &1}, [:memory, :compressed]))
 |> elem(1)
 |> Enum.map(fn {filename, content} -> {List.to_string(filename), content} end)
 |> Enum.reject(
 &(elem(&1, 0) != "ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb")
)
 |> Enum.at(0)
 |> then(fn {_filename, content} ->
 File.mkdir_p!("ssd_mobilenet_v2_coco_2018_03_29")
 File.write!(graph_pb, content)
 :ok
 end)
 else
 :ok
 end
 end

 def get_detection_model() do
 :ok = download_model()
 graph_pb = "ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb"

 {:ok, net, out_names} =
 DetectionModel.get_model(
 graph_pb,
 "ssd_mobilenet_v2_coco_2018_03_29.pbtxt"
)

 labels = DetectionModel.get_labels("coco_names.txt")
 {net, out_names, labels}
 end

 def predict_file_and_show(filename, confidence_threshold \\ 0.5) when is_binary(filename) do
 {net, out_names, labels} = get_detection_model()

 {:ok, mat, detections} =
 DetectionModel.predict_file(filename, net, out_names,
 scalefactor: 1,
 swapRB: true,
 mean: [0, 0, 0],
 size: [300, 300]
)

 {:ok, translated_outs} =
 DetectionModel.postprocess(mat, detections, net, confidence_threshold)

 {:ok, mat} = DetectionModel.visualise_pred(mat, labels, translated_outs)
 mat
 end

 def predict_and_show(net, out_names, labels, mat, confidence_threshold \\ 0.5)
 when is_reference(mat) do
 {:ok, mat, detections} =
 DetectionModel.predict(mat, net, out_names,
 scalefactor: 1,
 swapRB: true,
 mean: [0, 0, 0],
 size: [300, 300]
)

 {:ok, translated_outs} =
 DetectionModel.postprocess(mat, detections, net, confidence_threshold)

 {:ok, mat} = DetectionModel.visualise_pred(mat, labels, translated_outs)
 mat
 end
end
{:module, SSDMobileNetV2, <<70, 79, 82, 49, 0, 0, 22, ...>>, {:predict_and_show, 5}}
Detect Objects in An Image
Helper.download!(
 "https://raw.githubusercontent.com/cocoa-xu/evision/main/test/dnn_detection_test.jpg",
 "dnn_detection_test.jpg"
)

%Evision.Mat{type: type} = mat = SSDMobileNetV2.predict_file_and_show("dnn_detection_test.jpg")
Inference time=>35 ms
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {586, 872, 3},
 ref: #Reference<0.1834280076.3317825552.216669>
}
Cv.imencode(".png", mat)
|> Kino.Image.new(:png)
Detect Objects in a Video Stream
if you have a camera available
uncomment the line below
video = Cv.VideoCapture.videoCapture(0)

or the OpenCV library you compiled can decode video files
uncomment the line below
video = Cv.VideoCapture.videoCapture("/path/to/your/video/file")
nil
defmodule VideoDetection do
 def detect(video, widget, max_frames \\ 30 * 60)
 when is_reference(video) and is_integer(max_frames) do
 {net, out_names, labels} = SSDMobileNetV2.get_detection_model()
 frame_read = Cv.VideoCapture.read(video)
 _detect(net, out_names, labels, frame_read, video, widget, max_frames)
 end

 defp _detect(_, _, _, _, _, _, 0), do: :ok

 defp _detect(net, out_names, labels, frame, video, widget, left_frames)
 when left_frames > 0 or left_frames < 0 do
 mat = SSDMobileNetV2.predict_and_show(net, out_names, labels, frame)

 Cv.imencode(".png", mat)
 |> Kino.Image.new(:png)
 |> then(&Kino.Frame.render(widget, &1))

 frame_read = Cv.VideoCapture.read(video)

 if left_frames > 0 do
 _detect(net, out_names, labels, frame_read, video, widget, left_frames - 1)
 else
 _detect(net, out_names, labels, frame_read, video, widget, left_frames)
 end
 end
end
{:module, VideoDetection, <<70, 79, 82, 49, 0, 0, 12, ...>>, {:_detect, 7}}
Run the detection
widget = Kino.Frame.new() |> Kino.render()
read 1,800 frames at most
change the number to negative values to
detect objects until OpenCV cannot read
new frame from the video stream
VideoDetection.detect(video, widget, 1800)
"Inference time=>48 ms"

 densenet121_benchmark - Evision v0.1.39

densenet121_benchmark

Evision.DNN Example - Benchmark using Densenet121
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
Define Some Helper Functions
defmodule Helper do
 def download!(url, save_as, overwrite? \\ false) do
 unless File.exists?(save_as) do
 Req.get!(url, http_errors: :raise, output: save_as, cache: not overwrite?)
 end

 :ok
 end
end
Write the Benchmark Module
alias Evision, as: Cv

defmodule DetectionModel do
 def benchmark(times, mat, model, out_names, opts \\ []) do
 mean = opts[:mean] || [0, 0, 0]
 scalefactor = opts[:scalefactor] || 1.0

 for _ <- 1..times, reduce: {[], []} do
 {forward_only, all} ->
 start_time_1 = :os.system_time(:millisecond)
 blob = Cv.DNN.blobFromImage(mat, opts)
 model = Cv.DNN.Net.setInput(model, blob, name: "", scalefactor: scalefactor, mean: mean)

 start_time_2 = :os.system_time(:millisecond)
 _detections = Cv.DNN.Net.forward(model, outBlobNames: out_names)
 end_time = :os.system_time(:millisecond)

 inference_time_1 = end_time - start_time_1
 inference_time_2 = end_time - start_time_2
 IO.puts("Inference time=>#{inference_time_2} ms")
 {[inference_time_2 | forward_only], [inference_time_1 | all]}
 end
 end

 def get_model(filename) do
 net = Cv.DNN.readNetFromONNX(filename)
 out_names = Cv.DNN.Net.getUnconnectedOutLayersNames(net)
 {:ok, net, out_names}
 end
end
Write the DenseNet121 Module
defmodule DenseNet121 do
 defp download_model(opset_version) when opset_version in [3, 6, 7, 8, 9, 12] do
 onnx_filename = "densenet-#{opset_version}.onnx"
 test_filename = "CyprusShorthair.jpg"

 Helper.download!(
 "https://github.com/onnx/models/raw/main/vision/classification/densenet-121/model/densenet-#{opset_version}.onnx",
 onnx_filename
)

 Helper.download!(
 "https://upload.wikimedia.org/wikipedia/commons/b/b9/CyprusShorthair.jpg",
 "CyprusShorthair.jpg"
)

 {onnx_filename, test_filename}
 end

 def get_detection_model(opset_version \\ 12) do
 {onnx_filename, test_filename} = download_model(opset_version)
 {:ok, net, out_names} = DetectionModel.get_model(onnx_filename)
 test_mat = Cv.imread(test_filename)
 {net, out_names, test_mat}
 end

 def benchmark(times, opset_version \\ 12) do
 {net, out_names, test_mat} = get_detection_model(opset_version)

 DetectionModel.benchmark(times, test_mat, net, out_names,
 scalefactor: 1,
 swapRB: true,
 mean: {128, 128, 128},
 size: {224, 224}
)
 end
end
Load and Run
{forward_only, all} = DenseNet121.benchmark(50)
avg_forward_only = Enum.sum(forward_only) / Enum.count(forward_only)
avg_all = Enum.sum(all) / Enum.count(all)
{avg_forward_only, avg_all}

 ml-svm - Evision v0.1.39

ml-svm

Evision.ML.SVM Example - Support Vector Machine
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:req, "~> 0.3"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
:ok
Set Up Training Data
This example is based on the Introduction to Support Vector Machines from Cv.
alias Evision, as: Cv

labels = [1, -1, -1, -1]
training_data = [[501, 10], [255, 10], [501, 255], [10, 501]]

labels_mat = Cv.Mat.literal(labels, :s32)
training_data_mat = Cv.Mat.literal(training_data, :f32)
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:f, 32},
 raw_type: 5,
 shape: {4, 2},
 ref: #Reference<0.1481828880.2785148948.120970>
}
Create an SVM and Train It With the Data
svm = Cv.ML.SVM.create()
svm = Cv.ML.SVM.setType(svm, Cv.Constant.cv_C_SVC())
svm = Cv.ML.SVM.setKernel(svm, Cv.Constant.cv_LINEAR())
svm = Cv.ML.SVM.setTermCriteria(svm, {Cv.Constant.cv_MAX_ITER(), 100, 0.000001})
true = Cv.ML.SVM.train(svm, training_data_mat, Cv.Constant.cv_ROW_SAMPLE(), labels_mat)
true = Cv.ML.SVM.isTrained(svm)
true
Get Support Vectors
%Evision.Mat{shape: {rows, cols}} = sv = Cv.ML.SVM.getUncompressedSupportVectors(svm)
sv_binary = Cv.Mat.to_binary(sv)
float_bytes = 4

support_vector =
 for i <- (rows - 1)..0, reduce: [] do
 support_vector ->
 current_vector =
 for j <- (cols - 1)..0, reduce: [] do
 vec ->
 <<float_data::float-size(32)-little>> =
 :binary.part(sv_binary, (i * cols + j) * float_bytes, 4)

 [trunc(float_data) | vec]
 end

 [current_vector | support_vector]
 end

[[501, 10], [255, 10], [501, 255]] = support_vector
support_vector
[[501, 10], [255, 10], [501, 255]]
Visualise the Training Result in A Response Map
green = [0, 255, 0]
blue = [255, 0, 0]
width = 512
height = 512

response_data =
 for x <- (width - 1)..0, y <- (height - 1)..0, reduce: [] do
 acc ->
 sample =
 Cv.Mat.from_binary(
 <<y::float-size(32)-little, x::float-size(32)-little>>,
 {:f, 32},
 1,
 2,
 1
)

 {_, %Cv.Mat{shape: {1, 1}} = response_mat} = Cv.ML.SVM.predict(svm, sample)
 <<response::float-size(32)-little>> = Cv.Mat.to_binary(response_mat)
 response = trunc(response)

 case response do
 1 ->
 [green | acc]

 -1 ->
 [blue | acc]
 end
 end

response_data = response_data |> List.flatten() |> IO.iodata_to_binary()
response_map = Cv.Mat.from_binary(response_data, {:u, 8}, height, width, 3)

show the training data
thickness = 1

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(training_data, 0)), 5, {0, 0, 0},
 thickness: thickness
)

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(training_data, 1)), 5, {255, 255, 255},
 thickness: thickness
)

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(training_data, 2)), 5, {255, 255, 255},
 thickness: thickness
)

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(training_data, 3)), 5, {255, 255, 255},
 thickness: thickness
)

show support vectors
response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(support_vector, 0)), 6, {128, 128, 128},
 thickness: thickness
)

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(support_vector, 1)), 6, {128, 128, 128},
 thickness: thickness
)

response_map =
 Cv.circle(response_map, List.to_tuple(Enum.at(support_vector, 2)), 6, {128, 128, 128},
 thickness: thickness
)

Cv.imencode(".png", response_map)
|> Kino.Image.new(:png)

 ml-decision_tree_and_random_forest - Evision v0.1.39

ml-decision_tree_and_random_forest

Evision.ML Example - Decision Tree and Random Forest
Mix.install([
 {:evision, "~> 0.1"},
 {:kino, "~> 0.7"},
 {:scidata, "~> 0.1"},
 {:nx, "~> 0.4", override: true},
 {:scholar, "~> 0.1", github: "elixir-nx/scholar"}
], system_env: [
 # optional, defaults to `true`
 # set `EVISION_PREFER_PRECOMPILED` to `false`
 # if you prefer `:evision` to be compiled from source
 # note that to compile from source, you may need at least 1GB RAM
 {"EVISION_PREFER_PRECOMPILED", true},

 # optional, defaults to `true`
 # set `EVISION_ENABLE_CONTRIB` to `false`
 # if you don't need modules from `opencv_contrib`
 {"EVISION_ENABLE_CONTRIB", true},

 # optional, defaults to `false`
 # set `EVISION_ENABLE_CUDA` to `true`
 # if you wish to use CUDA related functions
 # note that `EVISION_ENABLE_CONTRIB` also has to be `true`
 # because cuda related modules come from the `opencv_contrib` repo
 {"EVISION_ENABLE_CUDA", false},

 # required when
 # - `EVISION_ENABLE_CUDA` is `true`
 # - and `EVISION_PREFER_PRECOMPILED` is `true`
 #
 # set `EVISION_CUDA_VERSION` to the version that matches
 # your local CUDA runtime version
 #
 # current available versions are
 # - 118
 # - 121
 {"EVISION_CUDA_VERSION", "118"},

 # require for Windows users when
 # - `EVISION_ENABLE_CUDA` is `true`
 # set `EVISION_CUDA_RUNTIME_DIR` to the directory that contains
 # CUDA runtime libraries
 {"EVISION_CUDA_RUNTIME_DIR", "C:/PATH/TO/CUDA/RUNTIME"}
])
Register SmartCells
:ok = Evision.SmartCell.register_smartcells()
Download the Dataset
Get the Wine dataset with Scidata
{features, labels} = Scidata.Wine.download()
:ok
Make a dataset with Evision.ML.TrainData
dataset =
 Evision.ML.TrainData.create(
 Evision.Mat.from_nx(Nx.tensor(features, type: :f32, backend: Evision.Backend)),
 Evision.Constant.cv_ROW_SAMPLE(),
 Evision.Mat.from_nx(Nx.tensor(labels, type: :s32, backend: Evision.Backend))
)
 |> Evision.ML.TrainData.setTrainTestSplitRatio(0.8, shuffle: true)

IO.puts("#Samples: #{Evision.ML.TrainData.getNSamples(dataset)}")
IO.puts("#Training samples: #{Evision.ML.TrainData.getNTrainSamples(dataset)}")
IO.puts("#Test samples: #{Evision.ML.TrainData.getNTestSamples(dataset)}")
Train the Dataset with Decision Tree, Evision.ML.DTrees
dtree =
 Evision.ML.DTrees.create()
 |> Evision.ML.DTrees.setMaxDepth(8)
 |> Evision.ML.DTrees.setMaxCategories(3)
 |> Evision.ML.DTrees.setCVFolds(0)
 |> Evision.ML.DTrees.setMinSampleCount(10)

(
 Evision.ML.DTrees.train(dtree, dataset)

 dtree
 |> Evision.ML.DTrees.calcError(dataset, false)
 |> then(&IO.puts("Training Error: #{elem(&1, 0)}"))

 dtree
 |> Evision.ML.DTrees.calcError(dataset, true)
 |> then(&IO.puts("Test Error: #{elem(&1, 0)}"))
)
Calculate Confusion Matrix
{_test_error, results} = Evision.ML.DTrees.calcError(dtree, dataset, true)

y_true =
 Evision.Mat.to_nx(results, Nx.BinaryBackend)
 |> Nx.reshape({:auto})
 |> Nx.as_type(:s32)

y_pred =
 Evision.Mat.to_nx(Evision.ML.TrainData.getTestResponses(dataset), Nx.BinaryBackend)
 |> Nx.reshape({:auto})
 |> Nx.as_type(:s32)

Scholar.Metrics.confusion_matrix(y_true, y_pred, num_classes: 3)
Save the Trained Model and Load It Back
It's also possible to save the trained model to a file and load it back!
save to file
filename = Path.join(__DIR__, "dtree.bin")
Evision.ML.DTrees.save(dtree, filename)

load from file
dtree_from_file = Evision.ML.DTrees.load(filename)

they should give the same results!
{test_error, _results} = Evision.ML.DTrees.calcError(dtree, dataset, true)
{test_error_2, _results} = Evision.ML.DTrees.calcError(dtree_from_file, dataset, true)
test_error == test_error_2
Train the Dataset with Random Forest, Evision.ML.RTrees
rtree =
 Evision.ML.RTrees.create()
 |> Evision.ML.RTrees.setMaxDepth(10)
 |> Evision.ML.RTrees.setMaxCategories(3)
 |> Evision.ML.RTrees.setCVFolds(0)
 |> Evision.ML.RTrees.setMinSampleCount(10)
 |> Evision.ML.RTrees.setActiveVarCount(0)
 |> Evision.ML.RTrees.setCalculateVarImportance(false)

rtree =
 Evision.ML.RTrees.setTermCriteria(
 rtree,
 {Evision.Constant.cv_MAX_ITER() + Evision.Constant.cv_EPS(), 30, 5.0e-5}
)

(
 (
 dataset =
 Evision.ML.TrainData.create(
 Evision.Mat.from_nx(Nx.tensor(features, type: :f32, backend: Evision.Backend)),
 Evision.Constant.cv_ROW_SAMPLE(),
 Evision.Mat.from_nx(Nx.tensor(labels, type: :s32, backend: Evision.Backend))
)
 |> Evision.ML.TrainData.setTrainTestSplitRatio(0.8, shuffle: true)

 IO.puts("#Samples: #{Evision.ML.TrainData.getNSamples(dataset)}")
 IO.puts("#Training samples: #{Evision.ML.TrainData.getNTrainSamples(dataset)}")
 IO.puts("#Test samples: #{Evision.ML.TrainData.getNTestSamples(dataset)}")
)

 Evision.ML.RTrees.train(rtree, dataset)

 rtree
 |> Evision.ML.RTrees.calcError(dataset, false)
 |> then(&IO.puts("Training Error: #{elem(&1, 0)}"))

 rtree
 |> Evision.ML.RTrees.calcError(dataset, true)
 |> then(&IO.puts("Test Error: #{elem(&1, 0)}"))
)
Calculate Confusion Matrix
{_test_error, results} = Evision.ML.RTrees.calcError(rtree, dataset, true)

y_true =
 Evision.Mat.to_nx(results, Nx.BinaryBackend)
 |> Nx.reshape({:auto})
 |> Nx.as_type(:s32)

y_pred =
 Evision.Mat.to_nx(Evision.ML.TrainData.getTestResponses(dataset), Nx.BinaryBackend)
 |> Nx.reshape({:auto})
 |> Nx.as_type(:s32)

Scholar.Metrics.confusion_matrix(y_true, y_pred, num_classes: 3)
Save the Trained Model and Load It Back
save to file
filename = Path.join(__DIR__, "rtree.bin")
Evision.ML.RTrees.save(rtree, filename)

load from file
rtree_from_file = Evision.ML.RTrees.load(filename)

they should give the same results!
{test_error, _results} = Evision.ML.RTrees.calcError(rtree, dataset, true)
{test_error_2, _results} = Evision.ML.RTrees.calcError(rtree_from_file, dataset, true)
test_error == test_error_2

 Evision - Evision v0.1.39

Evision

 Summary

 Functions

 absdiff(src1, src2)

 Calculates the per-element absolute difference between two arrays or between an array and a scalar.

 absdiff(src1, src2, opts)

 Calculates the per-element absolute difference between two arrays or between an array and a scalar.

 accumulate(src, dst)

 Adds an image to the accumulator image.

 accumulate(src, dst, opts)

 Adds an image to the accumulator image.

 accumulateProduct(src1, src2, dst)

 Adds the per-element product of two input images to the accumulator image.

 accumulateProduct(src1, src2, dst, opts)

 Adds the per-element product of two input images to the accumulator image.

 accumulateSquare(src, dst)

 Adds the square of a source image to the accumulator image.

 accumulateSquare(src, dst, opts)

 Adds the square of a source image to the accumulator image.

 accumulateWeighted(src, dst, alpha)

 Updates a running average.

 accumulateWeighted(src, dst, alpha, opts)

 Updates a running average.

 adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, c)

 Applies an adaptive threshold to an array.

 adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, c, opts)

 Applies an adaptive threshold to an array.

 add(src1, src2)

 Calculates the per-element sum of two arrays or an array and a scalar.

 add(src1, src2, opts)

 Calculates the per-element sum of two arrays or an array and a scalar.

 addText(img, text, org, nameFont)

 Draws a text on the image.

 addText(img, text, org, nameFont, opts)

 Draws a text on the image.

 addWeighted(src1, alpha, src2, beta, gamma)

 Calculates the weighted sum of two arrays.

 addWeighted(src1, alpha, src2, beta, gamma, opts)

 Calculates the weighted sum of two arrays.

 applyColorMap(src, userColor)

 Variant 1:
Applies a user colormap on a given image.

 applyColorMap(src, userColor, opts)

 Variant 1:
Applies a user colormap on a given image.

 approxPolyDP(curve, epsilon, closed)

 Approximates a polygonal curve(s) with the specified precision.

 approxPolyDP(curve, epsilon, closed, opts)

 Approximates a polygonal curve(s) with the specified precision.

 arcLength(curve, closed)

 Calculates a contour perimeter or a curve length.

 arrowedLine(img, pt1, pt2, color)

 Draws an arrow segment pointing from the first point to the second one.

 arrowedLine(img, pt1, pt2, color, opts)

 Draws an arrow segment pointing from the first point to the second one.

 batchDistance(src1, src2, dtype)

 naive nearest neighbor finder

 batchDistance(src1, src2, dtype, opts)

 naive nearest neighbor finder

 bilateralFilter(src, d, sigmaColor, sigmaSpace)

 Applies the bilateral filter to an image.

 bilateralFilter(src, d, sigmaColor, sigmaSpace, opts)

 Applies the bilateral filter to an image.

 blendLinear(src1, src2, weights1, weights2)

 blendLinear

 blendLinear(src1, src2, weights1, weights2, opts)

 blendLinear

 blur(src, ksize)

 Blurs an image using the normalized box filter.

 blur(src, ksize, opts)

 Blurs an image using the normalized box filter.

 borderInterpolate(p, len, borderType)

 Computes the source location of an extrapolated pixel.

 boundingRect(array)

 Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.

 boxFilter(src, ddepth, ksize)

 Blurs an image using the box filter.

 boxFilter(src, ddepth, ksize, opts)

 Blurs an image using the box filter.

 boxPoints(box)

 Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.

 boxPoints(box, opts)

 Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.

 broadcast(src, shape)

 Broadcast the given Mat to the given shape.

 broadcast(src, shape, opts)

 Broadcast the given Mat to the given shape.

 buildOpticalFlowPyramid(img, winSize, maxLevel)

 Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.

 buildOpticalFlowPyramid(img, winSize, maxLevel, opts)

 Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.

 calcBackProject(images, channels, hist, ranges, scale)

 calcBackProject

 calcBackProject(images, channels, hist, ranges, scale, opts)

 calcBackProject

 calcCovarMatrix(samples, mean, flags)

 calcCovarMatrix

 calcCovarMatrix(samples, mean, flags, opts)

 calcCovarMatrix

 calcHist(images, channels, mask, histSize, ranges)

 calcHist

 calcHist(images, channels, mask, histSize, ranges, opts)

 calcHist

 calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)

 Computes a dense optical flow using the Gunnar Farneback's algorithm.

 calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts)

 Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
pyramids.

 calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, opts)

 Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
pyramids.

 calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs)

 calibrateCamera

 calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, opts)

 calibrateCamera

 calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs)

 Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.

 calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, opts)

 Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.

 calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs)

 calibrateCameraRO

 calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, opts)

 calibrateCameraRO

 calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs)

 Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

 calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, opts)

 Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

 calibrateHandEye(r_gripper2base, t_gripper2base, r_target2cam, t_target2cam)

 Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$

 calibrateHandEye(r_gripper2base, t_gripper2base, r_target2cam, t_target2cam, opts)

 Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$

 calibrateRobotWorldHandEye(r_world2cam, t_world2cam, r_base2gripper, t_base2gripper)

 Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$

 calibrateRobotWorldHandEye(r_world2cam, t_world2cam, r_base2gripper, t_base2gripper, opts)

 Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$

 calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight)

 Computes useful camera characteristics from the camera intrinsic matrix.

 camShift(probImage, window, criteria)

 Finds an object center, size, and orientation.

 canny(image, threshold1, threshold2)

 Finds edges in an image using the Canny algorithm @cite Canny86 .

 canny(image, threshold1, threshold2, opts)

 Variant 1:
Canny

 canny(dx, dy, threshold1, threshold2, opts)

 Canny

 cartToPolar(x, y)

 Calculates the magnitude and angle of 2D vectors.

 cartToPolar(x, y, opts)

 Calculates the magnitude and angle of 2D vectors.

 checkChessboard(img, size)

 checkChessboard

 checkHardwareSupport(feature)

 Returns true if the specified feature is supported by the host hardware.

 checkRange(a)

 Checks every element of an input array for invalid values.

 checkRange(a, opts)

 Checks every element of an input array for invalid values.

 circle(img, center, radius, color)

 Draws a circle.

 circle(img, center, radius, color, opts)

 Draws a circle.

 clipLine(imgRect, pt1, pt2)

 clipLine

 colorChange(src, mask)

 Given an original color image, two differently colored versions of this image can be mixed
seamlessly.

 colorChange(src, mask, opts)

 Given an original color image, two differently colored versions of this image can be mixed
seamlessly.

 compare(src1, src2, cmpop)

 Performs the per-element comparison of two arrays or an array and scalar value.

 compare(src1, src2, cmpop, opts)

 Performs the per-element comparison of two arrays or an array and scalar value.

 compareHist(h1, h2, method)

 Compares two histograms.

 completeSymm(m)

 Copies the lower or the upper half of a square matrix to its another half.

 completeSymm(m, opts)

 Copies the lower or the upper half of a square matrix to its another half.

 composeRT(rvec1, tvec1, rvec2, tvec2)

 Combines two rotation-and-shift transformations.

 composeRT(rvec1, tvec1, rvec2, tvec2, opts)

 Combines two rotation-and-shift transformations.

 computeCorrespondEpilines(points, whichImage, f)

 For points in an image of a stereo pair, computes the corresponding epilines in the other image.

 computeCorrespondEpilines(points, whichImage, f, opts)

 For points in an image of a stereo pair, computes the corresponding epilines in the other image.

 computeECC(templateImage, inputImage)

 Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .

 computeECC(templateImage, inputImage, opts)

 Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .

 connectedComponents(image)

 connectedComponents

 connectedComponents(image, opts)

 connectedComponents

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype)

 computes the connected components labeled image of boolean image

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 computes the connected components labeled image of boolean image

 connectedComponentsWithStats(image)

 connectedComponentsWithStats

 connectedComponentsWithStats(image, opts)

 connectedComponentsWithStats

 connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype)

 computes the connected components labeled image of boolean image and also produces a statistics output for each label

 connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 computes the connected components labeled image of boolean image and also produces a statistics output for each label

 contourArea(contour)

 Calculates a contour area.

 contourArea(contour, opts)

 Calculates a contour area.

 convertFp16(src)

 Converts an array to half precision floating number.

 convertFp16(src, opts)

 Converts an array to half precision floating number.

 convertMaps(map1, map2, dstmap1type)

 Converts image transformation maps from one representation to another.

 convertMaps(map1, map2, dstmap1type, opts)

 Converts image transformation maps from one representation to another.

 convertPointsFromHomogeneous(src)

 Converts points from homogeneous to Euclidean space.

 convertPointsFromHomogeneous(src, opts)

 Converts points from homogeneous to Euclidean space.

 convertPointsToHomogeneous(src)

 Converts points from Euclidean to homogeneous space.

 convertPointsToHomogeneous(src, opts)

 Converts points from Euclidean to homogeneous space.

 convertScaleAbs(src)

 Scales, calculates absolute values, and converts the result to 8-bit.

 convertScaleAbs(src, opts)

 Scales, calculates absolute values, and converts the result to 8-bit.

 convexHull(points)

 Finds the convex hull of a point set.

 convexHull(points, opts)

 Finds the convex hull of a point set.

 convexityDefects(contour, convexhull)

 Finds the convexity defects of a contour.

 convexityDefects(contour, convexhull, opts)

 Finds the convexity defects of a contour.

 copyMakeBorder(src, top, bottom, left, right, borderType)

 Forms a border around an image.

 copyMakeBorder(src, top, bottom, left, right, borderType, opts)

 Forms a border around an image.

 copyTo(src, mask)

 This is an overloaded member function, provided for convenience (python)
Copies the matrix to another one.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

 copyTo(src, mask, opts)

 This is an overloaded member function, provided for convenience (python)
Copies the matrix to another one.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

 cornerEigenValsAndVecs(src, blockSize, ksize)

 Calculates eigenvalues and eigenvectors of image blocks for corner detection.

 cornerEigenValsAndVecs(src, blockSize, ksize, opts)

 Calculates eigenvalues and eigenvectors of image blocks for corner detection.

 cornerHarris(src, blockSize, ksize, k)

 Harris corner detector.

 cornerHarris(src, blockSize, ksize, k, opts)

 Harris corner detector.

 cornerMinEigenVal(src, blockSize)

 Calculates the minimal eigenvalue of gradient matrices for corner detection.

 cornerMinEigenVal(src, blockSize, opts)

 Calculates the minimal eigenvalue of gradient matrices for corner detection.

 cornerSubPix(image, corners, winSize, zeroZone, criteria)

 Refines the corner locations.

 correctMatches(f, points1, points2)

 Refines coordinates of corresponding points.

 correctMatches(f, points1, points2, opts)

 Refines coordinates of corresponding points.

 countNonZero(src)

 Counts non-zero array elements.

 createAffineTransformer(fullAffine)

 createAffineTransformer

 createAlignMTB()

 Creates AlignMTB object

 createAlignMTB(opts)

 Creates AlignMTB object

 createBackgroundSubtractorKNN()

 Creates KNN Background Subtractor

 createBackgroundSubtractorKNN(opts)

 Creates KNN Background Subtractor

 createBackgroundSubtractorMOG2()

 Creates MOG2 Background Subtractor

 createBackgroundSubtractorMOG2(opts)

 Creates MOG2 Background Subtractor

 createCalibrateDebevec()

 Creates CalibrateDebevec object

 createCalibrateDebevec(opts)

 Creates CalibrateDebevec object

 createCalibrateRobertson()

 Creates CalibrateRobertson object

 createCalibrateRobertson(opts)

 Creates CalibrateRobertson object

 createChiHistogramCostExtractor()

 createChiHistogramCostExtractor

 createChiHistogramCostExtractor(opts)

 createChiHistogramCostExtractor

 createCLAHE()

 Creates a smart pointer to a cv::CLAHE class and initializes it.

 createCLAHE(opts)

 Creates a smart pointer to a cv::CLAHE class and initializes it.

 createEMDHistogramCostExtractor()

 createEMDHistogramCostExtractor

 createEMDHistogramCostExtractor(opts)

 createEMDHistogramCostExtractor

 createEMDL1HistogramCostExtractor()

 createEMDL1HistogramCostExtractor

 createEMDL1HistogramCostExtractor(opts)

 createEMDL1HistogramCostExtractor

 createGeneralizedHoughBallard()

 Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.

 createGeneralizedHoughGuil()

 Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.

 createHanningWindow(winSize, type)

 This function computes a Hanning window coefficients in two dimensions.

 createHanningWindow(winSize, type, opts)

 This function computes a Hanning window coefficients in two dimensions.

 createHausdorffDistanceExtractor()

 createHausdorffDistanceExtractor

 createHausdorffDistanceExtractor(opts)

 createHausdorffDistanceExtractor

 createLineSegmentDetector()

 Creates a smart pointer to a LineSegmentDetector object and initializes it.

 createLineSegmentDetector(opts)

 Creates a smart pointer to a LineSegmentDetector object and initializes it.

 createMergeDebevec()

 Creates MergeDebevec object

 createMergeMertens()

 Creates MergeMertens object

 createMergeMertens(opts)

 Creates MergeMertens object

 createMergeRobertson()

 Creates MergeRobertson object

 createNormHistogramCostExtractor()

 createNormHistogramCostExtractor

 createNormHistogramCostExtractor(opts)

 createNormHistogramCostExtractor

 createShapeContextDistanceExtractor()

 createShapeContextDistanceExtractor

 createShapeContextDistanceExtractor(opts)

 createShapeContextDistanceExtractor

 createThinPlateSplineShapeTransformer()

 createThinPlateSplineShapeTransformer

 createThinPlateSplineShapeTransformer(opts)

 createThinPlateSplineShapeTransformer

 createTonemap()

 Creates simple linear mapper with gamma correction

 createTonemap(opts)

 Creates simple linear mapper with gamma correction

 createTonemapDrago()

 Creates TonemapDrago object

 createTonemapDrago(opts)

 Creates TonemapDrago object

 createTonemapMantiuk()

 Creates TonemapMantiuk object

 createTonemapMantiuk(opts)

 Creates TonemapMantiuk object

 createTonemapReinhard()

 Creates TonemapReinhard object

 createTonemapReinhard(opts)

 Creates TonemapReinhard object

 cubeRoot(val)

 Computes the cube root of an argument.

 cvtColor(src, code)

 Converts an image from one color space to another.

 cvtColor(src, code, opts)

 Converts an image from one color space to another.

 cvtColorTwoPlane(src1, src2, code)

 Converts an image from one color space to another where the source image is
stored in two planes.

 cvtColorTwoPlane(src1, src2, code, opts)

 Converts an image from one color space to another where the source image is
stored in two planes.

 dct(src)

 Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

 dct(src, opts)

 Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

 decolor(src)

 Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
black-and-white photograph rendering, and in many single channel image processing applications

 decolor(src, opts)

 Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
black-and-white photograph rendering, and in many single channel image processing applications

 decomposeEssentialMat(e)

 Decompose an essential matrix to possible rotations and translation.

 decomposeEssentialMat(e, opts)

 Decompose an essential matrix to possible rotations and translation.

 decomposeHomographyMat(h, k)

 Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

 decomposeHomographyMat(h, k, opts)

 Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).

 decomposeProjectionMatrix(projMatrix)

 Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.

 decomposeProjectionMatrix(projMatrix, opts)

 Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.

 demosaicing(src, code)

 main function for all demosaicing processes

 demosaicing(src, code, opts)

 main function for all demosaicing processes

 detailEnhance(src)

 This filter enhances the details of a particular image.

 detailEnhance(src, opts)

 This filter enhances the details of a particular image.

 determinant(mtx)

 Returns the determinant of a square floating-point matrix.

 dft(src)

 Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

 dft(src, opts)

 Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

 dilate(src, kernel)

 Dilates an image by using a specific structuring element.

 dilate(src, kernel, opts)

 Dilates an image by using a specific structuring element.

 displayOverlay(winname, text)

 Displays a text on a window image as an overlay for a specified duration.

 displayOverlay(winname, text, opts)

 Displays a text on a window image as an overlay for a specified duration.

 displayStatusBar(winname, text)

 Displays a text on the window statusbar during the specified period of time.

 displayStatusBar(winname, text, opts)

 Displays a text on the window statusbar during the specified period of time.

 distanceTransform(src, distanceType, maskSize)

 distanceTransform

 distanceTransform(src, distanceType, maskSize, opts)

 distanceTransform

 distanceTransformWithLabels(src, distanceType, maskSize)

 Calculates the distance to the closest zero pixel for each pixel of the source image.

 distanceTransformWithLabels(src, distanceType, maskSize, opts)

 Calculates the distance to the closest zero pixel for each pixel of the source image.

 divide(scale, src2)

 Variant 1:
divide

 divide(scale, src2, opts)

 Variant 1:
divide

 divSpectrums(a, b, flags)

 Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.

 divSpectrums(a, b, flags, opts)

 Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.

 drawChessboardCorners(image, patternSize, corners, patternWasFound)

 Renders the detected chessboard corners.

 drawContours(image, contours, contourIdx, color)

 Draws contours outlines or filled contours.

 drawContours(image, contours, contourIdx, color, opts)

 Draws contours outlines or filled contours.

 drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length)

 Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP

 drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length, opts)

 Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP

 drawKeypoints(image, keypoints, outImage)

 Draws keypoints.

 drawKeypoints(image, keypoints, outImage, opts)

 Draws keypoints.

 drawMarker(img, position, color)

 Draws a marker on a predefined position in an image.

 drawMarker(img, position, color, opts)

 Draws a marker on a predefined position in an image.

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg)

 Draws the found matches of keypoints from two images.

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, opts)

 Variant 1:
drawMatches

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchesThickness, opts)

 drawMatches

 drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg)

 drawMatchesKnn

 drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, opts)

 drawMatchesKnn

 edgePreservingFilter(src)

 Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
filters are used in many different applications @cite EM11 .

 edgePreservingFilter(src, opts)

 Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
filters are used in many different applications @cite EM11 .

 eigen(src)

 Calculates eigenvalues and eigenvectors of a symmetric matrix.

 eigen(src, opts)

 Calculates eigenvalues and eigenvectors of a symmetric matrix.

 eigenNonSymmetric(src)

 Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).

 eigenNonSymmetric(src, opts)

 Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).

 ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta)

 Approximates an elliptic arc with a polyline.

 ellipse(img, box, color)

 ellipse

 ellipse(img, box, color, opts)

 ellipse

 ellipse(img, center, axes, angle, startAngle, endAngle, color)

 Draws a simple or thick elliptic arc or fills an ellipse sector.

 ellipse(img, center, axes, angle, startAngle, endAngle, color, opts)

 Draws a simple or thick elliptic arc or fills an ellipse sector.

 emd(signature1, signature2, distType)

 Computes the "minimal work" distance between two weighted point configurations.

 emd(signature1, signature2, distType, opts)

 Computes the "minimal work" distance between two weighted point configurations.

 enabled_modules()

 return a list of enabled modules in this build

 equalizeHist(src)

 Equalizes the histogram of a grayscale image.

 equalizeHist(src, opts)

 Equalizes the histogram of a grayscale image.

 erode(src, kernel)

 Erodes an image by using a specific structuring element.

 erode(src, kernel, opts)

 Erodes an image by using a specific structuring element.

 estimateAffine2D(from, to)

 Computes an optimal affine transformation between two 2D point sets.

 estimateAffine2D(from, to, opts)

 Variant 1:
estimateAffine2D

 estimateAffine2D(pts1, pts2, params, opts)

 estimateAffine2D

 estimateAffine3D(src, dst)

 Computes an optimal affine transformation between two 3D point sets.

 estimateAffine3D(src, dst, opts)

 Computes an optimal affine transformation between two 3D point sets.

 estimateAffinePartial2D(from, to)

 Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.

 estimateAffinePartial2D(from, to, opts)

 Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.

 estimateChessboardSharpness(image, patternSize, corners)

 Estimates the sharpness of a detected chessboard.

 estimateChessboardSharpness(image, patternSize, corners, opts)

 Estimates the sharpness of a detected chessboard.

 estimateTranslation3D(src, dst)

 Computes an optimal translation between two 3D point sets.

 estimateTranslation3D(src, dst, opts)

 Computes an optimal translation between two 3D point sets.

 exp(src)

 Calculates the exponent of every array element.

 exp(src, opts)

 Calculates the exponent of every array element.

 extractChannel(src, coi)

 Extracts a single channel from src (coi is 0-based index)

 extractChannel(src, coi, opts)

 Extracts a single channel from src (coi is 0-based index)

 fastAtan2(y, x)

 Calculates the angle of a 2D vector in degrees.

 fastNlMeansDenoising(src)

 Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise

 fastNlMeansDenoising(src, opts)

 Variant 1:
Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise

 fastNlMeansDenoising(src, h, opts)

 Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise

 fastNlMeansDenoisingColored(src)

 Modification of fastNlMeansDenoising function for colored images

 fastNlMeansDenoisingColored(src, opts)

 Modification of fastNlMeansDenoising function for colored images

 fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize)

 Modification of fastNlMeansDenoisingMulti function for colored images sequences

 fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, opts)

 Modification of fastNlMeansDenoisingMulti function for colored images sequences

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize)

 Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, opts)

 Variant 1:
Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, h, opts)

 Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).

 fillConvexPoly(img, points, color)

 Fills a convex polygon.

 fillConvexPoly(img, points, color, opts)

 Fills a convex polygon.

 fillPoly(img, pts, color)

 Fills the area bounded by one or more polygons.

 fillPoly(img, pts, color, opts)

 Fills the area bounded by one or more polygons.

 filter2D(src, ddepth, kernel)

 Convolves an image with the kernel.

 filter2D(src, ddepth, kernel, opts)

 Convolves an image with the kernel.

 filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints)

 Filters homography decompositions based on additional information.

 filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints, opts)

 Filters homography decompositions based on additional information.

 filterSpeckles(img, newVal, maxSpeckleSize, maxDiff)

 Filters off small noise blobs (speckles) in the disparity map

 filterSpeckles(img, newVal, maxSpeckleSize, maxDiff, opts)

 Filters off small noise blobs (speckles) in the disparity map

 find4QuadCornerSubpix(img, corners, region_size)

 find4QuadCornerSubpix

 findChessboardCorners(image, patternSize)

 Finds the positions of internal corners of the chessboard.

 findChessboardCorners(image, patternSize, opts)

 Finds the positions of internal corners of the chessboard.

 findChessboardCornersSB(image, patternSize)

 findChessboardCornersSB

 findChessboardCornersSB(image, patternSize, opts)

 findChessboardCornersSB

 findChessboardCornersSBWithMeta(image, patternSize, flags)

 Finds the positions of internal corners of the chessboard using a sector based approach.

 findChessboardCornersSBWithMeta(image, patternSize, flags, opts)

 Finds the positions of internal corners of the chessboard using a sector based approach.

 findCirclesGrid(image, patternSize)

 findCirclesGrid

 findCirclesGrid(image, patternSize, opts)

 findCirclesGrid

 findCirclesGrid(image, patternSize, flags, blobDetector, parameters)

 Finds centers in the grid of circles.

 findCirclesGrid(image, patternSize, flags, blobDetector, parameters, opts)

 Finds centers in the grid of circles.

 findContours(image, mode, method)

 Finds contours in a binary image.

 findContours(image, mode, method, opts)

 Finds contours in a binary image.

 findEssentialMat(points1, points2)

 findEssentialMat

 findEssentialMat(points1, points2, opts)

 Variant 1:
Calculates an essential matrix from the corresponding points in two images.

 findEssentialMat(points1, points2, cameraMatrix, opts)

 Calculates an essential matrix from the corresponding points in two images.

 findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2)

 Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.

 findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, opts)

 Variant 1:
findEssentialMat

 findEssentialMat(points1, points2, cameraMatrix1, cameraMatrix2, dist_coeff1, dist_coeff2, params, opts)

 findEssentialMat

 findFundamentalMat(points1, points2)

 findFundamentalMat

 findFundamentalMat(points1, points2, opts)

 Variant 1:
findFundamentalMat

 findFundamentalMat(points1, points2, params, opts)

 findFundamentalMat

 findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters)

 Calculates a fundamental matrix from the corresponding points in two images.

 findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters, opts)

 Calculates a fundamental matrix from the corresponding points in two images.

 findHomography(srcPoints, dstPoints)

 Finds a perspective transformation between two planes.

 findHomography(srcPoints, dstPoints, opts)

 Variant 1:
findHomography

 findHomography(srcPoints, dstPoints, params, opts)

 findHomography

 findNonZero(src)

 Returns the list of locations of non-zero pixels

 findNonZero(src, opts)

 Returns the list of locations of non-zero pixels

 findTransformECC(templateImage, inputImage, warpMatrix)

 findTransformECC

 findTransformECC(templateImage, inputImage, warpMatrix, opts)

 findTransformECC

 findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria, inputMask, gaussFiltSize)

 Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .

 fitEllipse(points)

 Fits an ellipse around a set of 2D points.

 fitEllipseAMS(points)

 Fits an ellipse around a set of 2D points.

 fitEllipseDirect(points)

 Fits an ellipse around a set of 2D points.

 fitLine(points, distType, param, reps, aeps)

 Fits a line to a 2D or 3D point set.

 fitLine(points, distType, param, reps, aeps, opts)

 Fits a line to a 2D or 3D point set.

 flip(src, flipCode)

 Flips a 2D array around vertical, horizontal, or both axes.

 flip(src, flipCode, opts)

 Flips a 2D array around vertical, horizontal, or both axes.

 flipND(src, axis)

 Flips a n-dimensional at given axis

 flipND(src, axis, opts)

 Flips a n-dimensional at given axis

 floodFill(image, mask, seedPoint, newVal)

 Fills a connected component with the given color.

 floodFill(image, mask, seedPoint, newVal, opts)

 Fills a connected component with the given color.

 gaussianBlur(src, ksize, sigmaX)

 Blurs an image using a Gaussian filter.

 gaussianBlur(src, ksize, sigmaX, opts)

 Blurs an image using a Gaussian filter.

 gemm(src1, src2, alpha, src3, beta)

 Performs generalized matrix multiplication.

 gemm(src1, src2, alpha, src3, beta, opts)

 Performs generalized matrix multiplication.

 getAffineTransform(src, dst)

 getAffineTransform

 getBuildInformation()

 Returns full configuration time cmake output.

 getCPUFeaturesLine()

 Returns list of CPU features enabled during compilation.

 getCPUTickCount()

 Returns the number of CPU ticks.

 getDefaultNewCameraMatrix(cameraMatrix)

 Returns the default new camera matrix.

 getDefaultNewCameraMatrix(cameraMatrix, opts)

 Returns the default new camera matrix.

 getDerivKernels(dx, dy, ksize)

 Returns filter coefficients for computing spatial image derivatives.

 getDerivKernels(dx, dy, ksize, opts)

 Returns filter coefficients for computing spatial image derivatives.

 getFontScaleFromHeight(fontFace, pixelHeight)

 Calculates the font-specific size to use to achieve a given height in pixels.

 getFontScaleFromHeight(fontFace, pixelHeight, opts)

 Calculates the font-specific size to use to achieve a given height in pixels.

 getGaborKernel(ksize, sigma, theta, lambd, gamma)

 Returns Gabor filter coefficients.

 getGaborKernel(ksize, sigma, theta, lambd, gamma, opts)

 Returns Gabor filter coefficients.

 getGaussianKernel(ksize, sigma)

 Returns Gaussian filter coefficients.

 getGaussianKernel(ksize, sigma, opts)

 Returns Gaussian filter coefficients.

 getHardwareFeatureName(feature)

 Returns feature name by ID

 getLogLevel()

 getLogLevel

 getNumberOfCPUs()

 Returns the number of logical CPUs available for the process.

 getNumThreads()

 Returns the number of threads used by OpenCV for parallel regions.

 getOptimalDFTSize(vecsize)

 Returns the optimal DFT size for a given vector size.

 getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha)

 Returns the new camera intrinsic matrix based on the free scaling parameter.

 getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, opts)

 Returns the new camera intrinsic matrix based on the free scaling parameter.

 getPerspectiveTransform(src, dst)

 Calculates a perspective transform from four pairs of the corresponding points.

 getPerspectiveTransform(src, dst, opts)

 Calculates a perspective transform from four pairs of the corresponding points.

 getRectSubPix(image, patchSize, center)

 Retrieves a pixel rectangle from an image with sub-pixel accuracy.

 getRectSubPix(image, patchSize, center, opts)

 Retrieves a pixel rectangle from an image with sub-pixel accuracy.

 getRotationMatrix2D(center, angle, scale)

 Calculates an affine matrix of 2D rotation.

 getStructuringElement(shape, ksize)

 Returns a structuring element of the specified size and shape for morphological operations.

 getStructuringElement(shape, ksize, opts)

 Returns a structuring element of the specified size and shape for morphological operations.

 getTextSize(text, fontFace, fontScale, thickness)

 Calculates the width and height of a text string.

 getThreadNum()

 Returns the index of the currently executed thread within the current parallel region. Always
returns 0 if called outside of parallel region.

 getTickCount()

 Returns the number of ticks.

 getTickFrequency()

 Returns the number of ticks per second.

 getTrackbarPos(trackbarname, winname)

 Returns the trackbar position.

 getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, blockSize)

 getValidDisparityROI

 getVersionMajor()

 Returns major library version

 getVersionMinor()

 Returns minor library version

 getVersionRevision()

 Returns revision field of the library version

 getVersionString()

 Returns library version string

 getWindowImageRect(winname)

 Provides rectangle of image in the window.

 getWindowProperty(winname, prop_id)

 Provides parameters of a window.

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance)

 Determines strong corners on an image.

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, opts)

 Determines strong corners on an image.

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize)

 goodFeaturesToTrack

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize, opts)

 goodFeaturesToTrack

 goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask)

 Same as above, but returns also quality measure of the detected corners.

 goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask, opts)

 Same as above, but returns also quality measure of the detected corners.

 grabCut(img, mask, rect, bgdModel, fgdModel, iterCount)

 Runs the GrabCut algorithm.

 grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, opts)

 Runs the GrabCut algorithm.

 groupRectangles(rectList, groupThreshold)

 groupRectangles

 groupRectangles(rectList, groupThreshold, opts)

 groupRectangles

 hasNonZero(src)

 Checks for the presence of at least one non-zero array element.

 haveImageReader(filename)

 Returns true if the specified image can be decoded by OpenCV

 haveImageWriter(filename)

 Returns true if an image with the specified filename can be encoded by OpenCV

 haveOpenVX()

 haveOpenVX

 hconcat(src)

 hconcat

 hconcat(src, opts)

 hconcat

 houghCircles(image, method, dp, minDist)

 Finds circles in a grayscale image using the Hough transform.

 houghCircles(image, method, dp, minDist, opts)

 Finds circles in a grayscale image using the Hough transform.

 houghLines(image, rho, theta, threshold)

 Finds lines in a binary image using the standard Hough transform.

 houghLines(image, rho, theta, threshold, opts)

 Finds lines in a binary image using the standard Hough transform.

 houghLinesP(image, rho, theta, threshold)

 Finds line segments in a binary image using the probabilistic Hough transform.

 houghLinesP(image, rho, theta, threshold, opts)

 Finds line segments in a binary image using the probabilistic Hough transform.

 houghLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step)

 Finds lines in a set of points using the standard Hough transform.

 houghLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step, opts)

 Finds lines in a set of points using the standard Hough transform.

 houghLinesWithAccumulator(image, rho, theta, threshold)

 Finds lines in a binary image using the standard Hough transform and get accumulator.

 houghLinesWithAccumulator(image, rho, theta, threshold, opts)

 Finds lines in a binary image using the standard Hough transform and get accumulator.

 huMoments(m)

 HuMoments

 huMoments(m, opts)

 HuMoments

 idct(src)

 Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.

 idct(src, opts)

 Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.

 idft(src)

 Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

 idft(src, opts)

 Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

 illuminationChange(src, mask)

 Applying an appropriate non-linear transformation to the gradient field inside the selection and
then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.

 illuminationChange(src, mask, opts)

 Applying an appropriate non-linear transformation to the gradient field inside the selection and
then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.

 imcount(filename)

 Returns the number of images inside the give file

 imcount(filename, opts)

 Returns the number of images inside the give file

 imdecode(buf, flags)

 imdecodemulti(buf, flags)

 Reads a multi-page image from a buffer in memory.

 imdecodemulti(buf, flags, opts)

 Reads a multi-page image from a buffer in memory.

 imencode(ext, img)

 Encodes an image into a memory buffer.

 imencode(ext, img, opts)

 Encodes an image into a memory buffer.

 imread(filename)

 Loads an image from a file.

 imread(filename, opts)

 Loads an image from a file.

 imreadmulti(filename)

 Loads a multi-page image from a file.

 imreadmulti(filename, opts)

 Loads a multi-page image from a file.

 imreadmulti(filename, start, count)

 Loads a of images of a multi-page image from a file.

 imreadmulti(filename, start, count, opts)

 Loads a of images of a multi-page image from a file.

 imwrite(filename, img)

 Saves an image to a specified file.

 imwrite(filename, img, opts)

 Saves an image to a specified file.

 imwritemulti(filename, img)

 imwritemulti

 imwritemulti(filename, img, opts)

 imwritemulti

 initCameraMatrix2D(objectPoints, imagePoints, imageSize)

 Finds an initial camera intrinsic matrix from 3D-2D point correspondences.

 initCameraMatrix2D(objectPoints, imagePoints, imageSize, opts)

 Finds an initial camera intrinsic matrix from 3D-2D point correspondences.

 initInverseRectificationMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type)

 Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.

 initInverseRectificationMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type, opts)

 Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.

 initUndistortRectifyMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type)

 Computes the undistortion and rectification transformation map.

 initUndistortRectifyMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type, opts)

 Computes the undistortion and rectification transformation map.

 inpaint(src, inpaintMask, inpaintRadius, flags)

 Restores the selected region in an image using the region neighborhood.

 inpaint(src, inpaintMask, inpaintRadius, flags, opts)

 Restores the selected region in an image using the region neighborhood.

 inRange(src, lowerb, upperb)

 Checks if array elements lie between the elements of two other arrays.

 inRange(src, lowerb, upperb, opts)

 Checks if array elements lie between the elements of two other arrays.

 insertChannel(src, dst, coi)

 Inserts a single channel to dst (coi is 0-based index)

 integral2(src)

 integral2

 integral2(src, opts)

 integral2

 integral3(src)

 Calculates the integral of an image.

 integral3(src, opts)

 Calculates the integral of an image.

 integral(src)

 integral

 integral(src, opts)

 integral

 intersectConvexConvex(p1, p2)

 Finds intersection of two convex polygons

 intersectConvexConvex(p1, p2, opts)

 Finds intersection of two convex polygons

 invert(src)

 Finds the inverse or pseudo-inverse of a matrix.

 invert(src, opts)

 Finds the inverse or pseudo-inverse of a matrix.

 invertAffineTransform(m)

 Inverts an affine transformation.

 invertAffineTransform(m, opts)

 Inverts an affine transformation.

 isContourConvex(contour)

 Tests a contour convexity.

 kmeans(data, k, bestLabels, criteria, attempts, flags)

 Finds centers of clusters and groups input samples around the clusters.

 kmeans(data, k, bestLabels, criteria, attempts, flags, opts)

 Finds centers of clusters and groups input samples around the clusters.

 laplacian(src, ddepth)

 Calculates the Laplacian of an image.

 laplacian(src, ddepth, opts)

 Calculates the Laplacian of an image.

 line(img, pt1, pt2, color)

 Draws a line segment connecting two points.

 line(img, pt1, pt2, color, opts)

 Draws a line segment connecting two points.

 linearPolar(src, center, maxRadius, flags)

 Remaps an image to polar coordinates space.

 linearPolar(src, center, maxRadius, flags, opts)

 Remaps an image to polar coordinates space.

 log(src)

 Calculates the natural logarithm of every array element.

 log(src, opts)

 Calculates the natural logarithm of every array element.

 logPolar(src, center, m, flags)

 Remaps an image to semilog-polar coordinates space.

 logPolar(src, center, m, flags, opts)

 Remaps an image to semilog-polar coordinates space.

 lut(src, lut)

 Performs a look-up table transform of an array.

 lut(src, lut, opts)

 Performs a look-up table transform of an array.

 magnitude(x, y)

 Calculates the magnitude of 2D vectors.

 magnitude(x, y, opts)

 Calculates the magnitude of 2D vectors.

 mahalanobis(v1, v2, icovar)

 Calculates the Mahalanobis distance between two vectors.

 matchShapes(contour1, contour2, method, parameter)

 Compares two shapes.

 matchTemplate(image, templ, method)

 Compares a template against overlapped image regions.

 matchTemplate(image, templ, method, opts)

 Compares a template against overlapped image regions.

 matMulDeriv(a, b)

 Computes partial derivatives of the matrix product for each multiplied matrix.

 matMulDeriv(a, b, opts)

 Computes partial derivatives of the matrix product for each multiplied matrix.

 max(src1, src2)

 Calculates per-element maximum of two arrays or an array and a scalar.

 max(src1, src2, opts)

 Calculates per-element maximum of two arrays or an array and a scalar.

 mean(src)

 Calculates an average (mean) of array elements.

 mean(src, opts)

 Calculates an average (mean) of array elements.

 meanShift(probImage, window, criteria)

 Finds an object on a back projection image.

 meanStdDev(src)

 meanStdDev

 meanStdDev(src, opts)

 meanStdDev

 medianBlur(src, ksize)

 Blurs an image using the median filter.

 medianBlur(src, ksize, opts)

 Blurs an image using the median filter.

 merge(mv)

 merge

 merge(mv, opts)

 merge

 min(src1, src2)

 Calculates per-element minimum of two arrays or an array and a scalar.

 min(src1, src2, opts)

 Calculates per-element minimum of two arrays or an array and a scalar.

 minAreaRect(points)

 Finds a rotated rectangle of the minimum area enclosing the input 2D point set.

 minEnclosingCircle(points)

 Finds a circle of the minimum area enclosing a 2D point set.

 minEnclosingTriangle(points)

 Finds a triangle of minimum area enclosing a 2D point set and returns its area.

 minEnclosingTriangle(points, opts)

 Finds a triangle of minimum area enclosing a 2D point set and returns its area.

 minMaxLoc(src)

 Finds the global minimum and maximum in an array.

 minMaxLoc(src, opts)

 Finds the global minimum and maximum in an array.

 mixChannels(src, dst, fromTo)

 mixChannels

 moments(array)

 Calculates all of the moments up to the third order of a polygon or rasterized shape.

 moments(array, opts)

 Calculates all of the moments up to the third order of a polygon or rasterized shape.

 morphologyEx(src, op, kernel)

 Performs advanced morphological transformations.

 morphologyEx(src, op, kernel, opts)

 Performs advanced morphological transformations.

 moveWindow(winname, x, y)

 Moves the window to the specified position

 mulSpectrums(a, b, flags)

 Performs the per-element multiplication of two Fourier spectrums.

 mulSpectrums(a, b, flags, opts)

 Performs the per-element multiplication of two Fourier spectrums.

 mulTransposed(src, aTa)

 Calculates the product of a matrix and its transposition.

 mulTransposed(src, aTa, opts)

 Calculates the product of a matrix and its transposition.

 multiply(src1, src2)

 Calculates the per-element scaled product of two arrays.

 multiply(src1, src2, opts)

 Calculates the per-element scaled product of two arrays.

 namedWindow(winname)

 Creates a window.

 namedWindow(winname, opts)

 Creates a window.

 norm(src1)

 Calculates the absolute norm of an array.

 norm(src1, opts)

 Variant 1:
Calculates an absolute difference norm or a relative difference norm.

 norm(src1, src2, opts)

 Calculates an absolute difference norm or a relative difference norm.

 normalize(src, dst)

 Normalizes the norm or value range of an array.

 normalize(src, dst, opts)

 Normalizes the norm or value range of an array.

 patchNaNs(a)

 Replaces NaNs by given number

 patchNaNs(a, opts)

 Replaces NaNs by given number

 pcaBackProject(data, mean, eigenvectors)

 PCABackProject

 pcaBackProject(data, mean, eigenvectors, opts)

 PCABackProject

 pcaCompute2(data, mean)

 PCACompute2

 pcaCompute2(data, mean, opts)

 Variant 1:
PCACompute2

 pcaCompute2(data, mean, retainedVariance, opts)

 PCACompute2

 pcaCompute(data, mean)

 PCACompute

 pcaCompute(data, mean, opts)

 Variant 1:
PCACompute

 pcaCompute(data, mean, retainedVariance, opts)

 PCACompute

 pcaProject(data, mean, eigenvectors)

 PCAProject

 pcaProject(data, mean, eigenvectors, opts)

 PCAProject

 pencilSketch(src)

 Pencil-like non-photorealistic line drawing

 pencilSketch(src, opts)

 Pencil-like non-photorealistic line drawing

 perspectiveTransform(src, m)

 Performs the perspective matrix transformation of vectors.

 perspectiveTransform(src, m, opts)

 Performs the perspective matrix transformation of vectors.

 phase(x, y)

 Calculates the rotation angle of 2D vectors.

 phase(x, y, opts)

 Calculates the rotation angle of 2D vectors.

 phaseCorrelate(src1, src2)

 The function is used to detect translational shifts that occur between two images.

 phaseCorrelate(src1, src2, opts)

 The function is used to detect translational shifts that occur between two images.

 pointPolygonTest(contour, pt, measureDist)

 Performs a point-in-contour test.

 polarToCart(magnitude, angle)

 Calculates x and y coordinates of 2D vectors from their magnitude and angle.

 polarToCart(magnitude, angle, opts)

 Calculates x and y coordinates of 2D vectors from their magnitude and angle.

 pollKey()

 Polls for a pressed key.

 polylines(img, pts, isClosed, color)

 Draws several polygonal curves.

 polylines(img, pts, isClosed, color, opts)

 Draws several polygonal curves.

 pow(src, power)

 Raises every array element to a power.

 pow(src, power, opts)

 Raises every array element to a power.

 preCornerDetect(src, ksize)

 Calculates a feature map for corner detection.

 preCornerDetect(src, ksize, opts)

 Calculates a feature map for corner detection.

 projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)

 Projects 3D points to an image plane.

 projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, opts)

 Projects 3D points to an image plane.

 psnr(src1, src2)

 Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.

 psnr(src1, src2, opts)

 Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.

 putText(img, text, org, fontFace, fontScale, color)

 Draws a text string.

 putText(img, text, org, fontFace, fontScale, color, opts)

 Draws a text string.

 pyrDown(src)

 Blurs an image and downsamples it.

 pyrDown(src, opts)

 Blurs an image and downsamples it.

 pyrMeanShiftFiltering(src, sp, sr)

 Performs initial step of meanshift segmentation of an image.

 pyrMeanShiftFiltering(src, sp, sr, opts)

 Performs initial step of meanshift segmentation of an image.

 pyrUp(src)

 Upsamples an image and then blurs it.

 pyrUp(src, opts)

 Upsamples an image and then blurs it.

 randn(dst, mean, stddev)

 Fills the array with normally distributed random numbers.

 randShuffle(dst)

 Shuffles the array elements randomly.

 randShuffle(dst, opts)

 Shuffles the array elements randomly.

 randu(dst, low, high)

 Generates a single uniformly-distributed random number or an array of random numbers.

 readOpticalFlow(path)

 Read a .flo file

 recoverPose(e, points1, points2)

 recoverPose

 recoverPose(e, points1, points2, opts)

 Variant 1:
Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using chirality check. Returns the number of
inliers that pass the check.

 recoverPose(e, points1, points2, cameraMatrix, opts)

 Variant 1:
recoverPose

 recoverPose(e, points1, points2, cameraMatrix, distanceThresh, opts)

 Variant 1:
Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.

 recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, opts)

 Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.

 rectangle(img, rec, color)

 rectangle

 rectangle(img, rec, color, opts)

 Variant 1:
Draws a simple, thick, or filled up-right rectangle.

 rectangle(img, pt1, pt2, color, opts)

 Draws a simple, thick, or filled up-right rectangle.

 rectangleIntersectionArea(a, b)

 Finds out if there is any intersection between two rectangles

 rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, r12, t12, r13, t13, alpha, newImgSize, flags)

 rectify3Collinear

 rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, r12, t12, r13, t13, alpha, newImgSize, flags, opts)

 rectify3Collinear

 reduce(src, dim, rtype)

 Reduces a matrix to a vector.

 reduce(src, dim, rtype, opts)

 Reduces a matrix to a vector.

 reduceArgMax(src, axis)

 Finds indices of max elements along provided axis

 reduceArgMax(src, axis, opts)

 Finds indices of max elements along provided axis

 reduceArgMin(src, axis)

 Finds indices of min elements along provided axis

 reduceArgMin(src, axis, opts)

 Finds indices of min elements along provided axis

 remap(src, map1, map2, interpolation)

 Applies a generic geometrical transformation to an image.

 remap(src, map1, map2, interpolation, opts)

 Applies a generic geometrical transformation to an image.

 repeat(src, ny, nx)

 Fills the output array with repeated copies of the input array.

 repeat(src, ny, nx, opts)

 Fills the output array with repeated copies of the input array.

 reprojectImageTo3D(disparity, q)

 Reprojects a disparity image to 3D space.

 reprojectImageTo3D(disparity, q, opts)

 Reprojects a disparity image to 3D space.

 resize(src, dsize)

 Resizes an image.

 resize(src, dsize, opts)

 Resizes an image.

 resizeWindow(winname, size)

 resizeWindow

 resizeWindow(winname, width, height)

 Resizes the window to the specified size

 rodrigues(src)

 Converts a rotation matrix to a rotation vector or vice versa.

 rodrigues(src, opts)

 Converts a rotation matrix to a rotation vector or vice versa.

 rotate(src, rotateCode)

 Rotates a 2D array in multiples of 90 degrees.
The function cv::rotate rotates the array in one of three different ways:
Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).

 rotate(src, rotateCode, opts)

 Rotates a 2D array in multiples of 90 degrees.
The function cv::rotate rotates the array in one of three different ways:
Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).

 rotatedRectangleIntersection(rect1, rect2)

 Finds out if there is any intersection between two rotated rectangles.

 rotatedRectangleIntersection(rect1, rect2, opts)

 Finds out if there is any intersection between two rotated rectangles.

 rqDecomp3x3(src)

 Computes an RQ decomposition of 3x3 matrices.

 rqDecomp3x3(src, opts)

 Computes an RQ decomposition of 3x3 matrices.

 sampsonDistance(pt1, pt2, f)

 Calculates the Sampson Distance between two points.

 scaleAdd(src1, alpha, src2)

 Calculates the sum of a scaled array and another array.

 scaleAdd(src1, alpha, src2, opts)

 Calculates the sum of a scaled array and another array.

 scharr(src, ddepth, dx, dy)

 Calculates the first x- or y- image derivative using Scharr operator.

 scharr(src, ddepth, dx, dy, opts)

 Calculates the first x- or y- image derivative using Scharr operator.

 seamlessClone(src, dst, mask, p, flags)

 Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes concerned to a selection. Here we are interested in achieving local
changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
manner. The extent of the changes ranges from slight distortions to complete replacement by novel
content @cite PM03 .

 seamlessClone(src, dst, mask, p, flags, opts)

 Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes concerned to a selection. Here we are interested in achieving local
changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
manner. The extent of the changes ranges from slight distortions to complete replacement by novel
content @cite PM03 .

 selectROI(img)

 selectROI

 selectROI(img, opts)

 Variant 1:
Allows users to select a ROI on the given image.

 selectROI(windowName, img, opts)

 Allows users to select a ROI on the given image.

 selectROIs(windowName, img)

 Allows users to select multiple ROIs on the given image.

 selectROIs(windowName, img, opts)

 Allows users to select multiple ROIs on the given image.

 sepFilter2D(src, ddepth, kernelX, kernelY)

 Applies a separable linear filter to an image.

 sepFilter2D(src, ddepth, kernelX, kernelY, opts)

 Applies a separable linear filter to an image.

 setIdentity(mtx)

 Initializes a scaled identity matrix.

 setIdentity(mtx, opts)

 Initializes a scaled identity matrix.

 setLogLevel(level)

 setLogLevel

 setNumThreads(nthreads)

 OpenCV will try to set the number of threads for subsequent parallel regions.

 setRNGSeed(seed)

 Sets state of default random number generator.

 setTrackbarMax(trackbarname, winname, maxval)

 Sets the trackbar maximum position.

 setTrackbarMin(trackbarname, winname, minval)

 Sets the trackbar minimum position.

 setTrackbarPos(trackbarname, winname, pos)

 Sets the trackbar position.

 setUseOpenVX(flag)

 setUseOpenVX

 setUseOptimized(onoff)

 Enables or disables the optimized code.

 setWindowProperty(winname, prop_id, prop_value)

 Changes parameters of a window dynamically.

 setWindowTitle(winname, title)

 Updates window title

 sobel(src, ddepth, dx, dy)

 Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

 sobel(src, ddepth, dx, dy, opts)

 Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

 solve(src1, src2)

 Solves one or more linear systems or least-squares problems.

 solve(src1, src2, opts)

 Solves one or more linear systems or least-squares problems.

 solveCubic(coeffs)

 Finds the real roots of a cubic equation.

 solveCubic(coeffs, opts)

 Finds the real roots of a cubic equation.

 solveLP(func, constr)

 solveLP

 solveLP(func, constr, opts)

 Variant 1:
Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).

 solveLP(func, constr, constr_eps, opts)

 Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).

 solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags)

 Finds an object pose from 3 3D-2D point correspondences.

 solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags, opts)

 Finds an object pose from 3 3D-2D point correspondences.

 solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 Finds an object pose from 3D-2D point correspondences.

 solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 Finds an object pose from 3D-2D point correspondences.

 solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 Finds an object pose from 3D-2D point correspondences.

 solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 Finds an object pose from 3D-2D point correspondences.

 solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 solvePnPRansac

 solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 solvePnPRansac

 solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec)

 Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

 solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, opts)

 Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

 solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec)

 Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

 solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, opts)

 Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.

 solvePoly(coeffs)

 Finds the real or complex roots of a polynomial equation.

 solvePoly(coeffs, opts)

 Finds the real or complex roots of a polynomial equation.

 sort(src, flags)

 Sorts each row or each column of a matrix.

 sort(src, flags, opts)

 Sorts each row or each column of a matrix.

 sortIdx(src, flags)

 Sorts each row or each column of a matrix.

 sortIdx(src, flags, opts)

 Sorts each row or each column of a matrix.

 spatialGradient(src)

 Calculates the first order image derivative in both x and y using a Sobel operator

 spatialGradient(src, opts)

 Calculates the first order image derivative in both x and y using a Sobel operator

 split(m)

 split

 split(m, opts)

 split

 sqrBoxFilter(src, ddepth, ksize)

 Calculates the normalized sum of squares of the pixel values overlapping the filter.

 sqrBoxFilter(src, ddepth, ksize, opts)

 Calculates the normalized sum of squares of the pixel values overlapping the filter.

 sqrt(src)

 Calculates a square root of array elements.

 sqrt(src, opts)

 Calculates a square root of array elements.

 stackBlur(src, ksize)

 Blurs an image using the stackBlur.

 stackBlur(src, ksize, opts)

 Blurs an image using the stackBlur.

 startWindowThread()

 startWindowThread

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize)

 stereoCalibrate

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, opts)

 stereoCalibrate

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 stereoCalibrate

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 stereoCalibrate

 stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.

 stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.

 stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 Computes rectification transforms for each head of a calibrated stereo camera.

 stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 Computes rectification transforms for each head of a calibrated stereo camera.

 stereoRectifyUncalibrated(points1, points2, f, imgSize)

 Computes a rectification transform for an uncalibrated stereo camera.

 stereoRectifyUncalibrated(points1, points2, f, imgSize, opts)

 Computes a rectification transform for an uncalibrated stereo camera.

 stylization(src)

 Stylization aims to produce digital imagery with a wide variety of effects not focused on
photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
contrast while preserving, or enhancing, high-contrast features.

 stylization(src, opts)

 Stylization aims to produce digital imagery with a wide variety of effects not focused on
photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
contrast while preserving, or enhancing, high-contrast features.

 subtract(src1, src2)

 Calculates the per-element difference between two arrays or array and a scalar.

 subtract(src1, src2, opts)

 Calculates the per-element difference between two arrays or array and a scalar.

 sumElems(src)

 Calculates the sum of array elements.

 svBackSubst(w, u, vt, rhs)

 SVBackSubst

 svBackSubst(w, u, vt, rhs, opts)

 SVBackSubst

 svdDecomp(src)

 SVDecomp

 svdDecomp(src, opts)

 SVDecomp

 textureFlattening(src, mask)

 By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.

 textureFlattening(src, mask, opts)

 By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.

 threshold(src, thresh, maxval, type)

 Applies a fixed-level threshold to each array element.

 threshold(src, thresh, maxval, type, opts)

 Applies a fixed-level threshold to each array element.

 trace(mtx)

 Returns the trace of a matrix.

 transform(src, m)

 Performs the matrix transformation of every array element.

 transform(src, m, opts)

 Performs the matrix transformation of every array element.

 transpose(src)

 Transposes a matrix.

 transpose(src, opts)

 Transposes a matrix.

 transposeND(src, order)

 Transpose for n-dimensional matrices.

 transposeND(src, order, opts)

 Transpose for n-dimensional matrices.

 triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2)

 This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.

 triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2, opts)

 This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.

 undistort(src, cameraMatrix, distCoeffs)

 Transforms an image to compensate for lens distortion.

 undistort(src, cameraMatrix, distCoeffs, opts)

 Transforms an image to compensate for lens distortion.

 undistortImagePoints(src, cameraMatrix, distCoeffs)

 Compute undistorted image points position

 undistortImagePoints(src, cameraMatrix, distCoeffs, opts)

 Compute undistorted image points position

 undistortPoints(src, cameraMatrix, distCoeffs)

 Computes the ideal point coordinates from the observed point coordinates.

 undistortPoints(src, cameraMatrix, distCoeffs, opts)

 Computes the ideal point coordinates from the observed point coordinates.

 undistortPointsIter(src, cameraMatrix, distCoeffs, r, p, criteria)

 undistortPointsIter

 undistortPointsIter(src, cameraMatrix, distCoeffs, r, p, criteria, opts)

 undistortPointsIter

 useOpenVX()

 useOpenVX

 useOptimized()

 Returns the status of optimized code usage.

 validateDisparity(disparity, cost, minDisparity, numberOfDisparities)

 validateDisparity

 validateDisparity(disparity, cost, minDisparity, numberOfDisparities, opts)

 validateDisparity

 vconcat(src)

 vconcat

 vconcat(src, opts)

 vconcat

 waitKeyEx()

 Similar to #waitKey, but returns full key code.

 waitKeyEx(opts)

 Similar to #waitKey, but returns full key code.

 warpAffine(src, m, dsize)

 Applies an affine transformation to an image.

 warpAffine(src, m, dsize, opts)

 Applies an affine transformation to an image.

 warpPerspective(src, m, dsize)

 Applies a perspective transformation to an image.

 warpPerspective(src, m, dsize, opts)

 Applies a perspective transformation to an image.

 warpPolar(src, dsize, center, maxRadius, flags)

 warpPolar

 warpPolar(src, dsize, center, maxRadius, flags, opts)

 warpPolar

 watershed(image, markers)

 Performs a marker-based image segmentation using the watershed algorithm.

 writeOpticalFlow(path, flow)

 Write a .flo to disk

Functions

 Link to this function

 absdiff(src1, src2)

 View Source

 @spec absdiff(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element absolute difference between two arrays or between an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Return
	dst: Evision.Mat.t().
output array that has the same size and type as input arrays.

The function cv::absdiff calculates:
 Absolute difference between two arrays when they have the same
size and type:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
 Absolute difference between an array and a scalar when the second
array is constructed from Scalar or has as many elements as the
number of channels in src1:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
 Absolute difference between a scalar and an array when the first
array is constructed from Scalar or has as many elements as the
number of channels in src2:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
where I is a multi-dimensional index of array elements. In case of
multi-channel arrays, each channel is processed independently.
Note: Saturation is not applied when the arrays have the depth CV_32S.
You may even get a negative value in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
absdiff(src,X) means absdiff(src,(X,X,X,X)).
absdiff(src,(X,)) means absdiff(src,(X,0,0,0)).
@sa cv::abs(const Mat&)
Python prototype (for reference only):
absdiff(src1, src2[, dst]) -> dst

 Link to this function

 absdiff(src1, src2, opts)

 View Source

 @spec absdiff(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element absolute difference between two arrays or between an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Return
	dst: Evision.Mat.t().
output array that has the same size and type as input arrays.

The function cv::absdiff calculates:
 Absolute difference between two arrays when they have the same
size and type:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
 Absolute difference between an array and a scalar when the second
array is constructed from Scalar or has as many elements as the
number of channels in src1:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
 Absolute difference between a scalar and an array when the first
array is constructed from Scalar or has as many elements as the
number of channels in src2:
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
where I is a multi-dimensional index of array elements. In case of
multi-channel arrays, each channel is processed independently.
Note: Saturation is not applied when the arrays have the depth CV_32S.
You may even get a negative value in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
absdiff(src,X) means absdiff(src,(X,X,X,X)).
absdiff(src,(X,)) means absdiff(src,(X,0,0,0)).
@sa cv::abs(const Mat&)
Python prototype (for reference only):
absdiff(src1, src2[, dst]) -> dst

 Link to this function

 accumulate(src, dst)

 View Source

 @spec accumulate(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Adds an image to the accumulator image.
Positional Arguments
	src: Evision.Mat.t().
Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.

The function adds src or some of its elements to dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
The function cv::accumulate can be used, for example, to collect statistics of a scene background
viewed by a still camera and for the further foreground-background segmentation.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
Python prototype (for reference only):
accumulate(src, dst[, mask]) -> dst

 Link to this function

 accumulate(src, dst, opts)

 View Source

 @spec accumulate(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Adds an image to the accumulator image.
Positional Arguments
	src: Evision.Mat.t().
Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.

The function adds src or some of its elements to dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
The function cv::accumulate can be used, for example, to collect statistics of a scene background
viewed by a still camera and for the further foreground-background segmentation.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
Python prototype (for reference only):
accumulate(src, dst[, mask]) -> dst

 Link to this function

 accumulateProduct(src1, src2, dst)

 View Source

 @spec accumulateProduct(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Adds the per-element product of two input images to the accumulator image.
Positional Arguments
	src1: Evision.Mat.t().
First input image, 1- or 3-channel, 8-bit or 32-bit floating point.

	src2: Evision.Mat.t().
Second input image of the same type and the same size as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input images, 32-bit or 64-bit
floating-point.

The function adds the product of two images or their selected regions to the accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@sa accumulate, accumulateSquare, accumulateWeighted
Python prototype (for reference only):
accumulateProduct(src1, src2, dst[, mask]) -> dst

 Link to this function

 accumulateProduct(src1, src2, dst, opts)

 View Source

 @spec accumulateProduct(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Adds the per-element product of two input images to the accumulator image.
Positional Arguments
	src1: Evision.Mat.t().
First input image, 1- or 3-channel, 8-bit or 32-bit floating point.

	src2: Evision.Mat.t().
Second input image of the same type and the same size as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input images, 32-bit or 64-bit
floating-point.

The function adds the product of two images or their selected regions to the accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@sa accumulate, accumulateSquare, accumulateWeighted
Python prototype (for reference only):
accumulateProduct(src1, src2, dst[, mask]) -> dst

 Link to this function

 accumulateSquare(src, dst)

 View Source

 @spec accumulateSquare(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Adds the square of a source image to the accumulator image.
Positional Arguments
	src: Evision.Mat.t().
Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

The function adds the input image src or its selected region, raised to a power of 2, to the
accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
Python prototype (for reference only):
accumulateSquare(src, dst[, mask]) -> dst

 Link to this function

 accumulateSquare(src, dst, opts)

 View Source

 @spec accumulateSquare(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Adds the square of a source image to the accumulator image.
Positional Arguments
	src: Evision.Mat.t().
Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

The function adds the input image src or its selected region, raised to a power of 2, to the
accumulator dst :
\f[\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
The function supports multi-channel images. Each channel is processed independently.
@sa accumulateSquare, accumulateProduct, accumulateWeighted
Python prototype (for reference only):
accumulateSquare(src, dst[, mask]) -> dst

 Link to this function

 accumulateWeighted(src, dst, alpha)

 View Source

 @spec accumulateWeighted(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Updates a running average.
Positional Arguments
	src: Evision.Mat.t().
Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

	alpha: double.
Weight of the input image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

The function calculates the weighted sum of the input image src and the accumulator dst so that dst
becomes a running average of a frame sequence:
\f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha}) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
The function supports multi-channel images. Each channel is processed independently.
@sa accumulate, accumulateSquare, accumulateProduct
Python prototype (for reference only):
accumulateWeighted(src, dst, alpha[, mask]) -> dst

 Link to this function

 accumulateWeighted(src, dst, alpha, opts)

 View Source

 @spec accumulateWeighted(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{:mask, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Updates a running average.
Positional Arguments
	src: Evision.Mat.t().
Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

	alpha: double.
Weight of the input image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

Return
	dst: Evision.Mat.t().
%Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

The function calculates the weighted sum of the input image src and the accumulator dst so that dst
becomes a running average of a frame sequence:
\f[\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha}) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\f]
That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
The function supports multi-channel images. Each channel is processed independently.
@sa accumulate, accumulateSquare, accumulateProduct
Python prototype (for reference only):
accumulateWeighted(src, dst, alpha[, mask]) -> dst

 Link to this function

 adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, c)

 View Source

 @spec adaptiveThreshold(
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 integer(),
 integer(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Applies an adaptive threshold to an array.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit single-channel image.

	maxValue: double.
Non-zero value assigned to the pixels for which the condition is satisfied

	adaptiveMethod: int.
Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.

	thresholdType: int.
Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
see #ThresholdTypes.

	blockSize: int.
Size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5, 7, and so on.

	c: double.
Constant subtracted from the mean or weighted mean (see the details below). Normally, it
is positive but may be zero or negative as well.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same type as src.

The function transforms a grayscale image to a binary image according to the formulae:
	THRESH_BINARY
\f[dst(x,y) = \fork{\texttt{maxValue}}{if (src(x,y) > T(x,y))}{0}{otherwise}\f]

	THRESH_BINARY_INV
\f[dst(x,y) = \fork{0}{if (src(x,y) > T(x,y))}{\texttt{maxValue}}{otherwise}\f]
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).

The function can process the image in-place.
@sa threshold, blur, GaussianBlur
Python prototype (for reference only):
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst

 Link to this function

 adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, c, opts)

 View Source

 @spec adaptiveThreshold(
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 integer(),
 integer(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies an adaptive threshold to an array.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit single-channel image.

	maxValue: double.
Non-zero value assigned to the pixels for which the condition is satisfied

	adaptiveMethod: int.
Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.

	thresholdType: int.
Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
see #ThresholdTypes.

	blockSize: int.
Size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5, 7, and so on.

	c: double.
Constant subtracted from the mean or weighted mean (see the details below). Normally, it
is positive but may be zero or negative as well.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same type as src.

The function transforms a grayscale image to a binary image according to the formulae:
	THRESH_BINARY
\f[dst(x,y) = \fork{\texttt{maxValue}}{if (src(x,y) > T(x,y))}{0}{otherwise}\f]

	THRESH_BINARY_INV
\f[dst(x,y) = \fork{0}{if (src(x,y) > T(x,y))}{\texttt{maxValue}}{otherwise}\f]
where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).

The function can process the image in-place.
@sa threshold, blur, GaussianBlur
Python prototype (for reference only):
adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst

 Link to this function

 add(src1, src2)

 View Source

 @spec add(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element sum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask - 8-bit single channel array, that specifies elements of the
output array to be changed.

	dtype: int.
optional depth of the output array (see the discussion below).

Return
	dst: Evision.Mat.t().
output array that has the same size and number of channels as the input array(s); the
depth is defined by dtype or src1/src2.

The function add calculates:
	Sum of two arrays when both input arrays have the same size and the same number of channels:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
elements as src1.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) + \texttt{src2}) \quad \texttt{if mask}(I) \ne0\f]

	Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
elements as src2.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1} + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.

The first function in the list above can be replaced with matrix expressions:
dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you
can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
floating-point array. Depth of the output array is determined by the dtype parameter. In the second
and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
be set to the default -1. In this case, the output array will have the same depth as the input
array, be it src1, src2 or both.
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
add(src,X) means add(src,(X,X,X,X)).
add(src,(X,)) means add(src,(X,0,0,0)).
@sa subtract, addWeighted, scaleAdd, Mat::convertTo
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype]]]) -> dst

 Link to this function

 add(src1, src2, opts)

 View Source

 @spec add(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), dtype: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element sum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask - 8-bit single channel array, that specifies elements of the
output array to be changed.

	dtype: int.
optional depth of the output array (see the discussion below).

Return
	dst: Evision.Mat.t().
output array that has the same size and number of channels as the input array(s); the
depth is defined by dtype or src1/src2.

The function add calculates:
	Sum of two arrays when both input arrays have the same size and the same number of channels:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
elements as src1.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) + \texttt{src2}) \quad \texttt{if mask}(I) \ne0\f]

	Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
elements as src2.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1} + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.

The first function in the list above can be replaced with matrix expressions:
dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you
can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
floating-point array. Depth of the output array is determined by the dtype parameter. In the second
and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
be set to the default -1. In this case, the output array will have the same depth as the input
array, be it src1, src2 or both.
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
add(src,X) means add(src,(X,X,X,X)).
add(src,(X,)) means add(src,(X,0,0,0)).
@sa subtract, addWeighted, scaleAdd, Mat::convertTo
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype]]]) -> dst

 Link to this function

 addText(img, text, org, nameFont)

 View Source

 @spec addText(Evision.Mat.maybe_mat_in(), binary(), {number(), number()}, binary()) ::
 :ok | {:error, String.t()}

Draws a text on the image.
Positional Arguments
	img: Evision.Mat.t().
8-bit 3-channel image where the text should be drawn.

	text: String.
Text to write on an image.

	org: Point.
Point(x,y) where the text should start on an image.

	nameFont: String.
Name of the font. The name should match the name of a system font (such as
Times*). If the font is not found, a default one is used.

Keyword Arguments
	pointSize: int.
Size of the font. If not specified, equal zero or negative, the point size of the
font is set to a system-dependent default value. Generally, this is 12 points.

	color: Scalar.
Color of the font in BGRA where A = 255 is fully transparent.

	weight: int.
Font weight. Available operation flags are : cv::QtFontWeights You can also specify a positive integer for better control.

	style: int.
Font style. Available operation flags are : cv::QtFontStyles

	spacing: int.
Spacing between characters. It can be negative or positive.

Python prototype (for reference only):
addText(img, text, org, nameFont[, pointSize[, color[, weight[, style[, spacing]]]]]) -> None

 Link to this function

 addText(img, text, org, nameFont, opts)

 View Source

 @spec addText(
 Evision.Mat.maybe_mat_in(),
 binary(),
 {number(), number()},
 binary(),
 [
 weight: term(),
 style: term(),
 pointSize: term(),
 color: term(),
 spacing: term()
]
 | nil
) :: :ok | {:error, String.t()}

Draws a text on the image.
Positional Arguments
	img: Evision.Mat.t().
8-bit 3-channel image where the text should be drawn.

	text: String.
Text to write on an image.

	org: Point.
Point(x,y) where the text should start on an image.

	nameFont: String.
Name of the font. The name should match the name of a system font (such as
Times*). If the font is not found, a default one is used.

Keyword Arguments
	pointSize: int.
Size of the font. If not specified, equal zero or negative, the point size of the
font is set to a system-dependent default value. Generally, this is 12 points.

	color: Scalar.
Color of the font in BGRA where A = 255 is fully transparent.

	weight: int.
Font weight. Available operation flags are : cv::QtFontWeights You can also specify a positive integer for better control.

	style: int.
Font style. Available operation flags are : cv::QtFontStyles

	spacing: int.
Spacing between characters. It can be negative or positive.

Python prototype (for reference only):
addText(img, text, org, nameFont[, pointSize[, color[, weight[, style[, spacing]]]]]) -> None

 Link to this function

 addWeighted(src1, alpha, src2, beta, gamma)

 View Source

 @spec addWeighted(
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the weighted sum of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	alpha: double.
weight of the first array elements.

	src2: Evision.Mat.t().
second input array of the same size and channel number as src1.

	beta: double.
weight of the second array elements.

	gamma: double.
scalar added to each sum.

Keyword Arguments
	dtype: int.
optional depth of the output array; when both input arrays have the same depth, dtype
can be set to -1, which will be equivalent to src1.depth().

Return
	dst: Evision.Mat.t().
output array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The function can be replaced with a matrix expression:
dst = src1*alpha + src2*beta + gamma;
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@sa add, subtract, scaleAdd, Mat::convertTo
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

 Link to this function

 addWeighted(src1, alpha, src2, beta, gamma, opts)

 View Source

 @spec addWeighted(
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [{:dtype, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the weighted sum of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	alpha: double.
weight of the first array elements.

	src2: Evision.Mat.t().
second input array of the same size and channel number as src1.

	beta: double.
weight of the second array elements.

	gamma: double.
scalar added to each sum.

Keyword Arguments
	dtype: int.
optional depth of the output array; when both input arrays have the same depth, dtype
can be set to -1, which will be equivalent to src1.depth().

Return
	dst: Evision.Mat.t().
output array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
The function can be replaced with a matrix expression:
dst = src1*alpha + src2*beta + gamma;
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
@sa add, subtract, scaleAdd, Mat::convertTo
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

 Link to this function

 applyColorMap(src, userColor)

 View Source

 @spec applyColorMap(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec applyColorMap(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Applies a user colormap on a given image.
Positional Arguments
	src: Evision.Mat.t().
The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.

	userColor: Evision.Mat.t().
The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256

Return
	dst: Evision.Mat.t().
The result is the colormapped source image. Note: Mat::create is called on dst.

Python prototype (for reference only):
applyColorMap(src, userColor[, dst]) -> dst
Variant 2:
Applies a GNU Octave/MATLAB equivalent colormap on a given image.
Positional Arguments
	src: Evision.Mat.t().
The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.

	colormap: int.
The colormap to apply, see #ColormapTypes

Return
	dst: Evision.Mat.t().
The result is the colormapped source image. Note: Mat::create is called on dst.

Python prototype (for reference only):
applyColorMap(src, colormap[, dst]) -> dst

 Link to this function

 applyColorMap(src, userColor, opts)

 View Source

 @spec applyColorMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec applyColorMap(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Applies a user colormap on a given image.
Positional Arguments
	src: Evision.Mat.t().
The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.

	userColor: Evision.Mat.t().
The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256

Return
	dst: Evision.Mat.t().
The result is the colormapped source image. Note: Mat::create is called on dst.

Python prototype (for reference only):
applyColorMap(src, userColor[, dst]) -> dst
Variant 2:
Applies a GNU Octave/MATLAB equivalent colormap on a given image.
Positional Arguments
	src: Evision.Mat.t().
The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.

	colormap: int.
The colormap to apply, see #ColormapTypes

Return
	dst: Evision.Mat.t().
The result is the colormapped source image. Note: Mat::create is called on dst.

Python prototype (for reference only):
applyColorMap(src, colormap[, dst]) -> dst

 Link to this function

 approxPolyDP(curve, epsilon, closed)

 View Source

 @spec approxPolyDP(Evision.Mat.maybe_mat_in(), number(), boolean()) ::
 Evision.Mat.t() | {:error, String.t()}

Approximates a polygonal curve(s) with the specified precision.
Positional Arguments
	curve: Evision.Mat.t().
Input vector of a 2D point stored in std::vector or Mat

	epsilon: double.
Parameter specifying the approximation accuracy. This is the maximum distance
between the original curve and its approximation.

	closed: bool.
If true, the approximated curve is closed (its first and last vertices are
connected). Otherwise, it is not closed.

Return
	approxCurve: Evision.Mat.t().
Result of the approximation. The type should match the type of the input curve.

The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
vertices so that the distance between them is less or equal to the specified precision. It uses the
Douglas-Peucker algorithm http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
Python prototype (for reference only):
approxPolyDP(curve, epsilon, closed[, approxCurve]) -> approxCurve

 Link to this function

 approxPolyDP(curve, epsilon, closed, opts)

 View Source

 @spec approxPolyDP(
 Evision.Mat.maybe_mat_in(),
 number(),
 boolean(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Approximates a polygonal curve(s) with the specified precision.
Positional Arguments
	curve: Evision.Mat.t().
Input vector of a 2D point stored in std::vector or Mat

	epsilon: double.
Parameter specifying the approximation accuracy. This is the maximum distance
between the original curve and its approximation.

	closed: bool.
If true, the approximated curve is closed (its first and last vertices are
connected). Otherwise, it is not closed.

Return
	approxCurve: Evision.Mat.t().
Result of the approximation. The type should match the type of the input curve.

The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
vertices so that the distance between them is less or equal to the specified precision. It uses the
Douglas-Peucker algorithm http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
Python prototype (for reference only):
approxPolyDP(curve, epsilon, closed[, approxCurve]) -> approxCurve

 Link to this function

 arcLength(curve, closed)

 View Source

 @spec arcLength(Evision.Mat.maybe_mat_in(), boolean()) ::
 number() | {:error, String.t()}

Calculates a contour perimeter or a curve length.
Positional Arguments
	curve: Evision.Mat.t().
Input vector of 2D points, stored in std::vector or Mat.

	closed: bool.
Flag indicating whether the curve is closed or not.

Return
	retval: double

The function computes a curve length or a closed contour perimeter.
Python prototype (for reference only):
arcLength(curve, closed) -> retval

 Link to this function

 arrowedLine(img, pt1, pt2, color)

 View Source

 @spec arrowedLine(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws an arrow segment pointing from the first point to the second one.
Positional Arguments
	pt1: Point.
The point the arrow starts from.

	pt2: Point.
The point the arrow points to.

	color: Scalar.
Line color.

Keyword Arguments
	thickness: int.
Line thickness.

	line_type: int.
Type of the line. See #LineTypes

	shift: int.
Number of fractional bits in the point coordinates.

	tipLength: double.
The length of the arrow tip in relation to the arrow length

Return
	img: Evision.Mat.t().
Image.

The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
Python prototype (for reference only):
arrowedLine(img, pt1, pt2, color[, thickness[, line_type[, shift[, tipLength]]]]) -> img

 Link to this function

 arrowedLine(img, pt1, pt2, color, opts)

 View Source

 @spec arrowedLine(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [line_type: term(), thickness: term(), tipLength: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws an arrow segment pointing from the first point to the second one.
Positional Arguments
	pt1: Point.
The point the arrow starts from.

	pt2: Point.
The point the arrow points to.

	color: Scalar.
Line color.

Keyword Arguments
	thickness: int.
Line thickness.

	line_type: int.
Type of the line. See #LineTypes

	shift: int.
Number of fractional bits in the point coordinates.

	tipLength: double.
The length of the arrow tip in relation to the arrow length

Return
	img: Evision.Mat.t().
Image.

The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
Python prototype (for reference only):
arrowedLine(img, pt1, pt2, color[, thickness[, line_type[, shift[, tipLength]]]]) -> img

 Link to this function

 batchDistance(src1, src2, dtype)

 View Source

 @spec batchDistance(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

naive nearest neighbor finder
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()
	dtype: int

Keyword Arguments
	normType: int.
	k: int.
	mask: Evision.Mat.t().
	update: int.
	crosscheck: bool.

Return
	dist: Evision.Mat.t().
	nidx: Evision.Mat.t().

see http://en.wikipedia.org/wiki/Nearest_neighbor_search
@todo document
Python prototype (for reference only):
batchDistance(src1, src2, dtype[, dist[, nidx[, normType[, K[, mask[, update[, crosscheck]]]]]]]) -> dist, nidx

 Link to this function

 batchDistance(src1, src2, dtype, opts)

 View Source

 @spec batchDistance(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [
 k: term(),
 crosscheck: term(),
 normType: term(),
 mask: term(),
 update: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

naive nearest neighbor finder
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()
	dtype: int

Keyword Arguments
	normType: int.
	k: int.
	mask: Evision.Mat.t().
	update: int.
	crosscheck: bool.

Return
	dist: Evision.Mat.t().
	nidx: Evision.Mat.t().

see http://en.wikipedia.org/wiki/Nearest_neighbor_search
@todo document
Python prototype (for reference only):
batchDistance(src1, src2, dtype[, dist[, nidx[, normType[, K[, mask[, update[, crosscheck]]]]]]]) -> dist, nidx

 Link to this function

 bilateralFilter(src, d, sigmaColor, sigmaSpace)

 View Source

 @spec bilateralFilter(Evision.Mat.maybe_mat_in(), integer(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Applies the bilateral filter to an image.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit or floating-point, 1-channel or 3-channel image.

	d: int.
Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace.

	sigmaColor: double.
Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
in larger areas of semi-equal color.

	sigmaSpace: double.
Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
). When d>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
proportional to sigmaSpace.

Keyword Arguments
	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src .

The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
very slow compared to most filters.
Sigma values: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
10), the filter will not have much effect, whereas if they are large (> 150), they will have a very
strong effect, making the image look "cartoonish".
Filter size: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
This filter does not work inplace.
Python prototype (for reference only):
bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst

 Link to this function

 bilateralFilter(src, d, sigmaColor, sigmaSpace, opts)

 View Source

 @spec bilateralFilter(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 [{:borderType, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies the bilateral filter to an image.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit or floating-point, 1-channel or 3-channel image.

	d: int.
Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
it is computed from sigmaSpace.

	sigmaColor: double.
Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
in larger areas of semi-equal color.

	sigmaSpace: double.
Filter sigma in the coordinate space. A larger value of the parameter means that
farther pixels will influence each other as long as their colors are close enough (see sigmaColor
). When d>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
proportional to sigmaSpace.

Keyword Arguments
	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src .

The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
very slow compared to most filters.
Sigma values: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
10), the filter will not have much effect, whereas if they are large (> 150), they will have a very
strong effect, making the image look "cartoonish".
Filter size: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time
applications, and perhaps d=9 for offline applications that need heavy noise filtering.
This filter does not work inplace.
Python prototype (for reference only):
bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst

 Link to this function

 blendLinear(src1, src2, weights1, weights2)

 View Source

 @spec blendLinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

blendLinear
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()
	weights1: Evision.Mat.t()
	weights2: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Has overloading in C++
variant without mask parameter
Python prototype (for reference only):
blendLinear(src1, src2, weights1, weights2[, dst]) -> dst

 Link to this function

 blendLinear(src1, src2, weights1, weights2, opts)

 View Source

 @spec blendLinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

blendLinear
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()
	weights1: Evision.Mat.t()
	weights2: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Has overloading in C++
variant without mask parameter
Python prototype (for reference only):
blendLinear(src1, src2, weights1, weights2[, dst]) -> dst

 Link to this function

 blur(src, ksize)

 View Source

 @spec blur(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Blurs an image using the normalized box filter.
Positional Arguments
	src: Evision.Mat.t().
input image; it can have any number of channels, which are processed independently, but
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	ksize: Size.
blurring kernel size.

Keyword Arguments
	anchor: Point.
anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function smooths an image using the kernel:
\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
The call blur(src, dst, ksize, anchor, borderType) is equivalent to boxFilter(src, dst, src.type(), ksize, anchor, true, borderType).
@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
Python prototype (for reference only):
blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst

 Link to this function

 blur(src, ksize, opts)

 View Source

 @spec blur(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderType: term(), anchor: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using the normalized box filter.
Positional Arguments
	src: Evision.Mat.t().
input image; it can have any number of channels, which are processed independently, but
the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	ksize: Size.
blurring kernel size.

Keyword Arguments
	anchor: Point.
anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function smooths an image using the kernel:
\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f]
The call blur(src, dst, ksize, anchor, borderType) is equivalent to boxFilter(src, dst, src.type(), ksize, anchor, true, borderType).
@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur
Python prototype (for reference only):
blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst

 Link to this function

 borderInterpolate(p, len, borderType)

 View Source

 @spec borderInterpolate(integer(), integer(), integer()) ::
 integer() | {:error, String.t()}

Computes the source location of an extrapolated pixel.
Positional Arguments
	p: int.
0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or >= len

	len: int.
Length of the array along the corresponding axis.

	borderType: int.
Border type, one of the #BorderTypes, except for #BORDER_TRANSPARENT and
#BORDER_ISOLATED . When borderType==#BORDER_CONSTANT , the function always returns -1, regardless
of p and len.

Return
	retval: int

The function computes and returns the coordinate of a donor pixel corresponding to the specified
extrapolated pixel when using the specified extrapolation border mode. For example, if you use
cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
looks like:
float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
Normally, the function is not called directly. It is used inside filtering functions and also in
copyMakeBorder.
@sa copyMakeBorder
Python prototype (for reference only):
borderInterpolate(p, len, borderType) -> retval

 Link to this function

 boundingRect(array)

 View Source

 @spec boundingRect(Evision.Mat.maybe_mat_in()) ::
 {number(), number(), number(), number()} | {:error, String.t()}

Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
Positional Arguments
	array: Evision.Mat.t().
Input gray-scale image or 2D point set, stored in std::vector or Mat.

Return
	retval: Rect

The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
non-zero pixels of gray-scale image.
Python prototype (for reference only):
boundingRect(array) -> retval

 Link to this function

 boxFilter(src, ddepth, ksize)

 View Source

 @spec boxFilter(Evision.Mat.maybe_mat_in(), integer(), {number(), number()}) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using the box filter.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
the output image depth (-1 to use src.depth()).

	ksize: Size.
blurring kernel size.

Keyword Arguments
	anchor: Point.
anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.

	normalize: bool.
flag, specifying whether the kernel is normalized by its area or not.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function smooths an image using the kernel:
\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
where
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\f]
Unnormalized box filter is useful for computing various integral characteristics over each pixel
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
Python prototype (for reference only):
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

 Link to this function

 boxFilter(src, ddepth, ksize, opts)

 View Source

 @spec boxFilter(
 Evision.Mat.maybe_mat_in(),
 integer(),
 {number(), number()},
 [normalize: term(), borderType: term(), anchor: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Blurs an image using the box filter.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
the output image depth (-1 to use src.depth()).

	ksize: Size.
blurring kernel size.

Keyword Arguments
	anchor: Point.
anchor point; default value Point(-1,-1) means that the anchor is at the kernel
center.

	normalize: bool.
flag, specifying whether the kernel is normalized by its area or not.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function smooths an image using the kernel:
\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f]
where
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\f]
Unnormalized box filter is useful for computing various integral characteristics over each pixel
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral
Python prototype (for reference only):
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

 Link to this function

 boxPoints(box)

 View Source

 @spec boxPoints({{number(), number()}, {number(), number()}, number()}) ::
 Evision.Mat.t() | {:error, String.t()}

Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
Positional Arguments
	box: {centre={x, y}, size={s1, s2}, angle}.
The input rotated rectangle. It may be the output of @ref minAreaRect.

Return
	points: Evision.Mat.t().
The output array of four vertices of rectangles.

The function finds the four vertices of a rotated rectangle. This function is useful to draw the
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
Python prototype (for reference only):
boxPoints(box[, points]) -> points

 Link to this function

 boxPoints(box, opts)

 View Source

 @spec boxPoints(
 {{number(), number()}, {number(), number()}, number()},
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
Positional Arguments
	box: {centre={x, y}, size={s1, s2}, angle}.
The input rotated rectangle. It may be the output of @ref minAreaRect.

Return
	points: Evision.Mat.t().
The output array of four vertices of rectangles.

The function finds the four vertices of a rotated rectangle. This function is useful to draw the
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
Python prototype (for reference only):
boxPoints(box[, points]) -> points

 Link to this function

 broadcast(src, shape)

 View Source

 @spec broadcast(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Broadcast the given Mat to the given shape.
Positional Arguments
	src: Evision.Mat.t().
input array

	shape: Evision.Mat.t().
target shape. Should be a list of CV_32S numbers. Note that negative values are not supported.

Return
	dst: Evision.Mat.t().
output array that has the given shape

Python prototype (for reference only):
broadcast(src, shape[, dst]) -> dst

 Link to this function

 broadcast(src, shape, opts)

 View Source

 @spec broadcast(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Broadcast the given Mat to the given shape.
Positional Arguments
	src: Evision.Mat.t().
input array

	shape: Evision.Mat.t().
target shape. Should be a list of CV_32S numbers. Note that negative values are not supported.

Return
	dst: Evision.Mat.t().
output array that has the given shape

Python prototype (for reference only):
broadcast(src, shape[, dst]) -> dst

 Link to this function

 buildOpticalFlowPyramid(img, winSize, maxLevel)

 View Source

 @spec buildOpticalFlowPyramid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) ::
 {integer(), [Evision.Mat.t()]} | {:error, String.t()}

Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
Positional Arguments
	img: Evision.Mat.t().
8-bit input image.

	winSize: Size.
window size of optical flow algorithm. Must be not less than winSize argument of
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.

	maxLevel: int.
0-based maximal pyramid level number.

Keyword Arguments
	withDerivatives: bool.
set to precompute gradients for the every pyramid level. If pyramid is
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.

	pyrBorder: int.
the border mode for pyramid layers.

	derivBorder: int.
the border mode for gradients.

	tryReuseInputImage: bool.
put ROI of input image into the pyramid if possible. You can pass false
to force data copying.

Return
	retval: int

	pyramid: [Evision.Mat].
output pyramid.

@return number of levels in constructed pyramid. Can be less than maxLevel.
Python prototype (for reference only):
buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBorder[, derivBorder[, tryReuseInputImage]]]]]) -> retval, pyramid

 Link to this function

 buildOpticalFlowPyramid(img, winSize, maxLevel, opts)

 View Source

 @spec buildOpticalFlowPyramid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [
 tryReuseInputImage: term(),
 withDerivatives: term(),
 derivBorder: term(),
 pyrBorder: term()
]
 | nil
) :: {integer(), [Evision.Mat.t()]} | {:error, String.t()}

Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
Positional Arguments
	img: Evision.Mat.t().
8-bit input image.

	winSize: Size.
window size of optical flow algorithm. Must be not less than winSize argument of
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.

	maxLevel: int.
0-based maximal pyramid level number.

Keyword Arguments
	withDerivatives: bool.
set to precompute gradients for the every pyramid level. If pyramid is
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.

	pyrBorder: int.
the border mode for pyramid layers.

	derivBorder: int.
the border mode for gradients.

	tryReuseInputImage: bool.
put ROI of input image into the pyramid if possible. You can pass false
to force data copying.

Return
	retval: int

	pyramid: [Evision.Mat].
output pyramid.

@return number of levels in constructed pyramid. Can be less than maxLevel.
Python prototype (for reference only):
buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBorder[, derivBorder[, tryReuseInputImage]]]]]) -> retval, pyramid

 Link to this function

 calcBackProject(images, channels, hist, ranges, scale)

 View Source

 @spec calcBackProject(
 [Evision.Mat.maybe_mat_in()],
 [integer()],
 Evision.Mat.maybe_mat_in(),
 [number()],
 number()
) :: Evision.Mat.t() | {:error, String.t()}

calcBackProject
Positional Arguments
	images: [Evision.Mat]
	channels: [int]
	hist: Evision.Mat.t()
	ranges: [float]
	scale: double

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst

 Link to this function

 calcBackProject(images, channels, hist, ranges, scale, opts)

 View Source

 @spec calcBackProject(
 [Evision.Mat.maybe_mat_in()],
 [integer()],
 Evision.Mat.maybe_mat_in(),
 [number()],
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

calcBackProject
Positional Arguments
	images: [Evision.Mat]
	channels: [int]
	hist: Evision.Mat.t()
	ranges: [float]
	scale: double

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcBackProject(images, channels, hist, ranges, scale[, dst]) -> dst

 Link to this function

 calcCovarMatrix(samples, mean, flags)

 View Source

 @spec calcCovarMatrix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

calcCovarMatrix
Positional Arguments
	samples: Evision.Mat.t().
samples stored as rows/columns of a single matrix.

	flags: int.
operation flags as a combination of #CovarFlags

Keyword Arguments
	ctype: int.
type of the matrixl; it equals 'CV_64F' by default.

Return
	covar: Evision.Mat.t().
output covariance matrix of the type ctype and square size.

	mean: Evision.Mat.t().
input or output (depending on the flags) array as the average value of the input vectors.

Has overloading in C++
Note: use #COVAR_ROWS or #COVAR_COLS flag
Python prototype (for reference only):
calcCovarMatrix(samples, mean, flags[, covar[, ctype]]) -> covar, mean

 Link to this function

 calcCovarMatrix(samples, mean, flags, opts)

 View Source

 @spec calcCovarMatrix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:ctype, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

calcCovarMatrix
Positional Arguments
	samples: Evision.Mat.t().
samples stored as rows/columns of a single matrix.

	flags: int.
operation flags as a combination of #CovarFlags

Keyword Arguments
	ctype: int.
type of the matrixl; it equals 'CV_64F' by default.

Return
	covar: Evision.Mat.t().
output covariance matrix of the type ctype and square size.

	mean: Evision.Mat.t().
input or output (depending on the flags) array as the average value of the input vectors.

Has overloading in C++
Note: use #COVAR_ROWS or #COVAR_COLS flag
Python prototype (for reference only):
calcCovarMatrix(samples, mean, flags[, covar[, ctype]]) -> covar, mean

 Link to this function

 calcHist(images, channels, mask, histSize, ranges)

 View Source

 @spec calcHist(
 [Evision.Mat.maybe_mat_in()],
 [integer()],
 Evision.Mat.maybe_mat_in(),
 [integer()],
 [
 number()
]
) :: Evision.Mat.t() | {:error, String.t()}

calcHist
Positional Arguments
	images: [Evision.Mat]
	channels: [int]
	mask: Evision.Mat.t()
	histSize: [int]
	ranges: [float]

Keyword Arguments
	accumulate: bool.

Return
	hist: Evision.Mat.t().

Has overloading in C++
this variant supports only uniform histograms.
ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
(histSize.size() element pairs). The first and second elements of each pair specify the lower and
upper boundaries.
Python prototype (for reference only):
calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist

 Link to this function

 calcHist(images, channels, mask, histSize, ranges, opts)

 View Source

 @spec calcHist(
 [Evision.Mat.maybe_mat_in()],
 [integer()],
 Evision.Mat.maybe_mat_in(),
 [integer()],
 [number()],
 [{:accumulate, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

calcHist
Positional Arguments
	images: [Evision.Mat]
	channels: [int]
	mask: Evision.Mat.t()
	histSize: [int]
	ranges: [float]

Keyword Arguments
	accumulate: bool.

Return
	hist: Evision.Mat.t().

Has overloading in C++
this variant supports only uniform histograms.
ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
(histSize.size() element pairs). The first and second elements of each pair specify the lower and
upper boundaries.
Python prototype (for reference only):
calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]]) -> hist

 Link to this function

 calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)

 View Source

 @spec calcOpticalFlowFarneback(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 integer(),
 integer(),
 integer(),
 number(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Computes a dense optical flow using the Gunnar Farneback's algorithm.
Positional Arguments
	prev: Evision.Mat.t().
first 8-bit single-channel input image.

	next: Evision.Mat.t().
second input image of the same size and the same type as prev.

	pyr_scale: double.
parameter, specifying the image scale (\<1) to build pyramids for each image;
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
one.

	levels: int.
number of pyramid layers including the initial image; levels=1 means that no extra
layers are created and only the original images are used.

	winsize: int.
averaging window size; larger values increase the algorithm robustness to image
noise and give more chances for fast motion detection, but yield more blurred motion field.

	iterations: int.
number of iterations the algorithm does at each pyramid level.

	poly_n: int.
size of the pixel neighborhood used to find polynomial expansion in each pixel;
larger values mean that the image will be approximated with smoother surfaces, yielding more
robust algorithm and more blurred motion field, typically poly_n =5 or 7.

	poly_sigma: double.
standard deviation of the Gaussian that is used to smooth derivatives used as a
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
good value would be poly_sigma=1.5.

	flags: int.
operation flags that can be a combination of the following:
	OPTFLOW_USE_INITIAL_FLOW uses the input flow as an initial flow approximation.
	OPTFLOW_FARNEBACK_GAUSSIAN uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
filter instead of a box filter of the same size for optical flow estimation; usually, this
option gives z more accurate flow than with a box filter, at the cost of lower speed;
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
level of robustness.

Return
	flow: Evision.Mat.t().
computed flow image that has the same size as prev and type CV_32FC2.

The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
\f[\texttt{prev} (y,x) \sim \texttt{next} (y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
Note: Some examples:
	An example using the optical flow algorithm described by Gunnar Farneback can be found at
opencv_source_code/samples/cpp/fback.cpp

	(Python) An example using the optical flow algorithm described by Gunnar Farneback can be
found at opencv_source_code/samples/python/opt_flow.py

Python prototype (for reference only):
calcOpticalFlowFarneback(prev, next, flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags) -> flow

 Link to this function

 calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts)

 View Source

 @spec calcOpticalFlowPyrLK(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
pyramids.
Positional Arguments
	prevImg: Evision.Mat.t().
first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.

	nextImg: Evision.Mat.t().
second input image or pyramid of the same size and the same type as prevImg.

	prevPts: Evision.Mat.t().
vector of 2D points for which the flow needs to be found; point coordinates must be
single-precision floating-point numbers.

Keyword Arguments
	winSize: Size.
size of the search window at each pyramid level.

	maxLevel: int.
0-based maximal pyramid level number; if set to 0, pyramids are not used (single
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.

	criteria: TermCriteria.
parameter, specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search window
moves by less than criteria.epsilon.

	flags: int.
operation flags:
	OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is
not set, then prevPts is copied to nextPts and is considered the initial estimate.
	OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see
minEigThreshold description); if the flag is not set, then L1 distance between patches
around the original and a moved point, divided by number of pixels in a window, is used as a
error measure.

	minEigThreshold: double.
the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
performance boost.

Return
	nextPts: Evision.Mat.t().
output vector of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image; when
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.

	status: Evision.Mat.t().
output status vector (of unsigned chars); each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it is set to 0.

	err: Evision.Mat.t().
output vector of errors; each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
found then the error is not defined (use the status parameter to find such cases).

The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
@cite Bouguet00 . The function is parallelized with the TBB library.
Note: Some examples:
	An example using the Lucas-Kanade optical flow algorithm can be found at
opencv_source_code/samples/cpp/lkdemo.cpp

	(Python) An example using the Lucas-Kanade optical flow algorithm can be found at
opencv_source_code/samples/python/lk_track.py

	(Python) An example using the Lucas-Kanade tracker for homography matching can be found at
opencv_source_code/samples/python/lk_homography.py

Python prototype (for reference only):
calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]) -> nextPts, status, err

 Link to this function

 calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts, opts)

 View Source

 @spec calcOpticalFlowPyrLK(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 winSize: term(),
 minEigThreshold: term(),
 criteria: term(),
 maxLevel: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
pyramids.
Positional Arguments
	prevImg: Evision.Mat.t().
first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.

	nextImg: Evision.Mat.t().
second input image or pyramid of the same size and the same type as prevImg.

	prevPts: Evision.Mat.t().
vector of 2D points for which the flow needs to be found; point coordinates must be
single-precision floating-point numbers.

Keyword Arguments
	winSize: Size.
size of the search window at each pyramid level.

	maxLevel: int.
0-based maximal pyramid level number; if set to 0, pyramids are not used (single
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.

	criteria: TermCriteria.
parameter, specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search window
moves by less than criteria.epsilon.

	flags: int.
operation flags:
	OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is
not set, then prevPts is copied to nextPts and is considered the initial estimate.
	OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see
minEigThreshold description); if the flag is not set, then L1 distance between patches
around the original and a moved point, divided by number of pixels in a window, is used as a
error measure.

	minEigThreshold: double.
the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
performance boost.

Return
	nextPts: Evision.Mat.t().
output vector of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image; when
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.

	status: Evision.Mat.t().
output status vector (of unsigned chars); each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it is set to 0.

	err: Evision.Mat.t().
output vector of errors; each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
found then the error is not defined (use the status parameter to find such cases).

The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
@cite Bouguet00 . The function is parallelized with the TBB library.
Note: Some examples:
	An example using the Lucas-Kanade optical flow algorithm can be found at
opencv_source_code/samples/cpp/lkdemo.cpp

	(Python) An example using the Lucas-Kanade optical flow algorithm can be found at
opencv_source_code/samples/python/lk_track.py

	(Python) An example using the Lucas-Kanade tracker for homography matching can be found at
opencv_source_code/samples/python/lk_homography.py

Python prototype (for reference only):
calcOpticalFlowPyrLK(prevImg, nextImg, prevPts, nextPts[, status[, err[, winSize[, maxLevel[, criteria[, flags[, minEigThreshold]]]]]]]) -> nextPts, status, err

 Link to this function

 calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCamera(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

calibrateCamera
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Has overloading in C++
Python prototype (for reference only):
calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCamera(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

calibrateCamera
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Has overloading in C++
Python prototype (for reference only):
calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.
Positional Arguments
	objectPoints: [Evision.Mat].
In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
vector contains as many elements as the number of pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns or even different patterns in different views. Then,
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
In the old interface all the vectors of object points from different views are concatenated
together.

	imagePoints: [Evision.Mat].
In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
respectively. In the old interface all the vectors of object points from different views are
concatenated together.

	imageSize: Size.
Size of the image used only to initialize the camera intrinsic matrix.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use @ref solvePnP instead.
	@ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Input/output 3x3 floating-point camera intrinsic matrix
\f$\cameramatrix{A}\f$. If @ref CALIB_USE_INTRINSIC_GUESS
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Input/output vector of distortion coefficients
\f$\distcoeffs\f$.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (@ref Rodrigues) estimated for each pattern view
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
i-th translation vector (see the next output parameter description) brings the calibration pattern
from the object coordinate space (in which object points are specified) to the camera coordinate
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view, see parameter
describtion above.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic
parameters. Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic
parameters. Order of deviations values: \f$(R0, T_0, \dotsc , R{M - 1}, T_{M - 1})\f$ where M is
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

@ref CALIB_USE_INTRINSIC_GUESS is set too.
	@ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When

@ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
	@ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
to zeros and stay zero.

	@ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
@ref CALIB_USE_INTRINSIC_GUESS is set.

	@ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	@ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients or more.

	@ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients or more.

	@ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	@ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients.

	@ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

@return the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
	Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K? are specified.

	Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using @ref solvePnP .

	Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points imagePoints and
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See @ref projectPoints for details.

Note:
If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
\f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
\f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
Note:
The function may throw exceptions, if unsupported combination of parameters is provided or
the system is underconstrained.
@sa
calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
undistort
Python prototype (for reference only):
calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.
Positional Arguments
	objectPoints: [Evision.Mat].
In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
vector contains as many elements as the number of pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns or even different patterns in different views. Then,
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
In the old interface all the vectors of object points from different views are concatenated
together.

	imagePoints: [Evision.Mat].
In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
respectively. In the old interface all the vectors of object points from different views are
concatenated together.

	imageSize: Size.
Size of the image used only to initialize the camera intrinsic matrix.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use @ref solvePnP instead.
	@ref CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Input/output 3x3 floating-point camera intrinsic matrix
\f$\cameramatrix{A}\f$. If @ref CALIB_USE_INTRINSIC_GUESS
and/or @ref CALIB_FIX_ASPECT_RATIO, @ref CALIB_FIX_PRINCIPAL_POINT or @ref CALIB_FIX_FOCAL_LENGTH
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Input/output vector of distortion coefficients
\f$\distcoeffs\f$.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (@ref Rodrigues) estimated for each pattern view
(e.g. std::vector<cv::Mat>>). That is, each i-th rotation vector together with the corresponding
i-th translation vector (see the next output parameter description) brings the calibration pattern
from the object coordinate space (in which object points are specified) to the camera coordinate
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view, see parameter
describtion above.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic
parameters. Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic
parameters. Order of deviations values: \f$(R0, T_0, \dotsc , R{M - 1}, T_{M - 1})\f$ where M is
the number of pattern views. \f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

@ref CALIB_USE_INTRINSIC_GUESS is set too.
	@ref CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When

@ref CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
	@ref CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
to zeros and stay zero.

	@ref CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
@ref CALIB_USE_INTRINSIC_GUESS is set.

	@ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	@ref CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients or more.

	@ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients or more.

	@ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	@ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients.

	@ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

@return the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see @ref findChessboardCorners). Currently, initialization of intrinsic
parameters (when @ref CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
	Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K? are specified.

	Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using @ref solvePnP .

	Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points imagePoints and
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See @ref projectPoints for details.

Note:
If you use a non-square (i.e. non-N-by-N) grid and @ref findChessboardCorners for calibration,
and @ref calibrateCamera returns bad values (zero distortion coefficients, \f$c_x\f$ and
\f$c_y\f$ very far from the image center, and/or large differences between \f$f_x\f$ and
\f$f_y\f$ (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
instead of using patternSize=cvSize(cols,rows) in @ref findChessboardCorners.
Note:
The function may throw exceptions, if unsupported combination of parameters is provided or
the system is underconstrained.
@sa
calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
undistort
Python prototype (for reference only):
calibrateCameraExtended(objectPoints, imagePoints, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraRO(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

calibrateCameraRO
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints: [Evision.Mat]
	imageSize: Size
	iFixedPoint: int

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].
	newObjPoints: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs[, rvecs[, tvecs[, newObjPoints[, flags[, criteria]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints

 Link to this function

 calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraRO(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

calibrateCameraRO
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints: [Evision.Mat]
	imageSize: Size
	iFixedPoint: int

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].
	newObjPoints: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calibrateCameraRO(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs[, rvecs[, tvecs[, newObjPoints[, flags[, criteria]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints

 Link to this function

 calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraROExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.

	imagePoints: [Evision.Mat].
Vector of vectors of the projections of calibration pattern points. See
#calibrateCamera for details.

	imageSize: Size.
Size of the image used only to initialize the intrinsic camera matrix.

	iFixedPoint: int.
The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of some predefined values. See
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix. See #calibrateCamera for details.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients. See #calibrateCamera for details.

	rvecs: [Evision.Mat].
Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
for details.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	newObjPoints: Evision.Mat.t().
The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
See #calibrateCamera for details.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
See #calibrateCamera for details.

	stdDeviationsObjPoints: Evision.Mat.t().
Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

This function is an extension of #calibrateCamera with the method of releasing object which was
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter iFixedPoint for method selection. In the internal implementation,
#calibrateCamera is a wrapper for this function.
@return the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
#calibrateCamera for other detailed explanations.
@sa
calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
Python prototype (for reference only):
calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs[, rvecs[, tvecs[, newObjPoints[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, stdDeviationsObjPoints[, perViewErrors[, flags[, criteria]]]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints, stdDeviationsIntrinsics, stdDeviationsExtrinsics, stdDeviationsObjPoints, perViewErrors

 Link to this function

 calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraROExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.

	imagePoints: [Evision.Mat].
Vector of vectors of the projections of calibration pattern points. See
#calibrateCamera for details.

	imageSize: Size.
Size of the image used only to initialize the intrinsic camera matrix.

	iFixedPoint: int.
The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of some predefined values. See
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix. See #calibrateCamera for details.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients. See #calibrateCamera for details.

	rvecs: [Evision.Mat].
Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
for details.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	newObjPoints: Evision.Mat.t().
The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
See #calibrateCamera for details.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
See #calibrateCamera for details.

	stdDeviationsObjPoints: Evision.Mat.t().
Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

This function is an extension of #calibrateCamera with the method of releasing object which was
proposed in @cite strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter iFixedPoint for method selection. In the internal implementation,
#calibrateCamera is a wrapper for this function.
@return the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on @cite Zhang2000, @cite BouguetMCT and @cite strobl2011iccv. See
#calibrateCamera for other detailed explanations.
@sa
calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
Python prototype (for reference only):
calibrateCameraROExtended(objectPoints, imagePoints, imageSize, iFixedPoint, cameraMatrix, distCoeffs[, rvecs[, tvecs[, newObjPoints[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, stdDeviationsObjPoints[, perViewErrors[, flags[, criteria]]]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, newObjPoints, stdDeviationsIntrinsics, stdDeviationsExtrinsics, stdDeviationsObjPoints, perViewErrors

 Link to this function

 calibrateHandEye(r_gripper2base, t_gripper2base, r_target2cam, t_target2cam)

 View Source

 @spec calibrateHandEye(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()]
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
Positional Arguments
	r_gripper2base: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from gripper frame to robot base frame.

	t_gripper2base: [Evision.Mat].
Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from gripper frame to robot base frame.

	r_target2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from calibration target frame to camera frame.

	t_target2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from calibration target frame to camera frame.

Keyword Arguments
	method: HandEyeCalibrationMethod.
One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod

Return
	r_cam2gripper: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).

	t_cam2gripper: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).

The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions) and the following methods are implemented:
	R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
	F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
	R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95

Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented methods:
	N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
	K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98

The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
the suitable transformations to the function, see below.
[image:]
The calibration procedure is the following:
	a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame

	the robot gripper is moved in order to acquire several poses

	for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\f[
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\f]

	for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_t\\
Y_t\\
Z_t\\
1
\end{bmatrix}
\f]

The Hand-Eye calibration procedure returns the following homogeneous transformation
\f[
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\f]
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
	for an eye-in-hand configuration
\f[
\begin{align*}
^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
\hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
(^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
\hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
\end{align*}
\f]

	for an eye-to-hand configuration
\f[
\begin{align*}
^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
\hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
(^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
\hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
\end{align*}
\f]

\note
Additional information can be found on this website.
\note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
Python prototype (for reference only):
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam[, R_cam2gripper[, t_cam2gripper[, method]]]) -> R_cam2gripper, t_cam2gripper

 Link to this function

 calibrateHandEye(r_gripper2base, t_gripper2base, r_target2cam, t_target2cam, opts)

 View Source

 @spec calibrateHandEye(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [{:method, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes Hand-Eye calibration: \f$_{}^{g}\textrm{T}_c\f$
Positional Arguments
	r_gripper2base: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from gripper frame to robot base frame.

	t_gripper2base: [Evision.Mat].
Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\f$_{}^{b}\textrm{T}_g\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from gripper frame to robot base frame.

	r_target2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from calibration target frame to camera frame.

	t_target2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\f$_{}^{c}\textrm{T}_t\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from calibration target frame to camera frame.

Keyword Arguments
	method: HandEyeCalibrationMethod.
One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod

Return
	r_cam2gripper: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).

	t_cam2gripper: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\f$_{}^{g}\textrm{T}_c\f$).

The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions) and the following methods are implemented:
	R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
	F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
	R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95

Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented methods:
	N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
	K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98

The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
the suitable transformations to the function, see below.
[image:]
The calibration procedure is the following:
	a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame

	the robot gripper is moved in order to acquire several poses

	for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\f[
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{b}\textrm{R}_g & _{}^{b}\textrm{t}_g \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\f]

	for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{c}\textrm{R}_t & _{}^{c}\textrm{t}_t \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_t\\
Y_t\\
Z_t\\
1
\end{bmatrix}
\f]

The Hand-Eye calibration procedure returns the following homogeneous transformation
\f[
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{g}\textrm{R}_c & _{}^{g}\textrm{t}_c \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\f]
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\f$ equation:
	for an eye-in-hand configuration
\f[
\begin{align*}
^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
\hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
(^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &=
\hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
\end{align*}
\f]

	for an eye-to-hand configuration
\f[
\begin{align*}
^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &=
\hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
(^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &=
\hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &= \textrm{X} \textrm{B}_i \\
\end{align*}
\f]

\note
Additional information can be found on this website.
\note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
So at least 3 different poses are required, but it is strongly recommended to use many more poses.
Python prototype (for reference only):
calibrateHandEye(R_gripper2base, t_gripper2base, R_target2cam, t_target2cam[, R_cam2gripper[, t_cam2gripper[, method]]]) -> R_cam2gripper, t_cam2gripper

 Link to this function

 calibrateRobotWorldHandEye(r_world2cam, t_world2cam, r_base2gripper, t_base2gripper)

 View Source

 @spec calibrateRobotWorldHandEye(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()]
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
Positional Arguments
	r_world2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from world frame to the camera frame.

	t_world2cam: [Evision.Mat].
Translation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from world frame to the camera frame.

	r_base2gripper: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from robot base frame to the gripper frame.

	t_base2gripper: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from robot base frame to the gripper frame.

Keyword Arguments
	method: RobotWorldHandEyeCalibrationMethod.
One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod

Return
	r_base2world: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).

	t_base2world: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).

	r_gripper2cam: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).

	t_gripper2cam: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).

The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions):
	M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR

Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented method:
	A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA

The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
[image:]
The calibration procedure is the following:
	a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame

	the robot gripper is moved in order to acquire several poses

	for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\f[
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\f]

	for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\f]

The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
\f[
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\f]
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\f]
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
	\f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
	\f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
	\f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
	\f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$

\note
At least 3 measurements are required (input vectors size must be greater or equal to 3).
Python prototype (for reference only):
calibrateRobotWorldHandEye(R_world2cam, t_world2cam, R_base2gripper, t_base2gripper[, R_base2world[, t_base2world[, R_gripper2cam[, t_gripper2cam[, method]]]]]) -> R_base2world, t_base2world, R_gripper2cam, t_gripper2cam

 Link to this function

 calibrateRobotWorldHandEye(r_world2cam, t_world2cam, r_base2gripper, t_base2gripper, opts)

 View Source

 @spec calibrateRobotWorldHandEye(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [{:method, term()}] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Computes Robot-World/Hand-Eye calibration: \f$_{}^{w}\textrm{T}_b\f$ and \f$_{}^{c}\textrm{T}_g\f$
Positional Arguments
	r_world2cam: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from world frame to the camera frame.

	t_world2cam: [Evision.Mat].
Translation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\f$_{}^{c}\textrm{T}_w\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from world frame to the camera frame.

	r_base2gripper: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
This is a vector (vector<Mat>) that contains the rotation, (3x3) rotation matrices or (3x1) rotation vectors,
for all the transformations from robot base frame to the gripper frame.

	t_base2gripper: [Evision.Mat].
Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\f$_{}^{g}\textrm{T}_b\f$).
This is a vector (vector<Mat>) that contains the (3x1) translation vectors for all the transformations
from robot base frame to the gripper frame.

Keyword Arguments
	method: RobotWorldHandEyeCalibrationMethod.
One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod

Return
	r_base2world: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).

	t_base2world: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\f$_{}^{w}\textrm{T}_b\f$).

	r_gripper2cam: Evision.Mat.t().
Estimated (3x3) rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).

	t_gripper2cam: Evision.Mat.t().
Estimated (3x1) translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\f$_{}^{c}\textrm{T}_g\f$).

The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions):
	M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR

Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented method:
	A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA

The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
[image:]
The calibration procedure is the following:
	a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame

	the robot gripper is moved in order to acquire several poses

	for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\f[
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{g}\textrm{R}_b & _{}^{g}\textrm{t}_b \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\f]

	for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}=
\begin{bmatrix}
_{}^{c}\textrm{R}_w & _{}^{c}\textrm{t}_w \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\f]

The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
\f[
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{w}\textrm{R}_b & _{}^{w}\textrm{t}_b \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\f]
\f[
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\begin{bmatrix}
_{}^{c}\textrm{R}_g & _{}^{c}\textrm{t}_g \\
0_{1 \times 3} & 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\f]
This problem is also known as solving the \f$\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\f$ equation, with:
	\f$\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\f$
	\f$\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\f$
	\f$\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\f$
	\f$\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\f$

\note
At least 3 measurements are required (input vectors size must be greater or equal to 3).
Python prototype (for reference only):
calibrateRobotWorldHandEye(R_world2cam, t_world2cam, R_base2gripper, t_base2gripper[, R_base2world[, t_base2world[, R_gripper2cam[, t_gripper2cam[, method]]]]]) -> R_base2world, t_base2world, R_gripper2cam, t_gripper2cam

 Link to this function

 calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight)

 View Source

 @spec calibrationMatrixValues(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 number()
) ::
 {number(), number(), number(), {number(), number()}, number()}
 | {:error, String.t()}

Computes useful camera characteristics from the camera intrinsic matrix.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix that can be estimated by #calibrateCamera or
#stereoCalibrate .

	imageSize: Size.
Input image size in pixels.

	apertureWidth: double.
Physical width in mm of the sensor.

	apertureHeight: double.
Physical height in mm of the sensor.

Return
	fovx: double.
Output field of view in degrees along the horizontal sensor axis.

	fovy: double.
Output field of view in degrees along the vertical sensor axis.

	focalLength: double.
Focal length of the lens in mm.

	principalPoint: Point2d.
Principal point in mm.

	aspectRatio: double.
\f$f_y/f_x\f$

The function computes various useful camera characteristics from the previously estimated camera
matrix.
Note:
Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
the chessboard pitch (it can thus be any value).
Python prototype (for reference only):
calibrationMatrixValues(cameraMatrix, imageSize, apertureWidth, apertureHeight) -> fovx, fovy, focalLength, principalPoint, aspectRatio

 Link to this function

 camShift(probImage, window, criteria)

 View Source

 @spec camShift(
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 {integer(), integer(), number()}
) ::
 {{{number(), number()}, {number(), number()}, number()},
 {number(), number(), number(), number()}}
 | {:error, String.t()}

Finds an object center, size, and orientation.
Positional Arguments
	probImage: Evision.Mat.t().
Back projection of the object histogram. See calcBackProject.

	criteria: TermCriteria.
Stop criteria for the underlying meanShift.
returns
(in old interfaces) Number of iterations CAMSHIFT took to converge
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
function returns the rotated rectangle structure that includes the object position, size, and
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

	window: Rect.
Initial search window.

See the OpenCV sample camshiftdemo.c that tracks colored objects.
Note:
	(Python) A sample explaining the camshift tracking algorithm can be found at
opencv_source_code/samples/python/camshift.py

Python prototype (for reference only):
CamShift(probImage, window, criteria) -> retval, window

 Link to this function

 canny(image, threshold1, threshold2)

 View Source

 @spec canny(Evision.Mat.maybe_mat_in(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds edges in an image using the Canny algorithm @cite Canny86 .
Positional Arguments
	image: Evision.Mat.t().
8-bit input image.

	threshold1: double.
first threshold for the hysteresis procedure.

	threshold2: double.
second threshold for the hysteresis procedure.

Keyword Arguments
	apertureSize: int.
aperture size for the Sobel operator.

	l2gradient: bool.
a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false).

Return
	edges: Evision.Mat.t().
output edge map; single channels 8-bit image, which has the same size as image .

The function finds edges in the input image and marks them in the output map edges using the
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
http://en.wikipedia.org/wiki/Canny_edge_detector
Python prototype (for reference only):
Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges

 Link to this function

 canny(image, threshold1, threshold2, opts)

 View Source

 @spec canny(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [l2gradient: term(), apertureSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec canny(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Canny
Positional Arguments
	dx: Evision.Mat.t().
16-bit x derivative of input image (CV_16SC1 or CV_16SC3).

	dy: Evision.Mat.t().
16-bit y derivative of input image (same type as dx).

	threshold1: double.
first threshold for the hysteresis procedure.

	threshold2: double.
second threshold for the hysteresis procedure.

Keyword Arguments
	l2gradient: bool.
a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false).

Return
	edges: Evision.Mat.t().
output edge map; single channels 8-bit image, which has the same size as image .

Finds edges in an image using the Canny algorithm with custom image gradient.
Python prototype (for reference only):
Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges
Variant 2:
Finds edges in an image using the Canny algorithm @cite Canny86 .
Positional Arguments
	image: Evision.Mat.t().
8-bit input image.

	threshold1: double.
first threshold for the hysteresis procedure.

	threshold2: double.
second threshold for the hysteresis procedure.

Keyword Arguments
	apertureSize: int.
aperture size for the Sobel operator.

	l2gradient: bool.
a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false).

Return
	edges: Evision.Mat.t().
output edge map; single channels 8-bit image, which has the same size as image .

The function finds edges in the input image and marks them in the output map edges using the
Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
largest value is used to find initial segments of strong edges. See
http://en.wikipedia.org/wiki/Canny_edge_detector
Python prototype (for reference only):
Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges

 Link to this function

 canny(dx, dy, threshold1, threshold2, opts)

 View Source

 @spec canny(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [{:l2gradient, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Canny
Positional Arguments
	dx: Evision.Mat.t().
16-bit x derivative of input image (CV_16SC1 or CV_16SC3).

	dy: Evision.Mat.t().
16-bit y derivative of input image (same type as dx).

	threshold1: double.
first threshold for the hysteresis procedure.

	threshold2: double.
second threshold for the hysteresis procedure.

Keyword Arguments
	l2gradient: bool.
a flag, indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
L2gradient=true), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
L2gradient=false).

Return
	edges: Evision.Mat.t().
output edge map; single channels 8-bit image, which has the same size as image .

Finds edges in an image using the Canny algorithm with custom image gradient.
Python prototype (for reference only):
Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges

 Link to this function

 cartToPolar(x, y)

 View Source

 @spec cartToPolar(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the magnitude and angle of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
array of x-coordinates; this must be a single-precision or
double-precision floating-point array.

	y: Evision.Mat.t().
array of y-coordinates, that must have the same size and same type as x.

Keyword Arguments
	angleInDegrees: bool.
a flag, indicating whether the angles are measured
in radians (which is by default), or in degrees.

Return
	magnitude: Evision.Mat.t().
output array of magnitudes of the same size and type as x.

	angle: Evision.Mat.t().
output array of angles that has the same size and type as
x; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).

The function cv::cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} (\texttt{y} (I), \texttt{x} (I))[\cdot180 / \pi] \end{array}\f]
The angles are calculated with accuracy about 0.3 degrees. For the point
(0,0), the angle is set to 0.
@sa Sobel, Scharr
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle

 Link to this function

 cartToPolar(x, y, opts)

 View Source

 @spec cartToPolar(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:angleInDegrees, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the magnitude and angle of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
array of x-coordinates; this must be a single-precision or
double-precision floating-point array.

	y: Evision.Mat.t().
array of y-coordinates, that must have the same size and same type as x.

Keyword Arguments
	angleInDegrees: bool.
a flag, indicating whether the angles are measured
in radians (which is by default), or in degrees.

Return
	magnitude: Evision.Mat.t().
output array of magnitudes of the same size and type as x.

	angle: Evision.Mat.t().
output array of angles that has the same size and type as
x; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).

The function cv::cartToPolar calculates either the magnitude, angle, or both
for every 2D vector (x(I),y(I)):
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} (\texttt{y} (I), \texttt{x} (I))[\cdot180 / \pi] \end{array}\f]
The angles are calculated with accuracy about 0.3 degrees. For the point
(0,0), the angle is set to 0.
@sa Sobel, Scharr
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle

 Link to this function

 checkChessboard(img, size)

 View Source

 @spec checkChessboard(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: boolean() | {:error, String.t()}

checkChessboard
Positional Arguments
	img: Evision.Mat.t()
	size: Size

Return
	retval: bool

Python prototype (for reference only):
checkChessboard(img, size) -> retval

 Link to this function

 checkHardwareSupport(feature)

 View Source

 @spec checkHardwareSupport(integer()) :: boolean() | {:error, String.t()}

Returns true if the specified feature is supported by the host hardware.
Positional Arguments
	feature: int.
The feature of interest, one of cv::CpuFeatures

Return
	retval: bool

The function returns true if the host hardware supports the specified feature. When user calls
setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until
setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code
in OpenCV.
Python prototype (for reference only):
checkHardwareSupport(feature) -> retval

 Link to this function

 checkRange(a)

 View Source

 @spec checkRange(Evision.Mat.maybe_mat_in()) ::
 {number(), number()} | false | {:error, String.t()}

Checks every element of an input array for invalid values.
Positional Arguments
	a: Evision.Mat.t().
input array.

Keyword Arguments
	quiet: bool.
a flag, indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.

	minVal: double.
inclusive lower boundary of valid values range.

	maxVal: double.
exclusive upper boundary of valid values range.

Return
	retval: bool

	pos: Point*.
optional output parameter, when not NULL, must be a pointer to array of src.dims
elements.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal >
	DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
function either returns false (when quiet=true) or throws an exception.

Python prototype (for reference only):
checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos

 Link to this function

 checkRange(a, opts)

 View Source

 @spec checkRange(
 Evision.Mat.maybe_mat_in(),
 [quiet: term(), minVal: term(), maxVal: term()] | nil
) ::
 {number(), number()} | false | {:error, String.t()}

Checks every element of an input array for invalid values.
Positional Arguments
	a: Evision.Mat.t().
input array.

Keyword Arguments
	quiet: bool.
a flag, indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.

	minVal: double.
inclusive lower boundary of valid values range.

	maxVal: double.
exclusive upper boundary of valid values range.

Return
	retval: bool

	pos: Point*.
optional output parameter, when not NULL, must be a pointer to array of src.dims
elements.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal >
	DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
function either returns false (when quiet=true) or throws an exception.

Python prototype (for reference only):
checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos

 Link to this function

 circle(img, center, radius, color)

 View Source

 @spec circle(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws a circle.
Positional Arguments
	center: Point.
Center of the circle.

	radius: int.
Radius of the circle.

	color: Scalar.
Circle color.

Keyword Arguments
	thickness: int.
Thickness of the circle outline, if positive. Negative values, like #FILLED,
mean that a filled circle is to be drawn.

	lineType: int.
Type of the circle boundary. See #LineTypes

	shift: int.
Number of fractional bits in the coordinates of the center and in the radius value.

Return
	img: Evision.Mat.t().
Image where the circle is drawn.

The function cv::circle draws a simple or filled circle with a given center and radius.
Python prototype (for reference only):
circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 circle(img, center, radius, color, opts)

 View Source

 @spec circle(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a circle.
Positional Arguments
	center: Point.
Center of the circle.

	radius: int.
Radius of the circle.

	color: Scalar.
Circle color.

Keyword Arguments
	thickness: int.
Thickness of the circle outline, if positive. Negative values, like #FILLED,
mean that a filled circle is to be drawn.

	lineType: int.
Type of the circle boundary. See #LineTypes

	shift: int.
Number of fractional bits in the coordinates of the center and in the radius value.

Return
	img: Evision.Mat.t().
Image where the circle is drawn.

The function cv::circle draws a simple or filled circle with a given center and radius.
Python prototype (for reference only):
circle(img, center, radius, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 clipLine(imgRect, pt1, pt2)

 View Source

 @spec clipLine(
 {number(), number(), number(), number()},
 {number(), number()},
 {number(), number()}
) ::
 {{number(), number()}, {number(), number()}} | false | {:error, String.t()}

clipLine
Positional Arguments
	imgRect: Rect.
Image rectangle.

Return
	retval: bool

	pt1: Point.
First line point.

	pt2: Point.
Second line point.

Has overloading in C++
Python prototype (for reference only):
clipLine(imgRect, pt1, pt2) -> retval, pt1, pt2

 Link to this function

 colorChange(src, mask)

 View Source

 @spec colorChange(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Given an original color image, two differently colored versions of this image can be mixed
seamlessly.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	red_mul: float.
R-channel multiply factor.

	green_mul: float.
G-channel multiply factor.

	blue_mul: float.
B-channel multiply factor.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

Multiplication factor is between .5 to 2.5.
Python prototype (for reference only):
colorChange(src, mask[, dst[, red_mul[, green_mul[, blue_mul]]]]) -> dst

 Link to this function

 colorChange(src, mask, opts)

 View Source

 @spec colorChange(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [green_mul: term(), red_mul: term(), blue_mul: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Given an original color image, two differently colored versions of this image can be mixed
seamlessly.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	red_mul: float.
R-channel multiply factor.

	green_mul: float.
G-channel multiply factor.

	blue_mul: float.
B-channel multiply factor.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

Multiplication factor is between .5 to 2.5.
Python prototype (for reference only):
colorChange(src, mask[, dst[, red_mul[, green_mul[, blue_mul]]]]) -> dst

 Link to this function

 compare(src1, src2, cmpop)

 View Source

 @spec compare(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the per-element comparison of two arrays or an array and scalar value.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar; when it is an array, it must have a single channel.

	src2: Evision.Mat.t().
second input array or a scalar; when it is an array, it must have a single channel.

	cmpop: int.
a flag, that specifies correspondence between the arrays (cv::CmpTypes)

Return
	dst: Evision.Mat.t().
output array of type ref CV_8U that has the same size and the same number of channels as
the input arrays.

The function compares:
 Elements of two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
 Elements of src1 with a scalar src2 when src2 is constructed from
Scalar or has a single element:
\f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
 src1 with elements of src2 when src1 is constructed from Scalar or
has a single element:
\f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
Mat dst1 = src1 >= src2;
Mat dst2 = src1 < 8;
...
@sa checkRange, min, max, threshold
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst]) -> dst

 Link to this function

 compare(src1, src2, cmpop, opts)

 View Source

 @spec compare(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs the per-element comparison of two arrays or an array and scalar value.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar; when it is an array, it must have a single channel.

	src2: Evision.Mat.t().
second input array or a scalar; when it is an array, it must have a single channel.

	cmpop: int.
a flag, that specifies correspondence between the arrays (cv::CmpTypes)

Return
	dst: Evision.Mat.t().
output array of type ref CV_8U that has the same size and the same number of channels as
the input arrays.

The function compares:
 Elements of two arrays when src1 and src2 have the same size:
\f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
 Elements of src1 with a scalar src2 when src2 is constructed from
Scalar or has a single element:
\f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
 src1 with elements of src2 when src1 is constructed from Scalar or
has a single element:
\f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
When the comparison result is true, the corresponding element of output
array is set to 255. The comparison operations can be replaced with the
equivalent matrix expressions:
Mat dst1 = src1 >= src2;
Mat dst2 = src1 < 8;
...
@sa checkRange, min, max, threshold
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst]) -> dst

 Link to this function

 compareHist(h1, h2, method)

 View Source

 @spec compareHist(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 number() | {:error, String.t()}

Compares two histograms.
Positional Arguments
	h1: Evision.Mat.t().
First compared histogram.

	h2: Evision.Mat.t().
Second compared histogram of the same size as H1 .

	method: int.
Comparison method, see #HistCompMethods

Return
	retval: double

The function cv::compareHist compares two dense or two sparse histograms using the specified method.
The function returns \f$d(H_1, H_2)\f$.
While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
or more general sparse configurations of weighted points, consider using the #EMD function.
Python prototype (for reference only):
compareHist(H1, H2, method) -> retval

 Link to this function

 completeSymm(m)

 View Source

 @spec completeSymm(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Copies the lower or the upper half of a square matrix to its another half.
Keyword Arguments
	lowerToUpper: bool.
operation flag; if true, the lower half is copied to
the upper half. Otherwise, the upper half is copied to the lower half.

Return
	m: Evision.Mat.t().
input-output floating-point square matrix.

The function cv::completeSymm copies the lower or the upper half of a square matrix to
its another half. The matrix diagonal remains unchanged:
	\f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i > j\f$ if
lowerToUpper=false

	\f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i < j\f$ if
lowerToUpper=true

@sa flip, transpose
Python prototype (for reference only):
completeSymm(m[, lowerToUpper]) -> m

 Link to this function

 completeSymm(m, opts)

 View Source

 @spec completeSymm(Evision.Mat.maybe_mat_in(), [{:lowerToUpper, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Copies the lower or the upper half of a square matrix to its another half.
Keyword Arguments
	lowerToUpper: bool.
operation flag; if true, the lower half is copied to
the upper half. Otherwise, the upper half is copied to the lower half.

Return
	m: Evision.Mat.t().
input-output floating-point square matrix.

The function cv::completeSymm copies the lower or the upper half of a square matrix to
its another half. The matrix diagonal remains unchanged:
	\f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i > j\f$ if
lowerToUpper=false

	\f$\texttt{m}_{ij}=\texttt{m}_{ji}\f$ for \f$i < j\f$ if
lowerToUpper=true

@sa flip, transpose
Python prototype (for reference only):
completeSymm(m[, lowerToUpper]) -> m

 Link to this function

 composeRT(rvec1, tvec1, rvec2, tvec2)

 View Source

 @spec composeRT(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Combines two rotation-and-shift transformations.
Positional Arguments
	rvec1: Evision.Mat.t().
First rotation vector.

	tvec1: Evision.Mat.t().
First translation vector.

	rvec2: Evision.Mat.t().
Second rotation vector.

	tvec2: Evision.Mat.t().
Second translation vector.

Return
	rvec3: Evision.Mat.t().
Output rotation vector of the superposition.

	tvec3: Evision.Mat.t().
Output translation vector of the superposition.

	dr3dr1: Evision.Mat.t().
Optional output derivative of rvec3 with regard to rvec1

	dr3dt1: Evision.Mat.t().
Optional output derivative of rvec3 with regard to tvec1

	dr3dr2: Evision.Mat.t().
Optional output derivative of rvec3 with regard to rvec2

	dr3dt2: Evision.Mat.t().
Optional output derivative of rvec3 with regard to tvec2

	dt3dr1: Evision.Mat.t().
Optional output derivative of tvec3 with regard to rvec1

	dt3dt1: Evision.Mat.t().
Optional output derivative of tvec3 with regard to tvec1

	dt3dr2: Evision.Mat.t().
Optional output derivative of tvec3 with regard to rvec2

	dt3dt2: Evision.Mat.t().
Optional output derivative of tvec3 with regard to tvec2

The functions compute:
\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left (\mathrm{rodrigues} (\texttt{rvec2}) \cdot \mathrm{rodrigues} (\texttt{rvec1}) \right) \\ \texttt{tvec3} = \mathrm{rodrigues} (\texttt{rvec2}) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see #matMulDeriv). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.
Python prototype (for reference only):
composeRT(rvec1, tvec1, rvec2, tvec2[, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[, dt3dr1[, dt3dt1[, dt3dr2[, dt3dt2]]]]]]]]]]) -> rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2

 Link to this function

 composeRT(rvec1, tvec1, rvec2, tvec2, opts)

 View Source

 @spec composeRT(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Combines two rotation-and-shift transformations.
Positional Arguments
	rvec1: Evision.Mat.t().
First rotation vector.

	tvec1: Evision.Mat.t().
First translation vector.

	rvec2: Evision.Mat.t().
Second rotation vector.

	tvec2: Evision.Mat.t().
Second translation vector.

Return
	rvec3: Evision.Mat.t().
Output rotation vector of the superposition.

	tvec3: Evision.Mat.t().
Output translation vector of the superposition.

	dr3dr1: Evision.Mat.t().
Optional output derivative of rvec3 with regard to rvec1

	dr3dt1: Evision.Mat.t().
Optional output derivative of rvec3 with regard to tvec1

	dr3dr2: Evision.Mat.t().
Optional output derivative of rvec3 with regard to rvec2

	dr3dt2: Evision.Mat.t().
Optional output derivative of rvec3 with regard to tvec2

	dt3dr1: Evision.Mat.t().
Optional output derivative of tvec3 with regard to rvec1

	dt3dt1: Evision.Mat.t().
Optional output derivative of tvec3 with regard to tvec1

	dt3dr2: Evision.Mat.t().
Optional output derivative of tvec3 with regard to rvec2

	dt3dt2: Evision.Mat.t().
Optional output derivative of tvec3 with regard to tvec2

The functions compute:
\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left (\mathrm{rodrigues} (\texttt{rvec2}) \cdot \mathrm{rodrigues} (\texttt{rvec1}) \right) \\ \texttt{tvec3} = \mathrm{rodrigues} (\texttt{rvec2}) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f]
where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See #Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see #matMulDeriv). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.
Python prototype (for reference only):
composeRT(rvec1, tvec1, rvec2, tvec2[, rvec3[, tvec3[, dr3dr1[, dr3dt1[, dr3dr2[, dr3dt2[, dt3dr1[, dt3dt1[, dt3dr2[, dt3dt2]]]]]]]]]]) -> rvec3, tvec3, dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2

 Link to this function

 computeCorrespondEpilines(points, whichImage, f)

 View Source

 @spec computeCorrespondEpilines(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

For points in an image of a stereo pair, computes the corresponding epilines in the other image.
Positional Arguments
	points: Evision.Mat.t().
Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
vector\<Point2f> .

	whichImage: int.
Index of the image (1 or 2) that contains the points .

	f: Evision.Mat.t().
Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .

Return
	lines: Evision.Mat.t().
Output vector of the epipolar lines corresponding to the points in the other image.
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$.

For every point in one of the two images of a stereo pair, the function finds the equation of the
corresponding epipolar line in the other image.
From the fundamental matrix definition (see #findFundamentalMat), line \f$l^{(2)}_i\f$ in the second
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1) is computed as:
\f[l^{(2)}_i = F p^{(1)}_i\f]
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$.
Python prototype (for reference only):
computeCorrespondEpilines(points, whichImage, F[, lines]) -> lines

 Link to this function

 computeCorrespondEpilines(points, whichImage, f, opts)

 View Source

 @spec computeCorrespondEpilines(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

For points in an image of a stereo pair, computes the corresponding epilines in the other image.
Positional Arguments
	points: Evision.Mat.t().
Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
vector\<Point2f> .

	whichImage: int.
Index of the image (1 or 2) that contains the points .

	f: Evision.Mat.t().
Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .

Return
	lines: Evision.Mat.t().
Output vector of the epipolar lines corresponding to the points in the other image.
Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$.

For every point in one of the two images of a stereo pair, the function finds the equation of the
corresponding epipolar line in the other image.
From the fundamental matrix definition (see #findFundamentalMat), line \f$l^{(2)}_i\f$ in the second
image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1) is computed as:
\f[l^{(2)}_i = F p^{(1)}_i\f]
And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
\f[l^{(1)}_i = F^T p^{(2)}_i\f]
Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$.
Python prototype (for reference only):
computeCorrespondEpilines(points, whichImage, F[, lines]) -> lines

 Link to this function

 computeECC(templateImage, inputImage)

 View Source

 @spec computeECC(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
Positional Arguments
	templateImage: Evision.Mat.t().
single-channel template image; CV_8U or CV_32F array.

	inputImage: Evision.Mat.t().
single-channel input image to be warped to provide an image similar to
templateImage, same type as templateImage.

Keyword Arguments
	inputMask: Evision.Mat.t().
An optional mask to indicate valid values of inputImage.

Return
	retval: double

@sa
findTransformECC
Python prototype (for reference only):
computeECC(templateImage, inputImage[, inputMask]) -> retval

 Link to this function

 computeECC(templateImage, inputImage, opts)

 View Source

 @spec computeECC(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:inputMask, term()}] | nil
) ::
 number() | {:error, String.t()}

Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
Positional Arguments
	templateImage: Evision.Mat.t().
single-channel template image; CV_8U or CV_32F array.

	inputImage: Evision.Mat.t().
single-channel input image to be warped to provide an image similar to
templateImage, same type as templateImage.

Keyword Arguments
	inputMask: Evision.Mat.t().
An optional mask to indicate valid values of inputImage.

Return
	retval: double

@sa
findTransformECC
Python prototype (for reference only):
computeECC(templateImage, inputImage[, inputMask]) -> retval

 Link to this function

 connectedComponents(image)

 View Source

 @spec connectedComponents(Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

connectedComponents
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

Keyword Arguments
	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> retval, labels

 Link to this function

 connectedComponents(image, opts)

 View Source

 @spec connectedComponents(
 Evision.Mat.maybe_mat_in(),
 [connectivity: term(), ltype: term()] | nil
) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

connectedComponents
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

Keyword Arguments
	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> retval, labels

 Link to this function

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype)

 View Source

 @spec connectedComponentsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

computes the connected components labeled image of boolean image
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

	ccltype: int.
connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
a row major ordering of labels while Spaghetti and BBDT do not.
This function uses parallel version of the algorithms if at least one allowed
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> retval, labels

 Link to this function

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 View Source

 @spec connectedComponentsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

computes the connected components labeled image of boolean image
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

	ccltype: int.
connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
a row major ordering of labels while Spaghetti and BBDT do not.
This function uses parallel version of the algorithms if at least one allowed
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> retval, labels

 Link to this function

 connectedComponentsWithStats(image)

 View Source

 @spec connectedComponentsWithStats(Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

connectedComponentsWithStats
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

Keyword Arguments
	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

	stats: Evision.Mat.t().
statistics output for each label, including the background label.
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.

	centroids: Evision.Mat.t().
centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.

Has overloading in C++
Python prototype (for reference only):
connectedComponentsWithStats(image[, labels[, stats[, centroids[, connectivity[, ltype]]]]]) -> retval, labels, stats, centroids

 Link to this function

 connectedComponentsWithStats(image, opts)

 View Source

 @spec connectedComponentsWithStats(
 Evision.Mat.maybe_mat_in(),
 [connectivity: term(), ltype: term()] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

connectedComponentsWithStats
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

Keyword Arguments
	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

	stats: Evision.Mat.t().
statistics output for each label, including the background label.
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.

	centroids: Evision.Mat.t().
centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.

Has overloading in C++
Python prototype (for reference only):
connectedComponentsWithStats(image[, labels[, stats[, centroids[, connectivity[, ltype]]]]]) -> retval, labels, stats, centroids

 Link to this function

 connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype)

 View Source

 @spec connectedComponentsWithStatsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

computes the connected components labeled image of boolean image and also produces a statistics output for each label
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

	ccltype: int.
connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

	stats: Evision.Mat.t().
statistics output for each label, including the background label.
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.

	centroids: Evision.Mat.t().
centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.

image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
a row major ordering of labels while Spaghetti and BBDT do not.
This function uses parallel version of the algorithms (statistics included) if at least one allowed
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
Python prototype (for reference only):
connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype[, labels[, stats[, centroids]]]) -> retval, labels, stats, centroids

 Link to this function

 connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 View Source

 @spec connectedComponentsWithStatsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

computes the connected components labeled image of boolean image and also produces a statistics output for each label
Positional Arguments
	image: Evision.Mat.t().
the 8-bit single-channel image to be labeled

	connectivity: int.
8 or 4 for 8-way or 4-way connectivity respectively

	ltype: int.
output image label type. Currently CV_32S and CV_16U are supported.

	ccltype: int.
connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).

Return
	retval: int

	labels: Evision.Mat.t().
destination labeled image

	stats: Evision.Mat.t().
statistics output for each label, including the background label.
Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
#ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.

	centroids: Evision.Mat.t().
centroid output for each label, including the background label. Centroids are
accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.

image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
represents the background label. ltype specifies the output label image type, an important
consideration based on the total number of labels or alternatively the total number of pixels in
the source image. ccltype specifies the connected components labeling algorithm to use, currently
Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
a row major ordering of labels while Spaghetti and BBDT do not.
This function uses parallel version of the algorithms (statistics included) if at least one allowed
parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
Python prototype (for reference only):
connectedComponentsWithStatsWithAlgorithm(image, connectivity, ltype, ccltype[, labels[, stats[, centroids]]]) -> retval, labels, stats, centroids

 Link to this function

 contourArea(contour)

 View Source

 @spec contourArea(Evision.Mat.maybe_mat_in()) :: number() | {:error, String.t()}

Calculates a contour area.
Positional Arguments
	contour: Evision.Mat.t().
Input vector of 2D points (contour vertices), stored in std::vector or Mat.

Keyword Arguments
	oriented: bool.
Oriented area flag. If it is true, the function returns a signed area value,
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
determine orientation of a contour by taking the sign of an area. By default, the parameter is
false, which means that the absolute value is returned.

Return
	retval: double

The function computes a contour area. Similarly to moments , the area is computed using the Green
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
results for contours with self-intersections.
Example:
vector<Point> contour;
contour.push_back(Point2f(0, 0));
contour.push_back(Point2f(10, 0));
contour.push_back(Point2f(10, 10));
contour.push_back(Point2f(5, 4));
double area0 = contourArea(contour);
vector<Point> approx;
approxPolyDP(contour, approx, 5, true);
double area1 = contourArea(approx);
cout << "area0 =" << area0 << endl <<
"area1 =" << area1 << endl <<
"approx poly vertices" << approx.size() << endl;
Python prototype (for reference only):
contourArea(contour[, oriented]) -> retval

 Link to this function

 contourArea(contour, opts)

 View Source

 @spec contourArea(Evision.Mat.maybe_mat_in(), [{:oriented, term()}] | nil) ::
 number() | {:error, String.t()}

Calculates a contour area.
Positional Arguments
	contour: Evision.Mat.t().
Input vector of 2D points (contour vertices), stored in std::vector or Mat.

Keyword Arguments
	oriented: bool.
Oriented area flag. If it is true, the function returns a signed area value,
depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
determine orientation of a contour by taking the sign of an area. By default, the parameter is
false, which means that the absolute value is returned.

Return
	retval: double

The function computes a contour area. Similarly to moments , the area is computed using the Green
formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
#drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
results for contours with self-intersections.
Example:
vector<Point> contour;
contour.push_back(Point2f(0, 0));
contour.push_back(Point2f(10, 0));
contour.push_back(Point2f(10, 10));
contour.push_back(Point2f(5, 4));
double area0 = contourArea(contour);
vector<Point> approx;
approxPolyDP(contour, approx, 5, true);
double area1 = contourArea(approx);
cout << "area0 =" << area0 << endl <<
"area1 =" << area1 << endl <<
"approx poly vertices" << approx.size() << endl;
Python prototype (for reference only):
contourArea(contour[, oriented]) -> retval

 Link to this function

 convertFp16(src)

 View Source

 @spec convertFp16(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Converts an array to half precision floating number.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array.

This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data.
There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or
CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
The format of half precision floating point is defined in IEEE 754-2008.
Python prototype (for reference only):
convertFp16(src[, dst]) -> dst

 Link to this function

 convertFp16(src, opts)

 View Source

 @spec convertFp16(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Converts an array to half precision floating number.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array.

This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data.
There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or
CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
The format of half precision floating point is defined in IEEE 754-2008.
Python prototype (for reference only):
convertFp16(src[, dst]) -> dst

 Link to this function

 convertMaps(map1, map2, dstmap1type)

 View Source

 @spec convertMaps(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Converts image transformation maps from one representation to another.
Positional Arguments
	map1: Evision.Mat.t().
The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .

	map2: Evision.Mat.t().
The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
respectively.

	dstmap1type: int.
Type of the first output map that should be CV_16SC2, CV_32FC1, or
CV_32FC2 .

Keyword Arguments
	nninterpolation: bool.
Flag indicating whether the fixed-point maps are used for the
nearest-neighbor or for a more complex interpolation.

Return
	dstmap1: Evision.Mat.t().
The first output map that has the type dstmap1type and the same size as src .

	dstmap2: Evision.Mat.t().
The second output map.

The function converts a pair of maps for remap from one representation to another. The following
options ((map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type())) are
supported:
	\f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
most frequently used conversion operation, in which the original floating-point maps (see #remap)
are converted to a more compact and much faster fixed-point representation. The first output array
contains the rounded coordinates and the second array (created only when nninterpolation=false)
contains indices in the interpolation tables.

	\f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
the original maps are stored in one 2-channel matrix.

	Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
as the originals.

@sa remap, undistort, initUndistortRectifyMap
Python prototype (for reference only):
convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2

 Link to this function

 convertMaps(map1, map2, dstmap1type, opts)

 View Source

 @spec convertMaps(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:nninterpolation, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Converts image transformation maps from one representation to another.
Positional Arguments
	map1: Evision.Mat.t().
The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .

	map2: Evision.Mat.t().
The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
respectively.

	dstmap1type: int.
Type of the first output map that should be CV_16SC2, CV_32FC1, or
CV_32FC2 .

Keyword Arguments
	nninterpolation: bool.
Flag indicating whether the fixed-point maps are used for the
nearest-neighbor or for a more complex interpolation.

Return
	dstmap1: Evision.Mat.t().
The first output map that has the type dstmap1type and the same size as src .

	dstmap2: Evision.Mat.t().
The second output map.

The function converts a pair of maps for remap from one representation to another. The following
options ((map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type())) are
supported:
	\f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
most frequently used conversion operation, in which the original floating-point maps (see #remap)
are converted to a more compact and much faster fixed-point representation. The first output array
contains the rounded coordinates and the second array (created only when nninterpolation=false)
contains indices in the interpolation tables.

	\f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
the original maps are stored in one 2-channel matrix.

	Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
as the originals.

@sa remap, undistort, initUndistortRectifyMap
Python prototype (for reference only):
convertMaps(map1, map2, dstmap1type[, dstmap1[, dstmap2[, nninterpolation]]]) -> dstmap1, dstmap2

 Link to this function

 convertPointsFromHomogeneous(src)

 View Source

 @spec convertPointsFromHomogeneous(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Converts points from homogeneous to Euclidean space.
Positional Arguments
	src: Evision.Mat.t().
Input vector of N-dimensional points.

Return
	dst: Evision.Mat.t().
Output vector of N-1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is,
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
output point coordinates will be (0,0,0,...).
Python prototype (for reference only):
convertPointsFromHomogeneous(src[, dst]) -> dst

 Link to this function

 convertPointsFromHomogeneous(src, opts)

 View Source

 @spec convertPointsFromHomogeneous(
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Converts points from homogeneous to Euclidean space.
Positional Arguments
	src: Evision.Mat.t().
Input vector of N-dimensional points.

Return
	dst: Evision.Mat.t().
Output vector of N-1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is,
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
output point coordinates will be (0,0,0,...).
Python prototype (for reference only):
convertPointsFromHomogeneous(src[, dst]) -> dst

 Link to this function

 convertPointsToHomogeneous(src)

 View Source

 @spec convertPointsToHomogeneous(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Converts points from Euclidean to homogeneous space.
Positional Arguments
	src: Evision.Mat.t().
Input vector of N-dimensional points.

Return
	dst: Evision.Mat.t().
Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
Python prototype (for reference only):
convertPointsToHomogeneous(src[, dst]) -> dst

 Link to this function

 convertPointsToHomogeneous(src, opts)

 View Source

 @spec convertPointsToHomogeneous(
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Converts points from Euclidean to homogeneous space.
Positional Arguments
	src: Evision.Mat.t().
Input vector of N-dimensional points.

Return
	dst: Evision.Mat.t().
Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
Python prototype (for reference only):
convertPointsToHomogeneous(src[, dst]) -> dst

 Link to this function

 convertScaleAbs(src)

 View Source

 @spec convertScaleAbs(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Scales, calculates absolute values, and converts the result to 8-bit.
Positional Arguments
	src: Evision.Mat.t().
input array.

Keyword Arguments
	alpha: double.
optional scale factor.

	beta: double.
optional delta added to the scaled values.

Return
	dst: Evision.Mat.t().
output array.

On each element of the input array, the function convertScaleAbs
performs three operations sequentially: scaling, taking an absolute
value, conversion to an unsigned 8-bit type:
\f[\texttt{dst} (I)= \texttt{saturate_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
In case of multi-channel arrays, the function processes each channel
independently. When the output is not 8-bit, the operation can be
emulated by calling the Mat::convertTo method (or by using matrix
expressions) and then by calculating an absolute value of the result.
For example:
Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);
// Mat_<float> B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
@sa Mat::convertTo, cv::abs(const Mat&)
Python prototype (for reference only):
convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 convertScaleAbs(src, opts)

 View Source

 @spec convertScaleAbs(Evision.Mat.maybe_mat_in(), [alpha: term(), beta: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Scales, calculates absolute values, and converts the result to 8-bit.
Positional Arguments
	src: Evision.Mat.t().
input array.

Keyword Arguments
	alpha: double.
optional scale factor.

	beta: double.
optional delta added to the scaled values.

Return
	dst: Evision.Mat.t().
output array.

On each element of the input array, the function convertScaleAbs
performs three operations sequentially: scaling, taking an absolute
value, conversion to an unsigned 8-bit type:
\f[\texttt{dst} (I)= \texttt{saturate_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
In case of multi-channel arrays, the function processes each channel
independently. When the output is not 8-bit, the operation can be
emulated by calling the Mat::convertTo method (or by using matrix
expressions) and then by calculating an absolute value of the result.
For example:
Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);
// Mat_<float> B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
@sa Mat::convertTo, cv::abs(const Mat&)
Python prototype (for reference only):
convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 convexHull(points)

 View Source

 @spec convexHull(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Finds the convex hull of a point set.
Positional Arguments
	points: Evision.Mat.t().
Input 2D point set, stored in std::vector or Mat.

Keyword Arguments
	clockwise: bool.
Orientation flag. If it is true, the output convex hull is oriented clockwise.
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
to the right, and its Y axis pointing upwards.

	returnPoints: bool.
Operation flag. In case of a matrix, when the flag is true, the function
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
output array is std::vector, the flag is ignored, and the output depends on the type of the
vector: std::vector\<int> implies returnPoints=false, std::vector\<Point> implies
returnPoints=true.

Return
	hull: Evision.Mat.t().
Output convex hull. It is either an integer vector of indices or vector of points. In
the first case, the hull elements are 0-based indices of the convex hull points in the original
array (since the set of convex hull points is a subset of the original point set). In the second
case, hull elements are the convex hull points themselves.

The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
that has O(N logN) complexity in the current implementation.
Note: points and hull should be different arrays, inplace processing isn't supported.
Check @ref tutorial_hull "the corresponding tutorial" for more details.
useful links:
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
Python prototype (for reference only):
convexHull(points[, hull[, clockwise[, returnPoints]]]) -> hull

 Link to this function

 convexHull(points, opts)

 View Source

 @spec convexHull(
 Evision.Mat.maybe_mat_in(),
 [clockwise: term(), returnPoints: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Finds the convex hull of a point set.
Positional Arguments
	points: Evision.Mat.t().
Input 2D point set, stored in std::vector or Mat.

Keyword Arguments
	clockwise: bool.
Orientation flag. If it is true, the output convex hull is oriented clockwise.
Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
to the right, and its Y axis pointing upwards.

	returnPoints: bool.
Operation flag. In case of a matrix, when the flag is true, the function
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
output array is std::vector, the flag is ignored, and the output depends on the type of the
vector: std::vector\<int> implies returnPoints=false, std::vector\<Point> implies
returnPoints=true.

Return
	hull: Evision.Mat.t().
Output convex hull. It is either an integer vector of indices or vector of points. In
the first case, the hull elements are 0-based indices of the convex hull points in the original
array (since the set of convex hull points is a subset of the original point set). In the second
case, hull elements are the convex hull points themselves.

The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
that has O(N logN) complexity in the current implementation.
Note: points and hull should be different arrays, inplace processing isn't supported.
Check @ref tutorial_hull "the corresponding tutorial" for more details.
useful links:
https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
Python prototype (for reference only):
convexHull(points[, hull[, clockwise[, returnPoints]]]) -> hull

 Link to this function

 convexityDefects(contour, convexhull)

 View Source

 @spec convexityDefects(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds the convexity defects of a contour.
Positional Arguments
	contour: Evision.Mat.t().
Input contour.

	convexhull: Evision.Mat.t().
Convex hull obtained using convexHull that should contain indices of the contour
points that make the hull.

Return
	convexityDefects: Evision.Mat.t().
The output vector of convexity defects. In C++ and the new Python/Java
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
in the original contour of the convexity defect beginning, end and the farthest point, and
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
fixpt_depth/256.0.

The figure below displays convexity defects of a hand contour:
[image: image]
Python prototype (for reference only):
convexityDefects(contour, convexhull[, convexityDefects]) -> convexityDefects

 Link to this function

 convexityDefects(contour, convexhull, opts)

 View Source

 @spec convexityDefects(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds the convexity defects of a contour.
Positional Arguments
	contour: Evision.Mat.t().
Input contour.

	convexhull: Evision.Mat.t().
Convex hull obtained using convexHull that should contain indices of the contour
points that make the hull.

Return
	convexityDefects: Evision.Mat.t().
The output vector of convexity defects. In C++ and the new Python/Java
interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
in the original contour of the convexity defect beginning, end and the farthest point, and
fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
farthest contour point and the hull. That is, to get the floating-point value of the depth will be
fixpt_depth/256.0.

The figure below displays convexity defects of a hand contour:
[image: image]
Python prototype (for reference only):
convexityDefects(contour, convexhull[, convexityDefects]) -> convexityDefects

 Link to this function

 copyMakeBorder(src, top, bottom, left, right, borderType)

 View Source

 @spec copyMakeBorder(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Forms a border around an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	top: int.
the top pixels

	bottom: int.
the bottom pixels

	left: int.
the left pixels

	right: int.
Parameter specifying how many pixels in each direction from the source image rectangle
to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
to be built.

	borderType: int.
Border type. See borderInterpolate for details.

Keyword Arguments
	value: Scalar.
Border value if borderType==BORDER_CONSTANT .

Return
	dst: Evision.Mat.t().
Destination image of the same type as src and the size Size(src.cols+left+right,
src.rows+top+bottom) .

The function copies the source image into the middle of the destination image. The areas to the
left, to the right, above and below the copied source image will be filled with extrapolated
pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
what other more complex functions, including your own, may do to simplify image boundary handling.
The function supports the mode when src is already in the middle of dst . In this case, the
function does not copy src itself but simply constructs the border, for example:
// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
Note: When the source image is a part (ROI) of a bigger image, the function will try to use the
pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
if src was not a ROI, use borderType | #BORDER_ISOLATED.
@sa borderInterpolate
Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst

 Link to this function

 copyMakeBorder(src, top, bottom, left, right, borderType, opts)

 View Source

 @spec copyMakeBorder(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 [{:value, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Forms a border around an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	top: int.
the top pixels

	bottom: int.
the bottom pixels

	left: int.
the left pixels

	right: int.
Parameter specifying how many pixels in each direction from the source image rectangle
to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
to be built.

	borderType: int.
Border type. See borderInterpolate for details.

Keyword Arguments
	value: Scalar.
Border value if borderType==BORDER_CONSTANT .

Return
	dst: Evision.Mat.t().
Destination image of the same type as src and the size Size(src.cols+left+right,
src.rows+top+bottom) .

The function copies the source image into the middle of the destination image. The areas to the
left, to the right, above and below the copied source image will be filled with extrapolated
pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
what other more complex functions, including your own, may do to simplify image boundary handling.
The function supports the mode when src is already in the middle of dst . In this case, the
function does not copy src itself but simply constructs the border, for example:
// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
Note: When the source image is a part (ROI) of a bigger image, the function will try to use the
pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
if src was not a ROI, use borderType | #BORDER_ISOLATED.
@sa borderInterpolate
Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value]]) -> dst

 Link to this function

 copyTo(src, mask)

 View Source

 @spec copyTo(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

This is an overloaded member function, provided for convenience (python)
Copies the matrix to another one.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
Positional Arguments
	src: Evision.Mat.t().
source matrix.

	mask: Evision.Mat.t().
Operation mask of the same size as *this. Its non-zero elements indicate which matrix
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.

Return
	dst: Evision.Mat.t().
Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

Python prototype (for reference only):
copyTo(src, mask[, dst]) -> dst

 Link to this function

 copyTo(src, mask, opts)

 View Source

 @spec copyTo(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

This is an overloaded member function, provided for convenience (python)
Copies the matrix to another one.
When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
Positional Arguments
	src: Evision.Mat.t().
source matrix.

	mask: Evision.Mat.t().
Operation mask of the same size as *this. Its non-zero elements indicate which matrix
elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.

Return
	dst: Evision.Mat.t().
Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

Python prototype (for reference only):
copyTo(src, mask[, dst]) -> dst

 Link to this function

 cornerEigenValsAndVecs(src, blockSize, ksize)

 View Source

 @spec cornerEigenValsAndVecs(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates eigenvalues and eigenvectors of image blocks for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see details below).

	ksize: int.
Aperture parameter for the Sobel operator.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the results. It has the same size as src and the type CV_32FC(6) .

For every pixel \f$p\f$, the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
neighborhood \f$S(p)\f$. It calculates the covariation matrix of derivatives over the neighborhood as:
\f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
where the derivatives are computed using the Sobel operator.
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
	\f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
	\f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
	\f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$

The output of the function can be used for robust edge or corner detection.
@sa cornerMinEigenVal, cornerHarris, preCornerDetect
Python prototype (for reference only):
cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderType]]) -> dst

 Link to this function

 cornerEigenValsAndVecs(src, blockSize, ksize, opts)

 View Source

 @spec cornerEigenValsAndVecs(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:borderType, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates eigenvalues and eigenvectors of image blocks for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see details below).

	ksize: int.
Aperture parameter for the Sobel operator.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the results. It has the same size as src and the type CV_32FC(6) .

For every pixel \f$p\f$, the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
neighborhood \f$S(p)\f$. It calculates the covariation matrix of derivatives over the neighborhood as:
\f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
where the derivatives are computed using the Sobel operator.
After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
	\f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
	\f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
	\f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$

The output of the function can be used for robust edge or corner detection.
@sa cornerMinEigenVal, cornerHarris, preCornerDetect
Python prototype (for reference only):
cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderType]]) -> dst

 Link to this function

 cornerHarris(src, blockSize, ksize, k)

 View Source

 @spec cornerHarris(Evision.Mat.maybe_mat_in(), integer(), integer(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Harris corner detector.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see the details on #cornerEigenValsAndVecs).

	ksize: int.
Aperture parameter for the Sobel operator.

	k: double.
Harris detector free parameter. See the formula above.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the Harris detector responses. It has the type CV_32FC1 and the same
size as src .

The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
computes the following characteristic:
\f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left (\mathrm{tr} M^{(x,y)} \right)^2\f]
Corners in the image can be found as the local maxima of this response map.
Python prototype (for reference only):
cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) -> dst

 Link to this function

 cornerHarris(src, blockSize, ksize, k, opts)

 View Source

 @spec cornerHarris(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 number(),
 [{:borderType, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Harris corner detector.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see the details on #cornerEigenValsAndVecs).

	ksize: int.
Aperture parameter for the Sobel operator.

	k: double.
Harris detector free parameter. See the formula above.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the Harris detector responses. It has the type CV_32FC1 and the same
size as src .

The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
computes the following characteristic:
\f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left (\mathrm{tr} M^{(x,y)} \right)^2\f]
Corners in the image can be found as the local maxima of this response map.
Python prototype (for reference only):
cornerHarris(src, blockSize, ksize, k[, dst[, borderType]]) -> dst

 Link to this function

 cornerMinEigenVal(src, blockSize)

 View Source

 @spec cornerMinEigenVal(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the minimal eigenvalue of gradient matrices for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see the details on #cornerEigenValsAndVecs).

Keyword Arguments
	ksize: int.
Aperture parameter for the Sobel operator.

	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
src .

The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
of the formulae in the cornerEigenValsAndVecs description.
Python prototype (for reference only):
cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]]]) -> dst

 Link to this function

 cornerMinEigenVal(src, blockSize, opts)

 View Source

 @spec cornerMinEigenVal(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [ksize: term(), borderType: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the minimal eigenvalue of gradient matrices for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Input single-channel 8-bit or floating-point image.

	blockSize: int.
Neighborhood size (see the details on #cornerEigenValsAndVecs).

Keyword Arguments
	ksize: int.
Aperture parameter for the Sobel operator.

	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
src .

The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
of the formulae in the cornerEigenValsAndVecs description.
Python prototype (for reference only):
cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]]]) -> dst

 Link to this function

 cornerSubPix(image, corners, winSize, zeroZone, criteria)

 View Source

 @spec cornerSubPix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {integer(), integer(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Refines the corner locations.
Positional Arguments
	image: Evision.Mat.t().
Input single-channel, 8-bit or float image.

	winSize: Size.
Half of the side length of the search window. For example, if winSize=Size(5,5) ,
then a \f$(52+1) \times (52+1) = 11 \times 11\f$ search window is used.

	zeroZone: Size.
Half of the size of the dead region in the middle of the search zone over which
the summation in the formula below is not done. It is used sometimes to avoid possible
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
a size.

	criteria: TermCriteria.
Criteria for termination of the iterative process of corner refinement. That is,
the process of corner position refinement stops either after criteria.maxCount iterations or when
the corner position moves by less than criteria.epsilon on some iteration.

Return
	corners: Evision.Mat.t().
Initial coordinates of the input corners and refined coordinates provided for
output.

The function iterates to find the sub-pixel accurate location of corners or radial saddle
points as described in @cite forstner1987fast, and as shown on the figure below.
[image: image]
Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
subject to image and measurement noise. Consider the expression:
\f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f]
where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$. The
value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
with \f$\epsilon_i\f$ set to zero:
\f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f]
where the gradients are summed within a neighborhood ("search window") of \f$q\f$. Calling the first
gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
\f[q = G^{-1} \cdot b\f]
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
until the center stays within a set threshold.
Python prototype (for reference only):
cornerSubPix(image, corners, winSize, zeroZone, criteria) -> corners

 Link to this function

 correctMatches(f, points1, points2)

 View Source

 @spec correctMatches(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refines coordinates of corresponding points.
Positional Arguments
	f: Evision.Mat.t().
3x3 fundamental matrix.

	points1: Evision.Mat.t().
1xN array containing the first set of points.

	points2: Evision.Mat.t().
1xN array containing the second set of points.

Return
	newPoints1: Evision.Mat.t().
The optimized points1.

	newPoints2: Evision.Mat.t().
The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
For each given point correspondence points1[i] \<-> points2[i], and a fundamental matrix F, it
computes the corrected correspondences newPoints1[i] \<-> newPoints2[i] that minimize the geometric
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
geometric distance between points \f$a\f$ and \f$b\f$) subject to the epipolar constraint
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$.
Python prototype (for reference only):
correctMatches(F, points1, points2[, newPoints1[, newPoints2]]) -> newPoints1, newPoints2

 Link to this function

 correctMatches(f, points1, points2, opts)

 View Source

 @spec correctMatches(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refines coordinates of corresponding points.
Positional Arguments
	f: Evision.Mat.t().
3x3 fundamental matrix.

	points1: Evision.Mat.t().
1xN array containing the first set of points.

	points2: Evision.Mat.t().
1xN array containing the second set of points.

Return
	newPoints1: Evision.Mat.t().
The optimized points1.

	newPoints2: Evision.Mat.t().
The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry @cite HartleyZ00 for details).
For each given point correspondence points1[i] \<-> points2[i], and a fundamental matrix F, it
computes the corrected correspondences newPoints1[i] \<-> newPoints2[i] that minimize the geometric
error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
geometric distance between points \f$a\f$ and \f$b\f$) subject to the epipolar constraint
\f$newPoints2^T \cdot F \cdot newPoints1 = 0\f$.
Python prototype (for reference only):
correctMatches(F, points1, points2[, newPoints1[, newPoints2]]) -> newPoints1, newPoints2

 Link to this function

 countNonZero(src)

 View Source

 @spec countNonZero(Evision.Mat.maybe_mat_in()) :: integer() | {:error, String.t()}

Counts non-zero array elements.
Positional Arguments
	src: Evision.Mat.t().
single-channel array.

Return
	retval: int

The function returns the number of non-zero elements in src :
\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
Python prototype (for reference only):
countNonZero(src) -> retval

 Link to this function

 createAffineTransformer(fullAffine)

 View Source

 @spec createAffineTransformer(boolean()) ::
 Evision.AffineTransformer.t() | {:error, String.t()}

createAffineTransformer
Positional Arguments
	fullAffine: bool

Return
	retval: Evision.AffineTransformer.t()

Complete constructor
Python prototype (for reference only):
createAffineTransformer(fullAffine) -> retval

 Link to this function

 createAlignMTB()

 View Source

 @spec createAlignMTB() :: Evision.AlignMTB.t() | {:error, String.t()}

Creates AlignMTB object
Keyword Arguments
	max_bits: int.
logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
usually good enough (31 and 63 pixels shift respectively).

	exclude_range: int.
range for exclusion bitmap that is constructed to suppress noise around the
median value.

	cut: bool.
if true cuts images, otherwise fills the new regions with zeros.

Return
	retval: Evision.AlignMTB.t()

Python prototype (for reference only):
createAlignMTB([, max_bits[, exclude_range[, cut]]]) -> retval

 Link to this function

 createAlignMTB(opts)

 View Source

 @spec createAlignMTB([max_bits: term(), exclude_range: term(), cut: term()] | nil) ::
 Evision.AlignMTB.t() | {:error, String.t()}

Creates AlignMTB object
Keyword Arguments
	max_bits: int.
logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
usually good enough (31 and 63 pixels shift respectively).

	exclude_range: int.
range for exclusion bitmap that is constructed to suppress noise around the
median value.

	cut: bool.
if true cuts images, otherwise fills the new regions with zeros.

Return
	retval: Evision.AlignMTB.t()

Python prototype (for reference only):
createAlignMTB([, max_bits[, exclude_range[, cut]]]) -> retval

 Link to this function

 createBackgroundSubtractorKNN()

 View Source

 @spec createBackgroundSubtractorKNN() ::
 Evision.BackgroundSubtractorKNN.t() | {:error, String.t()}

Creates KNN Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	dist2Threshold: double.
Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample. This parameter does not affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.BackgroundSubtractorKNN.t()

Python prototype (for reference only):
createBackgroundSubtractorKNN([, history[, dist2Threshold[, detectShadows]]]) -> retval

 Link to this function

 createBackgroundSubtractorKNN(opts)

 View Source

 @spec createBackgroundSubtractorKNN(
 [dist2Threshold: term(), history: term(), detectShadows: term()]
 | nil
) :: Evision.BackgroundSubtractorKNN.t() | {:error, String.t()}

Creates KNN Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	dist2Threshold: double.
Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample. This parameter does not affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.BackgroundSubtractorKNN.t()

Python prototype (for reference only):
createBackgroundSubtractorKNN([, history[, dist2Threshold[, detectShadows]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG2()

 View Source

 @spec createBackgroundSubtractorMOG2() ::
 Evision.BackgroundSubtractorMOG2.t() | {:error, String.t()}

Creates MOG2 Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	varThreshold: double.
Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.BackgroundSubtractorMOG2.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG2(opts)

 View Source

 @spec createBackgroundSubtractorMOG2(
 [history: term(), detectShadows: term(), varThreshold: term()]
 | nil
) :: Evision.BackgroundSubtractorMOG2.t() | {:error, String.t()}

Creates MOG2 Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	varThreshold: double.
Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.BackgroundSubtractorMOG2.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval

 Link to this function

 createCalibrateDebevec()

 View Source

 @spec createCalibrateDebevec() :: Evision.CalibrateDebevec.t() | {:error, String.t()}

Creates CalibrateDebevec object
Keyword Arguments
	samples: int.
number of pixel locations to use

	lambda: float.
smoothness term weight. Greater values produce smoother results, but can alter the
response.

	random: bool.
if true sample pixel locations are chosen at random, otherwise they form a
rectangular grid.

Return
	retval: Evision.CalibrateDebevec.t()

Python prototype (for reference only):
createCalibrateDebevec([, samples[, lambda[, random]]]) -> retval

 Link to this function

 createCalibrateDebevec(opts)

 View Source

 @spec createCalibrateDebevec([lambda: term(), samples: term(), random: term()] | nil) ::
 Evision.CalibrateDebevec.t() | {:error, String.t()}

Creates CalibrateDebevec object
Keyword Arguments
	samples: int.
number of pixel locations to use

	lambda: float.
smoothness term weight. Greater values produce smoother results, but can alter the
response.

	random: bool.
if true sample pixel locations are chosen at random, otherwise they form a
rectangular grid.

Return
	retval: Evision.CalibrateDebevec.t()

Python prototype (for reference only):
createCalibrateDebevec([, samples[, lambda[, random]]]) -> retval

 Link to this function

 createCalibrateRobertson()

 View Source

 @spec createCalibrateRobertson() ::
 Evision.CalibrateRobertson.t() | {:error, String.t()}

Creates CalibrateRobertson object
Keyword Arguments
	max_iter: int.
maximal number of Gauss-Seidel solver iterations.

	threshold: float.
target difference between results of two successive steps of the minimization.

Return
	retval: Evision.CalibrateRobertson.t()

Python prototype (for reference only):
createCalibrateRobertson([, max_iter[, threshold]]) -> retval

 Link to this function

 createCalibrateRobertson(opts)

 View Source

 @spec createCalibrateRobertson([threshold: term(), max_iter: term()] | nil) ::
 Evision.CalibrateRobertson.t() | {:error, String.t()}

Creates CalibrateRobertson object
Keyword Arguments
	max_iter: int.
maximal number of Gauss-Seidel solver iterations.

	threshold: float.
target difference between results of two successive steps of the minimization.

Return
	retval: Evision.CalibrateRobertson.t()

Python prototype (for reference only):
createCalibrateRobertson([, max_iter[, threshold]]) -> retval

 Link to this function

 createChiHistogramCostExtractor()

 View Source

 @spec createChiHistogramCostExtractor() ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createChiHistogramCostExtractor
Keyword Arguments
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

 Link to this function

 createChiHistogramCostExtractor(opts)

 View Source

 @spec createChiHistogramCostExtractor([nDummies: term(), defaultCost: term()] | nil) ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createChiHistogramCostExtractor
Keyword Arguments
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createChiHistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

 Link to this function

 createCLAHE()

 View Source

 @spec createCLAHE() :: Evision.CLAHE.t() | {:error, String.t()}

Creates a smart pointer to a cv::CLAHE class and initializes it.
Keyword Arguments
	clipLimit: double.
Threshold for contrast limiting.

	tileGridSize: Size.
Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.

Return
	retval: Evision.CLAHE.t()

Python prototype (for reference only):
createCLAHE([, clipLimit[, tileGridSize]]) -> retval

 Link to this function

 createCLAHE(opts)

 View Source

 @spec createCLAHE([clipLimit: term(), tileGridSize: term()] | nil) ::
 Evision.CLAHE.t() | {:error, String.t()}

Creates a smart pointer to a cv::CLAHE class and initializes it.
Keyword Arguments
	clipLimit: double.
Threshold for contrast limiting.

	tileGridSize: Size.
Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.

Return
	retval: Evision.CLAHE.t()

Python prototype (for reference only):
createCLAHE([, clipLimit[, tileGridSize]]) -> retval

 Link to this function

 createEMDHistogramCostExtractor()

 View Source

 @spec createEMDHistogramCostExtractor() ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createEMDHistogramCostExtractor
Keyword Arguments
	flag: int.
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

 Link to this function

 createEMDHistogramCostExtractor(opts)

 View Source

 @spec createEMDHistogramCostExtractor(
 [flag: term(), nDummies: term(), defaultCost: term()]
 | nil
) ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createEMDHistogramCostExtractor
Keyword Arguments
	flag: int.
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createEMDHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

 Link to this function

 createEMDL1HistogramCostExtractor()

 View Source

 @spec createEMDL1HistogramCostExtractor() ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createEMDL1HistogramCostExtractor
Keyword Arguments
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

 Link to this function

 createEMDL1HistogramCostExtractor(opts)

 View Source

 @spec createEMDL1HistogramCostExtractor([nDummies: term(), defaultCost: term()] | nil) ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createEMDL1HistogramCostExtractor
Keyword Arguments
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createEMDL1HistogramCostExtractor([, nDummies[, defaultCost]]) -> retval

 Link to this function

 createGeneralizedHoughBallard()

 View Source

 @spec createGeneralizedHoughBallard() ::
 Evision.GeneralizedHoughBallard.t() | {:error, String.t()}

Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
Return
	retval: Evision.GeneralizedHoughBallard.t()

Python prototype (for reference only):
createGeneralizedHoughBallard() -> retval

 Link to this function

 createGeneralizedHoughGuil()

 View Source

 @spec createGeneralizedHoughGuil() ::
 Evision.GeneralizedHoughGuil.t() | {:error, String.t()}

Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
Return
	retval: Evision.GeneralizedHoughGuil.t()

Python prototype (for reference only):
createGeneralizedHoughGuil() -> retval

 Link to this function

 createHanningWindow(winSize, type)

 View Source

 @spec createHanningWindow(
 {number(), number()},
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

This function computes a Hanning window coefficients in two dimensions.
Positional Arguments
	winSize: Size.
The window size specifications (both width and height must be > 1)

	type: int.
Created array type

Return
	dst: Evision.Mat.t().
Destination array to place Hann coefficients in

See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
for more information.
An example is shown below:
// create hanning window of size 100x100 and type CV_32F
Mat hann;
createHanningWindow(hann, Size(100, 100), CV_32F);
Python prototype (for reference only):
createHanningWindow(winSize, type[, dst]) -> dst

 Link to this function

 createHanningWindow(winSize, type, opts)

 View Source

 @spec createHanningWindow(
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

This function computes a Hanning window coefficients in two dimensions.
Positional Arguments
	winSize: Size.
The window size specifications (both width and height must be > 1)

	type: int.
Created array type

Return
	dst: Evision.Mat.t().
Destination array to place Hann coefficients in

See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
for more information.
An example is shown below:
// create hanning window of size 100x100 and type CV_32F
Mat hann;
createHanningWindow(hann, Size(100, 100), CV_32F);
Python prototype (for reference only):
createHanningWindow(winSize, type[, dst]) -> dst

 Link to this function

 createHausdorffDistanceExtractor()

 View Source

 @spec createHausdorffDistanceExtractor() ::
 Evision.HausdorffDistanceExtractor.t() | {:error, String.t()}

createHausdorffDistanceExtractor
Keyword Arguments
	distanceFlag: int.
	rankProp: float.

Return
	retval: Evision.HausdorffDistanceExtractor.t()

Python prototype (for reference only):
createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval

 Link to this function

 createHausdorffDistanceExtractor(opts)

 View Source

 @spec createHausdorffDistanceExtractor([rankProp: term(), distanceFlag: term()] | nil) ::
 Evision.HausdorffDistanceExtractor.t() | {:error, String.t()}

createHausdorffDistanceExtractor
Keyword Arguments
	distanceFlag: int.
	rankProp: float.

Return
	retval: Evision.HausdorffDistanceExtractor.t()

Python prototype (for reference only):
createHausdorffDistanceExtractor([, distanceFlag[, rankProp]]) -> retval

 Link to this function

 createLineSegmentDetector()

 View Source

 @spec createLineSegmentDetector() ::
 Evision.LineSegmentDetector.t() | {:error, String.t()}

Creates a smart pointer to a LineSegmentDetector object and initializes it.
Keyword Arguments
	refine: int.
The way found lines will be refined, see #LineSegmentDetectorModes

	scale: double.
The scale of the image that will be used to find the lines. Range (0..1].

	sigma_scale: double.
Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.

	quant: double.
Bound to the quantization error on the gradient norm.

	ang_th: double.
Gradient angle tolerance in degrees.

	log_eps: double.
Detection threshold: -log10(NFA) > log_eps. Used only when advance refinement is chosen.

	density_th: double.
Minimal density of aligned region points in the enclosing rectangle.

	n_bins: int.
Number of bins in pseudo-ordering of gradient modulus.

Return
	retval: Evision.LineSegmentDetector.t()

The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
to edit those, as to tailor it for their own application.
Python prototype (for reference only):
createLineSegmentDetector([, refine[, scale[, sigma_scale[, quant[, ang_th[, log_eps[, density_th[, n_bins]]]]]]]]) -> retval

 Link to this function

 createLineSegmentDetector(opts)

 View Source

 @spec createLineSegmentDetector(
 [
 density_th: term(),
 n_bins: term(),
 log_eps: term(),
 scale: term(),
 quant: term(),
 ang_th: term(),
 sigma_scale: term(),
 refine: term()
]
 | nil
) :: Evision.LineSegmentDetector.t() | {:error, String.t()}

Creates a smart pointer to a LineSegmentDetector object and initializes it.
Keyword Arguments
	refine: int.
The way found lines will be refined, see #LineSegmentDetectorModes

	scale: double.
The scale of the image that will be used to find the lines. Range (0..1].

	sigma_scale: double.
Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.

	quant: double.
Bound to the quantization error on the gradient norm.

	ang_th: double.
Gradient angle tolerance in degrees.

	log_eps: double.
Detection threshold: -log10(NFA) > log_eps. Used only when advance refinement is chosen.

	density_th: double.
Minimal density of aligned region points in the enclosing rectangle.

	n_bins: int.
Number of bins in pseudo-ordering of gradient modulus.

Return
	retval: Evision.LineSegmentDetector.t()

The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
to edit those, as to tailor it for their own application.
Python prototype (for reference only):
createLineSegmentDetector([, refine[, scale[, sigma_scale[, quant[, ang_th[, log_eps[, density_th[, n_bins]]]]]]]]) -> retval

 Link to this function

 createMergeDebevec()

 View Source

 @spec createMergeDebevec() :: Evision.MergeDebevec.t() | {:error, String.t()}

Creates MergeDebevec object
Return
	retval: Evision.MergeDebevec.t()

Python prototype (for reference only):
createMergeDebevec() -> retval

 Link to this function

 createMergeMertens()

 View Source

 @spec createMergeMertens() :: Evision.MergeMertens.t() | {:error, String.t()}

Creates MergeMertens object
Keyword Arguments
	contrast_weight: float.
contrast measure weight. See MergeMertens.

	saturation_weight: float.
saturation measure weight

	exposure_weight: float.
well-exposedness measure weight

Return
	retval: Evision.MergeMertens.t()

Python prototype (for reference only):
createMergeMertens([, contrast_weight[, saturation_weight[, exposure_weight]]]) -> retval

 Link to this function

 createMergeMertens(opts)

 View Source

 @spec createMergeMertens(
 [contrast_weight: term(), saturation_weight: term(), exposure_weight: term()]
 | nil
) :: Evision.MergeMertens.t() | {:error, String.t()}

Creates MergeMertens object
Keyword Arguments
	contrast_weight: float.
contrast measure weight. See MergeMertens.

	saturation_weight: float.
saturation measure weight

	exposure_weight: float.
well-exposedness measure weight

Return
	retval: Evision.MergeMertens.t()

Python prototype (for reference only):
createMergeMertens([, contrast_weight[, saturation_weight[, exposure_weight]]]) -> retval

 Link to this function

 createMergeRobertson()

 View Source

 @spec createMergeRobertson() :: Evision.MergeRobertson.t() | {:error, String.t()}

Creates MergeRobertson object
Return
	retval: Evision.MergeRobertson.t()

Python prototype (for reference only):
createMergeRobertson() -> retval

 Link to this function

 createNormHistogramCostExtractor()

 View Source

 @spec createNormHistogramCostExtractor() ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createNormHistogramCostExtractor
Keyword Arguments
	flag: int.
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

 Link to this function

 createNormHistogramCostExtractor(opts)

 View Source

 @spec createNormHistogramCostExtractor(
 [flag: term(), nDummies: term(), defaultCost: term()]
 | nil
) ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

createNormHistogramCostExtractor
Keyword Arguments
	flag: int.
	nDummies: int.
	defaultCost: float.

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
createNormHistogramCostExtractor([, flag[, nDummies[, defaultCost]]]) -> retval

 Link to this function

 createShapeContextDistanceExtractor()

 View Source

 @spec createShapeContextDistanceExtractor() ::
 Evision.ShapeContextDistanceExtractor.t() | {:error, String.t()}

createShapeContextDistanceExtractor
Keyword Arguments
	nAngularBins: int.
	nRadialBins: int.
	innerRadius: float.
	outerRadius: float.
	iterations: int.
	comparer: Evision.HistogramCostExtractor.t().
	transformer: Evision.ShapeTransformer.t().

Return
	retval: Evision.ShapeContextDistanceExtractor.t()

Python prototype (for reference only):
createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval

 Link to this function

 createShapeContextDistanceExtractor(opts)

 View Source

 @spec createShapeContextDistanceExtractor(
 [
 nRadialBins: term(),
 innerRadius: term(),
 comparer: term(),
 transformer: term(),
 nAngularBins: term(),
 iterations: term(),
 outerRadius: term()
]
 | nil
) :: Evision.ShapeContextDistanceExtractor.t() | {:error, String.t()}

createShapeContextDistanceExtractor
Keyword Arguments
	nAngularBins: int.
	nRadialBins: int.
	innerRadius: float.
	outerRadius: float.
	iterations: int.
	comparer: Evision.HistogramCostExtractor.t().
	transformer: Evision.ShapeTransformer.t().

Return
	retval: Evision.ShapeContextDistanceExtractor.t()

Python prototype (for reference only):
createShapeContextDistanceExtractor([, nAngularBins[, nRadialBins[, innerRadius[, outerRadius[, iterations[, comparer[, transformer]]]]]]]) -> retval

 Link to this function

 createThinPlateSplineShapeTransformer()

 View Source

 @spec createThinPlateSplineShapeTransformer() ::
 Evision.ThinPlateSplineShapeTransformer.t() | {:error, String.t()}

createThinPlateSplineShapeTransformer
Keyword Arguments
	regularizationParameter: double.

Return
	retval: Evision.ThinPlateSplineShapeTransformer.t()

Complete constructor
Python prototype (for reference only):
createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval

 Link to this function

 createThinPlateSplineShapeTransformer(opts)

 View Source

 @spec createThinPlateSplineShapeTransformer(
 [{:regularizationParameter, term()}]
 | nil
) ::
 Evision.ThinPlateSplineShapeTransformer.t() | {:error, String.t()}

createThinPlateSplineShapeTransformer
Keyword Arguments
	regularizationParameter: double.

Return
	retval: Evision.ThinPlateSplineShapeTransformer.t()

Complete constructor
Python prototype (for reference only):
createThinPlateSplineShapeTransformer([, regularizationParameter]) -> retval

 Link to this function

 createTonemap()

 View Source

 @spec createTonemap() :: Evision.Tonemap.t() | {:error, String.t()}

Creates simple linear mapper with gamma correction
Keyword Arguments
	gamma: float.
positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
equal to 2.2f is suitable for most displays.
Generally gamma > 1 brightens the image and gamma \< 1 darkens it.

Return
	retval: Evision.Tonemap.t()

Python prototype (for reference only):
createTonemap([, gamma]) -> retval

 Link to this function

 createTonemap(opts)

 View Source

 @spec createTonemap([{:gamma, term()}] | nil) ::
 Evision.Tonemap.t() | {:error, String.t()}

Creates simple linear mapper with gamma correction
Keyword Arguments
	gamma: float.
positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma
equal to 2.2f is suitable for most displays.
Generally gamma > 1 brightens the image and gamma \< 1 darkens it.

Return
	retval: Evision.Tonemap.t()

Python prototype (for reference only):
createTonemap([, gamma]) -> retval

 Link to this function

 createTonemapDrago()

 View Source

 @spec createTonemapDrago() :: Evision.TonemapDrago.t() | {:error, String.t()}

Creates TonemapDrago object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	saturation: float.
positive saturation enhancement value. 1.0 preserves saturation, values greater
than 1 increase saturation and values less than 1 decrease it.

	bias: float.
value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
results, default value is 0.85.

Return
	retval: Evision.TonemapDrago.t()

Python prototype (for reference only):
createTonemapDrago([, gamma[, saturation[, bias]]]) -> retval

 Link to this function

 createTonemapDrago(opts)

 View Source

 @spec createTonemapDrago([gamma: term(), saturation: term(), bias: term()] | nil) ::
 Evision.TonemapDrago.t() | {:error, String.t()}

Creates TonemapDrago object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	saturation: float.
positive saturation enhancement value. 1.0 preserves saturation, values greater
than 1 increase saturation and values less than 1 decrease it.

	bias: float.
value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best
results, default value is 0.85.

Return
	retval: Evision.TonemapDrago.t()

Python prototype (for reference only):
createTonemapDrago([, gamma[, saturation[, bias]]]) -> retval

 Link to this function

 createTonemapMantiuk()

 View Source

 @spec createTonemapMantiuk() :: Evision.TonemapMantiuk.t() | {:error, String.t()}

Creates TonemapMantiuk object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	scale: float.
contrast scale factor. HVS response is multiplied by this parameter, thus compressing
dynamic range. Values from 0.6 to 0.9 produce best results.

	saturation: float.
saturation enhancement value. See createTonemapDrago

Return
	retval: Evision.TonemapMantiuk.t()

Python prototype (for reference only):
createTonemapMantiuk([, gamma[, scale[, saturation]]]) -> retval

 Link to this function

 createTonemapMantiuk(opts)

 View Source

 @spec createTonemapMantiuk([gamma: term(), saturation: term(), scale: term()] | nil) ::
 Evision.TonemapMantiuk.t() | {:error, String.t()}

Creates TonemapMantiuk object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	scale: float.
contrast scale factor. HVS response is multiplied by this parameter, thus compressing
dynamic range. Values from 0.6 to 0.9 produce best results.

	saturation: float.
saturation enhancement value. See createTonemapDrago

Return
	retval: Evision.TonemapMantiuk.t()

Python prototype (for reference only):
createTonemapMantiuk([, gamma[, scale[, saturation]]]) -> retval

 Link to this function

 createTonemapReinhard()

 View Source

 @spec createTonemapReinhard() :: Evision.TonemapReinhard.t() | {:error, String.t()}

Creates TonemapReinhard object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	intensity: float.
result intensity in [-8, 8] range. Greater intensity produces brighter results.

	light_adapt: float.
light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
value, if 0 it's global, otherwise it's a weighted mean of this two cases.

	color_adapt: float.
chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
if 0 adaptation level is the same for each channel.

Return
	retval: Evision.TonemapReinhard.t()

Python prototype (for reference only):
createTonemapReinhard([, gamma[, intensity[, light_adapt[, color_adapt]]]]) -> retval

 Link to this function

 createTonemapReinhard(opts)

 View Source

 @spec createTonemapReinhard(
 [light_adapt: term(), gamma: term(), color_adapt: term(), intensity: term()]
 | nil
) :: Evision.TonemapReinhard.t() | {:error, String.t()}

Creates TonemapReinhard object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	intensity: float.
result intensity in [-8, 8] range. Greater intensity produces brighter results.

	light_adapt: float.
light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
value, if 0 it's global, otherwise it's a weighted mean of this two cases.

	color_adapt: float.
chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
if 0 adaptation level is the same for each channel.

Return
	retval: Evision.TonemapReinhard.t()

Python prototype (for reference only):
createTonemapReinhard([, gamma[, intensity[, light_adapt[, color_adapt]]]]) -> retval

 Link to this function

 cubeRoot(val)

 View Source

 @spec cubeRoot(number()) :: number() | {:error, String.t()}

Computes the cube root of an argument.
Positional Arguments
	val: float.
A function argument.

Return
	retval: float

The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
single-precision data.
Python prototype (for reference only):
cubeRoot(val) -> retval

 Link to this function

 cvtColor(src, code)

 View Source

 @spec cvtColor(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Converts an image from one color space to another.
Positional Arguments
	src: Evision.Mat.t().
input image: 8-bit unsigned, 16-bit unsigned (CV_16UC...), or single-precision
floating-point.

	code: int.
color space conversion code (see #ColorConversionCodes).

Keyword Arguments
	dstCn: int.
number of channels in the destination image; if the parameter is 0, the number of the
channels is derived automatically from src and code.

Return
	dst: Evision.Mat.t().
output image of the same size and depth as src.

The function converts an input image from one color space to another. In case of a transformation
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
The conventional ranges for R, G, and B channel values are:
	0 to 255 for CV_8U images
	0 to 65535 for CV_16U images
	0 to 1 for CV_32F images

In case of linear transformations, the range does not matter. But in case of a non-linear
transformation, an input RGB image should be normalized to the proper value range to get the correct
results, for example, for RGB \f$\rightarrow\f$ L*u*v* transformation. For example, if you have a
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
you need first to scale the image down:
img *= 1./255;
cvtColor(img, img, COLOR_BGR2Luv);
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
that need the full range of colors or that convert an image before an operation and then convert
back.
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
@see @ref imgproc_color_conversions
Python prototype (for reference only):
cvtColor(src, code[, dst[, dstCn]]) -> dst

 Link to this function

 cvtColor(src, code, opts)

 View Source

 @spec cvtColor(Evision.Mat.maybe_mat_in(), integer(), [{:dstCn, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Converts an image from one color space to another.
Positional Arguments
	src: Evision.Mat.t().
input image: 8-bit unsigned, 16-bit unsigned (CV_16UC...), or single-precision
floating-point.

	code: int.
color space conversion code (see #ColorConversionCodes).

Keyword Arguments
	dstCn: int.
number of channels in the destination image; if the parameter is 0, the number of the
channels is derived automatically from src and code.

Return
	dst: Evision.Mat.t().
output image of the same size and depth as src.

The function converts an input image from one color space to another. In case of a transformation
to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
The conventional ranges for R, G, and B channel values are:
	0 to 255 for CV_8U images
	0 to 65535 for CV_16U images
	0 to 1 for CV_32F images

In case of linear transformations, the range does not matter. But in case of a non-linear
transformation, an input RGB image should be normalized to the proper value range to get the correct
results, for example, for RGB \f$\rightarrow\f$ L*u*v* transformation. For example, if you have a
32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
you need first to scale the image down:
img *= 1./255;
cvtColor(img, img, COLOR_BGR2Luv);
If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
applications, this will not be noticeable but it is recommended to use 32-bit images in applications
that need the full range of colors or that convert an image before an operation and then convert
back.
If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
@see @ref imgproc_color_conversions
Python prototype (for reference only):
cvtColor(src, code[, dst[, dstCn]]) -> dst

 Link to this function

 cvtColorTwoPlane(src1, src2, code)

 View Source

 @spec cvtColorTwoPlane(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Converts an image from one color space to another where the source image is
stored in two planes.
Positional Arguments
	src1: Evision.Mat.t().
8-bit image (#CV_8U) of the Y plane.

	src2: Evision.Mat.t().
image containing interleaved U/V plane.

	code: int.
Specifies the type of conversion. It can take any of the following values:
	#COLOR_YUV2BGR_NV12
	#COLOR_YUV2RGB_NV12
	#COLOR_YUV2BGRA_NV12
	#COLOR_YUV2RGBA_NV12
	#COLOR_YUV2BGR_NV21
	#COLOR_YUV2RGB_NV21
	#COLOR_YUV2BGRA_NV21
	#COLOR_YUV2RGBA_NV21

Return
	dst: Evision.Mat.t().
output image.

This function only supports YUV420 to RGB conversion as of now.
Python prototype (for reference only):
cvtColorTwoPlane(src1, src2, code[, dst]) -> dst

 Link to this function

 cvtColorTwoPlane(src1, src2, code, opts)

 View Source

 @spec cvtColorTwoPlane(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Converts an image from one color space to another where the source image is
stored in two planes.
Positional Arguments
	src1: Evision.Mat.t().
8-bit image (#CV_8U) of the Y plane.

	src2: Evision.Mat.t().
image containing interleaved U/V plane.

	code: int.
Specifies the type of conversion. It can take any of the following values:
	#COLOR_YUV2BGR_NV12
	#COLOR_YUV2RGB_NV12
	#COLOR_YUV2BGRA_NV12
	#COLOR_YUV2RGBA_NV12
	#COLOR_YUV2BGR_NV21
	#COLOR_YUV2RGB_NV21
	#COLOR_YUV2BGRA_NV21
	#COLOR_YUV2RGBA_NV21

Return
	dst: Evision.Mat.t().
output image.

This function only supports YUV420 to RGB conversion as of now.
Python prototype (for reference only):
cvtColorTwoPlane(src1, src2, code[, dst]) -> dst

 Link to this function

 dct(src)

 View Source

 @spec dct(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point array.

Keyword Arguments
	flags: int.
transformation flags as a combination of cv::DftFlags (DCT_*)

Return
	dst: Evision.Mat.t().
output array of the same size and type as src .

The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
floating-point array:
	Forward Cosine transform of a 1D vector of N elements:
\f[Y = C^{(N)} \cdot X\f]
where
\f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left (\frac{\pi(2k+1)j}{2N} \right)\f]
and
\f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for j > 0.

	Inverse Cosine transform of a 1D vector of N elements:
\f[X = \left (C^{(N)} \right)^{-1} \cdot Y = \left (C^{(N)} \right)^T \cdot Y\f]
(since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$)

	Forward 2D Cosine transform of M x N matrix:
\f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right)^T\f]

	Inverse 2D Cosine transform of M x N matrix:
\f[X = \left (C^{(N)} \right)^T \cdot X \cdot C^{(N)}\f]

The function chooses the mode of operation by looking at the flags and size of the input array:
	If (flags & #DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
is an inverse 1D or 2D transform.

	If (flags & #DCT_ROWS) != 0 , the function performs a 1D transform of each row.

	If the array is a single column or a single row, the function performs a 1D transform.

	If none of the above is true, the function performs a 2D transform.

Note: Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on the array size (see
getOptimalDFTSize). In the current implementation DCT of a vector of size N is calculated via DFT
of a vector of size N/2 . Thus, the optimal DCT size N1 >= N can be calculated as:
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
@sa dft , getOptimalDFTSize , idct
Python prototype (for reference only):
dct(src[, dst[, flags]]) -> dst

 Link to this function

 dct(src, opts)

 View Source

 @spec dct(Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point array.

Keyword Arguments
	flags: int.
transformation flags as a combination of cv::DftFlags (DCT_*)

Return
	dst: Evision.Mat.t().
output array of the same size and type as src .

The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
floating-point array:
	Forward Cosine transform of a 1D vector of N elements:
\f[Y = C^{(N)} \cdot X\f]
where
\f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left (\frac{\pi(2k+1)j}{2N} \right)\f]
and
\f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for j > 0.

	Inverse Cosine transform of a 1D vector of N elements:
\f[X = \left (C^{(N)} \right)^{-1} \cdot Y = \left (C^{(N)} \right)^T \cdot Y\f]
(since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$)

	Forward 2D Cosine transform of M x N matrix:
\f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right)^T\f]

	Inverse 2D Cosine transform of M x N matrix:
\f[X = \left (C^{(N)} \right)^T \cdot X \cdot C^{(N)}\f]

The function chooses the mode of operation by looking at the flags and size of the input array:
	If (flags & #DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
is an inverse 1D or 2D transform.

	If (flags & #DCT_ROWS) != 0 , the function performs a 1D transform of each row.

	If the array is a single column or a single row, the function performs a 1D transform.

	If none of the above is true, the function performs a 2D transform.

Note: Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
can pad the array when necessary.
Also, the function performance depends very much, and not monotonically, on the array size (see
getOptimalDFTSize). In the current implementation DCT of a vector of size N is calculated via DFT
of a vector of size N/2 . Thus, the optimal DCT size N1 >= N can be calculated as:
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
@sa dft , getOptimalDFTSize , idct
Python prototype (for reference only):
dct(src[, dst[, flags]]) -> dst

 Link to this function

 decolor(src)

 View Source

 @spec decolor(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
black-and-white photograph rendering, and in many single channel image processing applications
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Return
	grayscale: Evision.Mat.t().
Output 8-bit 1-channel image.

	color_boost: Evision.Mat.t().
Output 8-bit 3-channel image.

@cite CL12 .
This function is to be applied on color images.
Python prototype (for reference only):
decolor(src[, grayscale[, color_boost]]) -> grayscale, color_boost

 Link to this function

 decolor(src, opts)

 View Source

 @spec decolor(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized
black-and-white photograph rendering, and in many single channel image processing applications
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Return
	grayscale: Evision.Mat.t().
Output 8-bit 1-channel image.

	color_boost: Evision.Mat.t().
Output 8-bit 3-channel image.

@cite CL12 .
This function is to be applied on color images.
Python prototype (for reference only):
decolor(src[, grayscale[, color_boost]]) -> grayscale, color_boost

 Link to this function

 decomposeEssentialMat(e)

 View Source

 @spec decomposeEssentialMat(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Decompose an essential matrix to possible rotations and translation.
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

Return
	r1: Evision.Mat.t().
One possible rotation matrix.

	r2: Evision.Mat.t().
Another possible rotation matrix.

	t: Evision.Mat.t().
One possible translation.

This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
can only get the direction of the translation. For this reason, the translation t is returned with
unit length.
Python prototype (for reference only):
decomposeEssentialMat(E[, R1[, R2[, t]]]) -> R1, R2, t

 Link to this function

 decomposeEssentialMat(e, opts)

 View Source

 @spec decomposeEssentialMat(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Decompose an essential matrix to possible rotations and translation.
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

Return
	r1: Evision.Mat.t().
One possible rotation matrix.

	r2: Evision.Mat.t().
Another possible rotation matrix.

	t: Evision.Mat.t().
One possible translation.

This function decomposes the essential matrix E using svd decomposition @cite HartleyZ00. In
general, four possible poses exist for the decomposition of E. They are \f$[R_1, t]\f$,
\f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$.
If E gives the epipolar constraint \f$[p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\f$ between the image
points \f$p_1\f$ in the first image and \f$p_2\f$ in second image, then any of the tuples
\f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$ is a change of basis from the first
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
can only get the direction of the translation. For this reason, the translation t is returned with
unit length.
Python prototype (for reference only):
decomposeEssentialMat(E[, R1[, R2[, t]]]) -> R1, R2, t

 Link to this function

 decomposeHomographyMat(h, k)

 View Source

 @spec decomposeHomographyMat(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {integer(), [Evision.Mat.t()], [Evision.Mat.t()], [Evision.Mat.t()]}
 | {:error, String.t()}

Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
Positional Arguments
	h: Evision.Mat.t().
The input homography matrix between two images.

	k: Evision.Mat.t().
The input camera intrinsic matrix.

Return
	retval: int

	rotations: [Evision.Mat].
Array of rotation matrices.

	translations: [Evision.Mat].
Array of translation matrices.

	normals: [Evision.Mat].
Array of plane normal matrices.

This function extracts relative camera motion between two views of a planar object and returns up to
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
the homography matrix H is described in detail in @cite Malis2007.
If the homography H, induced by the plane, gives the constraint
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
translations[k] is a change of basis from the source camera's coordinate system to the destination
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
If point correspondences are available, at least two solutions may further be invalidated, by
applying positive depth constraint, i.e. all points must be in front of the camera.
Python prototype (for reference only):
decomposeHomographyMat(H, K[, rotations[, translations[, normals]]]) -> retval, rotations, translations, normals

 Link to this function

 decomposeHomographyMat(h, k, opts)

 View Source

 @spec decomposeHomographyMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {integer(), [Evision.Mat.t()], [Evision.Mat.t()], [Evision.Mat.t()]}
 | {:error, String.t()}

Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
Positional Arguments
	h: Evision.Mat.t().
The input homography matrix between two images.

	k: Evision.Mat.t().
The input camera intrinsic matrix.

Return
	retval: int

	rotations: [Evision.Mat].
Array of rotation matrices.

	translations: [Evision.Mat].
Array of translation matrices.

	normals: [Evision.Mat].
Array of plane normal matrices.

This function extracts relative camera motion between two views of a planar object and returns up to
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
the homography matrix H is described in detail in @cite Malis2007.
If the homography H, induced by the plane, gives the constraint
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] on the source image points
\f$p_i\f$ and the destination image points \f$p'_i\f$, then the tuple of rotations[k] and
translations[k] is a change of basis from the source camera's coordinate system to the destination
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
If point correspondences are available, at least two solutions may further be invalidated, by
applying positive depth constraint, i.e. all points must be in front of the camera.
Python prototype (for reference only):
decomposeHomographyMat(H, K[, rotations[, translations[, normals]]]) -> retval, rotations, translations, normals

 Link to this function

 decomposeProjectionMatrix(projMatrix)

 View Source

 @spec decomposeProjectionMatrix(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
Positional Arguments
	projMatrix: Evision.Mat.t().
3x4 input projection matrix P.

Return
	cameraMatrix: Evision.Mat.t().
Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.

	rotMatrix: Evision.Mat.t().
Output 3x3 external rotation matrix R.

	transVect: Evision.Mat.t().
Output 4x1 translation vector T.

	rotMatrixX: Evision.Mat.t().
Optional 3x3 rotation matrix around x-axis.

	rotMatrixY: Evision.Mat.t().
Optional 3x3 rotation matrix around y-axis.

	rotMatrixZ: Evision.Mat.t().
Optional 3x3 rotation matrix around z-axis.

	eulerAngles: Evision.Mat.t().
Optional three-element vector containing three Euler angles of rotation in
degrees.

The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on #RQDecomp3x3 .
Python prototype (for reference only):
decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMatrixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) -> cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles

 Link to this function

 decomposeProjectionMatrix(projMatrix, opts)

 View Source

 @spec decomposeProjectionMatrix(
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
Positional Arguments
	projMatrix: Evision.Mat.t().
3x4 input projection matrix P.

Return
	cameraMatrix: Evision.Mat.t().
Output 3x3 camera intrinsic matrix \f$\cameramatrix{A}\f$.

	rotMatrix: Evision.Mat.t().
Output 3x3 external rotation matrix R.

	transVect: Evision.Mat.t().
Output 4x1 translation vector T.

	rotMatrixX: Evision.Mat.t().
Optional 3x3 rotation matrix around x-axis.

	rotMatrixY: Evision.Mat.t().
Optional 3x3 rotation matrix around y-axis.

	rotMatrixZ: Evision.Mat.t().
Optional 3x3 rotation matrix around z-axis.

	eulerAngles: Evision.Mat.t().
Optional three-element vector containing three Euler angles of rotation in
degrees.

The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
three rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on #RQDecomp3x3 .
Python prototype (for reference only):
decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMatrixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) -> cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY, rotMatrixZ, eulerAngles

 Link to this function

 demosaicing(src, code)

 View Source

 @spec demosaicing(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

main function for all demosaicing processes
Positional Arguments
	src: Evision.Mat.t().
input image: 8-bit unsigned or 16-bit unsigned.

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dstCn: int.
number of channels in the destination image; if the parameter is 0, the number of the
channels is derived automatically from src and code.

Return
	dst: Evision.Mat.t().
output image of the same size and depth as src.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

#COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
#COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
	Demosaicing using Variable Number of Gradients.

#COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
	Edge-Aware Demosaicing.

#COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
	Demosaicing with alpha channel

#COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
@sa cvtColor
Python prototype (for reference only):
demosaicing(src, code[, dst[, dstCn]]) -> dst

 Link to this function

 demosaicing(src, code, opts)

 View Source

 @spec demosaicing(Evision.Mat.maybe_mat_in(), integer(), [{:dstCn, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

main function for all demosaicing processes
Positional Arguments
	src: Evision.Mat.t().
input image: 8-bit unsigned or 16-bit unsigned.

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dstCn: int.
number of channels in the destination image; if the parameter is 0, the number of the
channels is derived automatically from src and code.

Return
	dst: Evision.Mat.t().
output image of the same size and depth as src.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

#COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
#COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
	Demosaicing using Variable Number of Gradients.

#COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
	Edge-Aware Demosaicing.

#COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
	Demosaicing with alpha channel

#COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
@sa cvtColor
Python prototype (for reference only):
demosaicing(src, code[, dst[, dstCn]]) -> dst

 Link to this function

 detailEnhance(src)

 View Source

 @spec detailEnhance(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

This filter enhances the details of a particular image.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
detailEnhance(src[, dst[, sigma_s[, sigma_r]]]) -> dst

 Link to this function

 detailEnhance(src, opts)

 View Source

 @spec detailEnhance(
 Evision.Mat.maybe_mat_in(),
 [sigma_r: term(), sigma_s: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

This filter enhances the details of a particular image.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
detailEnhance(src[, dst[, sigma_s[, sigma_r]]]) -> dst

 Link to this function

 determinant(mtx)

 View Source

 @spec determinant(Evision.Mat.maybe_mat_in()) :: number() | {:error, String.t()}

Returns the determinant of a square floating-point matrix.
Positional Arguments
	mtx: Evision.Mat.t().
input matrix that must have CV_32FC1 or CV_64FC1 type and
square size.

Return
	retval: double

The function cv::determinant calculates and returns the determinant of the
specified matrix. For small matrices (mtx.cols=mtx.rows\<=3), the
direct method is used. For larger matrices, the function uses LU
factorization with partial pivoting.
For symmetric positively-determined matrices, it is also possible to use
eigen decomposition to calculate the determinant.
@sa trace, invert, solve, eigen, @ref MatrixExpressions
Python prototype (for reference only):
determinant(mtx) -> retval

 Link to this function

 dft(src)

 View Source

 @spec dft(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
Positional Arguments
	src: Evision.Mat.t().
input array that could be real or complex.

Keyword Arguments
	flags: int.
transformation flags, representing a combination of the #DftFlags

	nonzeroRows: int.
when the parameter is not zero, the function assumes that only the first
nonzeroRows rows of the input array (#DFT_INVERSE is not set) or only the first nonzeroRows of the
output array (#DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
rows more efficiently and save some time; this technique is very useful for calculating array
cross-correlation or convolution using DFT.

Return
	dst: Evision.Mat.t().
output array whose size and type depends on the flags .

The function cv::dft performs one of the following:
	Forward the Fourier transform of a 1D vector of N elements:
\f[Y = F^{(N)} \cdot X,\f]
where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$

	Inverse the Fourier transform of a 1D vector of N elements:
\f[\begin{array}{l} X'= \left (F^{(N)} \right)^{-1} \cdot Y = \left (F^{(N)} \right)^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$

	Forward the 2D Fourier transform of a M x N matrix:
\f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]

	Inverse the 2D Fourier transform of a M x N matrix:
\f[\begin{array}{l} X'= \left (F^{(M)} \right)^* \cdot Y \cdot \left (F^{(N)} \right)^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]

In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
spectrum of the inverse Fourier transform can be represented in a packed format called CCS
(complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here
is how 2D CCS spectrum looks:
\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:
	If #DFT_ROWS is set or the input array has a single row or single column, the function
performs a 1D forward or inverse transform of each row of a matrix when #DFT_ROWS is set.
Otherwise, it performs a 2D transform.

	If the input array is real and #DFT_INVERSE is not set, the function performs a forward 1D or
2D transform:

	When #DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
input.

	When #DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
input. In case of 2D transform, it uses the packed format as shown above. In case of a
single 1D transform, it looks like the first row of the matrix above. In case of
multiple 1D transforms (when using the #DFT_ROWS flag), each row of the output matrix
looks like the first row of the matrix above.

	If the input array is complex and either #DFT_INVERSE or #DFT_REAL_OUTPUT are not set, the
output is a complex array of the same size as input. The function performs a forward or
inverse 1D or 2D transform of the whole input array or each row of the input array
independently, depending on the flags DFT_INVERSE and DFT_ROWS.

	When #DFT_INVERSE is set and the input array is real, or it is complex but #DFT_REAL_OUTPUT
is set, the output is a real array of the same size as input. The function performs a 1D or 2D
inverse transformation of the whole input array or each individual row, depending on the flags
#DFT_INVERSE and #DFT_ROWS.

If #DFT_SCALE is set, the scaling is done after the transformation.
Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
method.
The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}
To optimize this sample, consider the following approaches:
	Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
tempA and tempB. It is only necessary to clear the tempA.cols - A.cols (tempB.cols - B.cols)
rightmost columns of the matrices.

	This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
To do this, you need to split the output array C into multiple tiles. For each tile, estimate
which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
there is also a slowdown because of bad cache locality. So, there is an optimal tile size
somewhere in the middle.

	If different tiles in C can be calculated in parallel and, thus, the convolution is done by
parts, the loop can be threaded.

All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by
using them, you can get the performance even better than with the above theoretically optimal
implementation. Though, those two functions actually calculate cross-correlation, not convolution,
so you need to "flip" the second convolution operand B vertically and horizontally using flip .
Note:
	An example using the discrete fourier transform can be found at
opencv_source_code/samples/cpp/dft.cpp

	(Python) An example using the dft functionality to perform Wiener deconvolution can be found
at opencv_source/samples/python/deconvolution.py

	(Python) An example rearranging the quadrants of a Fourier image can be found at
opencv_source/samples/python/dft.py

@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
magnitude , phase
Python prototype (for reference only):
dft(src[, dst[, flags[, nonzeroRows]]]) -> dst

 Link to this function

 dft(src, opts)

 View Source

 @spec dft(Evision.Mat.maybe_mat_in(), [nonzeroRows: term(), flags: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
Positional Arguments
	src: Evision.Mat.t().
input array that could be real or complex.

Keyword Arguments
	flags: int.
transformation flags, representing a combination of the #DftFlags

	nonzeroRows: int.
when the parameter is not zero, the function assumes that only the first
nonzeroRows rows of the input array (#DFT_INVERSE is not set) or only the first nonzeroRows of the
output array (#DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
rows more efficiently and save some time; this technique is very useful for calculating array
cross-correlation or convolution using DFT.

Return
	dst: Evision.Mat.t().
output array whose size and type depends on the flags .

The function cv::dft performs one of the following:
	Forward the Fourier transform of a 1D vector of N elements:
\f[Y = F^{(N)} \cdot X,\f]
where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$

	Inverse the Fourier transform of a 1D vector of N elements:
\f[\begin{array}{l} X'= \left (F^{(N)} \right)^{-1} \cdot Y = \left (F^{(N)} \right)^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$

	Forward the 2D Fourier transform of a M x N matrix:
\f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]

	Inverse the 2D Fourier transform of a M x N matrix:
\f[\begin{array}{l} X'= \left (F^{(M)} \right)^* \cdot Y \cdot \left (F^{(N)} \right)^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]

In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
spectrum of the inverse Fourier transform can be represented in a packed format called CCS
(complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here
is how 2D CCS spectrum looks:
\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:
	If #DFT_ROWS is set or the input array has a single row or single column, the function
performs a 1D forward or inverse transform of each row of a matrix when #DFT_ROWS is set.
Otherwise, it performs a 2D transform.

	If the input array is real and #DFT_INVERSE is not set, the function performs a forward 1D or
2D transform:

	When #DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
input.

	When #DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
input. In case of 2D transform, it uses the packed format as shown above. In case of a
single 1D transform, it looks like the first row of the matrix above. In case of
multiple 1D transforms (when using the #DFT_ROWS flag), each row of the output matrix
looks like the first row of the matrix above.

	If the input array is complex and either #DFT_INVERSE or #DFT_REAL_OUTPUT are not set, the
output is a complex array of the same size as input. The function performs a forward or
inverse 1D or 2D transform of the whole input array or each row of the input array
independently, depending on the flags DFT_INVERSE and DFT_ROWS.

	When #DFT_INVERSE is set and the input array is real, or it is complex but #DFT_REAL_OUTPUT
is set, the output is a real array of the same size as input. The function performs a 1D or 2D
inverse transformation of the whole input array or each individual row, depending on the flags
#DFT_INVERSE and #DFT_ROWS.

If #DFT_SCALE is set, the scaling is done after the transformation.
Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
method.
The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A & B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}
To optimize this sample, consider the following approaches:
	Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
tempA and tempB. It is only necessary to clear the tempA.cols - A.cols (tempB.cols - B.cols)
rightmost columns of the matrices.

	This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
To do this, you need to split the output array C into multiple tiles. For each tile, estimate
which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
there is also a slowdown because of bad cache locality. So, there is an optimal tile size
somewhere in the middle.

	If different tiles in C can be calculated in parallel and, thus, the convolution is done by
parts, the loop can be threaded.

All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by
using them, you can get the performance even better than with the above theoretically optimal
implementation. Though, those two functions actually calculate cross-correlation, not convolution,
so you need to "flip" the second convolution operand B vertically and horizontally using flip .
Note:
	An example using the discrete fourier transform can be found at
opencv_source_code/samples/cpp/dft.cpp

	(Python) An example using the dft functionality to perform Wiener deconvolution can be found
at opencv_source/samples/python/deconvolution.py

	(Python) An example rearranging the quadrants of a Fourier image can be found at
opencv_source/samples/python/dft.py

@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
magnitude , phase
Python prototype (for reference only):
dft(src[, dst[, flags[, nonzeroRows]]]) -> dst

 Link to this function

 dilate(src, kernel)

 View Source

 @spec dilate(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Dilates an image by using a specific structuring element.
Positional Arguments
	src: Evision.Mat.t().
input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	kernel: Evision.Mat.t().
structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using #getStructuringElement

Keyword Arguments
	anchor: Point.
position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.

	iterations: int.
number of times dilation is applied.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.

	borderValue: Scalar.
border value in case of a constant border

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Dilation can be applied several (iterations) times. In
case of multi-channel images, each channel is processed independently.
@sa erode, morphologyEx, getStructuringElement
Python prototype (for reference only):
dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 dilate(src, kernel, opts)

 View Source

 @spec dilate(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [iterations: term(), borderType: term(), anchor: term(), borderValue: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Dilates an image by using a specific structuring element.
Positional Arguments
	src: Evision.Mat.t().
input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	kernel: Evision.Mat.t().
structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using #getStructuringElement

Keyword Arguments
	anchor: Point.
position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.

	iterations: int.
number of times dilation is applied.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.

	borderValue: Scalar.
border value in case of a constant border

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function dilates the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the maximum is taken:
\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Dilation can be applied several (iterations) times. In
case of multi-channel images, each channel is processed independently.
@sa erode, morphologyEx, getStructuringElement
Python prototype (for reference only):
dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 displayOverlay(winname, text)

 View Source

 @spec displayOverlay(binary(), binary()) :: :ok | {:error, String.t()}

Displays a text on a window image as an overlay for a specified duration.
Positional Arguments
	winname: String.
Name of the window.

	text: String.
Overlay text to write on a window image.

Keyword Arguments
	delayms: int.
The period (in milliseconds), during which the overlay text is displayed. If this
function is called before the previous overlay text timed out, the timer is restarted and the text
is updated. If this value is zero, the text never disappears.

The function displayOverlay displays useful information/tips on top of the window for a certain
amount of time delayms. The function does not modify the image, displayed in the window, that is,
after the specified delay the original content of the window is restored.
Python prototype (for reference only):
displayOverlay(winname, text[, delayms]) -> None

 Link to this function

 displayOverlay(winname, text, opts)

 View Source

 @spec displayOverlay(binary(), binary(), [{:delayms, term()}] | nil) ::
 :ok | {:error, String.t()}

Displays a text on a window image as an overlay for a specified duration.
Positional Arguments
	winname: String.
Name of the window.

	text: String.
Overlay text to write on a window image.

Keyword Arguments
	delayms: int.
The period (in milliseconds), during which the overlay text is displayed. If this
function is called before the previous overlay text timed out, the timer is restarted and the text
is updated. If this value is zero, the text never disappears.

The function displayOverlay displays useful information/tips on top of the window for a certain
amount of time delayms. The function does not modify the image, displayed in the window, that is,
after the specified delay the original content of the window is restored.
Python prototype (for reference only):
displayOverlay(winname, text[, delayms]) -> None

 Link to this function

 displayStatusBar(winname, text)

 View Source

 @spec displayStatusBar(binary(), binary()) :: :ok | {:error, String.t()}

Displays a text on the window statusbar during the specified period of time.
Positional Arguments
	winname: String.
Name of the window.

	text: String.
Text to write on the window statusbar.

Keyword Arguments
	delayms: int.
Duration (in milliseconds) to display the text. If this function is called before
the previous text timed out, the timer is restarted and the text is updated. If this value is
zero, the text never disappears.

The function displayStatusBar displays useful information/tips on top of the window for a certain
amount of time delayms . This information is displayed on the window statusbar (the window must be
created with the CV_GUI_EXPANDED flags).
Python prototype (for reference only):
displayStatusBar(winname, text[, delayms]) -> None

 Link to this function

 displayStatusBar(winname, text, opts)

 View Source

 @spec displayStatusBar(binary(), binary(), [{:delayms, term()}] | nil) ::
 :ok | {:error, String.t()}

Displays a text on the window statusbar during the specified period of time.
Positional Arguments
	winname: String.
Name of the window.

	text: String.
Text to write on the window statusbar.

Keyword Arguments
	delayms: int.
Duration (in milliseconds) to display the text. If this function is called before
the previous text timed out, the timer is restarted and the text is updated. If this value is
zero, the text never disappears.

The function displayStatusBar displays useful information/tips on top of the window for a certain
amount of time delayms . This information is displayed on the window statusbar (the window must be
created with the CV_GUI_EXPANDED flags).
Python prototype (for reference only):
displayStatusBar(winname, text[, delayms]) -> None

 Link to this function

 distanceTransform(src, distanceType, maskSize)

 View Source

 @spec distanceTransform(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

distanceTransform
Positional Arguments
	src: Evision.Mat.t().
8-bit, single-channel (binary) source image.

	distanceType: int.
Type of distance, see #DistanceTypes

	maskSize: int.
Size of the distance transform mask, see #DistanceTransformMasks. In case of the
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
the same result as \f$5\times 5\f$ or any larger aperture.

Keyword Arguments
	dstType: int.
Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
the first variant of the function and distanceType == #DIST_L1.

Return
	dst: Evision.Mat.t().
Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src .

Has overloading in C++
Python prototype (for reference only):
distanceTransform(src, distanceType, maskSize[, dst[, dstType]]) -> dst

 Link to this function

 distanceTransform(src, distanceType, maskSize, opts)

 View Source

 @spec distanceTransform(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:dstType, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

distanceTransform
Positional Arguments
	src: Evision.Mat.t().
8-bit, single-channel (binary) source image.

	distanceType: int.
Type of distance, see #DistanceTypes

	maskSize: int.
Size of the distance transform mask, see #DistanceTransformMasks. In case of the
#DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
the same result as \f$5\times 5\f$ or any larger aperture.

Keyword Arguments
	dstType: int.
Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
the first variant of the function and distanceType == #DIST_L1.

Return
	dst: Evision.Mat.t().
Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src .

Has overloading in C++
Python prototype (for reference only):
distanceTransform(src, distanceType, maskSize[, dst[, dstType]]) -> dst

 Link to this function

 distanceTransformWithLabels(src, distanceType, maskSize)

 View Source

 @spec distanceTransformWithLabels(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the distance to the closest zero pixel for each pixel of the source image.
Positional Arguments
	src: Evision.Mat.t().
8-bit, single-channel (binary) source image.

	distanceType: int.
Type of distance, see #DistanceTypes

	maskSize: int.
Size of the distance transform mask, see #DistanceTransformMasks.
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
5\f$ or any larger aperture.

Keyword Arguments
	labelType: int.
Type of the label array to build, see #DistanceTransformLabelTypes.

Return
	dst: Evision.Mat.t().
Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src.

	labels: Evision.Mat.t().
Output 2D array of labels (the discrete Voronoi diagram). It has the type
CV_32SC1 and the same size as src.

The function cv::distanceTransform calculates the approximate or precise distance from every binary
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
distance is calculated as a sum of these basic distances. Since the distance function should be
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a), all
the diagonal shifts must have the same cost (denoted as b), and all knight's moves must have the
same cost (denoted as c). For the #DIST_C and #DIST_L1 types, the distance is calculated
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
relative error (a \f$5\times 5\f$ mask gives more accurate results). For a,b, and c, OpenCV
uses the values suggested in the original paper:
	DIST_L1: a = 1, b = 2
	DIST_L2:
	3 x 3: a=0.955, b=1.3693
	5 x 5: a=1, b=1.4, c=2.1969
	DIST_C: a = 1, b = 1

Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
Note that both the precise and the approximate algorithms are linear on the number of pixels.
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
but also identifies the nearest connected component consisting of zero pixels
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
component/pixel is stored in labels(x, y). When labelType==#DIST_LABEL_CCOMP, the function
automatically finds connected components of zero pixels in the input image and marks them with
distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
marks all the zero pixels with distinct labels.
In this mode, the complexity is still linear. That is, the function provides a very fast way to
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
yet.
Python prototype (for reference only):
distanceTransformWithLabels(src, distanceType, maskSize[, dst[, labels[, labelType]]]) -> dst, labels

 Link to this function

 distanceTransformWithLabels(src, distanceType, maskSize, opts)

 View Source

 @spec distanceTransformWithLabels(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:labelType, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the distance to the closest zero pixel for each pixel of the source image.
Positional Arguments
	src: Evision.Mat.t().
8-bit, single-channel (binary) source image.

	distanceType: int.
Type of distance, see #DistanceTypes

	maskSize: int.
Size of the distance transform mask, see #DistanceTransformMasks.
#DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
5\f$ or any larger aperture.

Keyword Arguments
	labelType: int.
Type of the label array to build, see #DistanceTransformLabelTypes.

Return
	dst: Evision.Mat.t().
Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
single-channel image of the same size as src.

	labels: Evision.Mat.t().
Output 2D array of labels (the discrete Voronoi diagram). It has the type
CV_32SC1 and the same size as src.

The function cv::distanceTransform calculates the approximate or precise distance from every binary
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
distance is calculated as a sum of these basic distances. Since the distance function should be
symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a), all
the diagonal shifts must have the same cost (denoted as b), and all knight's moves must have the
same cost (denoted as c). For the #DIST_C and #DIST_L1 types, the distance is calculated
precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
relative error (a \f$5\times 5\f$ mask gives more accurate results). For a,b, and c, OpenCV
uses the values suggested in the original paper:
	DIST_L1: a = 1, b = 2
	DIST_L2:
	3 x 3: a=0.955, b=1.3693
	5 x 5: a=1, b=1.4, c=2.1969
	DIST_C: a = 1, b = 1

Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
Note that both the precise and the approximate algorithms are linear on the number of pixels.
This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
but also identifies the nearest connected component consisting of zero pixels
(labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
component/pixel is stored in labels(x, y). When labelType==#DIST_LABEL_CCOMP, the function
automatically finds connected components of zero pixels in the input image and marks them with
distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
marks all the zero pixels with distinct labels.
In this mode, the complexity is still linear. That is, the function provides a very fast way to
compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
yet.
Python prototype (for reference only):
distanceTransformWithLabels(src, distanceType, maskSize[, dst[, labels[, labelType]]]) -> dst, labels

 Link to this function

 divide(scale, src2)

 View Source

 @spec divide(number(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec divide(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
divide
Positional Arguments
	scale: double
	src2: Evision.Mat.t()

Keyword Arguments
	dtype: int.

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
divide(scale, src2[, dst[, dtype]]) -> dst
Variant 2:
Performs per-element division of two arrays or a scalar by an array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Keyword Arguments
	scale: double.
scalar factor.

	dtype: int.
optional depth of the output array; if -1, dst will have depth src2.depth(), but in
case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().

Return
	dst: Evision.Mat.t().
output array of the same size and type as src2.

The function cv::divide divides one array by another:
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
or a scalar by an array when there is no src1 :
\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
Different channels of multi-channel arrays are processed independently.
For integer types when src2(I) is zero, dst(I) will also be zero.
Note: In case of floating point data there is no special defined behavior for zero src2(I) values.
Regular floating-point division is used.
Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
divide(src,X) means divide(src,(X,X,X,X)).
divide(src,(X,)) means divide(src,(X,0,0,0)).
@sa multiply, add, subtract
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype]]]) -> dst

 Link to this function

 divide(scale, src2, opts)

 View Source

 @spec divide(number(), Evision.Mat.maybe_mat_in(), [{:dtype, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec divide(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [dtype: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
divide
Positional Arguments
	scale: double
	src2: Evision.Mat.t()

Keyword Arguments
	dtype: int.

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
divide(scale, src2[, dst[, dtype]]) -> dst
Variant 2:
Performs per-element division of two arrays or a scalar by an array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Keyword Arguments
	scale: double.
scalar factor.

	dtype: int.
optional depth of the output array; if -1, dst will have depth src2.depth(), but in
case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().

Return
	dst: Evision.Mat.t().
output array of the same size and type as src2.

The function cv::divide divides one array by another:
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
or a scalar by an array when there is no src1 :
\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
Different channels of multi-channel arrays are processed independently.
For integer types when src2(I) is zero, dst(I) will also be zero.
Note: In case of floating point data there is no special defined behavior for zero src2(I) values.
Regular floating-point division is used.
Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
divide(src,X) means divide(src,(X,X,X,X)).
divide(src,(X,)) means divide(src,(X,0,0,0)).
@sa multiply, add, subtract
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype]]]) -> dst

 Link to this function

 divSpectrums(a, b, flags)

 View Source

 @spec divSpectrums(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
Positional Arguments
	a: Evision.Mat.t().
first input array.

	b: Evision.Mat.t().
second input array of the same size and type as src1 .

	flags: int.
operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.

Keyword Arguments
	conjB: bool.
optional flag that conjugates the second input array before the multiplication (true)
or not (false).

Return
	c: Evision.Mat.t().
output array of the same size and type as src1 .

The function cv::divSpectrums performs the per-element division of the first array by the second array.
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
Python prototype (for reference only):
divSpectrums(a, b, flags[, c[, conjB]]) -> c

 Link to this function

 divSpectrums(a, b, flags, opts)

 View Source

 @spec divSpectrums(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:conjB, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
Positional Arguments
	a: Evision.Mat.t().
first input array.

	b: Evision.Mat.t().
second input array of the same size and type as src1 .

	flags: int.
operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.

Keyword Arguments
	conjB: bool.
optional flag that conjugates the second input array before the multiplication (true)
or not (false).

Return
	c: Evision.Mat.t().
output array of the same size and type as src1 .

The function cv::divSpectrums performs the per-element division of the first array by the second array.
The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
Python prototype (for reference only):
divSpectrums(a, b, flags[, c[, conjB]]) -> c

 Link to this function

 drawChessboardCorners(image, patternSize, corners, patternWasFound)

 View Source

 @spec drawChessboardCorners(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 boolean()
) :: Evision.Mat.t() | {:error, String.t()}

Renders the detected chessboard corners.
Positional Arguments
	patternSize: Size.
Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_column)).

	corners: Evision.Mat.t().
Array of detected corners, the output of #findChessboardCorners.

	patternWasFound: bool.
Parameter indicating whether the complete board was found or not. The
return value of #findChessboardCorners should be passed here.

Return
	image: Evision.Mat.t().
Destination image. It must be an 8-bit color image.

The function draws individual chessboard corners detected either as red circles if the board was not
found, or as colored corners connected with lines if the board was found.
Python prototype (for reference only):
drawChessboardCorners(image, patternSize, corners, patternWasFound) -> image

 Link to this function

 drawContours(image, contours, contourIdx, color)

 View Source

 @spec drawContours(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws contours outlines or filled contours.
Positional Arguments
	contours: [Evision.Mat].
All the input contours. Each contour is stored as a point vector.

	contourIdx: int.
Parameter indicating a contour to draw. If it is negative, all the contours are drawn.

	color: Scalar.
Color of the contours.

Keyword Arguments
	thickness: int.
Thickness of lines the contours are drawn with. If it is negative (for example,
thickness=#FILLED), the contour interiors are drawn.

	lineType: int.
Line connectivity. See #LineTypes

	hierarchy: Evision.Mat.t().
Optional information about hierarchy. It is only needed if you want to draw only
some of the contours (see maxLevel).

	maxLevel: int.
Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
parameter is only taken into account when there is hierarchy available.

	offset: Point.
Optional contour shift parameter. Shift all the drawn contours by the specified
\f$\texttt{offset}=(dx,dy)\f$.

Return
	image: Evision.Mat.t().
Destination image.

The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
bounded by the contours if \f$\texttt{thickness}<0\f$. The example below shows how to retrieve
connected components from the binary image and label them: :
@include snippets/imgproc_drawContours.cpp
Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
even when no hierarchy data is provided. This is done by analyzing all the outlines together
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
of contours, or iterate over the collection using contourIdx parameter.
Python prototype (for reference only):
drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image

 Link to this function

 drawContours(image, contours, contourIdx, color, opts)

 View Source

 @spec drawContours(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [
 hierarchy: term(),
 offset: term(),
 thickness: term(),
 lineType: term(),
 maxLevel: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws contours outlines or filled contours.
Positional Arguments
	contours: [Evision.Mat].
All the input contours. Each contour is stored as a point vector.

	contourIdx: int.
Parameter indicating a contour to draw. If it is negative, all the contours are drawn.

	color: Scalar.
Color of the contours.

Keyword Arguments
	thickness: int.
Thickness of lines the contours are drawn with. If it is negative (for example,
thickness=#FILLED), the contour interiors are drawn.

	lineType: int.
Line connectivity. See #LineTypes

	hierarchy: Evision.Mat.t().
Optional information about hierarchy. It is only needed if you want to draw only
some of the contours (see maxLevel).

	maxLevel: int.
Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
parameter is only taken into account when there is hierarchy available.

	offset: Point.
Optional contour shift parameter. Shift all the drawn contours by the specified
\f$\texttt{offset}=(dx,dy)\f$.

Return
	image: Evision.Mat.t().
Destination image.

The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
bounded by the contours if \f$\texttt{thickness}<0\f$. The example below shows how to retrieve
connected components from the binary image and label them: :
@include snippets/imgproc_drawContours.cpp
Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
even when no hierarchy data is provided. This is done by analyzing all the outlines together
using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
of contours, or iterate over the collection using contourIdx parameter.
Python prototype (for reference only):
drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image

 Link to this function

 drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length)

 View Source

 @spec drawFrameAxes(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input 3x3 floating-point matrix of camera intrinsic parameters.
\f$\cameramatrix{A}\f$

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.

	rvec: Evision.Mat.t().
Rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.

	tvec: Evision.Mat.t().
Translation vector.

	length: float.
Length of the painted axes in the same unit than tvec (usually in meters).

Keyword Arguments
	thickness: int.
Line thickness of the painted axes.

Return
	image: Evision.Mat.t().
Input/output image. It must have 1 or 3 channels. The number of channels is not altered.

This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
OX is drawn in red, OY in green and OZ in blue.
Python prototype (for reference only):
drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length[, thickness]) -> image

 Link to this function

 drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length, opts)

 View Source

 @spec drawFrameAxes(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{:thickness, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input 3x3 floating-point matrix of camera intrinsic parameters.
\f$\cameramatrix{A}\f$

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.

	rvec: Evision.Mat.t().
Rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.

	tvec: Evision.Mat.t().
Translation vector.

	length: float.
Length of the painted axes in the same unit than tvec (usually in meters).

Keyword Arguments
	thickness: int.
Line thickness of the painted axes.

Return
	image: Evision.Mat.t().
Input/output image. It must have 1 or 3 channels. The number of channels is not altered.

This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
OX is drawn in red, OY in green and OZ in blue.
Python prototype (for reference only):
drawFrameAxes(image, cameraMatrix, distCoeffs, rvec, tvec, length[, thickness]) -> image

 Link to this function

 drawKeypoints(image, keypoints, outImage)

 View Source

 @spec drawKeypoints(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Draws keypoints.
Positional Arguments
	image: Evision.Mat.t().
Source image.

	keypoints: [Evision.KeyPoint].
Keypoints from the source image.

Keyword Arguments
	color: Scalar.
Color of keypoints.

	flags: DrawMatchesFlags.
Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags. See details above in drawMatches .

Return
	outImage: Evision.Mat.t().
Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.

Note:
For Python API, flags are modified as cv.DRAW_MATCHES_FLAGS_DEFAULT,
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
Python prototype (for reference only):
drawKeypoints(image, keypoints, outImage[, color[, flags]]) -> outImage

 Link to this function

 drawKeypoints(image, keypoints, outImage, opts)

 View Source

 @spec drawKeypoints(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [flags: term(), color: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws keypoints.
Positional Arguments
	image: Evision.Mat.t().
Source image.

	keypoints: [Evision.KeyPoint].
Keypoints from the source image.

Keyword Arguments
	color: Scalar.
Color of keypoints.

	flags: DrawMatchesFlags.
Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags. See details above in drawMatches .

Return
	outImage: Evision.Mat.t().
Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.

Note:
For Python API, flags are modified as cv.DRAW_MATCHES_FLAGS_DEFAULT,
cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
cv.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
Python prototype (for reference only):
drawKeypoints(image, keypoints, outImage[, color[, flags]]) -> outImage

 Link to this function

 drawMarker(img, position, color)

 View Source

 @spec drawMarker(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws a marker on a predefined position in an image.
Positional Arguments
	position: Point.
The point where the crosshair is positioned.

	color: Scalar.
Line color.

Keyword Arguments
	markerType: int.
The specific type of marker you want to use, see #MarkerTypes

	markerSize: int.
The length of the marker axis [default = 20 pixels]

	thickness: int.
Line thickness.

	line_type: int.
Type of the line, See #LineTypes

Return
	img: Evision.Mat.t().
Image.

The function cv::drawMarker draws a marker on a given position in the image. For the moment several
marker types are supported, see #MarkerTypes for more information.
Python prototype (for reference only):
drawMarker(img, position, color[, markerType[, markerSize[, thickness[, line_type]]]]) -> img

 Link to this function

 drawMarker(img, position, color, opts)

 View Source

 @spec drawMarker(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [markerType: term(), thickness: term(), markerSize: term(), line_type: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a marker on a predefined position in an image.
Positional Arguments
	position: Point.
The point where the crosshair is positioned.

	color: Scalar.
Line color.

Keyword Arguments
	markerType: int.
The specific type of marker you want to use, see #MarkerTypes

	markerSize: int.
The length of the marker axis [default = 20 pixels]

	thickness: int.
Line thickness.

	line_type: int.
Type of the line, See #LineTypes

Return
	img: Evision.Mat.t().
Image.

The function cv::drawMarker draws a marker on a given position in the image. For the moment several
marker types are supported, see #MarkerTypes for more information.
Python prototype (for reference only):
drawMarker(img, position, color[, markerType[, markerSize[, thickness[, line_type]]]]) -> img

 Link to this function

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg)

 View Source

 @spec drawMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()],
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Draws the found matches of keypoints from two images.
Positional Arguments
	img1: Evision.Mat.t().
First source image.

	keypoints1: [Evision.KeyPoint].
Keypoints from the first source image.

	img2: Evision.Mat.t().
Second source image.

	keypoints2: [Evision.KeyPoint].
Keypoints from the second source image.

	matches1to2: [Evision.DMatch].
Matches from the first image to the second one, which means that keypoints1[i]
has a corresponding point in keypoints2[matches[i]] .

Keyword Arguments
	matchColor: Scalar.
Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
, the color is generated randomly.

	singlePointColor: Scalar.
Color of single keypoints (circles), which means that keypoints do not
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.

	matchesMask: [char].
Mask determining which matches are drawn. If the mask is empty, all matches are
drawn.

	flags: DrawMatchesFlags.
Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags.

Return
	outImg: Evision.Mat.t().
Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.

This function draws matches of keypoints from two images in the output image. Match is a line
connecting two keypoints (circles). See cv::DrawMatchesFlags.
Python prototype (for reference only):
drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg

 Link to this function

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, opts)

 View Source

 @spec drawMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()],
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 singlePointColor: term(),
 matchColor: term(),
 matchesMask: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec drawMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()],
 Evision.Mat.maybe_mat_in(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
drawMatches
Positional Arguments
	img1: Evision.Mat.t()
	keypoints1: [Evision.KeyPoint]
	img2: Evision.Mat.t()
	keypoints2: [Evision.KeyPoint]
	matches1to2: [Evision.DMatch]
	matchesThickness: int

Keyword Arguments
	matchColor: Scalar.
	singlePointColor: Scalar.
	matchesMask: [char].
	flags: DrawMatchesFlags.

Return
	outImg: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchesThickness[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg
Variant 2:
Draws the found matches of keypoints from two images.
Positional Arguments
	img1: Evision.Mat.t().
First source image.

	keypoints1: [Evision.KeyPoint].
Keypoints from the first source image.

	img2: Evision.Mat.t().
Second source image.

	keypoints2: [Evision.KeyPoint].
Keypoints from the second source image.

	matches1to2: [Evision.DMatch].
Matches from the first image to the second one, which means that keypoints1[i]
has a corresponding point in keypoints2[matches[i]] .

Keyword Arguments
	matchColor: Scalar.
Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
, the color is generated randomly.

	singlePointColor: Scalar.
Color of single keypoints (circles), which means that keypoints do not
have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.

	matchesMask: [char].
Mask determining which matches are drawn. If the mask is empty, all matches are
drawn.

	flags: DrawMatchesFlags.
Flags setting drawing features. Possible flags bit values are defined by
DrawMatchesFlags.

Return
	outImg: Evision.Mat.t().
Output image. Its content depends on the flags value defining what is drawn in the
output image. See possible flags bit values below.

This function draws matches of keypoints from two images in the output image. Match is a line
connecting two keypoints (circles). See cv::DrawMatchesFlags.
Python prototype (for reference only):
drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg

 Link to this function

 drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchesThickness, opts)

 View Source

 @spec drawMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()],
 Evision.Mat.maybe_mat_in(),
 integer(),
 [
 flags: term(),
 singlePointColor: term(),
 matchColor: term(),
 matchesMask: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

drawMatches
Positional Arguments
	img1: Evision.Mat.t()
	keypoints1: [Evision.KeyPoint]
	img2: Evision.Mat.t()
	keypoints2: [Evision.KeyPoint]
	matches1to2: [Evision.DMatch]
	matchesThickness: int

Keyword Arguments
	matchColor: Scalar.
	singlePointColor: Scalar.
	matchesMask: [char].
	flags: DrawMatchesFlags.

Return
	outImg: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
drawMatches(img1, keypoints1, img2, keypoints2, matches1to2, outImg, matchesThickness[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg

 Link to this function

 drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg)

 View Source

 @spec drawMatchesKnn(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [[Evision.DMatch.t()]],
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

drawMatchesKnn
Positional Arguments
	img1: Evision.Mat.t()
	keypoints1: [Evision.KeyPoint]
	img2: Evision.Mat.t()
	keypoints2: [Evision.KeyPoint]
	matches1to2: [[Evision.DMatch]]

Keyword Arguments
	matchColor: Scalar.
	singlePointColor: Scalar.
	matchesMask: [[char]].
	flags: DrawMatchesFlags.

Return
	outImg: Evision.Mat.t()

Python prototype (for reference only):
drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg

 Link to this function

 drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg, opts)

 View Source

 @spec drawMatchesKnn(
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [[Evision.DMatch.t()]],
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 singlePointColor: term(),
 matchColor: term(),
 matchesMask: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

drawMatchesKnn
Positional Arguments
	img1: Evision.Mat.t()
	keypoints1: [Evision.KeyPoint]
	img2: Evision.Mat.t()
	keypoints2: [Evision.KeyPoint]
	matches1to2: [[Evision.DMatch]]

Keyword Arguments
	matchColor: Scalar.
	singlePointColor: Scalar.
	matchesMask: [[char]].
	flags: DrawMatchesFlags.

Return
	outImg: Evision.Mat.t()

Python prototype (for reference only):
drawMatchesKnn(img1, keypoints1, img2, keypoints2, matches1to2, outImg[, matchColor[, singlePointColor[, matchesMask[, flags]]]]) -> outImg

 Link to this function

 edgePreservingFilter(src)

 View Source

 @spec edgePreservingFilter(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
filters are used in many different applications @cite EM11 .
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	flags: int.
Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER

	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output 8-bit 3-channel image.

Python prototype (for reference only):
edgePreservingFilter(src[, dst[, flags[, sigma_s[, sigma_r]]]]) -> dst

 Link to this function

 edgePreservingFilter(src, opts)

 View Source

 @spec edgePreservingFilter(
 Evision.Mat.maybe_mat_in(),
 [flags: term(), sigma_s: term(), sigma_r: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing
filters are used in many different applications @cite EM11 .
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	flags: int.
Edge preserving filters: cv::RECURS_FILTER or cv::NORMCONV_FILTER

	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output 8-bit 3-channel image.

Python prototype (for reference only):
edgePreservingFilter(src[, dst[, flags[, sigma_s[, sigma_r]]]]) -> dst

 Link to this function

 eigen(src)

 View Source

 @spec eigen(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Calculates eigenvalues and eigenvectors of a symmetric matrix.
Positional Arguments
	src: Evision.Mat.t().
input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
(src ^T^ == src).

Return
	retval: bool

	eigenvalues: Evision.Mat.t().
output vector of eigenvalues of the same type as src; the eigenvalues are stored
in the descending order.

	eigenvectors: Evision.Mat.t().
output matrix of eigenvectors; it has the same size and type as src; the
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.

The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
matrix src:
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
Note: Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
@sa eigenNonSymmetric, completeSymm , PCA
Python prototype (for reference only):
eigen(src[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors

 Link to this function

 eigen(src, opts)

 View Source

 @spec eigen(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Calculates eigenvalues and eigenvectors of a symmetric matrix.
Positional Arguments
	src: Evision.Mat.t().
input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
(src ^T^ == src).

Return
	retval: bool

	eigenvalues: Evision.Mat.t().
output vector of eigenvalues of the same type as src; the eigenvalues are stored
in the descending order.

	eigenvectors: Evision.Mat.t().
output matrix of eigenvectors; it has the same size and type as src; the
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.

The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
matrix src:
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
Note: Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
@sa eigenNonSymmetric, completeSymm , PCA
Python prototype (for reference only):
eigen(src[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors

 Link to this function

 eigenNonSymmetric(src)

 View Source

 @spec eigenNonSymmetric(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
Positional Arguments
	src: Evision.Mat.t().
input matrix (CV_32FC1 or CV_64FC1 type).

Return
	eigenvalues: Evision.Mat.t().
output vector of eigenvalues (type is the same type as src).

	eigenvectors: Evision.Mat.t().
output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.

Note: Assumes real eigenvalues.
The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@sa eigen
Python prototype (for reference only):
eigenNonSymmetric(src[, eigenvalues[, eigenvectors]]) -> eigenvalues, eigenvectors

 Link to this function

 eigenNonSymmetric(src, opts)

 View Source

 @spec eigenNonSymmetric(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
Positional Arguments
	src: Evision.Mat.t().
input matrix (CV_32FC1 or CV_64FC1 type).

Return
	eigenvalues: Evision.Mat.t().
output vector of eigenvalues (type is the same type as src).

	eigenvectors: Evision.Mat.t().
output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.

Note: Assumes real eigenvalues.
The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
@sa eigen
Python prototype (for reference only):
eigenNonSymmetric(src[, eigenvalues[, eigenvectors]]) -> eigenvalues, eigenvectors

 Link to this function

 ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta)

 View Source

 @spec ellipse2Poly(
 {number(), number()},
 {number(), number()},
 integer(),
 integer(),
 integer(),
 integer()
) :: [{number(), number()}] | {:error, String.t()}

Approximates an elliptic arc with a polyline.
Positional Arguments
	center: Point.
Center of the arc.

	axes: Size.
Half of the size of the ellipse main axes. See #ellipse for details.

	angle: int.
Rotation angle of the ellipse in degrees. See #ellipse for details.

	arcStart: int.
Starting angle of the elliptic arc in degrees.

	arcEnd: int.
Ending angle of the elliptic arc in degrees.

	delta: int.
Angle between the subsequent polyline vertices. It defines the approximation
accuracy.

Return
	pts: [Point].
Output vector of polyline vertices.

The function ellipse2Poly computes the vertices of a polyline that approximates the specified
elliptic arc. It is used by #ellipse. If arcStart is greater than arcEnd, they are swapped.
Python prototype (for reference only):
ellipse2Poly(center, axes, angle, arcStart, arcEnd, delta) -> pts

 Link to this function

 ellipse(img, box, color)

 View Source

 @spec ellipse(
 Evision.Mat.maybe_mat_in(),
 {{number(), number()}, {number(), number()}, number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

ellipse
Positional Arguments
	box: {centre={x, y}, size={s1, s2}, angle}.
Alternative ellipse representation via RotatedRect. This means that the function draws
an ellipse inscribed in the rotated rectangle.

	color: Scalar.
Ellipse color.

Keyword Arguments
	thickness: int.
Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.

	lineType: int.
Type of the ellipse boundary. See #LineTypes

Return
	img: Evision.Mat.t().
Image.

Has overloading in C++
Python prototype (for reference only):
ellipse(img, box, color[, thickness[, lineType]]) -> img

 Link to this function

 ellipse(img, box, color, opts)

 View Source

 @spec ellipse(
 Evision.Mat.maybe_mat_in(),
 {{number(), number()}, {number(), number()}, number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

ellipse
Positional Arguments
	box: {centre={x, y}, size={s1, s2}, angle}.
Alternative ellipse representation via RotatedRect. This means that the function draws
an ellipse inscribed in the rotated rectangle.

	color: Scalar.
Ellipse color.

Keyword Arguments
	thickness: int.
Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.

	lineType: int.
Type of the ellipse boundary. See #LineTypes

Return
	img: Evision.Mat.t().
Image.

Has overloading in C++
Python prototype (for reference only):
ellipse(img, box, color[, thickness[, lineType]]) -> img

 Link to this function

 ellipse(img, center, axes, angle, startAngle, endAngle, color)

 View Source

 @spec ellipse(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 number(),
 number(),
 number(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws a simple or thick elliptic arc or fills an ellipse sector.
Positional Arguments
	center: Point.
Center of the ellipse.

	axes: Size.
Half of the size of the ellipse main axes.

	angle: double.
Ellipse rotation angle in degrees.

	startAngle: double.
Starting angle of the elliptic arc in degrees.

	endAngle: double.
Ending angle of the elliptic arc in degrees.

	color: Scalar.
Ellipse color.

Keyword Arguments
	thickness: int.
Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.

	lineType: int.
Type of the ellipse boundary. See #LineTypes

	shift: int.
Number of fractional bits in the coordinates of the center and values of axes.

Return
	img: Evision.Mat.t().
Image.

The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
arc, or a filled ellipse sector. The drawing code uses general parametric form.
A piecewise-linear curve is used to approximate the elliptic arc
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and
endAngle=360. If startAngle is greater than endAngle, they are swapped. The figure below explains
the meaning of the parameters to draw the blue arc.
[image: Parameters of Elliptic Arc]
Python prototype (for reference only):
ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 ellipse(img, center, axes, angle, startAngle, endAngle, color, opts)

 View Source

 @spec ellipse(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 number(),
 number(),
 number(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a simple or thick elliptic arc or fills an ellipse sector.
Positional Arguments
	center: Point.
Center of the ellipse.

	axes: Size.
Half of the size of the ellipse main axes.

	angle: double.
Ellipse rotation angle in degrees.

	startAngle: double.
Starting angle of the elliptic arc in degrees.

	endAngle: double.
Ending angle of the elliptic arc in degrees.

	color: Scalar.
Ellipse color.

Keyword Arguments
	thickness: int.
Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
a filled ellipse sector is to be drawn.

	lineType: int.
Type of the ellipse boundary. See #LineTypes

	shift: int.
Number of fractional bits in the coordinates of the center and values of axes.

Return
	img: Evision.Mat.t().
Image.

The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
arc, or a filled ellipse sector. The drawing code uses general parametric form.
A piecewise-linear curve is used to approximate the elliptic arc
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
#ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and
endAngle=360. If startAngle is greater than endAngle, they are swapped. The figure below explains
the meaning of the parameters to draw the blue arc.
[image: Parameters of Elliptic Arc]
Python prototype (for reference only):
ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 emd(signature1, signature2, distType)

 View Source

 @spec emd(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 {number(), number(), Evision.Mat.t()} | {:error, String.t()}

Computes the "minimal work" distance between two weighted point configurations.
Positional Arguments
	signature1: Evision.Mat.t().
First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
a single column (weights only) if the user-defined cost matrix is used. The weights must be
non-negative and have at least one non-zero value.

	signature2: Evision.Mat.t().
Second signature of the same format as signature1 , though the number of rows
may be different. The total weights may be different. In this case an extra "dummy" point is added
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
value.

	distType: int.
Used metric. See #DistanceTypes.

Keyword Arguments
	cost: Evision.Mat.t().
User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.

Return
	retval: float

	lowerBound: float.
Optional input/output parameter: lower boundary of a distance between the two
signatures that is a distance between mass centers. The lower boundary may not be calculated if
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
if the signatures consist of weights only (the signature matrices have a single column). You
	must* initialize \lowerBound . If the calculated distance between mass centers is greater or
equal to *lowerBound (it means that the signatures are far enough), the function does not
calculate EMD. In any case *lowerBound is set to the calculated distance between mass centers on
return. Thus, if you want to calculate both distance between mass centers and EMD, *lowerBound
should be set to 0.

	flow: Evision.Mat.t().
Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .

The function computes the earth mover distance and/or a lower boundary of the distance between the
two weighted point configurations. One of the applications described in @cite RubnerSept98,
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
problem that is solved using some modification of a simplex algorithm, thus the complexity is
exponential in the worst case, though, on average it is much faster. In the case of a real metric
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
to determine roughly whether the two signatures are far enough so that they cannot relate to the
same object.
Python prototype (for reference only):
EMD(signature1, signature2, distType[, cost[, lowerBound[, flow]]]) -> retval, lowerBound, flow

 Link to this function

 emd(signature1, signature2, distType, opts)

 View Source

 @spec emd(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:cost, term()}] | nil
) ::
 {number(), number(), Evision.Mat.t()} | {:error, String.t()}

Computes the "minimal work" distance between two weighted point configurations.
Positional Arguments
	signature1: Evision.Mat.t().
First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
a single column (weights only) if the user-defined cost matrix is used. The weights must be
non-negative and have at least one non-zero value.

	signature2: Evision.Mat.t().
Second signature of the same format as signature1 , though the number of rows
may be different. The total weights may be different. In this case an extra "dummy" point is added
to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
value.

	distType: int.
Used metric. See #DistanceTypes.

Keyword Arguments
	cost: Evision.Mat.t().
User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
is used, lower boundary lowerBound cannot be calculated because it needs a metric function.

Return
	retval: float

	lowerBound: float.
Optional input/output parameter: lower boundary of a distance between the two
signatures that is a distance between mass centers. The lower boundary may not be calculated if
the user-defined cost matrix is used, the total weights of point configurations are not equal, or
if the signatures consist of weights only (the signature matrices have a single column). You
	must* initialize \lowerBound . If the calculated distance between mass centers is greater or
equal to *lowerBound (it means that the signatures are far enough), the function does not
calculate EMD. In any case *lowerBound is set to the calculated distance between mass centers on
return. Thus, if you want to calculate both distance between mass centers and EMD, *lowerBound
should be set to 0.

	flow: Evision.Mat.t().
Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .

The function computes the earth mover distance and/or a lower boundary of the distance between the
two weighted point configurations. One of the applications described in @cite RubnerSept98,
@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
problem that is solved using some modification of a simplex algorithm, thus the complexity is
exponential in the worst case, though, on average it is much faster. In the case of a real metric
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
to determine roughly whether the two signatures are far enough so that they cannot relate to the
same object.
Python prototype (for reference only):
EMD(signature1, signature2, distType[, cost[, lowerBound[, flow]]]) -> retval, lowerBound, flow

 Link to this function

 enabled_modules()

 View Source

return a list of enabled modules in this build

 Link to this function

 equalizeHist(src)

 View Source

 @spec equalizeHist(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit single channel image.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src .

The function equalizes the histogram of the input image using the following algorithm:
	Calculate the histogram \f$H\f$ for src .

	Normalize the histogram so that the sum of histogram bins is 255.

	Compute the integral of the histogram:
\f[H'_i = \sum _{0 \le j < i} H(j)\f]

	Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$

The algorithm normalizes the brightness and increases the contrast of the image.
Python prototype (for reference only):
equalizeHist(src[, dst]) -> dst

 Link to this function

 equalizeHist(src, opts)

 View Source

 @spec equalizeHist(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit single channel image.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src .

The function equalizes the histogram of the input image using the following algorithm:
	Calculate the histogram \f$H\f$ for src .

	Normalize the histogram so that the sum of histogram bins is 255.

	Compute the integral of the histogram:
\f[H'_i = \sum _{0 \le j < i} H(j)\f]

	Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$

The algorithm normalizes the brightness and increases the contrast of the image.
Python prototype (for reference only):
equalizeHist(src[, dst]) -> dst

 Link to this function

 erode(src, kernel)

 View Source

 @spec erode(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Erodes an image by using a specific structuring element.
Positional Arguments
	src: Evision.Mat.t().
input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	kernel: Evision.Mat.t().
structuring element used for erosion; if element=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using #getStructuringElement.

Keyword Arguments
	anchor: Point.
position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.

	iterations: int.
number of times erosion is applied.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

	borderValue: Scalar.
border value in case of a constant border

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function erodes the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the minimum is taken:
\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Erosion can be applied several (iterations) times. In
case of multi-channel images, each channel is processed independently.
@sa dilate, morphologyEx, getStructuringElement
Python prototype (for reference only):
erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 erode(src, kernel, opts)

 View Source

 @spec erode(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [iterations: term(), borderType: term(), anchor: term(), borderValue: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Erodes an image by using a specific structuring element.
Positional Arguments
	src: Evision.Mat.t().
input image; the number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	kernel: Evision.Mat.t().
structuring element used for erosion; if element=Mat(), a 3 x 3 rectangular
structuring element is used. Kernel can be created using #getStructuringElement.

Keyword Arguments
	anchor: Point.
position of the anchor within the element; default value (-1, -1) means that the
anchor is at the element center.

	iterations: int.
number of times erosion is applied.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

	borderValue: Scalar.
border value in case of a constant border

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function erodes the source image using the specified structuring element that determines the
shape of a pixel neighborhood over which the minimum is taken:
\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
The function supports the in-place mode. Erosion can be applied several (iterations) times. In
case of multi-channel images, each channel is processed independently.
@sa dilate, morphologyEx, getStructuringElement
Python prototype (for reference only):
erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 estimateAffine2D(from, to)

 View Source

 @spec estimateAffine2D(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes an optimal affine transformation between two 2D point sets.
Positional Arguments
	from: Evision.Mat.t().
First input 2D point set containing \f$(X,Y)\f$.

	to: Evision.Mat.t().
Second input 2D point set containing \f$(x,y)\f$.

Keyword Arguments
	method: int.
Robust method used to compute transformation. The following methods are possible:
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
RANSAC is the default method.

	ransacReprojThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.

	maxIters: size_t.
The maximum number of robust method iterations.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

	refineIters: size_t.
Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

Return
	retval: Evision.Mat.t()

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers (1-inlier, 0-outlier).

It computes
\f[
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\f]
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\f[
\begin{bmatrix}
a_{11} & a_{12} & b_1\\
a_{21} & a_{22} & b_2\\
\end{bmatrix}
\f]
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Note:
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffinePartial2D, getAffineTransform
Python prototype (for reference only):
estimateAffine2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers

 Link to this function

 estimateAffine2D(from, to, opts)

 View Source

 @spec estimateAffine2D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 ransacReprojThreshold: term(),
 refineIters: term(),
 maxIters: term(),
 confidence: term(),
 method: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec estimateAffine2D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
estimateAffine2D
Positional Arguments
	pts1: Evision.Mat.t()
	pts2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	inliers: Evision.Mat.t().

Python prototype (for reference only):
estimateAffine2D(pts1, pts2, params[, inliers]) -> retval, inliers
Variant 2:
Computes an optimal affine transformation between two 2D point sets.
Positional Arguments
	from: Evision.Mat.t().
First input 2D point set containing \f$(X,Y)\f$.

	to: Evision.Mat.t().
Second input 2D point set containing \f$(x,y)\f$.

Keyword Arguments
	method: int.
Robust method used to compute transformation. The following methods are possible:
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
RANSAC is the default method.

	ransacReprojThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.

	maxIters: size_t.
The maximum number of robust method iterations.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

	refineIters: size_t.
Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

Return
	retval: Evision.Mat.t()

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers (1-inlier, 0-outlier).

It computes
\f[
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12}\\
a_{21} & a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\f]
@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\f[
\begin{bmatrix}
a_{11} & a_{12} & b_1\\
a_{21} & a_{22} & b_2\\
\end{bmatrix}
\f]
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Note:
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffinePartial2D, getAffineTransform
Python prototype (for reference only):
estimateAffine2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers

 Link to this function

 estimateAffine2D(pts1, pts2, params, opts)

 View Source

 @spec estimateAffine2D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

estimateAffine2D
Positional Arguments
	pts1: Evision.Mat.t()
	pts2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	inliers: Evision.Mat.t().

Python prototype (for reference only):
estimateAffine2D(pts1, pts2, params[, inliers]) -> retval, inliers

 Link to this function

 estimateAffine3D(src, dst)

 View Source

 @spec estimateAffine3D(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), number()} | {:error, String.t()}

Computes an optimal affine transformation between two 3D point sets.
Positional Arguments
	src: Evision.Mat.t().
First input 3D point set.

	dst: Evision.Mat.t().
Second input 3D point set.

Keyword Arguments
	force_rotation: bool.
If true, the returned rotation will never be a reflection.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.

Return
	retval: Evision.Mat.t()

	scale: double*.
If null is passed, the scale parameter c will be assumed to be 1.0.
Else the pointed-to variable will be set to the optimal scale.

It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
\f[T =
\begin{bmatrix}
R & t\\
\end{bmatrix}
\f]
Python prototype (for reference only):
estimateAffine3D(src, dst[, force_rotation]) -> retval, scale

 Link to this function

 estimateAffine3D(src, dst, opts)

 View Source

 @spec estimateAffine3D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:force_rotation, term()}] | nil
) :: {Evision.Mat.t(), number()} | {:error, String.t()}

Computes an optimal affine transformation between two 3D point sets.
Positional Arguments
	src: Evision.Mat.t().
First input 3D point set.

	dst: Evision.Mat.t().
Second input 3D point set.

Keyword Arguments
	force_rotation: bool.
If true, the returned rotation will never be a reflection.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.

Return
	retval: Evision.Mat.t()

	scale: double*.
If null is passed, the scale parameter c will be assumed to be 1.0.
Else the pointed-to variable will be set to the optimal scale.

It computes \f$R,s,t\f$ minimizing \f$\sum{i} dst_i - c \cdot R \cdot src_i \f$
where \f$R\f$ is a 3x3 rotation matrix, \f$t\f$ is a 3x1 translation vector and \f$s\f$ is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.
@return 3D affine transformation matrix \f$3 \times 4\f$ of the form
\f[T =
\begin{bmatrix}
R & t\\
\end{bmatrix}
\f]
Python prototype (for reference only):
estimateAffine3D(src, dst[, force_rotation]) -> retval, scale

 Link to this function

 estimateAffinePartial2D(from, to)

 View Source

 @spec estimateAffinePartial2D(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.
Positional Arguments
	from: Evision.Mat.t().
First input 2D point set.

	to: Evision.Mat.t().
Second input 2D point set.

Keyword Arguments
	method: int.
Robust method used to compute transformation. The following methods are possible:
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
RANSAC is the default method.

	ransacReprojThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.

	maxIters: size_t.
The maximum number of robust method iterations.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

	refineIters: size_t.
Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

Return
	retval: Evision.Mat.t()

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers.

@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\f[\begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
\sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
\end{bmatrix} \f]
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
translations in \f$ x, y \f$ axes respectively.
Note:
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffine2D, getAffineTransform
Python prototype (for reference only):
estimateAffinePartial2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers

 Link to this function

 estimateAffinePartial2D(from, to, opts)

 View Source

 @spec estimateAffinePartial2D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 ransacReprojThreshold: term(),
 refineIters: term(),
 maxIters: term(),
 confidence: term(),
 method: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.
Positional Arguments
	from: Evision.Mat.t().
First input 2D point set.

	to: Evision.Mat.t().
Second input 2D point set.

Keyword Arguments
	method: int.
Robust method used to compute transformation. The following methods are possible:
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
RANSAC is the default method.

	ransacReprojThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.

	maxIters: size_t.
The maximum number of robust method iterations.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

	refineIters: size_t.
Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.

Return
	retval: Evision.Mat.t()

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers.

@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\f[\begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
\sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
\end{bmatrix} \f]
Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
translations in \f$ x, y \f$ axes respectively.
Note:
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
@sa estimateAffine2D, getAffineTransform
Python prototype (for reference only):
estimateAffinePartial2D(from, to[, inliers[, method[, ransacReprojThreshold[, maxIters[, confidence[, refineIters]]]]]]) -> retval, inliers

 Link to this function

 estimateChessboardSharpness(image, patternSize, corners)

 View Source

 @spec estimateChessboardSharpness(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in()
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

Estimates the sharpness of a detected chessboard.
Positional Arguments
	image: Evision.Mat.t().
Gray image used to find chessboard corners

	patternSize: Size.
Size of a found chessboard pattern

	corners: Evision.Mat.t().
Corners found by #findChessboardCornersSB

Keyword Arguments
	rise_distance: float.
Rise distance 0.8 means 10% ... 90% of the final signal strength

	vertical: bool.
By default edge responses for horizontal lines are calculated

Return
	retval: Scalar

	sharpness: Evision.Mat.t().
Optional output array with a sharpness value for calculated edge responses (see description)

Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
 0 = x coordinate of the underlying edge in the image
 1 = y coordinate of the underlying edge in the image
 2 = width of the transition area (sharpness)
 3 = signal strength in the black cell (min brightness)
 4 = signal strength in the white cell (max brightness)
@return Scalar(average sharpness, average min brightness, average max brightness,0)
Python prototype (for reference only):
estimateChessboardSharpness(image, patternSize, corners[, rise_distance[, vertical[, sharpness]]]) -> retval, sharpness

 Link to this function

 estimateChessboardSharpness(image, patternSize, corners, opts)

 View Source

 @spec estimateChessboardSharpness(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 [vertical: term(), rise_distance: term()] | nil
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

Estimates the sharpness of a detected chessboard.
Positional Arguments
	image: Evision.Mat.t().
Gray image used to find chessboard corners

	patternSize: Size.
Size of a found chessboard pattern

	corners: Evision.Mat.t().
Corners found by #findChessboardCornersSB

Keyword Arguments
	rise_distance: float.
Rise distance 0.8 means 10% ... 90% of the final signal strength

	vertical: bool.
By default edge responses for horizontal lines are calculated

Return
	retval: Scalar

	sharpness: Evision.Mat.t().
Optional output array with a sharpness value for calculated edge responses (see description)

Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
 0 = x coordinate of the underlying edge in the image
 1 = y coordinate of the underlying edge in the image
 2 = width of the transition area (sharpness)
 3 = signal strength in the black cell (min brightness)
 4 = signal strength in the white cell (max brightness)
@return Scalar(average sharpness, average min brightness, average max brightness,0)
Python prototype (for reference only):
estimateChessboardSharpness(image, patternSize, corners[, rise_distance[, vertical[, sharpness]]]) -> retval, sharpness

 Link to this function

 estimateTranslation3D(src, dst)

 View Source

 @spec estimateTranslation3D(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes an optimal translation between two 3D point sets.
Positional Arguments
	src: Evision.Mat.t().
First input 3D point set containing \f$(X,Y,Z)\f$.

	dst: Evision.Mat.t().
Second input 3D point set containing \f$(x,y,z)\f$.

Keyword Arguments
	ransacThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

Return
	retval: int

	out: Evision.Mat.t().
Output 3D translation vector \f$3 \times 1\f$ of the form
\f[
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\f]

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers (1-inlier, 0-outlier).

 It computes
 \f[
 \begin{bmatrix}
 x\\
 y\\
 z\\
 \end{bmatrix}
 \begin{bmatrix}
 X\\
 Y\\
 Z\\
 \end{bmatrix}
 +
 \begin{bmatrix}
 b_1\\
 b_2\\
 b_3\\
 \end{bmatrix}
 \f]
 The function estimates an optimal 3D translation between two 3D point sets using the
 RANSAC algorithm.
Python prototype (for reference only):
estimateTranslation3D(src, dst[, out[, inliers[, ransacThreshold[, confidence]]]]) -> retval, out, inliers

 Link to this function

 estimateTranslation3D(src, dst, opts)

 View Source

 @spec estimateTranslation3D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [confidence: term(), ransacThreshold: term()] | nil
) :: {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes an optimal translation between two 3D point sets.
Positional Arguments
	src: Evision.Mat.t().
First input 3D point set containing \f$(X,Y,Z)\f$.

	dst: Evision.Mat.t().
Second input 3D point set containing \f$(x,y,z)\f$.

Keyword Arguments
	ransacThreshold: double.
Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.

	confidence: double.
Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.

Return
	retval: int

	out: Evision.Mat.t().
Output 3D translation vector \f$3 \times 1\f$ of the form
\f[
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\f]

	inliers: Evision.Mat.t().
Output vector indicating which points are inliers (1-inlier, 0-outlier).

 It computes
 \f[
 \begin{bmatrix}
 x\\
 y\\
 z\\
 \end{bmatrix}
 \begin{bmatrix}
 X\\
 Y\\
 Z\\
 \end{bmatrix}
 +
 \begin{bmatrix}
 b_1\\
 b_2\\
 b_3\\
 \end{bmatrix}
 \f]
 The function estimates an optimal 3D translation between two 3D point sets using the
 RANSAC algorithm.
Python prototype (for reference only):
estimateTranslation3D(src, dst[, out[, inliers[, ransacThreshold[, confidence]]]]) -> retval, out, inliers

 Link to this function

 exp(src)

 View Source

 @spec exp(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Calculates the exponent of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::exp calculates the exponent of every element of the input
array:
\f[\texttt{dst} [I] = e^{ src(I) }\f]
The maximum relative error is about 7e-6 for single-precision input and
less than 1e-10 for double-precision input. Currently, the function
converts denormalized values to zeros on output. Special values (NaN,
Inf) are not handled.
@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
Python prototype (for reference only):
exp(src[, dst]) -> dst

 Link to this function

 exp(src, opts)

 View Source

 @spec exp(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the exponent of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::exp calculates the exponent of every element of the input
array:
\f[\texttt{dst} [I] = e^{ src(I) }\f]
The maximum relative error is about 7e-6 for single-precision input and
less than 1e-10 for double-precision input. Currently, the function
converts denormalized values to zeros on output. Special values (NaN,
Inf) are not handled.
@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
Python prototype (for reference only):
exp(src[, dst]) -> dst

 Link to this function

 extractChannel(src, coi)

 View Source

 @spec extractChannel(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Extracts a single channel from src (coi is 0-based index)
Positional Arguments
	src: Evision.Mat.t().
input array

	coi: int.
index of channel to extract

Return
	dst: Evision.Mat.t().
output array

@sa mixChannels, split
Python prototype (for reference only):
extractChannel(src, coi[, dst]) -> dst

 Link to this function

 extractChannel(src, coi, opts)

 View Source

 @spec extractChannel(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Extracts a single channel from src (coi is 0-based index)
Positional Arguments
	src: Evision.Mat.t().
input array

	coi: int.
index of channel to extract

Return
	dst: Evision.Mat.t().
output array

@sa mixChannels, split
Python prototype (for reference only):
extractChannel(src, coi[, dst]) -> dst

 Link to this function

 fastAtan2(y, x)

 View Source

 @spec fastAtan2(number(), number()) :: number() | {:error, String.t()}

Calculates the angle of a 2D vector in degrees.
Positional Arguments
	y: float.
y-coordinate of the vector.

	x: float.
x-coordinate of the vector.

Return
	retval: float

The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
Python prototype (for reference only):
fastAtan2(y, x) -> retval

 Link to this function

 fastNlMeansDenoising(src)

 View Source

 @spec fastNlMeansDenoising(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
Python prototype (for reference only):
fastNlMeansDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst

 Link to this function

 fastNlMeansDenoising(src, opts)

 View Source

 @spec fastNlMeansDenoising(
 Evision.Mat.maybe_mat_in(),
 [searchWindowSize: term(), h: term(), templateWindowSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec fastNlMeansDenoising(Evision.Mat.maybe_mat_in(), [number()]) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel image.

	h: [float].
Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

Keyword Arguments
	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

	normType: int.
Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
Python prototype (for reference only):
fastNlMeansDenoising(src, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst
Variant 2:
Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
Python prototype (for reference only):
fastNlMeansDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst

 Link to this function

 fastNlMeansDenoising(src, h, opts)

 View Source

 @spec fastNlMeansDenoising(
 Evision.Mat.maybe_mat_in(),
 [number()],
 [normType: term(), searchWindowSize: term(), templateWindowSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel image.

	h: [float].
Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

Keyword Arguments
	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

	normType: int.
Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
image to CIELAB colorspace and then separately denoise L and AB components with different h
parameter.
Python prototype (for reference only):
fastNlMeansDenoising(src, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColored(src)

 View Source

 @spec fastNlMeansDenoisingColored(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for colored images
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise

	hColor: float.
The same as h but for color components. For most images value equals 10
will be enough to remove colored noise and do not distort colors

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using fastNlMeansDenoising function.
Python prototype (for reference only):
fastNlMeansDenoisingColored(src[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColored(src, opts)

 View Source

 @spec fastNlMeansDenoisingColored(
 Evision.Mat.maybe_mat_in(),
 [
 hColor: term(),
 searchWindowSize: term(),
 h: term(),
 templateWindowSize: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for colored images
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise

	hColor: float.
The same as h but for color components. For most images value equals 10
will be enough to remove colored noise and do not distort colors

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using fastNlMeansDenoising function.
Python prototype (for reference only):
fastNlMeansDenoisingColored(src[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize)

 View Source

 @spec fastNlMeansDenoisingColoredMulti(
 [Evision.Mat.maybe_mat_in()],
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoisingMulti function for colored images sequences
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit 3-channel images sequence. All images should have the same type and
size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

Keyword Arguments
	h: float.
Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise.

	hColor: float.
The same as h but for color components.

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

The function converts images to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using fastNlMeansDenoisingMulti function.
Python prototype (for reference only):
fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, opts)

 View Source

 @spec fastNlMeansDenoisingColoredMulti(
 [Evision.Mat.maybe_mat_in()],
 integer(),
 integer(),
 [
 hColor: term(),
 searchWindowSize: term(),
 h: term(),
 templateWindowSize: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoisingMulti function for colored images sequences
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit 3-channel images sequence. All images should have the same type and
size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

Keyword Arguments
	h: float.
Parameter regulating filter strength for luminance component. Bigger h value perfectly
removes noise but also removes image details, smaller h value preserves details but also preserves
some noise.

	hColor: float.
The same as h but for color components.

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

The function converts images to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using fastNlMeansDenoisingMulti function.
Python prototype (for reference only):
fastNlMeansDenoisingColoredMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, hColor[, templateWindowSize[, searchWindowSize]]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize)

 View Source

 @spec fastNlMeansDenoisingMulti([Evision.Mat.maybe_mat_in()], integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit 1-channel, 2-channel, 3-channel or
4-channel images sequence. All images should have the same type and
size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Bigger h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

Python prototype (for reference only):
fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, opts)

 View Source

 @spec fastNlMeansDenoisingMulti(
 [Evision.Mat.maybe_mat_in()],
 integer(),
 integer(),
 [searchWindowSize: term(), h: term(), templateWindowSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec fastNlMeansDenoisingMulti([Evision.Mat.maybe_mat_in()], integer(), integer(), [
 number()
]) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel images sequence. All images should
have the same type and size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

	h: [float].
Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

Keyword Arguments
	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

	normType: int.
Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

Python prototype (for reference only):
fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst
Variant 2:
Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit 1-channel, 2-channel, 3-channel or
4-channel images sequence. All images should have the same type and
size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Bigger h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

Python prototype (for reference only):
fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize[, dst[, h[, templateWindowSize[, searchWindowSize]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, h, opts)

 View Source

 @spec fastNlMeansDenoisingMulti(
 [Evision.Mat.maybe_mat_in()],
 integer(),
 integer(),
 [number()],
 [normType: term(), searchWindowSize: term(), templateWindowSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for images sequence where consecutive images have been
captured in small period of time. For example video. This version of the function is for grayscale
images or for manual manipulation with colorspaces. See @cite Buades2005DenoisingIS for more details
(open access here).
Positional Arguments
	srcImgs: [Evision.Mat].
Input 8-bit or 16-bit (only with NORM_L1) 1-channel,
2-channel, 3-channel or 4-channel images sequence. All images should
have the same type and size.

	imgToDenoiseIndex: int.
Target image to denoise index in srcImgs sequence

	temporalWindowSize: int.
Number of surrounding images to use for target image denoising. Should
be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
srcImgs[imgToDenoiseIndex] image.

	h: [float].
Array of parameters regulating filter strength, either one
parameter applied to all channels or one per channel in dst. Big h value
perfectly removes noise but also removes image details, smaller h
value preserves details but also preserves some noise

Keyword Arguments
	templateWindowSize: int.
Size in pixels of the template patch that is used to compute weights.
Should be odd. Recommended value 7 pixels

	searchWindowSize: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels

	normType: int.
Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1

Return
	dst: Evision.Mat.t().
Output image with the same size and type as srcImgs images.

Python prototype (for reference only):
fastNlMeansDenoisingMulti(srcImgs, imgToDenoiseIndex, temporalWindowSize, h[, dst[, templateWindowSize[, searchWindowSize[, normType]]]]) -> dst

 Link to this function

 fillConvexPoly(img, points, color)

 View Source

 @spec fillConvexPoly(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Fills a convex polygon.
Positional Arguments
	points: Evision.Mat.t().
Polygon vertices.

	color: Scalar.
Polygon color.

Keyword Arguments
	lineType: int.
Type of the polygon boundaries. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
Python prototype (for reference only):
fillConvexPoly(img, points, color[, lineType[, shift]]) -> img

 Link to this function

 fillConvexPoly(img, points, color, opts)

 View Source

 @spec fillConvexPoly(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Fills a convex polygon.
Positional Arguments
	points: Evision.Mat.t().
Polygon vertices.

	color: Scalar.
Polygon color.

Keyword Arguments
	lineType: int.
Type of the polygon boundaries. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
twice at the most (though, its top-most and/or the bottom edge could be horizontal).
Python prototype (for reference only):
fillConvexPoly(img, points, color[, lineType[, shift]]) -> img

 Link to this function

 fillPoly(img, pts, color)

 View Source

 @spec fillPoly(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Fills the area bounded by one or more polygons.
Positional Arguments
	pts: [Evision.Mat].
Array of polygons where each polygon is represented as an array of points.

	color: Scalar.
Polygon color.

Keyword Arguments
	lineType: int.
Type of the polygon boundaries. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

	offset: Point.
Optional offset of all points of the contours.

Return
	img: Evision.Mat.t().
Image.

The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
complex areas, for example, areas with holes, contours with self-intersections (some of their
parts), and so forth.
Python prototype (for reference only):
fillPoly(img, pts, color[, lineType[, shift[, offset]]]) -> img

 Link to this function

 fillPoly(img, pts, color, opts)

 View Source

 @spec fillPoly(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [offset: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Fills the area bounded by one or more polygons.
Positional Arguments
	pts: [Evision.Mat].
Array of polygons where each polygon is represented as an array of points.

	color: Scalar.
Polygon color.

Keyword Arguments
	lineType: int.
Type of the polygon boundaries. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

	offset: Point.
Optional offset of all points of the contours.

Return
	img: Evision.Mat.t().
Image.

The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
complex areas, for example, areas with holes, contours with self-intersections (some of their
parts), and so forth.
Python prototype (for reference only):
fillPoly(img, pts, color[, lineType[, shift[, offset]]]) -> img

 Link to this function

 filter2D(src, ddepth, kernel)

 View Source

 @spec filter2D(Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Convolves an image with the kernel.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
desired depth of the destination image, see @ref filter_depths "combinations"

	kernel: Evision.Mat.t().
convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix; if you want to apply different kernels to different channels, split the image into
separate color planes using split and process them individually.

Keyword Arguments
	anchor: Point.
anchor of the kernel that indicates the relative position of a filtered point within
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.

	delta: double.
optional value added to the filtered pixels before storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src.

The function applies an arbitrary linear filter to an image. In-place operation is supported. When
the aperture is partially outside the image, the function interpolates outlier pixel values
according to the specified border mode.
The function does actually compute correlation, not the convolution:
\f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y})\f]
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
the kernel using #flip and set the new anchor to (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).
The function uses the DFT-based algorithm in case of sufficiently large kernels (~11 x 11 or
larger) and the direct algorithm for small kernels.
@sa sepFilter2D, dft, matchTemplate
Python prototype (for reference only):
filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst

 Link to this function

 filter2D(src, ddepth, kernel, opts)

 View Source

 @spec filter2D(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [borderType: term(), delta: term(), anchor: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Convolves an image with the kernel.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
desired depth of the destination image, see @ref filter_depths "combinations"

	kernel: Evision.Mat.t().
convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix; if you want to apply different kernels to different channels, split the image into
separate color planes using split and process them individually.

Keyword Arguments
	anchor: Point.
anchor of the kernel that indicates the relative position of a filtered point within
the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
is at the kernel center.

	delta: double.
optional value added to the filtered pixels before storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src.

The function applies an arbitrary linear filter to an image. In-place operation is supported. When
the aperture is partially outside the image, the function interpolates outlier pixel values
according to the specified border mode.
The function does actually compute correlation, not the convolution:
\f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y})\f]
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
the kernel using #flip and set the new anchor to (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).
The function uses the DFT-based algorithm in case of sufficiently large kernels (~11 x 11 or
larger) and the direct algorithm for small kernels.
@sa sepFilter2D, dft, matchTemplate
Python prototype (for reference only):
filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst

 Link to this function

 filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints)

 View Source

 @spec filterHomographyDecompByVisibleRefpoints(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Filters homography decompositions based on additional information.
Positional Arguments
	rotations: [Evision.Mat].
Vector of rotation matrices.

	normals: [Evision.Mat].
Vector of plane normal matrices.

	beforePoints: Evision.Mat.t().
Vector of (rectified) visible reference points before the homography is applied

	afterPoints: Evision.Mat.t().
Vector of (rectified) visible reference points after the homography is applied

Keyword Arguments
	pointsMask: Evision.Mat.t().
optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function

Return
	possibleSolutions: Evision.Mat.t().
Vector of int indices representing the viable solution set after filtering

This function is intended to filter the output of the #decomposeHomographyMat based on additional
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
sets of points visible in the camera frame before and after the homography transformation is applied,
we can determine which are the true potential solutions and which are the opposites by verifying which
homographies are consistent with all visible reference points being in front of the camera. The inputs
are left unchanged; the filtered solution set is returned as indices into the existing one.
Python prototype (for reference only):
filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints[, possibleSolutions[, pointsMask]]) -> possibleSolutions

 Link to this function

 filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints, opts)

 View Source

 @spec filterHomographyDecompByVisibleRefpoints(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:pointsMask, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Filters homography decompositions based on additional information.
Positional Arguments
	rotations: [Evision.Mat].
Vector of rotation matrices.

	normals: [Evision.Mat].
Vector of plane normal matrices.

	beforePoints: Evision.Mat.t().
Vector of (rectified) visible reference points before the homography is applied

	afterPoints: Evision.Mat.t().
Vector of (rectified) visible reference points after the homography is applied

Keyword Arguments
	pointsMask: Evision.Mat.t().
optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function

Return
	possibleSolutions: Evision.Mat.t().
Vector of int indices representing the viable solution set after filtering

This function is intended to filter the output of the #decomposeHomographyMat based on additional
information as described in @cite Malis2007 . The summary of the method: the #decomposeHomographyMat function
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
sets of points visible in the camera frame before and after the homography transformation is applied,
we can determine which are the true potential solutions and which are the opposites by verifying which
homographies are consistent with all visible reference points being in front of the camera. The inputs
are left unchanged; the filtered solution set is returned as indices into the existing one.
Python prototype (for reference only):
filterHomographyDecompByVisibleRefpoints(rotations, normals, beforePoints, afterPoints[, possibleSolutions[, pointsMask]]) -> possibleSolutions

 Link to this function

 filterSpeckles(img, newVal, maxSpeckleSize, maxDiff)

 View Source

 @spec filterSpeckles(Evision.Mat.maybe_mat_in(), number(), integer(), number()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Filters off small noise blobs (speckles) in the disparity map
Positional Arguments
	newVal: double.
The disparity value used to paint-off the speckles

	maxSpeckleSize: int.
The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm

	maxDiff: double.
Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.

Return
	img: Evision.Mat.t().
The input 16-bit signed disparity image

	buf: Evision.Mat.t().
The optional temporary buffer to avoid memory allocation within the function.

Python prototype (for reference only):
filterSpeckles(img, newVal, maxSpeckleSize, maxDiff[, buf]) -> img, buf

 Link to this function

 filterSpeckles(img, newVal, maxSpeckleSize, maxDiff, opts)

 View Source

 @spec filterSpeckles(
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 number(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Filters off small noise blobs (speckles) in the disparity map
Positional Arguments
	newVal: double.
The disparity value used to paint-off the speckles

	maxSpeckleSize: int.
The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm

	maxDiff: double.
Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.

Return
	img: Evision.Mat.t().
The input 16-bit signed disparity image

	buf: Evision.Mat.t().
The optional temporary buffer to avoid memory allocation within the function.

Python prototype (for reference only):
filterSpeckles(img, newVal, maxSpeckleSize, maxDiff[, buf]) -> img, buf

 Link to this function

 find4QuadCornerSubpix(img, corners, region_size)

 View Source

 @spec find4QuadCornerSubpix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | false | {:error, String.t()}

find4QuadCornerSubpix
Positional Arguments
	img: Evision.Mat.t()
	region_size: Size

Return
	retval: bool
	corners: Evision.Mat.t()

Python prototype (for reference only):
find4QuadCornerSubpix(img, corners, region_size) -> retval, corners

 Link to this function

 findChessboardCorners(image, patternSize)

 View Source

 @spec findChessboardCorners(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | false | {:error, String.t()}

Finds the positions of internal corners of the chessboard.
Positional Arguments
	image: Evision.Mat.t().
Source chessboard view. It must be an 8-bit grayscale or color image.

	patternSize: Size.
Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows)).

Keyword Arguments
	flags: int.Various operation flags that can be zero or a combination of the following values:	@ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
	@ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
applying fixed or adaptive thresholding.
	@ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
	@ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.
	@ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
execution of the function but could lead to not recognizing the checkerboard if the image
is not previously binarized in the appropriate manner.

Return
	retval: bool

	corners: Evision.Mat.t().
Output array of detected corners.

The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
different parameters if returned coordinates are not accurate enough.
Sample usage of detecting and drawing chessboard corners: :
Size patternsize(8,6); //interior number of corners
Mat gray =; //source image
vector<Point2f> corners; //this will be filled by the detected corners
//CALIB_CB_FAST_CHECK saves a lot of time on images
//that do not contain any chessboard corners
bool patternfound = findChessboardCorners(gray, patternsize, corners,
CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK);
if(patternfound)
cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
Note: The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
Python prototype (for reference only):
findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners

 Link to this function

 findChessboardCorners(image, patternSize, opts)

 View Source

 @spec findChessboardCorners(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{:flags, term()}] | nil
) ::
 Evision.Mat.t() | false | {:error, String.t()}

Finds the positions of internal corners of the chessboard.
Positional Arguments
	image: Evision.Mat.t().
Source chessboard view. It must be an 8-bit grayscale or color image.

	patternSize: Size.
Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows)).

Keyword Arguments
	flags: int.Various operation flags that can be zero or a combination of the following values:	@ref CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
	@ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with #equalizeHist before
applying fixed or adaptive thresholding.
	@ref CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
	@ref CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.
	@ref CALIB_CB_PLAIN All other flags are ignored. The input image is taken as is.
No image processing is done to improve to find the checkerboard. This has the effect of speeding up the
execution of the function but could lead to not recognizing the checkerboard if the image
is not previously binarized in the appropriate manner.

Return
	retval: bool

	corners: Evision.Mat.t().
Output array of detected corners.

The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls #cornerSubPix. You also may use the function #cornerSubPix with
different parameters if returned coordinates are not accurate enough.
Sample usage of detecting and drawing chessboard corners: :
Size patternsize(8,6); //interior number of corners
Mat gray =; //source image
vector<Point2f> corners; //this will be filled by the detected corners
//CALIB_CB_FAST_CHECK saves a lot of time on images
//that do not contain any chessboard corners
bool patternfound = findChessboardCorners(gray, patternsize, corners,
CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK);
if(patternfound)
cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
Note: The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
Python prototype (for reference only):
findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners

 Link to this function

 findChessboardCornersSB(image, patternSize)

 View Source

 @spec findChessboardCornersSB(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | false | {:error, String.t()}

findChessboardCornersSB
Positional Arguments
	image: Evision.Mat.t()
	patternSize: Size

Keyword Arguments
	flags: int.

Return
	retval: bool
	corners: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findChessboardCornersSB(image, patternSize[, corners[, flags]]) -> retval, corners

 Link to this function

 findChessboardCornersSB(image, patternSize, opts)

 View Source

 @spec findChessboardCornersSB(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{:flags, term()}] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

findChessboardCornersSB
Positional Arguments
	image: Evision.Mat.t()
	patternSize: Size

Keyword Arguments
	flags: int.

Return
	retval: bool
	corners: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findChessboardCornersSB(image, patternSize[, corners[, flags]]) -> retval, corners

 Link to this function

 findChessboardCornersSBWithMeta(image, patternSize, flags)

 View Source

 @spec findChessboardCornersSBWithMeta(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Finds the positions of internal corners of the chessboard using a sector based approach.
Positional Arguments
	image: Evision.Mat.t().
Source chessboard view. It must be an 8-bit grayscale or color image.

	patternSize: Size.
Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows)).

	flags: int.
Various operation flags that can be zero or a combination of the following values:
	@ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
	@ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
	@ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
	@ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
	@ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
This should be used if an accurate camera calibration is required.

Return
	retval: bool

	corners: Evision.Mat.t().
Output array of detected corners.

	meta: Evision.Mat.t().
Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
Each entry stands for one corner of the pattern and can have one of the following values:
	0 = no meta data attached
	1 = left-top corner of a black cell
	2 = left-top corner of a white cell
	3 = left-top corner of a black cell with a white marker dot
	4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)

The function is analog to #findChessboardCorners but uses a localized radon
transformation approximated by box filters being more robust to all sort of
noise, faster on larger images and is able to directly return the sub-pixel
position of the internal chessboard corners. The Method is based on the paper
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
Calibration" demonstrating that the returned sub-pixel positions are more
accurate than the one returned by cornerSubPix allowing a precise camera
calibration for demanding applications.
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
the result can be recovered from the optional meta array. Both flags are
helpful to use calibration patterns exceeding the field of view of the camera.
These oversized patterns allow more accurate calibrations as corners can be
utilized, which are as close as possible to the image borders. For a
consistent coordinate system across all images, the optional marker (see image
below) can be used to move the origin of the board to the location where the
black circle is located.
Note: The function requires a white boarder with roughly the same width as one
of the checkerboard fields around the whole board to improve the detection in
various environments. In addition, because of the localized radon
transformation it is beneficial to use round corners for the field corners
which are located on the outside of the board. The following figure illustrates
a sample checkerboard optimized for the detection. However, any other checkerboard
can be used as well.
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
[image: Checkerboard]
Python prototype (for reference only):
findChessboardCornersSBWithMeta(image, patternSize, flags[, corners[, meta]]) -> retval, corners, meta

 Link to this function

 findChessboardCornersSBWithMeta(image, patternSize, flags, opts)

 View Source

 @spec findChessboardCornersSBWithMeta(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Finds the positions of internal corners of the chessboard using a sector based approach.
Positional Arguments
	image: Evision.Mat.t().
Source chessboard view. It must be an 8-bit grayscale or color image.

	patternSize: Size.
Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows)).

	flags: int.
Various operation flags that can be zero or a combination of the following values:
	@ref CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
	@ref CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
	@ref CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
	@ref CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
	@ref CALIB_CB_MARKER The detected pattern must have a marker (see description).
This should be used if an accurate camera calibration is required.

Return
	retval: bool

	corners: Evision.Mat.t().
Output array of detected corners.

	meta: Evision.Mat.t().
Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
Each entry stands for one corner of the pattern and can have one of the following values:
	0 = no meta data attached
	1 = left-top corner of a black cell
	2 = left-top corner of a white cell
	3 = left-top corner of a black cell with a white marker dot
	4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)

The function is analog to #findChessboardCorners but uses a localized radon
transformation approximated by box filters being more robust to all sort of
noise, faster on larger images and is able to directly return the sub-pixel
position of the internal chessboard corners. The Method is based on the paper
@cite duda2018 "Accurate Detection and Localization of Checkerboard Corners for
Calibration" demonstrating that the returned sub-pixel positions are more
accurate than the one returned by cornerSubPix allowing a precise camera
calibration for demanding applications.
In the case, the flags @ref CALIB_CB_LARGER or @ref CALIB_CB_MARKER are given,
the result can be recovered from the optional meta array. Both flags are
helpful to use calibration patterns exceeding the field of view of the camera.
These oversized patterns allow more accurate calibrations as corners can be
utilized, which are as close as possible to the image borders. For a
consistent coordinate system across all images, the optional marker (see image
below) can be used to move the origin of the board to the location where the
black circle is located.
Note: The function requires a white boarder with roughly the same width as one
of the checkerboard fields around the whole board to improve the detection in
various environments. In addition, because of the localized radon
transformation it is beneficial to use round corners for the field corners
which are located on the outside of the board. The following figure illustrates
a sample checkerboard optimized for the detection. However, any other checkerboard
can be used as well.
Use gen_pattern.py (@ref tutorial_camera_calibration_pattern) to create checkerboard.
[image: Checkerboard]
Python prototype (for reference only):
findChessboardCornersSBWithMeta(image, patternSize, flags[, corners[, meta]]) -> retval, corners, meta

 Link to this function

 findCirclesGrid(image, patternSize)

 View Source

 @spec findCirclesGrid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | false | {:error, String.t()}

findCirclesGrid
Positional Arguments
	image: Evision.Mat.t()
	patternSize: Size

Keyword Arguments
	flags: int.
	blobDetector: FeatureDetector.

Return
	retval: bool
	centers: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers

 Link to this function

 findCirclesGrid(image, patternSize, opts)

 View Source

 @spec findCirclesGrid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [flags: term(), blobDetector: term()] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

findCirclesGrid
Positional Arguments
	image: Evision.Mat.t()
	patternSize: Size

Keyword Arguments
	flags: int.
	blobDetector: FeatureDetector.

Return
	retval: bool
	centers: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findCirclesGrid(image, patternSize[, centers[, flags[, blobDetector]]]) -> retval, centers

 Link to this function

 findCirclesGrid(image, patternSize, flags, blobDetector, parameters)

 View Source

 @spec findCirclesGrid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 reference() | term(),
 Evision.CirclesGridFinderParameters.t()
) :: Evision.Mat.t() | false | {:error, String.t()}

Finds centers in the grid of circles.
Positional Arguments
	image: Evision.Mat.t().
grid view of input circles; it must be an 8-bit grayscale or color image.

	patternSize: Size.
number of circles per row and column
(patternSize = Size(points_per_row, points_per_colum)).

	flags: int.
various operation flags that can be one of the following values:
	@ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
	@ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
	@ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
perspective distortions but much more sensitive to background clutter.

	blobDetector: FeatureDetector.
feature detector that finds blobs like dark circles on light background.
If blobDetector is NULL then image represents Point2f array of candidates.

	parameters: Evision.CirclesGridFinderParameters.t().
struct for finding circles in a grid pattern.

Return
	retval: bool

	centers: Evision.Mat.t().
output array of detected centers.

The function attempts to determine whether the input image contains a grid of circles. If it is, the
function locates centers of the circles. The function returns a non-zero value if all of the centers
have been found and they have been placed in a certain order (row by row, left to right in every
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
Sample usage of detecting and drawing the centers of circles: :
Size patternsize(7,7); //number of centers
Mat gray = ...; //source image
vector<Point2f> centers; //this will be filled by the detected centers
bool patternfound = findCirclesGrid(gray, patternsize, centers);
drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
Note: The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments.
Python prototype (for reference only):
findCirclesGrid(image, patternSize, flags, blobDetector, parameters[, centers]) -> retval, centers

 Link to this function

 findCirclesGrid(image, patternSize, flags, blobDetector, parameters, opts)

 View Source

 @spec findCirclesGrid(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 reference() | term(),
 Evision.CirclesGridFinderParameters.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Finds centers in the grid of circles.
Positional Arguments
	image: Evision.Mat.t().
grid view of input circles; it must be an 8-bit grayscale or color image.

	patternSize: Size.
number of circles per row and column
(patternSize = Size(points_per_row, points_per_colum)).

	flags: int.
various operation flags that can be one of the following values:
	@ref CALIB_CB_SYMMETRIC_GRID uses symmetric pattern of circles.
	@ref CALIB_CB_ASYMMETRIC_GRID uses asymmetric pattern of circles.
	@ref CALIB_CB_CLUSTERING uses a special algorithm for grid detection. It is more robust to
perspective distortions but much more sensitive to background clutter.

	blobDetector: FeatureDetector.
feature detector that finds blobs like dark circles on light background.
If blobDetector is NULL then image represents Point2f array of candidates.

	parameters: Evision.CirclesGridFinderParameters.t().
struct for finding circles in a grid pattern.

Return
	retval: bool

	centers: Evision.Mat.t().
output array of detected centers.

The function attempts to determine whether the input image contains a grid of circles. If it is, the
function locates centers of the circles. The function returns a non-zero value if all of the centers
have been found and they have been placed in a certain order (row by row, left to right in every
row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
Sample usage of detecting and drawing the centers of circles: :
Size patternsize(7,7); //number of centers
Mat gray = ...; //source image
vector<Point2f> centers; //this will be filled by the detected centers
bool patternfound = findCirclesGrid(gray, patternsize, centers);
drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
Note: The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments.
Python prototype (for reference only):
findCirclesGrid(image, patternSize, flags, blobDetector, parameters[, centers]) -> retval, centers

 Link to this function

 findContours(image, mode, method)

 View Source

 @spec findContours(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 {[Evision.Mat.t()], Evision.Mat.t()} | {:error, String.t()}

Finds contours in a binary image.
Positional Arguments
	image: Evision.Mat.t().
Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).

	mode: int.
Contour retrieval mode, see #RetrievalModes

	method: int.
Contour approximation method, see #ContourApproximationModes

Keyword Arguments
	offset: Point.
Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.

Return
	contours: [Evision.Mat].
Detected contours. Each contour is stored as a vector of points (e.g.
std::vector<std::vector<cv::Point> >).

	hierarchy: Evision.Mat.t().
Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
as many elements as the number of contours. For each i-th contour contours[i], the elements
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
in contours of the next and previous contours at the same hierarchical level, the first child
contour and the parent contour, respectively. If for the contour i there are no next, previous,
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.

The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
OpenCV sample directory.
Note: Since opencv 3.2 source image is not modified by this function.
Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
Python prototype (for reference only):
findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy

 Link to this function

 findContours(image, mode, method, opts)

 View Source

 @spec findContours(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:offset, term()}] | nil
) ::
 {[Evision.Mat.t()], Evision.Mat.t()} | {:error, String.t()}

Finds contours in a binary image.
Positional Arguments
	image: Evision.Mat.t().
Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
#adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).

	mode: int.
Contour retrieval mode, see #RetrievalModes

	method: int.
Contour approximation method, see #ContourApproximationModes

Keyword Arguments
	offset: Point.
Optional offset by which every contour point is shifted. This is useful if the
contours are extracted from the image ROI and then they should be analyzed in the whole image
context.

Return
	contours: [Evision.Mat].
Detected contours. Each contour is stored as a vector of points (e.g.
std::vector<std::vector<cv::Point> >).

	hierarchy: Evision.Mat.t().
Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
as many elements as the number of contours. For each i-th contour contours[i], the elements
hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
in contours of the next and previous contours at the same hierarchical level, the first child
contour and the parent contour, respectively. If for the contour i there are no next, previous,
parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.

The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
OpenCV sample directory.
Note: Since opencv 3.2 source image is not modified by this function.
Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
Python prototype (for reference only):
findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy

 Link to this function

 findEssentialMat(points1, points2)

 View Source

 @spec findEssentialMat(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findEssentialMat
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

Keyword Arguments
	focal: double.
focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.

	pp: Point2d.
principal point of the camera.

	method: int.
Method for computing a fundamental matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

Has overloading in C++
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\f[A =
\begin{bmatrix}
f & 0 & x_{pp} \\
0 & f & y_{pp} \\
0 & 0 & 1
\end{bmatrix}\f]
Python prototype (for reference only):
findEssentialMat(points1, points2[, focal[, pp[, method[, prob[, threshold[, maxIters[, mask]]]]]]]) -> retval, mask

 Link to this function

 findEssentialMat(points1, points2, opts)

 View Source

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 pp: term(),
 prob: term(),
 focal: term(),
 threshold: term(),
 maxIters: term(),
 method: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
Calculates an essential matrix from the corresponding points in two images.
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix[, method[, prob[, threshold[, maxIters[, mask]]]]]) -> retval, mask
Variant 2:
findEssentialMat
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

Keyword Arguments
	focal: double.
focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.

	pp: Point2d.
principal point of the camera.

	method: int.
Method for computing a fundamental matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

Has overloading in C++
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\f[A =
\begin{bmatrix}
f & 0 & x_{pp} \\
0 & f & y_{pp} \\
0 & 0 & 1
\end{bmatrix}\f]
Python prototype (for reference only):
findEssentialMat(points1, points2[, focal[, pp[, method[, prob[, threshold[, maxIters[, mask]]]]]]]) -> retval, mask

 Link to this function

 findEssentialMat(points1, points2, cameraMatrix, opts)

 View Source

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [threshold: term(), method: term(), prob: term(), maxIters: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates an essential matrix from the corresponding points in two images.
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix[, method[, prob[, threshold[, maxIters[, mask]]]]]) -> retval, mask

 Link to this function

 findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2)

 View Source

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix1: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.

	distCoeffs1: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	cameraMatrix2: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.

	distCoeffs2: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2[, method[, prob[, threshold[, mask]]]]) -> retval, mask

 Link to this function

 findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, opts)

 View Source

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [threshold: term(), method: term(), prob: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
findEssentialMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()
	cameraMatrix1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	dist_coeff1: Evision.Mat.t()
	dist_coeff2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix1, cameraMatrix2, dist_coeff1, dist_coeff2, params[, mask]) -> retval, mask
Variant 2:
Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.
Positional Arguments
	points1: Evision.Mat.t().
Array of N (N >= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix1: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.

	distCoeffs1: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	cameraMatrix2: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with P = cv::NoArray() for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.

	distCoeffs2: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.

This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.
Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2[, method[, prob[, threshold[, mask]]]]) -> retval, mask

 Link to this function

 findEssentialMat(points1, points2, cameraMatrix1, cameraMatrix2, dist_coeff1, dist_coeff2, params, opts)

 View Source

 @spec findEssentialMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findEssentialMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()
	cameraMatrix1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	dist_coeff1: Evision.Mat.t()
	dist_coeff2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Python prototype (for reference only):
findEssentialMat(points1, points2, cameraMatrix1, cameraMatrix2, dist_coeff1, dist_coeff2, params[, mask]) -> retval, mask

 Link to this function

 findFundamentalMat(points1, points2)

 View Source

 @spec findFundamentalMat(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findFundamentalMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()

Keyword Arguments
	method: int.
	ransacReprojThreshold: double.
	confidence: double.

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findFundamentalMat(points1, points2[, method[, ransacReprojThreshold[, confidence[, mask]]]]) -> retval, mask

 Link to this function

 findFundamentalMat(points1, points2, opts)

 View Source

 @spec findFundamentalMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [confidence: term(), method: term(), ransacReprojThreshold: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findFundamentalMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
findFundamentalMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findFundamentalMat(points1, points2, params[, mask]) -> retval, mask
Variant 2:
findFundamentalMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()

Keyword Arguments
	method: int.
	ransacReprojThreshold: double.
	confidence: double.

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findFundamentalMat(points1, points2[, method[, ransacReprojThreshold[, confidence[, mask]]]]) -> retval, mask

 Link to this function

 findFundamentalMat(points1, points2, params, opts)

 View Source

 @spec findFundamentalMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findFundamentalMat
Positional Arguments
	points1: Evision.Mat.t()
	points2: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findFundamentalMat(points1, points2, params[, mask]) -> retval, mask

 Link to this function

 findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters)

 View Source

 @spec findFundamentalMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates a fundamental matrix from the corresponding points in two images.
Positional Arguments
	points1: Evision.Mat.t().
Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	method: int.
Method for computing a fundamental matrix.
	@ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
	@ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
	@ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
	@ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$

	ransacReprojThreshold: double.
Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	confidence: double.
Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
optional output mask

The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively.
The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions (\f$9 \times 3\f$ matrix that stores all 3
matrices sequentially).
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
#stereoRectifyUncalibrated to compute the rectification transformation. :
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
Mat fundamental_matrix =
findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
Python prototype (for reference only):
findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters[, mask]) -> retval, mask

 Link to this function

 findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters, opts)

 View Source

 @spec findFundamentalMat(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates a fundamental matrix from the corresponding points in two images.
Positional Arguments
	points1: Evision.Mat.t().
Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	method: int.
Method for computing a fundamental matrix.
	@ref FM_7POINT for a 7-point algorithm. \f$N = 7\f$
	@ref FM_8POINT for an 8-point algorithm. \f$N \ge 8\f$
	@ref FM_RANSAC for the RANSAC algorithm. \f$N \ge 8\f$
	@ref FM_LMEDS for the LMedS algorithm. \f$N \ge 8\f$

	ransacReprojThreshold: double.
Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

	confidence: double.
Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.

	maxIters: int.
The maximum number of robust method iterations.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
optional output mask

The epipolar geometry is described by the following equation:
\f[[p_2; 1]^T F [p_1; 1] = 0\f]
where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
second images, respectively.
The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions (\f$9 \times 3\f$ matrix that stores all 3
matrices sequentially).
The calculated fundamental matrix may be passed further to #computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
#stereoRectifyUncalibrated to compute the rectification transformation. :
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
Mat fundamental_matrix =
findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
Python prototype (for reference only):
findFundamentalMat(points1, points2, method, ransacReprojThreshold, confidence, maxIters[, mask]) -> retval, mask

 Link to this function

 findHomography(srcPoints, dstPoints)

 View Source

 @spec findHomography(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Finds a perspective transformation between two planes.
Positional Arguments
	srcPoints: Evision.Mat.t().
Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector\<Point2f> .

	dstPoints: Evision.Mat.t().
Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector\<Point2f> .

Keyword Arguments
	method: int.
Method used to compute a homography matrix. The following methods are possible:
	0 - a regular method using all the points, i.e., the least squares method
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
	@ref RHO - PROSAC-based robust method

	ransacReprojThreshold: double.
Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} (\texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f]
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.

	maxIters: int.
The maximum number of RANSAC iterations.

	confidence: double.
Confidence level, between 0 and 1.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Optional output mask set by a robust method (RANSAC or LMeDS). Note that the input
mask values are ignored.

The function finds and returns the perspective transformation \f$H\f$ between the source and the
destination planes:
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
so that the back-projection error
\f[\sum _i \left (x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right)^2+ \left (y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right)^2\f]
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs (\f$srcPoints_i\f$, \f$dstPoints_i\f$) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
cannot be estimated, an empty one will be returned.
@sa
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform
Python prototype (for reference only):
findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask[, maxIters[, confidence]]]]]) -> retval, mask

 Link to this function

 findHomography(srcPoints, dstPoints, opts)

 View Source

 @spec findHomography(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 confidence: term(),
 method: term(),
 ransacReprojThreshold: term(),
 maxIters: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findHomography(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
findHomography
Positional Arguments
	srcPoints: Evision.Mat.t()
	dstPoints: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findHomography(srcPoints, dstPoints, params[, mask]) -> retval, mask
Variant 2:
Finds a perspective transformation between two planes.
Positional Arguments
	srcPoints: Evision.Mat.t().
Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector\<Point2f> .

	dstPoints: Evision.Mat.t().
Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector\<Point2f> .

Keyword Arguments
	method: int.
Method used to compute a homography matrix. The following methods are possible:
	0 - a regular method using all the points, i.e., the least squares method
	@ref RANSAC - RANSAC-based robust method
	@ref LMEDS - Least-Median robust method
	@ref RHO - PROSAC-based robust method

	ransacReprojThreshold: double.
Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} (\texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f]
then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.

	maxIters: int.
The maximum number of RANSAC iterations.

	confidence: double.
Confidence level, between 0 and 1.

Return
	retval: Evision.Mat.t()

	mask: Evision.Mat.t().
Optional output mask set by a robust method (RANSAC or LMeDS). Note that the input
mask values are ignored.

The function finds and returns the perspective transformation \f$H\f$ between the source and the
destination planes:
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
so that the back-projection error
\f[\sum _i \left (x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right)^2+ \left (y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right)^2\f]
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs (\f$srcPoints_i\f$, \f$dstPoints_i\f$) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
cannot be estimated, an empty one will be returned.
@sa
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform
Python prototype (for reference only):
findHomography(srcPoints, dstPoints[, method[, ransacReprojThreshold[, mask[, maxIters[, confidence]]]]]) -> retval, mask

 Link to this function

 findHomography(srcPoints, dstPoints, params, opts)

 View Source

 @spec findHomography(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.UsacParams.t(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findHomography
Positional Arguments
	srcPoints: Evision.Mat.t()
	dstPoints: Evision.Mat.t()
	params: Evision.UsacParams.t()

Return
	retval: Evision.Mat.t()
	mask: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findHomography(srcPoints, dstPoints, params[, mask]) -> retval, mask

 Link to this function

 findNonZero(src)

 View Source

 @spec findNonZero(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the list of locations of non-zero pixels
Positional Arguments
	src: Evision.Mat.t().
single-channel array

Return
	idx: Evision.Mat.t().
the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input

Given a binary matrix (likely returned from an operation such
as threshold(), compare(), >, ==, etc, return all of
the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
For example:
cv::Mat binaryImage; // input, binary image
cv::Mat locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations.at<Point>(i);
or
cv::Mat binaryImage; // input, binary image
vector<Point> locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations[i];
Python prototype (for reference only):
findNonZero(src[, idx]) -> idx

 Link to this function

 findNonZero(src, opts)

 View Source

 @spec findNonZero(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the list of locations of non-zero pixels
Positional Arguments
	src: Evision.Mat.t().
single-channel array

Return
	idx: Evision.Mat.t().
the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input

Given a binary matrix (likely returned from an operation such
as threshold(), compare(), >, ==, etc, return all of
the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
For example:
cv::Mat binaryImage; // input, binary image
cv::Mat locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations.at<Point>(i);
or
cv::Mat binaryImage; // input, binary image
vector<Point> locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations[i];
Python prototype (for reference only):
findNonZero(src[, idx]) -> idx

 Link to this function

 findTransformECC(templateImage, inputImage, warpMatrix)

 View Source

 @spec findTransformECC(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

findTransformECC
Positional Arguments
	templateImage: Evision.Mat.t()
	inputImage: Evision.Mat.t()

Keyword Arguments
	motionType: int.
	criteria: TermCriteria.
	inputMask: Evision.Mat.t().

Return
	retval: double
	warpMatrix: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
findTransformECC(templateImage, inputImage, warpMatrix[, motionType[, criteria[, inputMask]]]) -> retval, warpMatrix

 Link to this function

 findTransformECC(templateImage, inputImage, warpMatrix, opts)

 View Source

 @spec findTransformECC(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [motionType: term(), criteria: term(), inputMask: term()] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

findTransformECC
Positional Arguments
	templateImage: Evision.Mat.t()
	inputImage: Evision.Mat.t()

Keyword Arguments
	motionType: int.
	criteria: TermCriteria.
	inputMask: Evision.Mat.t().

Return
	retval: double
	warpMatrix: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
findTransformECC(templateImage, inputImage, warpMatrix[, motionType[, criteria[, inputMask]]]) -> retval, warpMatrix

 Link to this function

 findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria, inputMask, gaussFiltSize)

 View Source

 @spec findTransformECC(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 {integer(), integer(), number()},
 Evision.Mat.maybe_mat_in(),
 integer()
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
Positional Arguments
	templateImage: Evision.Mat.t().
single-channel template image; CV_8U or CV_32F array.

	inputImage: Evision.Mat.t().
single-channel input image which should be warped with the final warpMatrix in
order to provide an image similar to templateImage, same type as templateImage.

	motionType: int.
parameter, specifying the type of motion:
	MOTION_TRANSLATION sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
estimated.
	MOTION_EUCLIDEAN sets a Euclidean (rigid) transformation as motion model; three
parameters are estimated; warpMatrix is \f$2\times 3\f$.
	MOTION_AFFINE sets an affine motion model (DEFAULT); six parameters are estimated;
warpMatrix is \f$2\times 3\f$.
	MOTION_HOMOGRAPHY sets a homography as a motion model; eight parameters are
estimated;`warpMatrix` is \f$3\times 3\f$.

	criteria: TermCriteria.
parameter, specifying the termination criteria of the ECC algorithm;
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
Default values are shown in the declaration above.

	inputMask: Evision.Mat.t().
An optional mask to indicate valid values of inputImage.

	gaussFiltSize: int.
An optional value indicating size of gaussian blur filter; (DEFAULT: 5)

Return
	retval: double

	warpMatrix: Evision.Mat.t().
floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).

The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
(@cite EP08), that is
\f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
where
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
correlation coefficient, that is the correlation coefficient between the template image and the
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
row is ignored.
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
area-based alignment that builds on intensity similarities. In essence, the function updates the
initial transformation that roughly aligns the images. If this information is missing, the identity
warp (unity matrix) is used as an initialization. Note that if images undergo strong
displacements/rotations, an initial transformation that roughly aligns the images is necessary
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
content approximately). Use inverse warping in the second image to take an image close to the first
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
an exception if algorithm does not converges.
@sa
computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
Python prototype (for reference only):
findTransformECC(templateImage, inputImage, warpMatrix, motionType, criteria, inputMask, gaussFiltSize) -> retval, warpMatrix

 Link to this function

 fitEllipse(points)

 View Source

 @spec fitEllipse(Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

Fits an ellipse around a set of 2D points.
Positional Arguments
	points: Evision.Mat.t().
Input 2D point set, stored in std::vector\<> or Mat

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
is used. Developer should keep in mind that it is possible that the returned
ellipse/rotatedRect data contains negative indices, due to the data points being close to the
border of the containing Mat element.
Python prototype (for reference only):
fitEllipse(points) -> retval

 Link to this function

 fitEllipseAMS(points)

 View Source

 @spec fitEllipseAMS(Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

Fits an ellipse around a set of 2D points.
Positional Arguments
	points: Evision.Mat.t().
Input 2D point set, stored in std::vector\<> or Mat

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

The function calculates the ellipse that fits a set of 2D points.
It returns the rotated rectangle in which the ellipse is inscribed.
The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
by imposing the condition that \f$ A^T (D_x^T D_x + D_y^T D_y) A = 1 \f$ where
the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
respect to x and y. The matrices are formed row by row applying the following to
each of the points in the set:
\f{align}{
D(i,:)&=\left{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right} &
D_x(i,:)&=\left{2 x_i,y_i,0,1,0,0\right} &
D_y(i,:)&=\left{0,x_i,2 y_i,0,1,0\right}
\f}
The AMS method minimizes the cost function
\f{equation}{
\epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T }
\f}
The minimum cost is found by solving the generalized eigenvalue problem.
\f{equation*}{
D^T D A = \lambda \left(D_x^T D_x + D_y^T D_y\right) A
\f}
Python prototype (for reference only):
fitEllipseAMS(points) -> retval

 Link to this function

 fitEllipseDirect(points)

 View Source

 @spec fitEllipseDirect(Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

Fits an ellipse around a set of 2D points.
Positional Arguments
	points: Evision.Mat.t().
Input 2D point set, stored in std::vector\<> or Mat

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

The function calculates the ellipse that fits a set of 2D points.
It returns the rotated rectangle in which the ellipse is inscribed.
The Direct least square (Direct) method by @cite Fitzgibbon1999 is used.
For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
and as the coefficients can be arbitrarily scaled is not overly restrictive.
\f{equation}{
\epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
0 & 0 & 2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{matrix} \right)
\f}
The minimum cost is found by solving the generalized eigenvalue problem.
\f{equation}{
D^T D A = \lambda \left(C\right) A
\f}
The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
\f{equation*}{
A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u}
\f}
The scaling factor guarantees that \f$A^T C A =1\f$.
Python prototype (for reference only):
fitEllipseDirect(points) -> retval

 Link to this function

 fitLine(points, distType, param, reps, aeps)

 View Source

 @spec fitLine(Evision.Mat.maybe_mat_in(), integer(), number(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Fits a line to a 2D or 3D point set.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D or 3D points, stored in std::vector\<> or Mat.

	distType: int.
Distance used by the M-estimator, see #DistanceTypes

	param: double.
Numerical parameter (C) for some types of distances. If it is 0, an optimal value
is chosen.

	reps: double.
Sufficient accuracy for the radius (distance between the coordinate origin and the line).

	aeps: double.
Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.

Return
	line: Evision.Mat.t().
Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
and (x0, y0, z0) is a point on the line.

The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
of the following:
	DIST_L2
\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]

	DIST_L1
\f[\rho (r) = r\f]

	DIST_L12
\f[\rho (r) = 2 \cdot (\sqrt{1 + \frac{r^2}{2}} - 1)\f]

	DIST_FAIR
\f[\rho \left (r \right) = C^2 \cdot \left (\frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right) \quad \text{where} \quad C=1.3998\f]

	DIST_WELSCH
\f[\rho \left (r \right) = \frac{C^2}{2} \cdot \left (1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right) \quad \text{where} \quad C=2.9846\f]

	DIST_HUBER
\f[\rho (r) = \fork{r^2/2}{if (r < C)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]

The algorithm is based on the M-estimator (http://en.wikipedia.org/wiki/M-estimator) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$.
Python prototype (for reference only):
fitLine(points, distType, param, reps, aeps[, line]) -> line

 Link to this function

 fitLine(points, distType, param, reps, aeps, opts)

 View Source

 @spec fitLine(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Fits a line to a 2D or 3D point set.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D or 3D points, stored in std::vector\<> or Mat.

	distType: int.
Distance used by the M-estimator, see #DistanceTypes

	param: double.
Numerical parameter (C) for some types of distances. If it is 0, an optimal value
is chosen.

	reps: double.
Sufficient accuracy for the radius (distance between the coordinate origin and the line).

	aeps: double.
Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.

Return
	line: Evision.Mat.t().
Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
and (x0, y0, z0) is a point on the line.

The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
of the following:
	DIST_L2
\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f]

	DIST_L1
\f[\rho (r) = r\f]

	DIST_L12
\f[\rho (r) = 2 \cdot (\sqrt{1 + \frac{r^2}{2}} - 1)\f]

	DIST_FAIR
\f[\rho \left (r \right) = C^2 \cdot \left (\frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right) \quad \text{where} \quad C=1.3998\f]

	DIST_WELSCH
\f[\rho \left (r \right) = \frac{C^2}{2} \cdot \left (1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right) \quad \text{where} \quad C=2.9846\f]

	DIST_HUBER
\f[\rho (r) = \fork{r^2/2}{if (r < C)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]

The algorithm is based on the M-estimator (http://en.wikipedia.org/wiki/M-estimator) technique
that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$.
Python prototype (for reference only):
fitLine(points, distType, param, reps, aeps[, line]) -> line

 Link to this function

 flip(src, flipCode)

 View Source

 @spec flip(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Flips a 2D array around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.Mat.t().
input array.

	flipCode: int.
a flag to specify how to flip the array; 0 means
flipping around the x-axis and positive value (for example, 1) means
flipping around y-axis. Negative value (for example, -1) means flipping
around both axes.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::flip flips the array in one of three different ways (row
and column indices are 0-based):
\f[\texttt{dst} _{ij} =
\left\{
\begin{array}{l l}
\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
\end{array}
\right.\f]
The example scenarios of using the function are the following:
 Vertical flipping of the image (flipCode == 0) to switch between
top-left and bottom-left image origin. This is a typical operation
in video processing on Microsoft Windows* OS.
 Horizontal flipping of the image with the subsequent horizontal
shift and absolute difference calculation to check for a
vertical-axis symmetry (flipCode > 0).
 Simultaneous horizontal and vertical flipping of the image with
the subsequent shift and absolute difference calculation to check
for a central symmetry (flipCode \< 0).
 Reversing the order of point arrays (flipCode > 0 or
flipCode == 0).
@sa transpose , repeat , completeSymm
Python prototype (for reference only):
flip(src, flipCode[, dst]) -> dst

 Link to this function

 flip(src, flipCode, opts)

 View Source

 @spec flip(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Flips a 2D array around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.Mat.t().
input array.

	flipCode: int.
a flag to specify how to flip the array; 0 means
flipping around the x-axis and positive value (for example, 1) means
flipping around y-axis. Negative value (for example, -1) means flipping
around both axes.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::flip flips the array in one of three different ways (row
and column indices are 0-based):
\f[\texttt{dst} _{ij} =
\left\{
\begin{array}{l l}
\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
\end{array}
\right.\f]
The example scenarios of using the function are the following:
 Vertical flipping of the image (flipCode == 0) to switch between
top-left and bottom-left image origin. This is a typical operation
in video processing on Microsoft Windows* OS.
 Horizontal flipping of the image with the subsequent horizontal
shift and absolute difference calculation to check for a
vertical-axis symmetry (flipCode > 0).
 Simultaneous horizontal and vertical flipping of the image with
the subsequent shift and absolute difference calculation to check
for a central symmetry (flipCode \< 0).
 Reversing the order of point arrays (flipCode > 0 or
flipCode == 0).
@sa transpose , repeat , completeSymm
Python prototype (for reference only):
flip(src, flipCode[, dst]) -> dst

 Link to this function

 flipND(src, axis)

 View Source

 @spec flipND(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Flips a n-dimensional at given axis
Positional Arguments
	src: Evision.Mat.t().
input array

	axis: int.
axis that performs a flip on. 0 <= axis < src.dims.

Return
	dst: Evision.Mat.t().
output array that has the same shape of src

Python prototype (for reference only):
flipND(src, axis[, dst]) -> dst

 Link to this function

 flipND(src, axis, opts)

 View Source

 @spec flipND(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Flips a n-dimensional at given axis
Positional Arguments
	src: Evision.Mat.t().
input array

	axis: int.
axis that performs a flip on. 0 <= axis < src.dims.

Return
	dst: Evision.Mat.t().
output array that has the same shape of src

Python prototype (for reference only):
flipND(src, axis[, dst]) -> dst

 Link to this function

 floodFill(image, mask, seedPoint, newVal)

 View Source

 @spec floodFill(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(),
 {number(), number(), number(), number()}}
 | {:error, String.t()}

Fills a connected component with the given color.
Positional Arguments
	seedPoint: Point.
Starting point.

	newVal: Scalar.
New value of the repainted domain pixels.

Keyword Arguments
	loDiff: Scalar.
Maximal lower brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.

	upDiff: Scalar.
Maximal upper brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.

	flags: int.
Operation flags. The first 8 bits contain a connectivity value. The default value of
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
the mask (the default value is 1). For example, 4 | (255 \<\< 8) will consider 4 nearest
neighbours and fill the mask with a value of 255. The following additional options occupy higher
bits and therefore may be further combined with the connectivity and mask fill values using
bit-wise or (|), see #FloodFillFlags.

Return
	retval: int

	image: Evision.Mat.t().
Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
the details below.

	mask: Evision.Mat.t().
Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
input and output parameter, you must take responsibility of initializing it.
Flood-filling cannot go across non-zero pixels in the input mask. For example,
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
as described below. Additionally, the function fills the border of the mask with ones to simplify
internal processing. It is therefore possible to use the same mask in multiple calls to the function
to make sure the filled areas do not overlap.

	rect: Rect*.
Optional output parameter set by the function to the minimum bounding rectangle of the
repainted domain.

The function cv::floodFill fills a connected component starting from the seed point with the specified
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
	in case of a grayscale image and floating range
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]

	in case of a grayscale image and fixed range
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]

	in case of a color image and floating range
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]

	in case of a color image and fixed range
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]

where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
component. That is, to be added to the connected component, a color/brightness of the pixel should
be close enough to:
	Color/brightness of one of its neighbors that already belong to the connected component in case
of a floating range.

	Color/brightness of the seed point in case of a fixed range.

Use these functions to either mark a connected component with the specified color in-place, or build
a mask and then extract the contour, or copy the region to another image, and so on.
Note: Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
pixel \f$(x+1, y+1)\f$ in the mask .
@sa findContours
Python prototype (for reference only):
floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, image, mask, rect

 Link to this function

 floodFill(image, mask, seedPoint, newVal, opts)

 View Source

 @spec floodFill(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [loDiff: term(), flags: term(), upDiff: term()] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(),
 {number(), number(), number(), number()}}
 | {:error, String.t()}

Fills a connected component with the given color.
Positional Arguments
	seedPoint: Point.
Starting point.

	newVal: Scalar.
New value of the repainted domain pixels.

Keyword Arguments
	loDiff: Scalar.
Maximal lower brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.

	upDiff: Scalar.
Maximal upper brightness/color difference between the currently observed pixel and
one of its neighbors belonging to the component, or a seed pixel being added to the component.

	flags: int.
Operation flags. The first 8 bits contain a connectivity value. The default value of
4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
the mask (the default value is 1). For example, 4 | (255 \<\< 8) will consider 4 nearest
neighbours and fill the mask with a value of 255. The following additional options occupy higher
bits and therefore may be further combined with the connectivity and mask fill values using
bit-wise or (|), see #FloodFillFlags.

Return
	retval: int

	image: Evision.Mat.t().
Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
the details below.

	mask: Evision.Mat.t().
Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
input and output parameter, you must take responsibility of initializing it.
Flood-filling cannot go across non-zero pixels in the input mask. For example,
an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
as described below. Additionally, the function fills the border of the mask with ones to simplify
internal processing. It is therefore possible to use the same mask in multiple calls to the function
to make sure the filled areas do not overlap.

	rect: Rect*.
Optional output parameter set by the function to the minimum bounding rectangle of the
repainted domain.

The function cv::floodFill fills a connected component starting from the seed point with the specified
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
	in case of a grayscale image and floating range
\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]

	in case of a grayscale image and fixed range
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]

	in case of a color image and floating range
\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]

	in case of a color image and fixed range
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
and
\f[\texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (\texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]

where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
component. That is, to be added to the connected component, a color/brightness of the pixel should
be close enough to:
	Color/brightness of one of its neighbors that already belong to the connected component in case
of a floating range.

	Color/brightness of the seed point in case of a fixed range.

Use these functions to either mark a connected component with the specified color in-place, or build
a mask and then extract the contour, or copy the region to another image, and so on.
Note: Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
pixel \f$(x+1, y+1)\f$ in the mask .
@sa findContours
Python prototype (for reference only):
floodFill(image, mask, seedPoint, newVal[, loDiff[, upDiff[, flags]]]) -> retval, image, mask, rect

 Link to this function

 gaussianBlur(src, ksize, sigmaX)

 View Source

 @spec gaussianBlur(Evision.Mat.maybe_mat_in(), {number(), number()}, number()) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using a Gaussian filter.
Positional Arguments
	src: Evision.Mat.t().
input image; the image can have any number of channels, which are processed
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	ksize: Size.
Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
positive and odd. Or, they can be zero's and then they are computed from sigma.

	sigmaX: double.
Gaussian kernel standard deviation in X direction.

Keyword Arguments
	sigmaY: double.
Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
respectively (see #getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function convolves the source image with the specified Gaussian kernel. In-place filtering is
supported.
@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
Python prototype (for reference only):
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

 Link to this function

 gaussianBlur(src, ksize, sigmaX, opts)

 View Source

 @spec gaussianBlur(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 [borderType: term(), sigmaY: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Blurs an image using a Gaussian filter.
Positional Arguments
	src: Evision.Mat.t().
input image; the image can have any number of channels, which are processed
independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	ksize: Size.
Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
positive and odd. Or, they can be zero's and then they are computed from sigma.

	sigmaX: double.
Gaussian kernel standard deviation in X direction.

Keyword Arguments
	sigmaY: double.
Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
respectively (see #getGaussianKernel for details); to fully control the result regardless of
possible future modifications of all this semantics, it is recommended to specify all of ksize,
sigmaX, and sigmaY.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function convolves the source image with the specified Gaussian kernel. In-place filtering is
supported.
@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
Python prototype (for reference only):
GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

 Link to this function

 gemm(src1, src2, alpha, src3, beta)

 View Source

 @spec gemm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.Mat.t().
first multiplied input matrix that could be real(CV_32FC1,
CV_64FC1) or complex(CV_32FC2, CV_64FC2).

	src2: Evision.Mat.t().
second multiplied input matrix of the same type as src1.

	alpha: double.
weight of the matrix product.

	src3: Evision.Mat.t().
third optional delta matrix added to the matrix product; it
should have the same type as src1 and src2.

	beta: double.
weight of src3.

Keyword Arguments
	flags: int.
operation flags (cv::GemmFlags)

Return
	dst: Evision.Mat.t().
output matrix; it has the proper size and the same type as
input matrices.

The function cv::gemm performs generalized matrix multiplication similar to the
gemm functions in BLAS level 3. For example,
gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)
corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
In case of complex (two-channel) data, performed a complex matrix
multiplication.
The function can be replaced with a matrix expression. For example, the
above call can be replaced with:
dst = alpha*src1.t()*src2 + beta*src3.t();
@sa mulTransposed , transform
Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags]]) -> dst

 Link to this function

 gemm(src1, src2, alpha, src3, beta, opts)

 View Source

 @spec gemm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{:flags, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.Mat.t().
first multiplied input matrix that could be real(CV_32FC1,
CV_64FC1) or complex(CV_32FC2, CV_64FC2).

	src2: Evision.Mat.t().
second multiplied input matrix of the same type as src1.

	alpha: double.
weight of the matrix product.

	src3: Evision.Mat.t().
third optional delta matrix added to the matrix product; it
should have the same type as src1 and src2.

	beta: double.
weight of src3.

Keyword Arguments
	flags: int.
operation flags (cv::GemmFlags)

Return
	dst: Evision.Mat.t().
output matrix; it has the proper size and the same type as
input matrices.

The function cv::gemm performs generalized matrix multiplication similar to the
gemm functions in BLAS level 3. For example,
gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)
corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
In case of complex (two-channel) data, performed a complex matrix
multiplication.
The function can be replaced with a matrix expression. For example, the
above call can be replaced with:
dst = alpha*src1.t()*src2 + beta*src3.t();
@sa mulTransposed , transform
Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags]]) -> dst

 Link to this function

 getAffineTransform(src, dst)

 View Source

 @spec getAffineTransform(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

getAffineTransform
Positional Arguments
	src: Evision.Mat.t()
	dst: Evision.Mat.t()

Return
	retval: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
getAffineTransform(src, dst) -> retval

 Link to this function

 getBuildInformation()

 View Source

 @spec getBuildInformation() :: binary() | {:error, String.t()}

Returns full configuration time cmake output.
Return
	retval: String

Returned value is raw cmake output including version control system revision, compiler version,
compiler flags, enabled modules and third party libraries, etc. Output format depends on target
architecture.
Python prototype (for reference only):
getBuildInformation() -> retval

 Link to this function

 getCPUFeaturesLine()

 View Source

 @spec getCPUFeaturesLine() :: binary() | {:error, String.t()}

Returns list of CPU features enabled during compilation.
Return
	retval: string

Returned value is a string containing space separated list of CPU features with following markers:
	no markers - baseline features
	prefix * - features enabled in dispatcher
	suffix ? - features enabled but not available in HW

Example: SSE SSE2 SSE3 *SSE4.1 *SSE4.2 *FP16 *AVX *AVX2 *AVX512-SKX?
Python prototype (for reference only):
getCPUFeaturesLine() -> retval

 Link to this function

 getCPUTickCount()

 View Source

 @spec getCPUTickCount() :: integer() | {:error, String.t()}

Returns the number of CPU ticks.
Return
	retval: int64

The function returns the current number of CPU ticks on some architectures (such as x86, x64,
PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for
very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU
systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU
with its own counter. So, theoretically (and practically) the subsequent calls to the function do
not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU
frequency depending on the load, the number of CPU clocks spent in some code cannot be directly
converted to time units. Therefore, getTickCount is generally a preferable solution for measuring
execution time.
Python prototype (for reference only):
getCPUTickCount() -> retval

 Link to this function

 getDefaultNewCameraMatrix(cameraMatrix)

 View Source

 @spec getDefaultNewCameraMatrix(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the default new camera matrix.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix.

Keyword Arguments
	imgsize: Size.
Camera view image size in pixels.

	centerPrincipalPoint: bool.
Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.

Return
	retval: Evision.Mat.t()

The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\f[\begin{bmatrix} f_x && 0 && (\texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && (\texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.
Python prototype (for reference only):
getDefaultNewCameraMatrix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) -> retval

 Link to this function

 getDefaultNewCameraMatrix(cameraMatrix, opts)

 View Source

 @spec getDefaultNewCameraMatrix(
 Evision.Mat.maybe_mat_in(),
 [centerPrincipalPoint: term(), imgsize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Returns the default new camera matrix.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix.

Keyword Arguments
	imgsize: Size.
Camera view image size in pixels.

	centerPrincipalPoint: bool.
Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.

Return
	retval: Evision.Mat.t()

The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\f[\begin{bmatrix} f_x && 0 && (\texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && (\texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f]
where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.
Python prototype (for reference only):
getDefaultNewCameraMatrix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) -> retval

 Link to this function

 getDerivKernels(dx, dy, ksize)

 View Source

 @spec getDerivKernels(integer(), integer(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Returns filter coefficients for computing spatial image derivatives.
Positional Arguments
	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

	ksize: int.
Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.

Keyword Arguments
	normalize: bool.
Flag indicating whether to normalize (scale down) the filter coefficients or not.
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
going to filter floating-point images, you are likely to use the normalized kernels. But if you
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
all the fractional bits, you may want to set normalize=false .

	ktype: int.
Type of filter coefficients. It can be CV_32f or CV_64F .

Return
	kx: Evision.Mat.t().
Output matrix of row filter coefficients. It has the type ktype .

	ky: Evision.Mat.t().
Output matrix of column filter coefficients. It has the type ktype .

The function computes and returns the filter coefficients for spatial image derivatives. When
ksize=FILTER_SCHARR, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
Python prototype (for reference only):
getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky

 Link to this function

 getDerivKernels(dx, dy, ksize, opts)

 View Source

 @spec getDerivKernels(
 integer(),
 integer(),
 integer(),
 [normalize: term(), ktype: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Returns filter coefficients for computing spatial image derivatives.
Positional Arguments
	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

	ksize: int.
Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.

Keyword Arguments
	normalize: bool.
Flag indicating whether to normalize (scale down) the filter coefficients or not.
Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
going to filter floating-point images, you are likely to use the normalized kernels. But if you
compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
all the fractional bits, you may want to set normalize=false .

	ktype: int.
Type of filter coefficients. It can be CV_32f or CV_64F .

Return
	kx: Evision.Mat.t().
Output matrix of row filter coefficients. It has the type ktype .

	ky: Evision.Mat.t().
Output matrix of column filter coefficients. It has the type ktype .

The function computes and returns the filter coefficients for spatial image derivatives. When
ksize=FILTER_SCHARR, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
Python prototype (for reference only):
getDerivKernels(dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) -> kx, ky

 Link to this function

 getFontScaleFromHeight(fontFace, pixelHeight)

 View Source

 @spec getFontScaleFromHeight(integer(), integer()) :: number() | {:error, String.t()}

Calculates the font-specific size to use to achieve a given height in pixels.
Positional Arguments
	fontFace: int.
Font to use, see cv::HersheyFonts.

	pixelHeight: int.
Pixel height to compute the fontScale for

Keyword Arguments
	thickness: int.
Thickness of lines used to render the text.See putText for details.

Return
	retval: double

@return The fontSize to use for cv::putText
@see cv::putText
Python prototype (for reference only):
getFontScaleFromHeight(fontFace, pixelHeight[, thickness]) -> retval

 Link to this function

 getFontScaleFromHeight(fontFace, pixelHeight, opts)

 View Source

 @spec getFontScaleFromHeight(integer(), integer(), [{:thickness, term()}] | nil) ::
 number() | {:error, String.t()}

Calculates the font-specific size to use to achieve a given height in pixels.
Positional Arguments
	fontFace: int.
Font to use, see cv::HersheyFonts.

	pixelHeight: int.
Pixel height to compute the fontScale for

Keyword Arguments
	thickness: int.
Thickness of lines used to render the text.See putText for details.

Return
	retval: double

@return The fontSize to use for cv::putText
@see cv::putText
Python prototype (for reference only):
getFontScaleFromHeight(fontFace, pixelHeight[, thickness]) -> retval

 Link to this function

 getGaborKernel(ksize, sigma, theta, lambd, gamma)

 View Source

 @spec getGaborKernel({number(), number()}, number(), number(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Returns Gabor filter coefficients.
Positional Arguments
	ksize: Size.
Size of the filter returned.

	sigma: double.
Standard deviation of the gaussian envelope.

	theta: double.
Orientation of the normal to the parallel stripes of a Gabor function.

	lambd: double.
Wavelength of the sinusoidal factor.

	gamma: double.
Spatial aspect ratio.

Keyword Arguments
	psi: double.
Phase offset.

	ktype: int.
Type of filter coefficients. It can be CV_32F or CV_64F .

Return
	retval: Evision.Mat.t()

For more details about gabor filter equations and parameters, see: Gabor
Filter.
Python prototype (for reference only):
getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval

 Link to this function

 getGaborKernel(ksize, sigma, theta, lambd, gamma, opts)

 View Source

 @spec getGaborKernel(
 {number(), number()},
 number(),
 number(),
 number(),
 number(),
 [psi: term(), ktype: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Returns Gabor filter coefficients.
Positional Arguments
	ksize: Size.
Size of the filter returned.

	sigma: double.
Standard deviation of the gaussian envelope.

	theta: double.
Orientation of the normal to the parallel stripes of a Gabor function.

	lambd: double.
Wavelength of the sinusoidal factor.

	gamma: double.
Spatial aspect ratio.

Keyword Arguments
	psi: double.
Phase offset.

	ktype: int.
Type of filter coefficients. It can be CV_32F or CV_64F .

Return
	retval: Evision.Mat.t()

For more details about gabor filter equations and parameters, see: Gabor
Filter.
Python prototype (for reference only):
getGaborKernel(ksize, sigma, theta, lambd, gamma[, psi[, ktype]]) -> retval

 Link to this function

 getGaussianKernel(ksize, sigma)

 View Source

 @spec getGaussianKernel(integer(), number()) :: Evision.Mat.t() | {:error, String.t()}

Returns Gaussian filter coefficients.
Positional Arguments
	ksize: int.
Aperture size. It should be odd (\f$\texttt{ksize} \mod 2 = 1\f$) and positive.

	sigma: double.
Gaussian standard deviation. If it is non-positive, it is computed from ksize as
sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8.

Keyword Arguments
	ktype: int.
Type of filter coefficients. It can be CV_32F or CV_64F .

Return
	retval: Evision.Mat.t()

The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
coefficients:
\f[G_i= \alpha *e^{-(i-(\texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
You may also use the higher-level GaussianBlur.
@sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
Python prototype (for reference only):
getGaussianKernel(ksize, sigma[, ktype]) -> retval

 Link to this function

 getGaussianKernel(ksize, sigma, opts)

 View Source

 @spec getGaussianKernel(integer(), number(), [{:ktype, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns Gaussian filter coefficients.
Positional Arguments
	ksize: int.
Aperture size. It should be odd (\f$\texttt{ksize} \mod 2 = 1\f$) and positive.

	sigma: double.
Gaussian standard deviation. If it is non-positive, it is computed from ksize as
sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8.

Keyword Arguments
	ktype: int.
Type of filter coefficients. It can be CV_32F or CV_64F .

Return
	retval: Evision.Mat.t()

The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
coefficients:
\f[G_i= \alpha *e^{-(i-(\texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
You may also use the higher-level GaussianBlur.
@sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
Python prototype (for reference only):
getGaussianKernel(ksize, sigma[, ktype]) -> retval

 Link to this function

 getHardwareFeatureName(feature)

 View Source

 @spec getHardwareFeatureName(integer()) :: binary() | {:error, String.t()}

Returns feature name by ID
Positional Arguments
	feature: int

Return
	retval: String

Returns empty string if feature is not defined
Python prototype (for reference only):
getHardwareFeatureName(feature) -> retval

 Link to this function

 getLogLevel()

 View Source

 @spec getLogLevel() :: integer() | {:error, String.t()}

getLogLevel
Return
	retval: int

Python prototype (for reference only):
getLogLevel() -> retval

 Link to this function

 getNumberOfCPUs()

 View Source

 @spec getNumberOfCPUs() :: integer() | {:error, String.t()}

Returns the number of logical CPUs available for the process.
Return
	retval: int

Python prototype (for reference only):
getNumberOfCPUs() -> retval

 Link to this function

 getNumThreads()

 View Source

 @spec getNumThreads() :: integer() | {:error, String.t()}

Returns the number of threads used by OpenCV for parallel regions.
Return
	retval: int

Always returns 1 if OpenCV is built without threading support.
The exact meaning of return value depends on the threading framework used by OpenCV library:
	TBB - The number of threads, that OpenCV will try to use for parallel regions. If there is
any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns
default number of threads used by TBB library.

	OpenMP - An upper bound on the number of threads that could be used to form a new team.

	Concurrency - The number of threads, that OpenCV will try to use for parallel regions.

	GCD - Unsupported; returns the GCD thread pool limit (512) for compatibility.

	C= - The number of threads, that OpenCV will try to use for parallel regions, if before
called setNumThreads with threads > 0, otherwise returns the number of logical CPUs,
available for the process.

@sa setNumThreads, getThreadNum
Python prototype (for reference only):
getNumThreads() -> retval

 Link to this function

 getOptimalDFTSize(vecsize)

 View Source

 @spec getOptimalDFTSize(integer()) :: integer() | {:error, String.t()}

Returns the optimal DFT size for a given vector size.
Positional Arguments
	vecsize: int.
vector size.

Return
	retval: int

DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
pad the input data with zeros to get a bit larger array that can be transformed much faster than the
original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2)
are also processed quite efficiently.
The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
= 2 ^p^ * 3 ^q^ * 5 ^r^ for some integer p, q, r.
The function returns a negative number if vecsize is too large (very close to INT_MAX).
While the function cannot be used directly to estimate the optimal vector size for DCT transform
(since the current DCT implementation supports only even-size vectors), it can be easily processed
as getOptimalDFTSize((vecsize+1)/2)*2.
@sa dft , dct , idft , idct , mulSpectrums
Python prototype (for reference only):
getOptimalDFTSize(vecsize) -> retval

 Link to this function

 getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha)

 View Source

 @spec getOptimalNewCameraMatrix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number()
) ::
 {Evision.Mat.t(), {number(), number(), number(), number()}}
 | {:error, String.t()}

Returns the new camera intrinsic matrix based on the free scaling parameter.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

	imageSize: Size.
Original image size.

	alpha: double.
Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.

Keyword Arguments
	newImgSize: Size.
Image size after rectification. By default, it is set to imageSize .

	centerPrincipalPoint: bool.
Optional flag that indicates whether in the new camera intrinsic matrix the
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.

Return
	retval: Evision.Mat.t()

	validPixROI: Rect*.
Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in #stereoRectify .

@return new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha>0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .
Python prototype (for reference only):
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI

 Link to this function

 getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha, opts)

 View Source

 @spec getOptimalNewCameraMatrix(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 [centerPrincipalPoint: term(), newImgSize: term()] | nil
) ::
 {Evision.Mat.t(), {number(), number(), number(), number()}}
 | {:error, String.t()}

Returns the new camera intrinsic matrix based on the free scaling parameter.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

	imageSize: Size.
Original image size.

	alpha: double.
Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.

Keyword Arguments
	newImgSize: Size.
Image size after rectification. By default, it is set to imageSize .

	centerPrincipalPoint: bool.
Optional flag that indicates whether in the new camera intrinsic matrix the
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.

Return
	retval: Evision.Mat.t()

	validPixROI: Rect*.
Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in #stereoRectify .

@return new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha>0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .
Python prototype (for reference only):
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, alpha[, newImgSize[, centerPrincipalPoint]]) -> retval, validPixROI

 Link to this function

 getPerspectiveTransform(src, dst)

 View Source

 @spec getPerspectiveTransform(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates a perspective transform from four pairs of the corresponding points.
Positional Arguments
	src: Evision.Mat.t().
Coordinates of quadrangle vertices in the source image.

	dst: Evision.Mat.t().
Coordinates of the corresponding quadrangle vertices in the destination image.

Keyword Arguments
	solveMethod: int.
method passed to cv::solve (#DecompTypes)

Return
	retval: Evision.Mat.t()

The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
where
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
@sa findHomography, warpPerspective, perspectiveTransform
Python prototype (for reference only):
getPerspectiveTransform(src, dst[, solveMethod]) -> retval

 Link to this function

 getPerspectiveTransform(src, dst, opts)

 View Source

 @spec getPerspectiveTransform(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:solveMethod, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates a perspective transform from four pairs of the corresponding points.
Positional Arguments
	src: Evision.Mat.t().
Coordinates of quadrangle vertices in the source image.

	dst: Evision.Mat.t().
Coordinates of the corresponding quadrangle vertices in the destination image.

Keyword Arguments
	solveMethod: int.
method passed to cv::solve (#DecompTypes)

Return
	retval: Evision.Mat.t()

The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
where
\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
@sa findHomography, warpPerspective, perspectiveTransform
Python prototype (for reference only):
getPerspectiveTransform(src, dst[, solveMethod]) -> retval

 Link to this function

 getRectSubPix(image, patchSize, center)

 View Source

 @spec getRectSubPix(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()}
) ::
 Evision.Mat.t() | {:error, String.t()}

Retrieves a pixel rectangle from an image with sub-pixel accuracy.
Positional Arguments
	image: Evision.Mat.t().
Source image.

	patchSize: Size.
Size of the extracted patch.

	center: Point2f.
Floating point coordinates of the center of the extracted rectangle within the
source image. The center must be inside the image.

Keyword Arguments
	patchType: int.
Depth of the extracted pixels. By default, they have the same depth as src .

Return
	patch: Evision.Mat.t().
Extracted patch that has the size patchSize and the same number of channels as src .

The function getRectSubPix extracts pixels from src:
\f[patch(x, y) = src(x + \texttt{center.x} - (\texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - (\texttt{dst.rows} -1)*0.5)\f]
where the values of the pixels at non-integer coordinates are retrieved using bilinear
interpolation. Every channel of multi-channel images is processed independently. Also
the image should be a single channel or three channel image. While the center of the
rectangle must be inside the image, parts of the rectangle may be outside.
@sa warpAffine, warpPerspective
Python prototype (for reference only):
getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch

 Link to this function

 getRectSubPix(image, patchSize, center, opts)

 View Source

 @spec getRectSubPix(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 [{:patchType, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Retrieves a pixel rectangle from an image with sub-pixel accuracy.
Positional Arguments
	image: Evision.Mat.t().
Source image.

	patchSize: Size.
Size of the extracted patch.

	center: Point2f.
Floating point coordinates of the center of the extracted rectangle within the
source image. The center must be inside the image.

Keyword Arguments
	patchType: int.
Depth of the extracted pixels. By default, they have the same depth as src .

Return
	patch: Evision.Mat.t().
Extracted patch that has the size patchSize and the same number of channels as src .

The function getRectSubPix extracts pixels from src:
\f[patch(x, y) = src(x + \texttt{center.x} - (\texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - (\texttt{dst.rows} -1)*0.5)\f]
where the values of the pixels at non-integer coordinates are retrieved using bilinear
interpolation. Every channel of multi-channel images is processed independently. Also
the image should be a single channel or three channel image. While the center of the
rectangle must be inside the image, parts of the rectangle may be outside.
@sa warpAffine, warpPerspective
Python prototype (for reference only):
getRectSubPix(image, patchSize, center[, patch[, patchType]]) -> patch

 Link to this function

 getRotationMatrix2D(center, angle, scale)

 View Source

 @spec getRotationMatrix2D({number(), number()}, number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates an affine matrix of 2D rotation.
Positional Arguments
	center: Point2f.
Center of the rotation in the source image.

	angle: double.
Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
coordinate origin is assumed to be the top-left corner).

	scale: double.
Isotropic scale factor.

Return
	retval: Evision.Mat.t()

The function calculates the following matrix:
\f[\begin{bmatrix} \alpha & \beta & (1- \alpha) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha) \cdot \texttt{center.y} \end{bmatrix}\f]
where
\f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
@sa getAffineTransform, warpAffine, transform
Python prototype (for reference only):
getRotationMatrix2D(center, angle, scale) -> retval

 Link to this function

 getStructuringElement(shape, ksize)

 View Source

 @spec getStructuringElement(
 integer(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Returns a structuring element of the specified size and shape for morphological operations.
Positional Arguments
	shape: int.
Element shape that could be one of #MorphShapes

	ksize: Size.
Size of the structuring element.

Keyword Arguments
	anchor: Point.
Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
position. In other cases the anchor just regulates how much the result of the morphological
operation is shifted.

Return
	retval: Evision.Mat.t()

The function constructs and returns the structuring element that can be further passed to #erode,
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
the structuring element.
Python prototype (for reference only):
getStructuringElement(shape, ksize[, anchor]) -> retval

 Link to this function

 getStructuringElement(shape, ksize, opts)

 View Source

 @spec getStructuringElement(
 integer(),
 {number(), number()},
 [{:anchor, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Returns a structuring element of the specified size and shape for morphological operations.
Positional Arguments
	shape: int.
Element shape that could be one of #MorphShapes

	ksize: Size.
Size of the structuring element.

Keyword Arguments
	anchor: Point.
Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
position. In other cases the anchor just regulates how much the result of the morphological
operation is shifted.

Return
	retval: Evision.Mat.t()

The function constructs and returns the structuring element that can be further passed to #erode,
#dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
the structuring element.
Python prototype (for reference only):
getStructuringElement(shape, ksize[, anchor]) -> retval

 Link to this function

 getTextSize(text, fontFace, fontScale, thickness)

 View Source

 @spec getTextSize(binary(), integer(), number(), integer()) ::
 {{number(), number()}, integer()} | {:error, String.t()}

Calculates the width and height of a text string.
Positional Arguments
	text: String.
Input text string.

	fontFace: int.
Font to use, see #HersheyFonts.

	fontScale: double.
Font scale factor that is multiplied by the font-specific base size.

	thickness: int.
Thickness of lines used to render the text. See #putText for details.

Return
	retval: Size

	baseLine: int*.
y-coordinate of the baseline relative to the bottom-most text
point.

The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
That is, the following code renders some text, the tight box surrounding it, and the baseline: :
String text = "Funny text inside the box";
int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
double fontScale = 2;
int thickness = 3;
Mat img(600, 800, CV_8UC3, Scalar::all(0));
int baseline=0;
Size textSize = getTextSize(text, fontFace,
fontScale, thickness, &baseline);
baseline += thickness;
// center the text
Point textOrg((img.cols - textSize.width)/2,
(img.rows + textSize.height)/2);
// draw the box
rectangle(img, textOrg + Point(0, baseline),
textOrg + Point(textSize.width, -textSize.height),
Scalar(0,0,255));
// ... and the baseline first
line(img, textOrg + Point(0, thickness),
textOrg + Point(textSize.width, thickness),
Scalar(0, 0, 255));
// then put the text itself
putText(img, text, textOrg, fontFace, fontScale,
Scalar::all(255), thickness, 8);
@return The size of a box that contains the specified text.
@see putText
Python prototype (for reference only):
getTextSize(text, fontFace, fontScale, thickness) -> retval, baseLine

 Link to this function

 getThreadNum()

 View Source

 @spec getThreadNum() :: integer() | {:error, String.t()}

Returns the index of the currently executed thread within the current parallel region. Always
returns 0 if called outside of parallel region.
Return
	retval: int

@deprecated Current implementation doesn't corresponding to this documentation.
The exact meaning of the return value depends on the threading framework used by OpenCV library:
	TBB - Unsupported with current 4.1 TBB release. Maybe will be supported in future.

	OpenMP - The thread number, within the current team, of the calling thread.

	Concurrency - An ID for the virtual processor that the current context is executing on (0
for master thread and unique number for others, but not necessary 1,2,3,...).

	GCD - System calling thread's ID. Never returns 0 inside parallel region.

	C= - The index of the current parallel task.
@sa setNumThreads, getNumThreads

Python prototype (for reference only):
getThreadNum() -> retval

 Link to this function

 getTickCount()

 View Source

 @spec getTickCount() :: integer() | {:error, String.t()}

Returns the number of ticks.
Return
	retval: int64

The function returns the number of ticks after the certain event (for example, when the machine was
turned on). It can be used to initialize RNG or to measure a function execution time by reading the
tick count before and after the function call.
@sa getTickFrequency, TickMeter
Python prototype (for reference only):
getTickCount() -> retval

 Link to this function

 getTickFrequency()

 View Source

 @spec getTickFrequency() :: number() | {:error, String.t()}

Returns the number of ticks per second.
Return
	retval: double

The function returns the number of ticks per second. That is, the following code computes the
execution time in seconds:
double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();
@sa getTickCount, TickMeter
Python prototype (for reference only):
getTickFrequency() -> retval

 Link to this function

 getTrackbarPos(trackbarname, winname)

 View Source

 @spec getTrackbarPos(binary(), binary()) :: integer() | {:error, String.t()}

Returns the trackbar position.
Positional Arguments
	trackbarname: String.
Name of the trackbar.

	winname: String.
Name of the window that is the parent of the trackbar.

Return
	retval: int

The function returns the current position of the specified trackbar.
Note: [Qt Backend Only] winname can be empty if the trackbar is attached to the control
panel.
Python prototype (for reference only):
getTrackbarPos(trackbarname, winname) -> retval

 Link to this function

 getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, blockSize)

 View Source

 @spec getValidDisparityROI(
 {number(), number(), number(), number()},
 {number(), number(), number(), number()},
 integer(),
 integer(),
 integer()
) :: {number(), number(), number(), number()} | {:error, String.t()}

getValidDisparityROI
Positional Arguments
	roi1: Rect
	roi2: Rect
	minDisparity: int
	numberOfDisparities: int
	blockSize: int

Return
	retval: Rect

Python prototype (for reference only):
getValidDisparityROI(roi1, roi2, minDisparity, numberOfDisparities, blockSize) -> retval

 Link to this function

 getVersionMajor()

 View Source

 @spec getVersionMajor() :: integer() | {:error, String.t()}

Returns major library version
Return
	retval: int

Python prototype (for reference only):
getVersionMajor() -> retval

 Link to this function

 getVersionMinor()

 View Source

 @spec getVersionMinor() :: integer() | {:error, String.t()}

Returns minor library version
Return
	retval: int

Python prototype (for reference only):
getVersionMinor() -> retval

 Link to this function

 getVersionRevision()

 View Source

 @spec getVersionRevision() :: integer() | {:error, String.t()}

Returns revision field of the library version
Return
	retval: int

Python prototype (for reference only):
getVersionRevision() -> retval

 Link to this function

 getVersionString()

 View Source

 @spec getVersionString() :: binary() | {:error, String.t()}

Returns library version string
Return
	retval: String

For example "3.4.1-dev".
@sa getMajorVersion, getMinorVersion, getRevisionVersion
Python prototype (for reference only):
getVersionString() -> retval

 Link to this function

 getWindowImageRect(winname)

 View Source

 @spec getWindowImageRect(binary()) ::
 {number(), number(), number(), number()} | {:error, String.t()}

Provides rectangle of image in the window.
Positional Arguments
	winname: String.
Name of the window.

Return
	retval: Rect

The function getWindowImageRect returns the client screen coordinates, width and height of the image rendering area.
@sa resizeWindow moveWindow
Python prototype (for reference only):
getWindowImageRect(winname) -> retval

 Link to this function

 getWindowProperty(winname, prop_id)

 View Source

 @spec getWindowProperty(binary(), integer()) :: number() | {:error, String.t()}

Provides parameters of a window.
Positional Arguments
	winname: String.
Name of the window.

	prop_id: int.
Window property to retrieve. The following operation flags are available: (cv::WindowPropertyFlags)

Return
	retval: double

The function getWindowProperty returns properties of a window.
@sa setWindowProperty
Python prototype (for reference only):
getWindowProperty(winname, prop_id) -> retval

 Link to this function

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance)

 View Source

 @spec goodFeaturesToTrack(Evision.Mat.maybe_mat_in(), integer(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Determines strong corners on an image.
Positional Arguments
	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set
and all detected corners are returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal) or the Harris function response (see #cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

Keyword Arguments
	mask: Evision.Mat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.

	k: double.
Free parameter of the Harris detector.

Return
	corners: Evision.Mat.t().
Output vector of detected corners.

The function finds the most prominent corners in the image or in the specified image region, as
described in @cite Shi94
	Function calculates the corner quality measure at every source image pixel using the
#cornerMinEigenVal or #cornerHarris .

	Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are
retained).

	The corners with the minimal eigenvalue less than
\f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.

	The remaining corners are sorted by the quality measure in the descending order.

	Function throws away each corner for which there is a stronger corner at a distance less than
maxDistance.

The function can be used to initialize a point-based tracker of an object.
Note: If the function is called with different values A and B of the parameter qualityLevel , and
A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
with qualityLevel=B .
@sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
Python prototype (for reference only):
goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners

 Link to this function

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, opts)

 View Source

 @spec goodFeaturesToTrack(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 [k: term(), useHarrisDetector: term(), mask: term(), blockSize: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Determines strong corners on an image.
Positional Arguments
	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set
and all detected corners are returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal) or the Harris function response (see #cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

Keyword Arguments
	mask: Evision.Mat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.

	k: double.
Free parameter of the Harris detector.

Return
	corners: Evision.Mat.t().
Output vector of detected corners.

The function finds the most prominent corners in the image or in the specified image region, as
described in @cite Shi94
	Function calculates the corner quality measure at every source image pixel using the
#cornerMinEigenVal or #cornerHarris .

	Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are
retained).

	The corners with the minimal eigenvalue less than
\f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.

	The remaining corners are sorted by the quality measure in the descending order.

	Function throws away each corner for which there is a stronger corner at a distance less than
maxDistance.

The function can be used to initialize a point-based tracker of an object.
Note: If the function is called with different values A and B of the parameter qualityLevel , and
A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
with qualityLevel=B .
@sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
Python prototype (for reference only):
goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]]) -> corners

 Link to this function

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize)

 View Source

 @spec goodFeaturesToTrack(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

goodFeaturesToTrack
Positional Arguments
	image: Evision.Mat.t()
	maxCorners: int
	qualityLevel: double
	minDistance: double
	mask: Evision.Mat.t()
	blockSize: int
	gradientSize: int

Keyword Arguments
	useHarrisDetector: bool.
	k: double.

Return
	corners: Evision.Mat.t().

Python prototype (for reference only):
goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize[, corners[, useHarrisDetector[, k]]]) -> corners

 Link to this function

 goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize, opts)

 View Source

 @spec goodFeaturesToTrack(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [k: term(), useHarrisDetector: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

goodFeaturesToTrack
Positional Arguments
	image: Evision.Mat.t()
	maxCorners: int
	qualityLevel: double
	minDistance: double
	mask: Evision.Mat.t()
	blockSize: int
	gradientSize: int

Keyword Arguments
	useHarrisDetector: bool.
	k: double.

Return
	corners: Evision.Mat.t().

Python prototype (for reference only):
goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance, mask, blockSize, gradientSize[, corners[, useHarrisDetector[, k]]]) -> corners

 Link to this function

 goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask)

 View Source

 @spec goodFeaturesToTrackWithQuality(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Same as above, but returns also quality measure of the detected corners.
Positional Arguments
	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set
and all detected corners are returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal) or the Harris function response (see #cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

	mask: Evision.Mat.t().
Region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

Keyword Arguments
	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	gradientSize: int.
Aperture parameter for the Sobel operator used for derivatives computation.
See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.

	k: double.
Free parameter of the Harris detector.

Return
	corners: Evision.Mat.t().
Output vector of detected corners.

	cornersQuality: Evision.Mat.t().
Output vector of quality measure of the detected corners.

Python prototype (for reference only):
goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask[, corners[, cornersQuality[, blockSize[, gradientSize[, useHarrisDetector[, k]]]]]]) -> corners, cornersQuality

 Link to this function

 goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask, opts)

 View Source

 @spec goodFeaturesToTrackWithQuality(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 Evision.Mat.maybe_mat_in(),
 [
 k: term(),
 useHarrisDetector: term(),
 gradientSize: term(),
 blockSize: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Same as above, but returns also quality measure of the detected corners.
Positional Arguments
	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned. maxCorners <= 0 implies that no limit on the maximum is set
and all detected corners are returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see #cornerMinEigenVal) or the Harris function response (see #cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

	mask: Evision.Mat.t().
Region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

Keyword Arguments
	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	gradientSize: int.
Aperture parameter for the Sobel operator used for derivatives computation.
See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see #cornerHarris)
or #cornerMinEigenVal.

	k: double.
Free parameter of the Harris detector.

Return
	corners: Evision.Mat.t().
Output vector of detected corners.

	cornersQuality: Evision.Mat.t().
Output vector of quality measure of the detected corners.

Python prototype (for reference only):
goodFeaturesToTrackWithQuality(image, maxCorners, qualityLevel, minDistance, mask[, corners[, cornersQuality[, blockSize[, gradientSize[, useHarrisDetector[, k]]]]]]) -> corners, cornersQuality

 Link to this function

 grabCut(img, mask, rect, bgdModel, fgdModel, iterCount)

 View Source

 @spec grabCut(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Runs the GrabCut algorithm.
Positional Arguments
	img: Evision.Mat.t().
Input 8-bit 3-channel image.

	rect: Rect.
ROI containing a segmented object. The pixels outside of the ROI are marked as
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .

	iterCount: int.
Number of iterations the algorithm should make before returning the result. Note
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
mode==GC_EVAL .

Keyword Arguments
	mode: int.
Operation mode that could be one of the #GrabCutModes

Return
	mask: Evision.Mat.t().
Input/output 8-bit single-channel mask. The mask is initialized by the function when
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.

	bgdModel: Evision.Mat.t().
Temporary array for the background model. Do not modify it while you are
processing the same image.

	fgdModel: Evision.Mat.t().
Temporary arrays for the foreground model. Do not modify it while you are
processing the same image.

The function implements the GrabCut image segmentation algorithm.
Python prototype (for reference only):
grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) -> mask, bgdModel, fgdModel

 Link to this function

 grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, opts)

 View Source

 @spec grabCut(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:mode, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Runs the GrabCut algorithm.
Positional Arguments
	img: Evision.Mat.t().
Input 8-bit 3-channel image.

	rect: Rect.
ROI containing a segmented object. The pixels outside of the ROI are marked as
"obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .

	iterCount: int.
Number of iterations the algorithm should make before returning the result. Note
that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
mode==GC_EVAL .

Keyword Arguments
	mode: int.
Operation mode that could be one of the #GrabCutModes

Return
	mask: Evision.Mat.t().
Input/output 8-bit single-channel mask. The mask is initialized by the function when
mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.

	bgdModel: Evision.Mat.t().
Temporary array for the background model. Do not modify it while you are
processing the same image.

	fgdModel: Evision.Mat.t().
Temporary arrays for the foreground model. Do not modify it while you are
processing the same image.

The function implements the GrabCut image segmentation algorithm.
Python prototype (for reference only):
grabCut(img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) -> mask, bgdModel, fgdModel

 Link to this function

 groupRectangles(rectList, groupThreshold)

 View Source

 @spec groupRectangles([{number(), number(), number(), number()}], integer()) ::
 {[{number(), number(), number(), number()}], [integer()]}
 | {:error, String.t()}

groupRectangles
Positional Arguments
	groupThreshold: int

Keyword Arguments
	eps: double.

Return
	rectList: [Rect]
	weights: [int]

Has overloading in C++
Python prototype (for reference only):
groupRectangles(rectList, groupThreshold[, eps]) -> rectList, weights

 Link to this function

 groupRectangles(rectList, groupThreshold, opts)

 View Source

 @spec groupRectangles(
 [{number(), number(), number(), number()}],
 integer(),
 [{:eps, term()}] | nil
) ::
 {[{number(), number(), number(), number()}], [integer()]}
 | {:error, String.t()}

groupRectangles
Positional Arguments
	groupThreshold: int

Keyword Arguments
	eps: double.

Return
	rectList: [Rect]
	weights: [int]

Has overloading in C++
Python prototype (for reference only):
groupRectangles(rectList, groupThreshold[, eps]) -> rectList, weights

 Link to this function

 hasNonZero(src)

 View Source

 @spec hasNonZero(Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}

Checks for the presence of at least one non-zero array element.
Positional Arguments
	src: Evision.Mat.t().
single-channel array.

Return
	retval: bool

The function returns whether there are non-zero elements in src
@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
Python prototype (for reference only):
hasNonZero(src) -> retval

 Link to this function

 haveImageReader(filename)

 View Source

 @spec haveImageReader(binary()) :: boolean() | {:error, String.t()}

Returns true if the specified image can be decoded by OpenCV
Positional Arguments
	filename: String.
File name of the image

Return
	retval: bool

Python prototype (for reference only):
haveImageReader(filename) -> retval

 Link to this function

 haveImageWriter(filename)

 View Source

 @spec haveImageWriter(binary()) :: boolean() | {:error, String.t()}

Returns true if an image with the specified filename can be encoded by OpenCV
Positional Arguments
	filename: String.
File name of the image

Return
	retval: bool

Python prototype (for reference only):
haveImageWriter(filename) -> retval

 Link to this function

 haveOpenVX()

 View Source

 @spec haveOpenVX() :: boolean() | {:error, String.t()}

haveOpenVX
Return
	retval: bool

Python prototype (for reference only):
haveOpenVX() -> retval

 Link to this function

 hconcat(src)

 View Source

 @spec hconcat([Evision.Mat.maybe_mat_in()]) :: Evision.Mat.t() | {:error, String.t()}

hconcat
Positional Arguments
	src: [Evision.Mat].
input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.

Return
	dst: Evision.Mat.t().
output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
same depth.

Has overloading in C++
std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::hconcat(matrices, out);
//out:
//[1, 2, 3;
// 1, 2, 3;
// 1, 2, 3;
// 1, 2, 3]
Python prototype (for reference only):
hconcat(src[, dst]) -> dst

 Link to this function

 hconcat(src, opts)

 View Source

 @spec hconcat([Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

hconcat
Positional Arguments
	src: [Evision.Mat].
input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.

Return
	dst: Evision.Mat.t().
output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
same depth.

Has overloading in C++
std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::hconcat(matrices, out);
//out:
//[1, 2, 3;
// 1, 2, 3;
// 1, 2, 3;
// 1, 2, 3]
Python prototype (for reference only):
hconcat(src[, dst]) -> dst

 Link to this function

 houghCircles(image, method, dp, minDist)

 View Source

 @spec houghCircles(Evision.Mat.maybe_mat_in(), integer(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel, grayscale input image.

	method: int.
Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.

	dp: double.
Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
unless some small very circles need to be detected.

	minDist: double.
Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.

Keyword Arguments
	param1: double.
First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
should normally be higher, such as 300 or normally exposed and contrasty images.

	param2: double.
Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.

	minRadius: int.
Minimum circle radius.

	maxRadius: int.
Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.

Return
	circles: Evision.Mat.t().
Output vector of found circles. Each vector is encoded as 3 or 4 element
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$.

The function finds circles in a grayscale image using a modification of the Hough transform.
Example: :
@include snippets/imgproc_HoughLinesCircles.cpp
Note: Usually the function detects the centers of circles well. However, it may fail to find correct
radii. You can assist to the function by specifying the radius range (minRadius and maxRadius) if
you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
to return centers only without radius search, and find the correct radius using an additional procedure.
It also helps to smooth image a bit unless it's already soft. For example,
GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
@sa fitEllipse, minEnclosingCircle
Python prototype (for reference only):
HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles

 Link to this function

 houghCircles(image, method, dp, minDist, opts)

 View Source

 @spec houghCircles(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 [minRadius: term(), param2: term(), maxRadius: term(), param1: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel, grayscale input image.

	method: int.
Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.

	dp: double.
Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
unless some small very circles need to be detected.

	minDist: double.
Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.

Keyword Arguments
	param1: double.
First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
should normally be higher, such as 300 or normally exposed and contrasty images.

	param2: double.
Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.

	minRadius: int.
Minimum circle radius.

	maxRadius: int.
Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.

Return
	circles: Evision.Mat.t().
Output vector of found circles. Each vector is encoded as 3 or 4 element
floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$.

The function finds circles in a grayscale image using a modification of the Hough transform.
Example: :
@include snippets/imgproc_HoughLinesCircles.cpp
Note: Usually the function detects the centers of circles well. However, it may fail to find correct
radii. You can assist to the function by specifying the radius range (minRadius and maxRadius) if
you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
to return centers only without radius search, and find the correct radius using an additional procedure.
It also helps to smooth image a bit unless it's already soft. For example,
GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
@sa fitEllipse, minEnclosingCircle
Python prototype (for reference only):
HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles

 Link to this function

 houghLines(image, rho, theta, threshold)

 View Source

 @spec houghLines(Evision.Mat.maybe_mat_in(), number(), number(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds lines in a binary image using the standard Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel binary source image. The image may be modified by the function.

	rho: double.
Distance resolution of the accumulator in pixels.

	theta: double.
Angle resolution of the accumulator in radians.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	srn: double.
For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
parameters should be positive.

	stn: double.
For the multi-scale Hough transform, it is a divisor for the distance resolution theta.

	min_theta: double.
For standard and multi-scale Hough transform, minimum angle to check for lines.
Must fall between 0 and max_theta.

	max_theta: double.
For standard and multi-scale Hough transform, an upper bound for the angle.
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
less than max_theta, depending on the parameters min_theta and theta.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 2 or 3 element vector
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
angle in radians (\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$), and
\f$\textrm{votes}\f$ is the value of accumulator.

The function implements the standard or standard multi-scale Hough transform algorithm for line
detection. See http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm for a good explanation of Hough
transform.
Python prototype (for reference only):
HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines

 Link to this function

 houghLines(image, rho, theta, threshold, opts)

 View Source

 @spec houghLines(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [srn: term(), min_theta: term(), max_theta: term(), stn: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds lines in a binary image using the standard Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel binary source image. The image may be modified by the function.

	rho: double.
Distance resolution of the accumulator in pixels.

	theta: double.
Angle resolution of the accumulator in radians.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	srn: double.
For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
parameters should be positive.

	stn: double.
For the multi-scale Hough transform, it is a divisor for the distance resolution theta.

	min_theta: double.
For standard and multi-scale Hough transform, minimum angle to check for lines.
Must fall between 0 and max_theta.

	max_theta: double.
For standard and multi-scale Hough transform, an upper bound for the angle.
Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
less than max_theta, depending on the parameters min_theta and theta.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 2 or 3 element vector
\f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
angle in radians (\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$), and
\f$\textrm{votes}\f$ is the value of accumulator.

The function implements the standard or standard multi-scale Hough transform algorithm for line
detection. See http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm for a good explanation of Hough
transform.
Python prototype (for reference only):
HoughLines(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines

 Link to this function

 houghLinesP(image, rho, theta, threshold)

 View Source

 @spec houghLinesP(Evision.Mat.maybe_mat_in(), number(), number(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel binary source image. The image may be modified by the function.

	rho: double.
Distance resolution of the accumulator in pixels.

	theta: double.
Angle resolution of the accumulator in radians.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	minLineLength: double.
Minimum line length. Line segments shorter than that are rejected.

	maxLineGap: double.
Maximum allowed gap between points on the same line to link them.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

The function implements the probabilistic Hough transform algorithm for line detection, described
in @cite Matas00
See the line detection example below:
@include snippets/imgproc_HoughLinesP.cpp
This is a sample picture the function parameters have been tuned for:
[image: image]
And this is the output of the above program in case of the probabilistic Hough transform:
[image: image]
@sa LineSegmentDetector
Python prototype (for reference only):
HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) -> lines

 Link to this function

 houghLinesP(image, rho, theta, threshold, opts)

 View Source

 @spec houghLinesP(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [maxLineGap: term(), minLineLength: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	image: Evision.Mat.t().
8-bit, single-channel binary source image. The image may be modified by the function.

	rho: double.
Distance resolution of the accumulator in pixels.

	theta: double.
Angle resolution of the accumulator in radians.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	minLineLength: double.
Minimum line length. Line segments shorter than that are rejected.

	maxLineGap: double.
Maximum allowed gap between points on the same line to link them.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

The function implements the probabilistic Hough transform algorithm for line detection, described
in @cite Matas00
See the line detection example below:
@include snippets/imgproc_HoughLinesP.cpp
This is a sample picture the function parameters have been tuned for:
[image: image]
And this is the output of the above program in case of the probabilistic Hough transform:
[image: image]
@sa LineSegmentDetector
Python prototype (for reference only):
HoughLinesP(image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) -> lines

 Link to this function

 houghLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step)

 View Source

 @spec houghLinesPointSet(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 number(),
 number(),
 number(),
 number(),
 number(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

Finds lines in a set of points using the standard Hough transform.
Positional Arguments
	point: Evision.Mat.t().
Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.

	lines_max: int.
Max count of Hough lines.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

	min_rho: double.
Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).

	max_rho: double.
Maximum value for \f$\rho\f$ for the accumulator.

	rho_step: double.
Distance resolution of the accumulator.

	min_theta: double.
Minimum angle value of the accumulator in radians.

	max_theta: double.
Upper bound for the angle value of the accumulator in radians. The actual maximum
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.

	theta_step: double.
Angle resolution of the accumulator in radians.

Return
	lines: Evision.Mat.t().
Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
The larger the value of 'votes', the higher the reliability of the Hough line.

The function finds lines in a set of points using a modification of the Hough transform.
@include snippets/imgproc_HoughLinesPointSet.cpp
Python prototype (for reference only):
HoughLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step[, lines]) -> lines

 Link to this function

 houghLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step, opts)

 View Source

 @spec houghLinesPointSet(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 number(),
 number(),
 number(),
 number(),
 number(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds lines in a set of points using the standard Hough transform.
Positional Arguments
	point: Evision.Mat.t().
Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.

	lines_max: int.
Max count of Hough lines.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

	min_rho: double.
Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).

	max_rho: double.
Maximum value for \f$\rho\f$ for the accumulator.

	rho_step: double.
Distance resolution of the accumulator.

	min_theta: double.
Minimum angle value of the accumulator in radians.

	max_theta: double.
Upper bound for the angle value of the accumulator in radians. The actual maximum
angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.

	theta_step: double.
Angle resolution of the accumulator in radians.

Return
	lines: Evision.Mat.t().
Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
The larger the value of 'votes', the higher the reliability of the Hough line.

The function finds lines in a set of points using a modification of the Hough transform.
@include snippets/imgproc_HoughLinesPointSet.cpp
Python prototype (for reference only):
HoughLinesPointSet(point, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step[, lines]) -> lines

 Link to this function

 houghLinesWithAccumulator(image, rho, theta, threshold)

 View Source

 @spec houghLinesWithAccumulator(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Finds lines in a binary image using the standard Hough transform and get accumulator.
Positional Arguments
	image: Evision.Mat.t()
	rho: double
	theta: double
	threshold: int

Keyword Arguments
	srn: double.
	stn: double.
	min_theta: double.
	max_theta: double.

Return
	lines: Evision.Mat.t().

Note: This function is for bindings use only. Use original function in C++ code
@sa HoughLines
Python prototype (for reference only):
HoughLinesWithAccumulator(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines

 Link to this function

 houghLinesWithAccumulator(image, rho, theta, threshold, opts)

 View Source

 @spec houghLinesWithAccumulator(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [srn: term(), min_theta: term(), max_theta: term(), stn: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds lines in a binary image using the standard Hough transform and get accumulator.
Positional Arguments
	image: Evision.Mat.t()
	rho: double
	theta: double
	threshold: int

Keyword Arguments
	srn: double.
	stn: double.
	min_theta: double.
	max_theta: double.

Return
	lines: Evision.Mat.t().

Note: This function is for bindings use only. Use original function in C++ code
@sa HoughLines
Python prototype (for reference only):
HoughLinesWithAccumulator(image, rho, theta, threshold[, lines[, srn[, stn[, min_theta[, max_theta]]]]]) -> lines

 Link to this function

 huMoments(m)

 View Source

 @spec huMoments(map()) :: Evision.Mat.t() | {:error, String.t()}

HuMoments
Positional Arguments
	m: Moments

Return
	hu: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
HuMoments(m[, hu]) -> hu

 Link to this function

 huMoments(m, opts)

 View Source

 @spec huMoments(map(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

HuMoments
Positional Arguments
	m: Moments

Return
	hu: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
HuMoments(m[, hu]) -> hu

 Link to this function

 idct(src)

 View Source

 @spec idct(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point single-channel array.

Keyword Arguments
	flags: int.
operation flags.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
@sa dct, dft, idft, getOptimalDFTSize
Python prototype (for reference only):
idct(src[, dst[, flags]]) -> dst

 Link to this function

 idct(src, opts)

 View Source

 @spec idct(Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point single-channel array.

Keyword Arguments
	flags: int.
operation flags.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
@sa dct, dft, idft, getOptimalDFTSize
Python prototype (for reference only):
idct(src[, dst[, flags]]) -> dst

 Link to this function

 idft(src)

 View Source

 @spec idft(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point real or complex array.

Keyword Arguments
	flags: int.
operation flags (see dft and #DftFlags).

	nonzeroRows: int.
number of dst rows to process; the rest of the rows have undefined content (see
the convolution sample in dft description.

Return
	dst: Evision.Mat.t().
output array whose size and type depend on the flags.

idft(src, dst, flags) is equivalent to dft(src, dst, flags | #DFT_INVERSE) .
Note: None of dft and idft scales the result by default. So, you should pass #DFT_SCALE to one of
dft or idft explicitly to make these transforms mutually inverse.
@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
Python prototype (for reference only):
idft(src[, dst[, flags[, nonzeroRows]]]) -> dst

 Link to this function

 idft(src, opts)

 View Source

 @spec idft(Evision.Mat.maybe_mat_in(), [nonzeroRows: term(), flags: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
Positional Arguments
	src: Evision.Mat.t().
input floating-point real or complex array.

Keyword Arguments
	flags: int.
operation flags (see dft and #DftFlags).

	nonzeroRows: int.
number of dst rows to process; the rest of the rows have undefined content (see
the convolution sample in dft description.

Return
	dst: Evision.Mat.t().
output array whose size and type depend on the flags.

idft(src, dst, flags) is equivalent to dft(src, dst, flags | #DFT_INVERSE) .
Note: None of dft and idft scales the result by default. So, you should pass #DFT_SCALE to one of
dft or idft explicitly to make these transforms mutually inverse.
@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
Python prototype (for reference only):
idft(src[, dst[, flags[, nonzeroRows]]]) -> dst

 Link to this function

 illuminationChange(src, mask)

 View Source

 @spec illuminationChange(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Applying an appropriate non-linear transformation to the gradient field inside the selection and
then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	alpha: float.
Value ranges between 0-2.

	beta: float.
Value ranges between 0-2.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
Python prototype (for reference only):
illuminationChange(src, mask[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 illuminationChange(src, mask, opts)

 View Source

 @spec illuminationChange(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [alpha: term(), beta: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applying an appropriate non-linear transformation to the gradient field inside the selection and
then integrating back with a Poisson solver, modifies locally the apparent illumination of an image.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	alpha: float.
Value ranges between 0-2.

	beta: float.
Value ranges between 0-2.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

This is useful to highlight under-exposed foreground objects or to reduce specular reflections.
Python prototype (for reference only):
illuminationChange(src, mask[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 imcount(filename)

 View Source

 @spec imcount(binary()) :: integer() | {:error, String.t()}

Returns the number of images inside the give file
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: size_t

The function imcount will return the number of pages in a multi-page image, or 1 for single-page images
Python prototype (for reference only):
imcount(filename[, flags]) -> retval

 Link to this function

 imcount(filename, opts)

 View Source

 @spec imcount(binary(), [{:flags, term()}] | nil) :: integer() | {:error, String.t()}

Returns the number of images inside the give file
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: size_t

The function imcount will return the number of pages in a multi-page image, or 1 for single-page images
Python prototype (for reference only):
imcount(filename[, flags]) -> retval

 Link to this function

 imdecode(buf, flags)

 View Source

 @spec imdecode(binary(), integer()) :: Evision.Mat.maybe_mat_out()

 Link to this function

 imdecodemulti(buf, flags)

 View Source

 @spec imdecodemulti(Evision.Mat.maybe_mat_in(), integer()) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Reads a multi-page image from a buffer in memory.
Positional Arguments
	buf: Evision.Mat.t().
Input array or vector of bytes.

	flags: int.
The same flags as in cv::imread, see cv::ImreadModes.

Keyword Arguments
	range: Range.
A continuous selection of pages.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page, if more than one.

The function imdecodemulti reads a multi-page image from the specified buffer in the memory. If the buffer is too short or
contains invalid data, the function returns false.
See cv::imreadmulti for the list of supported formats and flags description.
Note: In the case of color images, the decoded images will have the channels stored in B G R order.
Python prototype (for reference only):
imdecodemulti(buf, flags[, mats[, range]]) -> retval, mats

 Link to this function

 imdecodemulti(buf, flags, opts)

 View Source

 @spec imdecodemulti(Evision.Mat.maybe_mat_in(), integer(), [{:range, term()}] | nil) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Reads a multi-page image from a buffer in memory.
Positional Arguments
	buf: Evision.Mat.t().
Input array or vector of bytes.

	flags: int.
The same flags as in cv::imread, see cv::ImreadModes.

Keyword Arguments
	range: Range.
A continuous selection of pages.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page, if more than one.

The function imdecodemulti reads a multi-page image from the specified buffer in the memory. If the buffer is too short or
contains invalid data, the function returns false.
See cv::imreadmulti for the list of supported formats and flags description.
Note: In the case of color images, the decoded images will have the channels stored in B G R order.
Python prototype (for reference only):
imdecodemulti(buf, flags[, mats[, range]]) -> retval, mats

 Link to this function

 imencode(ext, img)

 View Source

 @spec imencode(binary(), Evision.Mat.maybe_mat_in()) ::
 binary() | false | {:error, String.t()}

Encodes an image into a memory buffer.
Positional Arguments
	ext: String.
File extension that defines the output format. Must include a leading period.

	img: Evision.Mat.t().
Image to be written.

Keyword Arguments
	params: [int].
Format-specific parameters. See cv::imwrite and cv::ImwriteFlags.

Return
	retval: bool

	buf: [uchar].
Output buffer resized to fit the compressed image.

The function imencode compresses the image and stores it in the memory buffer that is resized to fit the
result. See cv::imwrite for the list of supported formats and flags description.
Python prototype (for reference only):
imencode(ext, img[, params]) -> retval, buf

 Link to this function

 imencode(ext, img, opts)

 View Source

 @spec imencode(binary(), Evision.Mat.maybe_mat_in(), [{:params, term()}] | nil) ::
 binary() | false | {:error, String.t()}

Encodes an image into a memory buffer.
Positional Arguments
	ext: String.
File extension that defines the output format. Must include a leading period.

	img: Evision.Mat.t().
Image to be written.

Keyword Arguments
	params: [int].
Format-specific parameters. See cv::imwrite and cv::ImwriteFlags.

Return
	retval: bool

	buf: [uchar].
Output buffer resized to fit the compressed image.

The function imencode compresses the image and stores it in the memory buffer that is resized to fit the
result. See cv::imwrite for the list of supported formats and flags description.
Python prototype (for reference only):
imencode(ext, img[, params]) -> retval, buf

 Link to this function

 imread(filename)

 View Source

 @spec imread(binary()) :: Evision.Mat.t() | {:error, String.t()}

Loads an image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes

Return
	retval: Evision.Mat.t()

@anchor imread
The function imread loads an image from the specified file and returns it. If the image cannot be
read (because of missing file, improper permissions, unsupported or invalid format), the function
returns an empty matrix (Mat::data==NULL).
Currently, the following file formats are supported:
	Windows bitmaps - *.bmp, *.dib (always supported)
	JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section)
	JPEG 2000 files - *.jp2 (see the Note section)
	Portable Network Graphics - *.png (see the Note section)
	WebP - *.webp (see the Note section)
	AVIF - *.avif (see the Note section)
	Portable image format - *.pbm, *.pgm, *.ppm *.pxm, *.pnm (always supported)
	PFM files - *.pfm (see the Note section)
	Sun rasters - *.sr, *.ras (always supported)
	TIFF files - *.tiff, *.tif (see the Note section)
	OpenEXR Image files - *.exr (see the Note section)
	Radiance HDR - *.hdr, *.pic (always supported)
	Raster and Vector geospatial data supported by GDAL (see the Note section)

Note:
	The function determines the type of an image by the content, not by the file extension.

	In the case of color images, the decoded images will have the channels stored in B G R order.

	When using IMREAD_GRAYSCALE, the codec's internal grayscale conversion will be used, if available.
Results may differ to the output of cvtColor()

	On Microsoft Windows* OS and MacOSX*, the codecs shipped with an OpenCV image (libjpeg,
libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs,
and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware
that currently these native image loaders give images with different pixel values because of
the color management embedded into MacOSX.

	On Linux*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for
codecs supplied with an OS image. Install the relevant packages (do not forget the development
files, for example, "libjpeg-dev", in Debian* and Ubuntu*) to get the codec support or turn
on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.

	In the case you set WITH_GDAL flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image,
then the GDAL driver will be used in order to decode the image, supporting
the following formats: Raster,
Vector.

	If EXIF information is embedded in the image file, the EXIF orientation will be taken into account
and thus the image will be rotated accordingly except if the flags @ref IMREAD_IGNORE_ORIENTATION
or @ref IMREAD_UNCHANGED are passed.

	Use the IMREAD_UNCHANGED flag to keep the floating point values from PFM image.

	By default number of pixels must be less than 2^30. Limit can be set using system
variable OPENCV_IO_MAX_IMAGE_PIXELS

Python prototype (for reference only):
imread(filename[, flags]) -> retval

 Link to this function

 imread(filename, opts)

 View Source

 @spec imread(binary(), [{:flags, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Loads an image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes

Return
	retval: Evision.Mat.t()

@anchor imread
The function imread loads an image from the specified file and returns it. If the image cannot be
read (because of missing file, improper permissions, unsupported or invalid format), the function
returns an empty matrix (Mat::data==NULL).
Currently, the following file formats are supported:
	Windows bitmaps - *.bmp, *.dib (always supported)
	JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section)
	JPEG 2000 files - *.jp2 (see the Note section)
	Portable Network Graphics - *.png (see the Note section)
	WebP - *.webp (see the Note section)
	AVIF - *.avif (see the Note section)
	Portable image format - *.pbm, *.pgm, *.ppm *.pxm, *.pnm (always supported)
	PFM files - *.pfm (see the Note section)
	Sun rasters - *.sr, *.ras (always supported)
	TIFF files - *.tiff, *.tif (see the Note section)
	OpenEXR Image files - *.exr (see the Note section)
	Radiance HDR - *.hdr, *.pic (always supported)
	Raster and Vector geospatial data supported by GDAL (see the Note section)

Note:
	The function determines the type of an image by the content, not by the file extension.

	In the case of color images, the decoded images will have the channels stored in B G R order.

	When using IMREAD_GRAYSCALE, the codec's internal grayscale conversion will be used, if available.
Results may differ to the output of cvtColor()

	On Microsoft Windows* OS and MacOSX*, the codecs shipped with an OpenCV image (libjpeg,
libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs,
and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware
that currently these native image loaders give images with different pixel values because of
the color management embedded into MacOSX.

	On Linux*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for
codecs supplied with an OS image. Install the relevant packages (do not forget the development
files, for example, "libjpeg-dev", in Debian* and Ubuntu*) to get the codec support or turn
on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.

	In the case you set WITH_GDAL flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image,
then the GDAL driver will be used in order to decode the image, supporting
the following formats: Raster,
Vector.

	If EXIF information is embedded in the image file, the EXIF orientation will be taken into account
and thus the image will be rotated accordingly except if the flags @ref IMREAD_IGNORE_ORIENTATION
or @ref IMREAD_UNCHANGED are passed.

	Use the IMREAD_UNCHANGED flag to keep the floating point values from PFM image.

	By default number of pixels must be less than 2^30. Limit can be set using system
variable OPENCV_IO_MAX_IMAGE_PIXELS

Python prototype (for reference only):
imread(filename[, flags]) -> retval

 Link to this function

 imreadmulti(filename)

 View Source

 @spec imreadmulti(binary()) :: [Evision.Mat.t()] | false | {:error, String.t()}

Loads a multi-page image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page.

The function imreadmulti loads a multi-page image from the specified file into a vector of Mat objects.
@sa cv::imread
Python prototype (for reference only):
imreadmulti(filename[, mats[, flags]]) -> retval, mats

 Link to this function

 imreadmulti(filename, opts)

 View Source

 @spec imreadmulti(binary(), [{:flags, term()}] | nil) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Loads a multi-page image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page.

The function imreadmulti loads a multi-page image from the specified file into a vector of Mat objects.
@sa cv::imread
Python prototype (for reference only):
imreadmulti(filename[, mats[, flags]]) -> retval, mats

 Link to this function

 imreadmulti(filename, start, count)

 View Source

 @spec imreadmulti(binary(), integer(), integer()) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Loads a of images of a multi-page image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

	start: int.
Start index of the image to load

	count: int.
Count number of images to load

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page.

The function imreadmulti loads a specified range from a multi-page image from the specified file into a vector of Mat objects.
@sa cv::imread
Python prototype (for reference only):
imreadmulti(filename, start, count[, mats[, flags]]) -> retval, mats

 Link to this function

 imreadmulti(filename, start, count, opts)

 View Source

 @spec imreadmulti(binary(), integer(), integer(), [{:flags, term()}] | nil) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Loads a of images of a multi-page image from a file.
Positional Arguments
	filename: String.
Name of file to be loaded.

	start: int.
Start index of the image to load

	count: int.
Count number of images to load

Keyword Arguments
	flags: int.
Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR.

Return
	retval: bool

	mats: [Evision.Mat].
A vector of Mat objects holding each page.

The function imreadmulti loads a specified range from a multi-page image from the specified file into a vector of Mat objects.
@sa cv::imread
Python prototype (for reference only):
imreadmulti(filename, start, count[, mats[, flags]]) -> retval, mats

 Link to this function

 imwrite(filename, img)

 View Source

 @spec imwrite(binary(), Evision.Mat.maybe_mat_in()) ::
 boolean() | {:error, String.t()}

Saves an image to a specified file.
Positional Arguments
	filename: String.
Name of the file.

	img: Evision.Mat.t().
(Mat or vector of Mat) Image or Images to be saved.

Keyword Arguments
	params: [int].
Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2,) see cv::ImwriteFlags

Return
	retval: bool

The function imwrite saves the image to the specified file. The image format is chosen based on the
filename extension (see cv::imread for the list of extensions). In general, only 8-bit unsigned (CV_8U)
single-channel or 3-channel (with 'BGR' channel order) images
can be saved using this function, with these exceptions:
	With OpenEXR encoder, only 32-bit float (CV_32F) images can be saved.

	8-bit unsigned (CV_8U) images are not supported.

	With Radiance HDR encoder, non 64-bit float (CV_64F) images can be saved.

	All images will be converted to 32-bit float (CV_32F).

	With JPEG 2000 encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With PAM encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With PNG encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	PNG images with an alpha channel can be saved using this function. To do this, create
8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535 (see the code sample below).

	With PGM/PPM encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With TIFF encoder, 8-bit unsigned (CV_8U), 16-bit unsigned (CV_16U),
32-bit float (CV_32F) and 64-bit float (CV_64F) images can be saved.

	Multiple images (vector of Mat) can be saved in TIFF format (see the code sample below).

	32-bit float 3-channel (CV_32FC3) TIFF images will be saved
using the LogLuv high dynamic range encoding (4 bytes per pixel)

If the image format is not supported, the image will be converted to 8-bit unsigned (CV_8U) and saved that way.
If the format, depth or channel order is different, use
Mat::convertTo and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
functions to save the image to XML or YAML format.
The sample below shows how to create a BGRA image, how to set custom compression parameters and save it to a PNG file.
It also demonstrates how to save multiple images in a TIFF file:
@include snippets/imgcodecs_imwrite.cpp
Python prototype (for reference only):
imwrite(filename, img[, params]) -> retval

 Link to this function

 imwrite(filename, img, opts)

 View Source

 @spec imwrite(binary(), Evision.Mat.maybe_mat_in(), [{:params, term()}] | nil) ::
 boolean() | {:error, String.t()}

Saves an image to a specified file.
Positional Arguments
	filename: String.
Name of the file.

	img: Evision.Mat.t().
(Mat or vector of Mat) Image or Images to be saved.

Keyword Arguments
	params: [int].
Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2,) see cv::ImwriteFlags

Return
	retval: bool

The function imwrite saves the image to the specified file. The image format is chosen based on the
filename extension (see cv::imread for the list of extensions). In general, only 8-bit unsigned (CV_8U)
single-channel or 3-channel (with 'BGR' channel order) images
can be saved using this function, with these exceptions:
	With OpenEXR encoder, only 32-bit float (CV_32F) images can be saved.

	8-bit unsigned (CV_8U) images are not supported.

	With Radiance HDR encoder, non 64-bit float (CV_64F) images can be saved.

	All images will be converted to 32-bit float (CV_32F).

	With JPEG 2000 encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With PAM encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With PNG encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	PNG images with an alpha channel can be saved using this function. To do this, create
8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535 (see the code sample below).

	With PGM/PPM encoder, 8-bit unsigned (CV_8U) and 16-bit unsigned (CV_16U) images can be saved.

	With TIFF encoder, 8-bit unsigned (CV_8U), 16-bit unsigned (CV_16U),
32-bit float (CV_32F) and 64-bit float (CV_64F) images can be saved.

	Multiple images (vector of Mat) can be saved in TIFF format (see the code sample below).

	32-bit float 3-channel (CV_32FC3) TIFF images will be saved
using the LogLuv high dynamic range encoding (4 bytes per pixel)

If the image format is not supported, the image will be converted to 8-bit unsigned (CV_8U) and saved that way.
If the format, depth or channel order is different, use
Mat::convertTo and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
functions to save the image to XML or YAML format.
The sample below shows how to create a BGRA image, how to set custom compression parameters and save it to a PNG file.
It also demonstrates how to save multiple images in a TIFF file:
@include snippets/imgcodecs_imwrite.cpp
Python prototype (for reference only):
imwrite(filename, img[, params]) -> retval

 Link to this function

 imwritemulti(filename, img)

 View Source

 @spec imwritemulti(binary(), [Evision.Mat.maybe_mat_in()]) ::
 boolean() | {:error, String.t()}

imwritemulti
Positional Arguments
	filename: String
	img: [Evision.Mat]

Keyword Arguments
	params: [int].

Return
	retval: bool

Python prototype (for reference only):
imwritemulti(filename, img[, params]) -> retval

 Link to this function

 imwritemulti(filename, img, opts)

 View Source

 @spec imwritemulti(binary(), [Evision.Mat.maybe_mat_in()], [{:params, term()}] | nil) ::
 boolean() | {:error, String.t()}

imwritemulti
Positional Arguments
	filename: String
	img: [Evision.Mat]

Keyword Arguments
	params: [int].

Return
	retval: bool

Python prototype (for reference only):
imwritemulti(filename, img[, params]) -> retval

 Link to this function

 initCameraMatrix2D(objectPoints, imagePoints, imageSize)

 View Source

 @spec initCameraMatrix2D(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
#calibrateCamera for details.

	imagePoints: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.

	imageSize: Size.
Image size in pixels used to initialize the principal point.

Keyword Arguments
	aspectRatio: double.
If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$.

Return
	retval: Evision.Mat.t()

The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.
Python prototype (for reference only):
initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval

 Link to this function

 initCameraMatrix2D(objectPoints, imagePoints, imageSize, opts)

 View Source

 @spec initCameraMatrix2D(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 [{:aspectRatio, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds an initial camera intrinsic matrix from 3D-2D point correspondences.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
#calibrateCamera for details.

	imagePoints: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.

	imageSize: Size.
Image size in pixels used to initialize the principal point.

Keyword Arguments
	aspectRatio: double.
If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
Otherwise, \f$f_x = f_y \cdot \texttt{aspectRatio}\f$.

Return
	retval: Evision.Mat.t()

The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.
Python prototype (for reference only):
initCameraMatrix2D(objectPoints, imagePoints, imageSize[, aspectRatio]) -> retval

 Link to this function

 initInverseRectificationMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type)

 View Source

 @spec initInverseRectificationMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	r: Evision.Mat.t().
Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed.

	newCameraMatrix: Evision.Mat.t().
New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.

	size: Size.
Distorted image size.

	m1type: int.
Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps

Return
	map1: Evision.Mat.t().
The first output map for #remap.

	map2: Evision.Mat.t().
The second output map for #remap.

The function computes the joint projection and inverse rectification transformation and represents the
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
\f[
\begin{array}{l}
\text{newCameraMatrix}\\
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
\\\text{Undistortion}
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
r^2 \leftarrow x^2 + y^2 \\
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
x' \leftarrow \frac{x}{\theta} \\
y' \leftarrow \frac{y}{\theta} \\
\\\text{Rectification}\\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x'' \leftarrow X/W \\
y'' \leftarrow Y/W \\
\\\text{cameraMatrix}\\
map_x(u,v) \leftarrow x'' f_x + c_x \\
map_y(u,v) \leftarrow y'' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients vector distCoeffs.
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
is not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
Python prototype (for reference only):
initInverseRectificationMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 initInverseRectificationMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type, opts)

 View Source

 @spec initInverseRectificationMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	r: Evision.Mat.t().
Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed.

	newCameraMatrix: Evision.Mat.t().
New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.

	size: Size.
Distorted image size.

	m1type: int.
Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps

Return
	map1: Evision.Mat.t().
The first output map for #remap.

	map2: Evision.Mat.t().
The second output map for #remap.

The function computes the joint projection and inverse rectification transformation and represents the
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \f$(u, v)\f$ in the destination (projected and inverse-rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
\f[
\begin{array}{l}
\text{newCameraMatrix}\\
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
\\\text{Undistortion}
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
r^2 \leftarrow x^2 + y^2 \\
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
x' \leftarrow \frac{x}{\theta} \\
y' \leftarrow \frac{y}{\theta} \\
\\\text{Rectification}\\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x'' \leftarrow X/W \\
y'' \leftarrow Y/W \\
\\\text{cameraMatrix}\\
map_x(u,v) \leftarrow x'' f_x + c_x \\
map_y(u,v) \leftarrow y'' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients vector distCoeffs.
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
is not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
Python prototype (for reference only):
initInverseRectificationMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 initUndistortRectifyMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes the undistortion and rectification transformation map.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	r: Evision.Mat.t().
Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.

	newCameraMatrix: Evision.Mat.t().
New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

The function computes the joint undistortion and rectification transformation and represents the
result in the form of maps for #remap. The undistorted image looks like original, as if it is
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original image from
camera). The following process is applied:
\f[
\begin{array}{l}
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
x' \leftarrow X/W \\
y' \leftarrow Y/W \\
r^2 \leftarrow x'^2 + y'^2 \\
x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
map_x(u,v) \leftarrow x''' f_x + c_x \\
map_y(u,v) \leftarrow y''' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients.
In case of a stereo camera, this function is called twice: once for each camera head, after
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
was not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
Python prototype (for reference only):
initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 initUndistortRectifyMap(cameraMatrix, distCoeffs, r, newCameraMatrix, size, m1type, opts)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes the undistortion and rectification transformation map.
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

	r: Evision.Mat.t().
Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed. In #initUndistortRectifyMap R assumed to be an identity matrix.

	newCameraMatrix: Evision.Mat.t().
New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$.

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

The function computes the joint undistortion and rectification transformation and represents the
result in the form of maps for #remap. The undistorted image looks like original, as if it is
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original image from
camera). The following process is applied:
\f[
\begin{array}{l}
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
x' \leftarrow X/W \\
y' \leftarrow Y/W \\
r^2 \leftarrow x'^2 + y'^2 \\
x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
map_x(u,v) \leftarrow x''' f_x + c_x \\
map_y(u,v) \leftarrow y''' f_y + c_y
\end{array}
\f]
where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
are the distortion coefficients.
In case of a stereo camera, this function is called twice: once for each camera head, after
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
was not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f]
where cameraMatrix can be chosen arbitrarily.
Python prototype (for reference only):
initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 inpaint(src, inpaintMask, inpaintRadius, flags)

 View Source

 @spec inpaint(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Restores the selected region in an image using the region neighborhood.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.

	inpaintMask: Evision.Mat.t().
Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
needs to be inpainted.

	inpaintRadius: double.
Radius of a circular neighborhood of each point inpainted that is considered
by the algorithm.

	flags: int.
Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

The function reconstructs the selected image area from the pixel near the area boundary. The
function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
objects from still images or video. See http://en.wikipedia.org/wiki/Inpainting for more details.
Note:
	An example using the inpainting technique can be found at
opencv_source_code/samples/cpp/inpaint.cpp

	(Python) An example using the inpainting technique can be found at
opencv_source_code/samples/python/inpaint.py

Python prototype (for reference only):
inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst

 Link to this function

 inpaint(src, inpaintMask, inpaintRadius, flags, opts)

 View Source

 @spec inpaint(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Restores the selected region in an image using the region neighborhood.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit, 16-bit unsigned or 32-bit float 1-channel or 8-bit 3-channel image.

	inpaintMask: Evision.Mat.t().
Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that
needs to be inpainted.

	inpaintRadius: double.
Radius of a circular neighborhood of each point inpainted that is considered
by the algorithm.

	flags: int.
Inpainting method that could be cv::INPAINT_NS or cv::INPAINT_TELEA

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src .

The function reconstructs the selected image area from the pixel near the area boundary. The
function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
objects from still images or video. See http://en.wikipedia.org/wiki/Inpainting for more details.
Note:
	An example using the inpainting technique can be found at
opencv_source_code/samples/cpp/inpaint.cpp

	(Python) An example using the inpainting technique can be found at
opencv_source_code/samples/python/inpaint.py

Python prototype (for reference only):
inpaint(src, inpaintMask, inpaintRadius, flags[, dst]) -> dst

 Link to this function

 inRange(src, lowerb, upperb)

 View Source

 @spec inRange(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Checks if array elements lie between the elements of two other arrays.
Positional Arguments
	src: Evision.Mat.t().
first input array.

	lowerb: Evision.Mat.t().
inclusive lower boundary array or a scalar.

	upperb: Evision.Mat.t().
inclusive upper boundary array or a scalar.

Return
	dst: Evision.Mat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes
(I) at lowerb and upperb in the above formulas should be omitted.
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst]) -> dst

 Link to this function

 inRange(src, lowerb, upperb, opts)

 View Source

 @spec inRange(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Checks if array elements lie between the elements of two other arrays.
Positional Arguments
	src: Evision.Mat.t().
first input array.

	lowerb: Evision.Mat.t().
inclusive lower boundary array or a scalar.

	upperb: Evision.Mat.t().
inclusive upper boundary array or a scalar.

Return
	dst: Evision.Mat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
When the lower and/or upper boundary parameters are scalars, the indexes
(I) at lowerb and upperb in the above formulas should be omitted.
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst]) -> dst

 Link to this function

 insertChannel(src, dst, coi)

 View Source

 @spec insertChannel(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Inserts a single channel to dst (coi is 0-based index)
Positional Arguments
	src: Evision.Mat.t().
input array

	coi: int.
index of channel for insertion

Return
	dst: Evision.Mat.t().
output array

@sa mixChannels, merge
Python prototype (for reference only):
insertChannel(src, dst, coi) -> dst

 Link to this function

 integral2(src)

 View Source

 @spec integral2(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

integral2
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	sdepth: int.
	sqdepth: int.

Return
	sum: Evision.Mat.t().
	sqsum: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
integral2(src[, sum[, sqsum[, sdepth[, sqdepth]]]]) -> sum, sqsum

 Link to this function

 integral2(src, opts)

 View Source

 @spec integral2(Evision.Mat.maybe_mat_in(), [sqdepth: term(), sdepth: term()] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

integral2
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	sdepth: int.
	sqdepth: int.

Return
	sum: Evision.Mat.t().
	sqsum: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
integral2(src[, sum[, sqsum[, sdepth[, sqdepth]]]]) -> sum, sqsum

 Link to this function

 integral3(src)

 View Source

 @spec integral3(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the integral of an image.
Positional Arguments
	src: Evision.Mat.t().
input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).

Keyword Arguments
	sdepth: int.
desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
CV_64F.

	sqdepth: int.
desired depth of the integral image of squared pixel values, CV_32F or CV_64F.

Return
	sum: Evision.Mat.t().
integral image as \f$(W+1)\times (H+1)\f$, 32-bit integer or floating-point (32f or 64f).

	sqsum: Evision.Mat.t().
integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
floating-point (64f) array.

	tilted: Evision.Mat.t().
integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
the same data type as sum.

The function calculates one or more integral images for the source image as follows:
\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
\f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
\f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f]
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
up-right or rotated rectangular region of the image in a constant time, for example:
\f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
example. In case of multi-channel images, sums for each channel are accumulated independently.
As a practical example, the next figure shows the calculation of the integral of a straight
rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
original image are shown, as well as the relative pixels in the integral images sum and tilted .
[image: integral calculation example]
Python prototype (for reference only):
integral3(src[, sum[, sqsum[, tilted[, sdepth[, sqdepth]]]]]) -> sum, sqsum, tilted

 Link to this function

 integral3(src, opts)

 View Source

 @spec integral3(Evision.Mat.maybe_mat_in(), [sqdepth: term(), sdepth: term()] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the integral of an image.
Positional Arguments
	src: Evision.Mat.t().
input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).

Keyword Arguments
	sdepth: int.
desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
CV_64F.

	sqdepth: int.
desired depth of the integral image of squared pixel values, CV_32F or CV_64F.

Return
	sum: Evision.Mat.t().
integral image as \f$(W+1)\times (H+1)\f$, 32-bit integer or floating-point (32f or 64f).

	sqsum: Evision.Mat.t().
integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
floating-point (64f) array.

	tilted: Evision.Mat.t().
integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
the same data type as sum.

The function calculates one or more integral images for the source image as follows:
\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
\f[\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\f]
\f[\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\f]
Using these integral images, you can calculate sum, mean, and standard deviation over a specific
up-right or rotated rectangular region of the image in a constant time, for example:
\f[\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
It makes possible to do a fast blurring or fast block correlation with a variable window size, for
example. In case of multi-channel images, sums for each channel are accumulated independently.
As a practical example, the next figure shows the calculation of the integral of a straight
rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
original image are shown, as well as the relative pixels in the integral images sum and tilted .
[image: integral calculation example]
Python prototype (for reference only):
integral3(src[, sum[, sqsum[, tilted[, sdepth[, sqdepth]]]]]) -> sum, sqsum, tilted

 Link to this function

 integral(src)

 View Source

 @spec integral(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

integral
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	sdepth: int.

Return
	sum: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
integral(src[, sum[, sdepth]]) -> sum

 Link to this function

 integral(src, opts)

 View Source

 @spec integral(Evision.Mat.maybe_mat_in(), [{:sdepth, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

integral
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	sdepth: int.

Return
	sum: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
integral(src[, sum[, sdepth]]) -> sum

 Link to this function

 intersectConvexConvex(p1, p2)

 View Source

 @spec intersectConvexConvex(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds intersection of two convex polygons
Positional Arguments
	p1: Evision.Mat.t().
First polygon

	p2: Evision.Mat.t().
Second polygon

Keyword Arguments
	handleNested: bool.
When true, an intersection is found if one of the polygons is fully enclosed in the other.
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.

Return
	retval: float

	p12: Evision.Mat.t().
Output polygon describing the intersecting area

@returns Absolute value of area of intersecting polygon
Note: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
Python prototype (for reference only):
intersectConvexConvex(p1, p2[, p12[, handleNested]]) -> retval, p12

 Link to this function

 intersectConvexConvex(p1, p2, opts)

 View Source

 @spec intersectConvexConvex(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:handleNested, term()}] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Finds intersection of two convex polygons
Positional Arguments
	p1: Evision.Mat.t().
First polygon

	p2: Evision.Mat.t().
Second polygon

Keyword Arguments
	handleNested: bool.
When true, an intersection is found if one of the polygons is fully enclosed in the other.
When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.

Return
	retval: float

	p12: Evision.Mat.t().
Output polygon describing the intersecting area

@returns Absolute value of area of intersecting polygon
Note: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
Python prototype (for reference only):
intersectConvexConvex(p1, p2[, p12[, handleNested]]) -> retval, p12

 Link to this function

 invert(src)

 View Source

 @spec invert(Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds the inverse or pseudo-inverse of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input floating-point M x N matrix.

Keyword Arguments
	flags: int.
inversion method (cv::DecompTypes)

Return
	retval: double

	dst: Evision.Mat.t().
output matrix of N x M size and the same type as src.

The function cv::invert inverts the matrix src and stores the result in dst
. When the matrix src is singular or non-square, the function calculates
the pseudo-inverse matrix (the dst matrix) so that norm(src*dst - I) is
minimal, where I is an identity matrix.
In case of the #DECOMP_LU method, the function returns non-zero value if
the inverse has been successfully calculated and 0 if src is singular.
In case of the #DECOMP_SVD method, the function returns the inverse
condition number of src (the ratio of the smallest singular value to the
largest singular value) and 0 if src is singular. The SVD method
calculates a pseudo-inverse matrix if src is singular.
Similarly to #DECOMP_LU, the method #DECOMP_CHOLESKY works only with
non-singular square matrices that should also be symmetrical and
positively defined. In this case, the function stores the inverted
matrix in dst and returns non-zero. Otherwise, it returns 0.
@sa solve, SVD
Python prototype (for reference only):
invert(src[, dst[, flags]]) -> retval, dst

 Link to this function

 invert(src, opts)

 View Source

 @spec invert(Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds the inverse or pseudo-inverse of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input floating-point M x N matrix.

Keyword Arguments
	flags: int.
inversion method (cv::DecompTypes)

Return
	retval: double

	dst: Evision.Mat.t().
output matrix of N x M size and the same type as src.

The function cv::invert inverts the matrix src and stores the result in dst
. When the matrix src is singular or non-square, the function calculates
the pseudo-inverse matrix (the dst matrix) so that norm(src*dst - I) is
minimal, where I is an identity matrix.
In case of the #DECOMP_LU method, the function returns non-zero value if
the inverse has been successfully calculated and 0 if src is singular.
In case of the #DECOMP_SVD method, the function returns the inverse
condition number of src (the ratio of the smallest singular value to the
largest singular value) and 0 if src is singular. The SVD method
calculates a pseudo-inverse matrix if src is singular.
Similarly to #DECOMP_LU, the method #DECOMP_CHOLESKY works only with
non-singular square matrices that should also be symmetrical and
positively defined. In this case, the function stores the inverted
matrix in dst and returns non-zero. Otherwise, it returns 0.
@sa solve, SVD
Python prototype (for reference only):
invert(src[, dst[, flags]]) -> retval, dst

 Link to this function

 invertAffineTransform(m)

 View Source

 @spec invertAffineTransform(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Inverts an affine transformation.
Positional Arguments
	m: Evision.Mat.t().
Original affine transformation.

Return
	iM: Evision.Mat.t().
Output reverse affine transformation.

The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
Python prototype (for reference only):
invertAffineTransform(M[, iM]) -> iM

 Link to this function

 invertAffineTransform(m, opts)

 View Source

 @spec invertAffineTransform(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Inverts an affine transformation.
Positional Arguments
	m: Evision.Mat.t().
Original affine transformation.

Return
	iM: Evision.Mat.t().
Output reverse affine transformation.

The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
The result is also a \f$2 \times 3\f$ matrix of the same type as M.
Python prototype (for reference only):
invertAffineTransform(M[, iM]) -> iM

 Link to this function

 isContourConvex(contour)

 View Source

 @spec isContourConvex(Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}

Tests a contour convexity.
Positional Arguments
	contour: Evision.Mat.t().
Input vector of 2D points, stored in std::vector\<> or Mat

Return
	retval: bool

The function tests whether the input contour is convex or not. The contour must be simple, that is,
without self-intersections. Otherwise, the function output is undefined.
Python prototype (for reference only):
isContourConvex(contour) -> retval

 Link to this function

 kmeans(data, k, bestLabels, criteria, attempts, flags)

 View Source

 @spec kmeans(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 {integer(), integer(), number()},
 integer(),
 integer()
) :: {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Finds centers of clusters and groups input samples around the clusters.
Positional Arguments
	data: Evision.Mat.t().
Data for clustering. An array of N-Dimensional points with float coordinates is needed.
Examples of this array can be:
	Mat points(count, 2, CV_32F);
	Mat points(count, 1, CV_32FC2);
	Mat points(1, count, CV_32FC2);
	std::vector\<cv::Point2f> points(sampleCount);

	k: int.
Number of clusters to split the set by.

	criteria: TermCriteria.
The algorithm termination criteria, that is, the maximum number of iterations and/or
the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
centers moves by less than criteria.epsilon on some iteration, the algorithm stops.

	attempts: int.
Flag to specify the number of times the algorithm is executed using different
initial labellings. The algorithm returns the labels that yield the best compactness (see the last
function parameter).

	flags: int.
Flag that can take values of cv::KmeansFlags

Return
	retval: double

	bestLabels: Evision.Mat.t().
Input/output integer array that stores the cluster indices for every sample.

	centers: Evision.Mat.t().
Output matrix of the cluster centers, one row per each cluster center.

The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
and groups the input samples around the clusters. As an output, \f$\texttt{bestLabels}_i\f$ contains a
0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
Note:
	(Python) An example on K-means clustering can be found at
opencv_source_code/samples/python/kmeans.py

@return The function returns the compactness measure that is computed as
\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
after every attempt. The best (minimum) value is chosen and the corresponding labels and the
compactness value are returned by the function. Basically, you can use only the core of the
function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
pass them with the (flags = #KMEANS_USE_INITIAL_LABELS) flag, and then choose the best
(most-compact) clustering.
Python prototype (for reference only):
kmeans(data, K, bestLabels, criteria, attempts, flags[, centers]) -> retval, bestLabels, centers

 Link to this function

 kmeans(data, k, bestLabels, criteria, attempts, flags, opts)

 View Source

 @spec kmeans(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 {integer(), integer(), number()},
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Finds centers of clusters and groups input samples around the clusters.
Positional Arguments
	data: Evision.Mat.t().
Data for clustering. An array of N-Dimensional points with float coordinates is needed.
Examples of this array can be:
	Mat points(count, 2, CV_32F);
	Mat points(count, 1, CV_32FC2);
	Mat points(1, count, CV_32FC2);
	std::vector\<cv::Point2f> points(sampleCount);

	k: int.
Number of clusters to split the set by.

	criteria: TermCriteria.
The algorithm termination criteria, that is, the maximum number of iterations and/or
the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
centers moves by less than criteria.epsilon on some iteration, the algorithm stops.

	attempts: int.
Flag to specify the number of times the algorithm is executed using different
initial labellings. The algorithm returns the labels that yield the best compactness (see the last
function parameter).

	flags: int.
Flag that can take values of cv::KmeansFlags

Return
	retval: double

	bestLabels: Evision.Mat.t().
Input/output integer array that stores the cluster indices for every sample.

	centers: Evision.Mat.t().
Output matrix of the cluster centers, one row per each cluster center.

The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
and groups the input samples around the clusters. As an output, \f$\texttt{bestLabels}_i\f$ contains a
0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
Note:
	(Python) An example on K-means clustering can be found at
opencv_source_code/samples/python/kmeans.py

@return The function returns the compactness measure that is computed as
\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
after every attempt. The best (minimum) value is chosen and the corresponding labels and the
compactness value are returned by the function. Basically, you can use only the core of the
function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
pass them with the (flags = #KMEANS_USE_INITIAL_LABELS) flag, and then choose the best
(most-compact) clustering.
Python prototype (for reference only):
kmeans(data, K, bestLabels, criteria, attempts, flags[, centers]) -> retval, bestLabels, centers

 Link to this function

 laplacian(src, ddepth)

 View Source

 @spec laplacian(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the Laplacian of an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	ddepth: int.
Desired depth of the destination image, see @ref filter_depths "combinations".

Keyword Arguments
	ksize: int.
Aperture size used to compute the second-derivative filters. See #getDerivKernels for
details. The size must be positive and odd.

	scale: double.
Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See #getDerivKernels for details.

	delta: double.
Optional delta value that is added to the results prior to storing them in dst .

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function calculates the Laplacian of the source image by adding up the second x and y
derivatives calculated using the Sobel operator:
\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
This is done when ksize > 1. When ksize == 1, the Laplacian is computed by filtering the image
with the following \f$3 \times 3\f$ aperture:
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
@sa Sobel, Scharr
Python prototype (for reference only):
Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

 Link to this function

 laplacian(src, ddepth, opts)

 View Source

 @spec laplacian(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [ksize: term(), delta: term(), borderType: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the Laplacian of an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	ddepth: int.
Desired depth of the destination image, see @ref filter_depths "combinations".

Keyword Arguments
	ksize: int.
Aperture size used to compute the second-derivative filters. See #getDerivKernels for
details. The size must be positive and odd.

	scale: double.
Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See #getDerivKernels for details.

	delta: double.
Optional delta value that is added to the results prior to storing them in dst .

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function calculates the Laplacian of the source image by adding up the second x and y
derivatives calculated using the Sobel operator:
\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
This is done when ksize > 1. When ksize == 1, the Laplacian is computed by filtering the image
with the following \f$3 \times 3\f$ aperture:
\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
@sa Sobel, Scharr
Python prototype (for reference only):
Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

 Link to this function

 line(img, pt1, pt2, color)

 View Source

 @spec line(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws a line segment connecting two points.
Positional Arguments
	pt1: Point.
First point of the line segment.

	pt2: Point.
Second point of the line segment.

	color: Scalar.
Line color.

Keyword Arguments
	thickness: int.
Line thickness.

	lineType: int.
Type of the line. See #LineTypes.

	shift: int.
Number of fractional bits in the point coordinates.

Return
	img: Evision.Mat.t().
Image.

The function line draws the line segment between pt1 and pt2 points in the image. The line is
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
lines are drawn using Gaussian filtering.
Python prototype (for reference only):
line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 line(img, pt1, pt2, color, opts)

 View Source

 @spec line(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a line segment connecting two points.
Positional Arguments
	pt1: Point.
First point of the line segment.

	pt2: Point.
Second point of the line segment.

	color: Scalar.
Line color.

Keyword Arguments
	thickness: int.
Line thickness.

	lineType: int.
Type of the line. See #LineTypes.

	shift: int.
Number of fractional bits in the point coordinates.

Return
	img: Evision.Mat.t().
Image.

The function line draws the line segment between pt1 and pt2 points in the image. The line is
clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
lines are drawn using Gaussian filtering.
Python prototype (for reference only):
line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 linearPolar(src, center, maxRadius, flags)

 View Source

 @spec linearPolar(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Remaps an image to polar coordinates space.
Positional Arguments
	src: Evision.Mat.t().
Source image

	center: Point2f.
The transformation center;

	maxRadius: double.
The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.

	flags: int.
A combination of interpolation methods, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
Destination image. It will have same size and type as src.

@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
@internal
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
\f[\begin{array}{l}
dst(\rho , \phi) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = Kmag \cdot \texttt{magnitude} (I) ,\\
\phi = angle \cdot \texttt{angle} (I)
\end{array}\f]
and
\f[\begin{array}{l}
Kx = src.cols / maxRadius \\
Ky = src.rows / 2\Pi
\end{array}\f]
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.

@sa cv::logPolar
@endinternal
Python prototype (for reference only):
linearPolar(src, center, maxRadius, flags[, dst]) -> dst

 Link to this function

 linearPolar(src, center, maxRadius, flags, opts)

 View Source

 @spec linearPolar(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Remaps an image to polar coordinates space.
Positional Arguments
	src: Evision.Mat.t().
Source image

	center: Point2f.
The transformation center;

	maxRadius: double.
The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.

	flags: int.
A combination of interpolation methods, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
Destination image. It will have same size and type as src.

@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
@internal
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
\f[\begin{array}{l}
dst(\rho , \phi) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = Kmag \cdot \texttt{magnitude} (I) ,\\
\phi = angle \cdot \texttt{angle} (I)
\end{array}\f]
and
\f[\begin{array}{l}
Kx = src.cols / maxRadius \\
Ky = src.rows / 2\Pi
\end{array}\f]
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.

@sa cv::logPolar
@endinternal
Python prototype (for reference only):
linearPolar(src, center, maxRadius, flags[, dst]) -> dst

 Link to this function

 log(src)

 View Source

 @spec log(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Calculates the natural logarithm of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src .

The function cv::log calculates the natural logarithm of every element of the input array:
\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
Output on zero, negative and special (NaN, Inf) values is undefined.
@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
Python prototype (for reference only):
log(src[, dst]) -> dst

 Link to this function

 log(src, opts)

 View Source

 @spec log(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the natural logarithm of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src .

The function cv::log calculates the natural logarithm of every element of the input array:
\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
Output on zero, negative and special (NaN, Inf) values is undefined.
@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
Python prototype (for reference only):
log(src[, dst]) -> dst

 Link to this function

 logPolar(src, center, m, flags)

 View Source

 @spec logPolar(Evision.Mat.maybe_mat_in(), {number(), number()}, number(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Remaps an image to semilog-polar coordinates space.
Positional Arguments
	src: Evision.Mat.t().
Source image

	center: Point2f.
The transformation center; where the output precision is maximal

	m: double.
Magnitude scale parameter. It determines the radius of the bounding circle to transform too.

	flags: int.
A combination of interpolation methods, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
Destination image. It will have same size and type as src.

@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
@internal
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
\f[\begin{array}{l}
dst(\rho , \phi) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
\phi = Kangle \cdot \texttt{angle} (I) \\
\end{array}\f]
and
\f[\begin{array}{l}
M = src.cols / log_e(maxRadius) \\
Kangle = src.rows / 2\Pi \\
\end{array}\f]
The function emulates the human "foveal" vision and can be used for fast scale and
rotation-invariant template matching, for object tracking and so forth.
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.

@sa cv::linearPolar
@endinternal
Python prototype (for reference only):
logPolar(src, center, M, flags[, dst]) -> dst

 Link to this function

 logPolar(src, center, m, flags, opts)

 View Source

 @spec logPolar(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Remaps an image to semilog-polar coordinates space.
Positional Arguments
	src: Evision.Mat.t().
Source image

	center: Point2f.
The transformation center; where the output precision is maximal

	m: double.
Magnitude scale parameter. It determines the radius of the bounding circle to transform too.

	flags: int.
A combination of interpolation methods, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
Destination image. It will have same size and type as src.

@deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
@internal
Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
\f[\begin{array}{l}
dst(\rho , \phi) = src(x,y) \\
dst.size() \leftarrow src.size()
\end{array}\f]
where
\f[\begin{array}{l}
I = (dx,dy) = (x - center.x,y - center.y) \\
\rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
\phi = Kangle \cdot \texttt{angle} (I) \\
\end{array}\f]
and
\f[\begin{array}{l}
M = src.cols / log_e(maxRadius) \\
Kangle = src.rows / 2\Pi \\
\end{array}\f]
The function emulates the human "foveal" vision and can be used for fast scale and
rotation-invariant template matching, for object tracking and so forth.
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.

@sa cv::linearPolar
@endinternal
Python prototype (for reference only):
logPolar(src, center, M, flags[, dst]) -> dst

 Link to this function

 lut(src, lut)

 View Source

 @spec lut(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs a look-up table transform of an array.
Positional Arguments
	src: Evision.Mat.t().
input array of 8-bit elements.

	lut: Evision.Mat.t().
look-up table of 256 elements; in case of multi-channel input array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the input array.

Return
	dst: Evision.Mat.t().
output array of the same size and number of channels as src, and the same depth as lut.

The function LUT fills the output array with values from the look-up table. Indices of the entries
are taken from the input array. That is, the function processes each element of src as follows:
\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
where
\f[d = \fork{0}{if (\texttt{src}) has depth (\texttt{CV_8U})}{128}{if (\texttt{src}) has depth (\texttt{CV_8S})}\f]
@sa convertScaleAbs, Mat::convertTo
Python prototype (for reference only):
LUT(src, lut[, dst]) -> dst

 Link to this function

 lut(src, lut, opts)

 View Source

 @spec lut(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Performs a look-up table transform of an array.
Positional Arguments
	src: Evision.Mat.t().
input array of 8-bit elements.

	lut: Evision.Mat.t().
look-up table of 256 elements; in case of multi-channel input array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the input array.

Return
	dst: Evision.Mat.t().
output array of the same size and number of channels as src, and the same depth as lut.

The function LUT fills the output array with values from the look-up table. Indices of the entries
are taken from the input array. That is, the function processes each element of src as follows:
\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
where
\f[d = \fork{0}{if (\texttt{src}) has depth (\texttt{CV_8U})}{128}{if (\texttt{src}) has depth (\texttt{CV_8S})}\f]
@sa convertScaleAbs, Mat::convertTo
Python prototype (for reference only):
LUT(src, lut[, dst]) -> dst

 Link to this function

 magnitude(x, y)

 View Source

 @spec magnitude(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the magnitude of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
floating-point array of x-coordinates of the vectors.

	y: Evision.Mat.t().
floating-point array of y-coordinates of the vectors; it must
have the same size as x.

Return
	magnitude: Evision.Mat.t().
output array of the same size and type as x.

The function cv::magnitude calculates the magnitude of 2D vectors formed
from the corresponding elements of x and y arrays:
\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
@sa cartToPolar, polarToCart, phase, sqrt
Python prototype (for reference only):
magnitude(x, y[, magnitude]) -> magnitude

 Link to this function

 magnitude(x, y, opts)

 View Source

 @spec magnitude(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the magnitude of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
floating-point array of x-coordinates of the vectors.

	y: Evision.Mat.t().
floating-point array of y-coordinates of the vectors; it must
have the same size as x.

Return
	magnitude: Evision.Mat.t().
output array of the same size and type as x.

The function cv::magnitude calculates the magnitude of 2D vectors formed
from the corresponding elements of x and y arrays:
\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
@sa cartToPolar, polarToCart, phase, sqrt
Python prototype (for reference only):
magnitude(x, y[, magnitude]) -> magnitude

 Link to this function

 mahalanobis(v1, v2, icovar)

 View Source

 @spec mahalanobis(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 number() | {:error, String.t()}

Calculates the Mahalanobis distance between two vectors.
Positional Arguments
	v1: Evision.Mat.t().
first 1D input vector.

	v2: Evision.Mat.t().
second 1D input vector.

	icovar: Evision.Mat.t().
inverse covariance matrix.

Return
	retval: double

The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
\f[d(\texttt{vec1} , \texttt{vec2})= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
The covariance matrix may be calculated using the #calcCovarMatrix function and then inverted using
the invert function (preferably using the #DECOMP_SVD method, as the most accurate).
Python prototype (for reference only):
Mahalanobis(v1, v2, icovar) -> retval

 Link to this function

 matchShapes(contour1, contour2, method, parameter)

 View Source

 @spec matchShapes(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 number()
) ::
 number() | {:error, String.t()}

Compares two shapes.
Positional Arguments
	contour1: Evision.Mat.t().
First contour or grayscale image.

	contour2: Evision.Mat.t().
Second contour or grayscale image.

	method: int.
Comparison method, see #ShapeMatchModes

	parameter: double.
Method-specific parameter (not supported now).

Return
	retval: double

The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
Python prototype (for reference only):
matchShapes(contour1, contour2, method, parameter) -> retval

 Link to this function

 matchTemplate(image, templ, method)

 View Source

 @spec matchTemplate(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Compares a template against overlapped image regions.
Positional Arguments
	image: Evision.Mat.t().
Image where the search is running. It must be 8-bit or 32-bit floating-point.

	templ: Evision.Mat.t().
Searched template. It must be not greater than the source image and have the same
data type.

	method: int.
Parameter specifying the comparison method, see #TemplateMatchModes

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask. It must have the same size as templ. It must either have the same number
of channels as template or only one channel, which is then used for all template and
image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
meaning only elements where mask is nonzero are used and are kept unchanged independent
of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
used as weights. The exact formulas are documented in #TemplateMatchModes.

Return
	result: Evision.Mat.t().
Map of comparison results. It must be single-channel 32-bit floating-point. If image
is \f$W \times H\f$ and templ is \f$w \times h\f$, then result is \f$(W-w+1) \times (H-h+1)\f$.

The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
templ using the specified method and stores the comparison results in result . #TemplateMatchModes
describes the formulae for the available comparison methods (\f$I\f$ denotes image, \f$T\f$
template, \f$R\f$ result, \f$M\f$ the optional mask). The summation is done over template and/or
the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
After the function finishes the comparison, the best matches can be found as global minimums (when
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
the denominator is done over all of the channels and separate mean values are used for each channel.
That is, the function can take a color template and a color image. The result will still be a
single-channel image, which is easier to analyze.
Python prototype (for reference only):
matchTemplate(image, templ, method[, result[, mask]]) -> result

 Link to this function

 matchTemplate(image, templ, method, opts)

 View Source

 @spec matchTemplate(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:mask, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Compares a template against overlapped image regions.
Positional Arguments
	image: Evision.Mat.t().
Image where the search is running. It must be 8-bit or 32-bit floating-point.

	templ: Evision.Mat.t().
Searched template. It must be not greater than the source image and have the same
data type.

	method: int.
Parameter specifying the comparison method, see #TemplateMatchModes

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask. It must have the same size as templ. It must either have the same number
of channels as template or only one channel, which is then used for all template and
image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
meaning only elements where mask is nonzero are used and are kept unchanged independent
of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
used as weights. The exact formulas are documented in #TemplateMatchModes.

Return
	result: Evision.Mat.t().
Map of comparison results. It must be single-channel 32-bit floating-point. If image
is \f$W \times H\f$ and templ is \f$w \times h\f$, then result is \f$(W-w+1) \times (H-h+1)\f$.

The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
templ using the specified method and stores the comparison results in result . #TemplateMatchModes
describes the formulae for the available comparison methods (\f$I\f$ denotes image, \f$T\f$
template, \f$R\f$ result, \f$M\f$ the optional mask). The summation is done over template and/or
the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
After the function finishes the comparison, the best matches can be found as global minimums (when
#TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
#minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
the denominator is done over all of the channels and separate mean values are used for each channel.
That is, the function can take a color template and a color image. The result will still be a
single-channel image, which is easier to analyze.
Python prototype (for reference only):
matchTemplate(image, templ, method[, result[, mask]]) -> result

 Link to this function

 matMulDeriv(a, b)

 View Source

 @spec matMulDeriv(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes partial derivatives of the matrix product for each multiplied matrix.
Positional Arguments
	a: Evision.Mat.t().
First multiplied matrix.

	b: Evision.Mat.t().
Second multiplied matrix.

Return
	dABdA: Evision.Mat.t().
First output derivative matrix d(A*B)/dA of size
\f$\texttt{A.rowsB.cols} \times {A.rowsA.cols}\f$.

	dABdB: Evision.Mat.t().
Second output derivative matrix d(A*B)/dB of size
\f$\texttt{A.rowsB.cols} \times {B.rowsB.cols}\f$.

The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
the elements of each of the two input matrices. The function is used to compute the Jacobian
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
Python prototype (for reference only):
matMulDeriv(A, B[, dABdA[, dABdB]]) -> dABdA, dABdB

 Link to this function

 matMulDeriv(a, b, opts)

 View Source

 @spec matMulDeriv(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes partial derivatives of the matrix product for each multiplied matrix.
Positional Arguments
	a: Evision.Mat.t().
First multiplied matrix.

	b: Evision.Mat.t().
Second multiplied matrix.

Return
	dABdA: Evision.Mat.t().
First output derivative matrix d(A*B)/dA of size
\f$\texttt{A.rowsB.cols} \times {A.rowsA.cols}\f$.

	dABdB: Evision.Mat.t().
Second output derivative matrix d(A*B)/dB of size
\f$\texttt{A.rowsB.cols} \times {B.rowsB.cols}\f$.

The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
the elements of each of the two input matrices. The function is used to compute the Jacobian
matrices in #stereoCalibrate but can also be used in any other similar optimization function.
Python prototype (for reference only):
matMulDeriv(A, B[, dABdA[, dABdB]]) -> dABdA, dABdB

 Link to this function

 max(src1, src2)

 View Source

 @spec max(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates per-element maximum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1 .

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function cv::max calculates the per-element maximum of two arrays:
\f[\texttt{dst} (I)= \max (\texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \max (\texttt{src1} (I), \texttt{value})\f]
@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
Python prototype (for reference only):
max(src1, src2[, dst]) -> dst

 Link to this function

 max(src1, src2, opts)

 View Source

 @spec max(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates per-element maximum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1 .

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function cv::max calculates the per-element maximum of two arrays:
\f[\texttt{dst} (I)= \max (\texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \max (\texttt{src1} (I), \texttt{value})\f]
@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
Python prototype (for reference only):
max(src1, src2[, dst]) -> dst

 Link to this function

 mean(src)

 View Source

 @spec mean(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Calculates an average (mean) of array elements.
Positional Arguments
	src: Evision.Mat.t().
input array that should have from 1 to 4 channels so that the result can be stored in
Scalar_ .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask.

Return
	retval: Scalar

The function cv::mean calculates the mean value M of array elements,
independently for each channel, and return it:
\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left (\sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right)/N \end{array}\f]
When all the mask elements are 0's, the function returns Scalar::all(0)
@sa countNonZero, meanStdDev, norm, minMaxLoc
Python prototype (for reference only):
mean(src[, mask]) -> retval

 Link to this function

 mean(src, opts)

 View Source

 @spec mean(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Calculates an average (mean) of array elements.
Positional Arguments
	src: Evision.Mat.t().
input array that should have from 1 to 4 channels so that the result can be stored in
Scalar_ .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask.

Return
	retval: Scalar

The function cv::mean calculates the mean value M of array elements,
independently for each channel, and return it:
\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left (\sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right)/N \end{array}\f]
When all the mask elements are 0's, the function returns Scalar::all(0)
@sa countNonZero, meanStdDev, norm, minMaxLoc
Python prototype (for reference only):
mean(src[, mask]) -> retval

 Link to this function

 meanShift(probImage, window, criteria)

 View Source

 @spec meanShift(
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 {integer(), integer(), number()}
) ::
 {integer(), {number(), number(), number(), number()}} | {:error, String.t()}

Finds an object on a back projection image.
Positional Arguments
	probImage: Evision.Mat.t().
Back projection of the object histogram. See calcBackProject for details.

	criteria: TermCriteria.
Stop criteria for the iterative search algorithm.
returns
: Number of iterations CAMSHIFT took to converge.
The function implements the iterative object search algorithm. It takes the input back projection of
an object and the initial position. The mass center in window of the back projection image is
computed and the search window center shifts to the mass center. The procedure is repeated until the
specified number of iterations criteria.maxCount is done or until the window center shifts by less
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
window size or orientation do not change during the search. You can simply pass the output of
calcBackProject to this function. But better results can be obtained if you pre-filter the back
projection and remove the noise. For example, you can do this by retrieving connected components
with findContours , throwing away contours with small area (contourArea), and rendering the
remaining contours with drawContours.

Return
	retval: int

	window: Rect.
Initial search window.

Python prototype (for reference only):
meanShift(probImage, window, criteria) -> retval, window

 Link to this function

 meanStdDev(src)

 View Source

 @spec meanStdDev(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

meanStdDev
Positional Arguments
	src: Evision.Mat.t().
input array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ 's.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask.

Return
	mean: Evision.Mat.t().
output parameter: calculated mean value.

	stddev: Evision.Mat.t().
output parameter: calculated standard deviation.

Calculates a mean and standard deviation of array elements.
The function cv::meanStdDev calculates the mean and the standard deviation M
of array elements independently for each channel and returns it via the
output parameters:
\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left (\texttt{src} (I)_c - \texttt{mean} _c \right)^2}{N}} \end{array}\f]
When all the mask elements are 0's, the function returns
mean=stddev=Scalar::all(0).
Note: The calculated standard deviation is only the diagonal of the
complete normalized covariance matrix. If the full matrix is needed, you
can reshape the multi-channel array M x N to the single-channel array
M*N x mtx.channels() (only possible when the matrix is continuous) and
then pass the matrix to calcCovarMatrix .
@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
Python prototype (for reference only):
meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev

 Link to this function

 meanStdDev(src, opts)

 View Source

 @spec meanStdDev(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

meanStdDev
Positional Arguments
	src: Evision.Mat.t().
input array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ 's.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask.

Return
	mean: Evision.Mat.t().
output parameter: calculated mean value.

	stddev: Evision.Mat.t().
output parameter: calculated standard deviation.

Calculates a mean and standard deviation of array elements.
The function cv::meanStdDev calculates the mean and the standard deviation M
of array elements independently for each channel and returns it via the
output parameters:
\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left (\texttt{src} (I)_c - \texttt{mean} _c \right)^2}{N}} \end{array}\f]
When all the mask elements are 0's, the function returns
mean=stddev=Scalar::all(0).
Note: The calculated standard deviation is only the diagonal of the
complete normalized covariance matrix. If the full matrix is needed, you
can reshape the multi-channel array M x N to the single-channel array
M*N x mtx.channels() (only possible when the matrix is continuous) and
then pass the matrix to calcCovarMatrix .
@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
Python prototype (for reference only):
meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev

 Link to this function

 medianBlur(src, ksize)

 View Source

 @spec medianBlur(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using the median filter.
Positional Arguments
	src: Evision.Mat.t().
input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.

	ksize: int.
aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...

Return
	dst: Evision.Mat.t().
destination array of the same size and type as src.

The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
In-place operation is supported.
Note: The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
@sa bilateralFilter, blur, boxFilter, GaussianBlur
Python prototype (for reference only):
medianBlur(src, ksize[, dst]) -> dst

 Link to this function

 medianBlur(src, ksize, opts)

 View Source

 @spec medianBlur(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using the median filter.
Positional Arguments
	src: Evision.Mat.t().
input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.

	ksize: int.
aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...

Return
	dst: Evision.Mat.t().
destination array of the same size and type as src.

The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
In-place operation is supported.
Note: The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
@sa bilateralFilter, blur, boxFilter, GaussianBlur
Python prototype (for reference only):
medianBlur(src, ksize[, dst]) -> dst

 Link to this function

 merge(mv)

 View Source

 @spec merge([Evision.Mat.maybe_mat_in()]) :: Evision.Mat.t() | {:error, String.t()}

merge
Positional Arguments
	mv: [Evision.Mat].
input vector of matrices to be merged; all the matrices in mv must have the same
size and the same depth.

Return
	dst: Evision.Mat.t().
output array of the same size and the same depth as mv[0]; The number of channels will
be the total number of channels in the matrix array.

Has overloading in C++
Python prototype (for reference only):
merge(mv[, dst]) -> dst

 Link to this function

 merge(mv, opts)

 View Source

 @spec merge([Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

merge
Positional Arguments
	mv: [Evision.Mat].
input vector of matrices to be merged; all the matrices in mv must have the same
size and the same depth.

Return
	dst: Evision.Mat.t().
output array of the same size and the same depth as mv[0]; The number of channels will
be the total number of channels in the matrix array.

Has overloading in C++
Python prototype (for reference only):
merge(mv[, dst]) -> dst

 Link to this function

 min(src1, src2)

 View Source

 @spec min(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates per-element minimum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function cv::min calculates the per-element minimum of two arrays:
\f[\texttt{dst} (I)= \min (\texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \min (\texttt{src1} (I), \texttt{value})\f]
@sa max, compare, inRange, minMaxLoc
Python prototype (for reference only):
min(src1, src2[, dst]) -> dst

 Link to this function

 min(src1, src2, opts)

 View Source

 @spec min(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates per-element minimum of two arrays or an array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function cv::min calculates the per-element minimum of two arrays:
\f[\texttt{dst} (I)= \min (\texttt{src1} (I), \texttt{src2} (I))\f]
or array and a scalar:
\f[\texttt{dst} (I)= \min (\texttt{src1} (I), \texttt{value})\f]
@sa max, compare, inRange, minMaxLoc
Python prototype (for reference only):
min(src1, src2[, dst]) -> dst

 Link to this function

 minAreaRect(points)

 View Source

 @spec minAreaRect(Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D points, stored in std::vector\<> or Mat

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
indices when data is close to the containing Mat element boundary.
Python prototype (for reference only):
minAreaRect(points) -> retval

 Link to this function

 minEnclosingCircle(points)

 View Source

 @spec minEnclosingCircle(Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, number()} | {:error, String.t()}

Finds a circle of the minimum area enclosing a 2D point set.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D points, stored in std::vector\<> or Mat

Return
	center: Point2f.
Output center of the circle.

	radius: float.
Output radius of the circle.

The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
Python prototype (for reference only):
minEnclosingCircle(points) -> center, radius

 Link to this function

 minEnclosingTriangle(points)

 View Source

 @spec minEnclosingTriangle(Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds a triangle of minimum area enclosing a 2D point set and returns its area.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<> or Mat

Return
	retval: double

	triangle: Evision.Mat.t().
Output vector of three 2D points defining the vertices of the triangle. The depth
of the OutputArray must be CV_32F.

The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
red and the enclosing triangle in yellow*.
[image: Sample output of the minimum enclosing triangle function]
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
Python prototype (for reference only):
minEnclosingTriangle(points[, triangle]) -> retval, triangle

 Link to this function

 minEnclosingTriangle(points, opts)

 View Source

 @spec minEnclosingTriangle(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds a triangle of minimum area enclosing a 2D point set and returns its area.
Positional Arguments
	points: Evision.Mat.t().
Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<> or Mat

Return
	retval: double

	triangle: Evision.Mat.t().
Output vector of three 2D points defining the vertices of the triangle. The depth
of the OutputArray must be CV_32F.

The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
red and the enclosing triangle in yellow*.
[image: Sample output of the minimum enclosing triangle function]
The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
Python prototype (for reference only):
minEnclosingTriangle(points[, triangle]) -> retval, triangle

 Link to this function

 minMaxLoc(src)

 View Source

 @spec minMaxLoc(Evision.Mat.maybe_mat_in()) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

Finds the global minimum and maximum in an array.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

Keyword Arguments
	mask: Evision.Mat.t().
optional mask used to select a sub-array.

Return
	minVal: double*.
pointer to the returned minimum value; NULL is used if not required.

	maxVal: double*.
pointer to the returned maximum value; NULL is used if not required.

	minLoc: Point*.
pointer to the returned minimum location (in 2D case); NULL is used if not required.

	maxLoc: Point*.
pointer to the returned maximum location (in 2D case); NULL is used if not required.

The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region.
The function do not work with multi-channel arrays. If you need to find minimum or maximum
elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split .
@sa max, min, reduceArgMin, reduceArgMax, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

 Link to this function

 minMaxLoc(src, opts)

 View Source

 @spec minMaxLoc(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

Finds the global minimum and maximum in an array.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

Keyword Arguments
	mask: Evision.Mat.t().
optional mask used to select a sub-array.

Return
	minVal: double*.
pointer to the returned minimum value; NULL is used if not required.

	maxVal: double*.
pointer to the returned maximum value; NULL is used if not required.

	minLoc: Point*.
pointer to the returned minimum location (in 2D case); NULL is used if not required.

	maxLoc: Point*.
pointer to the returned maximum location (in 2D case); NULL is used if not required.

The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
extremums are searched across the whole array or, if mask is not an empty array, in the specified
array region.
The function do not work with multi-channel arrays. If you need to find minimum or maximum
elements across all the channels, use Mat::reshape first to reinterpret the array as
single-channel. Or you may extract the particular channel using either extractImageCOI , or
mixChannels , or split .
@sa max, min, reduceArgMin, reduceArgMax, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

 Link to this function

 mixChannels(src, dst, fromTo)

 View Source

 @spec mixChannels([Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()], [
 integer()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

mixChannels
Positional Arguments
	src: [Evision.Mat].
input array or vector of matrices; all of the matrices must have the same size and the
same depth.

	fromTo: [int].
array of index pairs specifying which channels are copied and where; fromTo[k*2] is
a 0-based index of the input channel in src, fromTo[k*2+1] is an index of the output channel in
dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
channels; as a special case, when fromTo[k*2] is negative, the corresponding output channel is
filled with zero .

Return
	dst: [Evision.Mat].
output array or vector of matrices; all the matrices must be allocated; their size and
depth must be the same as in src[0].

Has overloading in C++
Python prototype (for reference only):
mixChannels(src, dst, fromTo) -> dst

 Link to this function

 moments(array)

 View Source

 @spec moments(Evision.Mat.maybe_mat_in()) :: map() | {:error, String.t()}

Calculates all of the moments up to the third order of a polygon or rasterized shape.
Positional Arguments
	array: Evision.Mat.t().
Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
\f$1 \times N\f$ or \f$N \times 1\f$) of 2D points (Point or Point2f).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's. The parameter is
used for images only.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
results are returned in the structure cv::Moments.
@returns moments.
Note: Only applicable to contour moments calculations from Python bindings: Note that the numpy
type for the input array should be either np.int32 or np.float32.
@sa contourArea, arcLength
Python prototype (for reference only):
moments(array[, binaryImage]) -> retval

 Link to this function

 moments(array, opts)

 View Source

 @spec moments(Evision.Mat.maybe_mat_in(), [{:binaryImage, term()}] | nil) ::
 map() | {:error, String.t()}

Calculates all of the moments up to the third order of a polygon or rasterized shape.
Positional Arguments
	array: Evision.Mat.t().
Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
\f$1 \times N\f$ or \f$N \times 1\f$) of 2D points (Point or Point2f).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's. The parameter is
used for images only.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
results are returned in the structure cv::Moments.
@returns moments.
Note: Only applicable to contour moments calculations from Python bindings: Note that the numpy
type for the input array should be either np.int32 or np.float32.
@sa contourArea, arcLength
Python prototype (for reference only):
moments(array[, binaryImage]) -> retval

 Link to this function

 morphologyEx(src, op, kernel)

 View Source

 @spec morphologyEx(Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs advanced morphological transformations.
Positional Arguments
	src: Evision.Mat.t().
Source image. The number of channels can be arbitrary. The depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	op: int.
Type of a morphological operation, see #MorphTypes

	kernel: Evision.Mat.t().
Structuring element. It can be created using #getStructuringElement.

Keyword Arguments
	anchor: Point.
Anchor position with the kernel. Negative values mean that the anchor is at the
kernel center.

	iterations: int.
Number of times erosion and dilation are applied.

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

	borderValue: Scalar.
Border value in case of a constant border. The default value has a special
meaning.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as source image.

The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
basic operations.
Any of the operations can be done in-place. In case of multi-channel images, each channel is
processed independently.
@sa dilate, erode, getStructuringElement
Note: The number of iterations is the number of times erosion or dilatation operation will be applied.
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
Python prototype (for reference only):
morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 morphologyEx(src, op, kernel, opts)

 View Source

 @spec morphologyEx(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [iterations: term(), borderType: term(), anchor: term(), borderValue: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs advanced morphological transformations.
Positional Arguments
	src: Evision.Mat.t().
Source image. The number of channels can be arbitrary. The depth should be one of
CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

	op: int.
Type of a morphological operation, see #MorphTypes

	kernel: Evision.Mat.t().
Structuring element. It can be created using #getStructuringElement.

Keyword Arguments
	anchor: Point.
Anchor position with the kernel. Negative values mean that the anchor is at the
kernel center.

	iterations: int.
Number of times erosion and dilation are applied.

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

	borderValue: Scalar.
Border value in case of a constant border. The default value has a special
meaning.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as source image.

The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
basic operations.
Any of the operations can be done in-place. In case of multi-channel images, each channel is
processed independently.
@sa dilate, erode, getStructuringElement
Note: The number of iterations is the number of times erosion or dilatation operation will be applied.
For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
Python prototype (for reference only):
morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) -> dst

 Link to this function

 moveWindow(winname, x, y)

 View Source

 @spec moveWindow(binary(), integer(), integer()) :: :ok | {:error, String.t()}

Moves the window to the specified position
Positional Arguments
	winname: String.
Name of the window.

	x: int.
The new x-coordinate of the window.

	y: int.
The new y-coordinate of the window.

Python prototype (for reference only):
moveWindow(winname, x, y) -> None

 Link to this function

 mulSpectrums(a, b, flags)

 View Source

 @spec mulSpectrums(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the per-element multiplication of two Fourier spectrums.
Positional Arguments
	a: Evision.Mat.t().
first input array.

	b: Evision.Mat.t().
second input array of the same size and type as src1 .

	flags: int.
operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.

Keyword Arguments
	conjB: bool.
optional flag that conjugates the second input array before the multiplication (true)
or not (false).

Return
	c: Evision.Mat.t().
output array of the same size and type as src1 .

The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
matrices that are results of a real or complex Fourier transform.
The function, together with dft and idft , may be used to calculate convolution (pass conjB=false)
or correlation (pass conjB=true) of two arrays rapidly. When the arrays are complex, they are
simply multiplied (per element) with an optional conjugation of the second-array elements. When the
arrays are real, they are assumed to be CCS-packed (see dft for details).
Python prototype (for reference only):
mulSpectrums(a, b, flags[, c[, conjB]]) -> c

 Link to this function

 mulSpectrums(a, b, flags, opts)

 View Source

 @spec mulSpectrums(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:conjB, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs the per-element multiplication of two Fourier spectrums.
Positional Arguments
	a: Evision.Mat.t().
first input array.

	b: Evision.Mat.t().
second input array of the same size and type as src1 .

	flags: int.
operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.

Keyword Arguments
	conjB: bool.
optional flag that conjugates the second input array before the multiplication (true)
or not (false).

Return
	c: Evision.Mat.t().
output array of the same size and type as src1 .

The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
matrices that are results of a real or complex Fourier transform.
The function, together with dft and idft , may be used to calculate convolution (pass conjB=false)
or correlation (pass conjB=true) of two arrays rapidly. When the arrays are complex, they are
simply multiplied (per element) with an optional conjugation of the second-array elements. When the
arrays are real, they are assumed to be CCS-packed (see dft for details).
Python prototype (for reference only):
mulSpectrums(a, b, flags[, c[, conjB]]) -> c

 Link to this function

 mulTransposed(src, aTa)

 View Source

 @spec mulTransposed(Evision.Mat.maybe_mat_in(), boolean()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the product of a matrix and its transposition.
Positional Arguments
	src: Evision.Mat.t().
input single-channel matrix. Note that unlike gemm, the
function can multiply not only floating-point matrices.

	aTa: bool.
Flag specifying the multiplication ordering. See the
description below.

Keyword Arguments
	delta: Evision.Mat.t().
Optional delta matrix subtracted from src before the
multiplication. When the matrix is empty (delta=noArray()), it is
assumed to be zero, that is, nothing is subtracted. If it has the same
size as src , it is simply subtracted. Otherwise, it is "repeated" (see
repeat) to cover the full src and then subtracted. Type of the delta
matrix, when it is not empty, must be the same as the type of created
output matrix. See the dtype parameter description below.

	scale: double.
Optional scale factor for the matrix product.

	dtype: int.
Optional type of the output matrix. When it is negative,
the output matrix will have the same type as src . Otherwise, it will be
type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .

Return
	dst: Evision.Mat.t().
output square matrix.

The function cv::mulTransposed calculates the product of src and its
transposition:
\f[\texttt{dst} = \texttt{scale} (\texttt{src} - \texttt{delta})^T (\texttt{src} - \texttt{delta})\f]
if aTa=true , and
\f[\texttt{dst} = \texttt{scale} (\texttt{src} - \texttt{delta}) (\texttt{src} - \texttt{delta})^T\f]
otherwise. The function is used to calculate the covariance matrix. With
zero delta, it can be used as a faster substitute for general matrix
product A*B when B=A'
@sa calcCovarMatrix, gemm, repeat, reduce
Python prototype (for reference only):
mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst

 Link to this function

 mulTransposed(src, aTa, opts)

 View Source

 @spec mulTransposed(
 Evision.Mat.maybe_mat_in(),
 boolean(),
 [delta: term(), dtype: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the product of a matrix and its transposition.
Positional Arguments
	src: Evision.Mat.t().
input single-channel matrix. Note that unlike gemm, the
function can multiply not only floating-point matrices.

	aTa: bool.
Flag specifying the multiplication ordering. See the
description below.

Keyword Arguments
	delta: Evision.Mat.t().
Optional delta matrix subtracted from src before the
multiplication. When the matrix is empty (delta=noArray()), it is
assumed to be zero, that is, nothing is subtracted. If it has the same
size as src , it is simply subtracted. Otherwise, it is "repeated" (see
repeat) to cover the full src and then subtracted. Type of the delta
matrix, when it is not empty, must be the same as the type of created
output matrix. See the dtype parameter description below.

	scale: double.
Optional scale factor for the matrix product.

	dtype: int.
Optional type of the output matrix. When it is negative,
the output matrix will have the same type as src . Otherwise, it will be
type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .

Return
	dst: Evision.Mat.t().
output square matrix.

The function cv::mulTransposed calculates the product of src and its
transposition:
\f[\texttt{dst} = \texttt{scale} (\texttt{src} - \texttt{delta})^T (\texttt{src} - \texttt{delta})\f]
if aTa=true , and
\f[\texttt{dst} = \texttt{scale} (\texttt{src} - \texttt{delta}) (\texttt{src} - \texttt{delta})^T\f]
otherwise. The function is used to calculate the covariance matrix. With
zero delta, it can be used as a faster substitute for general matrix
product A*B when B=A'
@sa calcCovarMatrix, gemm, repeat, reduce
Python prototype (for reference only):
mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst

 Link to this function

 multiply(src1, src2)

 View Source

 @spec multiply(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element scaled product of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and the same type as src1.

Keyword Arguments
	scale: double.
optional scale factor.

	dtype: int.
optional depth of the output array

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function multiply calculates the per-element product of two arrays:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
For a not-per-element matrix product, see gemm .
Note: Saturation is not applied when the output array has the depth
CV_32S. You may even get result of an incorrect sign in the case of
overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
multiply(src,X) means multiply(src,(X,X,X,X)).
multiply(src,(X,)) means multiply(src,(X,0,0,0)).
@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
Mat::convertTo
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst

 Link to this function

 multiply(src1, src2, opts)

 View Source

 @spec multiply(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [dtype: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the per-element scaled product of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and the same type as src1.

Keyword Arguments
	scale: double.
optional scale factor.

	dtype: int.
optional depth of the output array

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function multiply calculates the per-element product of two arrays:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
For a not-per-element matrix product, see gemm .
Note: Saturation is not applied when the output array has the depth
CV_32S. You may even get result of an incorrect sign in the case of
overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
multiply(src,X) means multiply(src,(X,X,X,X)).
multiply(src,(X,)) means multiply(src,(X,0,0,0)).
@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
Mat::convertTo
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst

 Link to this function

 namedWindow(winname)

 View Source

 @spec namedWindow(binary()) :: :ok | {:error, String.t()}

Creates a window.
Positional Arguments
	winname: String.
Name of the window in the window caption that may be used as a window identifier.

Keyword Arguments
	flags: int.
Flags of the window. The supported flags are: (cv::WindowFlags)

The function namedWindow creates a window that can be used as a placeholder for images and
trackbars. Created windows are referred to by their names.
If a window with the same name already exists, the function does nothing.
You can call cv::destroyWindow or cv::destroyAllWindows to close the window and de-allocate any associated
memory usage. For a simple program, you do not really have to call these functions because all the
resources and windows of the application are closed automatically by the operating system upon exit.
Note: Qt backend supports additional flags:
	WINDOW_NORMAL or WINDOW_AUTOSIZE: WINDOW_NORMAL enables you to resize the
window, whereas WINDOW_AUTOSIZE adjusts automatically the window size to fit the
displayed image (see imshow), and you cannot change the window size manually.

	WINDOW_FREERATIO or WINDOW_KEEPRATIO: WINDOW_FREERATIO adjusts the image
with no respect to its ratio, whereas WINDOW_KEEPRATIO keeps the image ratio.

	WINDOW_GUI_NORMAL or WINDOW_GUI_EXPANDED: WINDOW_GUI_NORMAL is the old way to draw the window
without statusbar and toolbar, whereas WINDOW_GUI_EXPANDED is a new enhanced GUI.
By default, flags == WINDOW_AUTOSIZE | WINDOW_KEEPRATIO | WINDOW_GUI_EXPANDED

Python prototype (for reference only):
namedWindow(winname[, flags]) -> None

 Link to this function

 namedWindow(winname, opts)

 View Source

 @spec namedWindow(binary(), [{:flags, term()}] | nil) :: :ok | {:error, String.t()}

Creates a window.
Positional Arguments
	winname: String.
Name of the window in the window caption that may be used as a window identifier.

Keyword Arguments
	flags: int.
Flags of the window. The supported flags are: (cv::WindowFlags)

The function namedWindow creates a window that can be used as a placeholder for images and
trackbars. Created windows are referred to by their names.
If a window with the same name already exists, the function does nothing.
You can call cv::destroyWindow or cv::destroyAllWindows to close the window and de-allocate any associated
memory usage. For a simple program, you do not really have to call these functions because all the
resources and windows of the application are closed automatically by the operating system upon exit.
Note: Qt backend supports additional flags:
	WINDOW_NORMAL or WINDOW_AUTOSIZE: WINDOW_NORMAL enables you to resize the
window, whereas WINDOW_AUTOSIZE adjusts automatically the window size to fit the
displayed image (see imshow), and you cannot change the window size manually.

	WINDOW_FREERATIO or WINDOW_KEEPRATIO: WINDOW_FREERATIO adjusts the image
with no respect to its ratio, whereas WINDOW_KEEPRATIO keeps the image ratio.

	WINDOW_GUI_NORMAL or WINDOW_GUI_EXPANDED: WINDOW_GUI_NORMAL is the old way to draw the window
without statusbar and toolbar, whereas WINDOW_GUI_EXPANDED is a new enhanced GUI.
By default, flags == WINDOW_AUTOSIZE | WINDOW_KEEPRATIO | WINDOW_GUI_EXPANDED

Python prototype (for reference only):
namedWindow(winname[, flags]) -> None

 Link to this function

 norm(src1)

 View Source

 @spec norm(Evision.Mat.maybe_mat_in()) :: number() | {:error, String.t()}

Calculates the absolute norm of an array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

Keyword Arguments
	normType: int.
type of the norm (see #NormTypes).

	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

This version of #norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align}
\| r(-1) \|{L_1} &= |-1| + |2| = 3 \\
\| r(-1) \|{L2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
\| r(-1) \|{L_\infty} &= \max(|-1|,|2|) = 2
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align}
\| r(0.5) \|{L_1} &= |0.5| + |0.5| = 1 \\
\| r(0.5) \|{L2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
\| r(0.5) \|{L\infty} &= \max(|0.5|,|0.5|) = 0.5.
\f}
The following graphic shows all values for the three norm functions \f$\| r(x) \|\{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
[image: Graphs for the different norm functions from the above example]
When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, #NORM_L2 is used.
calculated only over the region specified by the mask.
Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
Python prototype (for reference only):
norm(src1[, normType[, mask]]) -> retval

 Link to this function

 norm(src1, opts)

 View Source

 @spec norm(Evision.Mat.maybe_mat_in(), [normType: term(), mask: term()] | nil) ::
 number() | {:error, String.t()}

 @spec norm(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Variant 1:
Calculates an absolute difference norm or a relative difference norm.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and the same type as src1.

Keyword Arguments
	normType: int.
type of the norm (see #NormTypes).

	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using #NormTypes.
Python prototype (for reference only):
norm(src1, src2[, normType[, mask]]) -> retval
Variant 2:
Calculates the absolute norm of an array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

Keyword Arguments
	normType: int.
type of the norm (see #NormTypes).

	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

This version of #norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.
As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
is calculated as follows
\f{align}
\| r(-1) \|{L_1} &= |-1| + |2| = 3 \\
\| r(-1) \|{L2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
\| r(-1) \|{L_\infty} &= \max(|-1|,|2|) = 2
\f}
and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
\f{align}
\| r(0.5) \|{L_1} &= |0.5| + |0.5| = 1 \\
\| r(0.5) \|{L2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
\| r(0.5) \|{L\infty} &= \max(|0.5|,|0.5|) = 0.5.
\f}
The following graphic shows all values for the three norm functions \f$\| r(x) \|\{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
[image: Graphs for the different norm functions from the above example]
When the mask parameter is specified and it is not empty, the norm is
If normType is not specified, #NORM_L2 is used.
calculated only over the region specified by the mask.
Multi-channel input arrays are treated as single-channel arrays, that is,
the results for all channels are combined.
Hamming norms can only be calculated with CV_8U depth arrays.
Python prototype (for reference only):
norm(src1[, normType[, mask]]) -> retval

 Link to this function

 norm(src1, src2, opts)

 View Source

 @spec norm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [normType: term(), mask: term()] | nil
) :: number() | {:error, String.t()}

Calculates an absolute difference norm or a relative difference norm.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size and the same type as src1.

Keyword Arguments
	normType: int.
type of the norm (see #NormTypes).

	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

This version of cv::norm calculates the absolute difference norm
or the relative difference norm of arrays src1 and src2.
The type of norm to calculate is specified using #NormTypes.
Python prototype (for reference only):
norm(src1, src2[, normType[, mask]]) -> retval

 Link to this function

 normalize(src, dst)

 View Source

 @spec normalize(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.Mat.t().
input array.

Keyword Arguments
	alpha: double.
norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
normalization type (see cv::NormTypes).

	dtype: int.
when negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

	mask: Evision.Mat.t().
optional operation mask.

Return
	dst: Evision.Mat.t().
output array of the same size as src .

The function cv::normalize normalizes scale and shift the input array elements so that
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
min-max but modify the whole array, you can use norm and Mat::convertTo.
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
the range transformation for sparse matrices is not allowed since it can shift the zero level.
Possible usage with some positive example data:
vector<double> positiveData = { 2.0, 8.0, 10.0 };
vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
@sa norm, Mat::convertTo, SparseMat::convertTo
Python prototype (for reference only):
normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) -> dst

 Link to this function

 normalize(src, dst, opts)

 View Source

 @spec normalize(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [alpha: term(), norm_type: term(), mask: term(), dtype: term(), beta: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.Mat.t().
input array.

Keyword Arguments
	alpha: double.
norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
normalization type (see cv::NormTypes).

	dtype: int.
when negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

	mask: Evision.Mat.t().
optional operation mask.

Return
	dst: Evision.Mat.t().
output array of the same size as src .

The function cv::normalize normalizes scale and shift the input array elements so that
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
min-max but modify the whole array, you can use norm and Mat::convertTo.
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
the range transformation for sparse matrices is not allowed since it can shift the zero level.
Possible usage with some positive example data:
vector<double> positiveData = { 2.0, 8.0, 10.0 };
vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
@sa norm, Mat::convertTo, SparseMat::convertTo
Python prototype (for reference only):
normalize(src, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]) -> dst

 Link to this function

 patchNaNs(a)

 View Source

 @spec patchNaNs(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Replaces NaNs by given number
Keyword Arguments
	val: double.
value to convert the NaNs

Return
	a: Evision.Mat.t().
input/output matrix (CV_32F type).

Python prototype (for reference only):
patchNaNs(a[, val]) -> a

 Link to this function

 patchNaNs(a, opts)

 View Source

 @spec patchNaNs(Evision.Mat.maybe_mat_in(), [{:val, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Replaces NaNs by given number
Keyword Arguments
	val: double.
value to convert the NaNs

Return
	a: Evision.Mat.t().
input/output matrix (CV_32F type).

Python prototype (for reference only):
patchNaNs(a[, val]) -> a

 Link to this function

 pcaBackProject(data, mean, eigenvectors)

 View Source

 @spec pcaBackProject(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

PCABackProject
Positional Arguments
	data: Evision.Mat.t()
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t()

Return
	result: Evision.Mat.t().

wrap PCA::backProject
Python prototype (for reference only):
PCABackProject(data, mean, eigenvectors[, result]) -> result

 Link to this function

 pcaBackProject(data, mean, eigenvectors, opts)

 View Source

 @spec pcaBackProject(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

PCABackProject
Positional Arguments
	data: Evision.Mat.t()
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t()

Return
	result: Evision.Mat.t().

wrap PCA::backProject
Python prototype (for reference only):
PCABackProject(data, mean, eigenvectors[, result]) -> result

 Link to this function

 pcaCompute2(data, mean)

 View Source

 @spec pcaCompute2(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

PCACompute2
Positional Arguments
	data: Evision.Mat.t()

Keyword Arguments
	maxComponents: int.

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().
	eigenvalues: Evision.Mat.t().

wrap PCA::operator() and add eigenvalues output parameter
Python prototype (for reference only):
PCACompute2(data, mean[, eigenvectors[, eigenvalues[, maxComponents]]]) -> mean, eigenvectors, eigenvalues

 Link to this function

 pcaCompute2(data, mean, opts)

 View Source

 @spec pcaCompute2(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:maxComponents, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec pcaCompute2(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
PCACompute2
Positional Arguments
	data: Evision.Mat.t()
	retainedVariance: double

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().
	eigenvalues: Evision.Mat.t().

wrap PCA::operator() and add eigenvalues output parameter
Python prototype (for reference only):
PCACompute2(data, mean, retainedVariance[, eigenvectors[, eigenvalues]]) -> mean, eigenvectors, eigenvalues
Variant 2:
PCACompute2
Positional Arguments
	data: Evision.Mat.t()

Keyword Arguments
	maxComponents: int.

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().
	eigenvalues: Evision.Mat.t().

wrap PCA::operator() and add eigenvalues output parameter
Python prototype (for reference only):
PCACompute2(data, mean[, eigenvectors[, eigenvalues[, maxComponents]]]) -> mean, eigenvectors, eigenvalues

 Link to this function

 pcaCompute2(data, mean, retainedVariance, opts)

 View Source

 @spec pcaCompute2(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

PCACompute2
Positional Arguments
	data: Evision.Mat.t()
	retainedVariance: double

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().
	eigenvalues: Evision.Mat.t().

wrap PCA::operator() and add eigenvalues output parameter
Python prototype (for reference only):
PCACompute2(data, mean, retainedVariance[, eigenvectors[, eigenvalues]]) -> mean, eigenvectors, eigenvalues

 Link to this function

 pcaCompute(data, mean)

 View Source

 @spec pcaCompute(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

PCACompute
Positional Arguments
	data: Evision.Mat.t()

Keyword Arguments
	maxComponents: int.

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().

wrap PCA::operator()
Python prototype (for reference only):
PCACompute(data, mean[, eigenvectors[, maxComponents]]) -> mean, eigenvectors

 Link to this function

 pcaCompute(data, mean, opts)

 View Source

 @spec pcaCompute(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:maxComponents, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec pcaCompute(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
PCACompute
Positional Arguments
	data: Evision.Mat.t()
	retainedVariance: double

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().

wrap PCA::operator()
Python prototype (for reference only):
PCACompute(data, mean, retainedVariance[, eigenvectors]) -> mean, eigenvectors
Variant 2:
PCACompute
Positional Arguments
	data: Evision.Mat.t()

Keyword Arguments
	maxComponents: int.

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().

wrap PCA::operator()
Python prototype (for reference only):
PCACompute(data, mean[, eigenvectors[, maxComponents]]) -> mean, eigenvectors

 Link to this function

 pcaCompute(data, mean, retainedVariance, opts)

 View Source

 @spec pcaCompute(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

PCACompute
Positional Arguments
	data: Evision.Mat.t()
	retainedVariance: double

Return
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t().

wrap PCA::operator()
Python prototype (for reference only):
PCACompute(data, mean, retainedVariance[, eigenvectors]) -> mean, eigenvectors

 Link to this function

 pcaProject(data, mean, eigenvectors)

 View Source

 @spec pcaProject(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

PCAProject
Positional Arguments
	data: Evision.Mat.t()
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t()

Return
	result: Evision.Mat.t().

wrap PCA::project
Python prototype (for reference only):
PCAProject(data, mean, eigenvectors[, result]) -> result

 Link to this function

 pcaProject(data, mean, eigenvectors, opts)

 View Source

 @spec pcaProject(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

PCAProject
Positional Arguments
	data: Evision.Mat.t()
	mean: Evision.Mat.t()
	eigenvectors: Evision.Mat.t()

Return
	result: Evision.Mat.t().

wrap PCA::project
Python prototype (for reference only):
PCAProject(data, mean, eigenvectors[, result]) -> result

 Link to this function

 pencilSketch(src)

 View Source

 @spec pencilSketch(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Pencil-like non-photorealistic line drawing
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

	shade_factor: float.
%Range between 0 to 0.1.

Return
	dst1: Evision.Mat.t().
Output 8-bit 1-channel image.

	dst2: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
pencilSketch(src[, dst1[, dst2[, sigma_s[, sigma_r[, shade_factor]]]]]) -> dst1, dst2

 Link to this function

 pencilSketch(src, opts)

 View Source

 @spec pencilSketch(
 Evision.Mat.maybe_mat_in(),
 [sigma_r: term(), sigma_s: term(), shade_factor: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Pencil-like non-photorealistic line drawing
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

	shade_factor: float.
%Range between 0 to 0.1.

Return
	dst1: Evision.Mat.t().
Output 8-bit 1-channel image.

	dst2: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
pencilSketch(src[, dst1[, dst2[, sigma_s[, sigma_r[, shade_factor]]]]]) -> dst1, dst2

 Link to this function

 perspectiveTransform(src, m)

 View Source

 @spec perspectiveTransform(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the perspective matrix transformation of vectors.
Positional Arguments
	src: Evision.Mat.t().
input two-channel or three-channel floating-point array; each
element is a 2D/3D vector to be transformed.

	m: Evision.Mat.t().
3x3 or 4x4 floating-point transformation matrix.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::perspectiveTransform transforms every element of src by
treating it as a 2D or 3D vector, in the following way:
\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
where
\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
and
\f[w = \fork{w'}{if (w' \ne 0)}{\infty}{otherwise}\f]
Here a 3D vector transformation is shown. In case of a 2D vector
transformation, the z component is omitted.
Note: The function transforms a sparse set of 2D or 3D vectors. If you
want to transform an image using perspective transformation, use
warpPerspective . If you have an inverse problem, that is, you want to
compute the most probable perspective transformation out of several
pairs of corresponding points, you can use getPerspectiveTransform or
findHomography .
@sa transform, warpPerspective, getPerspectiveTransform, findHomography
Python prototype (for reference only):
perspectiveTransform(src, m[, dst]) -> dst

 Link to this function

 perspectiveTransform(src, m, opts)

 View Source

 @spec perspectiveTransform(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs the perspective matrix transformation of vectors.
Positional Arguments
	src: Evision.Mat.t().
input two-channel or three-channel floating-point array; each
element is a 2D/3D vector to be transformed.

	m: Evision.Mat.t().
3x3 or 4x4 floating-point transformation matrix.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::perspectiveTransform transforms every element of src by
treating it as a 2D or 3D vector, in the following way:
\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
where
\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
and
\f[w = \fork{w'}{if (w' \ne 0)}{\infty}{otherwise}\f]
Here a 3D vector transformation is shown. In case of a 2D vector
transformation, the z component is omitted.
Note: The function transforms a sparse set of 2D or 3D vectors. If you
want to transform an image using perspective transformation, use
warpPerspective . If you have an inverse problem, that is, you want to
compute the most probable perspective transformation out of several
pairs of corresponding points, you can use getPerspectiveTransform or
findHomography .
@sa transform, warpPerspective, getPerspectiveTransform, findHomography
Python prototype (for reference only):
perspectiveTransform(src, m[, dst]) -> dst

 Link to this function

 phase(x, y)

 View Source

 @spec phase(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the rotation angle of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
input floating-point array of x-coordinates of 2D vectors.

	y: Evision.Mat.t().
input array of y-coordinates of 2D vectors; it must have the
same size and the same type as x.

Keyword Arguments
	angleInDegrees: bool.
when true, the function calculates the angle in
degrees, otherwise, they are measured in radians.

Return
	angle: Evision.Mat.t().
output array of vector angles; it has the same size and
same type as x .

The function cv::phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\f[\texttt{angle} (I) = \texttt{atan2} (\texttt{y} (I), \texttt{x} (I))\f]
The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
the corresponding angle(I) is set to 0.
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees]]) -> angle

 Link to this function

 phase(x, y, opts)

 View Source

 @spec phase(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:angleInDegrees, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the rotation angle of 2D vectors.
Positional Arguments
	x: Evision.Mat.t().
input floating-point array of x-coordinates of 2D vectors.

	y: Evision.Mat.t().
input array of y-coordinates of 2D vectors; it must have the
same size and the same type as x.

Keyword Arguments
	angleInDegrees: bool.
when true, the function calculates the angle in
degrees, otherwise, they are measured in radians.

Return
	angle: Evision.Mat.t().
output array of vector angles; it has the same size and
same type as x .

The function cv::phase calculates the rotation angle of each 2D vector that
is formed from the corresponding elements of x and y :
\f[\texttt{angle} (I) = \texttt{atan2} (\texttt{y} (I), \texttt{x} (I))\f]
The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
the corresponding angle(I) is set to 0.
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees]]) -> angle

 Link to this function

 phaseCorrelate(src1, src2)

 View Source

 @spec phaseCorrelate(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, number()} | {:error, String.t()}

The function is used to detect translational shifts that occur between two images.
Positional Arguments
	src1: Evision.Mat.t().
Source floating point array (CV_32FC1 or CV_64FC1)

	src2: Evision.Mat.t().
Source floating point array (CV_32FC1 or CV_64FC1)

Keyword Arguments
	window: Evision.Mat.t().
Floating point array with windowing coefficients to reduce edge effects (optional).

Return
	retval: Point2d

	response: double*.
Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).

The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
the frequency domain. It can be used for fast image registration as well as motion estimation. For
more information please see http://en.wikipedia.org/wiki/Phase_correlation
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
with getOptimalDFTSize.
The function performs the following equations:
	First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) to each
image to remove possible edge effects. This window is cached until the array size changes to speed
up processing time.

	Next it computes the forward DFTs of each source array:
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
where \f$\mathcal{F}\f$ is the forward DFT.

	It then computes the cross-power spectrum of each frequency domain array:
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]

	Next the cross-correlation is converted back into the time domain via the inverse DFT:
\f[r = \mathcal{F}^{-1}\{R\}\f]

	Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
achieve sub-pixel accuracy.
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]

	If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
peak) and will be smaller when there are multiple peaks.

@returns detected phase shift (sub-pixel) between the two arrays.
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
Python prototype (for reference only):
phaseCorrelate(src1, src2[, window]) -> retval, response

 Link to this function

 phaseCorrelate(src1, src2, opts)

 View Source

 @spec phaseCorrelate(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:window, term()}] | nil
) ::
 {{number(), number()}, number()} | {:error, String.t()}

The function is used to detect translational shifts that occur between two images.
Positional Arguments
	src1: Evision.Mat.t().
Source floating point array (CV_32FC1 or CV_64FC1)

	src2: Evision.Mat.t().
Source floating point array (CV_32FC1 or CV_64FC1)

Keyword Arguments
	window: Evision.Mat.t().
Floating point array with windowing coefficients to reduce edge effects (optional).

Return
	retval: Point2d

	response: double*.
Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).

The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
the frequency domain. It can be used for fast image registration as well as motion estimation. For
more information please see http://en.wikipedia.org/wiki/Phase_correlation
Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
with getOptimalDFTSize.
The function performs the following equations:
	First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) to each
image to remove possible edge effects. This window is cached until the array size changes to speed
up processing time.

	Next it computes the forward DFTs of each source array:
\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
where \f$\mathcal{F}\f$ is the forward DFT.

	It then computes the cross-power spectrum of each frequency domain array:
\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]

	Next the cross-correlation is converted back into the time domain via the inverse DFT:
\f[r = \mathcal{F}^{-1}\{R\}\f]

	Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
achieve sub-pixel accuracy.
\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]

	If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
peak) and will be smaller when there are multiple peaks.

@returns detected phase shift (sub-pixel) between the two arrays.
@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
Python prototype (for reference only):
phaseCorrelate(src1, src2[, window]) -> retval, response

 Link to this function

 pointPolygonTest(contour, pt, measureDist)

 View Source

 @spec pointPolygonTest(Evision.Mat.maybe_mat_in(), {number(), number()}, boolean()) ::
 number() | {:error, String.t()}

Performs a point-in-contour test.
Positional Arguments
	contour: Evision.Mat.t().
Input contour.

	pt: Point2f.
Point tested against the contour.

	measureDist: bool.
If true, the function estimates the signed distance from the point to the
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.

Return
	retval: double

The function determines whether the point is inside a contour, outside, or lies on an edge (or
coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
Otherwise, the return value is a signed distance between the point and the nearest contour edge.
See below a sample output of the function where each image pixel is tested against the contour:
[image: sample output]
Python prototype (for reference only):
pointPolygonTest(contour, pt, measureDist) -> retval

 Link to this function

 polarToCart(magnitude, angle)

 View Source

 @spec polarToCart(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates x and y coordinates of 2D vectors from their magnitude and angle.
Positional Arguments
	magnitude: Evision.Mat.t().
input floating-point array of magnitudes of 2D vectors;
it can be an empty matrix (=Mat()), in this case, the function assumes
that all the magnitudes are =1; if it is not empty, it must have the
same size and type as angle.

	angle: Evision.Mat.t().
input floating-point array of angles of 2D vectors.

Keyword Arguments
	angleInDegrees: bool.
when true, the input angles are measured in
degrees, otherwise, they are measured in radians.

Return
	x: Evision.Mat.t().
output array of x-coordinates of 2D vectors; it has the same
size and type as angle.

	y: Evision.Mat.t().
output array of y-coordinates of 2D vectors; it has the same
size and type as angle.

The function cv::polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos (\texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin (\texttt{angle} (I)) \\ \end{array}\f]
The relative accuracy of the estimated coordinates is about 1e-6.
@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y

 Link to this function

 polarToCart(magnitude, angle, opts)

 View Source

 @spec polarToCart(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:angleInDegrees, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates x and y coordinates of 2D vectors from their magnitude and angle.
Positional Arguments
	magnitude: Evision.Mat.t().
input floating-point array of magnitudes of 2D vectors;
it can be an empty matrix (=Mat()), in this case, the function assumes
that all the magnitudes are =1; if it is not empty, it must have the
same size and type as angle.

	angle: Evision.Mat.t().
input floating-point array of angles of 2D vectors.

Keyword Arguments
	angleInDegrees: bool.
when true, the input angles are measured in
degrees, otherwise, they are measured in radians.

Return
	x: Evision.Mat.t().
output array of x-coordinates of 2D vectors; it has the same
size and type as angle.

	y: Evision.Mat.t().
output array of y-coordinates of 2D vectors; it has the same
size and type as angle.

The function cv::polarToCart calculates the Cartesian coordinates of each 2D
vector represented by the corresponding elements of magnitude and angle:
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos (\texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin (\texttt{angle} (I)) \\ \end{array}\f]
The relative accuracy of the estimated coordinates is about 1e-6.
@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y

 Link to this function

 pollKey()

 View Source

 @spec pollKey() :: integer() | {:error, String.t()}

Polls for a pressed key.
Return
	retval: int

The function pollKey polls for a key event without waiting. It returns the code of the pressed key
or -1 if no key was pressed since the last invocation. To wait until a key was pressed, use #waitKey.
Note: The functions #waitKey and #pollKey are the only methods in HighGUI that can fetch and handle
GUI events, so one of them needs to be called periodically for normal event processing unless
HighGUI is used within an environment that takes care of event processing.
Note: The function only works if there is at least one HighGUI window created and the window is
active. If there are several HighGUI windows, any of them can be active.
Python prototype (for reference only):
pollKey() -> retval

 Link to this function

 polylines(img, pts, isClosed, color)

 View Source

 @spec polylines(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 boolean(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws several polygonal curves.
Positional Arguments
	pts: [Evision.Mat].
Array of polygonal curves.

	isClosed: bool.
Flag indicating whether the drawn polylines are closed or not. If they are closed,
the function draws a line from the last vertex of each curve to its first vertex.

	color: Scalar.
Polyline color.

Keyword Arguments
	thickness: int.
Thickness of the polyline edges.

	lineType: int.
Type of the line segments. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::polylines draws one or more polygonal curves.
Python prototype (for reference only):
polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 polylines(img, pts, isClosed, color, opts)

 View Source

 @spec polylines(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 boolean(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws several polygonal curves.
Positional Arguments
	pts: [Evision.Mat].
Array of polygonal curves.

	isClosed: bool.
Flag indicating whether the drawn polylines are closed or not. If they are closed,
the function draws a line from the last vertex of each curve to its first vertex.

	color: Scalar.
Polyline color.

Keyword Arguments
	thickness: int.
Thickness of the polyline edges.

	lineType: int.
Type of the line segments. See #LineTypes

	shift: int.
Number of fractional bits in the vertex coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::polylines draws one or more polygonal curves.
Python prototype (for reference only):
polylines(img, pts, isClosed, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 pow(src, power)

 View Source

 @spec pow(Evision.Mat.maybe_mat_in(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Raises every array element to a power.
Positional Arguments
	src: Evision.Mat.t().
input array.

	power: double.
exponent of power.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::pow raises every element of the input array to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if (\texttt{power}) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
So, for a non-integer power exponent, the absolute values of input array
elements are used. However, it is possible to get true values for
negative values using some extra operations. In the example below,
computing the 5th root of array src shows:
Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);
For some values of power, such as integer values, 0.5 and -0.5,
specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.
@sa sqrt, exp, log, cartToPolar, polarToCart
Python prototype (for reference only):
pow(src, power[, dst]) -> dst

 Link to this function

 pow(src, power, opts)

 View Source

 @spec pow(Evision.Mat.maybe_mat_in(), number(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Raises every array element to a power.
Positional Arguments
	src: Evision.Mat.t().
input array.

	power: double.
exponent of power.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::pow raises every element of the input array to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if (\texttt{power}) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
So, for a non-integer power exponent, the absolute values of input array
elements are used. However, it is possible to get true values for
negative values using some extra operations. In the example below,
computing the 5th root of array src shows:
Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);
For some values of power, such as integer values, 0.5 and -0.5,
specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.
@sa sqrt, exp, log, cartToPolar, polarToCart
Python prototype (for reference only):
pow(src, power[, dst]) -> dst

 Link to this function

 preCornerDetect(src, ksize)

 View Source

 @spec preCornerDetect(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates a feature map for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Source single-channel 8-bit of floating-point image.

	ksize: int.
%Aperture size of the Sobel .

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Output image that has the type CV_32F and the same size as src .

The function calculates the complex spatial derivative-based function of the source image
\f[\texttt{dst} = (D_x \texttt{src})^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src})^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f]
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
The corners can be found as local maximums of the functions, as shown below:
Mat corners, dilated_corners;
preCornerDetect(image, corners, 3);
// dilation with 3x3 rectangular structuring element
dilate(corners, dilated_corners, Mat(), 1);
Mat corner_mask = corners == dilated_corners;
Python prototype (for reference only):
preCornerDetect(src, ksize[, dst[, borderType]]) -> dst

 Link to this function

 preCornerDetect(src, ksize, opts)

 View Source

 @spec preCornerDetect(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:borderType, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates a feature map for corner detection.
Positional Arguments
	src: Evision.Mat.t().
Source single-channel 8-bit of floating-point image.

	ksize: int.
%Aperture size of the Sobel .

Keyword Arguments
	borderType: int.
Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Output image that has the type CV_32F and the same size as src .

The function calculates the complex spatial derivative-based function of the source image
\f[\texttt{dst} = (D_x \texttt{src})^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src})^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f]
where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
derivatives, and \f$D_{xy}\f$ is the mixed derivative.
The corners can be found as local maximums of the functions, as shown below:
Mat corners, dilated_corners;
preCornerDetect(image, corners, 3);
// dilation with 3x3 rectangular structuring element
dilate(corners, dilated_corners, Mat(), 1);
Mat corner_mask = corners == dilated_corners;
Python prototype (for reference only):
preCornerDetect(src, ksize[, dst[, borderType]]) -> dst

 Link to this function

 projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Projects 3D points to an image plane.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f>), where N is the number of points in the view.

	rvec: Evision.Mat.t().
The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
basis from world to camera coordinate system, see @ref calibrateCamera for details.

	tvec: Evision.Mat.t().
The translation vector, see parameter description above.

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.

Keyword Arguments
	aspectRatio: double.
Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
jacobian matrix.

Return
	imagePoints: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or
vector\<Point2f> .

	jacobian: Evision.Mat.t().
Optional output 2Nx(10+\<numDistCoeffs>) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.

The function computes the 2D projections of 3D points to the image plane, given intrinsic and
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
derivatives of image points coordinates (as functions of all the input parameters) with respect to
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
parameters.
Note: By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
or by passing zero distortion coefficients, one can get various useful partial cases of the
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs[, imagePoints[, jacobian[, aspectRatio]]]) -> imagePoints, jacobian

 Link to this function

 projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs, opts)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:aspectRatio, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Projects 3D points to an image plane.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
1-channel or 1xN/Nx1 3-channel (or vector\<Point3f>), where N is the number of points in the view.

	rvec: Evision.Mat.t().
The rotation vector (@ref Rodrigues) that, together with tvec, performs a change of
basis from world to camera coordinate system, see @ref calibrateCamera for details.

	tvec: Evision.Mat.t().
The translation vector, see parameter description above.

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is empty, the zero distortion coefficients are assumed.

Keyword Arguments
	aspectRatio: double.
Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
function assumes that the aspect ratio (\f$f_x / f_y\f$) is fixed and correspondingly adjusts the
jacobian matrix.

Return
	imagePoints: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or
vector\<Point2f> .

	jacobian: Evision.Mat.t().
Optional output 2Nx(10+\<numDistCoeffs>) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.

The function computes the 2D projections of 3D points to the image plane, given intrinsic and
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
derivatives of image points coordinates (as functions of all the input parameters) with respect to
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
optimization in @ref calibrateCamera, @ref solvePnP, and @ref stereoCalibrate. The function itself
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
parameters.
Note: By setting rvec = tvec = \f$[0, 0, 0]\f$, or by setting cameraMatrix to a 3x3 identity matrix,
or by passing zero distortion coefficients, one can get various useful partial cases of the
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs[, imagePoints[, jacobian[, aspectRatio]]]) -> imagePoints, jacobian

 Link to this function

 psnr(src1, src2)

 View Source

 @spec psnr(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size as src1.

Keyword Arguments
	r: double.
the maximum pixel value (255 by default)

Return
	retval: double

This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB),
between two input arrays src1 and src2. The arrays must have the same type.
The PSNR is calculated as follows:
\f[
\texttt{PSNR} = 10 \cdot \log_{10}{\left(\frac{R^2}{MSE} \right) }
\f]
where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data)
and MSE is the mean squared error between the two arrays.
Python prototype (for reference only):
PSNR(src1, src2[, R]) -> retval

 Link to this function

 psnr(src1, src2, opts)

 View Source

 @spec psnr(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:r, term()}] | nil
) ::
 number() | {:error, String.t()}

Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	src2: Evision.Mat.t().
second input array of the same size as src1.

Keyword Arguments
	r: double.
the maximum pixel value (255 by default)

Return
	retval: double

This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB),
between two input arrays src1 and src2. The arrays must have the same type.
The PSNR is calculated as follows:
\f[
\texttt{PSNR} = 10 \cdot \log_{10}{\left(\frac{R^2}{MSE} \right) }
\f]
where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data)
and MSE is the mean squared error between the two arrays.
Python prototype (for reference only):
PSNR(src1, src2[, R]) -> retval

 Link to this function

 putText(img, text, org, fontFace, fontScale, color)

 View Source

 @spec putText(
 Evision.Mat.maybe_mat_in(),
 binary(),
 {number(), number()},
 integer(),
 number(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draws a text string.
Positional Arguments
	text: String.
Text string to be drawn.

	org: Point.
Bottom-left corner of the text string in the image.

	fontFace: int.
Font type, see #HersheyFonts.

	fontScale: double.
Font scale factor that is multiplied by the font-specific base size.

	color: Scalar.
Text color.

Keyword Arguments
	thickness: int.
Thickness of the lines used to draw a text.

	lineType: int.
Line type. See #LineTypes

	bottomLeftOrigin: bool.
When true, the image data origin is at the bottom-left corner. Otherwise,
it is at the top-left corner.

Return
	img: Evision.Mat.t().
Image.

The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
using the specified font are replaced by question marks. See #getTextSize for a text rendering code
example.
Python prototype (for reference only):
putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> img

 Link to this function

 putText(img, text, org, fontFace, fontScale, color, opts)

 View Source

 @spec putText(
 Evision.Mat.maybe_mat_in(),
 binary(),
 {number(), number()},
 integer(),
 number(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), bottomLeftOrigin: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a text string.
Positional Arguments
	text: String.
Text string to be drawn.

	org: Point.
Bottom-left corner of the text string in the image.

	fontFace: int.
Font type, see #HersheyFonts.

	fontScale: double.
Font scale factor that is multiplied by the font-specific base size.

	color: Scalar.
Text color.

Keyword Arguments
	thickness: int.
Thickness of the lines used to draw a text.

	lineType: int.
Line type. See #LineTypes

	bottomLeftOrigin: bool.
When true, the image data origin is at the bottom-left corner. Otherwise,
it is at the top-left corner.

Return
	img: Evision.Mat.t().
Image.

The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
using the specified font are replaced by question marks. See #getTextSize for a text rendering code
example.
Python prototype (for reference only):
putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]]) -> img

 Link to this function

 pyrDown(src)

 View Source

 @spec pyrDown(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Blurs an image and downsamples it.
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	dstsize: Size.
size of the output image.

	borderType: int.
Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)

Return
	dst: Evision.Mat.t().
output image; it has the specified size and the same type as src.

By default, size of the output image is computed as Size((src.cols+1)/2, (src.rows+1)/2), but in
any case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
The function performs the downsampling step of the Gaussian pyramid construction. First, it
convolves the source image with the kernel:
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
Then, it downsamples the image by rejecting even rows and columns.
Python prototype (for reference only):
pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst

 Link to this function

 pyrDown(src, opts)

 View Source

 @spec pyrDown(Evision.Mat.maybe_mat_in(), [borderType: term(), dstsize: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image and downsamples it.
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	dstsize: Size.
size of the output image.

	borderType: int.
Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)

Return
	dst: Evision.Mat.t().
output image; it has the specified size and the same type as src.

By default, size of the output image is computed as Size((src.cols+1)/2, (src.rows+1)/2), but in
any case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
The function performs the downsampling step of the Gaussian pyramid construction. First, it
convolves the source image with the kernel:
\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
Then, it downsamples the image by rejecting even rows and columns.
Python prototype (for reference only):
pyrDown(src[, dst[, dstsize[, borderType]]]) -> dst

 Link to this function

 pyrMeanShiftFiltering(src, sp, sr)

 View Source

 @spec pyrMeanShiftFiltering(Evision.Mat.maybe_mat_in(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs initial step of meanshift segmentation of an image.
Positional Arguments
	src: Evision.Mat.t().
The source 8-bit, 3-channel image.

	sp: double.
The spatial window radius.

	sr: double.
The color window radius.

Keyword Arguments
	maxLevel: int.
Maximum level of the pyramid for the segmentation.

	termcrit: TermCriteria.
Termination criteria: when to stop meanshift iterations.

Return
	dst: Evision.Mat.t().
The destination image of the same format and the same size as the source.

The function implements the filtering stage of meanshift segmentation, that is, the output of the
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
considered:
\f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f]
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
(though, the algorithm does not depend on the color space used, so any 3-component color space can
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
(R',G',B') are found and they act as the neighborhood center on the next iteration:
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
After the iterations over, the color components of the initial pixel (that is, the pixel from where
the iterations started) are set to the final value (average color at the last iteration):
\f[I(X,Y) <- (R*,G*,B*)\f]
When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
run on the smallest layer first. After that, the results are propagated to the larger layer and the
iterations are run again only on those pixels where the layer colors differ by more than sr from the
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
results will be actually different from the ones obtained by running the meanshift procedure on the
whole original image (i.e. when maxLevel==0).
Python prototype (for reference only):
pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst

 Link to this function

 pyrMeanShiftFiltering(src, sp, sr, opts)

 View Source

 @spec pyrMeanShiftFiltering(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [termcrit: term(), maxLevel: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs initial step of meanshift segmentation of an image.
Positional Arguments
	src: Evision.Mat.t().
The source 8-bit, 3-channel image.

	sp: double.
The spatial window radius.

	sr: double.
The color window radius.

Keyword Arguments
	maxLevel: int.
Maximum level of the pyramid for the segmentation.

	termcrit: TermCriteria.
Termination criteria: when to stop meanshift iterations.

Return
	dst: Evision.Mat.t().
The destination image of the same format and the same size as the source.

The function implements the filtering stage of meanshift segmentation, that is, the output of the
function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
considered:
\f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f]
where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
(though, the algorithm does not depend on the color space used, so any 3-component color space can
be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
(R',G',B') are found and they act as the neighborhood center on the next iteration:
\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
After the iterations over, the color components of the initial pixel (that is, the pixel from where
the iterations started) are set to the final value (average color at the last iteration):
\f[I(X,Y) <- (R*,G*,B*)\f]
When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
run on the smallest layer first. After that, the results are propagated to the larger layer and the
iterations are run again only on those pixels where the layer colors differ by more than sr from the
lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
results will be actually different from the ones obtained by running the meanshift procedure on the
whole original image (i.e. when maxLevel==0).
Python prototype (for reference only):
pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) -> dst

 Link to this function

 pyrUp(src)

 View Source

 @spec pyrUp(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Upsamples an image and then blurs it.
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	dstsize: Size.
size of the output image.

	borderType: int.
Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)

Return
	dst: Evision.Mat.t().
output image. It has the specified size and the same type as src .

By default, size of the output image is computed as Size(src.cols*2, (src.rows*2), but in any
case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq (\texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq (\texttt{dstsize.height} \mod 2) \end{array}\f]
The function performs the upsampling step of the Gaussian pyramid construction, though it can
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
injecting even zero rows and columns and then convolves the result with the same kernel as in
pyrDown multiplied by 4.
Python prototype (for reference only):
pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst

 Link to this function

 pyrUp(src, opts)

 View Source

 @spec pyrUp(Evision.Mat.maybe_mat_in(), [borderType: term(), dstsize: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Upsamples an image and then blurs it.
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	dstsize: Size.
size of the output image.

	borderType: int.
Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)

Return
	dst: Evision.Mat.t().
output image. It has the specified size and the same type as src .

By default, size of the output image is computed as Size(src.cols*2, (src.rows*2), but in any
case, the following conditions should be satisfied:
\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq (\texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq (\texttt{dstsize.height} \mod 2) \end{array}\f]
The function performs the upsampling step of the Gaussian pyramid construction, though it can
actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
injecting even zero rows and columns and then convolves the result with the same kernel as in
pyrDown multiplied by 4.
Python prototype (for reference only):
pyrUp(src[, dst[, dstsize[, borderType]]]) -> dst

 Link to this function

 randn(dst, mean, stddev)

 View Source

 @spec randn(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Fills the array with normally distributed random numbers.
Positional Arguments
	mean: Evision.Mat.t().
mean value (expectation) of the generated random numbers.

	stddev: Evision.Mat.t().
standard deviation of the generated random numbers; it can be either a vector (in
which case a diagonal standard deviation matrix is assumed) or a square matrix.

Return
	dst: Evision.Mat.t().
output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.

The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
value range of the output array data type.
@sa RNG, randu
Python prototype (for reference only):
randn(dst, mean, stddev) -> dst

 Link to this function

 randShuffle(dst)

 View Source

 @spec randShuffle(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Shuffles the array elements randomly.
Keyword Arguments
	iterFactor: double.
scale factor that determines the number of random swap operations (see the details
below).

Return
	dst: Evision.Mat.t().
input/output numerical 1D array.

The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
swapping them. The number of such swap operations will be dst.rows*dst.cols*iterFactor .
@sa RNG, sort
Python prototype (for reference only):
randShuffle(dst[, iterFactor]) -> dst

 Link to this function

 randShuffle(dst, opts)

 View Source

 @spec randShuffle(Evision.Mat.maybe_mat_in(), [{:iterFactor, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Shuffles the array elements randomly.
Keyword Arguments
	iterFactor: double.
scale factor that determines the number of random swap operations (see the details
below).

Return
	dst: Evision.Mat.t().
input/output numerical 1D array.

The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
swapping them. The number of such swap operations will be dst.rows*dst.cols*iterFactor .
@sa RNG, sort
Python prototype (for reference only):
randShuffle(dst[, iterFactor]) -> dst

 Link to this function

 randu(dst, low, high)

 View Source

 @spec randu(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Generates a single uniformly-distributed random number or an array of random numbers.
Positional Arguments
	low: Evision.Mat.t().
inclusive lower boundary of the generated random numbers.

	high: Evision.Mat.t().
exclusive upper boundary of the generated random numbers.

Return
	dst: Evision.Mat.t().
output array of random numbers; the array must be pre-allocated.

Non-template variant of the function fills the matrix dst with uniformly-distributed
random numbers from the specified range:
\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f]
@sa RNG, randn, theRNG
Python prototype (for reference only):
randu(dst, low, high) -> dst

 Link to this function

 readOpticalFlow(path)

 View Source

 @spec readOpticalFlow(binary()) :: Evision.Mat.t() | {:error, String.t()}

Read a .flo file
Positional Arguments
	path: String.
Path to the file to be loaded

Return
	retval: Evision.Mat.t()

The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
flow in the horizontal direction (u), second - vertical (v).
Python prototype (for reference only):
readOpticalFlow(path) -> retval

 Link to this function

 recoverPose(e, points1, points2)

 View Source

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

recoverPose
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

Keyword Arguments
	focal: double.
Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.

	pp: Point2d.
principal point of the camera.

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

Has overloading in C++
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\f[A =
\begin{bmatrix}
f & 0 & x_{pp} \\
0 & f & y_{pp} \\
0 & 0 & 1
\end{bmatrix}\f]
Python prototype (for reference only):
recoverPose(E, points1, points2[, R[, t[, focal[, pp[, mask]]]]]) -> retval, R, t, mask

 Link to this function

 recoverPose(e, points1, points2, opts)

 View Source

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [pp: term(), focal: term()] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Variant 1:
Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using chirality check. Returns the number of
inliers that pass the check.
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
possible pose hypotheses by doing chirality check. The chirality check means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
This function can be used to process the output E and mask from @ref findEssentialMat. In this
scenario, points1 and points2 are the same input for #findEssentialMat :
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
// cametra matrix with both focal lengths = 1, and principal point = (0, 0)
Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
Mat E, R, t, mask;
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
Python prototype (for reference only):
recoverPose(E, points1, points2, cameraMatrix[, R[, t[, mask]]]) -> retval, R, t, mask
Variant 2:
recoverPose
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

Keyword Arguments
	focal: double.
Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.

	pp: Point2d.
principal point of the camera.

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

Has overloading in C++
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\f[A =
\begin{bmatrix}
f & 0 & x_{pp} \\
0 & f & y_{pp} \\
0 & 0 & 1
\end{bmatrix}\f]
Python prototype (for reference only):
recoverPose(E, points1, points2[, R[, t[, focal[, pp[, mask]]]]]) -> retval, R, t, mask

 Link to this function

 recoverPose(e, points1, points2, cameraMatrix, opts)

 View Source

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

Variant 1:
recoverPose
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1.

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.

	distanceThresh: double.
threshold distance which is used to filter out far away points (i.e. infinite
points).

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

	triangulatedPoints: Evision.Mat.t().
3D points which were reconstructed by triangulation.

Has overloading in C++
This function differs from the one above that it outputs the triangulated 3D point that are used for
the chirality check.
Python prototype (for reference only):
recoverPose(E, points1, points2, cameraMatrix, distanceThresh[, R[, t[, mask[, triangulatedPoints]]]]) -> retval, R, t, mask, triangulatedPoints
Variant 2:
Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using chirality check. Returns the number of
inliers that pass the check.
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
possible pose hypotheses by doing chirality check. The chirality check means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
This function can be used to process the output E and mask from @ref findEssentialMat. In this
scenario, points1 and points2 are the same input for #findEssentialMat :
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
// cametra matrix with both focal lengths = 1, and principal point = (0, 0)
Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
Mat E, R, t, mask;
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
Python prototype (for reference only):
recoverPose(E, points1, points2, cameraMatrix[, R[, t[, mask]]]) -> retval, R, t, mask

 Link to this function

 recoverPose(e, points1, points2, cameraMatrix, distanceThresh, opts)

 View Source

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{atom(), term()}, ...] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

Variant 1:
Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.
Positional Arguments
	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix1: Evision.Mat.t().
Input/output camera matrix for the first camera, the same as in

	distCoeffs1: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

	cameraMatrix2: Evision.Mat.t().
Input/output camera matrix for the first camera, the same as in

	distCoeffs2: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

Return
	retval: int

	e: Evision.Mat.t().
The output essential matrix.

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.

@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
This function can be used to process the output E and mask from @ref findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
Python prototype (for reference only):
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2[, E[, R[, t[, method[, prob[, threshold[, mask]]]]]]]) -> retval, E, R, t, mask
Variant 2:
recoverPose
Positional Arguments
	e: Evision.Mat.t().
The input essential matrix.

	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1.

	cameraMatrix: Evision.Mat.t().
Camera intrinsic matrix \f$\cameramatrix{A}\f$.
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.

	distanceThresh: double.
threshold distance which is used to filter out far away points (i.e. infinite
points).

Return
	retval: int

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for the given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the chirality check.

	triangulatedPoints: Evision.Mat.t().
3D points which were reconstructed by triangulation.

Has overloading in C++
This function differs from the one above that it outputs the triangulated 3D point that are used for
the chirality check.
Python prototype (for reference only):
recoverPose(E, points1, points2, cameraMatrix, distanceThresh[, R[, t[, mask[, triangulatedPoints]]]]) -> retval, R, t, mask, triangulatedPoints

 Link to this function

 recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, opts)

 View Source

 @spec recoverPose(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [threshold: term(), method: term(), prob: term()] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.
Positional Arguments
	points1: Evision.Mat.t().
Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).

	points2: Evision.Mat.t().
Array of the second image points of the same size and format as points1 .

	cameraMatrix1: Evision.Mat.t().
Input/output camera matrix for the first camera, the same as in

	distCoeffs1: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

	cameraMatrix2: Evision.Mat.t().
Input/output camera matrix for the first camera, the same as in

	distCoeffs2: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

Keyword Arguments
	method: int.
Method for computing an essential matrix.
	@ref RANSAC for the RANSAC algorithm.
	@ref LMEDS for the LMedS algorithm.

	prob: double.
Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.

	threshold: double.
Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.

Return
	retval: int

	e: Evision.Mat.t().
The output essential matrix.

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.

	t: Evision.Mat.t().
Output translation vector. This vector is obtained by @ref decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.

	mask: Evision.Mat.t().
Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.

@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
This function decomposes an essential matrix using @ref decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in @cite Nister03.
This function can be used to process the output E and mask from @ref findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector<Point2f> points1(point_count);
vector<Point2f> points2(point_count);
// initialize the points here ...
for(int i = 0; i < point_count; i++)
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
Python prototype (for reference only):
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2[, E[, R[, t[, method[, prob[, threshold[, mask]]]]]]]) -> retval, E, R, t, mask

 Link to this function

 rectangle(img, rec, color)

 View Source

 @spec rectangle(
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

rectangle
Positional Arguments
	rec: Rect
	color: Scalar

Keyword Arguments
	thickness: int.
	lineType: int.
	shift: int.

Return
	img: Evision.Mat.t()

Has overloading in C++
use rec parameter as alternative specification of the drawn rectangle: r.tl() and r.br()-Point(1,1) are opposite corners
Python prototype (for reference only):
rectangle(img, rec, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 rectangle(img, rec, color, opts)

 View Source

 @spec rectangle(
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rectangle(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
Draws a simple, thick, or filled up-right rectangle.
Positional Arguments
	pt1: Point.
Vertex of the rectangle.

	pt2: Point.
Vertex of the rectangle opposite to pt1 .

	color: Scalar.
Rectangle color or brightness (grayscale image).

Keyword Arguments
	thickness: int.
Thickness of lines that make up the rectangle. Negative values, like #FILLED,
mean that the function has to draw a filled rectangle.

	lineType: int.
Type of the line. See #LineTypes

	shift: int.
Number of fractional bits in the point coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
are pt1 and pt2.
Python prototype (for reference only):
rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img
Variant 2:
rectangle
Positional Arguments
	rec: Rect
	color: Scalar

Keyword Arguments
	thickness: int.
	lineType: int.
	shift: int.

Return
	img: Evision.Mat.t()

Has overloading in C++
use rec parameter as alternative specification of the drawn rectangle: r.tl() and r.br()-Point(1,1) are opposite corners
Python prototype (for reference only):
rectangle(img, rec, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 rectangle(img, pt1, pt2, color, opts)

 View Source

 @spec rectangle(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [thickness: term(), lineType: term(), shift: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a simple, thick, or filled up-right rectangle.
Positional Arguments
	pt1: Point.
Vertex of the rectangle.

	pt2: Point.
Vertex of the rectangle opposite to pt1 .

	color: Scalar.
Rectangle color or brightness (grayscale image).

Keyword Arguments
	thickness: int.
Thickness of lines that make up the rectangle. Negative values, like #FILLED,
mean that the function has to draw a filled rectangle.

	lineType: int.
Type of the line. See #LineTypes

	shift: int.
Number of fractional bits in the point coordinates.

Return
	img: Evision.Mat.t().
Image.

The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
are pt1 and pt2.
Python prototype (for reference only):
rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img

 Link to this function

 rectangleIntersectionArea(a, b)

 View Source

 @spec rectangleIntersectionArea(
 {number(), number(), number(), number()},
 {number(), number(), number(), number()}
) :: number() | {:error, String.t()}

Finds out if there is any intersection between two rectangles
Positional Arguments
	a: Rect2d.
First rectangle

	b: Rect2d.
Second rectangle

Return
	retval: double

 mainly useful for language bindings
@return the area of the intersection
Python prototype (for reference only):
rectangleIntersectionArea(a, b) -> retval

 Link to this function

 rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, r12, t12, r13, t13, alpha, newImgSize, flags)

 View Source

 @spec rectify3Collinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 {number(), number()},
 integer()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 {number(), number(), number(), number()},
 {number(), number(), number(), number()}}
 | {:error, String.t()}

rectify3Collinear
Positional Arguments
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	cameraMatrix3: Evision.Mat.t()
	distCoeffs3: Evision.Mat.t()
	imgpt1: [Evision.Mat]
	imgpt3: [Evision.Mat]
	imageSize: Size
	r12: Evision.Mat.t()
	t12: Evision.Mat.t()
	r13: Evision.Mat.t()
	t13: Evision.Mat.t()
	alpha: double
	newImgSize: Size
	flags: int

Return
	retval: float
	r1: Evision.Mat.t().
	r2: Evision.Mat.t().
	r3: Evision.Mat.t().
	p1: Evision.Mat.t().
	p2: Evision.Mat.t().
	p3: Evision.Mat.t().
	q: Evision.Mat.t().
	roi1: Rect*
	roi2: Rect*

Python prototype (for reference only):
rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags[, R1[, R2[, R3[, P1[, P2[, P3[, Q]]]]]]]) -> retval, R1, R2, R3, P1, P2, P3, Q, roi1, roi2

 Link to this function

 rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, r12, t12, r13, t13, alpha, newImgSize, flags, opts)

 View Source

 @spec rectify3Collinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 {number(), number(), number(), number()},
 {number(), number(), number(), number()}}
 | {:error, String.t()}

rectify3Collinear
Positional Arguments
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	cameraMatrix3: Evision.Mat.t()
	distCoeffs3: Evision.Mat.t()
	imgpt1: [Evision.Mat]
	imgpt3: [Evision.Mat]
	imageSize: Size
	r12: Evision.Mat.t()
	t12: Evision.Mat.t()
	r13: Evision.Mat.t()
	t13: Evision.Mat.t()
	alpha: double
	newImgSize: Size
	flags: int

Return
	retval: float
	r1: Evision.Mat.t().
	r2: Evision.Mat.t().
	r3: Evision.Mat.t().
	p1: Evision.Mat.t().
	p2: Evision.Mat.t().
	p3: Evision.Mat.t().
	q: Evision.Mat.t().
	roi1: Rect*
	roi2: Rect*

Python prototype (for reference only):
rectify3Collinear(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, cameraMatrix3, distCoeffs3, imgpt1, imgpt3, imageSize, R12, T12, R13, T13, alpha, newImgSize, flags[, R1[, R2[, R3[, P1[, P2[, P3[, Q]]]]]]]) -> retval, R1, R2, R3, P1, P2, P3, Q, roi1, roi2

 Link to this function

 reduce(src, dim, rtype)

 View Source

 @spec reduce(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Reduces a matrix to a vector.
Positional Arguments
	src: Evision.Mat.t().
input 2D matrix.

	dim: int.
dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
a single row. 1 means that the matrix is reduced to a single column.

	rtype: int.
reduction operation that could be one of #ReduceTypes

Keyword Arguments
	dtype: int.
when negative, the output vector will have the same type as the input matrix,
otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).

Return
	dst: Evision.Mat.t().
output vector. Its size and type is defined by dim and dtype parameters.

The function #reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of #REDUCE_MAX and #REDUCE_MIN , the output image should have the same type as the source one.
In case of #REDUCE_SUM, #REDUCE_SUM2 and #REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
And multi-channel arrays are also supported in these two reduction modes.
The following code demonstrates its usage for a single channel matrix.
@snippet snippets/core_reduce.cpp example
And the following code demonstrates its usage for a two-channel matrix.
@snippet snippets/core_reduce.cpp example2
@sa repeat, reduceArgMin, reduceArgMax
Python prototype (for reference only):
reduce(src, dim, rtype[, dst[, dtype]]) -> dst

 Link to this function

 reduce(src, dim, rtype, opts)

 View Source

 @spec reduce(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:dtype, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Reduces a matrix to a vector.
Positional Arguments
	src: Evision.Mat.t().
input 2D matrix.

	dim: int.
dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
a single row. 1 means that the matrix is reduced to a single column.

	rtype: int.
reduction operation that could be one of #ReduceTypes

Keyword Arguments
	dtype: int.
when negative, the output vector will have the same type as the input matrix,
otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).

Return
	dst: Evision.Mat.t().
output vector. Its size and type is defined by dim and dtype parameters.

The function #reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of #REDUCE_MAX and #REDUCE_MIN , the output image should have the same type as the source one.
In case of #REDUCE_SUM, #REDUCE_SUM2 and #REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
And multi-channel arrays are also supported in these two reduction modes.
The following code demonstrates its usage for a single channel matrix.
@snippet snippets/core_reduce.cpp example
And the following code demonstrates its usage for a two-channel matrix.
@snippet snippets/core_reduce.cpp example2
@sa repeat, reduceArgMin, reduceArgMax
Python prototype (for reference only):
reduce(src, dim, rtype[, dst[, dtype]]) -> dst

 Link to this function

 reduceArgMax(src, axis)

 View Source

 @spec reduceArgMax(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds indices of max elements along provided axis
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	axis: int.
axis to reduce along.

Keyword Arguments
	lastIndex: bool.
whether to get the index of first or last occurrence of max.

Return
	dst: Evision.Mat.t().
output array of type CV_32SC1 with the same dimensionality as src,
except for axis being reduced - it should be set to 1.

Note:
	If input or output array is not continuous, this function will create an internal copy.
	NaN handling is left unspecified, see patchNaNs().
	The returned index is always in bounds of input matrix.

@sa reduceArgMin, minMaxLoc, min, max, compare, reduce
Python prototype (for reference only):
reduceArgMax(src, axis[, dst[, lastIndex]]) -> dst

 Link to this function

 reduceArgMax(src, axis, opts)

 View Source

 @spec reduceArgMax(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:lastIndex, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Finds indices of max elements along provided axis
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	axis: int.
axis to reduce along.

Keyword Arguments
	lastIndex: bool.
whether to get the index of first or last occurrence of max.

Return
	dst: Evision.Mat.t().
output array of type CV_32SC1 with the same dimensionality as src,
except for axis being reduced - it should be set to 1.

Note:
	If input or output array is not continuous, this function will create an internal copy.
	NaN handling is left unspecified, see patchNaNs().
	The returned index is always in bounds of input matrix.

@sa reduceArgMin, minMaxLoc, min, max, compare, reduce
Python prototype (for reference only):
reduceArgMax(src, axis[, dst[, lastIndex]]) -> dst

 Link to this function

 reduceArgMin(src, axis)

 View Source

 @spec reduceArgMin(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds indices of min elements along provided axis
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	axis: int.
axis to reduce along.

Keyword Arguments
	lastIndex: bool.
whether to get the index of first or last occurrence of min.

Return
	dst: Evision.Mat.t().
output array of type CV_32SC1 with the same dimensionality as src,
except for axis being reduced - it should be set to 1.

Note:
	If input or output array is not continuous, this function will create an internal copy.
	NaN handling is left unspecified, see patchNaNs().
	The returned index is always in bounds of input matrix.

@sa reduceArgMax, minMaxLoc, min, max, compare, reduce
Python prototype (for reference only):
reduceArgMin(src, axis[, dst[, lastIndex]]) -> dst

 Link to this function

 reduceArgMin(src, axis, opts)

 View Source

 @spec reduceArgMin(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:lastIndex, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Finds indices of min elements along provided axis
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	axis: int.
axis to reduce along.

Keyword Arguments
	lastIndex: bool.
whether to get the index of first or last occurrence of min.

Return
	dst: Evision.Mat.t().
output array of type CV_32SC1 with the same dimensionality as src,
except for axis being reduced - it should be set to 1.

Note:
	If input or output array is not continuous, this function will create an internal copy.
	NaN handling is left unspecified, see patchNaNs().
	The returned index is always in bounds of input matrix.

@sa reduceArgMax, minMaxLoc, min, max, compare, reduce
Python prototype (for reference only):
reduceArgMin(src, axis[, dst[, lastIndex]]) -> dst

 Link to this function

 remap(src, map1, map2, interpolation)

 View Source

 @spec remap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	map1: Evision.Mat.t().
The first map of either (x,y) points or just x values having the type CV_16SC2 ,
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
representation to fixed-point for speed.

	map2: Evision.Mat.t().
The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
if map1 is (x,y) points), respectively.

	interpolation: int.
Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
and #INTER_LINEAR_EXACT are not supported by this function.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see #BorderTypes). When
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
corresponds to the "outliers" in the source image are not modified by the function.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

Return
	dst: Evision.Mat.t().
Destination image. It has the same size as map1 and the same type as src .

The function remap transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
where values of pixels with non-integer coordinates are computed using one of available
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
convert from floating to fixed-point representations of a map is that they can yield much faster
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
This function cannot operate in-place.
Note:
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
Python prototype (for reference only):
remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst

 Link to this function

 remap(src, map1, map2, interpolation, opts)

 View Source

 @spec remap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [borderMode: term(), borderValue: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	map1: Evision.Mat.t().
The first map of either (x,y) points or just x values having the type CV_16SC2 ,
CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
representation to fixed-point for speed.

	map2: Evision.Mat.t().
The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
if map1 is (x,y) points), respectively.

	interpolation: int.
Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
and #INTER_LINEAR_EXACT are not supported by this function.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see #BorderTypes). When
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
corresponds to the "outliers" in the source image are not modified by the function.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

Return
	dst: Evision.Mat.t().
Destination image. It has the same size as map1 and the same type as src .

The function remap transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f]
where values of pixels with non-integer coordinates are computed using one of available
interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
\f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
convert from floating to fixed-point representations of a map is that they can yield much faster
(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
This function cannot operate in-place.
Note:
Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
Python prototype (for reference only):
remap(src, map1, map2, interpolation[, dst[, borderMode[, borderValue]]]) -> dst

 Link to this function

 repeat(src, ny, nx)

 View Source

 @spec repeat(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Fills the output array with repeated copies of the input array.
Positional Arguments
	src: Evision.Mat.t().
input array to replicate.

	ny: int.
Flag to specify how many times the src is repeated along the
vertical axis.

	nx: int.
Flag to specify how many times the src is repeated along the
horizontal axis.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

The function cv::repeat duplicates the input array one or more times along each of the two axes:
\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
The second variant of the function is more convenient to use with @ref MatrixExpressions.
@sa cv::reduce
Python prototype (for reference only):
repeat(src, ny, nx[, dst]) -> dst

 Link to this function

 repeat(src, ny, nx, opts)

 View Source

 @spec repeat(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Fills the output array with repeated copies of the input array.
Positional Arguments
	src: Evision.Mat.t().
input array to replicate.

	ny: int.
Flag to specify how many times the src is repeated along the
vertical axis.

	nx: int.
Flag to specify how many times the src is repeated along the
horizontal axis.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

The function cv::repeat duplicates the input array one or more times along each of the two axes:
\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
The second variant of the function is more convenient to use with @ref MatrixExpressions.
@sa cv::reduce
Python prototype (for reference only):
repeat(src, ny, nx[, dst]) -> dst

 Link to this function

 reprojectImageTo3D(disparity, q)

 View Source

 @spec reprojectImageTo3D(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Reprojects a disparity image to 3D space.
Positional Arguments
	disparity: Evision.Mat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or

	q: Evision.Mat.t().
\f$4 \times 4\f$ perspective transformation matrix that can be obtained with

Keyword Arguments
	handleMissingValues: bool.
Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute) are transformed
to 3D points with a very large Z value (currently set to 10000).

	ddepth: int.
The optional output array depth. If it is -1, the output image will have CV_32F
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.

Return
	3dImage: Evision.Mat.t().
Output 3-channel floating-point image of the same size as disparity. Each element of
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
camera's rectified coordinate system.

@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
being used here.
@ref stereoRectify.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\f[\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = Q \begin{bmatrix}
x \\
y \\
\texttt{disparity} (x,y) \\
z
\end{bmatrix}.\f]
@sa
To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
Python prototype (for reference only):
reprojectImageTo3D(disparity, Q[, _3dImage[, handleMissingValues[, ddepth]]]) -> _3dImage

 Link to this function

 reprojectImageTo3D(disparity, q, opts)

 View Source

 @spec reprojectImageTo3D(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [ddepth: term(), handleMissingValues: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Reprojects a disparity image to 3D space.
Positional Arguments
	disparity: Evision.Mat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
fractional bits. If the disparity is 16-bit signed format, as computed by @ref StereoBM or

	q: Evision.Mat.t().
\f$4 \times 4\f$ perspective transformation matrix that can be obtained with

Keyword Arguments
	handleMissingValues: bool.
Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute) are transformed
to 3D points with a very large Z value (currently set to 10000).

	ddepth: int.
The optional output array depth. If it is -1, the output image will have CV_32F
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.

Return
	3dImage: Evision.Mat.t().
Output 3-channel floating-point image of the same size as disparity. Each element of
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
uses Q obtained by @ref stereoRectify, then the returned points are represented in the first
camera's rectified coordinate system.

@ref StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
being used here.
@ref stereoRectify.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\f[\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = Q \begin{bmatrix}
x \\
y \\
\texttt{disparity} (x,y) \\
z
\end{bmatrix}.\f]
@sa
To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.
Python prototype (for reference only):
reprojectImageTo3D(disparity, Q[, _3dImage[, handleMissingValues[, ddepth]]]) -> _3dImage

 Link to this function

 resize(src, dsize)

 View Source

 @spec resize(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Resizes an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	dsize: Size.
output image size; if it equals zero (None in Python), it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
scale factor along the horizontal axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
scale factor along the vertical axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
interpolation method, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
output image; it has the size dsize (when it is non-zero) or the size computed from
src.size(), fx, and fy; the type of dst is the same as of src.

The function resize resizes the image src down to or up to the specified size. Note that the
initial dst type or size are not taken into account. Instead, the size and type are derived from
the src,dsize,fx, and fy. If you want to resize src so that it fits the pre-created dst,
you may call the function as follows:
// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);
If you want to decimate the image by factor of 2 in each direction, you can call the function this
way:
// specify fx and fy and let the function compute the destination image size.
resize(src, dst, Size(), 0.5, 0.5, interpolation);
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
(faster but still looks OK).
@sa warpAffine, warpPerspective, remap
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst

 Link to this function

 resize(src, dsize, opts)

 View Source

 @spec resize(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [interpolation: term(), fx: term(), fy: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Resizes an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	dsize: Size.
output image size; if it equals zero (None in Python), it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
scale factor along the horizontal axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
scale factor along the vertical axis; when it equals 0, it is computed as
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
interpolation method, see #InterpolationFlags

Return
	dst: Evision.Mat.t().
output image; it has the size dsize (when it is non-zero) or the size computed from
src.size(), fx, and fy; the type of dst is the same as of src.

The function resize resizes the image src down to or up to the specified size. Note that the
initial dst type or size are not taken into account. Instead, the size and type are derived from
the src,dsize,fx, and fy. If you want to resize src so that it fits the pre-created dst,
you may call the function as follows:
// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);
If you want to decimate the image by factor of 2 in each direction, you can call the function this
way:
// specify fx and fy and let the function compute the destination image size.
resize(src, dst, Size(), 0.5, 0.5, interpolation);
To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
(faster but still looks OK).
@sa warpAffine, warpPerspective, remap
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst

 Link to this function

 resizeWindow(winname, size)

 View Source

 @spec resizeWindow(
 binary(),
 {number(), number()}
) :: :ok | {:error, String.t()}

resizeWindow
Positional Arguments
	winname: String.
Window name.

	size: Size.
The new window size.

Has overloading in C++
Python prototype (for reference only):
resizeWindow(winname, size) -> None

 Link to this function

 resizeWindow(winname, width, height)

 View Source

 @spec resizeWindow(binary(), integer(), integer()) :: :ok | {:error, String.t()}

Resizes the window to the specified size
Positional Arguments
	winname: String.
Window name.

	width: int.
The new window width.

	height: int.
The new window height.

Note: The specified window size is for the image area. Toolbars are not counted.
Only windows created without cv::WINDOW_AUTOSIZE flag can be resized.
Python prototype (for reference only):
resizeWindow(winname, width, height) -> None

 Link to this function

 rodrigues(src)

 View Source

 @spec rodrigues(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Converts a rotation matrix to a rotation vector or vice versa.
Positional Arguments
	src: Evision.Mat.t().
Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).

Return
	dst: Evision.Mat.t().
Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.

	jacobian: Evision.Mat.t().
Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
derivatives of the output array components with respect to the input array components.

\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta}) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
Inverse transformation can be also done easily, since
\f[\sin (\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
Note: More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
can be found in:
	A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF

Note: Useful information on SE(3) and Lie Groups can be found in:
	A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
	Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
	A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML

Python prototype (for reference only):
Rodrigues(src[, dst[, jacobian]]) -> dst, jacobian

 Link to this function

 rodrigues(src, opts)

 View Source

 @spec rodrigues(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Converts a rotation matrix to a rotation vector or vice versa.
Positional Arguments
	src: Evision.Mat.t().
Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).

Return
	dst: Evision.Mat.t().
Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.

	jacobian: Evision.Mat.t().
Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
derivatives of the output array components with respect to the input array components.

\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta}) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
Inverse transformation can be also done easily, since
\f[\sin (\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like @ref calibrateCamera, @ref stereoCalibrate, or @ref solvePnP .
Note: More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
can be found in:
	A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi @cite Gallego2014ACF

Note: Useful information on SE(3) and Lie Groups can be found in:
	A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco @cite blanco2010tutorial
	Lie Groups for 2D and 3D Transformation, Ethan Eade @cite Eade17
	A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan @cite Sol2018AML

Python prototype (for reference only):
Rodrigues(src[, dst[, jacobian]]) -> dst, jacobian

 Link to this function

 rotate(src, rotateCode)

 View Source

 @spec rotate(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Rotates a 2D array in multiples of 90 degrees.
The function cv::rotate rotates the array in one of three different ways:
Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).
Positional Arguments
	src: Evision.Mat.t().
input array.

	rotateCode: int.
an enum to specify how to rotate the array; see the enum #RotateFlags

Return
	dst: Evision.Mat.t().
output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.

@sa transpose , repeat , completeSymm, flip, RotateFlags
Python prototype (for reference only):
rotate(src, rotateCode[, dst]) -> dst

 Link to this function

 rotate(src, rotateCode, opts)

 View Source

 @spec rotate(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Rotates a 2D array in multiples of 90 degrees.
The function cv::rotate rotates the array in one of three different ways:
Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE).
Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).
Positional Arguments
	src: Evision.Mat.t().
input array.

	rotateCode: int.
an enum to specify how to rotate the array; see the enum #RotateFlags

Return
	dst: Evision.Mat.t().
output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.

@sa transpose , repeat , completeSymm, flip, RotateFlags
Python prototype (for reference only):
rotate(src, rotateCode[, dst]) -> dst

 Link to this function

 rotatedRectangleIntersection(rect1, rect2)

 View Source

 @spec rotatedRectangleIntersection(
 {{number(), number()}, {number(), number()}, number()},
 {{number(), number()}, {number(), number()}, number()}
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Finds out if there is any intersection between two rotated rectangles.
Positional Arguments
	rect1: {centre={x, y}, size={s1, s2}, angle}.
First rectangle

	rect2: {centre={x, y}, size={s1, s2}, angle}.
Second rectangle

Return
	retval: int

	intersectingRegion: Evision.Mat.t().
The output array of the vertices of the intersecting region. It returns
at most 8 vertices. Stored as std::vector\<cv::Point2f> or cv::Mat as Mx1 of type CV_32FC2.

If there is then the vertices of the intersecting region are returned as well.
Below are some examples of intersection configurations. The hatched pattern indicates the
intersecting region and the red vertices are returned by the function.
[image: intersection examples]
@returns One of #RectanglesIntersectTypes
Python prototype (for reference only):
rotatedRectangleIntersection(rect1, rect2[, intersectingRegion]) -> retval, intersectingRegion

 Link to this function

 rotatedRectangleIntersection(rect1, rect2, opts)

 View Source

 @spec rotatedRectangleIntersection(
 {{number(), number()}, {number(), number()}, number()},
 {{number(), number()}, {number(), number()}, number()},
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Finds out if there is any intersection between two rotated rectangles.
Positional Arguments
	rect1: {centre={x, y}, size={s1, s2}, angle}.
First rectangle

	rect2: {centre={x, y}, size={s1, s2}, angle}.
Second rectangle

Return
	retval: int

	intersectingRegion: Evision.Mat.t().
The output array of the vertices of the intersecting region. It returns
at most 8 vertices. Stored as std::vector\<cv::Point2f> or cv::Mat as Mx1 of type CV_32FC2.

If there is then the vertices of the intersecting region are returned as well.
Below are some examples of intersection configurations. The hatched pattern indicates the
intersecting region and the red vertices are returned by the function.
[image: intersection examples]
@returns One of #RectanglesIntersectTypes
Python prototype (for reference only):
rotatedRectangleIntersection(rect1, rect2[, intersectingRegion]) -> retval, intersectingRegion

 Link to this function

 rqDecomp3x3(src)

 View Source

 @spec rqDecomp3x3(Evision.Mat.maybe_mat_in()) ::
 {{number(), number(), number()}, Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Computes an RQ decomposition of 3x3 matrices.
Positional Arguments
	src: Evision.Mat.t().
3x3 input matrix.

Return
	retval: Vec3d

	mtxR: Evision.Mat.t().
Output 3x3 upper-triangular matrix.

	mtxQ: Evision.Mat.t().
Output 3x3 orthogonal matrix.

	qx: Evision.Mat.t().
Optional output 3x3 rotation matrix around x-axis.

	qy: Evision.Mat.t().
Optional output 3x3 rotation matrix around y-axis.

	qz: Evision.Mat.t().
Optional output 3x3 rotation matrix around z-axis.

The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
are only one of the possible solutions.
Python prototype (for reference only):
RQDecomp3x3(src[, mtxR[, mtxQ[, Qx[, Qy[, Qz]]]]]) -> retval, mtxR, mtxQ, Qx, Qy, Qz

 Link to this function

 rqDecomp3x3(src, opts)

 View Source

 @spec rqDecomp3x3(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {{number(), number(), number()}, Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Computes an RQ decomposition of 3x3 matrices.
Positional Arguments
	src: Evision.Mat.t().
3x3 input matrix.

Return
	retval: Vec3d

	mtxR: Evision.Mat.t().
Output 3x3 upper-triangular matrix.

	mtxQ: Evision.Mat.t().
Output 3x3 orthogonal matrix.

	qx: Evision.Mat.t().
Optional output 3x3 rotation matrix around x-axis.

	qy: Evision.Mat.t().
Optional output 3x3 rotation matrix around y-axis.

	qz: Evision.Mat.t().
Optional output 3x3 rotation matrix around z-axis.

The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see @cite Slabaugh . Returned three rotation matrices and corresponding three Euler angles
are only one of the possible solutions.
Python prototype (for reference only):
RQDecomp3x3(src[, mtxR[, mtxQ[, Qx[, Qy[, Qz]]]]]) -> retval, mtxR, mtxQ, Qx, Qy, Qz

 Link to this function

 sampsonDistance(pt1, pt2, f)

 View Source

 @spec sampsonDistance(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: number() | {:error, String.t()}

Calculates the Sampson Distance between two points.
Positional Arguments
	pt1: Evision.Mat.t().
first homogeneous 2d point

	pt2: Evision.Mat.t().
second homogeneous 2d point

	f: Evision.Mat.t().
fundamental matrix

Return
	retval: double

The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
\f[
sd(\texttt{pt1} , \texttt{pt2})=
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
\f]
The fundamental matrix may be calculated using the #findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
@return The computed Sampson distance.
Python prototype (for reference only):
sampsonDistance(pt1, pt2, F) -> retval

 Link to this function

 scaleAdd(src1, alpha, src2)

 View Source

 @spec scaleAdd(Evision.Mat.maybe_mat_in(), number(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the sum of a scaled array and another array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	alpha: double.
scale factor for the first array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
or SAXPY in BLAS. It calculates
the sum of a scaled array and another array:
\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
The function can also be emulated with a matrix expression, for example:
Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
Python prototype (for reference only):
scaleAdd(src1, alpha, src2[, dst]) -> dst

 Link to this function

 scaleAdd(src1, alpha, src2, opts)

 View Source

 @spec scaleAdd(
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the sum of a scaled array and another array.
Positional Arguments
	src1: Evision.Mat.t().
first input array.

	alpha: double.
scale factor for the first array.

	src2: Evision.Mat.t().
second input array of the same size and type as src1.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src1.

The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
or SAXPY in BLAS. It calculates
the sum of a scaled array and another array:
\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
The function can also be emulated with a matrix expression, for example:
Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
Python prototype (for reference only):
scaleAdd(src1, alpha, src2[, dst]) -> dst

 Link to this function

 scharr(src, ddepth, dx, dy)

 View Source

 @spec scharr(Evision.Mat.maybe_mat_in(), integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the first x- or y- image derivative using Scharr operator.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
output image depth, see @ref filter_depths "combinations"

	dx: int.
order of the derivative x.

	dy: int.
order of the derivative y.

Keyword Arguments
	scale: double.
optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).

	delta: double.
optional delta value that is added to the results prior to storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src.

The function computes the first x- or y- spatial image derivative using the Scharr operator. The
call
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
is equivalent to
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
@sa cartToPolar
Python prototype (for reference only):
Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst

 Link to this function

 scharr(src, ddepth, dx, dy, opts)

 View Source

 @spec scharr(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [borderType: term(), delta: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the first x- or y- image derivative using Scharr operator.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
output image depth, see @ref filter_depths "combinations"

	dx: int.
order of the derivative x.

	dy: int.
order of the derivative y.

Keyword Arguments
	scale: double.
optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).

	delta: double.
optional delta value that is added to the results prior to storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src.

The function computes the first x- or y- spatial image derivative using the Scharr operator. The
call
\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
is equivalent to
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
@sa cartToPolar
Python prototype (for reference only):
Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst

 Link to this function

 seamlessClone(src, dst, mask, p, flags)

 View Source

 @spec seamlessClone(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes concerned to a selection. Here we are interested in achieving local
changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
manner. The extent of the changes ranges from slight distortions to complete replacement by novel
content @cite PM03 .
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	dst: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

	p: Point.
Point in dst image where object is placed.

	flags: int.
Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER

Return
	blend: Evision.Mat.t().
Output image with the same size and type as dst.

Python prototype (for reference only):
seamlessClone(src, dst, mask, p, flags[, blend]) -> blend

 Link to this function

 seamlessClone(src, dst, mask, p, flags, opts)

 View Source

 @spec seamlessClone(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes concerned to a selection. Here we are interested in achieving local
changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless
manner. The extent of the changes ranges from slight distortions to complete replacement by novel
content @cite PM03 .
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	dst: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

	p: Point.
Point in dst image where object is placed.

	flags: int.
Cloning method that could be cv::NORMAL_CLONE, cv::MIXED_CLONE or cv::MONOCHROME_TRANSFER

Return
	blend: Evision.Mat.t().
Output image with the same size and type as dst.

Python prototype (for reference only):
seamlessClone(src, dst, mask, p, flags[, blend]) -> blend

 Link to this function

 selectROI(img)

 View Source

 @spec selectROI(Evision.Mat.maybe_mat_in()) ::
 {number(), number(), number(), number()} | {:error, String.t()}

selectROI
Positional Arguments
	img: Evision.Mat.t()

Keyword Arguments
	showCrosshair: bool.
	fromCenter: bool.
	printNotice: bool.

Return
	retval: Rect

Has overloading in C++
Python prototype (for reference only):
selectROI(img[, showCrosshair[, fromCenter[, printNotice]]]) -> retval

 Link to this function

 selectROI(img, opts)

 View Source

 @spec selectROI(
 Evision.Mat.maybe_mat_in(),
 [showCrosshair: term(), printNotice: term(), fromCenter: term()] | nil
) :: {number(), number(), number(), number()} | {:error, String.t()}

 @spec selectROI(binary(), Evision.Mat.maybe_mat_in()) ::
 {number(), number(), number(), number()} | {:error, String.t()}

Variant 1:
Allows users to select a ROI on the given image.
Positional Arguments
	windowName: String.
name of the window where selection process will be shown.

	img: Evision.Mat.t().
image to select a ROI.

Keyword Arguments
	showCrosshair: bool.
if true crosshair of selection rectangle will be shown.

	fromCenter: bool.
if true center of selection will match initial mouse position. In opposite case a corner of
selection rectangle will correspont to the initial mouse position.

	printNotice: bool.
if true a notice to select ROI or cancel selection will be printed in console.

Return
	retval: Rect

The function creates a window and allows users to select a ROI using the mouse.
Controls: use space or enter to finish selection, use key c to cancel selection (function will return the zero cv::Rect).
@return selected ROI or empty rect if selection canceled.
Note: The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
After finish of work an empty callback will be set for the used window.
Python prototype (for reference only):
selectROI(windowName, img[, showCrosshair[, fromCenter[, printNotice]]]) -> retval
Variant 2:
selectROI
Positional Arguments
	img: Evision.Mat.t()

Keyword Arguments
	showCrosshair: bool.
	fromCenter: bool.
	printNotice: bool.

Return
	retval: Rect

Has overloading in C++
Python prototype (for reference only):
selectROI(img[, showCrosshair[, fromCenter[, printNotice]]]) -> retval

 Link to this function

 selectROI(windowName, img, opts)

 View Source

 @spec selectROI(
 binary(),
 Evision.Mat.maybe_mat_in(),
 [showCrosshair: term(), printNotice: term(), fromCenter: term()] | nil
) :: {number(), number(), number(), number()} | {:error, String.t()}

Allows users to select a ROI on the given image.
Positional Arguments
	windowName: String.
name of the window where selection process will be shown.

	img: Evision.Mat.t().
image to select a ROI.

Keyword Arguments
	showCrosshair: bool.
if true crosshair of selection rectangle will be shown.

	fromCenter: bool.
if true center of selection will match initial mouse position. In opposite case a corner of
selection rectangle will correspont to the initial mouse position.

	printNotice: bool.
if true a notice to select ROI or cancel selection will be printed in console.

Return
	retval: Rect

The function creates a window and allows users to select a ROI using the mouse.
Controls: use space or enter to finish selection, use key c to cancel selection (function will return the zero cv::Rect).
@return selected ROI or empty rect if selection canceled.
Note: The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
After finish of work an empty callback will be set for the used window.
Python prototype (for reference only):
selectROI(windowName, img[, showCrosshair[, fromCenter[, printNotice]]]) -> retval

 Link to this function

 selectROIs(windowName, img)

 View Source

 @spec selectROIs(binary(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Allows users to select multiple ROIs on the given image.
Positional Arguments
	windowName: String.
name of the window where selection process will be shown.

	img: Evision.Mat.t().
image to select a ROI.

Keyword Arguments
	showCrosshair: bool.
if true crosshair of selection rectangle will be shown.

	fromCenter: bool.
if true center of selection will match initial mouse position. In opposite case a corner of
selection rectangle will correspont to the initial mouse position.

	printNotice: bool.
if true a notice to select ROI or cancel selection will be printed in console.

Return
	boundingBoxes: [Rect].
selected ROIs.

The function creates a window and allows users to select multiple ROIs using the mouse.
Controls: use space or enter to finish current selection and start a new one,
use esc to terminate multiple ROI selection process.
Note: The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
After finish of work an empty callback will be set for the used window.
Python prototype (for reference only):
selectROIs(windowName, img[, showCrosshair[, fromCenter[, printNotice]]]) -> boundingBoxes

 Link to this function

 selectROIs(windowName, img, opts)

 View Source

 @spec selectROIs(
 binary(),
 Evision.Mat.maybe_mat_in(),
 [showCrosshair: term(), printNotice: term(), fromCenter: term()] | nil
) :: [{number(), number(), number(), number()}] | {:error, String.t()}

Allows users to select multiple ROIs on the given image.
Positional Arguments
	windowName: String.
name of the window where selection process will be shown.

	img: Evision.Mat.t().
image to select a ROI.

Keyword Arguments
	showCrosshair: bool.
if true crosshair of selection rectangle will be shown.

	fromCenter: bool.
if true center of selection will match initial mouse position. In opposite case a corner of
selection rectangle will correspont to the initial mouse position.

	printNotice: bool.
if true a notice to select ROI or cancel selection will be printed in console.

Return
	boundingBoxes: [Rect].
selected ROIs.

The function creates a window and allows users to select multiple ROIs using the mouse.
Controls: use space or enter to finish current selection and start a new one,
use esc to terminate multiple ROI selection process.
Note: The function sets it's own mouse callback for specified window using cv::setMouseCallback(windowName, ...).
After finish of work an empty callback will be set for the used window.
Python prototype (for reference only):
selectROIs(windowName, img[, showCrosshair[, fromCenter[, printNotice]]]) -> boundingBoxes

 Link to this function

 sepFilter2D(src, ddepth, kernelX, kernelY)

 View Source

 @spec sepFilter2D(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Applies a separable linear filter to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	ddepth: int.
Destination image depth, see @ref filter_depths "combinations"

	kernelX: Evision.Mat.t().
Coefficients for filtering each row.

	kernelY: Evision.Mat.t().
Coefficients for filtering each column.

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.

	delta: double.
Value added to the filtered results before storing them.

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function applies a separable linear filter to the image. That is, first, every row of src is
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
kernel kernelY. The final result shifted by delta is stored in dst .
@sa filter2D, Sobel, GaussianBlur, boxFilter, blur
Python prototype (for reference only):
sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst

 Link to this function

 sepFilter2D(src, ddepth, kernelX, kernelY, opts)

 View Source

 @spec sepFilter2D(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [borderType: term(), delta: term(), anchor: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies a separable linear filter to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	ddepth: int.
Destination image depth, see @ref filter_depths "combinations"

	kernelX: Evision.Mat.t().
Coefficients for filtering each row.

	kernelY: Evision.Mat.t().
Coefficients for filtering each column.

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
is at the kernel center.

	delta: double.
Value added to the filtered results before storing them.

	borderType: int.
Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function applies a separable linear filter to the image. That is, first, every row of src is
filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
kernel kernelY. The final result shifted by delta is stored in dst .
@sa filter2D, Sobel, GaussianBlur, boxFilter, blur
Python prototype (for reference only):
sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) -> dst

 Link to this function

 setIdentity(mtx)

 View Source

 @spec setIdentity(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Initializes a scaled identity matrix.
Keyword Arguments
	s: Scalar.
value to assign to diagonal elements.

Return
	mtx: Evision.Mat.t().
matrix to initialize (not necessarily square).

The function cv::setIdentity initializes a scaled identity matrix:
\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if (i=j)}{0}{otherwise}\f]
The function can also be emulated using the matrix initializers and the
matrix expressions:
Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
Python prototype (for reference only):
setIdentity(mtx[, s]) -> mtx

 Link to this function

 setIdentity(mtx, opts)

 View Source

 @spec setIdentity(Evision.Mat.maybe_mat_in(), [{:s, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Initializes a scaled identity matrix.
Keyword Arguments
	s: Scalar.
value to assign to diagonal elements.

Return
	mtx: Evision.Mat.t().
matrix to initialize (not necessarily square).

The function cv::setIdentity initializes a scaled identity matrix:
\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if (i=j)}{0}{otherwise}\f]
The function can also be emulated using the matrix initializers and the
matrix expressions:
Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
Python prototype (for reference only):
setIdentity(mtx[, s]) -> mtx

 Link to this function

 setLogLevel(level)

 View Source

 @spec setLogLevel(integer()) :: integer() | {:error, String.t()}

setLogLevel
Positional Arguments
	level: int

Return
	retval: int

Python prototype (for reference only):
setLogLevel(level) -> retval

 Link to this function

 setNumThreads(nthreads)

 View Source

 @spec setNumThreads(integer()) :: :ok | {:error, String.t()}

OpenCV will try to set the number of threads for subsequent parallel regions.
Positional Arguments
	nthreads: int.
Number of threads used by OpenCV.

If threads == 1, OpenCV will disable threading optimizations and run all it's functions
sequentially. Passing threads \< 0 will reset threads number to system default.
The function is not thread-safe. It must not be called in parallel region or concurrent threads.
OpenCV will try to run its functions with specified threads number, but some behaviour differs from
framework:
	TBB - User-defined parallel constructions will run with the same threads number, if
another is not specified. If later on user creates his own scheduler, OpenCV will use it.

	OpenMP - No special defined behaviour.

	Concurrency - If threads == 1, OpenCV will disable threading optimizations and run its
functions sequentially.

	GCD - Supports only values \<= 0.

	C= - No special defined behaviour.
@sa getNumThreads, getThreadNum

Python prototype (for reference only):
setNumThreads(nthreads) -> None

 Link to this function

 setRNGSeed(seed)

 View Source

 @spec setRNGSeed(integer()) :: :ok | {:error, String.t()}

Sets state of default random number generator.
Positional Arguments
	seed: int.
new state for default random number generator

The function cv::setRNGSeed sets state of default random number generator to custom value.
@sa RNG, randu, randn
Python prototype (for reference only):
setRNGSeed(seed) -> None

 Link to this function

 setTrackbarMax(trackbarname, winname, maxval)

 View Source

 @spec setTrackbarMax(binary(), binary(), integer()) :: :ok | {:error, String.t()}

Sets the trackbar maximum position.
Positional Arguments
	trackbarname: String.
Name of the trackbar.

	winname: String.
Name of the window that is the parent of trackbar.

	maxval: int.
New maximum position.

The function sets the maximum position of the specified trackbar in the specified window.
Note: [Qt Backend Only] winname can be empty if the trackbar is attached to the control
panel.
Python prototype (for reference only):
setTrackbarMax(trackbarname, winname, maxval) -> None

 Link to this function

 setTrackbarMin(trackbarname, winname, minval)

 View Source

 @spec setTrackbarMin(binary(), binary(), integer()) :: :ok | {:error, String.t()}

Sets the trackbar minimum position.
Positional Arguments
	trackbarname: String.
Name of the trackbar.

	winname: String.
Name of the window that is the parent of trackbar.

	minval: int.
New minimum position.

The function sets the minimum position of the specified trackbar in the specified window.
Note: [Qt Backend Only] winname can be empty if the trackbar is attached to the control
panel.
Python prototype (for reference only):
setTrackbarMin(trackbarname, winname, minval) -> None

 Link to this function

 setTrackbarPos(trackbarname, winname, pos)

 View Source

 @spec setTrackbarPos(binary(), binary(), integer()) :: :ok | {:error, String.t()}

Sets the trackbar position.
Positional Arguments
	trackbarname: String.
Name of the trackbar.

	winname: String.
Name of the window that is the parent of trackbar.

	pos: int.
New position.

The function sets the position of the specified trackbar in the specified window.
Note: [Qt Backend Only] winname can be empty if the trackbar is attached to the control
panel.
Python prototype (for reference only):
setTrackbarPos(trackbarname, winname, pos) -> None

 Link to this function

 setUseOpenVX(flag)

 View Source

 @spec setUseOpenVX(boolean()) :: :ok | {:error, String.t()}

setUseOpenVX
Positional Arguments
	flag: bool

Python prototype (for reference only):
setUseOpenVX(flag) -> None

 Link to this function

 setUseOptimized(onoff)

 View Source

 @spec setUseOptimized(boolean()) :: :ok | {:error, String.t()}

Enables or disables the optimized code.
Positional Arguments
	onoff: bool.
The boolean flag specifying whether the optimized code should be used (onoff=true)
or not (onoff=false).

The function can be used to dynamically turn on and off optimized dispatched code (code that uses SSE4.2, AVX/AVX2,
and other instructions on the platforms that support it). It sets a global flag that is further
checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only
safe to call the function on the very top level in your application where you can be sure that no
other OpenCV function is currently executed.
By default, the optimized code is enabled unless you disable it in CMake. The current status can be
retrieved using useOptimized.
Python prototype (for reference only):
setUseOptimized(onoff) -> None

 Link to this function

 setWindowProperty(winname, prop_id, prop_value)

 View Source

 @spec setWindowProperty(binary(), integer(), number()) :: :ok | {:error, String.t()}

Changes parameters of a window dynamically.
Positional Arguments
	winname: String.
Name of the window.

	prop_id: int.
Window property to edit. The supported operation flags are: (cv::WindowPropertyFlags)

	prop_value: double.
New value of the window property. The supported flags are: (cv::WindowFlags)

The function setWindowProperty enables changing properties of a window.
Python prototype (for reference only):
setWindowProperty(winname, prop_id, prop_value) -> None

 Link to this function

 setWindowTitle(winname, title)

 View Source

 @spec setWindowTitle(binary(), binary()) :: :ok | {:error, String.t()}

Updates window title
Positional Arguments
	winname: String.
Name of the window.

	title: String.
New title.

Python prototype (for reference only):
setWindowTitle(winname, title) -> None

 Link to this function

 sobel(src, ddepth, dx, dy)

 View Source

 @spec sobel(Evision.Mat.maybe_mat_in(), integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
output image depth, see @ref filter_depths "combinations"; in the case of
8-bit input images it will result in truncated derivatives.

	dx: int.
order of the derivative x.

	dy: int.
order of the derivative y.

Keyword Arguments
	ksize: int.
size of the extended Sobel kernel; it must be 1, 3, 5, or 7.

	scale: double.
optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).

	delta: double.
optional delta value that is added to the results prior to storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src .

In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). ksize = 1 can only be used for the first
or the second x- or y- derivatives.
There is also the special value ksize = #FILTER_SCHARR (-1) that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with (xorder = 1, yorder = 0, ksize = 3)
or (xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
The second case corresponds to a kernel of:
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
Python prototype (for reference only):
Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

 Link to this function

 sobel(src, ddepth, dx, dy, opts)

 View Source

 @spec sobel(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [ksize: term(), delta: term(), borderType: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
Positional Arguments
	src: Evision.Mat.t().
input image.

	ddepth: int.
output image depth, see @ref filter_depths "combinations"; in the case of
8-bit input images it will result in truncated derivatives.

	dx: int.
order of the derivative x.

	dy: int.
order of the derivative y.

Keyword Arguments
	ksize: int.
size of the extended Sobel kernel; it must be 1, 3, 5, or 7.

	scale: double.
optional scale factor for the computed derivative values; by default, no scaling is
applied (see #getDerivKernels for details).

	delta: double.
optional delta value that is added to the results prior to storing them in dst.

	borderType: int.
pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and the same number of channels as src .

In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
kernel is used (that is, no Gaussian smoothing is done). ksize = 1 can only be used for the first
or the second x- or y- derivatives.
There is also the special value ksize = #FILTER_SCHARR (-1) that corresponds to the \f$3\times3\f$ Scharr
filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
for the x-derivative, or transposed for the y-derivative.
The function calculates an image derivative by convolving the image with the appropriate kernel:
\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
resistant to the noise. Most often, the function is called with (xorder = 1, yorder = 0, ksize = 3)
or (xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
case corresponds to a kernel of:
\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
The second case corresponds to a kernel of:
\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
Python prototype (for reference only):
Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst

 Link to this function

 solve(src1, src2)

 View Source

 @spec solve(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Solves one or more linear systems or least-squares problems.
Positional Arguments
	src1: Evision.Mat.t().
input matrix on the left-hand side of the system.

	src2: Evision.Mat.t().
input matrix on the right-hand side of the system.

Keyword Arguments
	flags: int.
solution (matrix inversion) method (#DecompTypes)

Return
	retval: bool

	dst: Evision.Mat.t().
output solution.

The function cv::solve solves a linear system or least-squares problem (the
latter is possible with SVD or QR methods, or by specifying the flag
#DECOMP_NORMAL):
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
If #DECOMP_LU or #DECOMP_CHOLESKY method is used, the function returns 1
if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$) is non-singular. Otherwise,
it returns 0. In the latter case, dst is not valid. Other methods find a
pseudo-solution in case of a singular left-hand side part.
Note: If you want to find a unity-norm solution of an under-defined
singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$, the function solve
will not do the work. Use SVD::solveZ instead.
@sa invert, SVD, eigen
Python prototype (for reference only):
solve(src1, src2[, dst[, flags]]) -> retval, dst

 Link to this function

 solve(src1, src2, opts)

 View Source

 @spec solve(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 Evision.Mat.t() | false | {:error, String.t()}

Solves one or more linear systems or least-squares problems.
Positional Arguments
	src1: Evision.Mat.t().
input matrix on the left-hand side of the system.

	src2: Evision.Mat.t().
input matrix on the right-hand side of the system.

Keyword Arguments
	flags: int.
solution (matrix inversion) method (#DecompTypes)

Return
	retval: bool

	dst: Evision.Mat.t().
output solution.

The function cv::solve solves a linear system or least-squares problem (the
latter is possible with SVD or QR methods, or by specifying the flag
#DECOMP_NORMAL):
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
If #DECOMP_LU or #DECOMP_CHOLESKY method is used, the function returns 1
if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$) is non-singular. Otherwise,
it returns 0. In the latter case, dst is not valid. Other methods find a
pseudo-solution in case of a singular left-hand side part.
Note: If you want to find a unity-norm solution of an under-defined
singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$, the function solve
will not do the work. Use SVD::solveZ instead.
@sa invert, SVD, eigen
Python prototype (for reference only):
solve(src1, src2[, dst[, flags]]) -> retval, dst

 Link to this function

 solveCubic(coeffs)

 View Source

 @spec solveCubic(Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Finds the real roots of a cubic equation.
Positional Arguments
	coeffs: Evision.Mat.t().
equation coefficients, an array of 3 or 4 elements.

Return
	retval: int

	roots: Evision.Mat.t().
output array of real roots that has 1 or 3 elements.

The function solveCubic finds the real roots of a cubic equation:
	if coeffs is a 4-element vector:
\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]

	if coeffs is a 3-element vector:
\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]

The roots are stored in the roots array.
@return number of real roots. It can be 0, 1 or 2.
Python prototype (for reference only):
solveCubic(coeffs[, roots]) -> retval, roots

 Link to this function

 solveCubic(coeffs, opts)

 View Source

 @spec solveCubic(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Finds the real roots of a cubic equation.
Positional Arguments
	coeffs: Evision.Mat.t().
equation coefficients, an array of 3 or 4 elements.

Return
	retval: int

	roots: Evision.Mat.t().
output array of real roots that has 1 or 3 elements.

The function solveCubic finds the real roots of a cubic equation:
	if coeffs is a 4-element vector:
\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]

	if coeffs is a 3-element vector:
\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]

The roots are stored in the roots array.
@return number of real roots. It can be 0, 1 or 2.
Python prototype (for reference only):
solveCubic(coeffs[, roots]) -> retval, roots

 Link to this function

 solveLP(func, constr)

 View Source

 @spec solveLP(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

solveLP
Positional Arguments
	func: Evision.Mat.t()
	constr: Evision.Mat.t()

Return
	retval: int
	z: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
solveLP(Func, Constr[, z]) -> retval, z

 Link to this function

 solveLP(func, constr, opts)

 View Source

 @spec solveLP(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

 @spec solveLP(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number()) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
Positional Arguments
	func: Evision.Mat.t().
This row-vector corresponds to \f$c\f$ in the LP problem formulation (see above). It should
contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted,
in the latter case it is understood to correspond to \f$c^T\f$.

	constr: Evision.Mat.t().
m-by-n+1 matrix, whose rightmost column corresponds to \f$b\f$ in formulation above
and the remaining to \f$A\f$. It should contain 32- or 64-bit floating point numbers.

	constr_eps: double.
allowed numeric disparity for constraints

Return
	retval: int

	z: Evision.Mat.t().
The solution will be returned here as a column-vector - it corresponds to \f$c\f$ in the
formulation above. It will contain 64-bit floating point numbers.

What we mean here by "linear programming problem" (or LP problem, for short) can be formulated as:
\f[\mbox{Maximize } c\cdot x\\
\mbox{Subject to:}\\
Ax\leq b\\
x\geq 0\f]
Where \f$c\f$ is fixed 1-by-n row-vector, \f$A\f$ is fixed m-by-n matrix, \f$b\f$ is fixed m-by-1
column vector and \f$x\f$ is an arbitrary n-by-1 column vector, which satisfies the constraints.
Simplex algorithm is one of many algorithms that are designed to handle this sort of problems
efficiently. Although it is not optimal in theoretical sense (there exist algorithms that can solve
any problem written as above in polynomial time, while simplex method degenerates to exponential
time for some special cases), it is well-studied, easy to implement and is shown to work well for
real-life purposes.
The particular implementation is taken almost verbatim from Introduction to Algorithms, third
edition by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the
Bland's rule http://en.wikipedia.org/wiki/Bland%27s_rule is used to prevent cycling.
@return One of cv::SolveLPResult
Python prototype (for reference only):
solveLP(Func, Constr, constr_eps[, z]) -> retval, z
Variant 2:
solveLP
Positional Arguments
	func: Evision.Mat.t()
	constr: Evision.Mat.t()

Return
	retval: int
	z: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
solveLP(Func, Constr[, z]) -> retval, z

 Link to this function

 solveLP(func, constr, constr_eps, opts)

 View Source

 @spec solveLP(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
Positional Arguments
	func: Evision.Mat.t().
This row-vector corresponds to \f$c\f$ in the LP problem formulation (see above). It should
contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted,
in the latter case it is understood to correspond to \f$c^T\f$.

	constr: Evision.Mat.t().
m-by-n+1 matrix, whose rightmost column corresponds to \f$b\f$ in formulation above
and the remaining to \f$A\f$. It should contain 32- or 64-bit floating point numbers.

	constr_eps: double.
allowed numeric disparity for constraints

Return
	retval: int

	z: Evision.Mat.t().
The solution will be returned here as a column-vector - it corresponds to \f$c\f$ in the
formulation above. It will contain 64-bit floating point numbers.

What we mean here by "linear programming problem" (or LP problem, for short) can be formulated as:
\f[\mbox{Maximize } c\cdot x\\
\mbox{Subject to:}\\
Ax\leq b\\
x\geq 0\f]
Where \f$c\f$ is fixed 1-by-n row-vector, \f$A\f$ is fixed m-by-n matrix, \f$b\f$ is fixed m-by-1
column vector and \f$x\f$ is an arbitrary n-by-1 column vector, which satisfies the constraints.
Simplex algorithm is one of many algorithms that are designed to handle this sort of problems
efficiently. Although it is not optimal in theoretical sense (there exist algorithms that can solve
any problem written as above in polynomial time, while simplex method degenerates to exponential
time for some special cases), it is well-studied, easy to implement and is shown to work well for
real-life purposes.
The particular implementation is taken almost verbatim from Introduction to Algorithms, third
edition by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the
Bland's rule http://en.wikipedia.org/wiki/Bland%27s_rule is used to prevent cycling.
@return One of cv::SolveLPResult
Python prototype (for reference only):
solveLP(Func, Constr, constr_eps[, z]) -> retval, z

 Link to this function

 solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags)

 View Source

 @spec solveP3P(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: {integer(), [Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Finds an object pose from 3 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, 3x3 1-channel or
1x3/3x1 3-channel. vector\<Point3f> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
vector\<Point2f> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

	flags: int.
Method for solving a P3P problem:
	@ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
	@ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).

Return
	retval: int

	rvecs: [Evision.Mat].
Output rotation vectors (see @ref Rodrigues) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.

	tvecs: [Evision.Mat].
Output translation vectors.

@see @ref calib3d_solvePnP
The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients.
Note:
The solutions are sorted by reprojection errors (lowest to highest).
Python prototype (for reference only):
solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags[, rvecs[, tvecs]]) -> retval, rvecs, tvecs

 Link to this function

 solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags, opts)

 View Source

 @spec solveP3P(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {integer(), [Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Finds an object pose from 3 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, 3x3 1-channel or
1x3/3x1 3-channel. vector\<Point3f> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
vector\<Point2f> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

	flags: int.
Method for solving a P3P problem:
	@ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
	@ref SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).

Return
	retval: int

	rvecs: [Evision.Mat].
Output rotation vectors (see @ref Rodrigues) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.

	tvecs: [Evision.Mat].
Output translation vectors.

@see @ref calib3d_solvePnP
The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients.
Note:
The solutions are sorted by reprojection errors (lowest to highest).
Python prototype (for reference only):
solveP3P(objectPoints, imagePoints, cameraMatrix, distCoeffs, flags[, rvecs[, tvecs]]) -> retval, rvecs, tvecs

 Link to this function

 solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 View Source

 @spec solvePnP(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Finds an object pose from 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	useExtrinsicGuess: bool.
Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.

	flags: int.
Method for solving a PnP problem: see @ref calib3d_solvePnP_flags

Return
	retval: bool

	rvec: Evision.Mat.t().
Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.

	tvec: Evision.Mat.t().
Output translation vector.

@see @ref calib3d_solvePnP
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
	P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.

	@ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.

	@ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	for all the other flags, number of input points must be >= 4 and object points can be in any configuration.

More information about Perspective-n-Points is described in @ref calib3d_solvePnP
Note:
	An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py

	If you are using Python:

	Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)

	The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.

	Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))

	The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, @ref SOLVEPNP_EPNP method will be used instead.

	The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).

	With @ref SOLVEPNP_ITERATIVE method and useExtrinsicGuess=true, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.

	With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.

	With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	With @ref SOLVEPNP_SQPNP input points must be >= 3

Python prototype (for reference only):
solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) -> retval, rvec, tvec

 Link to this function

 solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 View Source

 @spec solvePnP(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [useExtrinsicGuess: term(), flags: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Finds an object pose from 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	useExtrinsicGuess: bool.
Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.

	flags: int.
Method for solving a PnP problem: see @ref calib3d_solvePnP_flags

Return
	retval: bool

	rvec: Evision.Mat.t().
Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.

	tvec: Evision.Mat.t().
Output translation vector.

@see @ref calib3d_solvePnP
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
	P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.

	@ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.

	@ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	for all the other flags, number of input points must be >= 4 and object points can be in any configuration.

More information about Perspective-n-Points is described in @ref calib3d_solvePnP
Note:
	An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py

	If you are using Python:

	Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)

	The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.

	Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))

	The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, @ref SOLVEPNP_EPNP method will be used instead.

	The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).

	With @ref SOLVEPNP_ITERATIVE method and useExtrinsicGuess=true, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.

	With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.

	With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	With @ref SOLVEPNP_SQPNP input points must be >= 3

Python prototype (for reference only):
solvePnP(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, useExtrinsicGuess[, flags]]]]) -> retval, rvec, tvec

 Link to this function

 solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 View Source

 @spec solvePnPGeneric(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Finds an object pose from 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	useExtrinsicGuess: bool.
Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.

	flags: SolvePnPMethod.
Method for solving a PnP problem: see @ref calib3d_solvePnP_flags

	rvec: Evision.Mat.t().
Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.

	tvec: Evision.Mat.t().
Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.

Return
	retval: int

	rvecs: [Evision.Mat].
Vector of output rotation vectors (see @ref Rodrigues) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.

	tvecs: [Evision.Mat].
Vector of output translation vectors.

	reprojectionError: Evision.Mat.t().
Optional vector of reprojection error, that is the RMS error
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left (\hat{y_i} - y_i \right)^2}{N}} \f$) between the input image points
and the 3D object points projected with the estimated pose.

@see @ref calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
couple), depending on the number of input points and the chosen method:
	P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.

	@ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.

	@ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
Only 1 solution is returned.

More information is described in @ref calib3d_solvePnP
Note:
	An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py

	If you are using Python:

	Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)

	The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.

	Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))

	The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, @ref SOLVEPNP_EPNP method will be used instead.

	The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).

	With @ref SOLVEPNP_ITERATIVE method and useExtrinsicGuess=true, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.

	With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.

	With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

Python prototype (for reference only):
solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvecs[, tvecs[, useExtrinsicGuess[, flags[, rvec[, tvec[, reprojectionError]]]]]]]) -> retval, rvecs, tvecs, reprojectionError

 Link to this function

 solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 View Source

 @spec solvePnPGeneric(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [tvec: term(), rvec: term(), useExtrinsicGuess: term(), flags: term()] | nil
) ::
 {integer(), [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Finds an object pose from 3D-2D point correspondences.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d> can be also passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can be also passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	useExtrinsicGuess: bool.
Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.

	flags: SolvePnPMethod.
Method for solving a PnP problem: see @ref calib3d_solvePnP_flags

	rvec: Evision.Mat.t().
Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.

	tvec: Evision.Mat.t().
Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.

Return
	retval: int

	rvecs: [Evision.Mat].
Vector of output rotation vectors (see @ref Rodrigues) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.

	tvecs: [Evision.Mat].
Vector of output translation vectors.

	reprojectionError: Evision.Mat.t().
Optional vector of reprojection error, that is the RMS error
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left (\hat{y_i} - y_i \right)^2}{N}} \f$) between the input image points
and the 3D object points projected with the estimated pose.

@see @ref calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
couple), depending on the number of input points and the chosen method:
	P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.

	@ref SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar. Returns 2 solutions.

	@ref SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

	for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
Only 1 solution is returned.

More information is described in @ref calib3d_solvePnP
Note:
	An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py

	If you are using Python:

	Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)

	The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.

	Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))

	The methods @ref SOLVEPNP_DLS and @ref SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, @ref SOLVEPNP_EPNP method will be used instead.

	The minimum number of points is 4 in the general case. In the case of @ref SOLVEPNP_P3P and @ref SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).

	With @ref SOLVEPNP_ITERATIVE method and useExtrinsicGuess=true, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.

	With @ref SOLVEPNP_IPPE input points must be >= 4 and object points must be coplanar.

	With @ref SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:

	point 0: [-squareLength / 2, squareLength / 2, 0]

	point 1: [squareLength / 2, squareLength / 2, 0]

	point 2: [squareLength / 2, -squareLength / 2, 0]

	point 3: [-squareLength / 2, -squareLength / 2, 0]

Python prototype (for reference only):
solvePnPGeneric(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvecs[, tvecs[, useExtrinsicGuess[, flags[, rvec[, tvec[, reprojectionError]]]]]]]) -> retval, rvecs, tvecs, reprojectionError

 Link to this function

 solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs)

 View Source

 @spec solvePnPRansac(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

solvePnPRansac
Positional Arguments
	objectPoints: Evision.Mat.t()
	imagePoints: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	params: Evision.UsacParams.t().

Return
	retval: bool
	cameraMatrix: Evision.Mat.t()
	rvec: Evision.Mat.t().
	tvec: Evision.Mat.t().
	inliers: Evision.Mat.t().

Python prototype (for reference only):
solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, inliers[, params]]]]) -> retval, cameraMatrix, rvec, tvec, inliers

 Link to this function

 solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs, opts)

 View Source

 @spec solvePnPRansac(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:params, term()}] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

solvePnPRansac
Positional Arguments
	objectPoints: Evision.Mat.t()
	imagePoints: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	params: Evision.UsacParams.t().

Return
	retval: bool
	cameraMatrix: Evision.Mat.t()
	rvec: Evision.Mat.t().
	tvec: Evision.Mat.t().
	inliers: Evision.Mat.t().

Python prototype (for reference only):
solvePnPRansac(objectPoints, imagePoints, cameraMatrix, distCoeffs[, rvec[, tvec[, inliers[, params]]]]) -> retval, cameraMatrix, rvec, tvec, inliers

 Link to this function

 solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec)

 View Source

 @spec solvePnPRefineLM(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3d> can also be passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can also be passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	criteria: TermCriteria.
Criteria when to stop the Levenberg-Marquard iterative algorithm.

Return
	rvec: Evision.Mat.t().
Input/Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.

	tvec: Evision.Mat.t().
Input/Output translation vector. Input values are used as an initial solution.

@see @ref calib3d_solvePnP
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, according
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
Python prototype (for reference only):
solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec[, criteria]) -> rvec, tvec

 Link to this function

 solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, opts)

 View Source

 @spec solvePnPRefineLM(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:criteria, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3d> can also be passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can also be passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	criteria: TermCriteria.
Criteria when to stop the Levenberg-Marquard iterative algorithm.

Return
	rvec: Evision.Mat.t().
Input/Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.

	tvec: Evision.Mat.t().
Input/Output translation vector. Input values are used as an initial solution.

@see @ref calib3d_solvePnP
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, according
to a Levenberg-Marquardt iterative minimization @cite Madsen04 @cite Eade13 process.
Python prototype (for reference only):
solvePnPRefineLM(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec[, criteria]) -> rvec, tvec

 Link to this function

 solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec)

 View Source

 @spec solvePnPRefineVVS(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3d> can also be passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can also be passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	criteria: TermCriteria.
Criteria when to stop the Levenberg-Marquard iterative algorithm.

	vVSlambda: double.
Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
gain in the Damped Gauss-Newton formulation.

Return
	rvec: Evision.Mat.t().
Input/Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.

	tvec: Evision.Mat.t().
Input/Output translation vector. Input values are used as an initial solution.

@see @ref calib3d_solvePnP
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
Python prototype (for reference only):
solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec[, criteria[, VVSlambda]]) -> rvec, tvec

 Link to this function

 solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec, opts)

 View Source

 @spec solvePnPRefineVVS(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [criteria: term(), vVSlambda: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
Positional Arguments
	objectPoints: Evision.Mat.t().
Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector\<Point3d> can also be passed here.

	imagePoints: Evision.Mat.t().
Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector\<Point2d> can also be passed here.

	cameraMatrix: Evision.Mat.t().
Input camera intrinsic matrix \f$\cameramatrix{A}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$\distcoeffs\f$. If the vector is NULL/empty, the zero distortion coefficients are
assumed.

Keyword Arguments
	criteria: TermCriteria.
Criteria when to stop the Levenberg-Marquard iterative algorithm.

	vVSlambda: double.
Gain for the virtual visual servoing control law, equivalent to the \f$\alpha\f$
gain in the Damped Gauss-Newton formulation.

Return
	rvec: Evision.Mat.t().
Input/Output rotation vector (see @ref Rodrigues) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.

	tvec: Evision.Mat.t().
Input/Output translation vector. Input values are used as an initial solution.

@see @ref calib3d_solvePnP
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) @cite Chaumette06 @cite Marchand16 scheme.
Python prototype (for reference only):
solvePnPRefineVVS(objectPoints, imagePoints, cameraMatrix, distCoeffs, rvec, tvec[, criteria[, VVSlambda]]) -> rvec, tvec

 Link to this function

 solvePoly(coeffs)

 View Source

 @spec solvePoly(Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds the real or complex roots of a polynomial equation.
Positional Arguments
	coeffs: Evision.Mat.t().
array of polynomial coefficients.

Keyword Arguments
	maxIters: int.
maximum number of iterations the algorithm does.

Return
	retval: double

	roots: Evision.Mat.t().
output (complex) array of roots.

The function cv::solvePoly finds real and complex roots of a polynomial equation:
\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
Python prototype (for reference only):
solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots

 Link to this function

 solvePoly(coeffs, opts)

 View Source

 @spec solvePoly(Evision.Mat.maybe_mat_in(), [{:maxIters, term()}] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Finds the real or complex roots of a polynomial equation.
Positional Arguments
	coeffs: Evision.Mat.t().
array of polynomial coefficients.

Keyword Arguments
	maxIters: int.
maximum number of iterations the algorithm does.

Return
	retval: double

	roots: Evision.Mat.t().
output (complex) array of roots.

The function cv::solvePoly finds real and complex roots of a polynomial equation:
\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
Python prototype (for reference only):
solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots

 Link to this function

 sort(src, flags)

 View Source

 @spec sort(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Sorts each row or each column of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	flags: int.
operation flags, a combination of #SortFlags

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::sort sorts each matrix row or each matrix column in
ascending or descending order. So you should pass two operation flags to
get desired behaviour. If you want to sort matrix rows or columns
lexicographically, you can use STL std::sort generic function with the
proper comparison predicate.
@sa sortIdx, randShuffle
Python prototype (for reference only):
sort(src, flags[, dst]) -> dst

 Link to this function

 sort(src, flags, opts)

 View Source

 @spec sort(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Sorts each row or each column of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	flags: int.
operation flags, a combination of #SortFlags

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::sort sorts each matrix row or each matrix column in
ascending or descending order. So you should pass two operation flags to
get desired behaviour. If you want to sort matrix rows or columns
lexicographically, you can use STL std::sort generic function with the
proper comparison predicate.
@sa sortIdx, randShuffle
Python prototype (for reference only):
sort(src, flags[, dst]) -> dst

 Link to this function

 sortIdx(src, flags)

 View Source

 @spec sortIdx(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Sorts each row or each column of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	flags: int.
operation flags that could be a combination of cv::SortFlags

Return
	dst: Evision.Mat.t().
output integer array of the same size as src.

The function cv::sortIdx sorts each matrix row or each matrix column in the
ascending or descending order. So you should pass two operation flags to
get desired behaviour. Instead of reordering the elements themselves, it
stores the indices of sorted elements in the output array. For example:
Mat A = Mat::eye(3,3,CV_32F), B;
sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
// B will probably contain
// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
@sa sort, randShuffle
Python prototype (for reference only):
sortIdx(src, flags[, dst]) -> dst

 Link to this function

 sortIdx(src, flags, opts)

 View Source

 @spec sortIdx(Evision.Mat.maybe_mat_in(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Sorts each row or each column of a matrix.
Positional Arguments
	src: Evision.Mat.t().
input single-channel array.

	flags: int.
operation flags that could be a combination of cv::SortFlags

Return
	dst: Evision.Mat.t().
output integer array of the same size as src.

The function cv::sortIdx sorts each matrix row or each matrix column in the
ascending or descending order. So you should pass two operation flags to
get desired behaviour. Instead of reordering the elements themselves, it
stores the indices of sorted elements in the output array. For example:
Mat A = Mat::eye(3,3,CV_32F), B;
sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
// B will probably contain
// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
@sa sort, randShuffle
Python prototype (for reference only):
sortIdx(src, flags[, dst]) -> dst

 Link to this function

 spatialGradient(src)

 View Source

 @spec spatialGradient(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the first order image derivative in both x and y using a Sobel operator
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	ksize: int.
size of Sobel kernel. It must be 3.

	borderType: int.
pixel extrapolation method, see #BorderTypes.
Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.

Return
	dx: Evision.Mat.t().
output image with first-order derivative in x.

	dy: Evision.Mat.t().
output image with first-order derivative in y.

Equivalent to calling:
Sobel(src, dx, CV_16SC1, 1, 0, 3);
Sobel(src, dy, CV_16SC1, 0, 1, 3);
@sa Sobel
Python prototype (for reference only):
spatialGradient(src[, dx[, dy[, ksize[, borderType]]]]) -> dx, dy

 Link to this function

 spatialGradient(src, opts)

 View Source

 @spec spatialGradient(
 Evision.Mat.maybe_mat_in(),
 [ksize: term(), borderType: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates the first order image derivative in both x and y using a Sobel operator
Positional Arguments
	src: Evision.Mat.t().
input image.

Keyword Arguments
	ksize: int.
size of Sobel kernel. It must be 3.

	borderType: int.
pixel extrapolation method, see #BorderTypes.
Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.

Return
	dx: Evision.Mat.t().
output image with first-order derivative in x.

	dy: Evision.Mat.t().
output image with first-order derivative in y.

Equivalent to calling:
Sobel(src, dx, CV_16SC1, 1, 0, 3);
Sobel(src, dy, CV_16SC1, 0, 1, 3);
@sa Sobel
Python prototype (for reference only):
spatialGradient(src[, dx[, dy[, ksize[, borderType]]]]) -> dx, dy

 Link to this function

 split(m)

 View Source

 @spec split(Evision.Mat.maybe_mat_in()) :: [Evision.Mat.t()] | {:error, String.t()}

split
Positional Arguments
	m: Evision.Mat.t().
input multi-channel array.

Return
	mv: [Evision.Mat].
output vector of arrays; the arrays themselves are reallocated, if needed.

Has overloading in C++
Python prototype (for reference only):
split(m[, mv]) -> mv

 Link to this function

 split(m, opts)

 View Source

 @spec split(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

split
Positional Arguments
	m: Evision.Mat.t().
input multi-channel array.

Return
	mv: [Evision.Mat].
output vector of arrays; the arrays themselves are reallocated, if needed.

Has overloading in C++
Python prototype (for reference only):
split(m[, mv]) -> mv

 Link to this function

 sqrBoxFilter(src, ddepth, ksize)

 View Source

 @spec sqrBoxFilter(Evision.Mat.maybe_mat_in(), integer(), {number(), number()}) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the normalized sum of squares of the pixel values overlapping the filter.
Positional Arguments
	src: Evision.Mat.t().
input image

	ddepth: int.
the output image depth (-1 to use src.depth())

	ksize: Size.
kernel size

Keyword Arguments
	anchor: Point.
kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
center.

	normalize: bool.
flag, specifying whether the kernel is to be normalized by it's area or not.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src

For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
The unnormalized square box filter can be useful in computing local image statistics such as the local
variance and standard deviation around the neighborhood of a pixel.
@sa boxFilter
Python prototype (for reference only):
sqrBoxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

 Link to this function

 sqrBoxFilter(src, ddepth, ksize, opts)

 View Source

 @spec sqrBoxFilter(
 Evision.Mat.maybe_mat_in(),
 integer(),
 {number(), number()},
 [normalize: term(), borderType: term(), anchor: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the normalized sum of squares of the pixel values overlapping the filter.
Positional Arguments
	src: Evision.Mat.t().
input image

	ddepth: int.
the output image depth (-1 to use src.depth())

	ksize: Size.
kernel size

Keyword Arguments
	anchor: Point.
kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
center.

	normalize: bool.
flag, specifying whether the kernel is to be normalized by it's area or not.

	borderType: int.
border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src

For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
The unnormalized square box filter can be useful in computing local image statistics such as the local
variance and standard deviation around the neighborhood of a pixel.
@sa boxFilter
Python prototype (for reference only):
sqrBoxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) -> dst

 Link to this function

 sqrt(src)

 View Source

 @spec sqrt(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Calculates a square root of array elements.
Positional Arguments
	src: Evision.Mat.t().
input floating-point array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::sqrt calculates a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
Python prototype (for reference only):
sqrt(src[, dst]) -> dst

 Link to this function

 sqrt(src, opts)

 View Source

 @spec sqrt(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates a square root of array elements.
Positional Arguments
	src: Evision.Mat.t().
input floating-point array.

Return
	dst: Evision.Mat.t().
output array of the same size and type as src.

The function cv::sqrt calculates a square root of each input array element.
In case of multi-channel arrays, each channel is processed
independently. The accuracy is approximately the same as of the built-in
std::sqrt .
Python prototype (for reference only):
sqrt(src[, dst]) -> dst

 Link to this function

 stackBlur(src, ksize)

 View Source

 @spec stackBlur(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Blurs an image using the stackBlur.
Positional Arguments
	src: Evision.Mat.t().
input image. The number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S or CV_32F.

	ksize: Size.
stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
positive and odd.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function applies and stackBlur to an image.
stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
Python prototype (for reference only):
stackBlur(src, ksize[, dst]) -> dst

 Link to this function

 stackBlur(src, ksize, opts)

 View Source

 @spec stackBlur(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Blurs an image using the stackBlur.
Positional Arguments
	src: Evision.Mat.t().
input image. The number of channels can be arbitrary, but the depth should be one of
CV_8U, CV_16U, CV_16S or CV_32F.

	ksize: Size.
stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
positive and odd.

Return
	dst: Evision.Mat.t().
output image of the same size and type as src.

The function applies and stackBlur to an image.
stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
Python prototype (for reference only):
stackBlur(src, ksize[, dst]) -> dst

 Link to this function

 startWindowThread()

 View Source

 @spec startWindowThread() :: integer() | {:error, String.t()}

startWindowThread
Return
	retval: int

Python prototype (for reference only):
startWindowThread() -> retval

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	r: Evision.Mat.t().
	t: Evision.Mat.t().
	e: Evision.Mat.t().
	f: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize[, R[, T[, E[, F[, flags[, criteria]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, opts)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	r: Evision.Mat.t().
	t: Evision.Mat.t().
	e: Evision.Mat.t().
	f: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize[, R[, T[, E[, F[, flags[, criteria]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	r: Evision.Mat.t()
	t: Evision.Mat.t()
	e: Evision.Mat.t().
	f: Evision.Mat.t().
	perViewErrors: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, E[, F[, perViewErrors[, flags[, criteria]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F, perViewErrors

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix1: Evision.Mat.t()
	distCoeffs1: Evision.Mat.t()
	cameraMatrix2: Evision.Mat.t()
	distCoeffs2: Evision.Mat.t()
	r: Evision.Mat.t()
	t: Evision.Mat.t()
	e: Evision.Mat.t().
	f: Evision.Mat.t().
	perViewErrors: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, E[, F[, perViewErrors[, flags[, criteria]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F, perViewErrors

 Link to this function

 stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 View Source

 @spec stereoCalibrateExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of the calibration pattern points. The same structure as
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
be equal for each i.

	imagePoints1: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points,
observed by the first camera. The same structure as in @ref calibrateCamera.

	imagePoints2: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points,
observed by the second camera. The same structure as in @ref calibrateCamera.

	imageSize: Size.
Size of the image used only to initialize the camera intrinsic matrices.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
matrices are estimated.
	@ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
	@ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	@ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
	@ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$.
	@ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$. Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
.
	@ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$.
	@ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
zeros and fix there.
	@ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	@ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
	@ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
	@ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	@ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
	@ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix1: Evision.Mat.t().
Input/output camera intrinsic matrix for the first camera, the same as in

	distCoeffs1: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

	cameraMatrix2: Evision.Mat.t().
Input/output second camera intrinsic matrix for the second camera. See description for
cameraMatrix1.

	distCoeffs2: Evision.Mat.t().
Input/output lens distortion coefficients for the second camera. See
description for distCoeffs1.

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector T, this matrix brings
points given in the first camera's coordinate system to points in the second camera's
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
from the first camera's coordinate system to the second camera's coordinate system. Due to its
duality, this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system.

	t: Evision.Mat.t().
Output translation vector, see description above.

	e: Evision.Mat.t().
Output essential matrix.

	f: Evision.Mat.t().
Output fundamental matrix.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (@ref Rodrigues) estimated for each pattern view in the
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
description) brings the calibration pattern from the object coordinate space (in which object points are
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
to camera coordinate space of the first camera of the stereo pair.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view, see parameter description
of previous output parameter (rvecs).

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
The function estimates the transformation between two cameras making a stereo pair. If one computes
the poses of an object relative to the first camera and to the second camera,
(\f$R_1\f$,\f$T_1\f$) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
relative position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
\f[R_2=R R_1\f]
\f[T_2=R T_1 + T.\f]
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
coordinate system when given the point's coordinate representation in the first camera's coordinate
system:
\f[\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{bmatrix} = \begin{bmatrix}
R & T \\
0 & 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{bmatrix}.\f]
Optionally, it computes the essential matrix E:
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
where \f$T_i\f$ are components of the translation vector \f$T\f$: \f$T=[T_0, T_1, T_2]^T\f$.
And the function can also compute the fundamental matrix F:
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
Besides the stereo-related information, the function can also perform a full calibration of each of
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
#calibrateCamera), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
@ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.
Python prototype (for reference only):
stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, E[, F[, rvecs[, tvecs[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F, rvecs, tvecs, perViewErrors

 Link to this function

 stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 View Source

 @spec stereoCalibrateExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vectors of the calibration pattern points. The same structure as
in @ref calibrateCamera. For each pattern view, both cameras need to see the same object
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
be equal for each i.

	imagePoints1: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points,
observed by the first camera. The same structure as in @ref calibrateCamera.

	imagePoints2: [Evision.Mat].
Vector of vectors of the projections of the calibration pattern points,
observed by the second camera. The same structure as in @ref calibrateCamera.

	imageSize: Size.
Size of the image used only to initialize the camera intrinsic matrices.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
matrices are estimated.
	@ref CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
	@ref CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
	@ref CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
	@ref CALIB_FIX_FOCAL_LENGTH Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$.
	@ref CALIB_FIX_ASPECT_RATIO Optimize \f$f^{(j)}_y\f$. Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
.
	@ref CALIB_SAME_FOCAL_LENGTH Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$.
	@ref CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
zeros and fix there.
	@ref CALIB_FIX_K1,..., @ref CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	@ref CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
	@ref CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
	@ref CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
	@ref CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
	@ref CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If @ref CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix1: Evision.Mat.t().
Input/output camera intrinsic matrix for the first camera, the same as in

	distCoeffs1: Evision.Mat.t().
Input/output vector of distortion coefficients, the same as in

	cameraMatrix2: Evision.Mat.t().
Input/output second camera intrinsic matrix for the second camera. See description for
cameraMatrix1.

	distCoeffs2: Evision.Mat.t().
Input/output lens distortion coefficients for the second camera. See
description for distCoeffs1.

	r: Evision.Mat.t().
Output rotation matrix. Together with the translation vector T, this matrix brings
points given in the first camera's coordinate system to points in the second camera's
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
from the first camera's coordinate system to the second camera's coordinate system. Due to its
duality, this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system.

	t: Evision.Mat.t().
Output translation vector, see description above.

	e: Evision.Mat.t().
Output essential matrix.

	f: Evision.Mat.t().
Output fundamental matrix.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (@ref Rodrigues) estimated for each pattern view in the
coordinate system of the first camera of the stereo pair (e.g. std::vector<cv::Mat>). More in detail, each
i-th rotation vector together with the corresponding i-th translation vector (see the next output parameter
description) brings the calibration pattern from the object coordinate space (in which object points are
specified) to the camera coordinate space of the first camera of the stereo pair. In more technical terms,
the tuple of the i-th rotation and translation vector performs a change of basis from object coordinate space
to camera coordinate space of the first camera of the stereo pair.

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view, see parameter description
of previous output parameter (rvecs).

	perViewErrors: Evision.Mat.t().
Output vector of the RMS re-projection error estimated for each pattern view.

@ref calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.
@ref calibrateCamera.
The function estimates the transformation between two cameras making a stereo pair. If one computes
the poses of an object relative to the first camera and to the second camera,
(\f$R_1\f$,\f$T_1\f$) and (\f$R_2\f$,\f$T_2\f$), respectively, for a stereo camera where the
relative position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. This means, if the relative position and orientation (\f$R\f$,\f$T\f$) of the
two cameras is known, it is possible to compute (\f$R_2\f$,\f$T_2\f$) when (\f$R_1\f$,\f$T_1\f$) is
given. This is what the described function does. It computes (\f$R\f$,\f$T\f$) such that:
\f[R_2=R R_1\f]
\f[T_2=R T_1 + T.\f]
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
coordinate system when given the point's coordinate representation in the first camera's coordinate
system:
\f[\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{bmatrix} = \begin{bmatrix}
R & T \\
0 & 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{bmatrix}.\f]
Optionally, it computes the essential matrix E:
\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\f]
where \f$T_i\f$ are components of the translation vector \f$T\f$: \f$T=[T_0, T_1, T_2]^T\f$.
And the function can also compute the fundamental matrix F:
\f[F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\f]
Besides the stereo-related information, the function can also perform a full calibration of each of
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
#calibrateCamera), you are recommended to do so and then pass @ref CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
@ref CALIB_SAME_FOCAL_LENGTH and @ref CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.
Python prototype (for reference only):
stereoCalibrateExtended(objectPoints, imagePoints1, imagePoints2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, E[, F[, rvecs[, tvecs[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, R, T, E, F, rvecs, tvecs, perViewErrors

 Link to this function

 stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t)

 View Source

 @spec stereoRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), {number(), number(), number(), number()},
 {number(), number(), number(), number()}}
 | {:error, String.t()}

Computes rectification transforms for each head of a calibrated stereo camera.
Positional Arguments
	cameraMatrix1: Evision.Mat.t().
First camera intrinsic matrix.

	distCoeffs1: Evision.Mat.t().
First camera distortion parameters.

	cameraMatrix2: Evision.Mat.t().
Second camera intrinsic matrix.

	distCoeffs2: Evision.Mat.t().
Second camera distortion parameters.

	imageSize: Size.
Size of the image used for stereo calibration.

	r: Evision.Mat.t().
Rotation matrix from the coordinate system of the first camera to the second camera,
see @ref stereoCalibrate.

	t: Evision.Mat.t().
Translation vector from the coordinate system of the first camera to the second camera,
see @ref stereoCalibrate.

Keyword Arguments
	flags: int.
Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.

	alpha: double.
Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.

	newImageSize: Size.
New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.

Return
	r1: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.

	r2: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.

	p1: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.

	p2: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.

	q: Evision.Mat.t().
Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).

	validPixROI1: Rect*.
Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

	validPixROI2: Rect*.
Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
	Horizontal stereo: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix}
f & 0 & cx_1 & 0 \\
0 & f & cy & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}\f]
\f[\texttt{P2} = \begin{bmatrix}
f & 0 & cx_2 & T_x \cdot f \\
0 & f & cy & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} ,\f]
\f[\texttt{Q} = \begin{bmatrix}
1 & 0 & 0 & -cx_1 \\
0 & 1 & 0 & -cy \\
0 & 0 & 0 & f \\
0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
\end{bmatrix} \f]
where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
@ref CALIB_ZERO_DISPARITY is set.
	Vertical stereo: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix}
f & 0 & cx & 0 \\
0 & f & cy_1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}\f]
\f[\texttt{P2} = \begin{bmatrix}
f & 0 & cx & 0 \\
0 & f & cy_2 & T_y \cdot f \\
0 & 0 & 1 & 0
\end{bmatrix},\f]
\f[\texttt{Q} = \begin{bmatrix}
1 & 0 & 0 & -cx \\
0 & 1 & 0 & -cy_1 \\
0 & 0 & 0 & f \\
0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
\end{bmatrix} \f]
where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
@ref CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
[image: image]
Python prototype (for reference only):
stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, R1[, R2[, P1[, P2[, Q[, flags[, alpha[, newImageSize]]]]]]]]) -> R1, R2, P1, P2, Q, validPixROI1, validPixROI2

 Link to this function

 stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, r, t, opts)

 View Source

 @spec stereoRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [alpha: term(), newImageSize: term(), flags: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), {number(), number(), number(), number()},
 {number(), number(), number(), number()}}
 | {:error, String.t()}

Computes rectification transforms for each head of a calibrated stereo camera.
Positional Arguments
	cameraMatrix1: Evision.Mat.t().
First camera intrinsic matrix.

	distCoeffs1: Evision.Mat.t().
First camera distortion parameters.

	cameraMatrix2: Evision.Mat.t().
Second camera intrinsic matrix.

	distCoeffs2: Evision.Mat.t().
Second camera distortion parameters.

	imageSize: Size.
Size of the image used for stereo calibration.

	r: Evision.Mat.t().
Rotation matrix from the coordinate system of the first camera to the second camera,
see @ref stereoCalibrate.

	t: Evision.Mat.t().
Translation vector from the coordinate system of the first camera to the second camera,
see @ref stereoCalibrate.

Keyword Arguments
	flags: int.
Operation flags that may be zero or @ref CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.

	alpha: double.
Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.

	newImageSize: Size.
New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.

Return
	r1: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.

	r2: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.

	p1: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.

	p2: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.

	q: Evision.Mat.t().
Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see @ref reprojectImageTo3D).

	validPixROI1: Rect*.
Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

	validPixROI2: Rect*.
Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).

The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
	Horizontal stereo: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix}
f & 0 & cx_1 & 0 \\
0 & f & cy & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}\f]
\f[\texttt{P2} = \begin{bmatrix}
f & 0 & cx_2 & T_x \cdot f \\
0 & f & cy & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} ,\f]
\f[\texttt{Q} = \begin{bmatrix}
1 & 0 & 0 & -cx_1 \\
0 & 1 & 0 & -cy \\
0 & 0 & 0 & f \\
0 & 0 & -\frac{1}{T_x} & \frac{cx_1 - cx_2}{T_x}
\end{bmatrix} \f]
where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
@ref CALIB_ZERO_DISPARITY is set.
	Vertical stereo: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:

\f[\texttt{P1} = \begin{bmatrix}
f & 0 & cx & 0 \\
0 & f & cy_1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}\f]
\f[\texttt{P2} = \begin{bmatrix}
f & 0 & cx & 0 \\
0 & f & cy_2 & T_y \cdot f \\
0 & 0 & 1 & 0
\end{bmatrix},\f]
\f[\texttt{Q} = \begin{bmatrix}
1 & 0 & 0 & -cx \\
0 & 1 & 0 & -cy_1 \\
0 & 0 & 0 & f \\
0 & 0 & -\frac{1}{T_y} & \frac{cy_1 - cy_2}{T_y}
\end{bmatrix} \f]
where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if
@ref CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
[image: image]
Python prototype (for reference only):
stereoRectify(cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, imageSize, R, T[, R1[, R2[, P1[, P2[, Q[, flags[, alpha[, newImageSize]]]]]]]]) -> R1, R2, P1, P2, Q, validPixROI1, validPixROI2

 Link to this function

 stereoRectifyUncalibrated(points1, points2, f, imgSize)

 View Source

 @spec stereoRectifyUncalibrated(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Computes a rectification transform for an uncalibrated stereo camera.
Positional Arguments
	points1: Evision.Mat.t().
Array of feature points in the first image.

	points2: Evision.Mat.t().
The corresponding points in the second image. The same formats as in
#findFundamentalMat are supported.

	f: Evision.Mat.t().
Input fundamental matrix. It can be computed from the same set of point pairs using
#findFundamentalMat .

	imgSize: Size.
Size of the image.

Keyword Arguments
	threshold: double.
Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$)
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.

Return
	retval: bool

	h1: Evision.Mat.t().
Output rectification homography matrix for the first image.

	h2: Evision.Mat.t().
Output rectification homography matrix for the second image.

The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from #stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
Note:
While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
it would be better to correct it before computing the fundamental matrix and calling this
function. For example, distortion coefficients can be estimated for each head of stereo camera
separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
just the point coordinates can be corrected with #undistortPoints .
Python prototype (for reference only):
stereoRectifyUncalibrated(points1, points2, F, imgSize[, H1[, H2[, threshold]]]) -> retval, H1, H2

 Link to this function

 stereoRectifyUncalibrated(points1, points2, f, imgSize, opts)

 View Source

 @spec stereoRectifyUncalibrated(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{:threshold, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Computes a rectification transform for an uncalibrated stereo camera.
Positional Arguments
	points1: Evision.Mat.t().
Array of feature points in the first image.

	points2: Evision.Mat.t().
The corresponding points in the second image. The same formats as in
#findFundamentalMat are supported.

	f: Evision.Mat.t().
Input fundamental matrix. It can be computed from the same set of point pairs using
#findFundamentalMat .

	imgSize: Size.
Size of the image.

Keyword Arguments
	threshold: double.
Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \f$|\texttt{points2[i]}^T \cdot \texttt{F} \cdot \texttt{points1[i]}|>\texttt{threshold}\f$)
are rejected prior to computing the homographies. Otherwise, all the points are considered inliers.

Return
	retval: bool

	h1: Evision.Mat.t().
Output rectification homography matrix for the first image.

	h2: Evision.Mat.t().
Output rectification homography matrix for the second image.

The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from #stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
Note:
While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
it would be better to correct it before computing the fundamental matrix and calling this
function. For example, distortion coefficients can be estimated for each head of stereo camera
separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
just the point coordinates can be corrected with #undistortPoints .
Python prototype (for reference only):
stereoRectifyUncalibrated(points1, points2, F, imgSize[, H1[, H2[, threshold]]]) -> retval, H1, H2

 Link to this function

 stylization(src)

 View Source

 @spec stylization(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Stylization aims to produce digital imagery with a wide variety of effects not focused on
photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
contrast while preserving, or enhancing, high-contrast features.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
stylization(src[, dst[, sigma_s[, sigma_r]]]) -> dst

 Link to this function

 stylization(src, opts)

 View Source

 @spec stylization(
 Evision.Mat.maybe_mat_in(),
 [sigma_r: term(), sigma_s: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Stylization aims to produce digital imagery with a wide variety of effects not focused on
photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low
contrast while preserving, or enhancing, high-contrast features.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

Keyword Arguments
	sigma_s: float.
%Range between 0 to 200.

	sigma_r: float.
%Range between 0 to 1.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Python prototype (for reference only):
stylization(src[, dst[, sigma_s[, sigma_r]]]) -> dst

 Link to this function

 subtract(src1, src2)

 View Source

 @spec subtract(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates the per-element difference between two arrays or array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; this is an 8-bit single channel array that specifies elements
of the output array to be changed.

	dtype: int.
optional depth of the output array

Return
	dst: Evision.Mat.t().
output array of the same size and the same number of channels as the input array.

The function subtract calculates:
	Difference between two arrays, when both input arrays have the same size and the same number of
channels:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
number of elements as src1.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) - \texttt{src2}) \quad \texttt{if mask}(I) \ne0\f]

	Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
number of elements as src2.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1} - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	The reverse difference between a scalar and an array in the case of SubRS:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src2} - \texttt{src1}(I)) \quad \texttt{if mask}(I) \ne0\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.

The first function in the list above can be replaced with matrix expressions:
dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you
can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
the output array is determined by dtype parameter. In the second and third cases above, as well as
in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
case the output array will have the same depth as the input array, be it src1, src2 or both.
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
subtract(src,X) means subtract(src,(X,X,X,X)).
subtract(src,(X,)) means subtract(src,(X,0,0,0)).
@sa add, addWeighted, scaleAdd, Mat::convertTo
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst

 Link to this function

 subtract(src1, src2, opts)

 View Source

 @spec subtract(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), dtype: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates the per-element difference between two arrays or array and a scalar.
Positional Arguments
	src1: Evision.Mat.t().
first input array or a scalar.

	src2: Evision.Mat.t().
second input array or a scalar.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; this is an 8-bit single channel array that specifies elements
of the output array to be changed.

	dtype: int.
optional depth of the output array

Return
	dst: Evision.Mat.t().
output array of the same size and the same number of channels as the input array.

The function subtract calculates:
	Difference between two arrays, when both input arrays have the same size and the same number of
channels:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
number of elements as src1.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1}(I) - \texttt{src2}) \quad \texttt{if mask}(I) \ne0\f]

	Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
number of elements as src2.channels():
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src1} - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]

	The reverse difference between a scalar and an array in the case of SubRS:
\f[\texttt{dst}(I) = \texttt{saturate} (\texttt{src2} - \texttt{src1}(I)) \quad \texttt{if mask}(I) \ne0\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.

The first function in the list above can be replaced with matrix expressions:
dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);
The input arrays and the output array can all have the same or different depths. For example, you
can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
the output array is determined by dtype parameter. In the second and third cases above, as well as
in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
case the output array will have the same depth as the input array, be it src1, src2 or both.
Note: Saturation is not applied when the output array has the depth CV_32S. You may even get
result of an incorrect sign in the case of overflow.
Note: (Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array.
subtract(src,X) means subtract(src,(X,X,X,X)).
subtract(src,(X,)) means subtract(src,(X,0,0,0)).
@sa add, addWeighted, scaleAdd, Mat::convertTo
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst

 Link to this function

 sumElems(src)

 View Source

 @spec sumElems(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Calculates the sum of array elements.
Positional Arguments
	src: Evision.Mat.t().
input array that must have from 1 to 4 channels.

Return
	retval: Scalar

The function cv::sum calculates and returns the sum of array elements,
independently for each channel.
@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
Python prototype (for reference only):
sumElems(src) -> retval

 Link to this function

 svBackSubst(w, u, vt, rhs)

 View Source

 @spec svBackSubst(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

SVBackSubst
Positional Arguments
	w: Evision.Mat.t()
	u: Evision.Mat.t()
	vt: Evision.Mat.t()
	rhs: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

wrap SVD::backSubst
Python prototype (for reference only):
SVBackSubst(w, u, vt, rhs[, dst]) -> dst

 Link to this function

 svBackSubst(w, u, vt, rhs, opts)

 View Source

 @spec svBackSubst(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

SVBackSubst
Positional Arguments
	w: Evision.Mat.t()
	u: Evision.Mat.t()
	vt: Evision.Mat.t()
	rhs: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

wrap SVD::backSubst
Python prototype (for reference only):
SVBackSubst(w, u, vt, rhs[, dst]) -> dst

 Link to this function

 svdDecomp(src)

 View Source

 @spec svdDecomp(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

SVDecomp
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	flags: int.

Return
	w: Evision.Mat.t().
	u: Evision.Mat.t().
	vt: Evision.Mat.t().

wrap SVD::compute
Python prototype (for reference only):
SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt

 Link to this function

 svdDecomp(src, opts)

 View Source

 @spec svdDecomp(Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

SVDecomp
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	flags: int.

Return
	w: Evision.Mat.t().
	u: Evision.Mat.t().
	vt: Evision.Mat.t().

wrap SVD::compute
Python prototype (for reference only):
SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt

 Link to this function

 textureFlattening(src, mask)

 View Source

 @spec textureFlattening(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	low_threshold: float.
%Range from 0 to 100.

	high_threshold: float.
Value > 100.

	kernel_size: int.
The size of the Sobel kernel to be used.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Note:
The algorithm assumes that the color of the source image is close to that of the destination. This
assumption means that when the colors don't match, the source image color gets tinted toward the
color of the destination image.
Python prototype (for reference only):
textureFlattening(src, mask[, dst[, low_threshold[, high_threshold[, kernel_size]]]]) -> dst

 Link to this function

 textureFlattening(src, mask, opts)

 View Source

 @spec textureFlattening(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [low_threshold: term(), kernel_size: term(), high_threshold: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

By retaining only the gradients at edge locations, before integrating with the Poisson solver, one
washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge %Detector is used.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit 3-channel image.

	mask: Evision.Mat.t().
Input 8-bit 1 or 3-channel image.

Keyword Arguments
	low_threshold: float.
%Range from 0 to 100.

	high_threshold: float.
Value > 100.

	kernel_size: int.
The size of the Sobel kernel to be used.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

Note:
The algorithm assumes that the color of the source image is close to that of the destination. This
assumption means that when the colors don't match, the source image color gets tinted toward the
color of the destination image.
Python prototype (for reference only):
textureFlattening(src, mask[, dst[, low_threshold[, high_threshold[, kernel_size]]]]) -> dst

 Link to this function

 threshold(src, thresh, maxval, type)

 View Source

 @spec threshold(Evision.Mat.maybe_mat_in(), number(), number(), integer()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.Mat.t().
input array (multiple-channel, 8-bit or 32-bit floating point).

	thresh: double.
threshold value.

	maxval: double.
maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
types.

	type: int.
thresholding type (see #ThresholdTypes).

Return
	retval: double

	dst: Evision.Mat.t().
output array of the same size and type and the same number of channels as src.

The function applies fixed-level thresholding to a multiple-channel array. The function is typically
used to get a bi-level (binary) image out of a grayscale image (#compare could be also used for
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
values. There are several types of thresholding supported by the function. They are determined by
type parameter.
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh.
Note: Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
@return the computed threshold value if Otsu's or Triangle methods used.
@sa adaptiveThreshold, findContours, compare, min, max
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst]) -> retval, dst

 Link to this function

 threshold(src, thresh, maxval, type, opts)

 View Source

 @spec threshold(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.Mat.t().
input array (multiple-channel, 8-bit or 32-bit floating point).

	thresh: double.
threshold value.

	maxval: double.
maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
types.

	type: int.
thresholding type (see #ThresholdTypes).

Return
	retval: double

	dst: Evision.Mat.t().
output array of the same size and type and the same number of channels as src.

The function applies fixed-level thresholding to a multiple-channel array. The function is typically
used to get a bi-level (binary) image out of a grayscale image (#compare could be also used for
this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
values. There are several types of thresholding supported by the function. They are determined by
type parameter.
Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
above values. In these cases, the function determines the optimal threshold value using the Otsu's
or Triangle algorithm and uses it instead of the specified thresh.
Note: Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
@return the computed threshold value if Otsu's or Triangle methods used.
@sa adaptiveThreshold, findContours, compare, min, max
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst]) -> retval, dst

 Link to this function

 trace(mtx)

 View Source

 @spec trace(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Returns the trace of a matrix.
Positional Arguments
	mtx: Evision.Mat.t().
input matrix.

Return
	retval: Scalar

The function cv::trace returns the sum of the diagonal elements of the
matrix mtx .
\f[\mathrm{tr} (\texttt{mtx}) = \sum _i \texttt{mtx} (i,i)\f]
Python prototype (for reference only):
trace(mtx) -> retval

 Link to this function

 transform(src, m)

 View Source

 @spec transform(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the matrix transformation of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array that must have as many channels (1 to 4) as
m.cols or m.cols-1.

	m: Evision.Mat.t().
transformation 2x2 or 2x3 floating-point matrix.

Return
	dst: Evision.Mat.t().
output array of the same size and depth as src; it has as
many channels as m.rows.

The function cv::transform performs the matrix transformation of every
element of the array src and stores the results in dst :
\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
(when m.cols=src.channels()), or
\f[\texttt{dst} (I) = \texttt{m} \cdot [\texttt{src} (I); 1]\f]
(when m.cols=src.channels()+1)
Every element of the N -channel array src is interpreted as N -element
vector that is transformed using the M x N or M x (N+1) matrix m to
M-element vector - the corresponding element of the output array dst .
The function may be used for geometrical transformation of
N -dimensional points, arbitrary linear color space transformation (such
as various kinds of RGB to YUV transforms), shuffling the image
channels, and so forth.
@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
Python prototype (for reference only):
transform(src, m[, dst]) -> dst

 Link to this function

 transform(src, m, opts)

 View Source

 @spec transform(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Performs the matrix transformation of every array element.
Positional Arguments
	src: Evision.Mat.t().
input array that must have as many channels (1 to 4) as
m.cols or m.cols-1.

	m: Evision.Mat.t().
transformation 2x2 or 2x3 floating-point matrix.

Return
	dst: Evision.Mat.t().
output array of the same size and depth as src; it has as
many channels as m.rows.

The function cv::transform performs the matrix transformation of every
element of the array src and stores the results in dst :
\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
(when m.cols=src.channels()), or
\f[\texttt{dst} (I) = \texttt{m} \cdot [\texttt{src} (I); 1]\f]
(when m.cols=src.channels()+1)
Every element of the N -channel array src is interpreted as N -element
vector that is transformed using the M x N or M x (N+1) matrix m to
M-element vector - the corresponding element of the output array dst .
The function may be used for geometrical transformation of
N -dimensional points, arbitrary linear color space transformation (such
as various kinds of RGB to YUV transforms), shuffling the image
channels, and so forth.
@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
Python prototype (for reference only):
transform(src, m[, dst]) -> dst

 Link to this function

 transpose(src)

 View Source

 @spec transpose(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Transposes a matrix.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

The function cv::transpose transposes the matrix src :
\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
Note: No complex conjugation is done in case of a complex matrix. It
should be done separately if needed.
Python prototype (for reference only):
transpose(src[, dst]) -> dst

 Link to this function

 transpose(src, opts)

 View Source

 @spec transpose(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Transposes a matrix.
Positional Arguments
	src: Evision.Mat.t().
input array.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

The function cv::transpose transposes the matrix src :
\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
Note: No complex conjugation is done in case of a complex matrix. It
should be done separately if needed.
Python prototype (for reference only):
transpose(src[, dst]) -> dst

 Link to this function

 transposeND(src, order)

 View Source

 @spec transposeND(Evision.Mat.maybe_mat_in(), [integer()]) ::
 Evision.Mat.t() | {:error, String.t()}

Transpose for n-dimensional matrices.
Positional Arguments
	src: Evision.Mat.t().
input array.

	order: [int].
a permutation of [0,1,..,N-1] where N is the number of axes of src.
The i’th axis of dst will correspond to the axis numbered order[i] of the input.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

Note: Input should be continuous single-channel matrix.
Python prototype (for reference only):
transposeND(src, order[, dst]) -> dst

 Link to this function

 transposeND(src, order, opts)

 View Source

 @spec transposeND(
 Evision.Mat.maybe_mat_in(),
 [integer()],
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Transpose for n-dimensional matrices.
Positional Arguments
	src: Evision.Mat.t().
input array.

	order: [int].
a permutation of [0,1,..,N-1] where N is the number of axes of src.
The i’th axis of dst will correspond to the axis numbered order[i] of the input.

Return
	dst: Evision.Mat.t().
output array of the same type as src.

Note: Input should be continuous single-channel matrix.
Python prototype (for reference only):
transposeND(src, order[, dst]) -> dst

 Link to this function

 triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2)

 View Source

 @spec triangulatePoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.
Positional Arguments
	projMatr1: Evision.Mat.t().
3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the first image.

	projMatr2: Evision.Mat.t().
3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the second image.

	projPoints1: Evision.Mat.t().
2xN array of feature points in the first image. In the case of the c++ version,
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.

	projPoints2: Evision.Mat.t().
2xN array of corresponding points in the second image. In the case of the c++
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.

Return
	points4D: Evision.Mat.t().
4xN array of reconstructed points in homogeneous coordinates. These points are
returned in the world's coordinate system.

Note:
Keep in mind that all input data should be of float type in order for this function to work.
Note:
If the projection matrices from @ref stereoRectify are used, then the returned points are
represented in the first camera's rectified coordinate system.
@sa
reprojectImageTo3D
Python prototype (for reference only):
triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) -> points4D

 Link to this function

 triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2, opts)

 View Source

 @spec triangulatePoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.
Positional Arguments
	projMatr1: Evision.Mat.t().
3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the first image.

	projMatr2: Evision.Mat.t().
3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the second image.

	projPoints1: Evision.Mat.t().
2xN array of feature points in the first image. In the case of the c++ version,
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.

	projPoints2: Evision.Mat.t().
2xN array of corresponding points in the second image. In the case of the c++
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.

Return
	points4D: Evision.Mat.t().
4xN array of reconstructed points in homogeneous coordinates. These points are
returned in the world's coordinate system.

Note:
Keep in mind that all input data should be of float type in order for this function to work.
Note:
If the projection matrices from @ref stereoRectify are used, then the returned points are
represented in the first camera's rectified coordinate system.
@sa
reprojectImageTo3D
Python prototype (for reference only):
triangulatePoints(projMatr1, projMatr2, projPoints1, projPoints2[, points4D]) -> points4D

 Link to this function

 undistort(src, cameraMatrix, distCoeffs)

 View Source

 @spec undistort(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Transforms an image to compensate for lens distortion.
Positional Arguments
	src: Evision.Mat.t().
Input (distorted) image.

	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	newCameraMatrix: Evision.Mat.t().
Camera matrix of the distorted image. By default, it is the same as
cameraMatrix but you may additionally scale and shift the result by using a different matrix.

Return
	dst: Evision.Mat.t().
Output (corrected) image that has the same size and type as src .

The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #initUndistortRectifyMap (with unity R) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).
A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
the same.
Python prototype (for reference only):
undistort(src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) -> dst

 Link to this function

 undistort(src, cameraMatrix, distCoeffs, opts)

 View Source

 @spec undistort(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:newCameraMatrix, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Transforms an image to compensate for lens distortion.
Positional Arguments
	src: Evision.Mat.t().
Input (distorted) image.

	cameraMatrix: Evision.Mat.t().
Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	newCameraMatrix: Evision.Mat.t().
Camera matrix of the distorted image. By default, it is the same as
cameraMatrix but you may additionally scale and shift the result by using a different matrix.

Return
	dst: Evision.Mat.t().
Output (corrected) image that has the same size and type as src .

The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #initUndistortRectifyMap (with unity R) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).
A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \f$f_x,
f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain
the same.
Python prototype (for reference only):
undistort(src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) -> dst

 Link to this function

 undistortImagePoints(src, cameraMatrix, distCoeffs)

 View Source

 @spec undistortImagePoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Compute undistorted image points position
Positional Arguments
	src: Evision.Mat.t().
Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
CV_64FC2) (or vector\<Point2f>).

	cameraMatrix: Evision.Mat.t().
Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Distortion coefficients

Keyword Arguments
	arg1: TermCriteria.

Return
	dst: Evision.Mat.t().
Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f>).

Python prototype (for reference only):
undistortImagePoints(src, cameraMatrix, distCoeffs[, dst[, arg1]]) -> dst

 Link to this function

 undistortImagePoints(src, cameraMatrix, distCoeffs, opts)

 View Source

 @spec undistortImagePoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:arg1, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Compute undistorted image points position
Positional Arguments
	src: Evision.Mat.t().
Observed points position, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or
CV_64FC2) (or vector\<Point2f>).

	cameraMatrix: Evision.Mat.t().
Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Distortion coefficients

Keyword Arguments
	arg1: TermCriteria.

Return
	dst: Evision.Mat.t().
Output undistorted points position (1xN/Nx1 2-channel or vector\<Point2f>).

Python prototype (for reference only):
undistortImagePoints(src, cameraMatrix, distCoeffs[, dst[, arg1]]) -> dst

 Link to this function

 undistortPoints(src, cameraMatrix, distCoeffs)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Computes the ideal point coordinates from the observed point coordinates.
Positional Arguments
	src: Evision.Mat.t().
Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector\<Point2f>).

	cameraMatrix: Evision.Mat.t().
Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	r: Evision.Mat.t().
Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.

	p: Evision.Mat.t().
New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.

Return
	dst: Evision.Mat.t().
Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f>) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.

The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \f$(u, v)\f$ the function computes:
\f[
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\f]
where undistort is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
Python prototype (for reference only):
undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]]) -> dst

 Link to this function

 undistortPoints(src, cameraMatrix, distCoeffs, opts)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [r: term(), p: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Computes the ideal point coordinates from the observed point coordinates.
Positional Arguments
	src: Evision.Mat.t().
Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector\<Point2f>).

	cameraMatrix: Evision.Mat.t().
Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$.

	distCoeffs: Evision.Mat.t().
Input vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

Keyword Arguments
	r: Evision.Mat.t().
Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.

	p: Evision.Mat.t().
New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.

Return
	dst: Evision.Mat.t().
Output ideal point coordinates (1xN/Nx1 2-channel or vector\<Point2f>) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.

The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \f$(u, v)\f$ the function computes:
\f[
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\f]
where undistort is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).
Python prototype (for reference only):
undistortPoints(src, cameraMatrix, distCoeffs[, dst[, R[, P]]]) -> dst

 Link to this function

 undistortPointsIter(src, cameraMatrix, distCoeffs, r, p, criteria)

 View Source

 @spec undistortPointsIter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {integer(), integer(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

undistortPointsIter
Positional Arguments
	src: Evision.Mat.t()
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	r: Evision.Mat.t()
	p: Evision.Mat.t()
	criteria: TermCriteria

Return
	dst: Evision.Mat.t().

Has overloading in C++
Note: Default version of #undistortPoints does 5 iterations to compute undistorted points.
Python prototype (for reference only):
undistortPointsIter(src, cameraMatrix, distCoeffs, R, P, criteria[, dst]) -> dst

 Link to this function

 undistortPointsIter(src, cameraMatrix, distCoeffs, r, p, criteria, opts)

 View Source

 @spec undistortPointsIter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {integer(), integer(), number()},
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

undistortPointsIter
Positional Arguments
	src: Evision.Mat.t()
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	r: Evision.Mat.t()
	p: Evision.Mat.t()
	criteria: TermCriteria

Return
	dst: Evision.Mat.t().

Has overloading in C++
Note: Default version of #undistortPoints does 5 iterations to compute undistorted points.
Python prototype (for reference only):
undistortPointsIter(src, cameraMatrix, distCoeffs, R, P, criteria[, dst]) -> dst

 Link to this function

 useOpenVX()

 View Source

 @spec useOpenVX() :: boolean() | {:error, String.t()}

useOpenVX
Return
	retval: bool

Python prototype (for reference only):
useOpenVX() -> retval

 Link to this function

 useOptimized()

 View Source

 @spec useOptimized() :: boolean() | {:error, String.t()}

Returns the status of optimized code usage.
Return
	retval: bool

The function returns true if the optimized code is enabled. Otherwise, it returns false.
Python prototype (for reference only):
useOptimized() -> retval

 Link to this function

 validateDisparity(disparity, cost, minDisparity, numberOfDisparities)

 View Source

 @spec validateDisparity(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

validateDisparity
Positional Arguments
	cost: Evision.Mat.t()
	minDisparity: int
	numberOfDisparities: int

Keyword Arguments
	disp12MaxDisp: int.

Return
	disparity: Evision.Mat.t()

Python prototype (for reference only):
validateDisparity(disparity, cost, minDisparity, numberOfDisparities[, disp12MaxDisp]) -> disparity

 Link to this function

 validateDisparity(disparity, cost, minDisparity, numberOfDisparities, opts)

 View Source

 @spec validateDisparity(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:disp12MaxDisp, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

validateDisparity
Positional Arguments
	cost: Evision.Mat.t()
	minDisparity: int
	numberOfDisparities: int

Keyword Arguments
	disp12MaxDisp: int.

Return
	disparity: Evision.Mat.t()

Python prototype (for reference only):
validateDisparity(disparity, cost, minDisparity, numberOfDisparities[, disp12MaxDisp]) -> disparity

 Link to this function

 vconcat(src)

 View Source

 @spec vconcat([Evision.Mat.maybe_mat_in()]) :: Evision.Mat.t() | {:error, String.t()}

vconcat
Positional Arguments
	src: [Evision.Mat].
input array or vector of matrices. all of the matrices must have the same number of cols and the same depth

Return
	dst: Evision.Mat.t().
output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
same depth.

Has overloading in C++
std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::vconcat(matrices, out);
//out:
//[1, 1, 1, 1;
// 2, 2, 2, 2;
// 3, 3, 3, 3]
Python prototype (for reference only):
vconcat(src[, dst]) -> dst

 Link to this function

 vconcat(src, opts)

 View Source

 @spec vconcat([Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

vconcat
Positional Arguments
	src: [Evision.Mat].
input array or vector of matrices. all of the matrices must have the same number of cols and the same depth

Return
	dst: Evision.Mat.t().
output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
same depth.

Has overloading in C++
std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::vconcat(matrices, out);
//out:
//[1, 1, 1, 1;
// 2, 2, 2, 2;
// 3, 3, 3, 3]
Python prototype (for reference only):
vconcat(src[, dst]) -> dst

 Link to this function

 waitKeyEx()

 View Source

 @spec waitKeyEx() :: integer() | {:error, String.t()}

Similar to #waitKey, but returns full key code.
Keyword Arguments
	delay: int.

Return
	retval: int

Note: Key code is implementation specific and depends on used backend: QT/GTK/Win32/etc
Python prototype (for reference only):
waitKeyEx([, delay]) -> retval

 Link to this function

 waitKeyEx(opts)

 View Source

 @spec waitKeyEx([{:delay, term()}] | nil) :: integer() | {:error, String.t()}

Similar to #waitKey, but returns full key code.
Keyword Arguments
	delay: int.

Return
	retval: int

Note: Key code is implementation specific and depends on used backend: QT/GTK/Win32/etc
Python prototype (for reference only):
waitKeyEx([, delay]) -> retval

 Link to this function

 warpAffine(src, m, dsize)

 View Source

 @spec warpAffine(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.Mat.t() | {:error, String.t()}

Applies an affine transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	m: Evision.Mat.t().
\f$2\times 3\f$ transformation matrix.

	dsize: Size.
size of the output image.

Keyword Arguments
	flags: int.
combination of interpolation methods (see #InterpolationFlags) and the optional
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$).

	borderMode: int.
pixel extrapolation method (see #BorderTypes); when
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
the "outliers" in the source image are not modified by the function.

	borderValue: Scalar.
value used in case of a constant border; by default, it is 0.

Return
	dst: Evision.Mat.t().
output image that has the size dsize and the same type as src .

The function warpAffine transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} (\texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
operate in-place.
@sa warpPerspective, resize, remap, getRectSubPix, transform
Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst

 Link to this function

 warpAffine(src, m, dsize, opts)

 View Source

 @spec warpAffine(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies an affine transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	m: Evision.Mat.t().
\f$2\times 3\f$ transformation matrix.

	dsize: Size.
size of the output image.

Keyword Arguments
	flags: int.
combination of interpolation methods (see #InterpolationFlags) and the optional
flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$).

	borderMode: int.
pixel extrapolation method (see #BorderTypes); when
borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
the "outliers" in the source image are not modified by the function.

	borderValue: Scalar.
value used in case of a constant border; by default, it is 0.

Return
	dst: Evision.Mat.t().
output image that has the size dsize and the same type as src .

The function warpAffine transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} (\texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
with #invertAffineTransform and then put in the formula above instead of M. The function cannot
operate in-place.
@sa warpPerspective, resize, remap, getRectSubPix, transform
Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst

 Link to this function

 warpPerspective(src, m, dsize)

 View Source

 @spec warpPerspective(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.Mat.t() | {:error, String.t()}

Applies a perspective transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	m: Evision.Mat.t().
\f$3\times 3\f$ transformation matrix.

	dsize: Size.
size of the output image.

Keyword Arguments
	flags: int.
combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$).

	borderMode: int.
pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).

	borderValue: Scalar.
value used in case of a constant border; by default, it equals 0.

Return
	dst: Evision.Mat.t().
output image that has the size dsize and the same type as src .

The function warpPerspective transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} \left (\frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right)\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
and then put in the formula above instead of M. The function cannot operate in-place.
@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst

 Link to this function

 warpPerspective(src, m, dsize, opts)

 View Source

 @spec warpPerspective(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies a perspective transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
input image.

	m: Evision.Mat.t().
\f$3\times 3\f$ transformation matrix.

	dsize: Size.
size of the output image.

Keyword Arguments
	flags: int.
combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
\f$\texttt{dst}\rightarrow\texttt{src}\f$).

	borderMode: int.
pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).

	borderValue: Scalar.
value used in case of a constant border; by default, it equals 0.

Return
	dst: Evision.Mat.t().
output image that has the size dsize and the same type as src .

The function warpPerspective transforms the source image using the specified matrix:
\f[\texttt{dst} (x,y) = \texttt{src} \left (\frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right)\f]
when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
and then put in the formula above instead of M. The function cannot operate in-place.
@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform
Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue]]]]) -> dst

 Link to this function

 warpPolar(src, dsize, center, maxRadius, flags)

 View Source

 @spec warpPolar(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 number(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

warpPolar
Positional Arguments
	src: Evision.Mat.t().
Source image.

	dsize: Size.
The destination image size (see description for valid options).

	center: Point2f.
The transformation center.

	maxRadius: double.
The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.

	flags: int.
A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
	Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
	Add #WARP_POLAR_LOG to select semilog polar mapping
	Add #WARP_INVERSE_MAP for reverse mapping.

Return
	dst: Evision.Mat.t().
Destination image. It will have same type as src.

\brief Remaps an image to polar or semilog-polar coordinates space
@anchor polar_remaps_reference_image
[image: Polar remaps reference]
Transform the source image using the following transformation:
\f[
dst(\rho , \phi) = src(x,y)
\f]
where
\f[
\begin{array}{l}
\vec{I} = (x - center.x, \;y - center.y) \\
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
\rho = \left\{\begin{matrix}
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
\end{matrix}\right.
\end{array}
\f]
and
\f[
\begin{array}{l}
Kangle = dsize.height / 2\Pi \\
Klin = dsize.width / maxRadius \\
Klog = dsize.width / log_e(maxRadius) \\
\end{array}
\f]
\par Linear vs semilog mapping
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to flags to specify the polar mapping mode.
Linear is the default mode.
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
in contrast to peripheral vision where acuity is minor.
\par Option on dsize:
	if both values in dsize <=0 (default),
the destination image will have (almost) same area of source bounding circle:
\f[\begin{array}{l}
dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\
dsize.width = \texttt{cvRound}(maxRadius) \\
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
\end{array}\f]

	if only dsize.height <= 0,
the destination image area will be proportional to the bounding circle area but scaled by Kx * Kx:
\f[\begin{array}{l}
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
\end{array}
\f]

	if both values in dsize > 0,
the destination image will have the given size therefore the area of the bounding circle will be scaled to dsize.

\par Reverse mapping
You can get reverse mapping adding #WARP_INVERSE_MAP to flags
\snippet polar_transforms.cpp InverseMap
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
\snippet polar_transforms.cpp InverseCoordinate
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
	This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.

@sa cv::remap
Python prototype (for reference only):
warpPolar(src, dsize, center, maxRadius, flags[, dst]) -> dst

 Link to this function

 warpPolar(src, dsize, center, maxRadius, flags, opts)

 View Source

 @spec warpPolar(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

warpPolar
Positional Arguments
	src: Evision.Mat.t().
Source image.

	dsize: Size.
The destination image size (see description for valid options).

	center: Point2f.
The transformation center.

	maxRadius: double.
The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.

	flags: int.
A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
	Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
	Add #WARP_POLAR_LOG to select semilog polar mapping
	Add #WARP_INVERSE_MAP for reverse mapping.

Return
	dst: Evision.Mat.t().
Destination image. It will have same type as src.

\brief Remaps an image to polar or semilog-polar coordinates space
@anchor polar_remaps_reference_image
[image: Polar remaps reference]
Transform the source image using the following transformation:
\f[
dst(\rho , \phi) = src(x,y)
\f]
where
\f[
\begin{array}{l}
\vec{I} = (x - center.x, \;y - center.y) \\
\phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
\rho = \left\{\begin{matrix}
Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
\end{matrix}\right.
\end{array}
\f]
and
\f[
\begin{array}{l}
Kangle = dsize.height / 2\Pi \\
Klin = dsize.width / maxRadius \\
Klog = dsize.width / log_e(maxRadius) \\
\end{array}
\f]
\par Linear vs semilog mapping
Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to flags to specify the polar mapping mode.
Linear is the default mode.
The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
in contrast to peripheral vision where acuity is minor.
\par Option on dsize:
	if both values in dsize <=0 (default),
the destination image will have (almost) same area of source bounding circle:
\f[\begin{array}{l}
dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\
dsize.width = \texttt{cvRound}(maxRadius) \\
dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
\end{array}\f]

	if only dsize.height <= 0,
the destination image area will be proportional to the bounding circle area but scaled by Kx * Kx:
\f[\begin{array}{l}
dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
\end{array}
\f]

	if both values in dsize > 0,
the destination image will have the given size therefore the area of the bounding circle will be scaled to dsize.

\par Reverse mapping
You can get reverse mapping adding #WARP_INVERSE_MAP to flags
\snippet polar_transforms.cpp InverseMap
In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
\snippet polar_transforms.cpp InverseCoordinate
Note:
	The function can not operate in-place.
	To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
	This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.

@sa cv::remap
Python prototype (for reference only):
warpPolar(src, dsize, center, maxRadius, flags[, dst]) -> dst

 Link to this function

 watershed(image, markers)

 View Source

 @spec watershed(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs a marker-based image segmentation using the watershed algorithm.
Positional Arguments
	image: Evision.Mat.t().
Input 8-bit 3-channel image.

Return
	markers: Evision.Mat.t().
Input/output 32-bit single-channel image (map) of markers. It should have the same
size as image .

The function implements one of the variants of watershed, non-parametric marker-based segmentation
algorithm, described in @cite Meyer92 .
Before passing the image to the function, you have to roughly outline the desired regions in the
image markers with positive (>0) indices. So, every region is represented as one or more connected
components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
the future image regions. All the other pixels in markers , whose relation to the outlined regions
is not known and should be defined by the algorithm, should be set to 0's. In the function output,
each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
regions.
Note: Any two neighbor connected components are not necessarily separated by a watershed boundary
(-1's pixels); for example, they can touch each other in the initial marker image passed to the
function.
@sa findContours
Python prototype (for reference only):
watershed(image, markers) -> markers

 Link to this function

 writeOpticalFlow(path, flow)

 View Source

 @spec writeOpticalFlow(binary(), Evision.Mat.maybe_mat_in()) ::
 boolean() | {:error, String.t()}

Write a .flo to disk
Positional Arguments
	path: String.
Path to the file to be written

	flow: Evision.Mat.t().
Flow field to be stored

Return
	retval: bool

The function stores a flow field in a file, returns true on success, false otherwise.
The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
to the flow in the horizontal direction (u), second - vertical (v).
Python prototype (for reference only):
writeOpticalFlow(path, flow) -> retval

 Evision.AKAZE - Evision v0.1.39

Evision.AKAZE

 Summary

 Types

 t()

 Type that represents an AKAZE struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 The AKAZE constructor

 create(opts)

 The AKAZE constructor

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getDescriptorChannels(self)

 getDescriptorChannels

 getDescriptorSize(self)

 getDescriptorSize

 getDescriptorType(self)

 getDescriptorType

 getDiffusivity(self)

 getDiffusivity

 getMaxPoints(self)

 getMaxPoints

 getNOctaveLayers(self)

 getNOctaveLayers

 getNOctaves(self)

 getNOctaves

 getThreshold(self)

 getThreshold

 read(self, arg1)

 Variant 1:
read

 setDescriptorChannels(self, dch)

 setDescriptorChannels

 setDescriptorSize(self, dsize)

 setDescriptorSize

 setDescriptorType(self, dtype)

 setDescriptorType

 setDiffusivity(self, diff)

 setDiffusivity

 setMaxPoints(self, max_points)

 setMaxPoints

 setNOctaveLayers(self, octaveLayers)

 setNOctaveLayers

 setNOctaves(self, octaves)

 setNOctaves

 setThreshold(self, threshold)

 setThreshold

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AKAZE{ref: reference()}

Type that represents an AKAZE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AKAZE.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AKAZE.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AKAZE.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AKAZE.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

The AKAZE constructor
Keyword Arguments
	descriptor_type: AKAZE_DescriptorType.
Type of the extracted descriptor: DESCRIPTOR_KAZE,
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.

	descriptor_size: int.
Size of the descriptor in bits. 0 -> Full size

	descriptor_channels: int.
Number of channels in the descriptor (1, 2, 3)

	threshold: float.
Detector response threshold to accept point

	nOctaves: int.
Maximum octave evolution of the image

	nOctaveLayers: int.
Default number of sublevels per scale level

	diffusivity: KAZE_DiffusivityType.
Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER

	max_points: int.
Maximum amount of returned points. In case if image contains
more features, then the features with highest response are returned.
Negative value means no limitation.

Return
	retval: Evision.AKAZE.t()

Python prototype (for reference only):
create([, descriptor_type[, descriptor_size[, descriptor_channels[, threshold[, nOctaves[, nOctaveLayers[, diffusivity[, max_points]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 nOctaves: term(),
 descriptor_channels: term(),
 descriptor_size: term(),
 threshold: term(),
 descriptor_type: term(),
 max_points: term(),
 diffusivity: term(),
 nOctaveLayers: term()
]
 | nil
) :: t() | {:error, String.t()}

The AKAZE constructor
Keyword Arguments
	descriptor_type: AKAZE_DescriptorType.
Type of the extracted descriptor: DESCRIPTOR_KAZE,
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.

	descriptor_size: int.
Size of the descriptor in bits. 0 -> Full size

	descriptor_channels: int.
Number of channels in the descriptor (1, 2, 3)

	threshold: float.
Detector response threshold to accept point

	nOctaves: int.
Maximum octave evolution of the image

	nOctaveLayers: int.
Default number of sublevels per scale level

	diffusivity: KAZE_DiffusivityType.
Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER

	max_points: int.
Maximum amount of returned points. In case if image contains
more features, then the features with highest response are returned.
Negative value means no limitation.

Return
	retval: Evision.AKAZE.t()

Python prototype (for reference only):
create([, descriptor_type[, descriptor_size[, descriptor_channels[, threshold[, nOctaves[, nOctaveLayers[, diffusivity[, max_points]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AKAZE.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AKAZE.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AKAZE.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AKAZE.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AKAZE.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AKAZE.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDescriptorChannels(self)

 View Source

 @spec getDescriptorChannels(t()) :: integer() | {:error, String.t()}

getDescriptorChannels
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
getDescriptorChannels() -> retval

 Link to this function

 getDescriptorSize(self)

 View Source

 @spec getDescriptorSize(t()) :: integer() | {:error, String.t()}

getDescriptorSize
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
getDescriptorSize() -> retval

 Link to this function

 getDescriptorType(self)

 View Source

 @spec getDescriptorType(t()) :: integer() | {:error, String.t()}

getDescriptorType
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: AKAZE::DescriptorType

Python prototype (for reference only):
getDescriptorType() -> retval

 Link to this function

 getDiffusivity(self)

 View Source

 @spec getDiffusivity(t()) :: integer() | {:error, String.t()}

getDiffusivity
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: KAZE::DiffusivityType

Python prototype (for reference only):
getDiffusivity() -> retval

 Link to this function

 getMaxPoints(self)

 View Source

 @spec getMaxPoints(t()) :: integer() | {:error, String.t()}

getMaxPoints
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
getMaxPoints() -> retval

 Link to this function

 getNOctaveLayers(self)

 View Source

 @spec getNOctaveLayers(t()) :: integer() | {:error, String.t()}

getNOctaveLayers
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaveLayers() -> retval

 Link to this function

 getNOctaves(self)

 View Source

 @spec getNOctaves(t()) :: integer() | {:error, String.t()}

getNOctaves
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaves() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.AKAZE.t()

Return
	retval: double

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.AKAZE.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.AKAZE.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setDescriptorChannels(self, dch)

 View Source

 @spec setDescriptorChannels(t(), integer()) :: t() | {:error, String.t()}

setDescriptorChannels
Positional Arguments
	self: Evision.AKAZE.t()
	dch: int

Python prototype (for reference only):
setDescriptorChannels(dch) -> None

 Link to this function

 setDescriptorSize(self, dsize)

 View Source

 @spec setDescriptorSize(t(), integer()) :: t() | {:error, String.t()}

setDescriptorSize
Positional Arguments
	self: Evision.AKAZE.t()
	dsize: int

Python prototype (for reference only):
setDescriptorSize(dsize) -> None

 Link to this function

 setDescriptorType(self, dtype)

 View Source

 @spec setDescriptorType(t(), integer()) :: t() | {:error, String.t()}

setDescriptorType
Positional Arguments
	self: Evision.AKAZE.t()
	dtype: AKAZE_DescriptorType

Python prototype (for reference only):
setDescriptorType(dtype) -> None

 Link to this function

 setDiffusivity(self, diff)

 View Source

 @spec setDiffusivity(t(), integer()) :: t() | {:error, String.t()}

setDiffusivity
Positional Arguments
	self: Evision.AKAZE.t()
	diff: KAZE_DiffusivityType

Python prototype (for reference only):
setDiffusivity(diff) -> None

 Link to this function

 setMaxPoints(self, max_points)

 View Source

 @spec setMaxPoints(t(), integer()) :: t() | {:error, String.t()}

setMaxPoints
Positional Arguments
	self: Evision.AKAZE.t()
	max_points: int

Python prototype (for reference only):
setMaxPoints(max_points) -> None

 Link to this function

 setNOctaveLayers(self, octaveLayers)

 View Source

 @spec setNOctaveLayers(t(), integer()) :: t() | {:error, String.t()}

setNOctaveLayers
Positional Arguments
	self: Evision.AKAZE.t()
	octaveLayers: int

Python prototype (for reference only):
setNOctaveLayers(octaveLayers) -> None

 Link to this function

 setNOctaves(self, octaves)

 View Source

 @spec setNOctaves(t(), integer()) :: t() | {:error, String.t()}

setNOctaves
Positional Arguments
	self: Evision.AKAZE.t()
	octaves: int

Python prototype (for reference only):
setNOctaves(octaves) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.AKAZE.t()
	threshold: double

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AKAZE.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AKAZE.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.AffineFeature - Evision v0.1.39

Evision.AffineFeature

 Summary

 Types

 t()

 Type that represents an AffineFeature struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create(backend)

 create

 create(backend, opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getViewParams(self, tilts, rolls)

 getViewParams

 read(self, arg1)

 Variant 1:
read

 setViewParams(self, tilts, rolls)

 setViewParams

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AffineFeature{ref: reference()}

Type that represents an AffineFeature struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AffineFeature.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AffineFeature.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AffineFeature.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AffineFeature.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create(backend)

 View Source

 @spec create(Evision.Feature2D.t()) :: t() | {:error, String.t()}

create
Positional Arguments
	backend: Evision.Feature2D.t().
The detector/extractor you want to use as backend.

Keyword Arguments
	maxTilt: int.
The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.

	minTilt: int.
The lowest power index of tilt factor. 0 is used in the paper.

	tiltStep: float.
Tilt sampling step \f$\delta_t\f$ in Algorithm 1 in the paper.

	rotateStepBase: float.
Rotation sampling step factor b in Algorithm 1 in the paper.

Return
	retval: Evision.AffineFeature.t()

Python prototype (for reference only):
create(backend[, maxTilt[, minTilt[, tiltStep[, rotateStepBase]]]]) -> retval

 Link to this function

 create(backend, opts)

 View Source

 @spec create(
 Evision.Feature2D.t(),
 [maxTilt: term(), tiltStep: term(), minTilt: term(), rotateStepBase: term()]
 | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	backend: Evision.Feature2D.t().
The detector/extractor you want to use as backend.

Keyword Arguments
	maxTilt: int.
The highest power index of tilt factor. 5 is used in the paper as tilt sampling range n.

	minTilt: int.
The lowest power index of tilt factor. 0 is used in the paper.

	tiltStep: float.
Tilt sampling step \f$\delta_t\f$ in Algorithm 1 in the paper.

	rotateStepBase: float.
Rotation sampling step factor b in Algorithm 1 in the paper.

Return
	retval: Evision.AffineFeature.t()

Python prototype (for reference only):
create(backend[, maxTilt[, minTilt[, tiltStep[, rotateStepBase]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.AffineFeature.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.AffineFeature.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.AffineFeature.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AffineFeature.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AffineFeature.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AffineFeature.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AffineFeature.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AffineFeature.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AffineFeature.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.AffineFeature.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.AffineFeature.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getViewParams(self, tilts, rolls)

 View Source

 @spec getViewParams(t(), [number()], [number()]) :: t() | {:error, String.t()}

getViewParams
Positional Arguments
	self: Evision.AffineFeature.t()
	tilts: [float]
	rolls: [float]

Python prototype (for reference only):
getViewParams(tilts, rolls) -> None

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.AffineFeature.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.AffineFeature.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setViewParams(self, tilts, rolls)

 View Source

 @spec setViewParams(t(), [number()], [number()]) :: t() | {:error, String.t()}

setViewParams
Positional Arguments
	self: Evision.AffineFeature.t()
	tilts: [float]
	rolls: [float]

Python prototype (for reference only):
setViewParams(tilts, rolls) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AffineFeature.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AffineFeature.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.AffineTransformer - Evision v0.1.39

Evision.AffineTransformer

 Summary

 Types

 t()

 Type that represents an AffineTransformer struct.

 Functions

 getFullAffine(self)

 getFullAffine

 setFullAffine(self, fullAffine)

 setFullAffine

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AffineTransformer{ref: reference()}

Type that represents an AffineTransformer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getFullAffine(self)

 View Source

 @spec getFullAffine(t()) :: boolean() | {:error, String.t()}

getFullAffine
Positional Arguments
	self: Evision.AffineTransformer.t()

Return
	retval: bool

Python prototype (for reference only):
getFullAffine() -> retval

 Link to this function

 setFullAffine(self, fullAffine)

 View Source

 @spec setFullAffine(t(), boolean()) :: t() | {:error, String.t()}

setFullAffine
Positional Arguments
	self: Evision.AffineTransformer.t()
	fullAffine: bool

Python prototype (for reference only):
setFullAffine(fullAffine) -> None

 Evision.AgastFeatureDetector - Evision v0.1.39

Evision.AgastFeatureDetector

 Summary

 Types

 t()

 Type that represents an AgastFeatureDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getNonmaxSuppression(self)

 getNonmaxSuppression

 getThreshold(self)

 getThreshold

 getType(self)

 getType

 read(self, arg1)

 Variant 1:
read

 setNonmaxSuppression(self, f)

 setNonmaxSuppression

 setThreshold(self, threshold)

 setThreshold

 setType(self, type)

 setType

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AgastFeatureDetector{ref: reference()}

Type that represents an AgastFeatureDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: AgastFeatureDetector_DetectorType.

Return
	retval: Evision.AgastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([threshold: term(), type: term(), nonmaxSuppression: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: AgastFeatureDetector_DetectorType.

Return
	retval: Evision.AgastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNonmaxSuppression(self)

 View Source

 @spec getNonmaxSuppression(t()) :: boolean() | {:error, String.t()}

getNonmaxSuppression
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getNonmaxSuppression() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: integer() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 getType(self)

 View Source

 @spec getType(t()) :: integer() | {:error, String.t()}

getType
Positional Arguments
	self: Evision.AgastFeatureDetector.t()

Return
	retval: AgastFeatureDetector::DetectorType

Python prototype (for reference only):
getType() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setNonmaxSuppression(self, f)

 View Source

 @spec setNonmaxSuppression(t(), boolean()) :: t() | {:error, String.t()}

setNonmaxSuppression
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	f: bool

Python prototype (for reference only):
setNonmaxSuppression(f) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), integer()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	threshold: int

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 setType(self, type)

 View Source

 @spec setType(t(), integer()) :: t() | {:error, String.t()}

setType
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	type: AgastFeatureDetector_DetectorType

Python prototype (for reference only):
setType(type) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AgastFeatureDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Algorithm - Evision v0.1.39

Evision.Algorithm

 Summary

 Types

 t()

 Type that represents an Algorithm struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Algorithm{ref: reference()}

Type that represents an Algorithm struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Algorithm.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Algorithm.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Algorithm.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Algorithm.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(t(), binary()) :: t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Algorithm.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Algorithm.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Algorithm.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.AlignExposures - Evision v0.1.39

Evision.AlignExposures

 Summary

 Types

 t()

 Type that represents an AlignExposures struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 process(self, src, dst, times, response)

 Aligns images

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AlignExposures{ref: reference()}

Type that represents an AlignExposures struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.AlignExposures.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.AlignExposures.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.AlignExposures.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 process(self, src, dst, times, response)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

Aligns images
Positional Arguments
	self: Evision.AlignExposures.t()

	src: [Evision.Mat].
vector of input images

	dst: [Evision.Mat].
vector of aligned images

	times: Evision.Mat.t().
vector of exposure time values for each image

	response: Evision.Mat.t().
256x1 matrix with inverse camera response function for each pixel value, it should
have the same number of channels as images.

Python prototype (for reference only):
process(src, dst, times, response) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.AlignExposures.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.AlignExposures.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.AlignExposures.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.AlignExposures.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.AlignMTB - Evision v0.1.39

Evision.AlignMTB

 Summary

 Types

 t()

 Type that represents an AlignMTB struct.

 Functions

 calculateShift(self, img0, img1)

 Calculates shift between two images, i. e. how to shift the second image to correspond it with the
first.

 computeBitmaps(self, img)

 Computes median threshold and exclude bitmaps of given image.

 computeBitmaps(self, img, opts)

 Computes median threshold and exclude bitmaps of given image.

 getCut(self)

 getCut

 getExcludeRange(self)

 getExcludeRange

 getMaxBits(self)

 getMaxBits

 process(self, src, dst)

 Short version of process, that doesn't take extra arguments.

 process(self, src, dst, times, response)

 process

 setCut(self, value)

 setCut

 setExcludeRange(self, exclude_range)

 setExcludeRange

 setMaxBits(self, max_bits)

 setMaxBits

 shiftMat(self, src, shift)

 Helper function, that shift Mat filling new regions with zeros.

 shiftMat(self, src, shift, opts)

 Helper function, that shift Mat filling new regions with zeros.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AlignMTB{ref: reference()}

Type that represents an AlignMTB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculateShift(self, img0, img1)

 View Source

 @spec calculateShift(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {number(), number()} | {:error, String.t()}

Calculates shift between two images, i. e. how to shift the second image to correspond it with the
first.
Positional Arguments
	self: Evision.AlignMTB.t()

	img0: Evision.Mat.t().
first image

	img1: Evision.Mat.t().
second image

Return
	retval: Point

Python prototype (for reference only):
calculateShift(img0, img1) -> retval

 Link to this function

 computeBitmaps(self, img)

 View Source

 @spec computeBitmaps(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes median threshold and exclude bitmaps of given image.
Positional Arguments
	self: Evision.AlignMTB.t()

	img: Evision.Mat.t().
input image

Return
	tb: Evision.Mat.t().
median threshold bitmap

	eb: Evision.Mat.t().
exclude bitmap

Python prototype (for reference only):
computeBitmaps(img[, tb[, eb]]) -> tb, eb

 Link to this function

 computeBitmaps(self, img, opts)

 View Source

 @spec computeBitmaps(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes median threshold and exclude bitmaps of given image.
Positional Arguments
	self: Evision.AlignMTB.t()

	img: Evision.Mat.t().
input image

Return
	tb: Evision.Mat.t().
median threshold bitmap

	eb: Evision.Mat.t().
exclude bitmap

Python prototype (for reference only):
computeBitmaps(img[, tb[, eb]]) -> tb, eb

 Link to this function

 getCut(self)

 View Source

 @spec getCut(t()) :: boolean() | {:error, String.t()}

getCut
Positional Arguments
	self: Evision.AlignMTB.t()

Return
	retval: bool

Python prototype (for reference only):
getCut() -> retval

 Link to this function

 getExcludeRange(self)

 View Source

 @spec getExcludeRange(t()) :: integer() | {:error, String.t()}

getExcludeRange
Positional Arguments
	self: Evision.AlignMTB.t()

Return
	retval: int

Python prototype (for reference only):
getExcludeRange() -> retval

 Link to this function

 getMaxBits(self)

 View Source

 @spec getMaxBits(t()) :: integer() | {:error, String.t()}

getMaxBits
Positional Arguments
	self: Evision.AlignMTB.t()

Return
	retval: int

Python prototype (for reference only):
getMaxBits() -> retval

 Link to this function

 process(self, src, dst)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()]) ::
 t() | {:error, String.t()}

Short version of process, that doesn't take extra arguments.
Positional Arguments
	self: Evision.AlignMTB.t()

	src: [Evision.Mat].
vector of input images

	dst: [Evision.Mat].
vector of aligned images

Python prototype (for reference only):
process(src, dst) -> None

 Link to this function

 process(self, src, dst, times, response)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.AlignMTB.t()
	src: [Evision.Mat]
	dst: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Python prototype (for reference only):
process(src, dst, times, response) -> None

 Link to this function

 setCut(self, value)

 View Source

 @spec setCut(t(), boolean()) :: t() | {:error, String.t()}

setCut
Positional Arguments
	self: Evision.AlignMTB.t()
	value: bool

Python prototype (for reference only):
setCut(value) -> None

 Link to this function

 setExcludeRange(self, exclude_range)

 View Source

 @spec setExcludeRange(t(), integer()) :: t() | {:error, String.t()}

setExcludeRange
Positional Arguments
	self: Evision.AlignMTB.t()
	exclude_range: int

Python prototype (for reference only):
setExcludeRange(exclude_range) -> None

 Link to this function

 setMaxBits(self, max_bits)

 View Source

 @spec setMaxBits(t(), integer()) :: t() | {:error, String.t()}

setMaxBits
Positional Arguments
	self: Evision.AlignMTB.t()
	max_bits: int

Python prototype (for reference only):
setMaxBits(max_bits) -> None

 Link to this function

 shiftMat(self, src, shift)

 View Source

 @spec shiftMat(t(), Evision.Mat.maybe_mat_in(), {number(), number()}) ::
 Evision.Mat.t() | {:error, String.t()}

Helper function, that shift Mat filling new regions with zeros.
Positional Arguments
	self: Evision.AlignMTB.t()

	src: Evision.Mat.t().
input image

	shift: Point.
shift value

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
shiftMat(src, shift[, dst]) -> dst

 Link to this function

 shiftMat(self, src, shift, opts)

 View Source

 @spec shiftMat(
 t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Helper function, that shift Mat filling new regions with zeros.
Positional Arguments
	self: Evision.AlignMTB.t()

	src: Evision.Mat.t().
input image

	shift: Point.
shift value

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
shiftMat(src, shift[, dst]) -> dst

 Evision.ArUco - Evision v0.1.39

Evision.ArUco

 Summary

 Types

 t()

 Type that represents an ArUco struct.

 Functions

 calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs)

 It's the same function as #calibrateCameraAruco but without calibration error estimation.

 calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs, opts)

 It's the same function as #calibrateCameraAruco but without calibration error estimation.

 calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs)

 Calibrate a camera using aruco markers

 calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs, opts)

 Calibrate a camera using aruco markers

 calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs)

 It's the same function as #calibrateCameraCharuco but without calibration error estimation.

 calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs, opts)

 It's the same function as #calibrateCameraCharuco but without calibration error estimation.

 calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs)

 Calibrate a camera using Charuco corners

 calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs, opts)

 Calibrate a camera using Charuco corners

 detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate)

 Detect ChArUco Diamond markers

 detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate, opts)

 Detect ChArUco Diamond markers

 detectMarkers(image, dictionary)

 detect markers

 detectMarkers(image, dictionary, opts)

 detect markers

 drawCharucoDiamond(dictionary, ids, squareLength, markerLength)

 Draw a ChArUco Diamond marker

 drawCharucoDiamond(dictionary, ids, squareLength, markerLength, opts)

 Draw a ChArUco Diamond marker

 drawDetectedCornersCharuco(image, charucoCorners)

 Draws a set of Charuco corners

 drawDetectedCornersCharuco(image, charucoCorners, opts)

 Draws a set of Charuco corners

 drawDetectedDiamonds(image, diamondCorners)

 Draw a set of detected ChArUco Diamond markers

 drawDetectedDiamonds(image, diamondCorners, opts)

 Draw a set of detected ChArUco Diamond markers

 drawDetectedMarkers(image, corners)

 Draw detected markers in image

 drawDetectedMarkers(image, corners, opts)

 Draw detected markers in image

 drawPlanarBoard(board, outSize, marginSize, borderBits)

 draw planar board

 drawPlanarBoard(board, outSize, marginSize, borderBits, opts)

 draw planar board

 estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec)

 estimatePoseBoard

 estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec, opts)

 estimatePoseBoard

 estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec)

 Pose estimation for a ChArUco board given some of their corners

 estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec, opts)

 Pose estimation for a ChArUco board given some of their corners

 estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs)

 estimatePoseSingleMarkers

 estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs, opts)

 estimatePoseSingleMarkers

 extendDictionary(nMarkers, markerSize)

 Extend base dictionary by new nMarkers

 extendDictionary(nMarkers, markerSize, opts)

 Extend base dictionary by new nMarkers

 generateImageMarker(dictionary, id, sidePixels)

 Generate a canonical marker image

 generateImageMarker(dictionary, id, sidePixels, opts)

 Generate a canonical marker image

 getBoardObjectAndImagePoints(board, detectedCorners, detectedIds)

 get board object and image points

 getBoardObjectAndImagePoints(board, detectedCorners, detectedIds, opts)

 get board object and image points

 getPredefinedDictionary(dict)

 Returns one of the predefined dictionaries referenced by DICT_*.

 interpolateCornersCharuco(markerCorners, markerIds, image, board)

 Interpolate position of ChArUco board corners

 interpolateCornersCharuco(markerCorners, markerIds, image, board, opts)

 Interpolate position of ChArUco board corners

 refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners)

 refine detected markers

 refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners, opts)

 refine detected markers

 testCharucoCornersCollinear(board, charucoIds)

 testCharucoCornersCollinear

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco{ref: reference()}

Type that represents an ArUco struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraAruco(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

It's the same function as #calibrateCameraAruco but without calibration error estimation.
Positional Arguments
	corners: [Evision.Mat]
	ids: Evision.Mat.t()
	counter: Evision.Mat.t()
	board: Board
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Has overloading in C++
Python prototype (for reference only):
calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraAruco(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

It's the same function as #calibrateCameraAruco but without calibration error estimation.
Positional Arguments
	corners: [Evision.Mat]
	ids: Evision.Mat.t()
	counter: Evision.Mat.t()
	board: Board
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Has overloading in C++
Python prototype (for reference only):
calibrateCameraAruco(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraArucoExtended(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Calibrate a camera using aruco markers
Positional Arguments
	corners: [Evision.Mat].
vector of detected marker corners in all frames.
The corners should have the same format returned by detectMarkers (see #detectMarkers).

	ids: Evision.Mat.t().
list of identifiers for each marker in corners

	counter: Evision.Mat.t().
number of markers in each frame so that corners and ids can be split

	board: Board.
Marker Board layout

	imageSize: Size.
Size of the image used only to initialize the intrinsic camera matrix.

Keyword Arguments
	flags: int.
flags Different flags for the calibration process (see #calibrateCamera for details).

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$. If CV_CALIB_USE_INTRINSIC_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each board view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the board pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the board pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
\f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of average re-projection errors estimated for each pattern view.

 This function calibrates a camera using an Aruco Board. The function receives a list of
 detected markers from several views of the Board. The process is similar to the chessboard
 calibration in calibrateCamera(). The function returns the final re-projection error.
Python prototype (for reference only):
calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraArucoExtended(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Calibrate a camera using aruco markers
Positional Arguments
	corners: [Evision.Mat].
vector of detected marker corners in all frames.
The corners should have the same format returned by detectMarkers (see #detectMarkers).

	ids: Evision.Mat.t().
list of identifiers for each marker in corners

	counter: Evision.Mat.t().
number of markers in each frame so that corners and ids can be split

	board: Board.
Marker Board layout

	imageSize: Size.
Size of the image used only to initialize the intrinsic camera matrix.

Keyword Arguments
	flags: int.
flags Different flags for the calibration process (see #calibrateCamera for details).

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$. If CV_CALIB_USE_INTRINSIC_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each board view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the board pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the board pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
\f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of average re-projection errors estimated for each pattern view.

 This function calibrates a camera using an Aruco Board. The function receives a list of
 detected markers from several views of the Board. The process is similar to the chessboard
 calibration in calibrateCamera(). The function returns the final re-projection error.
Python prototype (for reference only):
calibrateCameraArucoExtended(corners, ids, counter, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraCharuco(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.ArUco.CharucoBoard.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

It's the same function as #calibrateCameraCharuco but without calibration error estimation.
Positional Arguments
	charucoCorners: [Evision.Mat]
	charucoIds: [Evision.Mat]
	board: Evision.ArUco.CharucoBoard.t()
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Python prototype (for reference only):
calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraCharuco(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.ArUco.CharucoBoard.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

It's the same function as #calibrateCameraCharuco but without calibration error estimation.
Positional Arguments
	charucoCorners: [Evision.Mat]
	charucoIds: [Evision.Mat]
	board: Evision.ArUco.CharucoBoard.t()
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()
	rvecs: [Evision.Mat].
	tvecs: [Evision.Mat].

Python prototype (for reference only):
calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs

 Link to this function

 calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs)

 View Source

 @spec calibrateCameraCharucoExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.ArUco.CharucoBoard.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Calibrate a camera using Charuco corners
Positional Arguments
	charucoCorners: [Evision.Mat].
vector of detected charuco corners per frame

	charucoIds: [Evision.Mat].
list of identifiers for each corner in charucoCorners per frame

	board: Evision.ArUco.CharucoBoard.t().
Marker Board layout

	imageSize: Size.
input image size

Keyword Arguments
	flags: int.
flags Different flags for the calibration process (see #calibrateCamera for details).

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$. If CV_CALIB_USE_INTRINSIC_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each board view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the board pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the board pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
\f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of average re-projection errors estimated for each pattern view.

 This function calibrates a camera using a set of corners of a Charuco Board. The function
 receives a list of detected corners and its identifiers from several views of the Board.
 The function returns the final re-projection error.
Python prototype (for reference only):
calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs, opts)

 View Source

 @spec calibrateCameraCharucoExtended(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.ArUco.CharucoBoard.t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()], Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Calibrate a camera using Charuco corners
Positional Arguments
	charucoCorners: [Evision.Mat].
vector of detected charuco corners per frame

	charucoIds: [Evision.Mat].
list of identifiers for each corner in charucoCorners per frame

	board: Evision.ArUco.CharucoBoard.t().
Marker Board layout

	imageSize: Size.
input image size

Keyword Arguments
	flags: int.
flags Different flags for the calibration process (see #calibrateCamera for details).

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	cameraMatrix: Evision.Mat.t().
Output 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$. If CV_CALIB_USE_INTRINSIC_GUESS
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.

	distCoeffs: Evision.Mat.t().
Output vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each board view
(e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
k-th translation vector (see the next output parameter description) brings the board pattern
from the model coordinate space (in which object points are specified) to the world coordinate
space, that is, a real position of the board pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

	stdDeviationsIntrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for intrinsic parameters.
Order of deviations values:
\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.

	stdDeviationsExtrinsics: Evision.Mat.t().
Output vector of standard deviations estimated for extrinsic parameters.
Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
\f$R_i, T_i\f$ are concatenated 1x3 vectors.

	perViewErrors: Evision.Mat.t().
Output vector of average re-projection errors estimated for each pattern view.

 This function calibrates a camera using a set of corners of a Charuco Board. The function
 receives a list of detected corners and its identifiers from several views of the Board.
 The function returns the final re-projection error.
Python prototype (for reference only):
calibrateCameraCharucoExtended(charucoCorners, charucoIds, board, imageSize, cameraMatrix, distCoeffs[, rvecs[, tvecs[, stdDeviationsIntrinsics[, stdDeviationsExtrinsics[, perViewErrors[, flags[, criteria]]]]]]]) -> retval, cameraMatrix, distCoeffs, rvecs, tvecs, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors

 Link to this function

 detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate)

 View Source

 @spec detectCharucoDiamond(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 number()
) :: {[Evision.Mat.t()], Evision.Mat.t()} | {:error, String.t()}

Detect ChArUco Diamond markers
Positional Arguments
	image: Evision.Mat.t().
input image necessary for corner subpixel.

	markerCorners: [Evision.Mat].
list of detected marker corners from detectMarkers function.

	markerIds: Evision.Mat.t().
list of marker ids in markerCorners.

	squareMarkerLengthRate: float.
rate between square and marker length:
squareMarkerLengthRate = squareLength/markerLength. The real units are not necessary.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Optional camera calibration matrix.

	distCoeffs: Evision.Mat.t().
Optional camera distortion coefficients.

	dictionary: Dictionary.
dictionary of markers indicating the type of markers.

Return
	diamondCorners: [Evision.Mat].
output list of detected diamond corners (4 corners per diamond). The order
is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> >).

	diamondIds: Evision.Mat.t().
ids of the diamonds in diamondCorners. The id of each diamond is in fact of
type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
diamond.

 This function detects Diamond markers from the previous detected ArUco markers. The diamonds
 are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
 are provided, the diamond search is based on reprojection. If not, diamond search is based on
 homography. Homography is faster than reprojection, but less accurate.
@deprecated Use CharucoDetector::detectDiamonds
Python prototype (for reference only):
detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate[, diamondCorners[, diamondIds[, cameraMatrix[, distCoeffs[, dictionary]]]]]) -> diamondCorners, diamondIds

 Link to this function

 detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate, opts)

 View Source

 @spec detectCharucoDiamond(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 number(),
 [distCoeffs: term(), cameraMatrix: term(), dictionary: term()] | nil
) :: {[Evision.Mat.t()], Evision.Mat.t()} | {:error, String.t()}

Detect ChArUco Diamond markers
Positional Arguments
	image: Evision.Mat.t().
input image necessary for corner subpixel.

	markerCorners: [Evision.Mat].
list of detected marker corners from detectMarkers function.

	markerIds: Evision.Mat.t().
list of marker ids in markerCorners.

	squareMarkerLengthRate: float.
rate between square and marker length:
squareMarkerLengthRate = squareLength/markerLength. The real units are not necessary.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Optional camera calibration matrix.

	distCoeffs: Evision.Mat.t().
Optional camera distortion coefficients.

	dictionary: Dictionary.
dictionary of markers indicating the type of markers.

Return
	diamondCorners: [Evision.Mat].
output list of detected diamond corners (4 corners per diamond). The order
is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> >).

	diamondIds: Evision.Mat.t().
ids of the diamonds in diamondCorners. The id of each diamond is in fact of
type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
diamond.

 This function detects Diamond markers from the previous detected ArUco markers. The diamonds
 are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
 are provided, the diamond search is based on reprojection. If not, diamond search is based on
 homography. Homography is faster than reprojection, but less accurate.
@deprecated Use CharucoDetector::detectDiamonds
Python prototype (for reference only):
detectCharucoDiamond(image, markerCorners, markerIds, squareMarkerLengthRate[, diamondCorners[, diamondIds[, cameraMatrix[, distCoeffs[, dictionary]]]]]) -> diamondCorners, diamondIds

 Link to this function

 detectMarkers(image, dictionary)

 View Source

 @spec detectMarkers(Evision.Mat.maybe_mat_in(), Evision.ArUco.Dictionary.t()) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()]} | {:error, String.t()}

detect markers
Positional Arguments
	image: Evision.Mat.t()
	dictionary: Dictionary

Keyword Arguments
	parameters: DetectorParameters.

Return
	corners: [Evision.Mat].
	ids: Evision.Mat.t().
	rejectedImgPoints: [Evision.Mat].

@deprecated Use class ArucoDetector::detectMarkers
Python prototype (for reference only):
detectMarkers(image, dictionary[, corners[, ids[, parameters[, rejectedImgPoints]]]]) -> corners, ids, rejectedImgPoints

 Link to this function

 detectMarkers(image, dictionary, opts)

 View Source

 @spec detectMarkers(
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Dictionary.t(),
 [{:parameters, term()}] | nil
) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()]} | {:error, String.t()}

detect markers
Positional Arguments
	image: Evision.Mat.t()
	dictionary: Dictionary

Keyword Arguments
	parameters: DetectorParameters.

Return
	corners: [Evision.Mat].
	ids: Evision.Mat.t().
	rejectedImgPoints: [Evision.Mat].

@deprecated Use class ArucoDetector::detectMarkers
Python prototype (for reference only):
detectMarkers(image, dictionary[, corners[, ids[, parameters[, rejectedImgPoints]]]]) -> corners, ids, rejectedImgPoints

 Link to this function

 drawCharucoDiamond(dictionary, ids, squareLength, markerLength)

 View Source

 @spec drawCharucoDiamond(
 Evision.ArUco.Dictionary.t(),
 {integer(), integer(), integer(), integer()},
 integer(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Draw a ChArUco Diamond marker
Positional Arguments
	dictionary: Dictionary.
dictionary of markers indicating the type of markers.

	ids: Vec4i.
list of 4 ids for each ArUco marker in the ChArUco marker.

	squareLength: int.
size of the chessboard squares in pixels.

	markerLength: int.
size of the markers in pixels.

Keyword Arguments
	marginSize: int.
minimum margins (in pixels) of the marker in the output image

	borderBits: int.
width of the marker borders.

Return
	img: Evision.Mat.t().
output image with the marker. The size of this image will be
3squareLength + 2marginSize,.

 This function return the image of a ChArUco marker, ready to be printed.
Python prototype (for reference only):
drawCharucoDiamond(dictionary, ids, squareLength, markerLength[, img[, marginSize[, borderBits]]]) -> img

 Link to this function

 drawCharucoDiamond(dictionary, ids, squareLength, markerLength, opts)

 View Source

 @spec drawCharucoDiamond(
 Evision.ArUco.Dictionary.t(),
 {integer(), integer(), integer(), integer()},
 integer(),
 integer(),
 [marginSize: term(), borderBits: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draw a ChArUco Diamond marker
Positional Arguments
	dictionary: Dictionary.
dictionary of markers indicating the type of markers.

	ids: Vec4i.
list of 4 ids for each ArUco marker in the ChArUco marker.

	squareLength: int.
size of the chessboard squares in pixels.

	markerLength: int.
size of the markers in pixels.

Keyword Arguments
	marginSize: int.
minimum margins (in pixels) of the marker in the output image

	borderBits: int.
width of the marker borders.

Return
	img: Evision.Mat.t().
output image with the marker. The size of this image will be
3squareLength + 2marginSize,.

 This function return the image of a ChArUco marker, ready to be printed.
Python prototype (for reference only):
drawCharucoDiamond(dictionary, ids, squareLength, markerLength[, img[, marginSize[, borderBits]]]) -> img

 Link to this function

 drawDetectedCornersCharuco(image, charucoCorners)

 View Source

 @spec drawDetectedCornersCharuco(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Draws a set of Charuco corners
Positional Arguments
	charucoCorners: Evision.Mat.t().
vector of detected charuco corners

Keyword Arguments
	charucoIds: Evision.Mat.t().
list of identifiers for each corner in charucoCorners

	cornerColor: Scalar.
color of the square surrounding each corner

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not
altered.

 This function draws a set of detected Charuco corners. If identifiers vector is provided, it also
 draws the id of each corner.
Python prototype (for reference only):
drawDetectedCornersCharuco(image, charucoCorners[, charucoIds[, cornerColor]]) -> image

 Link to this function

 drawDetectedCornersCharuco(image, charucoCorners, opts)

 View Source

 @spec drawDetectedCornersCharuco(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [cornerColor: term(), charucoIds: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws a set of Charuco corners
Positional Arguments
	charucoCorners: Evision.Mat.t().
vector of detected charuco corners

Keyword Arguments
	charucoIds: Evision.Mat.t().
list of identifiers for each corner in charucoCorners

	cornerColor: Scalar.
color of the square surrounding each corner

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not
altered.

 This function draws a set of detected Charuco corners. If identifiers vector is provided, it also
 draws the id of each corner.
Python prototype (for reference only):
drawDetectedCornersCharuco(image, charucoCorners[, charucoIds[, cornerColor]]) -> image

 Link to this function

 drawDetectedDiamonds(image, diamondCorners)

 View Source

 @spec drawDetectedDiamonds(Evision.Mat.maybe_mat_in(), [Evision.Mat.maybe_mat_in()]) ::
 Evision.Mat.t() | {:error, String.t()}

Draw a set of detected ChArUco Diamond markers
Positional Arguments
	diamondCorners: [Evision.Mat].
positions of diamond corners in the same format returned by
detectCharucoDiamond(). (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers,
the dimensions of this array should be Nx4. The order of the corners should be clockwise.

Keyword Arguments
	diamondIds: Evision.Mat.t().
vector of identifiers for diamonds in diamondCorners, in the same format
returned by detectCharucoDiamond() (e.g. std::vector<Vec4i>).
Optional, if not provided, ids are not painted.

	borderColor: Scalar.
color of marker borders. Rest of colors (text color and first corner color)
are calculated based on this one.

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not
altered.

 Given an array of detected diamonds, this functions draws them in the image. The marker borders
 are painted and the markers identifiers if provided.
 Useful for debugging purposes.
Python prototype (for reference only):
drawDetectedDiamonds(image, diamondCorners[, diamondIds[, borderColor]]) -> image

 Link to this function

 drawDetectedDiamonds(image, diamondCorners, opts)

 View Source

 @spec drawDetectedDiamonds(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [diamondIds: term(), borderColor: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draw a set of detected ChArUco Diamond markers
Positional Arguments
	diamondCorners: [Evision.Mat].
positions of diamond corners in the same format returned by
detectCharucoDiamond(). (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers,
the dimensions of this array should be Nx4. The order of the corners should be clockwise.

Keyword Arguments
	diamondIds: Evision.Mat.t().
vector of identifiers for diamonds in diamondCorners, in the same format
returned by detectCharucoDiamond() (e.g. std::vector<Vec4i>).
Optional, if not provided, ids are not painted.

	borderColor: Scalar.
color of marker borders. Rest of colors (text color and first corner color)
are calculated based on this one.

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not
altered.

 Given an array of detected diamonds, this functions draws them in the image. The marker borders
 are painted and the markers identifiers if provided.
 Useful for debugging purposes.
Python prototype (for reference only):
drawDetectedDiamonds(image, diamondCorners[, diamondIds[, borderColor]]) -> image

 Link to this function

 drawDetectedMarkers(image, corners)

 View Source

 @spec drawDetectedMarkers(Evision.Mat.maybe_mat_in(), [Evision.Mat.maybe_mat_in()]) ::
 Evision.Mat.t() | {:error, String.t()}

Draw detected markers in image
Positional Arguments
	corners: [Evision.Mat].
positions of marker corners on input image.
(e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the dimensions of
this array should be Nx4. The order of the corners should be clockwise.

Keyword Arguments
	ids: Evision.Mat.t().
vector of identifiers for markers in markersCorners .
Optional, if not provided, ids are not painted.

	borderColor: Scalar.
color of marker borders. Rest of colors (text color and first corner color)
are calculated based on this one to improve visualization.

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not altered.

 Given an array of detected marker corners and its corresponding ids, this functions draws
 the markers in the image. The marker borders are painted and the markers identifiers if provided.
 Useful for debugging purposes.
Python prototype (for reference only):
drawDetectedMarkers(image, corners[, ids[, borderColor]]) -> image

 Link to this function

 drawDetectedMarkers(image, corners, opts)

 View Source

 @spec drawDetectedMarkers(
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [borderColor: term(), ids: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draw detected markers in image
Positional Arguments
	corners: [Evision.Mat].
positions of marker corners on input image.
(e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the dimensions of
this array should be Nx4. The order of the corners should be clockwise.

Keyword Arguments
	ids: Evision.Mat.t().
vector of identifiers for markers in markersCorners .
Optional, if not provided, ids are not painted.

	borderColor: Scalar.
color of marker borders. Rest of colors (text color and first corner color)
are calculated based on this one to improve visualization.

Return
	image: Evision.Mat.t().
input/output image. It must have 1 or 3 channels. The number of channels is not altered.

 Given an array of detected marker corners and its corresponding ids, this functions draws
 the markers in the image. The marker borders are painted and the markers identifiers if provided.
 Useful for debugging purposes.
Python prototype (for reference only):
drawDetectedMarkers(image, corners[, ids[, borderColor]]) -> image

 Link to this function

 drawPlanarBoard(board, outSize, marginSize, borderBits)

 View Source

 @spec drawPlanarBoard(
 Evision.ArUco.Board.t(),
 {number(), number()},
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

draw planar board
Positional Arguments
	board: Board
	outSize: Size
	marginSize: int
	borderBits: int

Return
	img: Evision.Mat.t().

@deprecated Use Board::generateImage
Python prototype (for reference only):
drawPlanarBoard(board, outSize, marginSize, borderBits[, img]) -> img

 Link to this function

 drawPlanarBoard(board, outSize, marginSize, borderBits, opts)

 View Source

 @spec drawPlanarBoard(
 Evision.ArUco.Board.t(),
 {number(), number()},
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

draw planar board
Positional Arguments
	board: Board
	outSize: Size
	marginSize: int
	borderBits: int

Return
	img: Evision.Mat.t().

@deprecated Use Board::generateImage
Python prototype (for reference only):
drawPlanarBoard(board, outSize, marginSize, borderBits[, img]) -> img

 Link to this function

 estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec)

 View Source

 @spec estimatePoseBoard(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

estimatePoseBoard
Positional Arguments
	corners: [Evision.Mat]
	ids: Evision.Mat.t()
	board: Board
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	useExtrinsicGuess: bool.

Return
	retval: int
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()

@deprecated Use cv::solvePnP
Python prototype (for reference only):
estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec[, useExtrinsicGuess]) -> retval, rvec, tvec

 Link to this function

 estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec, opts)

 View Source

 @spec estimatePoseBoard(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useExtrinsicGuess, term()}] | nil
) :: {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

estimatePoseBoard
Positional Arguments
	corners: [Evision.Mat]
	ids: Evision.Mat.t()
	board: Board
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	useExtrinsicGuess: bool.

Return
	retval: int
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()

@deprecated Use cv::solvePnP
Python prototype (for reference only):
estimatePoseBoard(corners, ids, board, cameraMatrix, distCoeffs, rvec, tvec[, useExtrinsicGuess]) -> retval, rvec, tvec

 Link to this function

 estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec)

 View Source

 @spec estimatePoseCharucoBoard(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.CharucoBoard.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Pose estimation for a ChArUco board given some of their corners
Positional Arguments
	charucoCorners: Evision.Mat.t().
vector of detected charuco corners

	charucoIds: Evision.Mat.t().
list of identifiers for each corner in charucoCorners

	board: Evision.ArUco.CharucoBoard.t().
layout of ChArUco board.

	cameraMatrix: Evision.Mat.t().
input 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

Keyword Arguments
	useExtrinsicGuess: bool.
defines whether initial guess for \b rvec and \b tvec will be used or not.

Return
	retval: bool

	rvec: Evision.Mat.t().
Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
(see cv::Rodrigues).

	tvec: Evision.Mat.t().
Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.

 This function estimates a Charuco board pose from some detected corners.
 The function checks if the input corners are enough and valid to perform pose estimation.
 If pose estimation is valid, returns true, else returns false.
@sa use cv::drawFrameAxes to get world coordinate system axis for object points
Python prototype (for reference only):
estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec[, useExtrinsicGuess]) -> retval, rvec, tvec

 Link to this function

 estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec, opts)

 View Source

 @spec estimatePoseCharucoBoard(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.CharucoBoard.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useExtrinsicGuess, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | false | {:error, String.t()}

Pose estimation for a ChArUco board given some of their corners
Positional Arguments
	charucoCorners: Evision.Mat.t().
vector of detected charuco corners

	charucoIds: Evision.Mat.t().
list of identifiers for each corner in charucoCorners

	board: Evision.ArUco.CharucoBoard.t().
layout of ChArUco board.

	cameraMatrix: Evision.Mat.t().
input 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

Keyword Arguments
	useExtrinsicGuess: bool.
defines whether initial guess for \b rvec and \b tvec will be used or not.

Return
	retval: bool

	rvec: Evision.Mat.t().
Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
(see cv::Rodrigues).

	tvec: Evision.Mat.t().
Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.

 This function estimates a Charuco board pose from some detected corners.
 The function checks if the input corners are enough and valid to perform pose estimation.
 If pose estimation is valid, returns true, else returns false.
@sa use cv::drawFrameAxes to get world coordinate system axis for object points
Python prototype (for reference only):
estimatePoseCharucoBoard(charucoCorners, charucoIds, board, cameraMatrix, distCoeffs, rvec, tvec[, useExtrinsicGuess]) -> retval, rvec, tvec

 Link to this function

 estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs)

 View Source

 @spec estimatePoseSingleMarkers(
 [Evision.Mat.maybe_mat_in()],
 number(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

estimatePoseSingleMarkers
Positional Arguments
	corners: [Evision.Mat]
	markerLength: float
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	estimateParameters: EstimateParameters.

Return
	rvecs: Evision.Mat.t().
	tvecs: Evision.Mat.t().
	objPoints: Evision.Mat.t().

@deprecated Use cv::solvePnP
Python prototype (for reference only):
estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs[, rvecs[, tvecs[, objPoints[, estimateParameters]]]]) -> rvecs, tvecs, objPoints

 Link to this function

 estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs, opts)

 View Source

 @spec estimatePoseSingleMarkers(
 [Evision.Mat.maybe_mat_in()],
 number(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:estimateParameters, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

estimatePoseSingleMarkers
Positional Arguments
	corners: [Evision.Mat]
	markerLength: float
	cameraMatrix: Evision.Mat.t()
	distCoeffs: Evision.Mat.t()

Keyword Arguments
	estimateParameters: EstimateParameters.

Return
	rvecs: Evision.Mat.t().
	tvecs: Evision.Mat.t().
	objPoints: Evision.Mat.t().

@deprecated Use cv::solvePnP
Python prototype (for reference only):
estimatePoseSingleMarkers(corners, markerLength, cameraMatrix, distCoeffs[, rvecs[, tvecs[, objPoints[, estimateParameters]]]]) -> rvecs, tvecs, objPoints

 Link to this function

 extendDictionary(nMarkers, markerSize)

 View Source

 @spec extendDictionary(integer(), integer()) ::
 Evision.ArUco.Dictionary.t() | {:error, String.t()}

Extend base dictionary by new nMarkers
Positional Arguments
	nMarkers: int.
number of markers in the dictionary

	markerSize: int.
number of bits per dimension of each markers

Keyword Arguments
	baseDictionary: Dictionary.
Include the markers in this dictionary at the beginning (optional)

	randomSeed: int.
a user supplied seed for theRNG()

Return
	retval: Dictionary

 This function creates a new dictionary composed by nMarkers markers and each markers composed
 by markerSize x markerSize bits. If baseDictionary is provided, its markers are directly
 included and the rest are generated based on them. If the size of baseDictionary is higher
 than nMarkers, only the first nMarkers in baseDictionary are taken and no new marker is added.
Python prototype (for reference only):
extendDictionary(nMarkers, markerSize[, baseDictionary[, randomSeed]]) -> retval

 Link to this function

 extendDictionary(nMarkers, markerSize, opts)

 View Source

 @spec extendDictionary(
 integer(),
 integer(),
 [baseDictionary: term(), randomSeed: term()] | nil
) ::
 Evision.ArUco.Dictionary.t() | {:error, String.t()}

Extend base dictionary by new nMarkers
Positional Arguments
	nMarkers: int.
number of markers in the dictionary

	markerSize: int.
number of bits per dimension of each markers

Keyword Arguments
	baseDictionary: Dictionary.
Include the markers in this dictionary at the beginning (optional)

	randomSeed: int.
a user supplied seed for theRNG()

Return
	retval: Dictionary

 This function creates a new dictionary composed by nMarkers markers and each markers composed
 by markerSize x markerSize bits. If baseDictionary is provided, its markers are directly
 included and the rest are generated based on them. If the size of baseDictionary is higher
 than nMarkers, only the first nMarkers in baseDictionary are taken and no new marker is added.
Python prototype (for reference only):
extendDictionary(nMarkers, markerSize[, baseDictionary[, randomSeed]]) -> retval

 Link to this function

 generateImageMarker(dictionary, id, sidePixels)

 View Source

 @spec generateImageMarker(Evision.ArUco.Dictionary.t(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Generate a canonical marker image
Positional Arguments
	dictionary: Dictionary.
dictionary of markers indicating the type of markers

	id: int.
identifier of the marker that will be returned. It has to be a valid id in the specified dictionary.

	sidePixels: int.
size of the image in pixels

Keyword Arguments
	borderBits: int.
width of the marker border.

Return
	img: Evision.Mat.t().
output image with the marker

 This function returns a marker image in its canonical form (i.e. ready to be printed)
Python prototype (for reference only):
generateImageMarker(dictionary, id, sidePixels[, img[, borderBits]]) -> img

 Link to this function

 generateImageMarker(dictionary, id, sidePixels, opts)

 View Source

 @spec generateImageMarker(
 Evision.ArUco.Dictionary.t(),
 integer(),
 integer(),
 [{:borderBits, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Generate a canonical marker image
Positional Arguments
	dictionary: Dictionary.
dictionary of markers indicating the type of markers

	id: int.
identifier of the marker that will be returned. It has to be a valid id in the specified dictionary.

	sidePixels: int.
size of the image in pixels

Keyword Arguments
	borderBits: int.
width of the marker border.

Return
	img: Evision.Mat.t().
output image with the marker

 This function returns a marker image in its canonical form (i.e. ready to be printed)
Python prototype (for reference only):
generateImageMarker(dictionary, id, sidePixels[, img[, borderBits]]) -> img

 Link to this function

 getBoardObjectAndImagePoints(board, detectedCorners, detectedIds)

 View Source

 @spec getBoardObjectAndImagePoints(
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

get board object and image points
Positional Arguments
	board: Board
	detectedCorners: [Evision.Mat]
	detectedIds: Evision.Mat.t()

Return
	objPoints: Evision.Mat.t().
	imgPoints: Evision.Mat.t().

@deprecated Use Board::matchImagePoints
Python prototype (for reference only):
getBoardObjectAndImagePoints(board, detectedCorners, detectedIds[, objPoints[, imgPoints]]) -> objPoints, imgPoints

 Link to this function

 getBoardObjectAndImagePoints(board, detectedCorners, detectedIds, opts)

 View Source

 @spec getBoardObjectAndImagePoints(
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

get board object and image points
Positional Arguments
	board: Board
	detectedCorners: [Evision.Mat]
	detectedIds: Evision.Mat.t()

Return
	objPoints: Evision.Mat.t().
	imgPoints: Evision.Mat.t().

@deprecated Use Board::matchImagePoints
Python prototype (for reference only):
getBoardObjectAndImagePoints(board, detectedCorners, detectedIds[, objPoints[, imgPoints]]) -> objPoints, imgPoints

 Link to this function

 getPredefinedDictionary(dict)

 View Source

 @spec getPredefinedDictionary(integer()) ::
 Evision.ArUco.Dictionary.t() | {:error, String.t()}

Returns one of the predefined dictionaries referenced by DICT_*.
Positional Arguments
	dict: int

Return
	retval: Dictionary

Python prototype (for reference only):
getPredefinedDictionary(dict) -> retval

 Link to this function

 interpolateCornersCharuco(markerCorners, markerIds, image, board)

 View Source

 @spec interpolateCornersCharuco(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.CharucoBoard.t()
) :: {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Interpolate position of ChArUco board corners
Positional Arguments
	markerCorners: [Evision.Mat].
vector of already detected markers corners. For each marker, its four
corners are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the
dimensions of this array should be Nx4. The order of the corners should be clockwise.

	markerIds: Evision.Mat.t().
list of identifiers for each marker in corners

	image: Evision.Mat.t().
input image necesary for corner refinement. Note that markers are not detected and
should be sent in corners and ids parameters.

	board: Evision.ArUco.CharucoBoard.t().
layout of ChArUco board.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
optional 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
optional vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	minMarkers: int.
number of adjacent markers that must be detected to return a charuco corner

Return
	retval: int

	charucoCorners: Evision.Mat.t().
interpolated chessboard corners

	charucoIds: Evision.Mat.t().
interpolated chessboard corners identifiers

 This function receives the detected markers and returns the 2D position of the chessboard corners
 from a ChArUco board using the detected Aruco markers. If camera parameters are provided,
 the process is based in an approximated pose estimation, else it is based on local homography.
 Only visible corners are returned. For each corner, its corresponding identifier is
 also returned in charucoIds.
 The function returns the number of interpolated corners.
@deprecated Use CharucoDetector::detectBoard
Python prototype (for reference only):
interpolateCornersCharuco(markerCorners, markerIds, image, board[, charucoCorners[, charucoIds[, cameraMatrix[, distCoeffs[, minMarkers]]]]]) -> retval, charucoCorners, charucoIds

 Link to this function

 interpolateCornersCharuco(markerCorners, markerIds, image, board, opts)

 View Source

 @spec interpolateCornersCharuco(
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.CharucoBoard.t(),
 [minMarkers: term(), distCoeffs: term(), cameraMatrix: term()] | nil
) :: {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Interpolate position of ChArUco board corners
Positional Arguments
	markerCorners: [Evision.Mat].
vector of already detected markers corners. For each marker, its four
corners are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the
dimensions of this array should be Nx4. The order of the corners should be clockwise.

	markerIds: Evision.Mat.t().
list of identifiers for each marker in corners

	image: Evision.Mat.t().
input image necesary for corner refinement. Note that markers are not detected and
should be sent in corners and ids parameters.

	board: Evision.ArUco.CharucoBoard.t().
layout of ChArUco board.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
optional 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
optional vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

	minMarkers: int.
number of adjacent markers that must be detected to return a charuco corner

Return
	retval: int

	charucoCorners: Evision.Mat.t().
interpolated chessboard corners

	charucoIds: Evision.Mat.t().
interpolated chessboard corners identifiers

 This function receives the detected markers and returns the 2D position of the chessboard corners
 from a ChArUco board using the detected Aruco markers. If camera parameters are provided,
 the process is based in an approximated pose estimation, else it is based on local homography.
 Only visible corners are returned. For each corner, its corresponding identifier is
 also returned in charucoIds.
 The function returns the number of interpolated corners.
@deprecated Use CharucoDetector::detectBoard
Python prototype (for reference only):
interpolateCornersCharuco(markerCorners, markerIds, image, board[, charucoCorners[, charucoIds[, cameraMatrix[, distCoeffs[, minMarkers]]]]]) -> retval, charucoCorners, charucoIds

 Link to this function

 refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners)

 View Source

 @spec refineDetectedMarkers(
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()]
) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

refine detected markers
Positional Arguments
	image: Evision.Mat.t()
	board: Board

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
	distCoeffs: Evision.Mat.t().
	minRepDistance: float.
	errorCorrectionRate: float.
	checkAllOrders: bool.
	parameters: DetectorParameters.

Return
	detectedCorners: [Evision.Mat]
	detectedIds: Evision.Mat.t()
	rejectedCorners: [Evision.Mat]
	recoveredIdxs: Evision.Mat.t().

@deprecated Use class ArucoDetector::refineDetectedMarkers
Python prototype (for reference only):
refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners[, cameraMatrix[, distCoeffs[, minRepDistance[, errorCorrectionRate[, checkAllOrders[, recoveredIdxs[, parameters]]]]]]]) -> detectedCorners, detectedIds, rejectedCorners, recoveredIdxs

 Link to this function

 refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners, opts)

 View Source

 @spec refineDetectedMarkers(
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [
 errorCorrectionRate: term(),
 distCoeffs: term(),
 parameters: term(),
 checkAllOrders: term(),
 cameraMatrix: term(),
 minRepDistance: term()
]
 | nil
) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

refine detected markers
Positional Arguments
	image: Evision.Mat.t()
	board: Board

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
	distCoeffs: Evision.Mat.t().
	minRepDistance: float.
	errorCorrectionRate: float.
	checkAllOrders: bool.
	parameters: DetectorParameters.

Return
	detectedCorners: [Evision.Mat]
	detectedIds: Evision.Mat.t()
	rejectedCorners: [Evision.Mat]
	recoveredIdxs: Evision.Mat.t().

@deprecated Use class ArucoDetector::refineDetectedMarkers
Python prototype (for reference only):
refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners[, cameraMatrix[, distCoeffs[, minRepDistance[, errorCorrectionRate[, checkAllOrders[, recoveredIdxs[, parameters]]]]]]]) -> detectedCorners, detectedIds, rejectedCorners, recoveredIdxs

 Link to this function

 testCharucoCornersCollinear(board, charucoIds)

 View Source

 @spec testCharucoCornersCollinear(
 Evision.ArUco.CharucoBoard.t(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

testCharucoCornersCollinear
Positional Arguments
	board: Evision.ArUco.CharucoBoard.t()
	charucoIds: Evision.Mat.t()

Return
	retval: bool

@deprecated Use CharucoBoard::checkCharucoCornersCollinear
Python prototype (for reference only):
testCharucoCornersCollinear(board, charucoIds) -> retval

 Evision.ArUco.ArucoDetector - Evision v0.1.39

Evision.ArUco.ArucoDetector

 Summary

 Types

 t()

 Type that represents an ArUco.ArucoDetector struct.

 Functions

 arucoDetector()

 Basic ArucoDetector constructor

 arucoDetector(opts)

 Basic ArucoDetector constructor

 clear(self)

 Clears the algorithm state

 detectMarkers(self, image)

 Basic marker detection

 detectMarkers(self, image, opts)

 Basic marker detection

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getDetectorParameters(self)

 getDetectorParameters

 getDictionary(self)

 getDictionary

 getRefineParameters(self)

 getRefineParameters

 read(self, fn_)

 Reads algorithm parameters from a file storage

 refineDetectedMarkers(self, image, board, detectedCorners, detectedIds, rejectedCorners)

 Refine not detected markers based on the already detected and the board layout

 refineDetectedMarkers(self, image, board, detectedCorners, detectedIds, rejectedCorners, opts)

 Refine not detected markers based on the already detected and the board layout

 save(self, filename)

 save

 setDetectorParameters(self, detectorParameters)

 setDetectorParameters

 setDictionary(self, dictionary)

 setDictionary

 setRefineParameters(self, refineParameters)

 setRefineParameters

 write(self, fs, name)

 simplified API for language bindings

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.ArucoDetector{ref: reference()}

Type that represents an ArUco.ArucoDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 arucoDetector()

 View Source

 @spec arucoDetector() :: t() | {:error, String.t()}

Basic ArucoDetector constructor
Keyword Arguments
	dictionary: Dictionary.
indicates the type of markers that will be searched

	detectorParams: DetectorParameters.
marker detection parameters

	refineParams: RefineParameters.
marker refine detection parameters

Return
	self: Evision.ArUco.ArucoDetector.t()

Python prototype (for reference only):
ArucoDetector([, dictionary[, detectorParams[, refineParams]]]) -> <aruco_ArucoDetector object>

 Link to this function

 arucoDetector(opts)

 View Source

 @spec arucoDetector(
 [refineParams: term(), dictionary: term(), detectorParams: term()]
 | nil
) ::
 t() | {:error, String.t()}

Basic ArucoDetector constructor
Keyword Arguments
	dictionary: Dictionary.
indicates the type of markers that will be searched

	detectorParams: DetectorParameters.
marker detection parameters

	refineParams: RefineParameters.
marker refine detection parameters

Return
	self: Evision.ArUco.ArucoDetector.t()

Python prototype (for reference only):
ArucoDetector([, dictionary[, detectorParams[, refineParams]]]) -> <aruco_ArucoDetector object>

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detectMarkers(self, image)

 View Source

 @spec detectMarkers(t(), Evision.Mat.maybe_mat_in()) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()]} | {:error, String.t()}

Basic marker detection
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

	image: Evision.Mat.t().
input image

Return
	corners: [Evision.Mat].
vector of detected marker corners. For each marker, its four corners
are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers,
the dimensions of this array is Nx4. The order of the corners is clockwise.

	ids: Evision.Mat.t().
vector of identifiers of the detected markers. The identifier is of type int
(e.g. std::vector<int>). For N detected markers, the size of ids is also N.
The identifiers have the same order than the markers in the imgPoints array.

	rejectedImgPoints: [Evision.Mat].
contains the imgPoints of those squares whose inner code has not a
correct codification. Useful for debugging purposes.

 Performs marker detection in the input image. Only markers included in the specific dictionary
 are searched. For each detected marker, it returns the 2D position of its corner in the image
 and its corresponding identifier.
 Note that this function does not perform pose estimation.
Note: The function does not correct lens distortion or takes it into account. It's recommended to undistort
 input image with corresponding camera model, if camera parameters are known
@sa undistort, estimatePoseSingleMarkers, estimatePoseBoard
Python prototype (for reference only):
detectMarkers(image[, corners[, ids[, rejectedImgPoints]]]) -> corners, ids, rejectedImgPoints

 Link to this function

 detectMarkers(self, image, opts)

 View Source

 @spec detectMarkers(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()]} | {:error, String.t()}

Basic marker detection
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

	image: Evision.Mat.t().
input image

Return
	corners: [Evision.Mat].
vector of detected marker corners. For each marker, its four corners
are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers,
the dimensions of this array is Nx4. The order of the corners is clockwise.

	ids: Evision.Mat.t().
vector of identifiers of the detected markers. The identifier is of type int
(e.g. std::vector<int>). For N detected markers, the size of ids is also N.
The identifiers have the same order than the markers in the imgPoints array.

	rejectedImgPoints: [Evision.Mat].
contains the imgPoints of those squares whose inner code has not a
correct codification. Useful for debugging purposes.

 Performs marker detection in the input image. Only markers included in the specific dictionary
 are searched. For each detected marker, it returns the 2D position of its corner in the image
 and its corresponding identifier.
 Note that this function does not perform pose estimation.
Note: The function does not correct lens distortion or takes it into account. It's recommended to undistort
 input image with corresponding camera model, if camera parameters are known
@sa undistort, estimatePoseSingleMarkers, estimatePoseBoard
Python prototype (for reference only):
detectMarkers(image[, corners[, ids[, rejectedImgPoints]]]) -> corners, ids, rejectedImgPoints

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDetectorParameters(self)

 View Source

 @spec getDetectorParameters(t()) ::
 Evision.ArUco.DetectorParameters.t() | {:error, String.t()}

getDetectorParameters
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Return
	retval: DetectorParameters

Python prototype (for reference only):
getDetectorParameters() -> retval

 Link to this function

 getDictionary(self)

 View Source

 @spec getDictionary(t()) :: Evision.ArUco.Dictionary.t() | {:error, String.t()}

getDictionary
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Return
	retval: Dictionary

Python prototype (for reference only):
getDictionary() -> retval

 Link to this function

 getRefineParameters(self)

 View Source

 @spec getRefineParameters(t()) ::
 Evision.ArUco.RefineParameters.t() | {:error, String.t()}

getRefineParameters
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

Return
	retval: RefineParameters

Python prototype (for reference only):
getRefineParameters() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 refineDetectedMarkers(self, image, board, detectedCorners, detectedIds, rejectedCorners)

 View Source

 @spec refineDetectedMarkers(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()]
) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Refine not detected markers based on the already detected and the board layout
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

	image: Evision.Mat.t().
input image

	board: Board.
layout of markers in the board.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
optional input 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
optional vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

Return
	detectedCorners: [Evision.Mat].
vector of already detected marker corners.

	detectedIds: Evision.Mat.t().
vector of already detected marker identifiers.

	rejectedCorners: [Evision.Mat].
vector of rejected candidates during the marker detection process.

	recoveredIdxs: Evision.Mat.t().
Optional array to returns the indexes of the recovered candidates in the
original rejectedCorners array.

 This function tries to find markers that were not detected in the basic detecMarkers function.
 First, based on the current detected marker and the board layout, the function interpolates
 the position of the missing markers. Then it tries to find correspondence between the reprojected
 markers and the rejected candidates based on the minRepDistance and errorCorrectionRate parameters.
 If camera parameters and distortion coefficients are provided, missing markers are reprojected
 using projectPoint function. If not, missing marker projections are interpolated using global
 homography, and all the marker corners in the board must have the same Z coordinate.
Python prototype (for reference only):
refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners[, cameraMatrix[, distCoeffs[, recoveredIdxs]]]) -> detectedCorners, detectedIds, rejectedCorners, recoveredIdxs

 Link to this function

 refineDetectedMarkers(self, image, board, detectedCorners, detectedIds, rejectedCorners, opts)

 View Source

 @spec refineDetectedMarkers(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.ArUco.Board.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [distCoeffs: term(), cameraMatrix: term()] | nil
) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Refine not detected markers based on the already detected and the board layout
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()

	image: Evision.Mat.t().
input image

	board: Board.
layout of markers in the board.

Keyword Arguments
	cameraMatrix: Evision.Mat.t().
optional input 3x3 floating-point camera matrix
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$

	distCoeffs: Evision.Mat.t().
optional vector of distortion coefficients
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements

Return
	detectedCorners: [Evision.Mat].
vector of already detected marker corners.

	detectedIds: Evision.Mat.t().
vector of already detected marker identifiers.

	rejectedCorners: [Evision.Mat].
vector of rejected candidates during the marker detection process.

	recoveredIdxs: Evision.Mat.t().
Optional array to returns the indexes of the recovered candidates in the
original rejectedCorners array.

 This function tries to find markers that were not detected in the basic detecMarkers function.
 First, based on the current detected marker and the board layout, the function interpolates
 the position of the missing markers. Then it tries to find correspondence between the reprojected
 markers and the rejected candidates based on the minRepDistance and errorCorrectionRate parameters.
 If camera parameters and distortion coefficients are provided, missing markers are reprojected
 using projectPoint function. If not, missing marker projections are interpolated using global
 homography, and all the marker corners in the board must have the same Z coordinate.
Python prototype (for reference only):
refineDetectedMarkers(image, board, detectedCorners, detectedIds, rejectedCorners[, cameraMatrix[, distCoeffs[, recoveredIdxs]]]) -> detectedCorners, detectedIds, rejectedCorners, recoveredIdxs

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setDetectorParameters(self, detectorParameters)

 View Source

 @spec setDetectorParameters(t(), Evision.ArUco.DetectorParameters.t()) ::
 t() | {:error, String.t()}

setDetectorParameters
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	detectorParameters: DetectorParameters

Python prototype (for reference only):
setDetectorParameters(detectorParameters) -> None

 Link to this function

 setDictionary(self, dictionary)

 View Source

 @spec setDictionary(t(), Evision.ArUco.Dictionary.t()) :: t() | {:error, String.t()}

setDictionary
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	dictionary: Dictionary

Python prototype (for reference only):
setDictionary(dictionary) -> None

 Link to this function

 setRefineParameters(self, refineParameters)

 View Source

 @spec setRefineParameters(t(), Evision.ArUco.RefineParameters.t()) ::
 t() | {:error, String.t()}

setRefineParameters
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	refineParameters: RefineParameters

Python prototype (for reference only):
setRefineParameters(refineParameters) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

simplified API for language bindings
Positional Arguments
	self: Evision.ArUco.ArucoDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.ArUco.Board - Evision v0.1.39

Evision.ArUco.Board

 Summary

 Types

 t()

 Type that represents an ArUco.Board struct.

 Functions

 board(objPoints, dictionary, ids)

 Common Board constructor

 generateImage(self, outSize)

 Draw a planar board

 generateImage(self, outSize, opts)

 Draw a planar board

 getDictionary(self)

 return the Dictionary of markers employed for this board

 getIds(self)

 vector of the identifiers of the markers in the board (should be the same size as objPoints)

 getObjPoints(self)

 return array of object points of all the marker corners in the board.

 getRightBottomCorner(self)

 get coordinate of the bottom right corner of the board, is set when calling the function create()

 matchImagePoints(self, detectedCorners, detectedIds)

 Given a board configuration and a set of detected markers, returns the corresponding
image points and object points, can be used in solvePnP()

 matchImagePoints(self, detectedCorners, detectedIds, opts)

 Given a board configuration and a set of detected markers, returns the corresponding
image points and object points, can be used in solvePnP()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.Board{ref: reference()}

Type that represents an ArUco.Board struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 board(objPoints, dictionary, ids)

 View Source

 @spec board(
 [Evision.Mat.maybe_mat_in()],
 Evision.ArUco.Dictionary.t(),
 Evision.Mat.maybe_mat_in()
) ::
 t() | {:error, String.t()}

Common Board constructor
Positional Arguments
	objPoints: [Evision.Mat].
array of object points of all the marker corners in the board

	dictionary: Dictionary.
the dictionary of markers employed for this board

	ids: Evision.Mat.t().
vector of the identifiers of the markers in the board

Return
	self: Board

Python prototype (for reference only):
Board(objPoints, dictionary, ids) -> <aruco_Board object>

 Link to this function

 generateImage(self, outSize)

 View Source

 @spec generateImage(
 t(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Draw a planar board
Positional Arguments
	self: Evision.ArUco.Board.t()

	outSize: Size.
size of the output image in pixels.

Keyword Arguments
	marginSize: int.
minimum margins (in pixels) of the board in the output image

	borderBits: int.
width of the marker borders.

Return
	img: Evision.Mat.t().
output image with the board. The size of this image will be outSize
and the board will be on the center, keeping the board proportions.

 This function return the image of the board, ready to be printed.
Python prototype (for reference only):
generateImage(outSize[, img[, marginSize[, borderBits]]]) -> img

 Link to this function

 generateImage(self, outSize, opts)

 View Source

 @spec generateImage(
 t(),
 {number(), number()},
 [marginSize: term(), borderBits: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Draw a planar board
Positional Arguments
	self: Evision.ArUco.Board.t()

	outSize: Size.
size of the output image in pixels.

Keyword Arguments
	marginSize: int.
minimum margins (in pixels) of the board in the output image

	borderBits: int.
width of the marker borders.

Return
	img: Evision.Mat.t().
output image with the board. The size of this image will be outSize
and the board will be on the center, keeping the board proportions.

 This function return the image of the board, ready to be printed.
Python prototype (for reference only):
generateImage(outSize[, img[, marginSize[, borderBits]]]) -> img

 Link to this function

 getDictionary(self)

 View Source

 @spec getDictionary(t()) :: Evision.ArUco.Dictionary.t() | {:error, String.t()}

return the Dictionary of markers employed for this board
Positional Arguments
	self: Evision.ArUco.Board.t()

Return
	retval: Dictionary

Python prototype (for reference only):
getDictionary() -> retval

 Link to this function

 getIds(self)

 View Source

 @spec getIds(t()) :: [integer()] | {:error, String.t()}

vector of the identifiers of the markers in the board (should be the same size as objPoints)
Positional Arguments
	self: Evision.ArUco.Board.t()

Return
	retval: [int]

@return vector of the identifiers of the markers
Python prototype (for reference only):
getIds() -> retval

 Link to this function

 getObjPoints(self)

 View Source

 @spec getObjPoints(t()) :: [[{number(), number(), number()}]] | {:error, String.t()}

return array of object points of all the marker corners in the board.
Positional Arguments
	self: Evision.ArUco.Board.t()

Return
	retval: [[Point3f]]

 Each marker include its 4 corners in this order:
	objPoints[i][0] - left-top point of i-th marker
	objPoints[i][1] - right-top point of i-th marker
	objPoints[i][2] - right-bottom point of i-th marker
	objPoints[i][3] - left-bottom point of i-th marker

 Markers are placed in a certain order - row by row, left to right in every row. For M markers, the size is Mx4.
Python prototype (for reference only):
getObjPoints() -> retval

 Link to this function

 getRightBottomCorner(self)

 View Source

 @spec getRightBottomCorner(t()) ::
 {number(), number(), number()} | {:error, String.t()}

get coordinate of the bottom right corner of the board, is set when calling the function create()
Positional Arguments
	self: Evision.ArUco.Board.t()

Return
	retval: Point3f

Python prototype (for reference only):
getRightBottomCorner() -> retval

 Link to this function

 matchImagePoints(self, detectedCorners, detectedIds)

 View Source

 @spec matchImagePoints(t(), [Evision.Mat.maybe_mat_in()], Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Given a board configuration and a set of detected markers, returns the corresponding
image points and object points, can be used in solvePnP()
Positional Arguments
	self: Evision.ArUco.Board.t()

	detectedCorners: [Evision.Mat].
List of detected marker corners of the board.
For cv::Board and cv::GridBoard the method expects std::vector<std::vector<Point2f>> or std::vector<Mat> with Aruco marker corners.
For cv::CharucoBoard the method expects std::vector<Point2f> or Mat with ChAruco corners (chess board corners matched with Aruco markers).

	detectedIds: Evision.Mat.t().
List of identifiers for each marker or charuco corner.
For any Board class the method expects std::vector<int> or Mat.

Return
	objPoints: Evision.Mat.t().
Vector of marker points in the board coordinate space.
For any Board class the method expects std::vector<cv::Point3f> objectPoints or cv::Mat

	imgPoints: Evision.Mat.t().
Vector of marker points in the image coordinate space.
For any Board class the method expects std::vector<cv::Point2f> objectPoints or cv::Mat

@sa solvePnP
Python prototype (for reference only):
matchImagePoints(detectedCorners, detectedIds[, objPoints[, imgPoints]]) -> objPoints, imgPoints

 Link to this function

 matchImagePoints(self, detectedCorners, detectedIds, opts)

 View Source

 @spec matchImagePoints(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Given a board configuration and a set of detected markers, returns the corresponding
image points and object points, can be used in solvePnP()
Positional Arguments
	self: Evision.ArUco.Board.t()

	detectedCorners: [Evision.Mat].
List of detected marker corners of the board.
For cv::Board and cv::GridBoard the method expects std::vector<std::vector<Point2f>> or std::vector<Mat> with Aruco marker corners.
For cv::CharucoBoard the method expects std::vector<Point2f> or Mat with ChAruco corners (chess board corners matched with Aruco markers).

	detectedIds: Evision.Mat.t().
List of identifiers for each marker or charuco corner.
For any Board class the method expects std::vector<int> or Mat.

Return
	objPoints: Evision.Mat.t().
Vector of marker points in the board coordinate space.
For any Board class the method expects std::vector<cv::Point3f> objectPoints or cv::Mat

	imgPoints: Evision.Mat.t().
Vector of marker points in the image coordinate space.
For any Board class the method expects std::vector<cv::Point2f> objectPoints or cv::Mat

@sa solvePnP
Python prototype (for reference only):
matchImagePoints(detectedCorners, detectedIds[, objPoints[, imgPoints]]) -> objPoints, imgPoints

 Evision.ArUco.CharucoBoard - Evision v0.1.39

Evision.ArUco.CharucoBoard

 Summary

 Types

 t()

 Type that represents an ArUco.CharucoBoard struct.

 Functions

 charucoBoard(size, squareLength, markerLength, dictionary)

 CharucoBoard constructor

 charucoBoard(size, squareLength, markerLength, dictionary, opts)

 CharucoBoard constructor

 checkCharucoCornersCollinear(self, charucoIds)

 check whether the ChArUco markers are collinear

 getChessboardCorners(self)

 get CharucoBoard::chessboardCorners

 getChessboardSize(self)

 getChessboardSize

 getLegacyPattern(self)

 getLegacyPattern

 getMarkerLength(self)

 getMarkerLength

 getSquareLength(self)

 getSquareLength

 setLegacyPattern(self, legacyPattern)

 set legacy chessboard pattern.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.CharucoBoard{ref: reference()}

Type that represents an ArUco.CharucoBoard struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 charucoBoard(size, squareLength, markerLength, dictionary)

 View Source

 @spec charucoBoard(
 {number(), number()},
 number(),
 number(),
 Evision.ArUco.Dictionary.t()
) ::
 t() | {:error, String.t()}

CharucoBoard constructor
Positional Arguments
	size: Size.
number of chessboard squares in x and y directions

	squareLength: float.
squareLength chessboard square side length (normally in meters)

	markerLength: float.
marker side length (same unit than squareLength)

	dictionary: Dictionary.
dictionary of markers indicating the type of markers

Keyword Arguments
	ids: Evision.Mat.t().
array of id used markers
The first markers in the dictionary are used to fill the white chessboard squares.

Return
	self: Evision.ArUco.CharucoBoard.t()

Python prototype (for reference only):
CharucoBoard(size, squareLength, markerLength, dictionary[, ids]) -> <aruco_CharucoBoard object>

 Link to this function

 charucoBoard(size, squareLength, markerLength, dictionary, opts)

 View Source

 @spec charucoBoard(
 {number(), number()},
 number(),
 number(),
 Evision.ArUco.Dictionary.t(),
 [{:ids, term()}] | nil
) :: t() | {:error, String.t()}

CharucoBoard constructor
Positional Arguments
	size: Size.
number of chessboard squares in x and y directions

	squareLength: float.
squareLength chessboard square side length (normally in meters)

	markerLength: float.
marker side length (same unit than squareLength)

	dictionary: Dictionary.
dictionary of markers indicating the type of markers

Keyword Arguments
	ids: Evision.Mat.t().
array of id used markers
The first markers in the dictionary are used to fill the white chessboard squares.

Return
	self: Evision.ArUco.CharucoBoard.t()

Python prototype (for reference only):
CharucoBoard(size, squareLength, markerLength, dictionary[, ids]) -> <aruco_CharucoBoard object>

 Link to this function

 checkCharucoCornersCollinear(self, charucoIds)

 View Source

 @spec checkCharucoCornersCollinear(t(), Evision.Mat.maybe_mat_in()) ::
 boolean() | {:error, String.t()}

check whether the ChArUco markers are collinear
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

	charucoIds: Evision.Mat.t().
list of identifiers for each corner in charucoCorners per frame.

Return
	retval: bool

@return bool value, 1 (true) if detected corners form a line, 0 (false) if they do not.
 solvePnP, calibration functions will fail if the corners are collinear (true).
 The number of ids in charucoIDs should be <= the number of chessboard corners in the board.
 This functions checks whether the charuco corners are on a straight line (returns true, if so), or not (false).
 Axis parallel, as well as diagonal and other straight lines detected. Degenerate cases:
 for number of charucoIDs <= 2,the function returns true.
Python prototype (for reference only):
checkCharucoCornersCollinear(charucoIds) -> retval

 Link to this function

 getChessboardCorners(self)

 View Source

 @spec getChessboardCorners(t()) ::
 [{number(), number(), number()}] | {:error, String.t()}

get CharucoBoard::chessboardCorners
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

Return
	retval: [Point3f]

Python prototype (for reference only):
getChessboardCorners() -> retval

 Link to this function

 getChessboardSize(self)

 View Source

 @spec getChessboardSize(t()) :: {number(), number()} | {:error, String.t()}

getChessboardSize
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

Return
	retval: Size

Python prototype (for reference only):
getChessboardSize() -> retval

 Link to this function

 getLegacyPattern(self)

 View Source

 @spec getLegacyPattern(t()) :: boolean() | {:error, String.t()}

getLegacyPattern
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

Return
	retval: bool

Python prototype (for reference only):
getLegacyPattern() -> retval

 Link to this function

 getMarkerLength(self)

 View Source

 @spec getMarkerLength(t()) :: number() | {:error, String.t()}

getMarkerLength
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

Return
	retval: float

Python prototype (for reference only):
getMarkerLength() -> retval

 Link to this function

 getSquareLength(self)

 View Source

 @spec getSquareLength(t()) :: number() | {:error, String.t()}

getSquareLength
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()

Return
	retval: float

Python prototype (for reference only):
getSquareLength() -> retval

 Link to this function

 setLegacyPattern(self, legacyPattern)

 View Source

 @spec setLegacyPattern(t(), boolean()) :: t() | {:error, String.t()}

set legacy chessboard pattern.
Positional Arguments
	self: Evision.ArUco.CharucoBoard.t()
	legacyPattern: bool

 Legacy setting creates chessboard patterns starting with a white box in the upper left corner
 if there is an even row count of chessboard boxes, otherwise it starts with a black box.
 This setting ensures compatibility to patterns created with OpenCV versions prior OpenCV 4.6.0.
 See https://github.com/opencv/opencv/issues/23152.
 Default value: false.
Python prototype (for reference only):
setLegacyPattern(legacyPattern) -> None

 Evision.ArUco.CharucoDetector - Evision v0.1.39

Evision.ArUco.CharucoDetector

 Summary

 Types

 t()

 Type that represents an ArUco.CharucoDetector struct.

 Functions

 charucoDetector(board)

 Basic CharucoDetector constructor

 charucoDetector(board, opts)

 Basic CharucoDetector constructor

 clear(self)

 Clears the algorithm state

 detectBoard(self, image)

 detect aruco markers and interpolate position of ChArUco board corners

 detectBoard(self, image, opts)

 detect aruco markers and interpolate position of ChArUco board corners

 detectDiamonds(self, image)

 Detect ChArUco Diamond markers

 detectDiamonds(self, image, opts)

 Detect ChArUco Diamond markers

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBoard(self)

 getBoard

 getCharucoParameters(self)

 getCharucoParameters

 getDefaultName(self)

 getDefaultName

 getDetectorParameters(self)

 getDetectorParameters

 getRefineParameters(self)

 getRefineParameters

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBoard(self, board)

 setBoard

 setCharucoParameters(self, charucoParameters)

 setCharucoParameters

 setDetectorParameters(self, detectorParameters)

 setDetectorParameters

 setRefineParameters(self, refineParameters)

 setRefineParameters

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.CharucoDetector{ref: reference()}

Type that represents an ArUco.CharucoDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 charucoDetector(board)

 View Source

 @spec charucoDetector(Evision.ArUco.CharucoBoard.t()) :: t() | {:error, String.t()}

Basic CharucoDetector constructor
Positional Arguments
	board: Evision.ArUco.CharucoBoard.t().
ChAruco board

Keyword Arguments
	charucoParams: CharucoParameters.
charuco detection parameters

	detectorParams: DetectorParameters.
marker detection parameters

	refineParams: RefineParameters.
marker refine detection parameters

Return
	self: CharucoDetector

Python prototype (for reference only):
CharucoDetector(board[, charucoParams[, detectorParams[, refineParams]]]) -> <aruco_CharucoDetector object>

 Link to this function

 charucoDetector(board, opts)

 View Source

 @spec charucoDetector(
 Evision.ArUco.CharucoBoard.t(),
 [detectorParams: term(), refineParams: term(), charucoParams: term()] | nil
) :: t() | {:error, String.t()}

Basic CharucoDetector constructor
Positional Arguments
	board: Evision.ArUco.CharucoBoard.t().
ChAruco board

Keyword Arguments
	charucoParams: CharucoParameters.
charuco detection parameters

	detectorParams: DetectorParameters.
marker detection parameters

	refineParams: RefineParameters.
marker refine detection parameters

Return
	self: CharucoDetector

Python prototype (for reference only):
CharucoDetector(board[, charucoParams[, detectorParams[, refineParams]]]) -> <aruco_CharucoDetector object>

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detectBoard(self, image)

 View Source

 @spec detectBoard(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

detect aruco markers and interpolate position of ChArUco board corners
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

	image: Evision.Mat.t().
input image necesary for corner refinement. Note that markers are not detected and
should be sent in corners and ids parameters.

Return
	charucoCorners: Evision.Mat.t().
interpolated chessboard corners.

	charucoIds: Evision.Mat.t().
interpolated chessboard corners identifiers.

	markerCorners: [Evision.Mat].
vector of already detected markers corners. For each marker, its four
corners are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the
dimensions of this array should be Nx4. The order of the corners should be clockwise.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

	markerIds: Evision.Mat.t().
list of identifiers for each marker in corners.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

 This function receives the detected markers and returns the 2D position of the chessboard corners
 from a ChArUco board using the detected Aruco markers.
 If markerCorners and markerCorners are empty, the detectMarkers() will run and detect aruco markers and ids.
 If camera parameters are provided, the process is based in an approximated pose estimation, else it is based on local homography.
 Only visible corners are returned. For each corner, its corresponding identifier is also returned in charucoIds.
@sa findChessboardCorners
Python prototype (for reference only):
detectBoard(image[, charucoCorners[, charucoIds[, markerCorners[, markerIds]]]]) -> charucoCorners, charucoIds, markerCorners, markerIds

 Link to this function

 detectBoard(self, image, opts)

 View Source

 @spec detectBoard(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

detect aruco markers and interpolate position of ChArUco board corners
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

	image: Evision.Mat.t().
input image necesary for corner refinement. Note that markers are not detected and
should be sent in corners and ids parameters.

Return
	charucoCorners: Evision.Mat.t().
interpolated chessboard corners.

	charucoIds: Evision.Mat.t().
interpolated chessboard corners identifiers.

	markerCorners: [Evision.Mat].
vector of already detected markers corners. For each marker, its four
corners are provided, (e.g std::vector<std::vector<cv::Point2f> >). For N detected markers, the
dimensions of this array should be Nx4. The order of the corners should be clockwise.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

	markerIds: Evision.Mat.t().
list of identifiers for each marker in corners.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

 This function receives the detected markers and returns the 2D position of the chessboard corners
 from a ChArUco board using the detected Aruco markers.
 If markerCorners and markerCorners are empty, the detectMarkers() will run and detect aruco markers and ids.
 If camera parameters are provided, the process is based in an approximated pose estimation, else it is based on local homography.
 Only visible corners are returned. For each corner, its corresponding identifier is also returned in charucoIds.
@sa findChessboardCorners
Python prototype (for reference only):
detectBoard(image[, charucoCorners[, charucoIds[, markerCorners[, markerIds]]]]) -> charucoCorners, charucoIds, markerCorners, markerIds

 Link to this function

 detectDiamonds(self, image)

 View Source

 @spec detectDiamonds(t(), Evision.Mat.maybe_mat_in()) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Detect ChArUco Diamond markers
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

	image: Evision.Mat.t().
input image necessary for corner subpixel.

Return
	diamondCorners: [Evision.Mat].
output list of detected diamond corners (4 corners per diamond). The order
is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> >).

	diamondIds: Evision.Mat.t().
ids of the diamonds in diamondCorners. The id of each diamond is in fact of
type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
diamond.

	markerCorners: [Evision.Mat].
list of detected marker corners from detectMarkers function.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

	markerIds: Evision.Mat.t().
list of marker ids in markerCorners.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

 This function detects Diamond markers from the previous detected ArUco markers. The diamonds
 are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
 are provided, the diamond search is based on reprojection. If not, diamond search is based on
 homography. Homography is faster than reprojection, but less accurate.
Python prototype (for reference only):
detectDiamonds(image[, diamondCorners[, diamondIds[, markerCorners[, markerIds]]]]) -> diamondCorners, diamondIds, markerCorners, markerIds

 Link to this function

 detectDiamonds(self, image, opts)

 View Source

 @spec detectDiamonds(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {[Evision.Mat.t()], Evision.Mat.t(), [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Detect ChArUco Diamond markers
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

	image: Evision.Mat.t().
input image necessary for corner subpixel.

Return
	diamondCorners: [Evision.Mat].
output list of detected diamond corners (4 corners per diamond). The order
is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> >).

	diamondIds: Evision.Mat.t().
ids of the diamonds in diamondCorners. The id of each diamond is in fact of
type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
diamond.

	markerCorners: [Evision.Mat].
list of detected marker corners from detectMarkers function.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

	markerIds: Evision.Mat.t().
list of marker ids in markerCorners.
If markerCorners and markerCorners are empty, the function detect aruco markers and ids.

 This function detects Diamond markers from the previous detected ArUco markers. The diamonds
 are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
 are provided, the diamond search is based on reprojection. If not, diamond search is based on
 homography. Homography is faster than reprojection, but less accurate.
Python prototype (for reference only):
detectDiamonds(image[, diamondCorners[, diamondIds[, markerCorners[, markerIds]]]]) -> diamondCorners, diamondIds, markerCorners, markerIds

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBoard(self)

 View Source

 @spec getBoard(t()) :: Evision.ArUco.CharucoBoard.t() | {:error, String.t()}

getBoard
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: Evision.ArUco.CharucoBoard.t()

Python prototype (for reference only):
getBoard() -> retval

 Link to this function

 getCharucoParameters(self)

 View Source

 @spec getCharucoParameters(t()) ::
 Evision.ArUco.CharucoParameters.t() | {:error, String.t()}

getCharucoParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: CharucoParameters

Python prototype (for reference only):
getCharucoParameters() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDetectorParameters(self)

 View Source

 @spec getDetectorParameters(t()) ::
 Evision.ArUco.DetectorParameters.t() | {:error, String.t()}

getDetectorParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: DetectorParameters

Python prototype (for reference only):
getDetectorParameters() -> retval

 Link to this function

 getRefineParameters(self)

 View Source

 @spec getRefineParameters(t()) ::
 Evision.ArUco.RefineParameters.t() | {:error, String.t()}

getRefineParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()

Return
	retval: RefineParameters

Python prototype (for reference only):
getRefineParameters() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBoard(self, board)

 View Source

 @spec setBoard(t(), Evision.ArUco.CharucoBoard.t()) :: t() | {:error, String.t()}

setBoard
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	board: Evision.ArUco.CharucoBoard.t()

Python prototype (for reference only):
setBoard(board) -> None

 Link to this function

 setCharucoParameters(self, charucoParameters)

 View Source

 @spec setCharucoParameters(t(), Evision.ArUco.CharucoParameters.t()) ::
 t() | {:error, String.t()}

setCharucoParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	charucoParameters: CharucoParameters

Python prototype (for reference only):
setCharucoParameters(charucoParameters) -> None

 Link to this function

 setDetectorParameters(self, detectorParameters)

 View Source

 @spec setDetectorParameters(t(), Evision.ArUco.DetectorParameters.t()) ::
 t() | {:error, String.t()}

setDetectorParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	detectorParameters: DetectorParameters

Python prototype (for reference only):
setDetectorParameters(detectorParameters) -> None

 Link to this function

 setRefineParameters(self, refineParameters)

 View Source

 @spec setRefineParameters(t(), Evision.ArUco.RefineParameters.t()) ::
 t() | {:error, String.t()}

setRefineParameters
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	refineParameters: RefineParameters

Python prototype (for reference only):
setRefineParameters(refineParameters) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ArUco.CharucoDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ArUco.CharucoParameters - Evision v0.1.39

Evision.ArUco.CharucoParameters

 Summary

 Types

 t()

 Type that represents an ArUco.CharucoParameters struct.

 Functions

 charucoParameters()

 CharucoParameters

 get_cameraMatrix(self)

 get_distCoeffs(self)

 get_minMarkers(self)

 get_tryRefineMarkers(self)

 set_cameraMatrix(self, prop)

 set_distCoeffs(self, prop)

 set_minMarkers(self, prop)

 set_tryRefineMarkers(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.CharucoParameters{ref: reference()}

Type that represents an ArUco.CharucoParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 charucoParameters()

 View Source

 @spec charucoParameters() :: t() | {:error, String.t()}

CharucoParameters
Return
	self: CharucoParameters

Python prototype (for reference only):
CharucoParameters() -> <aruco_CharucoParameters object>

 Link to this function

 get_cameraMatrix(self)

 View Source

 @spec get_cameraMatrix(t()) :: Evision.Mat.t()

 Link to this function

 get_distCoeffs(self)

 View Source

 @spec get_distCoeffs(t()) :: Evision.Mat.t()

 Link to this function

 get_minMarkers(self)

 View Source

 @spec get_minMarkers(t()) :: integer()

 Link to this function

 get_tryRefineMarkers(self)

 View Source

 @spec get_tryRefineMarkers(t()) :: boolean()

 Link to this function

 set_cameraMatrix(self, prop)

 View Source

 @spec set_cameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_distCoeffs(self, prop)

 View Source

 @spec set_distCoeffs(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_minMarkers(self, prop)

 View Source

 @spec set_minMarkers(t(), integer()) :: t()

 Link to this function

 set_tryRefineMarkers(self, prop)

 View Source

 @spec set_tryRefineMarkers(t(), boolean()) :: t()

 Evision.ArUco.DetectorParameters - Evision v0.1.39

Evision.ArUco.DetectorParameters

 Summary

 Types

 t()

 Type that represents an ArUco.DetectorParameters struct.

 Functions

 detectorParameters()

 DetectorParameters

 get_adaptiveThreshConstant(self)

 get_adaptiveThreshWinSizeMax(self)

 get_adaptiveThreshWinSizeMin(self)

 get_adaptiveThreshWinSizeStep(self)

 get_aprilTagCriticalRad(self)

 get_aprilTagDeglitch(self)

 get_aprilTagMaxLineFitMse(self)

 get_aprilTagMaxNmaxima(self)

 get_aprilTagMinClusterPixels(self)

 get_aprilTagMinWhiteBlackDiff(self)

 get_aprilTagQuadDecimate(self)

 get_aprilTagQuadSigma(self)

 get_cornerRefinementMaxIterations(self)

 get_cornerRefinementMethod(self)

 get_cornerRefinementMinAccuracy(self)

 get_cornerRefinementWinSize(self)

 get_detectInvertedMarker(self)

 get_errorCorrectionRate(self)

 get_markerBorderBits(self)

 get_maxErroneousBitsInBorderRate(self)

 get_maxMarkerPerimeterRate(self)

 get_minCornerDistanceRate(self)

 get_minDistanceToBorder(self)

 get_minGroupDistance(self)

 get_minMarkerDistanceRate(self)

 get_minMarkerLengthRatioOriginalImg(self)

 get_minMarkerPerimeterRate(self)

 get_minOtsuStdDev(self)

 get_minSideLengthCanonicalImg(self)

 get_perspectiveRemoveIgnoredMarginPerCell(self)

 get_perspectiveRemovePixelPerCell(self)

 get_polygonalApproxAccuracyRate(self)

 get_relativeCornerRefinmentWinSize(self)

 get_useAruco3Detection(self)

 readDetectorParameters(self, fn_)

 Read a new set of DetectorParameters from FileNode (use FileStorage.root()).

 set_adaptiveThreshConstant(self, prop)

 set_adaptiveThreshWinSizeMax(self, prop)

 set_adaptiveThreshWinSizeMin(self, prop)

 set_adaptiveThreshWinSizeStep(self, prop)

 set_aprilTagCriticalRad(self, prop)

 set_aprilTagDeglitch(self, prop)

 set_aprilTagMaxLineFitMse(self, prop)

 set_aprilTagMaxNmaxima(self, prop)

 set_aprilTagMinClusterPixels(self, prop)

 set_aprilTagMinWhiteBlackDiff(self, prop)

 set_aprilTagQuadDecimate(self, prop)

 set_aprilTagQuadSigma(self, prop)

 set_cornerRefinementMaxIterations(self, prop)

 set_cornerRefinementMethod(self, prop)

 set_cornerRefinementMinAccuracy(self, prop)

 set_cornerRefinementWinSize(self, prop)

 set_detectInvertedMarker(self, prop)

 set_errorCorrectionRate(self, prop)

 set_markerBorderBits(self, prop)

 set_maxErroneousBitsInBorderRate(self, prop)

 set_maxMarkerPerimeterRate(self, prop)

 set_minCornerDistanceRate(self, prop)

 set_minDistanceToBorder(self, prop)

 set_minGroupDistance(self, prop)

 set_minMarkerDistanceRate(self, prop)

 set_minMarkerLengthRatioOriginalImg(self, prop)

 set_minMarkerPerimeterRate(self, prop)

 set_minOtsuStdDev(self, prop)

 set_minSideLengthCanonicalImg(self, prop)

 set_perspectiveRemoveIgnoredMarginPerCell(self, prop)

 set_perspectiveRemovePixelPerCell(self, prop)

 set_polygonalApproxAccuracyRate(self, prop)

 set_relativeCornerRefinmentWinSize(self, prop)

 set_useAruco3Detection(self, prop)

 writeDetectorParameters(self, fs)

 Write a set of DetectorParameters to FileStorage

 writeDetectorParameters(self, fs, opts)

 Write a set of DetectorParameters to FileStorage

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.DetectorParameters{ref: reference()}

Type that represents an ArUco.DetectorParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detectorParameters()

 View Source

 @spec detectorParameters() :: t() | {:error, String.t()}

DetectorParameters
Return
	self: DetectorParameters

Python prototype (for reference only):
DetectorParameters() -> <aruco_DetectorParameters object>

 Link to this function

 get_adaptiveThreshConstant(self)

 View Source

 @spec get_adaptiveThreshConstant(t()) :: number()

 Link to this function

 get_adaptiveThreshWinSizeMax(self)

 View Source

 @spec get_adaptiveThreshWinSizeMax(t()) :: integer()

 Link to this function

 get_adaptiveThreshWinSizeMin(self)

 View Source

 @spec get_adaptiveThreshWinSizeMin(t()) :: integer()

 Link to this function

 get_adaptiveThreshWinSizeStep(self)

 View Source

 @spec get_adaptiveThreshWinSizeStep(t()) :: integer()

 Link to this function

 get_aprilTagCriticalRad(self)

 View Source

 @spec get_aprilTagCriticalRad(t()) :: number()

 Link to this function

 get_aprilTagDeglitch(self)

 View Source

 @spec get_aprilTagDeglitch(t()) :: integer()

 Link to this function

 get_aprilTagMaxLineFitMse(self)

 View Source

 @spec get_aprilTagMaxLineFitMse(t()) :: number()

 Link to this function

 get_aprilTagMaxNmaxima(self)

 View Source

 @spec get_aprilTagMaxNmaxima(t()) :: integer()

 Link to this function

 get_aprilTagMinClusterPixels(self)

 View Source

 @spec get_aprilTagMinClusterPixels(t()) :: integer()

 Link to this function

 get_aprilTagMinWhiteBlackDiff(self)

 View Source

 @spec get_aprilTagMinWhiteBlackDiff(t()) :: integer()

 Link to this function

 get_aprilTagQuadDecimate(self)

 View Source

 @spec get_aprilTagQuadDecimate(t()) :: number()

 Link to this function

 get_aprilTagQuadSigma(self)

 View Source

 @spec get_aprilTagQuadSigma(t()) :: number()

 Link to this function

 get_cornerRefinementMaxIterations(self)

 View Source

 @spec get_cornerRefinementMaxIterations(t()) :: integer()

 Link to this function

 get_cornerRefinementMethod(self)

 View Source

 @spec get_cornerRefinementMethod(t()) :: integer()

 Link to this function

 get_cornerRefinementMinAccuracy(self)

 View Source

 @spec get_cornerRefinementMinAccuracy(t()) :: number()

 Link to this function

 get_cornerRefinementWinSize(self)

 View Source

 @spec get_cornerRefinementWinSize(t()) :: integer()

 Link to this function

 get_detectInvertedMarker(self)

 View Source

 @spec get_detectInvertedMarker(t()) :: boolean()

 Link to this function

 get_errorCorrectionRate(self)

 View Source

 @spec get_errorCorrectionRate(t()) :: number()

 Link to this function

 get_markerBorderBits(self)

 View Source

 @spec get_markerBorderBits(t()) :: integer()

 Link to this function

 get_maxErroneousBitsInBorderRate(self)

 View Source

 @spec get_maxErroneousBitsInBorderRate(t()) :: number()

 Link to this function

 get_maxMarkerPerimeterRate(self)

 View Source

 @spec get_maxMarkerPerimeterRate(t()) :: number()

 Link to this function

 get_minCornerDistanceRate(self)

 View Source

 @spec get_minCornerDistanceRate(t()) :: number()

 Link to this function

 get_minDistanceToBorder(self)

 View Source

 @spec get_minDistanceToBorder(t()) :: integer()

 Link to this function

 get_minGroupDistance(self)

 View Source

 @spec get_minGroupDistance(t()) :: number()

 Link to this function

 get_minMarkerDistanceRate(self)

 View Source

 @spec get_minMarkerDistanceRate(t()) :: number()

 Link to this function

 get_minMarkerLengthRatioOriginalImg(self)

 View Source

 @spec get_minMarkerLengthRatioOriginalImg(t()) :: number()

 Link to this function

 get_minMarkerPerimeterRate(self)

 View Source

 @spec get_minMarkerPerimeterRate(t()) :: number()

 Link to this function

 get_minOtsuStdDev(self)

 View Source

 @spec get_minOtsuStdDev(t()) :: number()

 Link to this function

 get_minSideLengthCanonicalImg(self)

 View Source

 @spec get_minSideLengthCanonicalImg(t()) :: integer()

 Link to this function

 get_perspectiveRemoveIgnoredMarginPerCell(self)

 View Source

 @spec get_perspectiveRemoveIgnoredMarginPerCell(t()) :: number()

 Link to this function

 get_perspectiveRemovePixelPerCell(self)

 View Source

 @spec get_perspectiveRemovePixelPerCell(t()) :: integer()

 Link to this function

 get_polygonalApproxAccuracyRate(self)

 View Source

 @spec get_polygonalApproxAccuracyRate(t()) :: number()

 Link to this function

 get_relativeCornerRefinmentWinSize(self)

 View Source

 @spec get_relativeCornerRefinmentWinSize(t()) :: number()

 Link to this function

 get_useAruco3Detection(self)

 View Source

 @spec get_useAruco3Detection(t()) :: boolean()

 Link to this function

 readDetectorParameters(self, fn_)

 View Source

 @spec readDetectorParameters(t(), Evision.FileNode.t()) ::
 boolean() | {:error, String.t()}

Read a new set of DetectorParameters from FileNode (use FileStorage.root()).
Positional Arguments
	self: Evision.ArUco.DetectorParameters.t()
	fn_: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
readDetectorParameters(fn_) -> retval

 Link to this function

 set_adaptiveThreshConstant(self, prop)

 View Source

 @spec set_adaptiveThreshConstant(t(), number()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeMax(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeMax(t(), integer()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeMin(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeMin(t(), integer()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeStep(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeStep(t(), integer()) :: t()

 Link to this function

 set_aprilTagCriticalRad(self, prop)

 View Source

 @spec set_aprilTagCriticalRad(t(), number()) :: t()

 Link to this function

 set_aprilTagDeglitch(self, prop)

 View Source

 @spec set_aprilTagDeglitch(t(), integer()) :: t()

 Link to this function

 set_aprilTagMaxLineFitMse(self, prop)

 View Source

 @spec set_aprilTagMaxLineFitMse(t(), number()) :: t()

 Link to this function

 set_aprilTagMaxNmaxima(self, prop)

 View Source

 @spec set_aprilTagMaxNmaxima(t(), integer()) :: t()

 Link to this function

 set_aprilTagMinClusterPixels(self, prop)

 View Source

 @spec set_aprilTagMinClusterPixels(t(), integer()) :: t()

 Link to this function

 set_aprilTagMinWhiteBlackDiff(self, prop)

 View Source

 @spec set_aprilTagMinWhiteBlackDiff(t(), integer()) :: t()

 Link to this function

 set_aprilTagQuadDecimate(self, prop)

 View Source

 @spec set_aprilTagQuadDecimate(t(), number()) :: t()

 Link to this function

 set_aprilTagQuadSigma(self, prop)

 View Source

 @spec set_aprilTagQuadSigma(t(), number()) :: t()

 Link to this function

 set_cornerRefinementMaxIterations(self, prop)

 View Source

 @spec set_cornerRefinementMaxIterations(t(), integer()) :: t()

 Link to this function

 set_cornerRefinementMethod(self, prop)

 View Source

 @spec set_cornerRefinementMethod(t(), integer()) :: t()

 Link to this function

 set_cornerRefinementMinAccuracy(self, prop)

 View Source

 @spec set_cornerRefinementMinAccuracy(t(), number()) :: t()

 Link to this function

 set_cornerRefinementWinSize(self, prop)

 View Source

 @spec set_cornerRefinementWinSize(t(), integer()) :: t()

 Link to this function

 set_detectInvertedMarker(self, prop)

 View Source

 @spec set_detectInvertedMarker(t(), boolean()) :: t()

 Link to this function

 set_errorCorrectionRate(self, prop)

 View Source

 @spec set_errorCorrectionRate(t(), number()) :: t()

 Link to this function

 set_markerBorderBits(self, prop)

 View Source

 @spec set_markerBorderBits(t(), integer()) :: t()

 Link to this function

 set_maxErroneousBitsInBorderRate(self, prop)

 View Source

 @spec set_maxErroneousBitsInBorderRate(t(), number()) :: t()

 Link to this function

 set_maxMarkerPerimeterRate(self, prop)

 View Source

 @spec set_maxMarkerPerimeterRate(t(), number()) :: t()

 Link to this function

 set_minCornerDistanceRate(self, prop)

 View Source

 @spec set_minCornerDistanceRate(t(), number()) :: t()

 Link to this function

 set_minDistanceToBorder(self, prop)

 View Source

 @spec set_minDistanceToBorder(t(), integer()) :: t()

 Link to this function

 set_minGroupDistance(self, prop)

 View Source

 @spec set_minGroupDistance(t(), number()) :: t()

 Link to this function

 set_minMarkerDistanceRate(self, prop)

 View Source

 @spec set_minMarkerDistanceRate(t(), number()) :: t()

 Link to this function

 set_minMarkerLengthRatioOriginalImg(self, prop)

 View Source

 @spec set_minMarkerLengthRatioOriginalImg(t(), number()) :: t()

 Link to this function

 set_minMarkerPerimeterRate(self, prop)

 View Source

 @spec set_minMarkerPerimeterRate(t(), number()) :: t()

 Link to this function

 set_minOtsuStdDev(self, prop)

 View Source

 @spec set_minOtsuStdDev(t(), number()) :: t()

 Link to this function

 set_minSideLengthCanonicalImg(self, prop)

 View Source

 @spec set_minSideLengthCanonicalImg(t(), integer()) :: t()

 Link to this function

 set_perspectiveRemoveIgnoredMarginPerCell(self, prop)

 View Source

 @spec set_perspectiveRemoveIgnoredMarginPerCell(t(), number()) :: t()

 Link to this function

 set_perspectiveRemovePixelPerCell(self, prop)

 View Source

 @spec set_perspectiveRemovePixelPerCell(t(), integer()) :: t()

 Link to this function

 set_polygonalApproxAccuracyRate(self, prop)

 View Source

 @spec set_polygonalApproxAccuracyRate(t(), number()) :: t()

 Link to this function

 set_relativeCornerRefinmentWinSize(self, prop)

 View Source

 @spec set_relativeCornerRefinmentWinSize(t(), number()) :: t()

 Link to this function

 set_useAruco3Detection(self, prop)

 View Source

 @spec set_useAruco3Detection(t(), boolean()) :: t()

 Link to this function

 writeDetectorParameters(self, fs)

 View Source

 @spec writeDetectorParameters(t(), Evision.FileStorage.t()) ::
 boolean() | {:error, String.t()}

Write a set of DetectorParameters to FileStorage
Positional Arguments
	self: Evision.ArUco.DetectorParameters.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Return
	retval: bool

Python prototype (for reference only):
writeDetectorParameters(fs[, name]) -> retval

 Link to this function

 writeDetectorParameters(self, fs, opts)

 View Source

 @spec writeDetectorParameters(t(), Evision.FileStorage.t(), [{:name, term()}] | nil) ::
 boolean() | {:error, String.t()}

Write a set of DetectorParameters to FileStorage
Positional Arguments
	self: Evision.ArUco.DetectorParameters.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Return
	retval: bool

Python prototype (for reference only):
writeDetectorParameters(fs[, name]) -> retval

 Evision.ArUco.Dictionary - Evision v0.1.39

Evision.ArUco.Dictionary

 Summary

 Types

 t()

 Type that represents an ArUco.Dictionary struct.

 Functions

 dictionary()

 Dictionary

 dictionary(bytesList, markerSize)

 Basic ArUco dictionary constructor

 dictionary(bytesList, markerSize, opts)

 Basic ArUco dictionary constructor

 generateImageMarker(self, id, sidePixels)

 Generate a canonical marker image

 generateImageMarker(self, id, sidePixels, opts)

 Generate a canonical marker image

 get_bytesList(self)

 get_markerSize(self)

 get_maxCorrectionBits(self)

 getBitsFromByteList(byteList, markerSize)

 Transform list of bytes to matrix of bits

 getByteListFromBits(bits)

 Transform matrix of bits to list of bytes with 4 marker rotations

 getDistanceToId(self, bits, id)

 Returns Hamming distance of the input bits to the specific id.

 getDistanceToId(self, bits, id, opts)

 Returns Hamming distance of the input bits to the specific id.

 identify(self, onlyBits, maxCorrectionRate)

 Given a matrix of bits. Returns whether if marker is identified or not.

 readDictionary(self, fn_)

 Read a new dictionary from FileNode.

 set_bytesList(self, prop)

 set_markerSize(self, prop)

 set_maxCorrectionBits(self, prop)

 writeDictionary(self, fs)

 Write a dictionary to FileStorage, format is the same as in readDictionary().

 writeDictionary(self, fs, opts)

 Write a dictionary to FileStorage, format is the same as in readDictionary().

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.Dictionary{ref: reference()}

Type that represents an ArUco.Dictionary struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 dictionary()

 View Source

 @spec dictionary() :: t() | {:error, String.t()}

Dictionary
Return
	self: Dictionary

Python prototype (for reference only):
Dictionary() -> <aruco_Dictionary object>

 Link to this function

 dictionary(bytesList, markerSize)

 View Source

 @spec dictionary(Evision.Mat.maybe_mat_in(), integer()) :: t() | {:error, String.t()}

Basic ArUco dictionary constructor
Positional Arguments
	bytesList: Evision.Mat.t().
bits for all ArUco markers in dictionary see memory layout in the class description

	markerSize: int.
ArUco marker size in units

Keyword Arguments
	maxcorr: int.
maximum number of bits that can be corrected

Return
	self: Dictionary

Python prototype (for reference only):
Dictionary(bytesList, _markerSize[, maxcorr]) -> <aruco_Dictionary object>

 Link to this function

 dictionary(bytesList, markerSize, opts)

 View Source

 @spec dictionary(Evision.Mat.maybe_mat_in(), integer(), [{:maxcorr, term()}] | nil) ::
 t() | {:error, String.t()}

Basic ArUco dictionary constructor
Positional Arguments
	bytesList: Evision.Mat.t().
bits for all ArUco markers in dictionary see memory layout in the class description

	markerSize: int.
ArUco marker size in units

Keyword Arguments
	maxcorr: int.
maximum number of bits that can be corrected

Return
	self: Dictionary

Python prototype (for reference only):
Dictionary(bytesList, _markerSize[, maxcorr]) -> <aruco_Dictionary object>

 Link to this function

 generateImageMarker(self, id, sidePixels)

 View Source

 @spec generateImageMarker(t(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Generate a canonical marker image
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	id: int
	sidePixels: int

Keyword Arguments
	borderBits: int.

Return
	img: Evision.Mat.t().

Python prototype (for reference only):
generateImageMarker(id, sidePixels[, _img[, borderBits]]) -> _img

 Link to this function

 generateImageMarker(self, id, sidePixels, opts)

 View Source

 @spec generateImageMarker(t(), integer(), integer(), [{:borderBits, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Generate a canonical marker image
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	id: int
	sidePixels: int

Keyword Arguments
	borderBits: int.

Return
	img: Evision.Mat.t().

Python prototype (for reference only):
generateImageMarker(id, sidePixels[, _img[, borderBits]]) -> _img

 Link to this function

 get_bytesList(self)

 View Source

 @spec get_bytesList(t()) :: Evision.Mat.t()

 Link to this function

 get_markerSize(self)

 View Source

 @spec get_markerSize(t()) :: integer()

 Link to this function

 get_maxCorrectionBits(self)

 View Source

 @spec get_maxCorrectionBits(t()) :: integer()

 Link to this function

 getBitsFromByteList(byteList, markerSize)

 View Source

 @spec getBitsFromByteList(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Transform list of bytes to matrix of bits
Positional Arguments
	byteList: Evision.Mat.t()
	markerSize: int

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getBitsFromByteList(byteList, markerSize) -> retval

 Link to this function

 getByteListFromBits(bits)

 View Source

 @spec getByteListFromBits(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Transform matrix of bits to list of bytes with 4 marker rotations
Positional Arguments
	bits: Evision.Mat.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getByteListFromBits(bits) -> retval

 Link to this function

 getDistanceToId(self, bits, id)

 View Source

 @spec getDistanceToId(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 integer() | {:error, String.t()}

Returns Hamming distance of the input bits to the specific id.
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	bits: Evision.Mat.t()
	id: int

Keyword Arguments
	allRotations: bool.

Return
	retval: int

 If allRotations flag is set, the four posible marker rotations are considered
Python prototype (for reference only):
getDistanceToId(bits, id[, allRotations]) -> retval

 Link to this function

 getDistanceToId(self, bits, id, opts)

 View Source

 @spec getDistanceToId(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:allRotations, term()}] | nil
) ::
 integer() | {:error, String.t()}

Returns Hamming distance of the input bits to the specific id.
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	bits: Evision.Mat.t()
	id: int

Keyword Arguments
	allRotations: bool.

Return
	retval: int

 If allRotations flag is set, the four posible marker rotations are considered
Python prototype (for reference only):
getDistanceToId(bits, id[, allRotations]) -> retval

 Link to this function

 identify(self, onlyBits, maxCorrectionRate)

 View Source

 @spec identify(t(), Evision.Mat.maybe_mat_in(), number()) ::
 {integer(), integer()} | false | {:error, String.t()}

Given a matrix of bits. Returns whether if marker is identified or not.
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	onlyBits: Evision.Mat.t()
	maxCorrectionRate: double

Return
	retval: bool
	idx: int
	rotation: int

 Returns reference to the marker id in the dictionary (if any) and its rotation.
Python prototype (for reference only):
identify(onlyBits, maxCorrectionRate) -> retval, idx, rotation

 Link to this function

 readDictionary(self, fn_)

 View Source

 @spec readDictionary(t(), Evision.FileNode.t()) :: boolean() | {:error, String.t()}

Read a new dictionary from FileNode.
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	fn_: Evision.FileNode.t()

Return
	retval: bool

 Dictionary example in YAML format:\n
 nmarkers: 35\n
 markersize: 6\n
 maxCorrectionBits: 5\n
 marker_0: "101011111011111001001001101100000000"\n
 ...\n
 marker_34: "011111010000111011111110110101100101"
Python prototype (for reference only):
readDictionary(fn_) -> retval

 Link to this function

 set_bytesList(self, prop)

 View Source

 @spec set_bytesList(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_markerSize(self, prop)

 View Source

 @spec set_markerSize(t(), integer()) :: t()

 Link to this function

 set_maxCorrectionBits(self, prop)

 View Source

 @spec set_maxCorrectionBits(t(), integer()) :: t()

 Link to this function

 writeDictionary(self, fs)

 View Source

 @spec writeDictionary(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}

Write a dictionary to FileStorage, format is the same as in readDictionary().
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Python prototype (for reference only):
writeDictionary(fs[, name]) -> None

 Link to this function

 writeDictionary(self, fs, opts)

 View Source

 @spec writeDictionary(t(), Evision.FileStorage.t(), [{:name, term()}] | nil) ::
 t() | {:error, String.t()}

Write a dictionary to FileStorage, format is the same as in readDictionary().
Positional Arguments
	self: Evision.ArUco.Dictionary.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Python prototype (for reference only):
writeDictionary(fs[, name]) -> None

 Evision.ArUco.EstimateParameters - Evision v0.1.39

Evision.ArUco.EstimateParameters

 Summary

 Types

 t()

 Type that represents an ArUco.EstimateParameters struct.

 Functions

 estimateParameters()

 EstimateParameters

 get_pattern(self)

 get_solvePnPMethod(self)

 get_useExtrinsicGuess(self)

 set_pattern(self, prop)

 set_solvePnPMethod(self, prop)

 set_useExtrinsicGuess(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.EstimateParameters{ref: reference()}

Type that represents an ArUco.EstimateParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 estimateParameters()

 View Source

 @spec estimateParameters() :: t() | {:error, String.t()}

EstimateParameters
Return
	self: EstimateParameters

Python prototype (for reference only):
EstimateParameters() -> <aruco_EstimateParameters object>

 Link to this function

 get_pattern(self)

 View Source

 @spec get_pattern(t()) :: integer()

 Link to this function

 get_solvePnPMethod(self)

 View Source

 @spec get_solvePnPMethod(t()) :: integer()

 Link to this function

 get_useExtrinsicGuess(self)

 View Source

 @spec get_useExtrinsicGuess(t()) :: boolean()

 Link to this function

 set_pattern(self, prop)

 View Source

 @spec set_pattern(t(), integer()) :: t()

 Link to this function

 set_solvePnPMethod(self, prop)

 View Source

 @spec set_solvePnPMethod(t(), integer()) :: t()

 Link to this function

 set_useExtrinsicGuess(self, prop)

 View Source

 @spec set_useExtrinsicGuess(t(), boolean()) :: t()

 Evision.ArUco.GridBoard - Evision v0.1.39

Evision.ArUco.GridBoard

 Summary

 Types

 t()

 Type that represents an ArUco.GridBoard struct.

 Functions

 getGridSize(self)

 getGridSize

 getMarkerLength(self)

 getMarkerLength

 getMarkerSeparation(self)

 getMarkerSeparation

 gridBoard(size, markerLength, markerSeparation, dictionary)

 GridBoard constructor

 gridBoard(size, markerLength, markerSeparation, dictionary, opts)

 GridBoard constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.GridBoard{ref: reference()}

Type that represents an ArUco.GridBoard struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getGridSize(self)

 View Source

 @spec getGridSize(t()) :: {number(), number()} | {:error, String.t()}

getGridSize
Positional Arguments
	self: Evision.ArUco.GridBoard.t()

Return
	retval: Size

Python prototype (for reference only):
getGridSize() -> retval

 Link to this function

 getMarkerLength(self)

 View Source

 @spec getMarkerLength(t()) :: number() | {:error, String.t()}

getMarkerLength
Positional Arguments
	self: Evision.ArUco.GridBoard.t()

Return
	retval: float

Python prototype (for reference only):
getMarkerLength() -> retval

 Link to this function

 getMarkerSeparation(self)

 View Source

 @spec getMarkerSeparation(t()) :: number() | {:error, String.t()}

getMarkerSeparation
Positional Arguments
	self: Evision.ArUco.GridBoard.t()

Return
	retval: float

Python prototype (for reference only):
getMarkerSeparation() -> retval

 Link to this function

 gridBoard(size, markerLength, markerSeparation, dictionary)

 View Source

 @spec gridBoard(
 {number(), number()},
 number(),
 number(),
 Evision.ArUco.Dictionary.t()
) ::
 t() | {:error, String.t()}

GridBoard constructor
Positional Arguments
	size: Size.
number of markers in x and y directions

	markerLength: float.
marker side length (normally in meters)

	markerSeparation: float.
separation between two markers (same unit as markerLength)

	dictionary: Dictionary.
dictionary of markers indicating the type of markers

Keyword Arguments
	ids: Evision.Mat.t().
set of marker ids in dictionary to use on board.

Return
	self: GridBoard

Python prototype (for reference only):
GridBoard(size, markerLength, markerSeparation, dictionary[, ids]) -> <aruco_GridBoard object>

 Link to this function

 gridBoard(size, markerLength, markerSeparation, dictionary, opts)

 View Source

 @spec gridBoard(
 {number(), number()},
 number(),
 number(),
 Evision.ArUco.Dictionary.t(),
 [{:ids, term()}] | nil
) :: t() | {:error, String.t()}

GridBoard constructor
Positional Arguments
	size: Size.
number of markers in x and y directions

	markerLength: float.
marker side length (normally in meters)

	markerSeparation: float.
separation between two markers (same unit as markerLength)

	dictionary: Dictionary.
dictionary of markers indicating the type of markers

Keyword Arguments
	ids: Evision.Mat.t().
set of marker ids in dictionary to use on board.

Return
	self: GridBoard

Python prototype (for reference only):
GridBoard(size, markerLength, markerSeparation, dictionary[, ids]) -> <aruco_GridBoard object>

 Evision.ArUco.RefineParameters - Evision v0.1.39

Evision.ArUco.RefineParameters

 Summary

 Types

 t()

 Type that represents an ArUco.RefineParameters struct.

 Functions

 get_checkAllOrders(self)

 get_errorCorrectionRate(self)

 get_minRepDistance(self)

 readRefineParameters(self, fn_)

 Read a new set of RefineParameters from FileNode (use FileStorage.root()).

 refineParameters()

 RefineParameters

 refineParameters(opts)

 RefineParameters

 set_checkAllOrders(self, prop)

 set_errorCorrectionRate(self, prop)

 set_minRepDistance(self, prop)

 writeRefineParameters(self, fs)

 Write a set of RefineParameters to FileStorage

 writeRefineParameters(self, fs, opts)

 Write a set of RefineParameters to FileStorage

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ArUco.RefineParameters{ref: reference()}

Type that represents an ArUco.RefineParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_checkAllOrders(self)

 View Source

 @spec get_checkAllOrders(t()) :: boolean()

 Link to this function

 get_errorCorrectionRate(self)

 View Source

 @spec get_errorCorrectionRate(t()) :: number()

 Link to this function

 get_minRepDistance(self)

 View Source

 @spec get_minRepDistance(t()) :: number()

 Link to this function

 readRefineParameters(self, fn_)

 View Source

 @spec readRefineParameters(t(), Evision.FileNode.t()) ::
 boolean() | {:error, String.t()}

Read a new set of RefineParameters from FileNode (use FileStorage.root()).
Positional Arguments
	self: Evision.ArUco.RefineParameters.t()
	fn_: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
readRefineParameters(fn_) -> retval

 Link to this function

 refineParameters()

 View Source

 @spec refineParameters() :: t() | {:error, String.t()}

RefineParameters
Keyword Arguments
	minRepDistance: float.
	errorCorrectionRate: float.
	checkAllOrders: bool.

Return
	self: RefineParameters

Python prototype (for reference only):
RefineParameters([, minRepDistance[, errorCorrectionRate[, checkAllOrders]]]) -> <aruco_RefineParameters object>

 Link to this function

 refineParameters(opts)

 View Source

 @spec refineParameters(
 [errorCorrectionRate: term(), checkAllOrders: term(), minRepDistance: term()]
 | nil
) :: t() | {:error, String.t()}

RefineParameters
Keyword Arguments
	minRepDistance: float.
	errorCorrectionRate: float.
	checkAllOrders: bool.

Return
	self: RefineParameters

Python prototype (for reference only):
RefineParameters([, minRepDistance[, errorCorrectionRate[, checkAllOrders]]]) -> <aruco_RefineParameters object>

 Link to this function

 set_checkAllOrders(self, prop)

 View Source

 @spec set_checkAllOrders(t(), boolean()) :: t()

 Link to this function

 set_errorCorrectionRate(self, prop)

 View Source

 @spec set_errorCorrectionRate(t(), number()) :: t()

 Link to this function

 set_minRepDistance(self, prop)

 View Source

 @spec set_minRepDistance(t(), number()) :: t()

 Link to this function

 writeRefineParameters(self, fs)

 View Source

 @spec writeRefineParameters(t(), Evision.FileStorage.t()) ::
 boolean() | {:error, String.t()}

Write a set of RefineParameters to FileStorage
Positional Arguments
	self: Evision.ArUco.RefineParameters.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Return
	retval: bool

Python prototype (for reference only):
writeRefineParameters(fs[, name]) -> retval

 Link to this function

 writeRefineParameters(self, fs, opts)

 View Source

 @spec writeRefineParameters(t(), Evision.FileStorage.t(), [{:name, term()}] | nil) ::
 boolean() | {:error, String.t()}

Write a set of RefineParameters to FileStorage
Positional Arguments
	self: Evision.ArUco.RefineParameters.t()
	fs: Evision.FileStorage.t()

Keyword Arguments
	name: String.

Return
	retval: bool

Python prototype (for reference only):
writeRefineParameters(fs[, name]) -> retval

 Evision.AsyncArray - Evision v0.1.39

Evision.AsyncArray

 Summary

 Types

 t()

 Type that represents an AsyncArray struct.

 Functions

 asyncArray()

 AsyncArray

 get(self)

 get

 get(self, opts)

 Variant 1:
get

 get(self, timeoutNs, opts)

 get

 release(self)

 release

 valid(self)

 valid

 wait_for(self, timeoutNs)

 wait_for

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.AsyncArray{ref: reference()}

Type that represents an AsyncArray struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 asyncArray()

 View Source

 @spec asyncArray() :: t() | {:error, String.t()}

AsyncArray
Return
	self: Evision.AsyncArray.t()

Python prototype (for reference only):
AsyncArray() -> <AsyncArray object>

 Link to this function

 get(self)

 View Source

 @spec get(t()) :: Evision.Mat.t() | {:error, String.t()}

get
Positional Arguments
	self: Evision.AsyncArray.t()

Return
	dst: Evision.Mat.t().
destination array

Fetch the result.
Waits for result until container has valid result.
Throws exception if exception was stored as a result.
Throws exception on invalid container state.
Note: Result or stored exception can be fetched only once.
Python prototype (for reference only):
get([, dst]) -> dst

 Link to this function

 get(self, opts)

 View Source

 @spec get(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec get(t(), number()) :: Evision.Mat.t() | false | {:error, String.t()}

Variant 1:
get
Positional Arguments
	self: Evision.AsyncArray.t()

	timeoutNs: double.
timeout in nanoseconds, -1 for infinite wait

Return
	retval: bool

	dst: Evision.Mat.t().
destination array

Retrieving the result with timeout
@returns true if result is ready, false if the timeout has expired
Note: Result or stored exception can be fetched only once.
Python prototype (for reference only):
get(timeoutNs[, dst]) -> retval, dst
Variant 2:
get
Positional Arguments
	self: Evision.AsyncArray.t()

Return
	dst: Evision.Mat.t().
destination array

Fetch the result.
Waits for result until container has valid result.
Throws exception if exception was stored as a result.
Throws exception on invalid container state.
Note: Result or stored exception can be fetched only once.
Python prototype (for reference only):
get([, dst]) -> dst

 Link to this function

 get(self, timeoutNs, opts)

 View Source

 @spec get(t(), number(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

get
Positional Arguments
	self: Evision.AsyncArray.t()

	timeoutNs: double.
timeout in nanoseconds, -1 for infinite wait

Return
	retval: bool

	dst: Evision.Mat.t().
destination array

Retrieving the result with timeout
@returns true if result is ready, false if the timeout has expired
Note: Result or stored exception can be fetched only once.
Python prototype (for reference only):
get(timeoutNs[, dst]) -> retval, dst

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

release
Positional Arguments
	self: Evision.AsyncArray.t()

Python prototype (for reference only):
release() -> None

 Link to this function

 valid(self)

 View Source

 @spec valid(t()) :: boolean() | {:error, String.t()}

valid
Positional Arguments
	self: Evision.AsyncArray.t()

Return
	retval: bool

Python prototype (for reference only):
valid() -> retval

 Link to this function

 wait_for(self, timeoutNs)

 View Source

 @spec wait_for(t(), number()) :: boolean() | {:error, String.t()}

wait_for
Positional Arguments
	self: Evision.AsyncArray.t()
	timeoutNs: double

Return
	retval: bool

Python prototype (for reference only):
wait_for(timeoutNs) -> retval

 Evision.BFMatcher - Evision v0.1.39

Evision.BFMatcher

 Summary

 Types

 t()

 Type that represents an BFMatcher struct.

 Functions

 add(self, descriptors)

 Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.

 bfMatcher()

 Brute-force matcher constructor (obsolete). Please use BFMatcher.create()

 bfMatcher(opts)

 Brute-force matcher constructor (obsolete). Please use BFMatcher.create()

 clear(self)

 Clears the train descriptor collections.

 clone(self)

 Clones the matcher.

 clone(self, opts)

 Clones the matcher.

 create()

 Brute-force matcher create method.

 create(opts)

 Brute-force matcher create method.

 empty(self)

 Returns true if there are no train descriptors in the both collections.

 getDefaultName(self)

 getDefaultName

 getTrainDescriptors(self)

 Returns a constant link to the train descriptor collection trainDescCollection .

 isMaskSupported(self)

 Returns true if the descriptor matcher supports masking permissible matches.

 knnMatch(self, queryDescriptors, k)

 knnMatch

 knnMatch(self, queryDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set.

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 Finds the k best matches for each descriptor from a query set.

 match(self, queryDescriptors)

 match

 match(self, queryDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set.

 match(self, queryDescriptors, trainDescriptors, opts)

 Finds the best match for each descriptor from a query set.

 radiusMatch(self, queryDescriptors, maxDistance)

 radiusMatch

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 For each query descriptor, finds the training descriptors not farther than the specified distance.

 read(self, arg1)

 Variant 1:
read

 save(self, filename)

 save

 train(self)

 Trains a descriptor matcher

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BFMatcher{ref: reference()}

Type that represents an BFMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, descriptors)

 View Source

 @spec add(Evision.DescriptorMatcher.t(), [Evision.Mat.maybe_mat_in()]) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.
Positional Arguments
	self: Evision.BFMatcher.t()

	descriptors: [Evision.Mat].
Descriptors to add. Each descriptors[i] is a set of descriptors from the same
train image.

If the collection is not empty, the new descriptors are added to existing train descriptors.
Python prototype (for reference only):
add(descriptors) -> None

 Link to this function

 bfMatcher()

 View Source

 @spec bfMatcher() :: t() | {:error, String.t()}

Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
Keyword Arguments
	normType: int.
	crossCheck: bool.

Return
	self: Evision.BFMatcher.t()

Python prototype (for reference only):
BFMatcher([, normType[, crossCheck]]) -> <BFMatcher object>

 Link to this function

 bfMatcher(opts)

 View Source

 @spec bfMatcher([normType: term(), crossCheck: term()] | nil) ::
 t() | {:error, String.t()}

Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
Keyword Arguments
	normType: int.
	crossCheck: bool.

Return
	self: Evision.BFMatcher.t()

Python prototype (for reference only):
BFMatcher([, normType[, crossCheck]]) -> <BFMatcher object>

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clears the train descriptor collections.
Positional Arguments
	self: Evision.BFMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clone(self)

 View Source

 @spec clone(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.BFMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 clone(self, opts)

 View Source

 @spec clone(Evision.DescriptorMatcher.t(), [{:emptyTrainData, term()}] | nil) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.BFMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Brute-force matcher create method.
Keyword Arguments
	normType: int.
One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
description).

	crossCheck: bool.
If it is false, this is will be default BFMatcher behaviour when it finds the k
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
pairs. Such technique usually produces best results with minimal number of outliers when there are
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.

Return
	retval: Evision.BFMatcher.t()

Python prototype (for reference only):
create([, normType[, crossCheck]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([normType: term(), crossCheck: term()] | nil) ::
 t() | {:error, String.t()}

Brute-force matcher create method.
Keyword Arguments
	normType: int.
One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
description).

	crossCheck: bool.
If it is false, this is will be default BFMatcher behaviour when it finds the k
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
pairs. Such technique usually produces best results with minimal number of outliers when there are
enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.

Return
	retval: Evision.BFMatcher.t()

Python prototype (for reference only):
create([, normType[, crossCheck]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.DescriptorMatcher.t()) :: boolean() | {:error, String.t()}

Returns true if there are no train descriptors in the both collections.
Positional Arguments
	self: Evision.BFMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.BFMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTrainDescriptors(self)

 View Source

 @spec getTrainDescriptors(Evision.DescriptorMatcher.t()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Returns a constant link to the train descriptor collection trainDescCollection .
Positional Arguments
	self: Evision.BFMatcher.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getTrainDescriptors() -> retval

 Link to this function

 isMaskSupported(self)

 View Source

 @spec isMaskSupported(Evision.DescriptorMatcher.t()) ::
 boolean() | {:error, String.t()}

Returns true if the descriptor matcher supports masking permissible matches.
Positional Arguments
	self: Evision.BFMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
isMaskSupported() -> retval

 Link to this function

 knnMatch(self, queryDescriptors, k)

 View Source

 @spec knnMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

knnMatch
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
knnMatch
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 match(self, queryDescriptors)

 View Source

 @spec match(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

match
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [{:masks, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
match
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) :: [Evision.DMatch.t()] | {:error, String.t()}

Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance)

 View Source

 @spec radiusMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), number()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

radiusMatch
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
radiusMatch
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.BFMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.DescriptorMatcher.t(), Evision.FileNode.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

 @spec read(Evision.DescriptorMatcher.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.BFMatcher.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.BFMatcher.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.BFMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self)

 View Source

 @spec train(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Trains a descriptor matcher
Positional Arguments
	self: Evision.BFMatcher.t()

Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
have an empty implementation of this method. Other matchers really train their inner structures (for
example, FlannBasedMatcher trains flann::Index).
Python prototype (for reference only):
train() -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.DescriptorMatcher.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BFMatcher.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.DescriptorMatcher.t(), Evision.FileStorage.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BFMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.BOWImgDescriptorExtractor - Evision v0.1.39

Evision.BOWImgDescriptorExtractor

 Summary

 Types

 t()

 Type that represents an BOWImgDescriptorExtractor struct.

 Functions

 bowImgDescriptorExtractor(dextractor, dmatcher)

 The constructor.

 compute(self, image, keypoints)

 compute

 compute(self, image, keypoints, opts)

 compute

 descriptorSize(self)

 Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.

 descriptorType(self)

 Returns an image descriptor type.

 getVocabulary(self)

 Returns the set vocabulary.

 setVocabulary(self, vocabulary)

 Sets a visual vocabulary.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BOWImgDescriptorExtractor{ref: reference()}

Type that represents an BOWImgDescriptorExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bowImgDescriptorExtractor(dextractor, dmatcher)

 View Source

 @spec bowImgDescriptorExtractor(Evision.Feature2D.t(), Evision.DescriptorMatcher.t()) ::
 t() | {:error, String.t()}

The constructor.
Positional Arguments
	dextractor: Evision.Feature2D.t().
Descriptor extractor that is used to compute descriptors for an input image and
its keypoints.

	dmatcher: Evision.DescriptorMatcher.t().
Descriptor matcher that is used to find the nearest word of the trained vocabulary
for each keypoint descriptor of the image.

Return
	self: Evision.BOWImgDescriptorExtractor.t()

Python prototype (for reference only):
BOWImgDescriptorExtractor(dextractor, dmatcher) -> <BOWImgDescriptorExtractor object>

 Link to this function

 compute(self, image, keypoints)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [Evision.KeyPoint.t()]) ::
 Evision.Mat.t() | {:error, String.t()}

compute
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()
	image: Evision.Mat.t()
	keypoints: [Evision.KeyPoint]

Return
	imgDescriptor: Evision.Mat.t().
Computed output image descriptor.

Has overloading in C++
Python prototype (for reference only):
compute(image, keypoints[, imgDescriptor]) -> imgDescriptor

 Link to this function

 compute(self, image, keypoints, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

compute
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()
	image: Evision.Mat.t()
	keypoints: [Evision.KeyPoint]

Return
	imgDescriptor: Evision.Mat.t().
Computed output image descriptor.

Has overloading in C++
Python prototype (for reference only):
compute(image, keypoints[, imgDescriptor]) -> imgDescriptor

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(t()) :: integer() | {:error, String.t()}

Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(t()) :: integer() | {:error, String.t()}

Returns an image descriptor type.
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 getVocabulary(self)

 View Source

 @spec getVocabulary(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the set vocabulary.
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getVocabulary() -> retval

 Link to this function

 setVocabulary(self, vocabulary)

 View Source

 @spec setVocabulary(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Sets a visual vocabulary.
Positional Arguments
	self: Evision.BOWImgDescriptorExtractor.t()

	vocabulary: Evision.Mat.t().
Vocabulary (can be trained using the inheritor of BOWTrainer). Each row of the
vocabulary is a visual word (cluster center).

Python prototype (for reference only):
setVocabulary(vocabulary) -> None

 Evision.BOWKMeansTrainer - Evision v0.1.39

Evision.BOWKMeansTrainer

 Summary

 Types

 t()

 Type that represents an BOWKMeansTrainer struct.

 Functions

 bowKMeansTrainer(clusterCount)

 The constructor.

 bowKMeansTrainer(clusterCount, opts)

 The constructor.

 cluster(self)

 cluster

 cluster(self, descriptors)

 cluster

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BOWKMeansTrainer{ref: reference()}

Type that represents an BOWKMeansTrainer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bowKMeansTrainer(clusterCount)

 View Source

 @spec bowKMeansTrainer(integer()) :: t() | {:error, String.t()}

The constructor.
Positional Arguments
	clusterCount: int

Keyword Arguments
	termcrit: TermCriteria.
	attempts: int.
	flags: int.

Return
	self: Evision.BOWKMeansTrainer.t()

@see cv::kmeans
Python prototype (for reference only):
BOWKMeansTrainer(clusterCount[, termcrit[, attempts[, flags]]]) -> <BOWKMeansTrainer object>

 Link to this function

 bowKMeansTrainer(clusterCount, opts)

 View Source

 @spec bowKMeansTrainer(
 integer(),
 [attempts: term(), flags: term(), termcrit: term()] | nil
) ::
 t() | {:error, String.t()}

The constructor.
Positional Arguments
	clusterCount: int

Keyword Arguments
	termcrit: TermCriteria.
	attempts: int.
	flags: int.

Return
	self: Evision.BOWKMeansTrainer.t()

@see cv::kmeans
Python prototype (for reference only):
BOWKMeansTrainer(clusterCount[, termcrit[, attempts[, flags]]]) -> <BOWKMeansTrainer object>

 Link to this function

 cluster(self)

 View Source

 @spec cluster(t()) :: Evision.Mat.t() | {:error, String.t()}

cluster
Positional Arguments
	self: Evision.BOWKMeansTrainer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
cluster() -> retval

 Link to this function

 cluster(self, descriptors)

 View Source

 @spec cluster(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

cluster
Positional Arguments
	self: Evision.BOWKMeansTrainer.t()
	descriptors: Evision.Mat.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
cluster(descriptors) -> retval

 Evision.BOWTrainer - Evision v0.1.39

Evision.BOWTrainer

 Summary

 Types

 t()

 Type that represents an BOWTrainer struct.

 Functions

 add(self, descriptors)

 Adds descriptors to a training set.

 clear(self)

 clear

 cluster(self)

 cluster

 cluster(self, descriptors)

 Clusters train descriptors.

 descriptorsCount(self)

 Returns the count of all descriptors stored in the training set.

 getDescriptors(self)

 Returns a training set of descriptors.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BOWTrainer{ref: reference()}

Type that represents an BOWTrainer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, descriptors)

 View Source

 @spec add(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Adds descriptors to a training set.
Positional Arguments
	self: Evision.BOWTrainer.t()

	descriptors: Evision.Mat.t().
Descriptors to add to a training set. Each row of the descriptors matrix is a
descriptor.

The training set is clustered using clustermethod to construct the vocabulary.
Python prototype (for reference only):
add(descriptors) -> None

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

clear
Positional Arguments
	self: Evision.BOWTrainer.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 cluster(self)

 View Source

 @spec cluster(t()) :: Evision.Mat.t() | {:error, String.t()}

cluster
Positional Arguments
	self: Evision.BOWTrainer.t()

Return
	retval: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
cluster() -> retval

 Link to this function

 cluster(self, descriptors)

 View Source

 @spec cluster(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Clusters train descriptors.
Positional Arguments
	self: Evision.BOWTrainer.t()

	descriptors: Evision.Mat.t().
Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
Descriptors are not added to the inner train descriptor set.

Return
	retval: Evision.Mat.t()

The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
variant of the method, train descriptors stored in the object are clustered. In the second variant,
input descriptors are clustered.
Python prototype (for reference only):
cluster(descriptors) -> retval

 Link to this function

 descriptorsCount(self)

 View Source

 @spec descriptorsCount(t()) :: integer() | {:error, String.t()}

Returns the count of all descriptors stored in the training set.
Positional Arguments
	self: Evision.BOWTrainer.t()

Return
	retval: int

Python prototype (for reference only):
descriptorsCount() -> retval

 Link to this function

 getDescriptors(self)

 View Source

 @spec getDescriptors(t()) :: [Evision.Mat.t()] | {:error, String.t()}

Returns a training set of descriptors.
Positional Arguments
	self: Evision.BOWTrainer.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getDescriptors() -> retval

 Evision.BRISK - Evision v0.1.39

Evision.BRISK

 Summary

 Types

 t()

 Type that represents an BRISK struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 The BRISK constructor

 create(opts)

 The BRISK constructor

 create(radiusList, numberList)

 The BRISK constructor for a custom pattern

 create(radiusList, numberList, opts)

 The BRISK constructor for a custom pattern

 create(thresh, octaves, radiusList, numberList)

 The BRISK constructor for a custom pattern, detection threshold and octaves

 create(thresh, octaves, radiusList, numberList, opts)

 The BRISK constructor for a custom pattern, detection threshold and octaves

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getOctaves(self)

 getOctaves

 getPatternScale(self)

 getPatternScale

 getThreshold(self)

 getThreshold

 read(self, arg1)

 Variant 1:
read

 setOctaves(self, octaves)

 Set detection octaves.

 setPatternScale(self, patternScale)

 Set detection patternScale.

 setThreshold(self, threshold)

 Set detection threshold.

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BRISK{ref: reference()}

Type that represents an BRISK struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.BRISK.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.BRISK.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.BRISK.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.BRISK.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

The BRISK constructor
Keyword Arguments
	thresh: int.
AGAST detection threshold score.

	octaves: int.
detection octaves. Use 0 to do single scale.

	patternScale: float.
apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create([, thresh[, octaves[, patternScale]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([thresh: term(), patternScale: term(), octaves: term()] | nil) ::
 t() | {:error, String.t()}

The BRISK constructor
Keyword Arguments
	thresh: int.
AGAST detection threshold score.

	octaves: int.
detection octaves. Use 0 to do single scale.

	patternScale: float.
apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create([, thresh[, octaves[, patternScale]]]) -> retval

 Link to this function

 create(radiusList, numberList)

 View Source

 @spec create([number()], [integer()]) :: t() | {:error, String.t()}

The BRISK constructor for a custom pattern
Positional Arguments
	radiusList: [float].
defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).

	numberList: [int].
defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..

Keyword Arguments
	dMax: float.
threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).

	dMin: float.
threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).

	indexChange: [int].
index remapping of the bits.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> retval

 Link to this function

 create(radiusList, numberList, opts)

 View Source

 @spec create(
 [number()],
 [integer()],
 [dMax: term(), dMin: term(), indexChange: term()] | nil
) ::
 t() | {:error, String.t()}

The BRISK constructor for a custom pattern
Positional Arguments
	radiusList: [float].
defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).

	numberList: [int].
defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..

Keyword Arguments
	dMax: float.
threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).

	dMin: float.
threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).

	indexChange: [int].
index remapping of the bits.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create(radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> retval

 Link to this function

 create(thresh, octaves, radiusList, numberList)

 View Source

 @spec create(integer(), integer(), [number()], [integer()]) ::
 t() | {:error, String.t()}

The BRISK constructor for a custom pattern, detection threshold and octaves
Positional Arguments
	thresh: int.
AGAST detection threshold score.

	octaves: int.
detection octaves. Use 0 to do single scale.

	radiusList: [float].
defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).

	numberList: [int].
defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..

Keyword Arguments
	dMax: float.
threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).

	dMin: float.
threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).

	indexChange: [int].
index remapping of the bits.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create(thresh, octaves, radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> retval

 Link to this function

 create(thresh, octaves, radiusList, numberList, opts)

 View Source

 @spec create(
 integer(),
 integer(),
 [number()],
 [integer()],
 [dMax: term(), dMin: term(), indexChange: term()] | nil
) :: t() | {:error, String.t()}

The BRISK constructor for a custom pattern, detection threshold and octaves
Positional Arguments
	thresh: int.
AGAST detection threshold score.

	octaves: int.
detection octaves. Use 0 to do single scale.

	radiusList: [float].
defines the radii (in pixels) where the samples around a keypoint are taken (for
keypoint scale 1).

	numberList: [int].
defines the number of sampling points on the sampling circle. Must be the same
size as radiusList..

Keyword Arguments
	dMax: float.
threshold for the short pairings used for descriptor formation (in pixels for keypoint
scale 1).

	dMin: float.
threshold for the long pairings used for orientation determination (in pixels for
keypoint scale 1).

	indexChange: [int].
index remapping of the bits.

Return
	retval: Evision.BRISK.t()

Python prototype (for reference only):
create(thresh, octaves, radiusList, numberList[, dMax[, dMin[, indexChange]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.BRISK.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.BRISK.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.BRISK.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.BRISK.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.BRISK.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.BRISK.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getOctaves(self)

 View Source

 @spec getOctaves(t()) :: integer() | {:error, String.t()}

getOctaves
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: int

Python prototype (for reference only):
getOctaves() -> retval

 Link to this function

 getPatternScale(self)

 View Source

 @spec getPatternScale(t()) :: number() | {:error, String.t()}

getPatternScale
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: float

Python prototype (for reference only):
getPatternScale() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: integer() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.BRISK.t()

Return
	retval: int

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.BRISK.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.BRISK.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setOctaves(self, octaves)

 View Source

 @spec setOctaves(t(), integer()) :: t() | {:error, String.t()}

Set detection octaves.
Positional Arguments
	self: Evision.BRISK.t()

	octaves: int.
detection octaves. Use 0 to do single scale.

Python prototype (for reference only):
setOctaves(octaves) -> None

 Link to this function

 setPatternScale(self, patternScale)

 View Source

 @spec setPatternScale(t(), number()) :: t() | {:error, String.t()}

Set detection patternScale.
Positional Arguments
	self: Evision.BRISK.t()

	patternScale: float.
apply this scale to the pattern used for sampling the neighbourhood of a
keypoint.

Python prototype (for reference only):
setPatternScale(patternScale) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), integer()) :: t() | {:error, String.t()}

Set detection threshold.
Positional Arguments
	self: Evision.BRISK.t()

	threshold: int.
AGAST detection threshold score.

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BRISK.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BRISK.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Backend - Evision v0.1.39

Evision.Backend

 Summary

 Functions

 constant(out, scalar, backend_options)

 Tensor with constant values.

Functions

 Link to this function

 constant(out, scalar, backend_options)

 View Source

 @spec constant(Nx.Tensor.t(), number(), any()) :: Nx.Tensor.t()

 @spec constant(Nx.Tensor.t(), number(), any()) :: Nx.Tensor.t()

Tensor with constant values.

 Example

Nx.tensor(1.0, backend: Evision.Backend)
#Nx.Tensor<
 f32
 Evision.Backend
 1.0
>

 Evision.BackgroundSubtractor - Evision v0.1.39

Evision.BackgroundSubtractor

 Summary

 Types

 t()

 Type that represents an BackgroundSubtractor struct.

 Functions

 apply(self, image)

 Computes a foreground mask.

 apply(self, image, opts)

 Computes a foreground mask.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBackgroundImage(self)

 Computes a background image.

 getBackgroundImage(self, opts)

 Computes a background image.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BackgroundSubtractor{ref: reference()}

Type that represents an BackgroundSubtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

	image: Evision.Mat.t().
Next video frame.

Keyword Arguments
	learningRate: double.
The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.

Return
	fgmask: Evision.Mat.t().
The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 apply(self, image, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

	image: Evision.Mat.t().
Next video frame.

Keyword Arguments
	learningRate: double.
The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.

Return
	fgmask: Evision.Mat.t().
The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBackgroundImage(self)

 View Source

 @spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}

Computes a background image.
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

Return
	backgroundImage: Evision.Mat.t().
The output background image.

Note: Sometimes the background image can be very blurry, as it contain the average background
statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, opts)

 View Source

 @spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes a background image.
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

Return
	backgroundImage: Evision.Mat.t().
The output background image.

Note: Sometimes the background image can be very blurry, as it contain the average background
statistics.
Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.BackgroundSubtractor.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.BackgroundSubtractor.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.BackgroundSubtractor.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.BackgroundSubtractor.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BackgroundSubtractor.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.BackgroundSubtractorKNN - Evision v0.1.39

Evision.BackgroundSubtractorKNN

 Summary

 Types

 t()

 Type that represents an BackgroundSubtractorKNN struct.

 Functions

 getDetectShadows(self)

 Returns the shadow detection flag

 getDist2Threshold(self)

 Returns the threshold on the squared distance between the pixel and the sample

 getHistory(self)

 Returns the number of last frames that affect the background model

 getkNNSamples(self)

 Returns the number of neighbours, the k in the kNN.

 getNSamples(self)

 Returns the number of data samples in the background model

 getShadowThreshold(self)

 Returns the shadow threshold

 getShadowValue(self)

 Returns the shadow value

 setDetectShadows(self, detectShadows)

 Enables or disables shadow detection

 setDist2Threshold(self, dist2Threshold)

 Sets the threshold on the squared distance

 setHistory(self, history)

 Sets the number of last frames that affect the background model

 setkNNSamples(self, nkNN)

 Sets the k in the kNN. How many nearest neighbours need to match.

 setNSamples(self, nN)

 Sets the number of data samples in the background model.

 setShadowThreshold(self, threshold)

 Sets the shadow threshold

 setShadowValue(self, value)

 Sets the shadow value

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BackgroundSubtractorKNN{ref: reference()}

Type that represents an BackgroundSubtractorKNN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getDetectShadows(self)

 View Source

 @spec getDetectShadows(t()) :: boolean() | {:error, String.t()}

Returns the shadow detection flag
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: bool

If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
details.
Python prototype (for reference only):
getDetectShadows() -> retval

 Link to this function

 getDist2Threshold(self)

 View Source

 @spec getDist2Threshold(t()) :: number() | {:error, String.t()}

Returns the threshold on the squared distance between the pixel and the sample
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: double

The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
close to a data sample.
Python prototype (for reference only):
getDist2Threshold() -> retval

 Link to this function

 getHistory(self)

 View Source

 @spec getHistory(t()) :: integer() | {:error, String.t()}

Returns the number of last frames that affect the background model
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: int

Python prototype (for reference only):
getHistory() -> retval

 Link to this function

 getkNNSamples(self)

 View Source

 @spec getkNNSamples(t()) :: integer() | {:error, String.t()}

Returns the number of neighbours, the k in the kNN.
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: int

K is the number of samples that need to be within dist2Threshold in order to decide that that
pixel is matching the kNN background model.
Python prototype (for reference only):
getkNNSamples() -> retval

 Link to this function

 getNSamples(self)

 View Source

 @spec getNSamples(t()) :: integer() | {:error, String.t()}

Returns the number of data samples in the background model
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: int

Python prototype (for reference only):
getNSamples() -> retval

 Link to this function

 getShadowThreshold(self)

 View Source

 @spec getShadowThreshold(t()) :: number() | {:error, String.t()}

Returns the shadow threshold
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: double

A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
Detecting Moving Shadows...*, IEEE PAMI,2003.
Python prototype (for reference only):
getShadowThreshold() -> retval

 Link to this function

 getShadowValue(self)

 View Source

 @spec getShadowValue(t()) :: integer() | {:error, String.t()}

Returns the shadow value
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()

Return
	retval: int

Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
Python prototype (for reference only):
getShadowValue() -> retval

 Link to this function

 setDetectShadows(self, detectShadows)

 View Source

 @spec setDetectShadows(t(), boolean()) :: t() | {:error, String.t()}

Enables or disables shadow detection
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	detectShadows: bool

Python prototype (for reference only):
setDetectShadows(detectShadows) -> None

 Link to this function

 setDist2Threshold(self, dist2Threshold)

 View Source

 @spec setDist2Threshold(t(), number()) :: t() | {:error, String.t()}

Sets the threshold on the squared distance
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	dist2Threshold: double

Python prototype (for reference only):
setDist2Threshold(_dist2Threshold) -> None

 Link to this function

 setHistory(self, history)

 View Source

 @spec setHistory(t(), integer()) :: t() | {:error, String.t()}

Sets the number of last frames that affect the background model
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	history: int

Python prototype (for reference only):
setHistory(history) -> None

 Link to this function

 setkNNSamples(self, nkNN)

 View Source

 @spec setkNNSamples(t(), integer()) :: t() | {:error, String.t()}

Sets the k in the kNN. How many nearest neighbours need to match.
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	nkNN: int

Python prototype (for reference only):
setkNNSamples(_nkNN) -> None

 Link to this function

 setNSamples(self, nN)

 View Source

 @spec setNSamples(t(), integer()) :: t() | {:error, String.t()}

Sets the number of data samples in the background model.
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	nN: int

The model needs to be reinitalized to reserve memory.
Python prototype (for reference only):
setNSamples(_nN) -> None

 Link to this function

 setShadowThreshold(self, threshold)

 View Source

 @spec setShadowThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the shadow threshold
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	threshold: double

Python prototype (for reference only):
setShadowThreshold(threshold) -> None

 Link to this function

 setShadowValue(self, value)

 View Source

 @spec setShadowValue(t(), integer()) :: t() | {:error, String.t()}

Sets the shadow value
Positional Arguments
	self: Evision.BackgroundSubtractorKNN.t()
	value: int

Python prototype (for reference only):
setShadowValue(value) -> None

 Evision.BackgroundSubtractorMOG2 - Evision v0.1.39

Evision.BackgroundSubtractorMOG2

 Summary

 Types

 t()

 Type that represents an BackgroundSubtractorMOG2 struct.

 Functions

 apply(self, image)

 Computes a foreground mask.

 apply(self, image, opts)

 Computes a foreground mask.

 getBackgroundRatio(self)

 Returns the "background ratio" parameter of the algorithm

 getComplexityReductionThreshold(self)

 Returns the complexity reduction threshold

 getDetectShadows(self)

 Returns the shadow detection flag

 getHistory(self)

 Returns the number of last frames that affect the background model

 getNMixtures(self)

 Returns the number of gaussian components in the background model

 getShadowThreshold(self)

 Returns the shadow threshold

 getShadowValue(self)

 Returns the shadow value

 getVarInit(self)

 Returns the initial variance of each gaussian component

 getVarMax(self)

 getVarMax

 getVarMin(self)

 getVarMin

 getVarThreshold(self)

 Returns the variance threshold for the pixel-model match

 getVarThresholdGen(self)

 Returns the variance threshold for the pixel-model match used for new mixture component generation

 setBackgroundRatio(self, ratio)

 Sets the "background ratio" parameter of the algorithm

 setComplexityReductionThreshold(self, ct)

 Sets the complexity reduction threshold

 setDetectShadows(self, detectShadows)

 Enables or disables shadow detection

 setHistory(self, history)

 Sets the number of last frames that affect the background model

 setNMixtures(self, nmixtures)

 Sets the number of gaussian components in the background model.

 setShadowThreshold(self, threshold)

 Sets the shadow threshold

 setShadowValue(self, value)

 Sets the shadow value

 setVarInit(self, varInit)

 Sets the initial variance of each gaussian component

 setVarMax(self, varMax)

 setVarMax

 setVarMin(self, varMin)

 setVarMin

 setVarThreshold(self, varThreshold)

 Sets the variance threshold for the pixel-model match

 setVarThresholdGen(self, varThresholdGen)

 Sets the variance threshold for the pixel-model match used for new mixture component generation

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BackgroundSubtractorMOG2{ref: reference()}

Type that represents an BackgroundSubtractorMOG2 struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

	image: Evision.Mat.t().
Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.

Keyword Arguments
	learningRate: double.
The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.

Return
	fgmask: Evision.Mat.t().
The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 apply(self, image, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes a foreground mask.
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

	image: Evision.Mat.t().
Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.

Keyword Arguments
	learningRate: double.
The value between 0 and 1 that indicates how fast the background model is
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
rate. 0 means that the background model is not updated at all, 1 means that the background model
is completely reinitialized from the last frame.

Return
	fgmask: Evision.Mat.t().
The output foreground mask as an 8-bit binary image.

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 getBackgroundRatio(self)

 View Source

 @spec getBackgroundRatio(t()) :: number() | {:error, String.t()}

Returns the "background ratio" parameter of the algorithm
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

If a foreground pixel keeps semi-constant value for about backgroundRatio*history frames, it's
considered background and added to the model as a center of a new component. It corresponds to TB
parameter in the paper.
Python prototype (for reference only):
getBackgroundRatio() -> retval

 Link to this function

 getComplexityReductionThreshold(self)

 View Source

 @spec getComplexityReductionThreshold(t()) :: number() | {:error, String.t()}

Returns the complexity reduction threshold
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
standard Stauffer&Grimson algorithm.
Python prototype (for reference only):
getComplexityReductionThreshold() -> retval

 Link to this function

 getDetectShadows(self)

 View Source

 @spec getDetectShadows(t()) :: boolean() | {:error, String.t()}

Returns the shadow detection flag
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: bool

If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
details.
Python prototype (for reference only):
getDetectShadows() -> retval

 Link to this function

 getHistory(self)

 View Source

 @spec getHistory(t()) :: integer() | {:error, String.t()}

Returns the number of last frames that affect the background model
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: int

Python prototype (for reference only):
getHistory() -> retval

 Link to this function

 getNMixtures(self)

 View Source

 @spec getNMixtures(t()) :: integer() | {:error, String.t()}

Returns the number of gaussian components in the background model
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: int

Python prototype (for reference only):
getNMixtures() -> retval

 Link to this function

 getShadowThreshold(self)

 View Source

 @spec getShadowThreshold(t()) :: number() | {:error, String.t()}

Returns the shadow threshold
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
Detecting Moving Shadows...*, IEEE PAMI,2003.
Python prototype (for reference only):
getShadowThreshold() -> retval

 Link to this function

 getShadowValue(self)

 View Source

 @spec getShadowValue(t()) :: integer() | {:error, String.t()}

Returns the shadow value
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: int

Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
in the mask always means background, 255 means foreground.
Python prototype (for reference only):
getShadowValue() -> retval

 Link to this function

 getVarInit(self)

 View Source

 @spec getVarInit(t()) :: number() | {:error, String.t()}

Returns the initial variance of each gaussian component
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

Python prototype (for reference only):
getVarInit() -> retval

 Link to this function

 getVarMax(self)

 View Source

 @spec getVarMax(t()) :: number() | {:error, String.t()}

getVarMax
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

Python prototype (for reference only):
getVarMax() -> retval

 Link to this function

 getVarMin(self)

 View Source

 @spec getVarMin(t()) :: number() | {:error, String.t()}

getVarMin
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

Python prototype (for reference only):
getVarMin() -> retval

 Link to this function

 getVarThreshold(self)

 View Source

 @spec getVarThreshold(t()) :: number() | {:error, String.t()}

Returns the variance threshold for the pixel-model match
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
the background model or not. Related to Cthr from the paper.
Python prototype (for reference only):
getVarThreshold() -> retval

 Link to this function

 getVarThresholdGen(self)

 View Source

 @spec getVarThresholdGen(t()) :: number() | {:error, String.t()}

Returns the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()

Return
	retval: double

Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
is considered foreground or added as a new component. 3 sigma => Tg=3*3=9 is default. A smaller Tg
value generates more components. A higher Tg value may result in a small number of components but
they can grow too large.
Python prototype (for reference only):
getVarThresholdGen() -> retval

 Link to this function

 setBackgroundRatio(self, ratio)

 View Source

 @spec setBackgroundRatio(t(), number()) :: t() | {:error, String.t()}

Sets the "background ratio" parameter of the algorithm
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	ratio: double

Python prototype (for reference only):
setBackgroundRatio(ratio) -> None

 Link to this function

 setComplexityReductionThreshold(self, ct)

 View Source

 @spec setComplexityReductionThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the complexity reduction threshold
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	ct: double

Python prototype (for reference only):
setComplexityReductionThreshold(ct) -> None

 Link to this function

 setDetectShadows(self, detectShadows)

 View Source

 @spec setDetectShadows(t(), boolean()) :: t() | {:error, String.t()}

Enables or disables shadow detection
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	detectShadows: bool

Python prototype (for reference only):
setDetectShadows(detectShadows) -> None

 Link to this function

 setHistory(self, history)

 View Source

 @spec setHistory(t(), integer()) :: t() | {:error, String.t()}

Sets the number of last frames that affect the background model
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	history: int

Python prototype (for reference only):
setHistory(history) -> None

 Link to this function

 setNMixtures(self, nmixtures)

 View Source

 @spec setNMixtures(t(), integer()) :: t() | {:error, String.t()}

Sets the number of gaussian components in the background model.
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	nmixtures: int

The model needs to be reinitalized to reserve memory.
Python prototype (for reference only):
setNMixtures(nmixtures) -> None

 Link to this function

 setShadowThreshold(self, threshold)

 View Source

 @spec setShadowThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the shadow threshold
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	threshold: double

Python prototype (for reference only):
setShadowThreshold(threshold) -> None

 Link to this function

 setShadowValue(self, value)

 View Source

 @spec setShadowValue(t(), integer()) :: t() | {:error, String.t()}

Sets the shadow value
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	value: int

Python prototype (for reference only):
setShadowValue(value) -> None

 Link to this function

 setVarInit(self, varInit)

 View Source

 @spec setVarInit(t(), number()) :: t() | {:error, String.t()}

Sets the initial variance of each gaussian component
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	varInit: double

Python prototype (for reference only):
setVarInit(varInit) -> None

 Link to this function

 setVarMax(self, varMax)

 View Source

 @spec setVarMax(t(), number()) :: t() | {:error, String.t()}

setVarMax
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	varMax: double

Python prototype (for reference only):
setVarMax(varMax) -> None

 Link to this function

 setVarMin(self, varMin)

 View Source

 @spec setVarMin(t(), number()) :: t() | {:error, String.t()}

setVarMin
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	varMin: double

Python prototype (for reference only):
setVarMin(varMin) -> None

 Link to this function

 setVarThreshold(self, varThreshold)

 View Source

 @spec setVarThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the variance threshold for the pixel-model match
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	varThreshold: double

Python prototype (for reference only):
setVarThreshold(varThreshold) -> None

 Link to this function

 setVarThresholdGen(self, varThresholdGen)

 View Source

 @spec setVarThresholdGen(t(), number()) :: t() | {:error, String.t()}

Sets the variance threshold for the pixel-model match used for new mixture component generation
Positional Arguments
	self: Evision.BackgroundSubtractorMOG2.t()
	varThresholdGen: double

Python prototype (for reference only):
setVarThresholdGen(varThresholdGen) -> None

 Evision.Barcode - Evision v0.1.39

Evision.Barcode

 Summary

 Types

 t()

 Type that represents an Barcode struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Barcode{ref: reference()}

Type that represents an Barcode struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Barcode.BarcodeDetector - Evision v0.1.39

Evision.Barcode.BarcodeDetector

 Summary

 Types

 t()

 Type that represents an Barcode.BarcodeDetector struct.

 Functions

 barcodeDetector()

 Initialize the BarcodeDetector.

 barcodeDetector(prototxt_path, model_path)

 Initialize the BarcodeDetector.

 decode(self, img, points)

 Decodes graphical code in image once it's found by the detect() method.

 decode(self, img, points, opts)

 Decodes graphical code in image once it's found by the detect() method.

 decodeMulti(self, img, points)

 Decodes graphical codes in image once it's found by the detect() method.

 decodeMulti(self, img, points, opts)

 Decodes graphical codes in image once it's found by the detect() method.

 decodeWithType(self, img, points)

 Decodes barcode in image once it's found by the detect() method.

 detect(self, img)

 Detects graphical code in image and returns the quadrangle containing the code.

 detect(self, img, opts)

 Detects graphical code in image and returns the quadrangle containing the code.

 detectAndDecode(self, img)

 Both detects and decodes graphical code

 detectAndDecode(self, img, opts)

 Both detects and decodes graphical code

 detectAndDecodeMulti(self, img)

 Both detects and decodes graphical codes

 detectAndDecodeMulti(self, img, opts)

 Both detects and decodes graphical codes

 detectAndDecodeWithType(self, img)

 Both detects and decodes barcode

 detectAndDecodeWithType(self, img, opts)

 Both detects and decodes barcode

 detectMulti(self, img)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 detectMulti(self, img, opts)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Barcode.BarcodeDetector{ref: reference()}

Type that represents an Barcode.BarcodeDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 barcodeDetector()

 View Source

 @spec barcodeDetector() :: t() | {:error, String.t()}

Initialize the BarcodeDetector.
Return
	self: BarcodeDetector

Python prototype (for reference only):
BarcodeDetector() -> <barcode_BarcodeDetector object>

 Link to this function

 barcodeDetector(prototxt_path, model_path)

 View Source

 @spec barcodeDetector(binary(), binary()) :: t() | {:error, String.t()}

Initialize the BarcodeDetector.
Positional Arguments
	prototxt_path: string.
prototxt file path for the super resolution model

	model_path: string.
model file path for the super resolution model

Return
	self: BarcodeDetector

 Parameters allow to load optional Super Resolution DNN model for better quality.
Python prototype (for reference only):
BarcodeDetector(prototxt_path, model_path) -> <barcode_BarcodeDetector object>

 Link to this function

 decode(self, img, points)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decode(self, img, points, opts)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decodeMulti(self, img, points)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 decodeMulti(self, img, points, opts)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 decodeWithType(self, img, points)

 View Source

 @spec decodeWithType(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {[binary()], [binary()]} | false | {:error, String.t()}

Decodes barcode in image once it's found by the detect() method.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing bar code.

	points: Evision.Mat.t().
vector of rotated rectangle vertices found by detect() method (or some other algorithm).
For N detected barcodes, the dimensions of this array should be [N][4].
Order of four points in vector<Point2f> is bottomLeft, topLeft, topRight, bottomRight.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	decoded_type: [string].
vector strings, specifies the type of these barcodes

@return true if at least one valid barcode have been found
Python prototype (for reference only):
decodeWithType(img, points) -> retval, decoded_info, decoded_type

 Link to this function

 detect(self, img)

 View Source

 @spec detect(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detect(self, img, opts)

 View Source

 @spec detect(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detectAndDecode(self, img)

 View Source

 @spec detectAndDecode(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecode(self, img, opts)

 View Source

 @spec detectAndDecode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in()
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img, opts)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectAndDecodeWithType(self, img)

 View Source

 @spec detectAndDecodeWithType(t(), Evision.Mat.maybe_mat_in()) ::
 {[binary()], [binary()], Evision.Mat.t()} | false | {:error, String.t()}

Both detects and decodes barcode
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing barcode.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string(s) or empty vector of string if the codes cannot be decoded.

	decoded_type: [string].
vector of strings, specifies the type of these barcodes

	points: Evision.Mat.t().
optional output vector of vertices of the found barcode rectangle. Will be empty if not found.

@return true if at least one valid barcode have been found
Python prototype (for reference only):
detectAndDecodeWithType(img[, points]) -> retval, decoded_info, decoded_type, points

 Link to this function

 detectAndDecodeWithType(self, img, opts)

 View Source

 @spec detectAndDecodeWithType(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[binary()], [binary()], Evision.Mat.t()} | false | {:error, String.t()}

Both detects and decodes barcode
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing barcode.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string(s) or empty vector of string if the codes cannot be decoded.

	decoded_type: [string].
vector of strings, specifies the type of these barcodes

	points: Evision.Mat.t().
optional output vector of vertices of the found barcode rectangle. Will be empty if not found.

@return true if at least one valid barcode have been found
Python prototype (for reference only):
detectAndDecodeWithType(img[, points]) -> retval, decoded_info, decoded_type, points

 Link to this function

 detectMulti(self, img)

 View Source

 @spec detectMulti(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 detectMulti(self, img, opts)

 View Source

 @spec detectMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.Barcode.BarcodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Evision.BaseCascadeClassifier - Evision v0.1.39

Evision.BaseCascadeClassifier

 Summary

 Types

 t()

 Type that represents an BaseCascadeClassifier struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BaseCascadeClassifier{ref: reference()}

Type that represents an BaseCascadeClassifier struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BaseCascadeClassifier.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.BgSegm - Evision v0.1.39

Evision.BgSegm

 Summary

 Types

 t()

 Type that represents an BgSegm struct.

 Functions

 createBackgroundSubtractorCNT()

 Creates a CNT Background Subtractor

 createBackgroundSubtractorCNT(opts)

 Creates a CNT Background Subtractor

 createBackgroundSubtractorGMG()

 Creates a GMG Background Subtractor

 createBackgroundSubtractorGMG(opts)

 Creates a GMG Background Subtractor

 createBackgroundSubtractorGSOC()

 Creates an instance of BackgroundSubtractorGSOC algorithm.

 createBackgroundSubtractorGSOC(opts)

 Creates an instance of BackgroundSubtractorGSOC algorithm.

 createBackgroundSubtractorLSBP()

 Creates an instance of BackgroundSubtractorLSBP algorithm.

 createBackgroundSubtractorLSBP(opts)

 Creates an instance of BackgroundSubtractorLSBP algorithm.

 createBackgroundSubtractorMOG()

 Creates mixture-of-gaussian background subtractor

 createBackgroundSubtractorMOG(opts)

 Creates mixture-of-gaussian background subtractor

 createSyntheticSequenceGenerator(background, object)

 Creates an instance of SyntheticSequenceGenerator.

 createSyntheticSequenceGenerator(background, object, opts)

 Creates an instance of SyntheticSequenceGenerator.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm{ref: reference()}

Type that represents an BgSegm struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createBackgroundSubtractorCNT()

 View Source

 @spec createBackgroundSubtractorCNT() ::
 Evision.BgSegm.BackgroundSubtractorCNT.t() | {:error, String.t()}

Creates a CNT Background Subtractor
Keyword Arguments
	minPixelStability: int.
number of frames with same pixel color to consider stable

	useHistory: bool.
determines if we're giving a pixel credit for being stable for a long time

	maxPixelStability: int.
maximum allowed credit for a pixel in history

	isParallel: bool.
determines if we're parallelizing the algorithm

Return
	retval: Evision.BgSegm.BackgroundSubtractorCNT.t()

Python prototype (for reference only):
createBackgroundSubtractorCNT([, minPixelStability[, useHistory[, maxPixelStability[, isParallel]]]]) -> retval

 Link to this function

 createBackgroundSubtractorCNT(opts)

 View Source

 @spec createBackgroundSubtractorCNT(
 [
 useHistory: term(),
 isParallel: term(),
 maxPixelStability: term(),
 minPixelStability: term()
]
 | nil
) :: Evision.BgSegm.BackgroundSubtractorCNT.t() | {:error, String.t()}

Creates a CNT Background Subtractor
Keyword Arguments
	minPixelStability: int.
number of frames with same pixel color to consider stable

	useHistory: bool.
determines if we're giving a pixel credit for being stable for a long time

	maxPixelStability: int.
maximum allowed credit for a pixel in history

	isParallel: bool.
determines if we're parallelizing the algorithm

Return
	retval: Evision.BgSegm.BackgroundSubtractorCNT.t()

Python prototype (for reference only):
createBackgroundSubtractorCNT([, minPixelStability[, useHistory[, maxPixelStability[, isParallel]]]]) -> retval

 Link to this function

 createBackgroundSubtractorGMG()

 View Source

 @spec createBackgroundSubtractorGMG() ::
 Evision.BgSegm.BackgroundSubtractorGMG.t() | {:error, String.t()}

Creates a GMG Background Subtractor
Keyword Arguments
	initializationFrames: int.
number of frames used to initialize the background models.

	decisionThreshold: double.
Threshold value, above which it is marked foreground, else background.

Return
	retval: Evision.BgSegm.BackgroundSubtractorGMG.t()

Python prototype (for reference only):
createBackgroundSubtractorGMG([, initializationFrames[, decisionThreshold]]) -> retval

 Link to this function

 createBackgroundSubtractorGMG(opts)

 View Source

 @spec createBackgroundSubtractorGMG(
 [initializationFrames: term(), decisionThreshold: term()]
 | nil
) ::
 Evision.BgSegm.BackgroundSubtractorGMG.t() | {:error, String.t()}

Creates a GMG Background Subtractor
Keyword Arguments
	initializationFrames: int.
number of frames used to initialize the background models.

	decisionThreshold: double.
Threshold value, above which it is marked foreground, else background.

Return
	retval: Evision.BgSegm.BackgroundSubtractorGMG.t()

Python prototype (for reference only):
createBackgroundSubtractorGMG([, initializationFrames[, decisionThreshold]]) -> retval

 Link to this function

 createBackgroundSubtractorGSOC()

 View Source

 @spec createBackgroundSubtractorGSOC() ::
 Evision.BgSegm.BackgroundSubtractorGSOC.t() | {:error, String.t()}

Creates an instance of BackgroundSubtractorGSOC algorithm.
Keyword Arguments
	mc: int.
Whether to use camera motion compensation.

	nSamples: int.
Number of samples to maintain at each point of the frame.

	replaceRate: float.
Probability of replacing the old sample - how fast the model will update itself.

	propagationRate: float.
Probability of propagating to neighbors.

	hitsThreshold: int.
How many positives the sample must get before it will be considered as a possible replacement.

	alpha: float.
Scale coefficient for threshold.

	beta: float.
Bias coefficient for threshold.

	blinkingSupressionDecay: float.
Blinking supression decay factor.

	blinkingSupressionMultiplier: float.
Blinking supression multiplier.

	noiseRemovalThresholdFacBG: float.
Strength of the noise removal for background points.

	noiseRemovalThresholdFacFG: float.
Strength of the noise removal for foreground points.

Return
	retval: Evision.BgSegm.BackgroundSubtractorGSOC.t()

Implementation of the different yet better algorithm which is called GSOC, as it was implemented during GSOC and was not originated from any paper.
Python prototype (for reference only):
createBackgroundSubtractorGSOC([, mc[, nSamples[, replaceRate[, propagationRate[, hitsThreshold[, alpha[, beta[, blinkingSupressionDecay[, blinkingSupressionMultiplier[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG]]]]]]]]]]]) -> retval

 Link to this function

 createBackgroundSubtractorGSOC(opts)

 View Source

 @spec createBackgroundSubtractorGSOC(
 [
 alpha: term(),
 nSamples: term(),
 hitsThreshold: term(),
 mc: term(),
 propagationRate: term(),
 blinkingSupressionDecay: term(),
 noiseRemovalThresholdFacBG: term(),
 replaceRate: term(),
 blinkingSupressionMultiplier: term(),
 noiseRemovalThresholdFacFG: term(),
 beta: term()
]
 | nil
) :: Evision.BgSegm.BackgroundSubtractorGSOC.t() | {:error, String.t()}

Creates an instance of BackgroundSubtractorGSOC algorithm.
Keyword Arguments
	mc: int.
Whether to use camera motion compensation.

	nSamples: int.
Number of samples to maintain at each point of the frame.

	replaceRate: float.
Probability of replacing the old sample - how fast the model will update itself.

	propagationRate: float.
Probability of propagating to neighbors.

	hitsThreshold: int.
How many positives the sample must get before it will be considered as a possible replacement.

	alpha: float.
Scale coefficient for threshold.

	beta: float.
Bias coefficient for threshold.

	blinkingSupressionDecay: float.
Blinking supression decay factor.

	blinkingSupressionMultiplier: float.
Blinking supression multiplier.

	noiseRemovalThresholdFacBG: float.
Strength of the noise removal for background points.

	noiseRemovalThresholdFacFG: float.
Strength of the noise removal for foreground points.

Return
	retval: Evision.BgSegm.BackgroundSubtractorGSOC.t()

Implementation of the different yet better algorithm which is called GSOC, as it was implemented during GSOC and was not originated from any paper.
Python prototype (for reference only):
createBackgroundSubtractorGSOC([, mc[, nSamples[, replaceRate[, propagationRate[, hitsThreshold[, alpha[, beta[, blinkingSupressionDecay[, blinkingSupressionMultiplier[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG]]]]]]]]]]]) -> retval

 Link to this function

 createBackgroundSubtractorLSBP()

 View Source

 @spec createBackgroundSubtractorLSBP() ::
 Evision.BgSegm.BackgroundSubtractorLSBP.t() | {:error, String.t()}

Creates an instance of BackgroundSubtractorLSBP algorithm.
Keyword Arguments
	mc: int.
Whether to use camera motion compensation.

	nSamples: int.
Number of samples to maintain at each point of the frame.

	lSBPRadius: int.
LSBP descriptor radius.

	tlower: float.
Lower bound for T-values. See @cite LGuo2016 for details.

	tupper: float.
Upper bound for T-values. See @cite LGuo2016 for details.

	tinc: float.
Increase step for T-values. See @cite LGuo2016 for details.

	tdec: float.
Decrease step for T-values. See @cite LGuo2016 for details.

	rscale: float.
Scale coefficient for threshold values.

	rincdec: float.
Increase/Decrease step for threshold values.

	noiseRemovalThresholdFacBG: float.
Strength of the noise removal for background points.

	noiseRemovalThresholdFacFG: float.
Strength of the noise removal for foreground points.

	lSBPthreshold: int.
Threshold for LSBP binary string.

	minCount: int.
Minimal number of matches for sample to be considered as foreground.

Return
	retval: Evision.BgSegm.BackgroundSubtractorLSBP.t()

Background Subtraction using Local SVD Binary Pattern. More details about the algorithm can be found at @cite LGuo2016
Python prototype (for reference only):
createBackgroundSubtractorLSBP([, mc[, nSamples[, LSBPRadius[, Tlower[, Tupper[, Tinc[, Tdec[, Rscale[, Rincdec[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG[, LSBPthreshold[, minCount]]]]]]]]]]]]]) -> retval

 Link to this function

 createBackgroundSubtractorLSBP(opts)

 View Source

 @spec createBackgroundSubtractorLSBP(
 [
 nSamples: term(),
 mc: term(),
 tupper: term(),
 rincdec: term(),
 noiseRemovalThresholdFacBG: term(),
 tdec: term(),
 lSBPRadius: term(),
 tinc: term(),
 rscale: term(),
 tlower: term(),
 noiseRemovalThresholdFacFG: term(),
 lSBPthreshold: term(),
 minCount: term()
]
 | nil
) :: Evision.BgSegm.BackgroundSubtractorLSBP.t() | {:error, String.t()}

Creates an instance of BackgroundSubtractorLSBP algorithm.
Keyword Arguments
	mc: int.
Whether to use camera motion compensation.

	nSamples: int.
Number of samples to maintain at each point of the frame.

	lSBPRadius: int.
LSBP descriptor radius.

	tlower: float.
Lower bound for T-values. See @cite LGuo2016 for details.

	tupper: float.
Upper bound for T-values. See @cite LGuo2016 for details.

	tinc: float.
Increase step for T-values. See @cite LGuo2016 for details.

	tdec: float.
Decrease step for T-values. See @cite LGuo2016 for details.

	rscale: float.
Scale coefficient for threshold values.

	rincdec: float.
Increase/Decrease step for threshold values.

	noiseRemovalThresholdFacBG: float.
Strength of the noise removal for background points.

	noiseRemovalThresholdFacFG: float.
Strength of the noise removal for foreground points.

	lSBPthreshold: int.
Threshold for LSBP binary string.

	minCount: int.
Minimal number of matches for sample to be considered as foreground.

Return
	retval: Evision.BgSegm.BackgroundSubtractorLSBP.t()

Background Subtraction using Local SVD Binary Pattern. More details about the algorithm can be found at @cite LGuo2016
Python prototype (for reference only):
createBackgroundSubtractorLSBP([, mc[, nSamples[, LSBPRadius[, Tlower[, Tupper[, Tinc[, Tdec[, Rscale[, Rincdec[, noiseRemovalThresholdFacBG[, noiseRemovalThresholdFacFG[, LSBPthreshold[, minCount]]]]]]]]]]]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG()

 View Source

 @spec createBackgroundSubtractorMOG() ::
 Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

Creates mixture-of-gaussian background subtractor
Keyword Arguments
	history: int.
Length of the history.

	nmixtures: int.
Number of Gaussian mixtures.

	backgroundRatio: double.
Background ratio.

	noiseSigma: double.
Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.

Return
	retval: Evision.BgSegm.BackgroundSubtractorMOG.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG(opts)

 View Source

 @spec createBackgroundSubtractorMOG(
 [
 nmixtures: term(),
 history: term(),
 backgroundRatio: term(),
 noiseSigma: term()
]
 | nil
) :: Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

Creates mixture-of-gaussian background subtractor
Keyword Arguments
	history: int.
Length of the history.

	nmixtures: int.
Number of Gaussian mixtures.

	backgroundRatio: double.
Background ratio.

	noiseSigma: double.
Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.

Return
	retval: Evision.BgSegm.BackgroundSubtractorMOG.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval

 Link to this function

 createSyntheticSequenceGenerator(background, object)

 View Source

 @spec createSyntheticSequenceGenerator(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.BgSegm.SyntheticSequenceGenerator.t() | {:error, String.t()}

Creates an instance of SyntheticSequenceGenerator.
Positional Arguments
	background: Evision.Mat.t().
Background image for object.

	object: Evision.Mat.t().
Object image which will move slowly over the background.

Keyword Arguments
	amplitude: double.
Amplitude of wave distortion applied to background.

	wavelength: double.
Length of waves in distortion applied to background.

	wavespeed: double.
How fast waves will move.

	objspeed: double.
How fast object will fly over background.

Return
	retval: Evision.BgSegm.SyntheticSequenceGenerator.t()

Python prototype (for reference only):
createSyntheticSequenceGenerator(background, object[, amplitude[, wavelength[, wavespeed[, objspeed]]]]) -> retval

 Link to this function

 createSyntheticSequenceGenerator(background, object, opts)

 View Source

 @spec createSyntheticSequenceGenerator(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [objspeed: term(), wavespeed: term(), wavelength: term(), amplitude: term()]
 | nil
) :: Evision.BgSegm.SyntheticSequenceGenerator.t() | {:error, String.t()}

Creates an instance of SyntheticSequenceGenerator.
Positional Arguments
	background: Evision.Mat.t().
Background image for object.

	object: Evision.Mat.t().
Object image which will move slowly over the background.

Keyword Arguments
	amplitude: double.
Amplitude of wave distortion applied to background.

	wavelength: double.
Length of waves in distortion applied to background.

	wavespeed: double.
How fast waves will move.

	objspeed: double.
How fast object will fly over background.

Return
	retval: Evision.BgSegm.SyntheticSequenceGenerator.t()

Python prototype (for reference only):
createSyntheticSequenceGenerator(background, object[, amplitude[, wavelength[, wavespeed[, objspeed]]]]) -> retval

 Evision.BgSegm.BackgroundSubtractorCNT - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorCNT

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorCNT struct.

 Functions

 apply(self, image)

 apply

 apply(self, image, opts)

 apply

 getBackgroundImage(self)

 getBackgroundImage

 getBackgroundImage(self, opts)

 getBackgroundImage

 getIsParallel(self)

 Returns if we're parallelizing the algorithm.

 getMaxPixelStability(self)

 Returns maximum allowed credit for a pixel in history.

 getMinPixelStability(self)

 Returns number of frames with same pixel color to consider stable.

 getUseHistory(self)

 Returns if we're giving a pixel credit for being stable for a long time.

 setIsParallel(self, value)

 Sets if we're parallelizing the algorithm.

 setMaxPixelStability(self, value)

 Sets the maximum allowed credit for a pixel in history.

 setMinPixelStability(self, value)

 Sets the number of frames with same pixel color to consider stable.

 setUseHistory(self, value)

 Sets if we're giving a pixel credit for being stable for a long time.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorCNT{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorCNT struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 apply(self, image, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 getBackgroundImage(self)

 View Source

 @spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, opts)

 View Source

 @spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getIsParallel(self)

 View Source

 @spec getIsParallel(t()) :: boolean() | {:error, String.t()}

Returns if we're parallelizing the algorithm.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	retval: bool

Python prototype (for reference only):
getIsParallel() -> retval

 Link to this function

 getMaxPixelStability(self)

 View Source

 @spec getMaxPixelStability(t()) :: integer() | {:error, String.t()}

Returns maximum allowed credit for a pixel in history.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	retval: int

Python prototype (for reference only):
getMaxPixelStability() -> retval

 Link to this function

 getMinPixelStability(self)

 View Source

 @spec getMinPixelStability(t()) :: integer() | {:error, String.t()}

Returns number of frames with same pixel color to consider stable.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	retval: int

Python prototype (for reference only):
getMinPixelStability() -> retval

 Link to this function

 getUseHistory(self)

 View Source

 @spec getUseHistory(t()) :: boolean() | {:error, String.t()}

Returns if we're giving a pixel credit for being stable for a long time.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()

Return
	retval: bool

Python prototype (for reference only):
getUseHistory() -> retval

 Link to this function

 setIsParallel(self, value)

 View Source

 @spec setIsParallel(t(), boolean()) :: t() | {:error, String.t()}

Sets if we're parallelizing the algorithm.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	value: bool

Python prototype (for reference only):
setIsParallel(value) -> None

 Link to this function

 setMaxPixelStability(self, value)

 View Source

 @spec setMaxPixelStability(t(), integer()) :: t() | {:error, String.t()}

Sets the maximum allowed credit for a pixel in history.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	value: int

Python prototype (for reference only):
setMaxPixelStability(value) -> None

 Link to this function

 setMinPixelStability(self, value)

 View Source

 @spec setMinPixelStability(t(), integer()) :: t() | {:error, String.t()}

Sets the number of frames with same pixel color to consider stable.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	value: int

Python prototype (for reference only):
setMinPixelStability(value) -> None

 Link to this function

 setUseHistory(self, value)

 View Source

 @spec setUseHistory(t(), boolean()) :: t() | {:error, String.t()}

Sets if we're giving a pixel credit for being stable for a long time.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorCNT.t()
	value: bool

Python prototype (for reference only):
setUseHistory(value) -> None

 Evision.BgSegm.BackgroundSubtractorGMG - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorGMG

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorGMG struct.

 Functions

 getBackgroundPrior(self)

 Returns the prior probability that each individual pixel is a background pixel.

 getDecisionThreshold(self)

 Returns the value of decision threshold.

 getDefaultLearningRate(self)

 Returns the learning rate of the algorithm.

 getMaxFeatures(self)

 Returns total number of distinct colors to maintain in histogram.

 getMaxVal(self)

 Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.

 getMinVal(self)

 Returns the minimum value taken on by pixels in image sequence. Usually 0.

 getNumFrames(self)

 Returns the number of frames used to initialize background model.

 getQuantizationLevels(self)

 Returns the parameter used for quantization of color-space.

 getSmoothingRadius(self)

 Returns the kernel radius used for morphological operations

 getUpdateBackgroundModel(self)

 Returns the status of background model update

 setBackgroundPrior(self, bgprior)

 Sets the prior probability that each individual pixel is a background pixel.

 setDecisionThreshold(self, thresh)

 Sets the value of decision threshold.

 setDefaultLearningRate(self, lr)

 Sets the learning rate of the algorithm.

 setMaxFeatures(self, maxFeatures)

 Sets total number of distinct colors to maintain in histogram.

 setMaxVal(self, val)

 Sets the maximum value taken on by pixels in image sequence.

 setMinVal(self, val)

 Sets the minimum value taken on by pixels in image sequence.

 setNumFrames(self, nframes)

 Sets the number of frames used to initialize background model.

 setQuantizationLevels(self, nlevels)

 Sets the parameter used for quantization of color-space

 setSmoothingRadius(self, radius)

 Sets the kernel radius used for morphological operations

 setUpdateBackgroundModel(self, update)

 Sets the status of background model update

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorGMG{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorGMG struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getBackgroundPrior(self)

 View Source

 @spec getBackgroundPrior(t()) :: number() | {:error, String.t()}

Returns the prior probability that each individual pixel is a background pixel.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: double

Python prototype (for reference only):
getBackgroundPrior() -> retval

 Link to this function

 getDecisionThreshold(self)

 View Source

 @spec getDecisionThreshold(t()) :: number() | {:error, String.t()}

Returns the value of decision threshold.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: double

Decision value is the value above which pixel is determined to be FG.
Python prototype (for reference only):
getDecisionThreshold() -> retval

 Link to this function

 getDefaultLearningRate(self)

 View Source

 @spec getDefaultLearningRate(t()) :: number() | {:error, String.t()}

Returns the learning rate of the algorithm.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: double

It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from
histograms.
Python prototype (for reference only):
getDefaultLearningRate() -> retval

 Link to this function

 getMaxFeatures(self)

 View Source

 @spec getMaxFeatures(t()) :: integer() | {:error, String.t()}

Returns total number of distinct colors to maintain in histogram.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: int

Python prototype (for reference only):
getMaxFeatures() -> retval

 Link to this function

 getMaxVal(self)

 View Source

 @spec getMaxVal(t()) :: number() | {:error, String.t()}

Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: double

Python prototype (for reference only):
getMaxVal() -> retval

 Link to this function

 getMinVal(self)

 View Source

 @spec getMinVal(t()) :: number() | {:error, String.t()}

Returns the minimum value taken on by pixels in image sequence. Usually 0.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: double

Python prototype (for reference only):
getMinVal() -> retval

 Link to this function

 getNumFrames(self)

 View Source

 @spec getNumFrames(t()) :: integer() | {:error, String.t()}

Returns the number of frames used to initialize background model.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: int

Python prototype (for reference only):
getNumFrames() -> retval

 Link to this function

 getQuantizationLevels(self)

 View Source

 @spec getQuantizationLevels(t()) :: integer() | {:error, String.t()}

Returns the parameter used for quantization of color-space.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: int

It is the number of discrete levels in each channel to be used in histograms.
Python prototype (for reference only):
getQuantizationLevels() -> retval

 Link to this function

 getSmoothingRadius(self)

 View Source

 @spec getSmoothingRadius(t()) :: integer() | {:error, String.t()}

Returns the kernel radius used for morphological operations
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: int

Python prototype (for reference only):
getSmoothingRadius() -> retval

 Link to this function

 getUpdateBackgroundModel(self)

 View Source

 @spec getUpdateBackgroundModel(t()) :: boolean() | {:error, String.t()}

Returns the status of background model update
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()

Return
	retval: bool

Python prototype (for reference only):
getUpdateBackgroundModel() -> retval

 Link to this function

 setBackgroundPrior(self, bgprior)

 View Source

 @spec setBackgroundPrior(t(), number()) :: t() | {:error, String.t()}

Sets the prior probability that each individual pixel is a background pixel.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	bgprior: double

Python prototype (for reference only):
setBackgroundPrior(bgprior) -> None

 Link to this function

 setDecisionThreshold(self, thresh)

 View Source

 @spec setDecisionThreshold(t(), number()) :: t() | {:error, String.t()}

Sets the value of decision threshold.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	thresh: double

Python prototype (for reference only):
setDecisionThreshold(thresh) -> None

 Link to this function

 setDefaultLearningRate(self, lr)

 View Source

 @spec setDefaultLearningRate(t(), number()) :: t() | {:error, String.t()}

Sets the learning rate of the algorithm.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	lr: double

Python prototype (for reference only):
setDefaultLearningRate(lr) -> None

 Link to this function

 setMaxFeatures(self, maxFeatures)

 View Source

 @spec setMaxFeatures(t(), integer()) :: t() | {:error, String.t()}

Sets total number of distinct colors to maintain in histogram.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	maxFeatures: int

Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None

 Link to this function

 setMaxVal(self, val)

 View Source

 @spec setMaxVal(t(), number()) :: t() | {:error, String.t()}

Sets the maximum value taken on by pixels in image sequence.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	val: double

Python prototype (for reference only):
setMaxVal(val) -> None

 Link to this function

 setMinVal(self, val)

 View Source

 @spec setMinVal(t(), number()) :: t() | {:error, String.t()}

Sets the minimum value taken on by pixels in image sequence.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	val: double

Python prototype (for reference only):
setMinVal(val) -> None

 Link to this function

 setNumFrames(self, nframes)

 View Source

 @spec setNumFrames(t(), integer()) :: t() | {:error, String.t()}

Sets the number of frames used to initialize background model.
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	nframes: int

Python prototype (for reference only):
setNumFrames(nframes) -> None

 Link to this function

 setQuantizationLevels(self, nlevels)

 View Source

 @spec setQuantizationLevels(t(), integer()) :: t() | {:error, String.t()}

Sets the parameter used for quantization of color-space
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	nlevels: int

Python prototype (for reference only):
setQuantizationLevels(nlevels) -> None

 Link to this function

 setSmoothingRadius(self, radius)

 View Source

 @spec setSmoothingRadius(t(), integer()) :: t() | {:error, String.t()}

Sets the kernel radius used for morphological operations
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	radius: int

Python prototype (for reference only):
setSmoothingRadius(radius) -> None

 Link to this function

 setUpdateBackgroundModel(self, update)

 View Source

 @spec setUpdateBackgroundModel(t(), boolean()) :: t() | {:error, String.t()}

Sets the status of background model update
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGMG.t()
	update: bool

Python prototype (for reference only):
setUpdateBackgroundModel(update) -> None

 Evision.BgSegm.BackgroundSubtractorGSOC - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorGSOC

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorGSOC struct.

 Functions

 apply(self, image)

 apply

 apply(self, image, opts)

 apply

 getBackgroundImage(self)

 getBackgroundImage

 getBackgroundImage(self, opts)

 getBackgroundImage

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorGSOC{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorGSOC struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGSOC.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 apply(self, image, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGSOC.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 getBackgroundImage(self)

 View Source

 @spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGSOC.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, opts)

 View Source

 @spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorGSOC.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Evision.BgSegm.BackgroundSubtractorLSBP - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorLSBP

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorLSBP struct.

 Functions

 apply(self, image)

 apply

 apply(self, image, opts)

 apply

 getBackgroundImage(self)

 getBackgroundImage

 getBackgroundImage(self, opts)

 getBackgroundImage

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorLSBP{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorLSBP struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorLSBP.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 apply(self, image, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:learningRate, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorLSBP.t()
	image: Evision.Mat.t()

Keyword Arguments
	learningRate: double.

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image[, fgmask[, learningRate]]) -> fgmask

 Link to this function

 getBackgroundImage(self)

 View Source

 @spec getBackgroundImage(t()) :: Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorLSBP.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, opts)

 View Source

 @spec getBackgroundImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorLSBP.t()

Return
	backgroundImage: Evision.Mat.t().

Python prototype (for reference only):
getBackgroundImage([, backgroundImage]) -> backgroundImage

 Evision.BgSegm.BackgroundSubtractorLSBPDesc - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorLSBPDesc

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorLSBPDesc struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorLSBPDesc{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorLSBPDesc struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.BgSegm.BackgroundSubtractorMOG - Evision v0.1.39

Evision.BgSegm.BackgroundSubtractorMOG

 Summary

 Types

 t()

 Type that represents an BgSegm.BackgroundSubtractorMOG struct.

 Functions

 getBackgroundRatio(self)

 getBackgroundRatio

 getHistory(self)

 getHistory

 getNMixtures(self)

 getNMixtures

 getNoiseSigma(self)

 getNoiseSigma

 setBackgroundRatio(self, backgroundRatio)

 setBackgroundRatio

 setHistory(self, nframes)

 setHistory

 setNMixtures(self, nmix)

 setNMixtures

 setNoiseSigma(self, noiseSigma)

 setNoiseSigma

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.BackgroundSubtractorMOG{ref: reference()}

Type that represents an BgSegm.BackgroundSubtractorMOG struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getBackgroundRatio(self)

 View Source

 @spec getBackgroundRatio(t()) :: number() | {:error, String.t()}

getBackgroundRatio
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()

Return
	retval: double

Python prototype (for reference only):
getBackgroundRatio() -> retval

 Link to this function

 getHistory(self)

 View Source

 @spec getHistory(t()) :: integer() | {:error, String.t()}

getHistory
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()

Return
	retval: int

Python prototype (for reference only):
getHistory() -> retval

 Link to this function

 getNMixtures(self)

 View Source

 @spec getNMixtures(t()) :: integer() | {:error, String.t()}

getNMixtures
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()

Return
	retval: int

Python prototype (for reference only):
getNMixtures() -> retval

 Link to this function

 getNoiseSigma(self)

 View Source

 @spec getNoiseSigma(t()) :: number() | {:error, String.t()}

getNoiseSigma
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()

Return
	retval: double

Python prototype (for reference only):
getNoiseSigma() -> retval

 Link to this function

 setBackgroundRatio(self, backgroundRatio)

 View Source

 @spec setBackgroundRatio(t(), number()) :: t() | {:error, String.t()}

setBackgroundRatio
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()
	backgroundRatio: double

Python prototype (for reference only):
setBackgroundRatio(backgroundRatio) -> None

 Link to this function

 setHistory(self, nframes)

 View Source

 @spec setHistory(t(), integer()) :: t() | {:error, String.t()}

setHistory
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()
	nframes: int

Python prototype (for reference only):
setHistory(nframes) -> None

 Link to this function

 setNMixtures(self, nmix)

 View Source

 @spec setNMixtures(t(), integer()) :: t() | {:error, String.t()}

setNMixtures
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()
	nmix: int

Python prototype (for reference only):
setNMixtures(nmix) -> None

 Link to this function

 setNoiseSigma(self, noiseSigma)

 View Source

 @spec setNoiseSigma(t(), number()) :: t() | {:error, String.t()}

setNoiseSigma
Positional Arguments
	self: Evision.BgSegm.BackgroundSubtractorMOG.t()
	noiseSigma: double

Python prototype (for reference only):
setNoiseSigma(noiseSigma) -> None

 Evision.BgSegm.SyntheticSequenceGenerator - Evision v0.1.39

Evision.BgSegm.SyntheticSequenceGenerator

 Summary

 Types

 t()

 Type that represents an BgSegm.SyntheticSequenceGenerator struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getNextFrame(self)

 Obtain the next frame in the sequence.

 getNextFrame(self, opts)

 Obtain the next frame in the sequence.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 syntheticSequenceGenerator(background, object, amplitude, wavelength, wavespeed, objspeed)

 Creates an instance of SyntheticSequenceGenerator.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.BgSegm.SyntheticSequenceGenerator{ref: reference()}

Type that represents an BgSegm.SyntheticSequenceGenerator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNextFrame(self)

 View Source

 @spec getNextFrame(t()) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Obtain the next frame in the sequence.
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Return
	frame: Evision.Mat.t().
Output frame.

	gtMask: Evision.Mat.t().
Output ground-truth (reference) segmentation mask object/background.

Python prototype (for reference only):
getNextFrame([, frame[, gtMask]]) -> frame, gtMask

 Link to this function

 getNextFrame(self, opts)

 View Source

 @spec getNextFrame(t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Obtain the next frame in the sequence.
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Return
	frame: Evision.Mat.t().
Output frame.

	gtMask: Evision.Mat.t().
Output ground-truth (reference) segmentation mask object/background.

Python prototype (for reference only):
getNextFrame([, frame[, gtMask]]) -> frame, gtMask

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 syntheticSequenceGenerator(background, object, amplitude, wavelength, wavespeed, objspeed)

 View Source

 @spec syntheticSequenceGenerator(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 number(),
 number()
) :: t() | {:error, String.t()}

Creates an instance of SyntheticSequenceGenerator.
Positional Arguments
	background: Evision.Mat.t().
Background image for object.

	object: Evision.Mat.t().
Object image which will move slowly over the background.

	amplitude: double.
Amplitude of wave distortion applied to background.

	wavelength: double.
Length of waves in distortion applied to background.

	wavespeed: double.
How fast waves will move.

	objspeed: double.
How fast object will fly over background.

Return
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()

Python prototype (for reference only):
SyntheticSequenceGenerator(background, object, amplitude, wavelength, wavespeed, objspeed) -> <bgsegm_SyntheticSequenceGenerator object>

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.BgSegm.SyntheticSequenceGenerator.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Bioinspired - Evision v0.1.39

Evision.Bioinspired

 Summary

 Types

 t()

 Type that represents an Bioinspired struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Bioinspired{ref: reference()}

Type that represents an Bioinspired struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Bioinspired.Retina - Evision v0.1.39

Evision.Bioinspired.Retina

 Summary

 Types

 t()

 Type that represents an Bioinspired.Retina struct.

 Functions

 activateContoursProcessing(self, activate)

 Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
default, it is activated

 activateMovingContoursProcessing(self, activate)

 Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
default, it is activated

 applyFastToneMapping(self, inputImage)

 Method which processes an image in the aim to correct its luminance correct
backlight problems, enhance details in shadows.

 applyFastToneMapping(self, inputImage, opts)

 Method which processes an image in the aim to correct its luminance correct
backlight problems, enhance details in shadows.

 clear(self)

 Clears the algorithm state

 clearBuffers(self)

 Clears all retina buffers

 create(inputSize)

 create

 create(inputSize, colorMode)

 Constructors from standardized interfaces : retreive a smart pointer to a Retina instance

 create(inputSize, colorMode, opts)

 Constructors from standardized interfaces : retreive a smart pointer to a Retina instance

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getInputSize(self)

 Retreive retina input buffer size

 getMagno(self)

 Accessor of the motion channel of the retina (models peripheral vision).

 getMagno(self, opts)

 Accessor of the motion channel of the retina (models peripheral vision).

 getMagnoRAW(self)

 getMagnoRAW

 getOutputSize(self)

 Retreive retina output buffer size that can be different from the input if a spatial log
transformation is applied

 getParvo(self)

 Accessor of the details channel of the retina (models foveal vision).

 getParvo(self, opts)

 Accessor of the details channel of the retina (models foveal vision).

 getParvoRAW(self)

 getParvoRAW

 printSetup(self)

 Outputs a string showing the used parameters setup

 read(self, fn_)

 Reads algorithm parameters from a file storage

 run(self, inputImage)

 Method which allows retina to be applied on an input image,

 save(self, filename)

 save

 setColorSaturation(self)

 Activate color saturation as the final step of the color demultiplexing process -> this
saturation is a sigmoide function applied to each channel of the demultiplexed image.

 setColorSaturation(self, opts)

 Activate color saturation as the final step of the color demultiplexing process -> this
saturation is a sigmoide function applied to each channel of the demultiplexed image.

 setup(self)

 Try to open an XML retina parameters file to adjust current retina instance setup

 setup(self, opts)

 Try to open an XML retina parameters file to adjust current retina instance setup

 setupIPLMagnoChannel(self)

 Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel

 setupIPLMagnoChannel(self, opts)

 Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel

 setupOPLandIPLParvoChannel(self)

 Setup the OPL and IPL parvo channels (see biologocal model)

 setupOPLandIPLParvoChannel(self, opts)

 Setup the OPL and IPL parvo channels (see biologocal model)

 write(self, fs)

 Write xml/yml formated parameters information

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Bioinspired.Retina{ref: reference()}

Type that represents an Bioinspired.Retina struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 activateContoursProcessing(self, activate)

 View Source

 @spec activateContoursProcessing(t(), boolean()) :: t() | {:error, String.t()}

Activate/desactivate the Parvocellular pathway processing (contours information extraction), by
default, it is activated
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	activate: bool.
true if Parvocellular (contours information extraction) output should be
activated, false if not... if activated, the Parvocellular output can be retrieved using the
Retina::getParvo methods

Python prototype (for reference only):
activateContoursProcessing(activate) -> None

 Link to this function

 activateMovingContoursProcessing(self, activate)

 View Source

 @spec activateMovingContoursProcessing(t(), boolean()) :: t() | {:error, String.t()}

Activate/desactivate the Magnocellular pathway processing (motion information extraction), by
default, it is activated
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	activate: bool.
true if Magnocellular output should be activated, false if not... if activated,
the Magnocellular output can be retrieved using the getMagno methods

Python prototype (for reference only):
activateMovingContoursProcessing(activate) -> None

 Link to this function

 applyFastToneMapping(self, inputImage)

 View Source

 @spec applyFastToneMapping(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Method which processes an image in the aim to correct its luminance correct
backlight problems, enhance details in shadows.
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	inputImage: Evision.Mat.t().
the input image to process (should be coded in float format : CV_32F,
CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).

Return
	outputToneMappedImage: Evision.Mat.t().
the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).

This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel
images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
(simplified version of the run/getParvo methods call) since it does not include the
spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
whitening and many other stuff. However, it works great for tone mapping and in a faster way.
Check the demos and experiments section to see examples and the way to perform tone mapping
using the original retina model and the method.
Python prototype (for reference only):
applyFastToneMapping(inputImage[, outputToneMappedImage]) -> outputToneMappedImage

 Link to this function

 applyFastToneMapping(self, inputImage, opts)

 View Source

 @spec applyFastToneMapping(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Method which processes an image in the aim to correct its luminance correct
backlight problems, enhance details in shadows.
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	inputImage: Evision.Mat.t().
the input image to process (should be coded in float format : CV_32F,
CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered).

Return
	outputToneMappedImage: Evision.Mat.t().
the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format).

This method is designed to perform High Dynamic Range image tone mapping (compress >8bit/pixel
images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model
(simplified version of the run/getParvo methods call) since it does not include the
spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral
whitening and many other stuff. However, it works great for tone mapping and in a faster way.
Check the demos and experiments section to see examples and the way to perform tone mapping
using the original retina model and the method.
Python prototype (for reference only):
applyFastToneMapping(inputImage[, outputToneMappedImage]) -> outputToneMappedImage

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clearBuffers(self)

 View Source

 @spec clearBuffers(t()) :: t() | {:error, String.t()}

Clears all retina buffers
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

(equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal
transition occuring just after this method call.
Python prototype (for reference only):
clearBuffers() -> None

 Link to this function

 create(inputSize)

 View Source

 @spec create({number(), number()}) :: t() | {:error, String.t()}

create
Positional Arguments
	inputSize: Size

Return
	retval: Retina

Has overloading in C++
Python prototype (for reference only):
create(inputSize) -> retval

 Link to this function

 create(inputSize, colorMode)

 View Source

 @spec create(
 {number(), number()},
 boolean()
) :: t() | {:error, String.t()}

Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
Positional Arguments
	inputSize: Size.
the input frame size

	colorMode: bool.
the chosen processing mode : with or without color processing

Keyword Arguments
	colorSamplingMethod: int.
specifies which kind of color sampling will be used :
	cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
	cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
	cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling

	useRetinaLogSampling: bool.
activate retina log sampling, if true, the 2 following parameters can
be used

	reductionFactor: float.
only usefull if param useRetinaLogSampling=true, specifies the reduction
factor of the output frame (as the center (fovea) is high resolution and corners can be
underscaled, then a reduction of the output is allowed without precision leak

	samplingStrength: float.
only usefull if param useRetinaLogSampling=true, specifies the strength of
the log scale that is applied

Return
	retval: Retina

Python prototype (for reference only):
create(inputSize, colorMode[, colorSamplingMethod[, useRetinaLogSampling[, reductionFactor[, samplingStrength]]]]) -> retval

 Link to this function

 create(inputSize, colorMode, opts)

 View Source

 @spec create(
 {number(), number()},
 boolean(),
 [
 colorSamplingMethod: term(),
 useRetinaLogSampling: term(),
 reductionFactor: term(),
 samplingStrength: term()
]
 | nil
) :: t() | {:error, String.t()}

Constructors from standardized interfaces : retreive a smart pointer to a Retina instance
Positional Arguments
	inputSize: Size.
the input frame size

	colorMode: bool.
the chosen processing mode : with or without color processing

Keyword Arguments
	colorSamplingMethod: int.
specifies which kind of color sampling will be used :
	cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice
	cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
	cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling

	useRetinaLogSampling: bool.
activate retina log sampling, if true, the 2 following parameters can
be used

	reductionFactor: float.
only usefull if param useRetinaLogSampling=true, specifies the reduction
factor of the output frame (as the center (fovea) is high resolution and corners can be
underscaled, then a reduction of the output is allowed without precision leak

	samplingStrength: float.
only usefull if param useRetinaLogSampling=true, specifies the strength of
the log scale that is applied

Return
	retval: Retina

Python prototype (for reference only):
create(inputSize, colorMode[, colorSamplingMethod[, useRetinaLogSampling[, reductionFactor[, samplingStrength]]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getInputSize(self)

 View Source

 @spec getInputSize(t()) :: {number(), number()} | {:error, String.t()}

Retreive retina input buffer size
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: Size

@return the retina input buffer size
Python prototype (for reference only):
getInputSize() -> retval

 Link to this function

 getMagno(self)

 View Source

 @spec getMagno(t()) :: Evision.Mat.t() | {:error, String.t()}

Accessor of the motion channel of the retina (models peripheral vision).
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retinaOutput_magno: Evision.Mat.t().the output buffer (reallocated if necessary), format can be :	a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
	RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
original retina filter model output, without any quantification or rescaling.

Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
the non RAW method allows a normalized matrix to be retrieved.
@see getMagnoRAW
Python prototype (for reference only):
getMagno([, retinaOutput_magno]) -> retinaOutput_magno

 Link to this function

 getMagno(self, opts)

 View Source

 @spec getMagno(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Accessor of the motion channel of the retina (models peripheral vision).
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retinaOutput_magno: Evision.Mat.t().the output buffer (reallocated if necessary), format can be :	a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
	RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the
original retina filter model output, without any quantification or rescaling.

Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while
the non RAW method allows a normalized matrix to be retrieved.
@see getMagnoRAW
Python prototype (for reference only):
getMagno([, retinaOutput_magno]) -> retinaOutput_magno

 Link to this function

 getMagnoRAW(self)

 View Source

 @spec getMagnoRAW(t()) :: Evision.Mat.t() | {:error, String.t()}

getMagnoRAW
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
getMagnoRAW() -> retval

 Link to this function

 getOutputSize(self)

 View Source

 @spec getOutputSize(t()) :: {number(), number()} | {:error, String.t()}

Retreive retina output buffer size that can be different from the input if a spatial log
transformation is applied
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: Size

@return the retina output buffer size
Python prototype (for reference only):
getOutputSize() -> retval

 Link to this function

 getParvo(self)

 View Source

 @spec getParvo(t()) :: Evision.Mat.t() | {:error, String.t()}

Accessor of the details channel of the retina (models foveal vision).
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retinaOutput_parvo: Evision.Mat.t().the output buffer (reallocated if necessary), format can be :	a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
	RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
B2, ...Bn), this output is the original retina filter model output, without any
quantification or rescaling.

Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
the non RAW method allows a normalized matrix to be retrieved.
@see getParvoRAW
Python prototype (for reference only):
getParvo([, retinaOutput_parvo]) -> retinaOutput_parvo

 Link to this function

 getParvo(self, opts)

 View Source

 @spec getParvo(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Accessor of the details channel of the retina (models foveal vision).
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retinaOutput_parvo: Evision.Mat.t().the output buffer (reallocated if necessary), format can be :	a Mat, this output is rescaled for standard 8bits image processing use in OpenCV
	RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1,
B2, ...Bn), this output is the original retina filter model output, without any
quantification or rescaling.

Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while
the non RAW method allows a normalized matrix to be retrieved.
@see getParvoRAW
Python prototype (for reference only):
getParvo([, retinaOutput_parvo]) -> retinaOutput_parvo

 Link to this function

 getParvoRAW(self)

 View Source

 @spec getParvoRAW(t()) :: Evision.Mat.t() | {:error, String.t()}

getParvoRAW
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: Evision.Mat.t()

Has overloading in C++
Python prototype (for reference only):
getParvoRAW() -> retval

 Link to this function

 printSetup(self)

 View Source

 @spec printSetup(t()) :: binary() | {:error, String.t()}

Outputs a string showing the used parameters setup
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Return
	retval: String

@return a string which contains formated parameters information
Python prototype (for reference only):
printSetup() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Bioinspired.Retina.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 run(self, inputImage)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Method which allows retina to be applied on an input image,
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	inputImage: Evision.Mat.t().
the input Mat image to be processed, can be gray level or BGR coded in any
format (from 8bit to 16bits)

after run, encapsulated retina module is ready to deliver its outputs using dedicated
acccessors, see getParvo and getMagno methods
Python prototype (for reference only):
run(inputImage) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Bioinspired.Retina.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setColorSaturation(self)

 View Source

 @spec setColorSaturation(t()) :: t() | {:error, String.t()}

Activate color saturation as the final step of the color demultiplexing process -> this
saturation is a sigmoide function applied to each channel of the demultiplexed image.
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	saturateColors: bool.
boolean that activates color saturation (if true) or desactivate (if false)

	colorSaturationValue: float.
the saturation factor : a simple factor applied on the chrominance
buffers

Python prototype (for reference only):
setColorSaturation([, saturateColors[, colorSaturationValue]]) -> None

 Link to this function

 setColorSaturation(self, opts)

 View Source

 @spec setColorSaturation(
 t(),
 [colorSaturationValue: term(), saturateColors: term()] | nil
) ::
 t() | {:error, String.t()}

Activate color saturation as the final step of the color demultiplexing process -> this
saturation is a sigmoide function applied to each channel of the demultiplexed image.
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	saturateColors: bool.
boolean that activates color saturation (if true) or desactivate (if false)

	colorSaturationValue: float.
the saturation factor : a simple factor applied on the chrominance
buffers

Python prototype (for reference only):
setColorSaturation([, saturateColors[, colorSaturationValue]]) -> None

 Link to this function

 setup(self)

 View Source

 @spec setup(t()) :: t() | {:error, String.t()}

Try to open an XML retina parameters file to adjust current retina instance setup
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	retinaParameterFile: String.
the parameters filename

	applyDefaultSetupOnFailure: bool.
set to true if an error must be thrown on error

	if the xml file does not exist, then default setup is applied

	warning, Exceptions are thrown if read XML file is not valid

You can retrieve the current parameters structure using the method Retina::getParameters and update
it before running method Retina::setup.
Python prototype (for reference only):
setup([, retinaParameterFile[, applyDefaultSetupOnFailure]]) -> None

 Link to this function

 setup(self, opts)

 View Source

 @spec setup(
 t(),
 [applyDefaultSetupOnFailure: term(), retinaParameterFile: term()] | nil
) ::
 t() | {:error, String.t()}

Try to open an XML retina parameters file to adjust current retina instance setup
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	retinaParameterFile: String.
the parameters filename

	applyDefaultSetupOnFailure: bool.
set to true if an error must be thrown on error

	if the xml file does not exist, then default setup is applied

	warning, Exceptions are thrown if read XML file is not valid

You can retrieve the current parameters structure using the method Retina::getParameters and update
it before running method Retina::setup.
Python prototype (for reference only):
setup([, retinaParameterFile[, applyDefaultSetupOnFailure]]) -> None

 Link to this function

 setupIPLMagnoChannel(self)

 View Source

 @spec setupIPLMagnoChannel(t()) :: t() | {:error, String.t()}

Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	normaliseOutput: bool.
specifies if (true) output is rescaled between 0 and 255 of not (false)

	parasolCells_beta: float.
the low pass filter gain used for local contrast adaptation at the
IPL level of the retina (for ganglion cells local adaptation), typical value is 0

	parasolCells_tau: float.
the low pass filter time constant used for local contrast adaptation
at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
value is 0 (immediate response)

	parasolCells_k: float.
the low pass filter spatial constant used for local contrast adaptation
at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
value is 5

	amacrinCellsTemporalCutFrequency: float.
the time constant of the first order high pass fiter of
the magnocellular way (motion information channel), unit is frames, typical value is 1.2

	v0CompressionParameter: float.
the compression strengh of the ganglion cells local adaptation
output, set a value between 0.6 and 1 for best results, a high value increases more the low
value sensitivity... and the output saturates faster, recommended value: 0.95

	localAdaptintegration_tau: float.
specifies the temporal constant of the low pas filter
involved in the computation of the local "motion mean" for the local adaptation computation

	localAdaptintegration_k: float.
specifies the spatial constant of the low pas filter involved
in the computation of the local "motion mean" for the local adaptation computation

this channel processes signals output from OPL processing stage in peripheral vision, it allows
motion information enhancement. It is decorrelated from the details channel. See reference
papers for more details.
Python prototype (for reference only):
setupIPLMagnoChannel([, normaliseOutput[, parasolCells_beta[, parasolCells_tau[, parasolCells_k[, amacrinCellsTemporalCutFrequency[, V0CompressionParameter[, localAdaptintegration_tau[, localAdaptintegration_k]]]]]]]]) -> None

 Link to this function

 setupIPLMagnoChannel(self, opts)

 View Source

 @spec setupIPLMagnoChannel(
 t(),
 [
 normaliseOutput: term(),
 parasolCells_beta: term(),
 localAdaptintegration_k: term(),
 parasolCells_tau: term(),
 parasolCells_k: term(),
 localAdaptintegration_tau: term(),
 amacrinCellsTemporalCutFrequency: term(),
 v0CompressionParameter: term()
]
 | nil
) :: t() | {:error, String.t()}

Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	normaliseOutput: bool.
specifies if (true) output is rescaled between 0 and 255 of not (false)

	parasolCells_beta: float.
the low pass filter gain used for local contrast adaptation at the
IPL level of the retina (for ganglion cells local adaptation), typical value is 0

	parasolCells_tau: float.
the low pass filter time constant used for local contrast adaptation
at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical
value is 0 (immediate response)

	parasolCells_k: float.
the low pass filter spatial constant used for local contrast adaptation
at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical
value is 5

	amacrinCellsTemporalCutFrequency: float.
the time constant of the first order high pass fiter of
the magnocellular way (motion information channel), unit is frames, typical value is 1.2

	v0CompressionParameter: float.
the compression strengh of the ganglion cells local adaptation
output, set a value between 0.6 and 1 for best results, a high value increases more the low
value sensitivity... and the output saturates faster, recommended value: 0.95

	localAdaptintegration_tau: float.
specifies the temporal constant of the low pas filter
involved in the computation of the local "motion mean" for the local adaptation computation

	localAdaptintegration_k: float.
specifies the spatial constant of the low pas filter involved
in the computation of the local "motion mean" for the local adaptation computation

this channel processes signals output from OPL processing stage in peripheral vision, it allows
motion information enhancement. It is decorrelated from the details channel. See reference
papers for more details.
Python prototype (for reference only):
setupIPLMagnoChannel([, normaliseOutput[, parasolCells_beta[, parasolCells_tau[, parasolCells_k[, amacrinCellsTemporalCutFrequency[, V0CompressionParameter[, localAdaptintegration_tau[, localAdaptintegration_k]]]]]]]]) -> None

 Link to this function

 setupOPLandIPLParvoChannel(self)

 View Source

 @spec setupOPLandIPLParvoChannel(t()) :: t() | {:error, String.t()}

Setup the OPL and IPL parvo channels (see biologocal model)
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	colorMode: bool.
specifies if (true) color is processed of not (false) to then processing gray
level image

	normaliseOutput: bool.
specifies if (true) output is rescaled between 0 and 255 of not (false)

	photoreceptorsLocalAdaptationSensitivity: float.
the photoreceptors sensitivity renage is 0-1
(more log compression effect when value increases)

	photoreceptorsTemporalConstant: float.
the time constant of the first order low pass filter of
the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
frames, typical value is 1 frame

	photoreceptorsSpatialConstant: float.
the spatial constant of the first order low pass filter of
the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
pixels, typical value is 1 pixel

	horizontalCellsGain: float.
gain of the horizontal cells network, if 0, then the mean value of
the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
still reachable at the output, typicall value is 0

	hcellsTemporalConstant: float.
the time constant of the first order low pass filter of the
horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
frames, typical value is 1 frame, as the photoreceptors

	hcellsSpatialConstant: float.
the spatial constant of the first order low pass filter of the
horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
typical value is 5 pixel, this value is also used for local contrast computing when computing
the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
channel model)

	ganglionCellsSensitivity: float.
the compression strengh of the ganglion cells local adaptation
output, set a value between 0.6 and 1 for best results, a high value increases more the low
value sensitivity... and the output saturates faster, recommended value: 0.7

OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
(low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
reference papers for more informations.
for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
Python prototype (for reference only):
setupOPLandIPLParvoChannel([, colorMode[, normaliseOutput[, photoreceptorsLocalAdaptationSensitivity[, photoreceptorsTemporalConstant[, photoreceptorsSpatialConstant[, horizontalCellsGain[, HcellsTemporalConstant[, HcellsSpatialConstant[, ganglionCellsSensitivity]]]]]]]]]) -> None

 Link to this function

 setupOPLandIPLParvoChannel(self, opts)

 View Source

 @spec setupOPLandIPLParvoChannel(
 t(),
 [
 normaliseOutput: term(),
 hcellsTemporalConstant: term(),
 photoreceptorsLocalAdaptationSensitivity: term(),
 photoreceptorsSpatialConstant: term(),
 colorMode: term(),
 hcellsSpatialConstant: term(),
 horizontalCellsGain: term(),
 ganglionCellsSensitivity: term(),
 photoreceptorsTemporalConstant: term()
]
 | nil
) :: t() | {:error, String.t()}

Setup the OPL and IPL parvo channels (see biologocal model)
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

Keyword Arguments
	colorMode: bool.
specifies if (true) color is processed of not (false) to then processing gray
level image

	normaliseOutput: bool.
specifies if (true) output is rescaled between 0 and 255 of not (false)

	photoreceptorsLocalAdaptationSensitivity: float.
the photoreceptors sensitivity renage is 0-1
(more log compression effect when value increases)

	photoreceptorsTemporalConstant: float.
the time constant of the first order low pass filter of
the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is
frames, typical value is 1 frame

	photoreceptorsSpatialConstant: float.
the spatial constant of the first order low pass filter of
the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is
pixels, typical value is 1 pixel

	horizontalCellsGain: float.
gain of the horizontal cells network, if 0, then the mean value of
the output is zero, if the parameter is near 1, then, the luminance is not filtered and is
still reachable at the output, typicall value is 0

	hcellsTemporalConstant: float.
the time constant of the first order low pass filter of the
horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is
frames, typical value is 1 frame, as the photoreceptors

	hcellsSpatialConstant: float.
the spatial constant of the first order low pass filter of the
horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels,
typical value is 5 pixel, this value is also used for local contrast computing when computing
the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular
channel model)

	ganglionCellsSensitivity: float.
the compression strengh of the ganglion cells local adaptation
output, set a value between 0.6 and 1 for best results, a high value increases more the low
value sensitivity... and the output saturates faster, recommended value: 0.7

OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering
which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance
(low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the
Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See
reference papers for more informations.
for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
Python prototype (for reference only):
setupOPLandIPLParvoChannel([, colorMode[, normaliseOutput[, photoreceptorsLocalAdaptationSensitivity[, photoreceptorsTemporalConstant[, photoreceptorsSpatialConstant[, horizontalCellsGain[, HcellsTemporalConstant[, HcellsSpatialConstant[, ganglionCellsSensitivity]]]]]]]]]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(t(), binary()) :: t() | {:error, String.t()}

Write xml/yml formated parameters information
Positional Arguments
	self: Evision.Bioinspired.Retina.t()

	fs: String.
the filename of the xml file that will be open and writen with formatted parameters
information

Python prototype (for reference only):
write(fs) -> None

 Evision.Bioinspired.RetinaFastToneMapping - Evision v0.1.39

Evision.Bioinspired.RetinaFastToneMapping

 Summary

 Types

 t()

 Type that represents an Bioinspired.RetinaFastToneMapping struct.

 Functions

 applyFastToneMapping(self, inputImage)

 applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)

 applyFastToneMapping(self, inputImage, opts)

 applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)

 clear(self)

 Clears the algorithm state

 create(inputSize)

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setup(self)

 updates tone mapping behaviors by adjusing the local luminance computation area

 setup(self, opts)

 updates tone mapping behaviors by adjusing the local luminance computation area

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Bioinspired.RetinaFastToneMapping{ref: reference()}

Type that represents an Bioinspired.RetinaFastToneMapping struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 applyFastToneMapping(self, inputImage)

 View Source

 @spec applyFastToneMapping(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

	inputImage: Evision.Mat.t().
the input image to process RGB or gray levels

Return
	outputToneMappedImage: Evision.Mat.t().
the output tone mapped image

using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors
level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal
smoothing and eventually high frequencies attenuation. This is a lighter method than the one
available using the regular retina::run method. It is then faster but it does not include
complete temporal filtering nor retina spectral whitening. Then, it can have a more limited
effect on images with a very high dynamic range. This is an adptation of the original still
image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's
work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local
Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of
America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
Python prototype (for reference only):
applyFastToneMapping(inputImage[, outputToneMappedImage]) -> outputToneMappedImage

 Link to this function

 applyFastToneMapping(self, inputImage, opts)

 View Source

 @spec applyFastToneMapping(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

applies a luminance correction (initially High Dynamic Range (HDR) tone mapping)
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

	inputImage: Evision.Mat.t().
the input image to process RGB or gray levels

Return
	outputToneMappedImage: Evision.Mat.t().
the output tone mapped image

using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors
level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal
smoothing and eventually high frequencies attenuation. This is a lighter method than the one
available using the regular retina::run method. It is then faster but it does not include
complete temporal filtering nor retina spectral whitening. Then, it can have a more limited
effect on images with a very high dynamic range. This is an adptation of the original still
image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's
work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local
Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of
America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816
Python prototype (for reference only):
applyFastToneMapping(inputImage[, outputToneMappedImage]) -> outputToneMappedImage

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(inputSize)

 View Source

 @spec create({number(), number()}) :: t() | {:error, String.t()}

create
Positional Arguments
	inputSize: Size

Return
	retval: RetinaFastToneMapping

Python prototype (for reference only):
create(inputSize) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setup(self)

 View Source

 @spec setup(t()) :: t() | {:error, String.t()}

updates tone mapping behaviors by adjusing the local luminance computation area
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

Keyword Arguments
	photoreceptorsNeighborhoodRadius: float.
the first stage local adaptation area

	ganglioncellsNeighborhoodRadius: float.
the second stage local adaptation area

	meanLuminanceModulatorK: float.
the factor applied to modulate the meanLuminance information
(default is 1, see reference paper)

Python prototype (for reference only):
setup([, photoreceptorsNeighborhoodRadius[, ganglioncellsNeighborhoodRadius[, meanLuminanceModulatorK]]]) -> None

 Link to this function

 setup(self, opts)

 View Source

 @spec setup(
 t(),
 [
 meanLuminanceModulatorK: term(),
 ganglioncellsNeighborhoodRadius: term(),
 photoreceptorsNeighborhoodRadius: term()
]
 | nil
) :: t() | {:error, String.t()}

updates tone mapping behaviors by adjusing the local luminance computation area
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()

Keyword Arguments
	photoreceptorsNeighborhoodRadius: float.
the first stage local adaptation area

	ganglioncellsNeighborhoodRadius: float.
the second stage local adaptation area

	meanLuminanceModulatorK: float.
the factor applied to modulate the meanLuminance information
(default is 1, see reference paper)

Python prototype (for reference only):
setup([, photoreceptorsNeighborhoodRadius[, ganglioncellsNeighborhoodRadius[, meanLuminanceModulatorK]]]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Bioinspired.RetinaFastToneMapping.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Bioinspired.TransientAreasSegmentationModule - Evision v0.1.39

Evision.Bioinspired.TransientAreasSegmentationModule

 Summary

 Types

 t()

 Type that represents an Bioinspired.TransientAreasSegmentationModule struct.

 Functions

 clear(self)

 Clears the algorithm state

 clearAllBuffers(self)

 cleans all the buffers of the instance

 create(inputSize)

 allocator

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getSegmentationPicture(self)

 access function
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose

 getSegmentationPicture(self, opts)

 access function
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose

 getSize(self)

 return the sze of the manage input and output images

 printSetup(self)

 parameters setup display method

 read(self, fn_)

 Reads algorithm parameters from a file storage

 run(self, inputToSegment)

 main processing method, get result using methods getSegmentationPicture()

 run(self, inputToSegment, opts)

 main processing method, get result using methods getSegmentationPicture()

 save(self, filename)

 save

 setup(self)

 try to open an XML segmentation parameters file to adjust current segmentation instance setup

 setup(self, opts)

 try to open an XML segmentation parameters file to adjust current segmentation instance setup

 write(self, fs)

 write xml/yml formated parameters information

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Bioinspired.TransientAreasSegmentationModule{ref: reference()}

Type that represents an Bioinspired.TransientAreasSegmentationModule struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clearAllBuffers(self)

 View Source

 @spec clearAllBuffers(t()) :: t() | {:error, String.t()}

cleans all the buffers of the instance
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Python prototype (for reference only):
clearAllBuffers() -> None

 Link to this function

 create(inputSize)

 View Source

 @spec create({number(), number()}) :: t() | {:error, String.t()}

allocator
Positional Arguments
	inputSize: Size.
: size of the images input to segment (output will be the same size)

Return
	retval: TransientAreasSegmentationModule

Python prototype (for reference only):
create(inputSize) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getSegmentationPicture(self)

 View Source

 @spec getSegmentationPicture(t()) :: Evision.Mat.t() | {:error, String.t()}

access function
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	transientAreas: Evision.Mat.t().

Python prototype (for reference only):
getSegmentationPicture([, transientAreas]) -> transientAreas

 Link to this function

 getSegmentationPicture(self, opts)

 View Source

 @spec getSegmentationPicture(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

access function
return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	transientAreas: Evision.Mat.t().

Python prototype (for reference only):
getSegmentationPicture([, transientAreas]) -> transientAreas

 Link to this function

 getSize(self)

 View Source

 @spec getSize(t()) :: {number(), number()} | {:error, String.t()}

return the sze of the manage input and output images
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	retval: Size

Python prototype (for reference only):
getSize() -> retval

 Link to this function

 printSetup(self)

 View Source

 @spec printSetup(t()) :: binary() | {:error, String.t()}

parameters setup display method
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Return
	retval: String

@return a string which contains formatted parameters information
Python prototype (for reference only):
printSetup() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 run(self, inputToSegment)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

main processing method, get result using methods getSegmentationPicture()
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

	inputToSegment: Evision.Mat.t().
: the image to process, it must match the instance buffer size !

Keyword Arguments
	channelIndex: int.
: the channel to process in case of multichannel images

Python prototype (for reference only):
run(inputToSegment[, channelIndex]) -> None

 Link to this function

 run(self, inputToSegment, opts)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in(), [{:channelIndex, term()}] | nil) ::
 t() | {:error, String.t()}

main processing method, get result using methods getSegmentationPicture()
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

	inputToSegment: Evision.Mat.t().
: the image to process, it must match the instance buffer size !

Keyword Arguments
	channelIndex: int.
: the channel to process in case of multichannel images

Python prototype (for reference only):
run(inputToSegment[, channelIndex]) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setup(self)

 View Source

 @spec setup(t()) :: t() | {:error, String.t()}

try to open an XML segmentation parameters file to adjust current segmentation instance setup
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Keyword Arguments
	segmentationParameterFile: String.
: the parameters filename

	applyDefaultSetupOnFailure: bool.
: set to true if an error must be thrown on error

	if the xml file does not exist, then default setup is applied

	warning, Exceptions are thrown if read XML file is not valid

Python prototype (for reference only):
setup([, segmentationParameterFile[, applyDefaultSetupOnFailure]]) -> None

 Link to this function

 setup(self, opts)

 View Source

 @spec setup(
 t(),
 [applyDefaultSetupOnFailure: term(), segmentationParameterFile: term()] | nil
) ::
 t() | {:error, String.t()}

try to open an XML segmentation parameters file to adjust current segmentation instance setup
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

Keyword Arguments
	segmentationParameterFile: String.
: the parameters filename

	applyDefaultSetupOnFailure: bool.
: set to true if an error must be thrown on error

	if the xml file does not exist, then default setup is applied

	warning, Exceptions are thrown if read XML file is not valid

Python prototype (for reference only):
setup([, segmentationParameterFile[, applyDefaultSetupOnFailure]]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(t(), binary()) :: t() | {:error, String.t()}

write xml/yml formated parameters information
Positional Arguments
	self: Evision.Bioinspired.TransientAreasSegmentationModule.t()

	fs: String.
: the filename of the xml file that will be open and writen with formatted parameters information

Python prototype (for reference only):
write(fs) -> None

 Evision.CCM - Evision v0.1.39

Evision.CCM

 Summary

 Types

 t()

 Type that represents an CCM struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CCM{ref: reference()}

Type that represents an CCM struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CCM.ColorCorrectionModel - Evision v0.1.39

Evision.CCM.ColorCorrectionModel

 Summary

 Types

 t()

 Type that represents an CCM.ColorCorrectionModel struct.

 Functions

 colorCorrectionModel(src, constcolor)

 Color Correction Model

 colorCorrectionModel(src, colors, ref_cs)

 Color Correction Model

 colorCorrectionModel(src, colors, ref_cs, colored)

 Color Correction Model

 get_dst_rgbl(self)

 get_dst_rgbl

 get_src_rgbl(self)

 get_src_rgbl

 getCCM(self)

 getCCM

 getLoss(self)

 getLoss

 getMask(self)

 getMask

 getWeights(self)

 getWeights

 infer(self, img)

 Infer using fitting ccm.

 infer(self, img, opts)

 Infer using fitting ccm.

 run(self)

 make color correction

 setCCM_TYPE(self, ccm_type)

 set ccm_type

 setColorSpace(self, cs)

 set ColorSpace

 setDistance(self, distance)

 set Distance

 setEpsilon(self, epsilon)

 set Epsilon

 setInitialMethod(self, initial_method_type)

 set InitialMethod

 setLinear(self, linear_type)

 set Linear

 setLinearDegree(self, deg)

 set degree

 setLinearGamma(self, gamma)

 set Gamma

 setMaxCount(self, max_count)

 set MaxCount

 setSaturatedThreshold(self, lower, upper)

 set SaturatedThreshold.
The colors in the closed interval [lower, upper] are reserved to participate
in the calculation of the loss function and initialization parameters

 setWeightCoeff(self, weights_coeff)

 set WeightCoeff

 setWeightsList(self, weights_list)

 set WeightsList

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CCM.ColorCorrectionModel{ref: reference()}

Type that represents an CCM.ColorCorrectionModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 colorCorrectionModel(src, constcolor)

 View Source

 @spec colorCorrectionModel(Evision.Mat.maybe_mat_in(), integer()) ::
 t() | {:error, String.t()}

Color Correction Model
Positional Arguments
	src: Evision.Mat.t().
detected colors of ColorChecker patches;\n
the color type is RGB not BGR, and the color values are in [0, 1];

	constcolor: CONST_COLOR.
the Built-in color card

Return
	self: ColorCorrectionModel

Supported list of color cards:
	@ref COLORCHECKER_Macbeth, the Macbeth ColorChecker
	@ref COLORCHECKER_Vinyl, the DKK ColorChecker
	@ref COLORCHECKER_DigitalSG, the DigitalSG ColorChecker with 140 squares

Python prototype (for reference only):
ColorCorrectionModel(src, constcolor) -> <ccm_ColorCorrectionModel object>

 Link to this function

 colorCorrectionModel(src, colors, ref_cs)

 View Source

 @spec colorCorrectionModel(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) ::
 t() | {:error, String.t()}

Color Correction Model
Positional Arguments
	src: Evision.Mat.t().
detected colors of ColorChecker patches;\n
the color type is RGB not BGR, and the color values are in [0, 1];

	colors: Evision.Mat.t().
the reference color values, the color values are in [0, 1].\n

	ref_cs: COLOR_SPACE.
the corresponding color space
If the color type is some RGB, the format is RGB not BGR;\n

Return
	self: ColorCorrectionModel

Python prototype (for reference only):
ColorCorrectionModel(src, colors, ref_cs) -> <ccm_ColorCorrectionModel object>

 Link to this function

 colorCorrectionModel(src, colors, ref_cs, colored)

 View Source

 @spec colorCorrectionModel(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

Color Correction Model
Positional Arguments
	src: Evision.Mat.t().
detected colors of ColorChecker patches;\n
the color type is RGB not BGR, and the color values are in [0, 1];

	colors: Evision.Mat.t().
the reference color values, the color values are in [0, 1].

	ref_cs: COLOR_SPACE.
the corresponding color space
If the color type is some RGB, the format is RGB not BGR;

	colored: Evision.Mat.t().
mask of colored color

Return
	self: ColorCorrectionModel

Python prototype (for reference only):
ColorCorrectionModel(src, colors, ref_cs, colored) -> <ccm_ColorCorrectionModel object>

 Link to this function

 get_dst_rgbl(self)

 View Source

 @spec get_dst_rgbl(t()) :: Evision.Mat.t() | {:error, String.t()}

get_dst_rgbl
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
get_dst_rgbl() -> retval

 Link to this function

 get_src_rgbl(self)

 View Source

 @spec get_src_rgbl(t()) :: Evision.Mat.t() | {:error, String.t()}

get_src_rgbl
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
get_src_rgbl() -> retval

 Link to this function

 getCCM(self)

 View Source

 @spec getCCM(t()) :: Evision.Mat.t() | {:error, String.t()}

getCCM
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCCM() -> retval

 Link to this function

 getLoss(self)

 View Source

 @spec getLoss(t()) :: number() | {:error, String.t()}

getLoss
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: double

Python prototype (for reference only):
getLoss() -> retval

 Link to this function

 getMask(self)

 View Source

 @spec getMask(t()) :: Evision.Mat.t() | {:error, String.t()}

getMask
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getMask() -> retval

 Link to this function

 getWeights(self)

 View Source

 @spec getWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getWeights
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getWeights() -> retval

 Link to this function

 infer(self, img)

 View Source

 @spec infer(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Infer using fitting ccm.
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	img: Evision.Mat.t().
the input image.

Keyword Arguments
	islinear: bool.
default false.

Return
	retval: Evision.Mat.t()

@return the output array.
Python prototype (for reference only):
infer(img[, islinear]) -> retval

 Link to this function

 infer(self, img, opts)

 View Source

 @spec infer(t(), Evision.Mat.maybe_mat_in(), [{:islinear, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Infer using fitting ccm.
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	img: Evision.Mat.t().
the input image.

Keyword Arguments
	islinear: bool.
default false.

Return
	retval: Evision.Mat.t()

@return the output array.
Python prototype (for reference only):
infer(img[, islinear]) -> retval

 Link to this function

 run(self)

 View Source

 @spec run(t()) :: t() | {:error, String.t()}

make color correction
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

Python prototype (for reference only):
run() -> None

 Link to this function

 setCCM_TYPE(self, ccm_type)

 View Source

 @spec setCCM_TYPE(t(), integer()) :: t() | {:error, String.t()}

set ccm_type
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	ccm_type: CCM_TYPE.
the shape of color correction matrix(CCM);\n
default: @ref CCM_3x3

Python prototype (for reference only):
setCCM_TYPE(ccm_type) -> None

 Link to this function

 setColorSpace(self, cs)

 View Source

 @spec setColorSpace(t(), integer()) :: t() | {:error, String.t()}

set ColorSpace
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	cs: COLOR_SPACE.
the absolute color space that detected colors convert to;\n
default: @ref COLOR_SPACE_sRGB

Note: It should be some RGB color space;
Supported list of color cards:
	@ref COLOR_SPACE_sRGB
	@ref COLOR_SPACE_AdobeRGB
	@ref COLOR_SPACE_WideGamutRGB
	@ref COLOR_SPACE_ProPhotoRGB
	@ref COLOR_SPACE_DCI_P3_RGB
	@ref COLOR_SPACE_AppleRGB
	@ref COLOR_SPACE_REC_709_RGB
	@ref COLOR_SPACE_REC_2020_RGB

Python prototype (for reference only):
setColorSpace(cs) -> None

 Link to this function

 setDistance(self, distance)

 View Source

 @spec setDistance(t(), integer()) :: t() | {:error, String.t()}

set Distance
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	distance: DISTANCE_TYPE.
the type of color distance;\n
default: @ref DISTANCE_CIE2000

Python prototype (for reference only):
setDistance(distance) -> None

 Link to this function

 setEpsilon(self, epsilon)

 View Source

 @spec setEpsilon(t(), number()) :: t() | {:error, String.t()}

set Epsilon
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	epsilon: double.
used in MinProblemSolver-DownhillSolver;\n
Terminal criteria to the algorithm;\n
default: 1e-4;

Python prototype (for reference only):
setEpsilon(epsilon) -> None

 Link to this function

 setInitialMethod(self, initial_method_type)

 View Source

 @spec setInitialMethod(t(), integer()) :: t() | {:error, String.t()}

set InitialMethod
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	initial_method_type: INITIAL_METHOD_TYPE.
the method of calculating CCM initial value;\n
default: INITIAL_METHOD_LEAST_SQUARE

Python prototype (for reference only):
setInitialMethod(initial_method_type) -> None

 Link to this function

 setLinear(self, linear_type)

 View Source

 @spec setLinear(t(), integer()) :: t() | {:error, String.t()}

set Linear
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	linear_type: LINEAR_TYPE.
the method of linearization;\n
default: @ref LINEARIZATION_GAMMA

Python prototype (for reference only):
setLinear(linear_type) -> None

 Link to this function

 setLinearDegree(self, deg)

 View Source

 @spec setLinearDegree(t(), integer()) :: t() | {:error, String.t()}

set degree
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	deg: int.
the degree of linearization polynomial;\n
default: 3

Note: only valid when linear is set to
	@ref LINEARIZATION_COLORPOLYFIT
	@ref LINEARIZATION_GRAYPOLYFIT
	@ref LINEARIZATION_COLORLOGPOLYFIT
	@ref LINEARIZATION_GRAYLOGPOLYFIT

Python prototype (for reference only):
setLinearDegree(deg) -> None

 Link to this function

 setLinearGamma(self, gamma)

 View Source

 @spec setLinearGamma(t(), number()) :: t() | {:error, String.t()}

set Gamma
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	gamma: double.
the gamma value of gamma correction;\n
default: 2.2;

Note: only valid when linear is set to "gamma";\n
Python prototype (for reference only):
setLinearGamma(gamma) -> None

 Link to this function

 setMaxCount(self, max_count)

 View Source

 @spec setMaxCount(t(), integer()) :: t() | {:error, String.t()}

set MaxCount
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	max_count: int.
used in MinProblemSolver-DownhillSolver;\n
Terminal criteria to the algorithm;\n
default: 5000;

Python prototype (for reference only):
setMaxCount(max_count) -> None

 Link to this function

 setSaturatedThreshold(self, lower, upper)

 View Source

 @spec setSaturatedThreshold(t(), number(), number()) :: t() | {:error, String.t()}

set SaturatedThreshold.
The colors in the closed interval [lower, upper] are reserved to participate
in the calculation of the loss function and initialization parameters
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	lower: double.
the lower threshold to determine saturation;\n
default: 0;

	upper: double.
the upper threshold to determine saturation;\n
default: 0

Python prototype (for reference only):
setSaturatedThreshold(lower, upper) -> None

 Link to this function

 setWeightCoeff(self, weights_coeff)

 View Source

 @spec setWeightCoeff(t(), number()) :: t() | {:error, String.t()}

set WeightCoeff
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	weights_coeff: double.
the exponent number of L* component of the reference color in CIE Lab color space;\n
default: 0

Python prototype (for reference only):
setWeightCoeff(weights_coeff) -> None

 Link to this function

 setWeightsList(self, weights_list)

 View Source

 @spec setWeightsList(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

set WeightsList
Positional Arguments
	self: Evision.CCM.ColorCorrectionModel.t()

	weights_list: Evision.Mat.t().
the list of weight of each color;\n
default: empty array

Python prototype (for reference only):
setWeightsList(weights_list) -> None

 Evision.CLAHE - Evision v0.1.39

Evision.CLAHE

 Summary

 Types

 t()

 Type that represents an CLAHE struct.

 Functions

 apply(self, src)

 Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.

 apply(self, src, opts)

 Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.

 clear(self)

 Clears the algorithm state

 collectGarbage(self)

 collectGarbage

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getClipLimit(self)

 getClipLimit

 getDefaultName(self)

 getDefaultName

 getTilesGridSize(self)

 getTilesGridSize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setClipLimit(self, clipLimit)

 Sets threshold for contrast limiting.

 setTilesGridSize(self, tileGridSize)

 Sets size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CLAHE{ref: reference()}

Type that represents an CLAHE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, src)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CLAHE.t()

	src: Evision.Mat.t().
Source image of type CV_8UC1 or CV_16UC1.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
apply(src[, dst]) -> dst

 Link to this function

 apply(self, src, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CLAHE.t()

	src: Evision.Mat.t().
Source image of type CV_8UC1 or CV_16UC1.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
apply(src[, dst]) -> dst

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CLAHE.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(t()) :: t() | {:error, String.t()}

collectGarbage
Positional Arguments
	self: Evision.CLAHE.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CLAHE.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getClipLimit(self)

 View Source

 @spec getClipLimit(t()) :: number() | {:error, String.t()}

getClipLimit
Positional Arguments
	self: Evision.CLAHE.t()

Return
	retval: double

Python prototype (for reference only):
getClipLimit() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CLAHE.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTilesGridSize(self)

 View Source

 @spec getTilesGridSize(t()) :: {number(), number()} | {:error, String.t()}

getTilesGridSize
Positional Arguments
	self: Evision.CLAHE.t()

Return
	retval: Size

Python prototype (for reference only):
getTilesGridSize() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CLAHE.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CLAHE.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setClipLimit(self, clipLimit)

 View Source

 @spec setClipLimit(t(), number()) :: t() | {:error, String.t()}

Sets threshold for contrast limiting.
Positional Arguments
	self: Evision.CLAHE.t()

	clipLimit: double.
threshold value.

Python prototype (for reference only):
setClipLimit(clipLimit) -> None

 Link to this function

 setTilesGridSize(self, tileGridSize)

 View Source

 @spec setTilesGridSize(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

Sets size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles.
Positional Arguments
	self: Evision.CLAHE.t()

	tileGridSize: Size.
defines the number of tiles in row and column.

Python prototype (for reference only):
setTilesGridSize(tileGridSize) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CLAHE.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CLAHE.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA - Evision v0.1.39

Evision.CUDA

 Summary

 Types

 t()

 Type that represents an CUDA struct.

 Functions

 abs(src)

 Variant 1:
Computes an absolute value of each matrix element.

 abs(src, opts)

 Variant 1:
Computes an absolute value of each matrix element.

 absdiff(src1, src2)

 Variant 1:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).

 absdiff(src1, src2, opts)

 Variant 1:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).

 absSum(src)

 Variant 1:
Returns the sum of absolute values for matrix elements.

 absSum(src, opts)

 Variant 1:
Returns the sum of absolute values for matrix elements.

 add(src1, src2)

 Variant 1:
Computes a matrix-matrix or matrix-scalar sum.

 add(src1, src2, opts)

 Variant 1:
Computes a matrix-matrix or matrix-scalar sum.

 addWeighted(src1, alpha, src2, beta, gamma)

 Variant 1:
Computes the weighted sum of two arrays.

 addWeighted(src1, alpha, src2, beta, gamma, opts)

 Variant 1:
Computes the weighted sum of two arrays.

 alphaComp(img1, img2, alpha_op)

 Variant 1:
Composites two images using alpha opacity values contained in each image.

 alphaComp(img1, img2, alpha_op, opts)

 Variant 1:
Composites two images using alpha opacity values contained in each image.

 bilateralFilter(src, kernel_size, sigma_color, sigma_spatial)

 Variant 1:
Performs bilateral filtering of passed image

 bilateralFilter(src, kernel_size, sigma_color, sigma_spatial, opts)

 Variant 1:
Performs bilateral filtering of passed image

 blendLinear(img1, img2, weights1, weights2)

 Variant 1:
Performs linear blending of two images.

 blendLinear(img1, img2, weights1, weights2, opts)

 Variant 1:
Performs linear blending of two images.

 buildWarpAffineMaps(m, inverse, dsize)

 buildWarpAffineMaps

 buildWarpAffineMaps(m, inverse, dsize, opts)

 buildWarpAffineMaps

 buildWarpPerspectiveMaps(m, inverse, dsize)

 buildWarpPerspectiveMaps

 buildWarpPerspectiveMaps(m, inverse, dsize, opts)

 buildWarpPerspectiveMaps

 calcAbsSum(src)

 Variant 1:
calcAbsSum

 calcAbsSum(src, opts)

 Variant 1:
calcAbsSum

 calcHist(src)

 Variant 1:
Calculates histogram for one channel 8-bit image.

 calcHist(src, opts)

 Variant 1:
Calculates histogram for one channel 8-bit image confined in given mask.

 calcHist(src, mask, opts)

 Variant 1:
Calculates histogram for one channel 8-bit image confined in given mask.

 calcNorm(src, normType)

 Variant 1:
calcNorm

 calcNorm(src, normType, opts)

 Variant 1:
calcNorm

 calcNormDiff(src1, src2)

 Variant 1:
calcNormDiff

 calcNormDiff(src1, src2, opts)

 Variant 1:
calcNormDiff

 calcSqrSum(src)

 Variant 1:
calcSqrSum

 calcSqrSum(src, opts)

 Variant 1:
calcSqrSum

 calcSum(src)

 Variant 1:
calcSum

 calcSum(src, opts)

 Variant 1:
calcSum

 cartToPolar(x, y)

 Variant 1:
Converts Cartesian coordinates into polar.

 cartToPolar(x, y, opts)

 Variant 1:
Converts Cartesian coordinates into polar.

 compare(src1, src2, cmpop)

 Variant 1:
Compares elements of two matrices (or of a matrix and scalar).

 compare(src1, src2, cmpop, opts)

 Variant 1:
Compares elements of two matrices (or of a matrix and scalar).

 connectedComponents(image)

 Variant 1:
connectedComponents

 connectedComponents(image, opts)

 Variant 1:
connectedComponents

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype)

 Variant 1:
Computes the Connected Components Labeled image of a binary image.

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 Variant 1:
Computes the Connected Components Labeled image of a binary image.

 copyMakeBorder(src, top, bottom, left, right, borderType)

 Variant 1:
Forms a border around an image.

 copyMakeBorder(src, top, bottom, left, right, borderType, opts)

 Variant 1:
Forms a border around an image.

 countNonZero(src)

 Variant 1:
countNonZero

 countNonZero(src, opts)

 Variant 1:
countNonZero

 createBackgroundSubtractorMOG2()

 Creates MOG2 Background Subtractor

 createBackgroundSubtractorMOG2(opts)

 Creates MOG2 Background Subtractor

 createBackgroundSubtractorMOG()

 Creates mixture-of-gaussian background subtractor

 createBackgroundSubtractorMOG(opts)

 Creates mixture-of-gaussian background subtractor

 createBoxFilter(srcType, dstType, ksize)

 Creates a normalized 2D box filter.

 createBoxFilter(srcType, dstType, ksize, opts)

 Creates a normalized 2D box filter.

 createBoxMaxFilter(srcType, ksize)

 Creates the maximum filter.

 createBoxMaxFilter(srcType, ksize, opts)

 Creates the maximum filter.

 createBoxMinFilter(srcType, ksize)

 Creates the minimum filter.

 createBoxMinFilter(srcType, ksize, opts)

 Creates the minimum filter.

 createCannyEdgeDetector(low_thresh, high_thresh)

 Creates implementation for cuda::CannyEdgeDetector .

 createCannyEdgeDetector(low_thresh, high_thresh, opts)

 Creates implementation for cuda::CannyEdgeDetector .

 createCLAHE()

 Creates implementation for cuda::CLAHE .

 createCLAHE(opts)

 Creates implementation for cuda::CLAHE .

 createColumnSumFilter(srcType, dstType, ksize)

 Creates a vertical 1D box filter.

 createColumnSumFilter(srcType, dstType, ksize, opts)

 Creates a vertical 1D box filter.

 createContinuous(rows, cols, type)

 Creates a continuous matrix.

 createContinuous(rows, cols, type, opts)

 Creates a continuous matrix.

 createConvolution()

 Creates implementation for cuda::Convolution .

 createConvolution(opts)

 Creates implementation for cuda::Convolution .

 createDerivFilter(srcType, dstType, dx, dy, ksize)

 Creates a generalized Deriv operator.

 createDerivFilter(srcType, dstType, dx, dy, ksize, opts)

 Creates a generalized Deriv operator.

 createDFT(dft_size, flags)

 Creates implementation for cuda::DFT.

 createDisparityBilateralFilter()

 Creates DisparityBilateralFilter object.

 createDisparityBilateralFilter(opts)

 Creates DisparityBilateralFilter object.

 createGaussianFilter(srcType, dstType, ksize, sigma1)

 Creates a Gaussian filter.

 createGaussianFilter(srcType, dstType, ksize, sigma1, opts)

 Creates a Gaussian filter.

 createGeneralizedHoughBallard()

 Creates implementation for generalized hough transform from @cite Ballard1981 .

 createGeneralizedHoughGuil()

 Creates implementation for generalized hough transform from @cite Guil1999 .

 createGoodFeaturesToTrackDetector(srcType)

 Creates implementation for cuda::CornersDetector .

 createGoodFeaturesToTrackDetector(srcType, opts)

 Creates implementation for cuda::CornersDetector .

 createGpuMatFromCudaMemory(size, type, cudaMemoryAddress)

 createGpuMatFromCudaMemory

 createGpuMatFromCudaMemory(size, type, cudaMemoryAddress, opts)

 Variant 1:
Bindings overload to create a GpuMat from existing GPU memory.

 createGpuMatFromCudaMemory(rows, cols, type, cudaMemoryAddress, opts)

 Bindings overload to create a GpuMat from existing GPU memory.

 createHarrisCorner(srcType, blockSize, ksize, k)

 Creates implementation for Harris cornerness criteria.

 createHarrisCorner(srcType, blockSize, ksize, k, opts)

 Creates implementation for Harris cornerness criteria.

 createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius)

 Creates implementation for cuda::HoughCirclesDetector .

 createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, opts)

 Creates implementation for cuda::HoughCirclesDetector .

 createHoughLinesDetector(rho, theta, threshold)

 Creates implementation for cuda::HoughLinesDetector .

 createHoughLinesDetector(rho, theta, threshold, opts)

 Creates implementation for cuda::HoughLinesDetector .

 createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap)

 Creates implementation for cuda::HoughSegmentDetector .

 createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, opts)

 Creates implementation for cuda::HoughSegmentDetector .

 createLaplacianFilter(srcType, dstType)

 Creates a Laplacian operator.

 createLaplacianFilter(srcType, dstType, opts)

 Creates a Laplacian operator.

 createLinearFilter(srcType, dstType, kernel)

 Variant 1:
Creates a non-separable linear 2D filter.

 createLinearFilter(srcType, dstType, kernel, opts)

 Variant 1:
Creates a non-separable linear 2D filter.

 createLookUpTable(lut)

 Variant 1:
Creates implementation for cuda::LookUpTable .

 createMedianFilter(srcType, windowSize)

 Performs median filtering for each point of the source image.

 createMedianFilter(srcType, windowSize, opts)

 Performs median filtering for each point of the source image.

 createMinEigenValCorner(srcType, blockSize, ksize)

 Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).

 createMinEigenValCorner(srcType, blockSize, ksize, opts)

 Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).

 createMorphologyFilter(op, srcType, kernel)

 Variant 1:
Creates a 2D morphological filter.

 createMorphologyFilter(op, srcType, kernel, opts)

 Variant 1:
Creates a 2D morphological filter.

 createRowSumFilter(srcType, dstType, ksize)

 Creates a horizontal 1D box filter.

 createRowSumFilter(srcType, dstType, ksize, opts)

 Creates a horizontal 1D box filter.

 createScharrFilter(srcType, dstType, dx, dy)

 Creates a vertical or horizontal Scharr operator.

 createScharrFilter(srcType, dstType, dx, dy, opts)

 Creates a vertical or horizontal Scharr operator.

 createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel)

 Variant 1:
Creates a separable linear filter.

 createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel, opts)

 Variant 1:
Creates a separable linear filter.

 createSobelFilter(srcType, dstType, dx, dy)

 Creates a Sobel operator.

 createSobelFilter(srcType, dstType, dx, dy, opts)

 Creates a Sobel operator.

 createStereoBeliefPropagation()

 Creates StereoBeliefPropagation object.

 createStereoBeliefPropagation(opts)

 Creates StereoBeliefPropagation object.

 createStereoBM()

 Creates StereoBM object.

 createStereoBM(opts)

 Creates StereoBM object.

 createStereoConstantSpaceBP()

 Creates StereoConstantSpaceBP object.

 createStereoConstantSpaceBP(opts)

 Creates StereoConstantSpaceBP object.

 createStereoSGM()

 Creates StereoSGM object.

 createStereoSGM(opts)

 Creates StereoSGM object.

 createTemplateMatching(srcType, method)

 Creates implementation for cuda::TemplateMatching .

 createTemplateMatching(srcType, method, opts)

 Creates implementation for cuda::TemplateMatching .

 cvtColor(src, code)

 Variant 1:
Converts an image from one color space to another.

 cvtColor(src, code, opts)

 Variant 1:
Converts an image from one color space to another.

 demosaicing(src, code)

 Variant 1:
Converts an image from Bayer pattern to RGB or grayscale.

 demosaicing(src, code, opts)

 Variant 1:
Converts an image from Bayer pattern to RGB or grayscale.

 dft(src, dft_size)

 Variant 1:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.

 dft(src, dft_size, opts)

 Variant 1:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.

 divide(src1, src2)

 Variant 1:
Computes a matrix-matrix or matrix-scalar division.

 divide(src1, src2, opts)

 Variant 1:
Computes a matrix-matrix or matrix-scalar division.

 drawColorDisp(src_disp, ndisp)

 Variant 1:
Colors a disparity image.

 drawColorDisp(src_disp, ndisp, opts)

 Variant 1:
Colors a disparity image.

 ensureSizeIsEnough(rows, cols, type)

 Ensures that the size of a matrix is big enough and the matrix has a proper type.

 ensureSizeIsEnough(rows, cols, type, opts)

 Ensures that the size of a matrix is big enough and the matrix has a proper type.

 equalizeHist(src)

 Variant 1:
Equalizes the histogram of a grayscale image.

 equalizeHist(src, opts)

 Variant 1:
Equalizes the histogram of a grayscale image.

 evenLevels(nLevels, lowerLevel, upperLevel)

 Computes levels with even distribution.

 evenLevels(nLevels, lowerLevel, upperLevel, opts)

 Computes levels with even distribution.

 exp(src)

 Variant 1:
Computes an exponent of each matrix element.

 exp(src, opts)

 Variant 1:
Computes an exponent of each matrix element.

 fastNlMeansDenoising(src, h)

 Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising with several computational
optimizations. Noise expected to be a gaussian white noise

 fastNlMeansDenoising(src, h, opts)

 Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising with several computational
optimizations. Noise expected to be a gaussian white noise

 fastNlMeansDenoisingColored(src, h_luminance, photo_render)

 Modification of fastNlMeansDenoising function for colored images

 fastNlMeansDenoisingColored(src, h_luminance, photo_render, opts)

 Modification of fastNlMeansDenoising function for colored images

 findMinMax(src)

 Variant 1:
findMinMax

 findMinMax(src, opts)

 Variant 1:
findMinMax

 findMinMaxLoc(src)

 Variant 1:
findMinMaxLoc

 findMinMaxLoc(src, opts)

 Variant 1:
findMinMaxLoc

 flip(src, flipCode)

 Variant 1:
Flips a 2D matrix around vertical, horizontal, or both axes.

 flip(src, flipCode, opts)

 Variant 1:
Flips a 2D matrix around vertical, horizontal, or both axes.

 gammaCorrection(src)

 Variant 1:
Routines for correcting image color gamma.

 gammaCorrection(src, opts)

 Variant 1:
Routines for correcting image color gamma.

 gemm(src1, src2, alpha, src3, beta)

 Variant 1:
Performs generalized matrix multiplication.

 gemm(src1, src2, alpha, src3, beta, opts)

 Variant 1:
Performs generalized matrix multiplication.

 getCudaEnabledDeviceCount()

 Returns the number of installed CUDA-enabled devices.

 getDevice()

 Returns the current device index set by cuda::setDevice or initialized by default.

 histEven(src, histSize, lowerLevel, upperLevel)

 Variant 1:
Calculates a histogram with evenly distributed bins.

 histEven(src, histSize, lowerLevel, upperLevel, opts)

 Variant 1:
Calculates a histogram with evenly distributed bins.

 histEven(src, hist, histSize, lowerLevel, upperLevel, opts)

 Variant 1:
histEven

 histRange(src, levels)

 Variant 1:
Calculates a histogram with bins determined by the levels array.

 histRange(src, levels, opts)

 Variant 1:
Calculates a histogram with bins determined by the levels array.

 histRange(src, hist, levels, opts)

 Variant 1:
histRange

 inRange(src, lowerb, upperb)

 Variant 1:
Checks if array elements lie between two scalars.

 inRange(src, lowerb, upperb, opts)

 Variant 1:
Checks if array elements lie between two scalars.

 integral(src)

 Variant 1:
Computes an integral image.

 integral(src, opts)

 Variant 1:
Computes an integral image.

 log(src)

 Variant 1:
Computes a natural logarithm of absolute value of each matrix element.

 log(src, opts)

 Variant 1:
Computes a natural logarithm of absolute value of each matrix element.

 lshift(src, val)

 Variant 1:
Performs pixel by pixel right left of an image by a constant value.

 lshift(src, val, opts)

 Variant 1:
Performs pixel by pixel right left of an image by a constant value.

 magnitude(xy)

 Variant 1:
Computes magnitudes of complex matrix elements.

 magnitude(xy, opts)

 Variant 1:
magnitude

 magnitude(x, y, opts)

 Variant 1:
magnitude

 magnitudeSqr(xy)

 Variant 1:
Computes squared magnitudes of complex matrix elements.

 magnitudeSqr(xy, opts)

 Variant 1:
magnitudeSqr

 magnitudeSqr(x, y, opts)

 Variant 1:
magnitudeSqr

 max(src1, src2)

 Variant 1:
Computes the per-element maximum of two matrices (or a matrix and a scalar).

 max(src1, src2, opts)

 Variant 1:
Computes the per-element maximum of two matrices (or a matrix and a scalar).

 meanShiftFiltering(src, sp, sr)

 Variant 1:
Performs mean-shift filtering for each point of the source image.

 meanShiftFiltering(src, sp, sr, opts)

 Variant 1:
Performs mean-shift filtering for each point of the source image.

 meanShiftProc(src, sp, sr)

 Variant 1:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.

 meanShiftProc(src, sp, sr, opts)

 Variant 1:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.

 meanShiftSegmentation(src, sp, sr, minsize)

 Variant 1:
Performs a mean-shift segmentation of the source image and eliminates small segments.

 meanShiftSegmentation(src, sp, sr, minsize, opts)

 Variant 1:
Performs a mean-shift segmentation of the source image and eliminates small segments.

 meanStdDev(mtx)

 Variant 1:
meanStdDev

 meanStdDev(src, mask)

 Variant 1:
meanStdDev

 merge(src)

 merge

 merge(src, opts)

 merge

 min(src1, src2)

 Variant 1:
Computes the per-element minimum of two matrices (or a matrix and a scalar).

 min(src1, src2, opts)

 Variant 1:
Computes the per-element minimum of two matrices (or a matrix and a scalar).

 minMax(src)

 Variant 1:
Finds global minimum and maximum matrix elements and returns their values.

 minMax(src, opts)

 Variant 1:
Finds global minimum and maximum matrix elements and returns their values.

 minMaxLoc(src)

 Variant 1:
Finds global minimum and maximum matrix elements and returns their values with locations.

 minMaxLoc(src, opts)

 Variant 1:
Finds global minimum and maximum matrix elements and returns their values with locations.

 moments(src)

 Variant 1:
Calculates all of the moments up to the 3rd order of a rasterized shape.

 moments(src, opts)

 Variant 1:
Calculates all of the moments up to the 3rd order of a rasterized shape.

 mulAndScaleSpectrums(src1, src2, flags, scale)

 Variant 1:
Performs a per-element multiplication of two Fourier spectrums and scales the result.

 mulAndScaleSpectrums(src1, src2, flags, scale, opts)

 Variant 1:
Performs a per-element multiplication of two Fourier spectrums and scales the result.

 mulSpectrums(src1, src2, flags)

 Variant 1:
Performs a per-element multiplication of two Fourier spectrums.

 mulSpectrums(src1, src2, flags, opts)

 Variant 1:
Performs a per-element multiplication of two Fourier spectrums.

 multiply(src1, src2)

 Variant 1:
Computes a matrix-matrix or matrix-scalar per-element product.

 multiply(src1, src2, opts)

 Variant 1:
Computes a matrix-matrix or matrix-scalar per-element product.

 nonLocalMeans(src, h)

 Performs pure non local means denoising without any simplification, and thus it is not fast.

 nonLocalMeans(src, h, opts)

 Performs pure non local means denoising without any simplification, and thus it is not fast.

 norm(src1, src2)

 Variant 1:
Returns the difference of two matrices.

 norm(src1, src2, opts)

 Variant 1:
Returns the difference of two matrices.

 normalize(src, alpha, beta, norm_type, dtype)

 Variant 1:
Normalizes the norm or value range of an array.

 normalize(src, alpha, beta, norm_type, dtype, opts)

 Variant 1:
Normalizes the norm or value range of an array.

 numMoments(order)

 Returns the number of image moments less than or equal to the largest image moments \a order.

 phase(x, y)

 Variant 1:
Computes polar angles of complex matrix elements.

 phase(x, y, opts)

 Variant 1:
Computes polar angles of complex matrix elements.

 polarToCart(magnitude, angle)

 Variant 1:
Converts polar coordinates into Cartesian.

 polarToCart(magnitude, angle, opts)

 Variant 1:
Converts polar coordinates into Cartesian.

 pow(src, power)

 Variant 1:
Raises every matrix element to a power.

 pow(src, power, opts)

 Variant 1:
Raises every matrix element to a power.

 printCudaDeviceInfo(device)

 printCudaDeviceInfo

 printShortCudaDeviceInfo(device)

 printShortCudaDeviceInfo

 pyrDown(src)

 Variant 1:
Smoothes an image and downsamples it.

 pyrDown(src, opts)

 Variant 1:
Smoothes an image and downsamples it.

 pyrUp(src)

 Variant 1:
Upsamples an image and then smoothes it.

 pyrUp(src, opts)

 Variant 1:
Upsamples an image and then smoothes it.

 rectStdDev(src, sqr, rect)

 Variant 1:
Computes a standard deviation of integral images.

 rectStdDev(src, sqr, rect, opts)

 Variant 1:
Computes a standard deviation of integral images.

 reduce(mtx, dim, reduceOp)

 Variant 1:
Reduces a matrix to a vector.

 reduce(mtx, dim, reduceOp, opts)

 Variant 1:
Reduces a matrix to a vector.

 registerPageLocked(m)

 Page-locks the memory of matrix and maps it for the device(s).

 remap(src, xmap, ymap, interpolation)

 Variant 1:
Applies a generic geometrical transformation to an image.

 remap(src, xmap, ymap, interpolation, opts)

 Variant 1:
Applies a generic geometrical transformation to an image.

 reprojectImageTo3D(disp, q)

 Reprojects a disparity image to 3D space.

 reprojectImageTo3D(disp, q, opts)

 Reprojects a disparity image to 3D space.

 resetDevice()

 Explicitly destroys and cleans up all resources associated with the current device in the current
process.

 resize(src, dsize)

 Variant 1:
Resizes an image.

 resize(src, dsize, opts)

 Variant 1:
Resizes an image.

 rotate(src, dsize, angle)

 Variant 1:
Rotates an image around the origin (0,0) and then shifts it.

 rotate(src, dsize, angle, opts)

 Variant 1:
Rotates an image around the origin (0,0) and then shifts it.

 rshift(src, val)

 Variant 1:
Performs pixel by pixel right shift of an image by a constant value.

 rshift(src, val, opts)

 Variant 1:
Performs pixel by pixel right shift of an image by a constant value.

 setBufferPoolConfig(deviceId, stackSize, stackCount)

 setBufferPoolConfig

 setBufferPoolUsage(on)

 setBufferPoolUsage

 setDevice(device)

 Sets a device and initializes it for the current thread.

 spatialMoments(src)

 Variant 1:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.

 spatialMoments(src, opts)

 Variant 1:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.

 split(src)

 Variant 1:
split

 split(src, opts)

 Variant 1:
split

 sqr(src)

 Variant 1:
Computes a square value of each matrix element.

 sqr(src, opts)

 Variant 1:
Computes a square value of each matrix element.

 sqrIntegral(src)

 Variant 1:
Computes a squared integral image.

 sqrIntegral(src, opts)

 Variant 1:
Computes a squared integral image.

 sqrSum(src)

 Variant 1:
Returns the squared sum of matrix elements.

 sqrSum(src, opts)

 Variant 1:
Returns the squared sum of matrix elements.

 sqrt(src)

 Variant 1:
Computes a square root of each matrix element.

 sqrt(src, opts)

 Variant 1:
Computes a square root of each matrix element.

 subtract(src1, src2)

 Variant 1:
Computes a matrix-matrix or matrix-scalar difference.

 subtract(src1, src2, opts)

 Variant 1:
Computes a matrix-matrix or matrix-scalar difference.

 sum(src)

 Variant 1:
Returns the sum of matrix elements.

 sum(src, opts)

 Variant 1:
Returns the sum of matrix elements.

 threshold(src, thresh, maxval, type)

 Variant 1:
Applies a fixed-level threshold to each array element.

 threshold(src, thresh, maxval, type, opts)

 Variant 1:
Applies a fixed-level threshold to each array element.

 transpose(src1)

 Variant 1:
Transposes a matrix.

 transpose(src1, opts)

 Variant 1:
Transposes a matrix.

 unregisterPageLocked(m)

 Unmaps the memory of matrix and makes it pageable again.

 warpAffine(src, m, dsize)

 Variant 1:
warpAffine

 warpAffine(src, m, dsize, opts)

 Variant 1:
warpAffine

 warpPerspective(src, m, dsize)

 Variant 1:
warpPerspective

 warpPerspective(src, m, dsize, opts)

 Variant 1:
warpPerspective

 wrapStream(cudaStreamMemoryAddress)

 Bindings overload to create a Stream object from the address stored in an existing CUDA Runtime API stream pointer (cudaStream_t).

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA{ref: reference()}

Type that represents an CUDA struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 abs(src)

 View Source

 @spec abs(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec abs(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an absolute value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa abs
Python prototype (for reference only):
abs(src[, dst[, stream]]) -> dst
Variant 2:
Computes an absolute value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa abs
Python prototype (for reference only):
abs(src[, dst[, stream]]) -> dst

 Link to this function

 abs(src, opts)

 View Source

 @spec abs(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec abs(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an absolute value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa abs
Python prototype (for reference only):
abs(src[, dst[, stream]]) -> dst
Variant 2:
Computes an absolute value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa abs
Python prototype (for reference only):
abs(src[, dst[, stream]]) -> dst

 Link to this function

 absdiff(src1, src2)

 View Source

 @spec absdiff(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec absdiff(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa absdiff
Python prototype (for reference only):
absdiff(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa absdiff
Python prototype (for reference only):
absdiff(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 absdiff(src1, src2, opts)

 View Source

 @spec absdiff(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec absdiff(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa absdiff
Python prototype (for reference only):
absdiff(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes per-element absolute difference of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa absdiff
Python prototype (for reference only):
absdiff(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 absSum(src)

 View Source

 @spec absSum(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec absSum(Evision.CUDA.GpuMat.t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the sum of absolute values for matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
absSum(src[, mask]) -> retval
Variant 2:
Returns the sum of absolute values for matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
absSum(src[, mask]) -> retval

 Link to this function

 absSum(src, opts)

 View Source

 @spec absSum(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec absSum(Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the sum of absolute values for matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
absSum(src[, mask]) -> retval
Variant 2:
Returns the sum of absolute values for matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
absSum(src[, mask]) -> retval

 Link to this function

 add(src1, src2)

 View Source

 @spec add(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec add(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar sum.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa add
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar sum.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa add
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst

 Link to this function

 add(src1, src2, opts)

 View Source

 @spec add(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), mask: term(), dtype: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec add(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), mask: term(), dtype: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar sum.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa add
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar sum.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa add
Python prototype (for reference only):
add(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst

 Link to this function

 addWeighted(src1, alpha, src2, beta, gamma)

 View Source

 @spec addWeighted(
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec addWeighted(
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.GpuMat.t(),
 number(),
 number()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the weighted sum of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
First source array.

	alpha: double.
Weight for the first array elements.

	src2: Evision.Mat.t().
Second source array of the same size and channel number as src1 .

	beta: double.
Weight for the second array elements.

	gamma: double.
Scalar added to each sum.

Keyword Arguments
	dtype: int.
Optional depth of the destination array. When both input arrays have the same depth,
dtype can be set to -1, which will be equivalent to src1.depth().

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
@sa addWeighted
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype[, stream]]]) -> dst
Variant 2:
Computes the weighted sum of two arrays.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source array.

	alpha: double.
Weight for the first array elements.

	src2: Evision.CUDA.GpuMat.t().
Second source array of the same size and channel number as src1 .

	beta: double.
Weight for the second array elements.

	gamma: double.
Scalar added to each sum.

Keyword Arguments
	dtype: int.
Optional depth of the destination array. When both input arrays have the same depth,
dtype can be set to -1, which will be equivalent to src1.depth().

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
@sa addWeighted
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype[, stream]]]) -> dst

 Link to this function

 addWeighted(src1, alpha, src2, beta, gamma, opts)

 View Source

 @spec addWeighted(
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [stream: term(), dtype: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec addWeighted(
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.GpuMat.t(),
 number(),
 number(),
 [stream: term(), dtype: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the weighted sum of two arrays.
Positional Arguments
	src1: Evision.Mat.t().
First source array.

	alpha: double.
Weight for the first array elements.

	src2: Evision.Mat.t().
Second source array of the same size and channel number as src1 .

	beta: double.
Weight for the second array elements.

	gamma: double.
Scalar added to each sum.

Keyword Arguments
	dtype: int.
Optional depth of the destination array. When both input arrays have the same depth,
dtype can be set to -1, which will be equivalent to src1.depth().

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
@sa addWeighted
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype[, stream]]]) -> dst
Variant 2:
Computes the weighted sum of two arrays.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source array.

	alpha: double.
Weight for the first array elements.

	src2: Evision.CUDA.GpuMat.t().
Second source array of the same size and channel number as src1 .

	beta: double.
Weight for the second array elements.

	gamma: double.
Scalar added to each sum.

Keyword Arguments
	dtype: int.
Optional depth of the destination array. When both input arrays have the same depth,
dtype can be set to -1, which will be equivalent to src1.depth().

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination array that has the same size and number of channels as the input arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:
\f[\texttt{dst} (I)= \texttt{saturate} (\texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma})\f]
where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
channel is processed independently.
@sa addWeighted
Python prototype (for reference only):
addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype[, stream]]]) -> dst

 Link to this function

 alphaComp(img1, img2, alpha_op)

 View Source

 @spec alphaComp(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec alphaComp(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Composites two images using alpha opacity values contained in each image.
Positional Arguments
	img1: Evision.Mat.t().
First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.

	img2: Evision.Mat.t().
Second image. Must have the same size and the same type as img1 .

	alpha_op: int.
Flag specifying the alpha-blending operation:
	ALPHA_OVER
	ALPHA_IN
	ALPHA_OUT
	ALPHA_ATOP
	ALPHA_XOR
	ALPHA_PLUS
	ALPHA_OVER_PREMUL
	ALPHA_IN_PREMUL
	ALPHA_OUT_PREMUL
	ALPHA_ATOP_PREMUL
	ALPHA_XOR_PREMUL
	ALPHA_PLUS_PREMUL
	ALPHA_PREMUL

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Note:
	An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp

Python prototype (for reference only):
alphaComp(img1, img2, alpha_op[, dst[, stream]]) -> dst
Variant 2:
Composites two images using alpha opacity values contained in each image.
Positional Arguments
	img1: Evision.CUDA.GpuMat.t().
First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.

	img2: Evision.CUDA.GpuMat.t().
Second image. Must have the same size and the same type as img1 .

	alpha_op: int.
Flag specifying the alpha-blending operation:
	ALPHA_OVER
	ALPHA_IN
	ALPHA_OUT
	ALPHA_ATOP
	ALPHA_XOR
	ALPHA_PLUS
	ALPHA_OVER_PREMUL
	ALPHA_IN_PREMUL
	ALPHA_OUT_PREMUL
	ALPHA_ATOP_PREMUL
	ALPHA_XOR_PREMUL
	ALPHA_PLUS_PREMUL
	ALPHA_PREMUL

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Note:
	An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp

Python prototype (for reference only):
alphaComp(img1, img2, alpha_op[, dst[, stream]]) -> dst

 Link to this function

 alphaComp(img1, img2, alpha_op, opts)

 View Source

 @spec alphaComp(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec alphaComp(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Composites two images using alpha opacity values contained in each image.
Positional Arguments
	img1: Evision.Mat.t().
First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.

	img2: Evision.Mat.t().
Second image. Must have the same size and the same type as img1 .

	alpha_op: int.
Flag specifying the alpha-blending operation:
	ALPHA_OVER
	ALPHA_IN
	ALPHA_OUT
	ALPHA_ATOP
	ALPHA_XOR
	ALPHA_PLUS
	ALPHA_OVER_PREMUL
	ALPHA_IN_PREMUL
	ALPHA_OUT_PREMUL
	ALPHA_ATOP_PREMUL
	ALPHA_XOR_PREMUL
	ALPHA_PLUS_PREMUL
	ALPHA_PREMUL

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Note:
	An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp

Python prototype (for reference only):
alphaComp(img1, img2, alpha_op[, dst[, stream]]) -> dst
Variant 2:
Composites two images using alpha opacity values contained in each image.
Positional Arguments
	img1: Evision.CUDA.GpuMat.t().
First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.

	img2: Evision.CUDA.GpuMat.t().
Second image. Must have the same size and the same type as img1 .

	alpha_op: int.
Flag specifying the alpha-blending operation:
	ALPHA_OVER
	ALPHA_IN
	ALPHA_OUT
	ALPHA_ATOP
	ALPHA_XOR
	ALPHA_PLUS
	ALPHA_OVER_PREMUL
	ALPHA_IN_PREMUL
	ALPHA_OUT_PREMUL
	ALPHA_ATOP_PREMUL
	ALPHA_XOR_PREMUL
	ALPHA_PLUS_PREMUL
	ALPHA_PREMUL

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Note:
	An example demonstrating the use of alphaComp can be found at
opencv_source_code/samples/gpu/alpha_comp.cpp

Python prototype (for reference only):
alphaComp(img1, img2, alpha_op[, dst[, stream]]) -> dst

 Link to this function

 bilateralFilter(src, kernel_size, sigma_color, sigma_spatial)

 View Source

 @spec bilateralFilter(Evision.Mat.maybe_mat_in(), integer(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec bilateralFilter(Evision.CUDA.GpuMat.t(), integer(), number(), number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs bilateral filtering of passed image
Positional Arguments
	src: Evision.Mat.t().
Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).

	kernel_size: int.
Kernel window size.

	sigma_color: float.
Filter sigma in the color space.

	sigma_spatial: float.
Filter sigma in the coordinate space.

Keyword Arguments
	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination imagwe.

@sa bilateralFilter
Python prototype (for reference only):
bilateralFilter(src, kernel_size, sigma_color, sigma_spatial[, dst[, borderMode[, stream]]]) -> dst
Variant 2:
Performs bilateral filtering of passed image
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).

	kernel_size: int.
Kernel window size.

	sigma_color: float.
Filter sigma in the color space.

	sigma_spatial: float.
Filter sigma in the coordinate space.

Keyword Arguments
	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination imagwe.

@sa bilateralFilter
Python prototype (for reference only):
bilateralFilter(src, kernel_size, sigma_color, sigma_spatial[, dst[, borderMode[, stream]]]) -> dst

 Link to this function

 bilateralFilter(src, kernel_size, sigma_color, sigma_spatial, opts)

 View Source

 @spec bilateralFilter(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 number(),
 [borderMode: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec bilateralFilter(
 Evision.CUDA.GpuMat.t(),
 integer(),
 number(),
 number(),
 [borderMode: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs bilateral filtering of passed image
Positional Arguments
	src: Evision.Mat.t().
Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).

	kernel_size: int.
Kernel window size.

	sigma_color: float.
Filter sigma in the color space.

	sigma_spatial: float.
Filter sigma in the coordinate space.

Keyword Arguments
	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination imagwe.

@sa bilateralFilter
Python prototype (for reference only):
bilateralFilter(src, kernel_size, sigma_color, sigma_spatial[, dst[, borderMode[, stream]]]) -> dst
Variant 2:
Performs bilateral filtering of passed image
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports only (channels != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).

	kernel_size: int.
Kernel window size.

	sigma_color: float.
Filter sigma in the color space.

	sigma_spatial: float.
Filter sigma in the coordinate space.

Keyword Arguments
	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination imagwe.

@sa bilateralFilter
Python prototype (for reference only):
bilateralFilter(src, kernel_size, sigma_color, sigma_spatial[, dst[, borderMode[, stream]]]) -> dst

 Link to this function

 blendLinear(img1, img2, weights1, weights2)

 View Source

 @spec blendLinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec blendLinear(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs linear blending of two images.
Positional Arguments
	img1: Evision.Mat.t().
First image. Supports only CV_8U and CV_32F depth.

	img2: Evision.Mat.t().
Second image. Must have the same size and the same type as img1 .

	weights1: Evision.Mat.t().
Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.

	weights2: Evision.Mat.t().
Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
blendLinear(img1, img2, weights1, weights2[, result[, stream]]) -> result
Variant 2:
Performs linear blending of two images.
Positional Arguments
	img1: Evision.CUDA.GpuMat.t().
First image. Supports only CV_8U and CV_32F depth.

	img2: Evision.CUDA.GpuMat.t().
Second image. Must have the same size and the same type as img1 .

	weights1: Evision.CUDA.GpuMat.t().
Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.

	weights2: Evision.CUDA.GpuMat.t().
Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
blendLinear(img1, img2, weights1, weights2[, result[, stream]]) -> result

 Link to this function

 blendLinear(img1, img2, weights1, weights2, opts)

 View Source

 @spec blendLinear(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec blendLinear(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs linear blending of two images.
Positional Arguments
	img1: Evision.Mat.t().
First image. Supports only CV_8U and CV_32F depth.

	img2: Evision.Mat.t().
Second image. Must have the same size and the same type as img1 .

	weights1: Evision.Mat.t().
Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.

	weights2: Evision.Mat.t().
Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
blendLinear(img1, img2, weights1, weights2[, result[, stream]]) -> result
Variant 2:
Performs linear blending of two images.
Positional Arguments
	img1: Evision.CUDA.GpuMat.t().
First image. Supports only CV_8U and CV_32F depth.

	img2: Evision.CUDA.GpuMat.t().
Second image. Must have the same size and the same type as img1 .

	weights1: Evision.CUDA.GpuMat.t().
Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.

	weights2: Evision.CUDA.GpuMat.t().
Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
blendLinear(img1, img2, weights1, weights2[, result[, stream]]) -> result

 Link to this function

 buildWarpAffineMaps(m, inverse, dsize)

 View Source

 @spec buildWarpAffineMaps(Evision.Mat.maybe_mat_in(), boolean(), {number(), number()}) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

buildWarpAffineMaps
Positional Arguments
	m: Evision.Mat.t()
	inverse: bool
	dsize: Size

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	xmap: Evision.CUDA.GpuMat.t().
	ymap: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
buildWarpAffineMaps(M, inverse, dsize[, xmap[, ymap[, stream]]]) -> xmap, ymap

 Link to this function

 buildWarpAffineMaps(m, inverse, dsize, opts)

 View Source

 @spec buildWarpAffineMaps(
 Evision.Mat.maybe_mat_in(),
 boolean(),
 {number(), number()},
 [{:stream, term()}] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

buildWarpAffineMaps
Positional Arguments
	m: Evision.Mat.t()
	inverse: bool
	dsize: Size

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	xmap: Evision.CUDA.GpuMat.t().
	ymap: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
buildWarpAffineMaps(M, inverse, dsize[, xmap[, ymap[, stream]]]) -> xmap, ymap

 Link to this function

 buildWarpPerspectiveMaps(m, inverse, dsize)

 View Source

 @spec buildWarpPerspectiveMaps(
 Evision.Mat.maybe_mat_in(),
 boolean(),
 {number(), number()}
) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

buildWarpPerspectiveMaps
Positional Arguments
	m: Evision.Mat.t()
	inverse: bool
	dsize: Size

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	xmap: Evision.CUDA.GpuMat.t().
	ymap: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
buildWarpPerspectiveMaps(M, inverse, dsize[, xmap[, ymap[, stream]]]) -> xmap, ymap

 Link to this function

 buildWarpPerspectiveMaps(m, inverse, dsize, opts)

 View Source

 @spec buildWarpPerspectiveMaps(
 Evision.Mat.maybe_mat_in(),
 boolean(),
 {number(), number()},
 [{:stream, term()}] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

buildWarpPerspectiveMaps
Positional Arguments
	m: Evision.Mat.t()
	inverse: bool
	dsize: Size

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	xmap: Evision.CUDA.GpuMat.t().
	ymap: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
buildWarpPerspectiveMaps(M, inverse, dsize[, xmap[, ymap[, stream]]]) -> xmap, ymap

 Link to this function

 calcAbsSum(src)

 View Source

 @spec calcAbsSum(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec calcAbsSum(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcAbsSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcAbsSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcAbsSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcAbsSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcAbsSum(src, opts)

 View Source

 @spec calcAbsSum(Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcAbsSum(Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcAbsSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcAbsSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcAbsSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcAbsSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcHist(src)

 View Source

 @spec calcHist(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec calcHist(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates histogram for one channel 8-bit image.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src[, hist[, stream]]) -> hist
Variant 2:
Calculates histogram for one channel 8-bit image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src[, hist[, stream]]) -> hist

 Link to this function

 calcHist(src, opts)

 View Source

 @spec calcHist(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcHist(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec calcHist(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcHist(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates histogram for one channel 8-bit image confined in given mask.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

	mask: Evision.Mat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src, mask[, hist[, stream]]) -> hist
Variant 2:
Calculates histogram for one channel 8-bit image confined in given mask.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src, mask[, hist[, stream]]) -> hist
Variant 3:
Calculates histogram for one channel 8-bit image.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src[, hist[, stream]]) -> hist
Variant 4:
Calculates histogram for one channel 8-bit image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src[, hist[, stream]]) -> hist

 Link to this function

 calcHist(src, mask, opts)

 View Source

 @spec calcHist(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcHist(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates histogram for one channel 8-bit image confined in given mask.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

	mask: Evision.Mat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src, mask[, hist[, stream]]) -> hist
Variant 2:
Calculates histogram for one channel 8-bit image confined in given mask.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, 256 columns, and the CV_32SC1 type.

Python prototype (for reference only):
calcHist(src, mask[, hist[, stream]]) -> hist

 Link to this function

 calcNorm(src, normType)

 View Source

 @spec calcNorm(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcNorm(Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcNorm
Positional Arguments
	src: Evision.Mat.t()
	normType: int

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcNorm(src, normType[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcNorm
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	normType: int

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcNorm(src, normType[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcNorm(src, normType, opts)

 View Source

 @spec calcNorm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [mask: term(), stream: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcNorm(
 Evision.CUDA.GpuMat.t(),
 integer(),
 [mask: term(), stream: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcNorm
Positional Arguments
	src: Evision.Mat.t()
	normType: int

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcNorm(src, normType[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcNorm
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	normType: int

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcNorm(src, normType[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcNormDiff(src1, src2)

 View Source

 @spec calcNormDiff(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcNormDiff(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcNormDiff
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()

Keyword Arguments
	normType: int.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcNormDiff(src1, src2[, dst[, normType[, stream]]]) -> dst
Variant 2:
calcNormDiff
Positional Arguments
	src1: Evision.CUDA.GpuMat.t()
	src2: Evision.CUDA.GpuMat.t()

Keyword Arguments
	normType: int.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcNormDiff(src1, src2[, dst[, normType[, stream]]]) -> dst

 Link to this function

 calcNormDiff(src1, src2, opts)

 View Source

 @spec calcNormDiff(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [normType: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec calcNormDiff(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [normType: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcNormDiff
Positional Arguments
	src1: Evision.Mat.t()
	src2: Evision.Mat.t()

Keyword Arguments
	normType: int.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcNormDiff(src1, src2[, dst[, normType[, stream]]]) -> dst
Variant 2:
calcNormDiff
Positional Arguments
	src1: Evision.CUDA.GpuMat.t()
	src2: Evision.CUDA.GpuMat.t()

Keyword Arguments
	normType: int.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcNormDiff(src1, src2[, dst[, normType[, stream]]]) -> dst

 Link to this function

 calcSqrSum(src)

 View Source

 @spec calcSqrSum(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec calcSqrSum(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcSqrSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcSqrSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcSqrSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcSqrSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcSqrSum(src, opts)

 View Source

 @spec calcSqrSum(Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcSqrSum(Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcSqrSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcSqrSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcSqrSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcSqrSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcSum(src)

 View Source

 @spec calcSum(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec calcSum(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 calcSum(src, opts)

 View Source

 @spec calcSum(Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec calcSum(Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
calcSum
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
calcSum(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
calcSum
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
calcSum(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 cartToPolar(x, y)

 View Source

 @spec cartToPolar(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec cartToPolar(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Converts Cartesian coordinates into polar.
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

	angle: Evision.Mat.t().
Destination matrix of angles (CV_32FC1).

@sa cartToPolar
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees[, stream]]]]) -> magnitude, angle
Variant 2:
Converts Cartesian coordinates into polar.
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

	angle: Evision.CUDA.GpuMat.t().
Destination matrix of angles (CV_32FC1).

@sa cartToPolar
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees[, stream]]]]) -> magnitude, angle

 Link to this function

 cartToPolar(x, y, opts)

 View Source

 @spec cartToPolar(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [angleInDegrees: term(), stream: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec cartToPolar(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [angleInDegrees: term(), stream: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Converts Cartesian coordinates into polar.
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

	angle: Evision.Mat.t().
Destination matrix of angles (CV_32FC1).

@sa cartToPolar
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees[, stream]]]]) -> magnitude, angle
Variant 2:
Converts Cartesian coordinates into polar.
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

	angle: Evision.CUDA.GpuMat.t().
Destination matrix of angles (CV_32FC1).

@sa cartToPolar
Python prototype (for reference only):
cartToPolar(x, y[, magnitude[, angle[, angleInDegrees[, stream]]]]) -> magnitude, angle

 Link to this function

 compare(src1, src2, cmpop)

 View Source

 @spec compare(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compare(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Compares elements of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

	cmpop: int.
Flag specifying the relation between the elements to be checked:
	CMP_EQ: a(.) == b(.)
	CMP_GT: a(.) > b(.)
	CMP_GE: a(.) >= b(.)
	CMP_LT: a(.) \< b(.)
	CMP_LE: a(.) \<= b(.)
	CMP_NE: a(.) != b(.)

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size as the input array(s) and type CV_8U.

@sa compare
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst[, stream]]) -> dst
Variant 2:
Compares elements of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

	cmpop: int.
Flag specifying the relation between the elements to be checked:
	CMP_EQ: a(.) == b(.)
	CMP_GT: a(.) > b(.)
	CMP_GE: a(.) >= b(.)
	CMP_LT: a(.) \< b(.)
	CMP_LE: a(.) \<= b(.)
	CMP_NE: a(.) != b(.)

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size as the input array(s) and type CV_8U.

@sa compare
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst[, stream]]) -> dst

 Link to this function

 compare(src1, src2, cmpop, opts)

 View Source

 @spec compare(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compare(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Compares elements of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

	cmpop: int.
Flag specifying the relation between the elements to be checked:
	CMP_EQ: a(.) == b(.)
	CMP_GT: a(.) > b(.)
	CMP_GE: a(.) >= b(.)
	CMP_LT: a(.) \< b(.)
	CMP_LE: a(.) \<= b(.)
	CMP_NE: a(.) != b(.)

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size as the input array(s) and type CV_8U.

@sa compare
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst[, stream]]) -> dst
Variant 2:
Compares elements of two matrices (or of a matrix and scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

	cmpop: int.
Flag specifying the relation between the elements to be checked:
	CMP_EQ: a(.) == b(.)
	CMP_GT: a(.) > b(.)
	CMP_GE: a(.) >= b(.)
	CMP_LT: a(.) \< b(.)
	CMP_LE: a(.) \<= b(.)
	CMP_NE: a(.) != b(.)

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size as the input array(s) and type CV_8U.

@sa compare
Python prototype (for reference only):
compare(src1, src2, cmpop[, dst[, stream]]) -> dst

 Link to this function

 connectedComponents(image)

 View Source

 @spec connectedComponents(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec connectedComponents(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
connectedComponents
Positional Arguments
	image: Evision.Mat.t().
The 8-bit single-channel image to be labeled.

Keyword Arguments
	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

Return
	labels: Evision.Mat.t().
Destination labeled image.

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> labels
Variant 2:
connectedComponents
Positional Arguments
	image: Evision.CUDA.GpuMat.t().
The 8-bit single-channel image to be labeled.

Keyword Arguments
	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

Return
	labels: Evision.CUDA.GpuMat.t().
Destination labeled image.

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> labels

 Link to this function

 connectedComponents(image, opts)

 View Source

 @spec connectedComponents(
 Evision.Mat.maybe_mat_in(),
 [connectivity: term(), ltype: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec connectedComponents(
 Evision.CUDA.GpuMat.t(),
 [connectivity: term(), ltype: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
connectedComponents
Positional Arguments
	image: Evision.Mat.t().
The 8-bit single-channel image to be labeled.

Keyword Arguments
	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

Return
	labels: Evision.Mat.t().
Destination labeled image.

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> labels
Variant 2:
connectedComponents
Positional Arguments
	image: Evision.CUDA.GpuMat.t().
The 8-bit single-channel image to be labeled.

Keyword Arguments
	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

Return
	labels: Evision.CUDA.GpuMat.t().
Destination labeled image.

Has overloading in C++
Python prototype (for reference only):
connectedComponents(image[, labels[, connectivity[, ltype]]]) -> labels

 Link to this function

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype)

 View Source

 @spec connectedComponentsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec connectedComponentsWithAlgorithm(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the Connected Components Labeled image of a binary image.
Positional Arguments
	image: Evision.Mat.t().
The 8-bit single-channel image to be labeled.

	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

	ccltype: cuda_ConnectedComponentsAlgorithmsTypes.
Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	labels: Evision.Mat.t().
Destination labeled image.

The function takes as input a binary image and performs Connected Components Labeling. The output
is an image where each Connected Component is assigned a unique label (integer value).
ltype specifies the output label image type, an important consideration based on the total
number of labels or alternatively the total number of pixels in the source image.
ccltype specifies the connected components labeling algorithm to use, currently
BKE @cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes
for details. Note that labels in the output are not required to be sequential.
Note: A sample program demonstrating Connected Components Labeling in CUDA can be found at\n
opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> labels
Variant 2:
Computes the Connected Components Labeled image of a binary image.
Positional Arguments
	image: Evision.CUDA.GpuMat.t().
The 8-bit single-channel image to be labeled.

	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

	ccltype: cuda_ConnectedComponentsAlgorithmsTypes.
Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	labels: Evision.CUDA.GpuMat.t().
Destination labeled image.

The function takes as input a binary image and performs Connected Components Labeling. The output
is an image where each Connected Component is assigned a unique label (integer value).
ltype specifies the output label image type, an important consideration based on the total
number of labels or alternatively the total number of pixels in the source image.
ccltype specifies the connected components labeling algorithm to use, currently
BKE @cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes
for details. Note that labels in the output are not required to be sequential.
Note: A sample program demonstrating Connected Components Labeling in CUDA can be found at\n
opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> labels

 Link to this function

 connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype, opts)

 View Source

 @spec connectedComponentsWithAlgorithm(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec connectedComponentsWithAlgorithm(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the Connected Components Labeled image of a binary image.
Positional Arguments
	image: Evision.Mat.t().
The 8-bit single-channel image to be labeled.

	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

	ccltype: cuda_ConnectedComponentsAlgorithmsTypes.
Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	labels: Evision.Mat.t().
Destination labeled image.

The function takes as input a binary image and performs Connected Components Labeling. The output
is an image where each Connected Component is assigned a unique label (integer value).
ltype specifies the output label image type, an important consideration based on the total
number of labels or alternatively the total number of pixels in the source image.
ccltype specifies the connected components labeling algorithm to use, currently
BKE @cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes
for details. Note that labels in the output are not required to be sequential.
Note: A sample program demonstrating Connected Components Labeling in CUDA can be found at\n
opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> labels
Variant 2:
Computes the Connected Components Labeled image of a binary image.
Positional Arguments
	image: Evision.CUDA.GpuMat.t().
The 8-bit single-channel image to be labeled.

	connectivity: int.
Connectivity to use for the labeling procedure. 8 for 8-way connectivity is supported.

	ltype: int.
Output image label type. Currently CV_32S is supported.

	ccltype: cuda_ConnectedComponentsAlgorithmsTypes.
Connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).

Return
	labels: Evision.CUDA.GpuMat.t().
Destination labeled image.

The function takes as input a binary image and performs Connected Components Labeling. The output
is an image where each Connected Component is assigned a unique label (integer value).
ltype specifies the output label image type, an important consideration based on the total
number of labels or alternatively the total number of pixels in the source image.
ccltype specifies the connected components labeling algorithm to use, currently
BKE @cite Allegretti2019 is supported, see the #ConnectedComponentsAlgorithmsTypes
for details. Note that labels in the output are not required to be sequential.
Note: A sample program demonstrating Connected Components Labeling in CUDA can be found at\n
opencv_contrib_source_code/modules/cudaimgproc/samples/connected_components.cpp
Python prototype (for reference only):
connectedComponentsWithAlgorithm(image, connectivity, ltype, ccltype[, labels]) -> labels

 Link to this function

 copyMakeBorder(src, top, bottom, left, right, borderType)

 View Source

 @spec copyMakeBorder(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec copyMakeBorder(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Forms a border around an image.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.

	top: int.
Number of top pixels

	bottom: int.
Number of bottom pixels

	left: int.
Number of left pixels

	right: int.
Number of pixels in each direction from the source image rectangle to extrapolate.
For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.

	borderType: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

Keyword Arguments
	value: Scalar.
Border value.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src. The size is
Size(src.cols+left+right, src.rows+top+bottom) .

Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value[, stream]]]) -> dst
Variant 2:
Forms a border around an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.

	top: int.
Number of top pixels

	bottom: int.
Number of bottom pixels

	left: int.
Number of left pixels

	right: int.
Number of pixels in each direction from the source image rectangle to extrapolate.
For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.

	borderType: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

Keyword Arguments
	value: Scalar.
Border value.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src. The size is
Size(src.cols+left+right, src.rows+top+bottom) .

Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value[, stream]]]) -> dst

 Link to this function

 copyMakeBorder(src, top, bottom, left, right, borderType, opts)

 View Source

 @spec copyMakeBorder(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 [value: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec copyMakeBorder(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 [value: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Forms a border around an image.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.

	top: int.
Number of top pixels

	bottom: int.
Number of bottom pixels

	left: int.
Number of left pixels

	right: int.
Number of pixels in each direction from the source image rectangle to extrapolate.
For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.

	borderType: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

Keyword Arguments
	value: Scalar.
Border value.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src. The size is
Size(src.cols+left+right, src.rows+top+bottom) .

Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value[, stream]]]) -> dst
Variant 2:
Forms a border around an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.

	top: int.
Number of top pixels

	bottom: int.
Number of bottom pixels

	left: int.
Number of left pixels

	right: int.
Number of pixels in each direction from the source image rectangle to extrapolate.
For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.

	borderType: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

Keyword Arguments
	value: Scalar.
Border value.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src. The size is
Size(src.cols+left+right, src.rows+top+bottom) .

Python prototype (for reference only):
copyMakeBorder(src, top, bottom, left, right, borderType[, dst[, value[, stream]]]) -> dst

 Link to this function

 countNonZero(src)

 View Source

 @spec countNonZero(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec countNonZero(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
countNonZero
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
countNonZero(src[, dst[, stream]]) -> dst
Variant 2:
countNonZero
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
countNonZero(src[, dst[, stream]]) -> dst

 Link to this function

 countNonZero(src, opts)

 View Source

 @spec countNonZero(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec countNonZero(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
countNonZero
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
countNonZero(src[, dst[, stream]]) -> dst
Variant 2:
countNonZero
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
countNonZero(src[, dst[, stream]]) -> dst

 Link to this function

 createBackgroundSubtractorMOG2()

 View Source

 @spec createBackgroundSubtractorMOG2() ::
 Evision.CUDA.BackgroundSubtractorMOG2.t() | {:error, String.t()}

Creates MOG2 Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	varThreshold: double.
Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.CUDA.BackgroundSubtractorMOG2.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG2(opts)

 View Source

 @spec createBackgroundSubtractorMOG2(
 [history: term(), detectShadows: term(), varThreshold: term()]
 | nil
) :: Evision.CUDA.BackgroundSubtractorMOG2.t() | {:error, String.t()}

Creates MOG2 Background Subtractor
Keyword Arguments
	history: int.
Length of the history.

	varThreshold: double.
Threshold on the squared Mahalanobis distance between the pixel and the model
to decide whether a pixel is well described by the background model. This parameter does not
affect the background update.

	detectShadows: bool.
If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.

Return
	retval: Evision.CUDA.BackgroundSubtractorMOG2.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG2([, history[, varThreshold[, detectShadows]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG()

 View Source

 @spec createBackgroundSubtractorMOG() ::
 Evision.CUDA.BackgroundSubtractorMOG.t() | {:error, String.t()}

Creates mixture-of-gaussian background subtractor
Keyword Arguments
	history: int.
Length of the history.

	nmixtures: int.
Number of Gaussian mixtures.

	backgroundRatio: double.
Background ratio.

	noiseSigma: double.
Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.

Return
	retval: Evision.CUDA.BackgroundSubtractorMOG.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval

 Link to this function

 createBackgroundSubtractorMOG(opts)

 View Source

 @spec createBackgroundSubtractorMOG(
 [
 nmixtures: term(),
 history: term(),
 backgroundRatio: term(),
 noiseSigma: term()
]
 | nil
) :: Evision.CUDA.BackgroundSubtractorMOG.t() | {:error, String.t()}

Creates mixture-of-gaussian background subtractor
Keyword Arguments
	history: int.
Length of the history.

	nmixtures: int.
Number of Gaussian mixtures.

	backgroundRatio: double.
Background ratio.

	noiseSigma: double.
Noise strength (standard deviation of the brightness or each color channel). 0
means some automatic value.

Return
	retval: Evision.CUDA.BackgroundSubtractorMOG.t()

Python prototype (for reference only):
createBackgroundSubtractorMOG([, history[, nmixtures[, backgroundRatio[, noiseSigma]]]]) -> retval

 Link to this function

 createBoxFilter(srcType, dstType, ksize)

 View Source

 @spec createBoxFilter(integer(), integer(), {number(), number()}) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a normalized 2D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1, CV_8UC4 and CV_32FC1 are supported for now.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa boxFilter
Python prototype (for reference only):
createBoxFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createBoxFilter(srcType, dstType, ksize, opts)

 View Source

 @spec createBoxFilter(
 integer(),
 integer(),
 {number(), number()},
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a normalized 2D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1, CV_8UC4 and CV_32FC1 are supported for now.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa boxFilter
Python prototype (for reference only):
createBoxFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createBoxMaxFilter(srcType, ksize)

 View Source

 @spec createBoxMaxFilter(
 integer(),
 {number(), number()}
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates the maximum filter.
Positional Arguments
	srcType: int.
Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createBoxMaxFilter(srcType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createBoxMaxFilter(srcType, ksize, opts)

 View Source

 @spec createBoxMaxFilter(
 integer(),
 {number(), number()},
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates the maximum filter.
Positional Arguments
	srcType: int.
Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createBoxMaxFilter(srcType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createBoxMinFilter(srcType, ksize)

 View Source

 @spec createBoxMinFilter(
 integer(),
 {number(), number()}
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates the minimum filter.
Positional Arguments
	srcType: int.
Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createBoxMinFilter(srcType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createBoxMinFilter(srcType, ksize, opts)

 View Source

 @spec createBoxMinFilter(
 integer(),
 {number(), number()},
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates the minimum filter.
Positional Arguments
	srcType: int.
Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.

	ksize: Size.
Kernel size.

Keyword Arguments
	anchor: Point.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createBoxMinFilter(srcType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createCannyEdgeDetector(low_thresh, high_thresh)

 View Source

 @spec createCannyEdgeDetector(number(), number()) ::
 Evision.CUDA.CannyEdgeDetector.t() | {:error, String.t()}

Creates implementation for cuda::CannyEdgeDetector .
Positional Arguments
	low_thresh: double.
First threshold for the hysteresis procedure.

	high_thresh: double.
Second threshold for the hysteresis procedure.

Keyword Arguments
	apperture_size: int.
Aperture size for the Sobel operator.

	l2gradient: bool.
Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (L2gradient=false
).

Return
	retval: CannyEdgeDetector

Python prototype (for reference only):
createCannyEdgeDetector(low_thresh, high_thresh[, apperture_size[, L2gradient]]) -> retval

 Link to this function

 createCannyEdgeDetector(low_thresh, high_thresh, opts)

 View Source

 @spec createCannyEdgeDetector(
 number(),
 number(),
 [apperture_size: term(), l2gradient: term()] | nil
) ::
 Evision.CUDA.CannyEdgeDetector.t() | {:error, String.t()}

Creates implementation for cuda::CannyEdgeDetector .
Positional Arguments
	low_thresh: double.
First threshold for the hysteresis procedure.

	high_thresh: double.
Second threshold for the hysteresis procedure.

Keyword Arguments
	apperture_size: int.
Aperture size for the Sobel operator.

	l2gradient: bool.
Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (L2gradient=false
).

Return
	retval: CannyEdgeDetector

Python prototype (for reference only):
createCannyEdgeDetector(low_thresh, high_thresh[, apperture_size[, L2gradient]]) -> retval

 Link to this function

 createCLAHE()

 View Source

 @spec createCLAHE() :: Evision.CUDA.CLAHE.t() | {:error, String.t()}

Creates implementation for cuda::CLAHE .
Keyword Arguments
	clipLimit: double.
Threshold for contrast limiting.

	tileGridSize: Size.
Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.

Return
	retval: Evision.CUDA.CLAHE.t()

Python prototype (for reference only):
createCLAHE([, clipLimit[, tileGridSize]]) -> retval

 Link to this function

 createCLAHE(opts)

 View Source

 @spec createCLAHE([clipLimit: term(), tileGridSize: term()] | nil) ::
 Evision.CUDA.CLAHE.t() | {:error, String.t()}

Creates implementation for cuda::CLAHE .
Keyword Arguments
	clipLimit: double.
Threshold for contrast limiting.

	tileGridSize: Size.
Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.

Return
	retval: Evision.CUDA.CLAHE.t()

Python prototype (for reference only):
createCLAHE([, clipLimit[, tileGridSize]]) -> retval

 Link to this function

 createColumnSumFilter(srcType, dstType, ksize)

 View Source

 @spec createColumnSumFilter(integer(), integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a vertical 1D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1 type is supported for now.

	dstType: int.
Output image type. Only CV_32FC1 type is supported for now.

	ksize: int.
Kernel size.

Keyword Arguments
	anchor: int.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createColumnSumFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createColumnSumFilter(srcType, dstType, ksize, opts)

 View Source

 @spec createColumnSumFilter(
 integer(),
 integer(),
 integer(),
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a vertical 1D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1 type is supported for now.

	dstType: int.
Output image type. Only CV_32FC1 type is supported for now.

	ksize: int.
Kernel size.

Keyword Arguments
	anchor: int.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createColumnSumFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createContinuous(rows, cols, type)

 View Source

 @spec createContinuous(integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Creates a continuous matrix.
Positional Arguments
	rows: int.
Row count.

	cols: int.
Column count.

	type: int.
Type of the matrix.

Return
	arr: Evision.Mat.t().
Destination matrix. This parameter changes only if it has a proper type and area (
\f$\texttt{rows} \times \texttt{cols}\f$).

Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
end of each row.
Python prototype (for reference only):
createContinuous(rows, cols, type[, arr]) -> arr

 Link to this function

 createContinuous(rows, cols, type, opts)

 View Source

 @spec createContinuous(integer(), integer(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Creates a continuous matrix.
Positional Arguments
	rows: int.
Row count.

	cols: int.
Column count.

	type: int.
Type of the matrix.

Return
	arr: Evision.Mat.t().
Destination matrix. This parameter changes only if it has a proper type and area (
\f$\texttt{rows} \times \texttt{cols}\f$).

Matrix is called continuous if its elements are stored continuously, that is, without gaps at the
end of each row.
Python prototype (for reference only):
createContinuous(rows, cols, type[, arr]) -> arr

 Link to this function

 createConvolution()

 View Source

 @spec createConvolution() :: Evision.CUDA.Convolution.t() | {:error, String.t()}

Creates implementation for cuda::Convolution .
Keyword Arguments
	user_block_size: Size.
Block size. If you leave default value Size(0,0) then automatic
estimation of block size will be used (which is optimized for speed). By varying user_block_size
you can reduce memory requirements at the cost of speed.

Return
	retval: Convolution

Python prototype (for reference only):
createConvolution([, user_block_size]) -> retval

 Link to this function

 createConvolution(opts)

 View Source

 @spec createConvolution([{:user_block_size, term()}] | nil) ::
 Evision.CUDA.Convolution.t() | {:error, String.t()}

Creates implementation for cuda::Convolution .
Keyword Arguments
	user_block_size: Size.
Block size. If you leave default value Size(0,0) then automatic
estimation of block size will be used (which is optimized for speed). By varying user_block_size
you can reduce memory requirements at the cost of speed.

Return
	retval: Convolution

Python prototype (for reference only):
createConvolution([, user_block_size]) -> retval

 Link to this function

 createDerivFilter(srcType, dstType, dx, dy, ksize)

 View Source

 @spec createDerivFilter(integer(), integer(), integer(), integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a generalized Deriv operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

	ksize: int.
Aperture size. See getDerivKernels for details.

Keyword Arguments
	normalize: bool.
Flag indicating whether to normalize (scale down) the filter coefficients or not.
See getDerivKernels for details.

	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

Python prototype (for reference only):
createDerivFilter(srcType, dstType, dx, dy, ksize[, normalize[, scale[, rowBorderMode[, columnBorderMode]]]]) -> retval

 Link to this function

 createDerivFilter(srcType, dstType, dx, dy, ksize, opts)

 View Source

 @spec createDerivFilter(
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 [
 normalize: term(),
 columnBorderMode: term(),
 rowBorderMode: term(),
 scale: term()
]
 | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a generalized Deriv operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

	ksize: int.
Aperture size. See getDerivKernels for details.

Keyword Arguments
	normalize: bool.
Flag indicating whether to normalize (scale down) the filter coefficients or not.
See getDerivKernels for details.

	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

Python prototype (for reference only):
createDerivFilter(srcType, dstType, dx, dy, ksize[, normalize[, scale[, rowBorderMode[, columnBorderMode]]]]) -> retval

 Link to this function

 createDFT(dft_size, flags)

 View Source

 @spec createDFT(
 {number(), number()},
 integer()
) :: Evision.CUDA.DFT.t() | {:error, String.t()}

Creates implementation for cuda::DFT.
Positional Arguments
	dft_size: Size.
The image size.

	flags: int.
Optional flags:
	DFT_ROWS transforms each individual row of the source matrix.
	DFT_SCALE scales the result: divide it by the number of elements in the transform
(obtained from dft_size).
	DFT_INVERSE inverts DFT. Use for complex-complex cases (real-complex and complex-real
cases are always forward and inverse, respectively).
	DFT_COMPLEX_INPUT Specifies that inputs will be complex with 2 channels.
	DFT_REAL_OUTPUT specifies the output as real. The source matrix is the result of
real-complex transform, so the destination matrix must be real.

Return
	retval: DFT

Python prototype (for reference only):
createDFT(dft_size, flags) -> retval

 Link to this function

 createDisparityBilateralFilter()

 View Source

 @spec createDisparityBilateralFilter() ::
 Evision.CUDA.DisparityBilateralFilter.t() | {:error, String.t()}

Creates DisparityBilateralFilter object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	radius: int.
Filter radius.

	iters: int.
Number of iterations.

Return
	retval: Evision.CUDA.DisparityBilateralFilter.t()

Python prototype (for reference only):
createDisparityBilateralFilter([, ndisp[, radius[, iters]]]) -> retval

 Link to this function

 createDisparityBilateralFilter(opts)

 View Source

 @spec createDisparityBilateralFilter(
 [ndisp: term(), iters: term(), radius: term()]
 | nil
) ::
 Evision.CUDA.DisparityBilateralFilter.t() | {:error, String.t()}

Creates DisparityBilateralFilter object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	radius: int.
Filter radius.

	iters: int.
Number of iterations.

Return
	retval: Evision.CUDA.DisparityBilateralFilter.t()

Python prototype (for reference only):
createDisparityBilateralFilter([, ndisp[, radius[, iters]]]) -> retval

 Link to this function

 createGaussianFilter(srcType, dstType, ksize, sigma1)

 View Source

 @spec createGaussianFilter(integer(), integer(), {number(), number()}, number()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Gaussian filter.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	ksize: Size.
Aperture size. See getGaussianKernel for details.

	sigma1: double.
Gaussian sigma in the horizontal direction. See getGaussianKernel for details.

Keyword Arguments
	sigma2: double.
Gaussian sigma in the vertical direction. If 0, then
\f$\texttt{sigma2}\leftarrow\texttt{sigma1}\f$.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa GaussianBlur
Python prototype (for reference only):
createGaussianFilter(srcType, dstType, ksize, sigma1[, sigma2[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createGaussianFilter(srcType, dstType, ksize, sigma1, opts)

 View Source

 @spec createGaussianFilter(
 integer(),
 integer(),
 {number(), number()},
 number(),
 [columnBorderMode: term(), rowBorderMode: term(), sigma2: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Gaussian filter.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	ksize: Size.
Aperture size. See getGaussianKernel for details.

	sigma1: double.
Gaussian sigma in the horizontal direction. See getGaussianKernel for details.

Keyword Arguments
	sigma2: double.
Gaussian sigma in the vertical direction. If 0, then
\f$\texttt{sigma2}\leftarrow\texttt{sigma1}\f$.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa GaussianBlur
Python prototype (for reference only):
createGaussianFilter(srcType, dstType, ksize, sigma1[, sigma2[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createGeneralizedHoughBallard()

 View Source

 @spec createGeneralizedHoughBallard() ::
 Evision.GeneralizedHoughBallard.t() | {:error, String.t()}

Creates implementation for generalized hough transform from @cite Ballard1981 .
Return
	retval: Evision.GeneralizedHoughBallard.t()

Python prototype (for reference only):
createGeneralizedHoughBallard() -> retval

 Link to this function

 createGeneralizedHoughGuil()

 View Source

 @spec createGeneralizedHoughGuil() ::
 Evision.GeneralizedHoughGuil.t() | {:error, String.t()}

Creates implementation for generalized hough transform from @cite Guil1999 .
Return
	retval: Evision.GeneralizedHoughGuil.t()

Python prototype (for reference only):
createGeneralizedHoughGuil() -> retval

 Link to this function

 createGoodFeaturesToTrackDetector(srcType)

 View Source

 @spec createGoodFeaturesToTrackDetector(integer()) ::
 Evision.CUDA.CornersDetector.t() | {:error, String.t()}

Creates implementation for cuda::CornersDetector .
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

Keyword Arguments
	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal) or the Harris function response (see cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.

	harrisK: double.
Free parameter of the Harris detector.

Return
	retval: CornersDetector

Python prototype (for reference only):
createGoodFeaturesToTrackDetector(srcType[, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, harrisK]]]]]]) -> retval

 Link to this function

 createGoodFeaturesToTrackDetector(srcType, opts)

 View Source

 @spec createGoodFeaturesToTrackDetector(
 integer(),
 [
 maxCorners: term(),
 useHarrisDetector: term(),
 harrisK: term(),
 blockSize: term(),
 minDistance: term(),
 qualityLevel: term()
]
 | nil
) :: Evision.CUDA.CornersDetector.t() | {:error, String.t()}

Creates implementation for cuda::CornersDetector .
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

Keyword Arguments
	maxCorners: int.
Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.

	qualityLevel: double.
Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal) or the Harris function response (see cornerHarris). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.

	minDistance: double.
Minimum possible Euclidean distance between the returned corners.

	blockSize: int.
Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .

	useHarrisDetector: bool.
Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.

	harrisK: double.
Free parameter of the Harris detector.

Return
	retval: CornersDetector

Python prototype (for reference only):
createGoodFeaturesToTrackDetector(srcType[, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, harrisK]]]]]]) -> retval

 Link to this function

 createGpuMatFromCudaMemory(size, type, cudaMemoryAddress)

 View Source

 @spec createGpuMatFromCudaMemory({number(), number()}, integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

createGpuMatFromCudaMemory
Positional Arguments
	size: Size.
2D array size: Size(cols, rows). In the Size() constructor, the number of rows and the number of columns go in the reverse order.

	type: int.
Type of the matrix.

	cudaMemoryAddress: size_t.
Address of the allocated GPU memory on the device. This does not allocate matrix data. Instead, it just initializes the matrix header that points to the specified \a cudaMemoryAddress, which means that no data is copied. This operation is very efficient and can be used to process external data using OpenCV functions. The external data is not automatically deallocated, so you should take care of it.

Keyword Arguments
	step: size_t.
Number of bytes each matrix row occupies. The value should include the padding bytes at the end of each row, if any. If the parameter is missing (set to Mat::AUTO_STEP), no padding is assumed and the actual step is calculated as cols*elemSize(). See GpuMat::elemSize.

Return
	retval: Evision.CUDA.GpuMat.t()

Has overloading in C++
Note: Overload for generation of bindings only, not exported or intended for use internally from C++.
Python prototype (for reference only):
createGpuMatFromCudaMemory(size, type, cudaMemoryAddress[, step]) -> retval

 Link to this function

 createGpuMatFromCudaMemory(size, type, cudaMemoryAddress, opts)

 View Source

 @spec createGpuMatFromCudaMemory(
 {number(), number()},
 integer(),
 integer(),
 [{:step, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec createGpuMatFromCudaMemory(integer(), integer(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Bindings overload to create a GpuMat from existing GPU memory.
Positional Arguments
	rows: int.
Row count.

	cols: int.
Column count.

	type: int.
Type of the matrix.

	cudaMemoryAddress: size_t.
Address of the allocated GPU memory on the device. This does not allocate matrix data. Instead, it just initializes the matrix header that points to the specified \a cudaMemoryAddress, which means that no data is copied. This operation is very efficient and can be used to process external data using OpenCV functions. The external data is not automatically deallocated, so you should take care of it.

Keyword Arguments
	step: size_t.
Number of bytes each matrix row occupies. The value should include the padding bytes at the end of each row, if any. If the parameter is missing (set to Mat::AUTO_STEP), no padding is assumed and the actual step is calculated as cols*elemSize(). See GpuMat::elemSize.

Return
	retval: Evision.CUDA.GpuMat.t()

Note: Overload for generation of bindings only, not exported or intended for use internally from C++.
Python prototype (for reference only):
createGpuMatFromCudaMemory(rows, cols, type, cudaMemoryAddress[, step]) -> retval
Variant 2:
createGpuMatFromCudaMemory
Positional Arguments
	size: Size.
2D array size: Size(cols, rows). In the Size() constructor, the number of rows and the number of columns go in the reverse order.

	type: int.
Type of the matrix.

	cudaMemoryAddress: size_t.
Address of the allocated GPU memory on the device. This does not allocate matrix data. Instead, it just initializes the matrix header that points to the specified \a cudaMemoryAddress, which means that no data is copied. This operation is very efficient and can be used to process external data using OpenCV functions. The external data is not automatically deallocated, so you should take care of it.

Keyword Arguments
	step: size_t.
Number of bytes each matrix row occupies. The value should include the padding bytes at the end of each row, if any. If the parameter is missing (set to Mat::AUTO_STEP), no padding is assumed and the actual step is calculated as cols*elemSize(). See GpuMat::elemSize.

Return
	retval: Evision.CUDA.GpuMat.t()

Has overloading in C++
Note: Overload for generation of bindings only, not exported or intended for use internally from C++.
Python prototype (for reference only):
createGpuMatFromCudaMemory(size, type, cudaMemoryAddress[, step]) -> retval

 Link to this function

 createGpuMatFromCudaMemory(rows, cols, type, cudaMemoryAddress, opts)

 View Source

 @spec createGpuMatFromCudaMemory(
 integer(),
 integer(),
 integer(),
 integer(),
 [{:step, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Bindings overload to create a GpuMat from existing GPU memory.
Positional Arguments
	rows: int.
Row count.

	cols: int.
Column count.

	type: int.
Type of the matrix.

	cudaMemoryAddress: size_t.
Address of the allocated GPU memory on the device. This does not allocate matrix data. Instead, it just initializes the matrix header that points to the specified \a cudaMemoryAddress, which means that no data is copied. This operation is very efficient and can be used to process external data using OpenCV functions. The external data is not automatically deallocated, so you should take care of it.

Keyword Arguments
	step: size_t.
Number of bytes each matrix row occupies. The value should include the padding bytes at the end of each row, if any. If the parameter is missing (set to Mat::AUTO_STEP), no padding is assumed and the actual step is calculated as cols*elemSize(). See GpuMat::elemSize.

Return
	retval: Evision.CUDA.GpuMat.t()

Note: Overload for generation of bindings only, not exported or intended for use internally from C++.
Python prototype (for reference only):
createGpuMatFromCudaMemory(rows, cols, type, cudaMemoryAddress[, step]) -> retval

 Link to this function

 createHarrisCorner(srcType, blockSize, ksize, k)

 View Source

 @spec createHarrisCorner(integer(), integer(), integer(), number()) ::
 Evision.CUDA.CornernessCriteria.t() | {:error, String.t()}

Creates implementation for Harris cornerness criteria.
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

	blockSize: int.
Neighborhood size.

	ksize: int.
Aperture parameter for the Sobel operator.

	k: double.
Harris detector free parameter.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

Return
	retval: CornernessCriteria

@sa cornerHarris
Python prototype (for reference only):
createHarrisCorner(srcType, blockSize, ksize, k[, borderType]) -> retval

 Link to this function

 createHarrisCorner(srcType, blockSize, ksize, k, opts)

 View Source

 @spec createHarrisCorner(
 integer(),
 integer(),
 integer(),
 number(),
 [{:borderType, term()}] | nil
) ::
 Evision.CUDA.CornernessCriteria.t() | {:error, String.t()}

Creates implementation for Harris cornerness criteria.
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

	blockSize: int.
Neighborhood size.

	ksize: int.
Aperture parameter for the Sobel operator.

	k: double.
Harris detector free parameter.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

Return
	retval: CornernessCriteria

@sa cornerHarris
Python prototype (for reference only):
createHarrisCorner(srcType, blockSize, ksize, k[, borderType]) -> retval

 Link to this function

 createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius)

 View Source

 @spec createHoughCirclesDetector(
 number(),
 number(),
 integer(),
 integer(),
 integer(),
 integer()
) ::
 Evision.CUDA.HoughCirclesDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughCirclesDetector .
Positional Arguments
	dp: float.
Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.

	minDist: float.
Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.

	cannyThreshold: int.
The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).

	votesThreshold: int.
The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.

	minRadius: int.
Minimum circle radius.

	maxRadius: int.
Maximum circle radius.

Keyword Arguments
	maxCircles: int.
Maximum number of output circles.

Return
	retval: HoughCirclesDetector

Python prototype (for reference only):
createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius[, maxCircles]) -> retval

 Link to this function

 createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, opts)

 View Source

 @spec createHoughCirclesDetector(
 number(),
 number(),
 integer(),
 integer(),
 integer(),
 integer(),
 [{:maxCircles, term()}] | nil
) :: Evision.CUDA.HoughCirclesDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughCirclesDetector .
Positional Arguments
	dp: float.
Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.

	minDist: float.
Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.

	cannyThreshold: int.
The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).

	votesThreshold: int.
The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.

	minRadius: int.
Minimum circle radius.

	maxRadius: int.
Maximum circle radius.

Keyword Arguments
	maxCircles: int.
Maximum number of output circles.

Return
	retval: HoughCirclesDetector

Python prototype (for reference only):
createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius[, maxCircles]) -> retval

 Link to this function

 createHoughLinesDetector(rho, theta, threshold)

 View Source

 @spec createHoughLinesDetector(number(), number(), integer()) ::
 Evision.CUDA.HoughLinesDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughLinesDetector .
Positional Arguments
	rho: float.
Distance resolution of the accumulator in pixels.

	theta: float.
Angle resolution of the accumulator in radians.

	threshold: int.
Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	doSort: bool.
Performs lines sort by votes.

	maxLines: int.
Maximum number of output lines.

Return
	retval: HoughLinesDetector

Python prototype (for reference only):
createHoughLinesDetector(rho, theta, threshold[, doSort[, maxLines]]) -> retval

 Link to this function

 createHoughLinesDetector(rho, theta, threshold, opts)

 View Source

 @spec createHoughLinesDetector(
 number(),
 number(),
 integer(),
 [maxLines: term(), doSort: term()] | nil
) ::
 Evision.CUDA.HoughLinesDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughLinesDetector .
Positional Arguments
	rho: float.
Distance resolution of the accumulator in pixels.

	theta: float.
Angle resolution of the accumulator in radians.

	threshold: int.
Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Keyword Arguments
	doSort: bool.
Performs lines sort by votes.

	maxLines: int.
Maximum number of output lines.

Return
	retval: HoughLinesDetector

Python prototype (for reference only):
createHoughLinesDetector(rho, theta, threshold[, doSort[, maxLines]]) -> retval

 Link to this function

 createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap)

 View Source

 @spec createHoughSegmentDetector(number(), number(), integer(), integer()) ::
 Evision.CUDA.HoughSegmentDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughSegmentDetector .
Positional Arguments
	rho: float.
Distance resolution of the accumulator in pixels.

	theta: float.
Angle resolution of the accumulator in radians.

	minLineLength: int.
Minimum line length. Line segments shorter than that are rejected.

	maxLineGap: int.
Maximum allowed gap between points on the same line to link them.

Keyword Arguments
	maxLines: int.
Maximum number of output lines.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Return
	retval: HoughSegmentDetector

Python prototype (for reference only):
createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap[, maxLines[, threshold]]) -> retval

 Link to this function

 createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap, opts)

 View Source

 @spec createHoughSegmentDetector(
 number(),
 number(),
 integer(),
 integer(),
 [maxLines: term(), threshold: term()] | nil
) :: Evision.CUDA.HoughSegmentDetector.t() | {:error, String.t()}

Creates implementation for cuda::HoughSegmentDetector .
Positional Arguments
	rho: float.
Distance resolution of the accumulator in pixels.

	theta: float.
Angle resolution of the accumulator in radians.

	minLineLength: int.
Minimum line length. Line segments shorter than that are rejected.

	maxLineGap: int.
Maximum allowed gap between points on the same line to link them.

Keyword Arguments
	maxLines: int.
Maximum number of output lines.

	threshold: int.
%Accumulator threshold parameter. Only those lines are returned that get enough
votes (\f$>\texttt{threshold}\f$).

Return
	retval: HoughSegmentDetector

Python prototype (for reference only):
createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap[, maxLines[, threshold]]) -> retval

 Link to this function

 createLaplacianFilter(srcType, dstType)

 View Source

 @spec createLaplacianFilter(integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Laplacian operator.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

Keyword Arguments
	ksize: int.
Aperture size used to compute the second-derivative filters (see getDerivKernels). It
must be positive and odd. Only ksize = 1 and ksize = 3 are supported.

	scale: double.
Optional scale factor for the computed Laplacian values. By default, no scaling is
applied (see getDerivKernels).

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa Laplacian
Python prototype (for reference only):
createLaplacianFilter(srcType, dstType[, ksize[, scale[, borderMode[, borderVal]]]]) -> retval

 Link to this function

 createLaplacianFilter(srcType, dstType, opts)

 View Source

 @spec createLaplacianFilter(
 integer(),
 integer(),
 [ksize: term(), borderMode: term(), borderVal: term(), scale: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Laplacian operator.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

Keyword Arguments
	ksize: int.
Aperture size used to compute the second-derivative filters (see getDerivKernels). It
must be positive and odd. Only ksize = 1 and ksize = 3 are supported.

	scale: double.
Optional scale factor for the computed Laplacian values. By default, no scaling is
applied (see getDerivKernels).

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa Laplacian
Python prototype (for reference only):
createLaplacianFilter(srcType, dstType[, ksize[, scale[, borderMode[, borderVal]]]]) -> retval

 Link to this function

 createLinearFilter(srcType, dstType, kernel)

 View Source

 @spec createLinearFilter(integer(), integer(), Evision.Mat.maybe_mat_in()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createLinearFilter(integer(), integer(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a non-separable linear 2D filter.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	kernel: Evision.Mat.t().
2D array of filter coefficients.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa filter2D
Python prototype (for reference only):
createLinearFilter(srcType, dstType, kernel[, anchor[, borderMode[, borderVal]]]) -> retval
Variant 2:
Creates a non-separable linear 2D filter.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	kernel: Evision.CUDA.GpuMat.t().
2D array of filter coefficients.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa filter2D
Python prototype (for reference only):
createLinearFilter(srcType, dstType, kernel[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createLinearFilter(srcType, dstType, kernel, opts)

 View Source

 @spec createLinearFilter(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createLinearFilter(
 integer(),
 integer(),
 Evision.CUDA.GpuMat.t(),
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a non-separable linear 2D filter.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	kernel: Evision.Mat.t().
2D array of filter coefficients.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa filter2D
Python prototype (for reference only):
createLinearFilter(srcType, dstType, kernel[, anchor[, borderMode[, borderVal]]]) -> retval
Variant 2:
Creates a non-separable linear 2D filter.
Positional Arguments
	srcType: int.
Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.

	dstType: int.
Output image type. Only the same type as src is supported for now.

	kernel: Evision.CUDA.GpuMat.t().
2D array of filter coefficients.

Keyword Arguments
	anchor: Point.
Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

@sa filter2D
Python prototype (for reference only):
createLinearFilter(srcType, dstType, kernel[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createLookUpTable(lut)

 View Source

 @spec createLookUpTable(Evision.Mat.maybe_mat_in()) ::
 Evision.CUDA.LookUpTable.t() | {:error, String.t()}

 @spec createLookUpTable(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.LookUpTable.t() | {:error, String.t()}

Variant 1:
Creates implementation for cuda::LookUpTable .
Positional Arguments
	lut: Evision.Mat.t().
Look-up table of 256 elements. It is a continuous CV_8U matrix.

Return
	retval: LookUpTable

Python prototype (for reference only):
createLookUpTable(lut) -> retval
Variant 2:
Creates implementation for cuda::LookUpTable .
Positional Arguments
	lut: Evision.CUDA.GpuMat.t().
Look-up table of 256 elements. It is a continuous CV_8U matrix.

Return
	retval: LookUpTable

Python prototype (for reference only):
createLookUpTable(lut) -> retval

 Link to this function

 createMedianFilter(srcType, windowSize)

 View Source

 @spec createMedianFilter(integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Performs median filtering for each point of the source image.
Positional Arguments
	srcType: int.
type of of source image. Only CV_8UC1 images are supported for now.

	windowSize: int.
Size of the kernerl used for the filtering. Uses a (windowSize x windowSize) filter.

Keyword Arguments
	partition: int.
Specifies the parallel granularity of the workload. This parameter should be used GPU experts when optimizing performance.

Return
	retval: Filter

Outputs an image that has been filtered using a median-filtering formulation.
Details on this algorithm can be found in:
Green, O., 2017. "Efficient scalable median filtering using histogram-based operations",
IEEE Transactions on Image Processing, 27(5), pp.2217-2228.
Python prototype (for reference only):
createMedianFilter(srcType, windowSize[, partition]) -> retval

 Link to this function

 createMedianFilter(srcType, windowSize, opts)

 View Source

 @spec createMedianFilter(integer(), integer(), [{:partition, term()}] | nil) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Performs median filtering for each point of the source image.
Positional Arguments
	srcType: int.
type of of source image. Only CV_8UC1 images are supported for now.

	windowSize: int.
Size of the kernerl used for the filtering. Uses a (windowSize x windowSize) filter.

Keyword Arguments
	partition: int.
Specifies the parallel granularity of the workload. This parameter should be used GPU experts when optimizing performance.

Return
	retval: Filter

Outputs an image that has been filtered using a median-filtering formulation.
Details on this algorithm can be found in:
Green, O., 2017. "Efficient scalable median filtering using histogram-based operations",
IEEE Transactions on Image Processing, 27(5), pp.2217-2228.
Python prototype (for reference only):
createMedianFilter(srcType, windowSize[, partition]) -> retval

 Link to this function

 createMinEigenValCorner(srcType, blockSize, ksize)

 View Source

 @spec createMinEigenValCorner(integer(), integer(), integer()) ::
 Evision.CUDA.CornernessCriteria.t() | {:error, String.t()}

Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

	blockSize: int.
Neighborhood size.

	ksize: int.
Aperture parameter for the Sobel operator.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

Return
	retval: CornernessCriteria

@sa cornerMinEigenVal
Python prototype (for reference only):
createMinEigenValCorner(srcType, blockSize, ksize[, borderType]) -> retval

 Link to this function

 createMinEigenValCorner(srcType, blockSize, ksize, opts)

 View Source

 @spec createMinEigenValCorner(
 integer(),
 integer(),
 integer(),
 [{:borderType, term()}] | nil
) ::
 Evision.CUDA.CornernessCriteria.t() | {:error, String.t()}

Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).
Positional Arguments
	srcType: int.
Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.

	blockSize: int.
Neighborhood size.

	ksize: int.
Aperture parameter for the Sobel operator.

Keyword Arguments
	borderType: int.
Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

Return
	retval: CornernessCriteria

@sa cornerMinEigenVal
Python prototype (for reference only):
createMinEigenValCorner(srcType, blockSize, ksize[, borderType]) -> retval

 Link to this function

 createMorphologyFilter(op, srcType, kernel)

 View Source

 @spec createMorphologyFilter(integer(), integer(), Evision.Mat.maybe_mat_in()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createMorphologyFilter(integer(), integer(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a 2D morphological filter.
Positional Arguments
	op: int.
Type of morphological operation. The following types are possible:
	MORPH_ERODE erode
	MORPH_DILATE dilate
	MORPH_OPEN opening
	MORPH_CLOSE closing
	MORPH_GRADIENT morphological gradient
	MORPH_TOPHAT "top hat"
	MORPH_BLACKHAT "black hat"

	srcType: int.
Input/output image type. Only CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 are supported.

	kernel: Evision.Mat.t().
2D 8-bit structuring element for the morphological operation.

Keyword Arguments
	anchor: Point.
Anchor position within the structuring element. Negative values mean that the anchor
is at the center.

	iterations: int.
Number of times erosion and dilation to be applied.

Return
	retval: Filter

@sa morphologyEx
Python prototype (for reference only):
createMorphologyFilter(op, srcType, kernel[, anchor[, iterations]]) -> retval
Variant 2:
Creates a 2D morphological filter.
Positional Arguments
	op: int.
Type of morphological operation. The following types are possible:
	MORPH_ERODE erode
	MORPH_DILATE dilate
	MORPH_OPEN opening
	MORPH_CLOSE closing
	MORPH_GRADIENT morphological gradient
	MORPH_TOPHAT "top hat"
	MORPH_BLACKHAT "black hat"

	srcType: int.
Input/output image type. Only CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 are supported.

	kernel: Evision.CUDA.GpuMat.t().
2D 8-bit structuring element for the morphological operation.

Keyword Arguments
	anchor: Point.
Anchor position within the structuring element. Negative values mean that the anchor
is at the center.

	iterations: int.
Number of times erosion and dilation to be applied.

Return
	retval: Filter

@sa morphologyEx
Python prototype (for reference only):
createMorphologyFilter(op, srcType, kernel[, anchor[, iterations]]) -> retval

 Link to this function

 createMorphologyFilter(op, srcType, kernel, opts)

 View Source

 @spec createMorphologyFilter(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [iterations: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createMorphologyFilter(
 integer(),
 integer(),
 Evision.CUDA.GpuMat.t(),
 [iterations: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a 2D morphological filter.
Positional Arguments
	op: int.
Type of morphological operation. The following types are possible:
	MORPH_ERODE erode
	MORPH_DILATE dilate
	MORPH_OPEN opening
	MORPH_CLOSE closing
	MORPH_GRADIENT morphological gradient
	MORPH_TOPHAT "top hat"
	MORPH_BLACKHAT "black hat"

	srcType: int.
Input/output image type. Only CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 are supported.

	kernel: Evision.Mat.t().
2D 8-bit structuring element for the morphological operation.

Keyword Arguments
	anchor: Point.
Anchor position within the structuring element. Negative values mean that the anchor
is at the center.

	iterations: int.
Number of times erosion and dilation to be applied.

Return
	retval: Filter

@sa morphologyEx
Python prototype (for reference only):
createMorphologyFilter(op, srcType, kernel[, anchor[, iterations]]) -> retval
Variant 2:
Creates a 2D morphological filter.
Positional Arguments
	op: int.
Type of morphological operation. The following types are possible:
	MORPH_ERODE erode
	MORPH_DILATE dilate
	MORPH_OPEN opening
	MORPH_CLOSE closing
	MORPH_GRADIENT morphological gradient
	MORPH_TOPHAT "top hat"
	MORPH_BLACKHAT "black hat"

	srcType: int.
Input/output image type. Only CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 are supported.

	kernel: Evision.CUDA.GpuMat.t().
2D 8-bit structuring element for the morphological operation.

Keyword Arguments
	anchor: Point.
Anchor position within the structuring element. Negative values mean that the anchor
is at the center.

	iterations: int.
Number of times erosion and dilation to be applied.

Return
	retval: Filter

@sa morphologyEx
Python prototype (for reference only):
createMorphologyFilter(op, srcType, kernel[, anchor[, iterations]]) -> retval

 Link to this function

 createRowSumFilter(srcType, dstType, ksize)

 View Source

 @spec createRowSumFilter(integer(), integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a horizontal 1D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1 type is supported for now.

	dstType: int.
Output image type. Only CV_32FC1 type is supported for now.

	ksize: int.
Kernel size.

Keyword Arguments
	anchor: int.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createRowSumFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createRowSumFilter(srcType, dstType, ksize, opts)

 View Source

 @spec createRowSumFilter(
 integer(),
 integer(),
 integer(),
 [borderMode: term(), borderVal: term(), anchor: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a horizontal 1D box filter.
Positional Arguments
	srcType: int.
Input image type. Only CV_8UC1 type is supported for now.

	dstType: int.
Output image type. Only CV_32FC1 type is supported for now.

	ksize: int.
Kernel size.

Keyword Arguments
	anchor: int.
Anchor point. The default value (-1) means that the anchor is at the kernel center.

	borderMode: int.
Pixel extrapolation method. For details, see borderInterpolate .

	borderVal: Scalar.
Default border value.

Return
	retval: Filter

Python prototype (for reference only):
createRowSumFilter(srcType, dstType, ksize[, anchor[, borderMode[, borderVal]]]) -> retval

 Link to this function

 createScharrFilter(srcType, dstType, dx, dy)

 View Source

 @spec createScharrFilter(integer(), integer(), integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a vertical or horizontal Scharr operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Order of the derivative x.

	dy: int.
Order of the derivative y.

Keyword Arguments
	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. See getDerivKernels for details.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa Scharr
Python prototype (for reference only):
createScharrFilter(srcType, dstType, dx, dy[, scale[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createScharrFilter(srcType, dstType, dx, dy, opts)

 View Source

 @spec createScharrFilter(
 integer(),
 integer(),
 integer(),
 integer(),
 [columnBorderMode: term(), rowBorderMode: term(), scale: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a vertical or horizontal Scharr operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Order of the derivative x.

	dy: int.
Order of the derivative y.

Keyword Arguments
	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. See getDerivKernels for details.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa Scharr
Python prototype (for reference only):
createScharrFilter(srcType, dstType, dx, dy[, scale[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel)

 View Source

 @spec createSeparableLinearFilter(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createSeparableLinearFilter(
 integer(),
 integer(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a separable linear filter.
Positional Arguments
	srcType: int.
Source array type.

	dstType: int.
Destination array type.

	rowKernel: Evision.Mat.t().
Horizontal filter coefficients. Support kernels with size \<= 32 .

	columnKernel: Evision.Mat.t().
Vertical filter coefficients. Support kernels with size \<= 32 .

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. Negative values mean that anchor is positioned at
the aperture center.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa sepFilter2D
Python prototype (for reference only):
createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel[, anchor[, rowBorderMode[, columnBorderMode]]]) -> retval
Variant 2:
Creates a separable linear filter.
Positional Arguments
	srcType: int.
Source array type.

	dstType: int.
Destination array type.

	rowKernel: Evision.CUDA.GpuMat.t().
Horizontal filter coefficients. Support kernels with size \<= 32 .

	columnKernel: Evision.CUDA.GpuMat.t().
Vertical filter coefficients. Support kernels with size \<= 32 .

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. Negative values mean that anchor is positioned at
the aperture center.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa sepFilter2D
Python prototype (for reference only):
createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel[, anchor[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel, opts)

 View Source

 @spec createSeparableLinearFilter(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [columnBorderMode: term(), anchor: term(), rowBorderMode: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

 @spec createSeparableLinearFilter(
 integer(),
 integer(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [columnBorderMode: term(), anchor: term(), rowBorderMode: term()] | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Variant 1:
Creates a separable linear filter.
Positional Arguments
	srcType: int.
Source array type.

	dstType: int.
Destination array type.

	rowKernel: Evision.Mat.t().
Horizontal filter coefficients. Support kernels with size \<= 32 .

	columnKernel: Evision.Mat.t().
Vertical filter coefficients. Support kernels with size \<= 32 .

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. Negative values mean that anchor is positioned at
the aperture center.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa sepFilter2D
Python prototype (for reference only):
createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel[, anchor[, rowBorderMode[, columnBorderMode]]]) -> retval
Variant 2:
Creates a separable linear filter.
Positional Arguments
	srcType: int.
Source array type.

	dstType: int.
Destination array type.

	rowKernel: Evision.CUDA.GpuMat.t().
Horizontal filter coefficients. Support kernels with size \<= 32 .

	columnKernel: Evision.CUDA.GpuMat.t().
Vertical filter coefficients. Support kernels with size \<= 32 .

Keyword Arguments
	anchor: Point.
Anchor position within the kernel. Negative values mean that anchor is positioned at
the aperture center.

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa sepFilter2D
Python prototype (for reference only):
createSeparableLinearFilter(srcType, dstType, rowKernel, columnKernel[, anchor[, rowBorderMode[, columnBorderMode]]]) -> retval

 Link to this function

 createSobelFilter(srcType, dstType, dx, dy)

 View Source

 @spec createSobelFilter(integer(), integer(), integer(), integer()) ::
 Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Sobel operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

Keyword Arguments
	ksize: int.
Size of the extended Sobel kernel. Possible values are 1, 3, 5 or 7.

	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa Sobel
Python prototype (for reference only):
createSobelFilter(srcType, dstType, dx, dy[, ksize[, scale[, rowBorderMode[, columnBorderMode]]]]) -> retval

 Link to this function

 createSobelFilter(srcType, dstType, dx, dy, opts)

 View Source

 @spec createSobelFilter(
 integer(),
 integer(),
 integer(),
 integer(),
 [
 ksize: term(),
 columnBorderMode: term(),
 rowBorderMode: term(),
 scale: term()
]
 | nil
) :: Evision.CUDA.Filter.t() | {:error, String.t()}

Creates a Sobel operator.
Positional Arguments
	srcType: int.
Source image type.

	dstType: int.
Destination array type.

	dx: int.
Derivative order in respect of x.

	dy: int.
Derivative order in respect of y.

Keyword Arguments
	ksize: int.
Size of the extended Sobel kernel. Possible values are 1, 3, 5 or 7.

	scale: double.
Optional scale factor for the computed derivative values. By default, no scaling is
applied. For details, see getDerivKernels .

	rowBorderMode: int.
Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate.

	columnBorderMode: int.
Pixel extrapolation method in the horizontal direction.

Return
	retval: Filter

@sa Sobel
Python prototype (for reference only):
createSobelFilter(srcType, dstType, dx, dy[, ksize[, scale[, rowBorderMode[, columnBorderMode]]]]) -> retval

 Link to this function

 createStereoBeliefPropagation()

 View Source

 @spec createStereoBeliefPropagation() ::
 Evision.CUDA.StereoBeliefPropagation.t() | {:error, String.t()}

Creates StereoBeliefPropagation object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	iters: int.
Number of BP iterations on each level.

	levels: int.
Number of levels.

	msg_type: int.
Type for messages. CV_16SC1 and CV_32FC1 types are supported.

Return
	retval: Evision.CUDA.StereoBeliefPropagation.t()

Python prototype (for reference only):
createStereoBeliefPropagation([, ndisp[, iters[, levels[, msg_type]]]]) -> retval

 Link to this function

 createStereoBeliefPropagation(opts)

 View Source

 @spec createStereoBeliefPropagation(
 [ndisp: term(), iters: term(), msg_type: term(), levels: term()]
 | nil
) :: Evision.CUDA.StereoBeliefPropagation.t() | {:error, String.t()}

Creates StereoBeliefPropagation object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	iters: int.
Number of BP iterations on each level.

	levels: int.
Number of levels.

	msg_type: int.
Type for messages. CV_16SC1 and CV_32FC1 types are supported.

Return
	retval: Evision.CUDA.StereoBeliefPropagation.t()

Python prototype (for reference only):
createStereoBeliefPropagation([, ndisp[, iters[, levels[, msg_type]]]]) -> retval

 Link to this function

 createStereoBM()

 View Source

 @spec createStereoBM() :: Evision.CUDA.StereoBM.t() | {:error, String.t()}

Creates StereoBM object.
Keyword Arguments
	numDisparities: int.
the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.

	blockSize: int.
the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.

Return
	retval: Evision.CUDA.StereoBM.t()

Python prototype (for reference only):
createStereoBM([, numDisparities[, blockSize]]) -> retval

 Link to this function

 createStereoBM(opts)

 View Source

 @spec createStereoBM([numDisparities: term(), blockSize: term()] | nil) ::
 Evision.CUDA.StereoBM.t() | {:error, String.t()}

Creates StereoBM object.
Keyword Arguments
	numDisparities: int.
the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.

	blockSize: int.
the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.

Return
	retval: Evision.CUDA.StereoBM.t()

Python prototype (for reference only):
createStereoBM([, numDisparities[, blockSize]]) -> retval

 Link to this function

 createStereoConstantSpaceBP()

 View Source

 @spec createStereoConstantSpaceBP() ::
 Evision.CUDA.StereoConstantSpaceBP.t() | {:error, String.t()}

Creates StereoConstantSpaceBP object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	iters: int.
Number of BP iterations on each level.

	levels: int.
Number of levels.

	nr_plane: int.
Number of disparity levels on the first level.

	msg_type: int.
Type for messages. CV_16SC1 and CV_32FC1 types are supported.

Return
	retval: Evision.CUDA.StereoConstantSpaceBP.t()

Python prototype (for reference only):
createStereoConstantSpaceBP([, ndisp[, iters[, levels[, nr_plane[, msg_type]]]]]) -> retval

 Link to this function

 createStereoConstantSpaceBP(opts)

 View Source

 @spec createStereoConstantSpaceBP(
 [
 ndisp: term(),
 iters: term(),
 msg_type: term(),
 nr_plane: term(),
 levels: term()
]
 | nil
) :: Evision.CUDA.StereoConstantSpaceBP.t() | {:error, String.t()}

Creates StereoConstantSpaceBP object.
Keyword Arguments
	ndisp: int.
Number of disparities.

	iters: int.
Number of BP iterations on each level.

	levels: int.
Number of levels.

	nr_plane: int.
Number of disparity levels on the first level.

	msg_type: int.
Type for messages. CV_16SC1 and CV_32FC1 types are supported.

Return
	retval: Evision.CUDA.StereoConstantSpaceBP.t()

Python prototype (for reference only):
createStereoConstantSpaceBP([, ndisp[, iters[, levels[, nr_plane[, msg_type]]]]]) -> retval

 Link to this function

 createStereoSGM()

 View Source

 @spec createStereoSGM() :: Evision.CUDA.StereoSGM.t() | {:error, String.t()}

Creates StereoSGM object.
Keyword Arguments
	minDisparity: int.
Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.

	numDisparities: int.
Maximum disparity minus minimum disparity. The value must be 64, 128 or 256.

	p1: int.
The first parameter controlling the disparity smoothness.This parameter is used for the case of slanted surfaces (not fronto parallel).

	p2: int.
The second parameter controlling the disparity smoothness.This parameter is used for "solving" the depth discontinuities problem.

	uniquenessRatio: int.
Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.

	mode: int.
Set it to StereoSGM::MODE_HH to run the full-scale two-pass dynamic programming algorithm.
It will consume O(W*H*numDisparities) bytes. By default, it is set to StereoSGM::MODE_HH4.

Return
	retval: Evision.CUDA.StereoSGM.t()

Python prototype (for reference only):
createStereoSGM([, minDisparity[, numDisparities[, P1[, P2[, uniquenessRatio[, mode]]]]]]) -> retval

 Link to this function

 createStereoSGM(opts)

 View Source

 @spec createStereoSGM(
 [
 p2: term(),
 minDisparity: term(),
 p1: term(),
 mode: term(),
 numDisparities: term(),
 uniquenessRatio: term()
]
 | nil
) :: Evision.CUDA.StereoSGM.t() | {:error, String.t()}

Creates StereoSGM object.
Keyword Arguments
	minDisparity: int.
Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.

	numDisparities: int.
Maximum disparity minus minimum disparity. The value must be 64, 128 or 256.

	p1: int.
The first parameter controlling the disparity smoothness.This parameter is used for the case of slanted surfaces (not fronto parallel).

	p2: int.
The second parameter controlling the disparity smoothness.This parameter is used for "solving" the depth discontinuities problem.

	uniquenessRatio: int.
Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.

	mode: int.
Set it to StereoSGM::MODE_HH to run the full-scale two-pass dynamic programming algorithm.
It will consume O(W*H*numDisparities) bytes. By default, it is set to StereoSGM::MODE_HH4.

Return
	retval: Evision.CUDA.StereoSGM.t()

Python prototype (for reference only):
createStereoSGM([, minDisparity[, numDisparities[, P1[, P2[, uniquenessRatio[, mode]]]]]]) -> retval

 Link to this function

 createTemplateMatching(srcType, method)

 View Source

 @spec createTemplateMatching(integer(), integer()) ::
 Evision.CUDA.TemplateMatching.t() | {:error, String.t()}

Creates implementation for cuda::TemplateMatching .
Positional Arguments
	srcType: int.
Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.

	method: int.
Specifies the way to compare the template with the image.

Keyword Arguments
	user_block_size: Size.
You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.

Return
	retval: TemplateMatching

The following methods are supported for the CV_8U depth images for now:
	CV_TM_SQDIFF
	CV_TM_SQDIFF_NORMED
	CV_TM_CCORR
	CV_TM_CCORR_NORMED
	CV_TM_CCOEFF
	CV_TM_CCOEFF_NORMED

The following methods are supported for the CV_32F images for now:
	CV_TM_SQDIFF
	CV_TM_CCORR

@sa matchTemplate
Python prototype (for reference only):
createTemplateMatching(srcType, method[, user_block_size]) -> retval

 Link to this function

 createTemplateMatching(srcType, method, opts)

 View Source

 @spec createTemplateMatching(integer(), integer(), [{:user_block_size, term()}] | nil) ::
 Evision.CUDA.TemplateMatching.t() | {:error, String.t()}

Creates implementation for cuda::TemplateMatching .
Positional Arguments
	srcType: int.
Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.

	method: int.
Specifies the way to compare the template with the image.

Keyword Arguments
	user_block_size: Size.
You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.

Return
	retval: TemplateMatching

The following methods are supported for the CV_8U depth images for now:
	CV_TM_SQDIFF
	CV_TM_SQDIFF_NORMED
	CV_TM_CCORR
	CV_TM_CCORR_NORMED
	CV_TM_CCOEFF
	CV_TM_CCOEFF_NORMED

The following methods are supported for the CV_32F images for now:
	CV_TM_SQDIFF
	CV_TM_CCORR

@sa matchTemplate
Python prototype (for reference only):
createTemplateMatching(srcType, method[, user_block_size]) -> retval

 Link to this function

 cvtColor(src, code)

 View Source

 @spec cvtColor(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec cvtColor(Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Converts an image from one color space to another.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.

	code: int.
Color space conversion code. For details, see cvtColor .

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
Python prototype (for reference only):
cvtColor(src, code[, dst[, dcn[, stream]]]) -> dst
Variant 2:
Converts an image from one color space to another.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.

	code: int.
Color space conversion code. For details, see cvtColor .

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
Python prototype (for reference only):
cvtColor(src, code[, dst[, dcn[, stream]]]) -> dst

 Link to this function

 cvtColor(src, code, opts)

 View Source

 @spec cvtColor(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [dcn: term(), stream: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec cvtColor(
 Evision.CUDA.GpuMat.t(),
 integer(),
 [dcn: term(), stream: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Converts an image from one color space to another.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.

	code: int.
Color space conversion code. For details, see cvtColor .

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
Python prototype (for reference only):
cvtColor(src, code[, dst[, dcn[, stream]]]) -> dst
Variant 2:
Converts an image from one color space to another.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.

	code: int.
Color space conversion code. For details, see cvtColor .

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.
@sa cvtColor
Python prototype (for reference only):
cvtColor(src, code[, dst[, dcn[, stream]]]) -> dst

 Link to this function

 demosaicing(src, code)

 View Source

 @spec demosaicing(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec demosaicing(Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Converts an image from Bayer pattern to RGB or grayscale.
Positional Arguments
	src: Evision.Mat.t().
Source image (8-bit or 16-bit single channel).

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

	 COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
	 COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR

	Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)

	 COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
COLOR_BayerGR2GRAY_MHT
	 COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
COLOR_BayerGR2BGR_MHT
@sa cvtColor

Python prototype (for reference only):
demosaicing(src, code[, dst[, dcn[, stream]]]) -> dst
Variant 2:
Converts an image from Bayer pattern to RGB or grayscale.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image (8-bit or 16-bit single channel).

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

	 COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
	 COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR

	Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)

	 COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
COLOR_BayerGR2GRAY_MHT
	 COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
COLOR_BayerGR2BGR_MHT
@sa cvtColor

Python prototype (for reference only):
demosaicing(src, code[, dst[, dcn[, stream]]]) -> dst

 Link to this function

 demosaicing(src, code, opts)

 View Source

 @spec demosaicing(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [dcn: term(), stream: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec demosaicing(
 Evision.CUDA.GpuMat.t(),
 integer(),
 [dcn: term(), stream: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Converts an image from Bayer pattern to RGB or grayscale.
Positional Arguments
	src: Evision.Mat.t().
Source image (8-bit or 16-bit single channel).

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

	 COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
	 COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR

	Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)

	 COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
COLOR_BayerGR2GRAY_MHT
	 COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
COLOR_BayerGR2BGR_MHT
@sa cvtColor

Python prototype (for reference only):
demosaicing(src, code[, dst[, dcn[, stream]]]) -> dst
Variant 2:
Converts an image from Bayer pattern to RGB or grayscale.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image (8-bit or 16-bit single channel).

	code: int.
Color space conversion code (see the description below).

Keyword Arguments
	dcn: int.
Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

The function can do the following transformations:
	Demosaicing using bilinear interpolation

	 COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
	 COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR

	Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)

	 COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
COLOR_BayerGR2GRAY_MHT
	 COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
COLOR_BayerGR2BGR_MHT
@sa cvtColor

Python prototype (for reference only):
demosaicing(src, code[, dst[, dcn[, stream]]]) -> dst

 Link to this function

 dft(src, dft_size)

 View Source

 @spec dft(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec dft(
 Evision.CUDA.GpuMat.t(),
 {number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
Positional Arguments
	src: Evision.Mat.t().
Source matrix (real or complex).

	dft_size: Size.
Size of a discrete Fourier transform.

Keyword Arguments
	flags: int.
Optional flags:
	DFT_ROWS transforms each individual row of the source matrix.
	DFT_SCALE scales the result: divide it by the number of elements in the transform
(obtained from dft_size).
	DFT_INVERSE inverts DFT. Use for complex-complex cases (real-complex and complex-real
cases are always forward and inverse, respectively).
	DFT_COMPLEX_INPUT Specifies that input is complex input with 2 channels.
	DFT_REAL_OUTPUT specifies the output as real. The source matrix is the result of
real-complex transform, so the destination matrix must be real.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix (real or complex).

Use to handle real matrices (CV32FC1) and complex matrices in the interleaved format (CV32FC2).
The source matrix should be continuous, otherwise reallocation and data copying is performed. The
function chooses an operation mode depending on the flags, size, and channel count of the source
matrix:
	If the source matrix is complex and the output is not specified as real, the destination
matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
contains a full result of the DFT (forward or inverse).

	If the source matrix is complex and the output is specified as real, the function assumes that
its input is the result of the forward transform (see the next item). The destination matrix
has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.

	If the source matrix is real (its type is CV_32FC1), forward DFT is performed. The result of
the DFT is packed into complex (CV_32FC2) matrix. So, the width of the destination matrix
is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
instead of the width.

@sa dft
Python prototype (for reference only):
dft(src, dft_size[, dst[, flags[, stream]]]) -> dst
Variant 2:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix (real or complex).

	dft_size: Size.
Size of a discrete Fourier transform.

Keyword Arguments
	flags: int.
Optional flags:
	DFT_ROWS transforms each individual row of the source matrix.
	DFT_SCALE scales the result: divide it by the number of elements in the transform
(obtained from dft_size).
	DFT_INVERSE inverts DFT. Use for complex-complex cases (real-complex and complex-real
cases are always forward and inverse, respectively).
	DFT_COMPLEX_INPUT Specifies that input is complex input with 2 channels.
	DFT_REAL_OUTPUT specifies the output as real. The source matrix is the result of
real-complex transform, so the destination matrix must be real.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix (real or complex).

Use to handle real matrices (CV32FC1) and complex matrices in the interleaved format (CV32FC2).
The source matrix should be continuous, otherwise reallocation and data copying is performed. The
function chooses an operation mode depending on the flags, size, and channel count of the source
matrix:
	If the source matrix is complex and the output is not specified as real, the destination
matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
contains a full result of the DFT (forward or inverse).

	If the source matrix is complex and the output is specified as real, the function assumes that
its input is the result of the forward transform (see the next item). The destination matrix
has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.

	If the source matrix is real (its type is CV_32FC1), forward DFT is performed. The result of
the DFT is packed into complex (CV_32FC2) matrix. So, the width of the destination matrix
is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
instead of the width.

@sa dft
Python prototype (for reference only):
dft(src, dft_size[, dst[, flags[, stream]]]) -> dst

 Link to this function

 dft(src, dft_size, opts)

 View Source

 @spec dft(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [flags: term(), stream: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec dft(
 Evision.CUDA.GpuMat.t(),
 {number(), number()},
 [flags: term(), stream: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
Positional Arguments
	src: Evision.Mat.t().
Source matrix (real or complex).

	dft_size: Size.
Size of a discrete Fourier transform.

Keyword Arguments
	flags: int.
Optional flags:
	DFT_ROWS transforms each individual row of the source matrix.
	DFT_SCALE scales the result: divide it by the number of elements in the transform
(obtained from dft_size).
	DFT_INVERSE inverts DFT. Use for complex-complex cases (real-complex and complex-real
cases are always forward and inverse, respectively).
	DFT_COMPLEX_INPUT Specifies that input is complex input with 2 channels.
	DFT_REAL_OUTPUT specifies the output as real. The source matrix is the result of
real-complex transform, so the destination matrix must be real.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix (real or complex).

Use to handle real matrices (CV32FC1) and complex matrices in the interleaved format (CV32FC2).
The source matrix should be continuous, otherwise reallocation and data copying is performed. The
function chooses an operation mode depending on the flags, size, and channel count of the source
matrix:
	If the source matrix is complex and the output is not specified as real, the destination
matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
contains a full result of the DFT (forward or inverse).

	If the source matrix is complex and the output is specified as real, the function assumes that
its input is the result of the forward transform (see the next item). The destination matrix
has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.

	If the source matrix is real (its type is CV_32FC1), forward DFT is performed. The result of
the DFT is packed into complex (CV_32FC2) matrix. So, the width of the destination matrix
is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
instead of the width.

@sa dft
Python prototype (for reference only):
dft(src, dft_size[, dst[, flags[, stream]]]) -> dst
Variant 2:
Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix (real or complex).

	dft_size: Size.
Size of a discrete Fourier transform.

Keyword Arguments
	flags: int.
Optional flags:
	DFT_ROWS transforms each individual row of the source matrix.
	DFT_SCALE scales the result: divide it by the number of elements in the transform
(obtained from dft_size).
	DFT_INVERSE inverts DFT. Use for complex-complex cases (real-complex and complex-real
cases are always forward and inverse, respectively).
	DFT_COMPLEX_INPUT Specifies that input is complex input with 2 channels.
	DFT_REAL_OUTPUT specifies the output as real. The source matrix is the result of
real-complex transform, so the destination matrix must be real.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix (real or complex).

Use to handle real matrices (CV32FC1) and complex matrices in the interleaved format (CV32FC2).
The source matrix should be continuous, otherwise reallocation and data copying is performed. The
function chooses an operation mode depending on the flags, size, and channel count of the source
matrix:
	If the source matrix is complex and the output is not specified as real, the destination
matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
contains a full result of the DFT (forward or inverse).

	If the source matrix is complex and the output is specified as real, the function assumes that
its input is the result of the forward transform (see the next item). The destination matrix
has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.

	If the source matrix is real (its type is CV_32FC1), forward DFT is performed. The result of
the DFT is packed into complex (CV_32FC2) matrix. So, the width of the destination matrix
is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
instead of the width.

@sa dft
Python prototype (for reference only):
dft(src, dft_size[, dst[, flags[, stream]]]) -> dst

 Link to this function

 divide(src1, src2)

 View Source

 @spec divide(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec divide(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar division.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or a scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

This function, in contrast to divide, uses a round-down rounding mode.
@sa divide
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar division.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or a scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

This function, in contrast to divide, uses a round-down rounding mode.
@sa divide
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst

 Link to this function

 divide(src1, src2, opts)

 View Source

 @spec divide(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), dtype: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec divide(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), dtype: term(), scale: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar division.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or a scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

This function, in contrast to divide, uses a round-down rounding mode.
@sa divide
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar division.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or a scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

This function, in contrast to divide, uses a round-down rounding mode.
@sa divide
Python prototype (for reference only):
divide(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst

 Link to this function

 drawColorDisp(src_disp, ndisp)

 View Source

 @spec drawColorDisp(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec drawColorDisp(Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Colors a disparity image.
Positional Arguments
	src_disp: Evision.Mat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	ndisp: int.
Number of disparities.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst_disp: Evision.Mat.t().
Output disparity image. It has the same size as src_disp. The type is CV_8UC4
in BGRA format (alpha = 255).

This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
first to HSV color space (where different disparity values correspond to different hues) and then
converting the pixels to RGB for visualization.
Python prototype (for reference only):
drawColorDisp(src_disp, ndisp[, dst_disp[, stream]]) -> dst_disp
Variant 2:
Colors a disparity image.
Positional Arguments
	src_disp: Evision.CUDA.GpuMat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	ndisp: int.
Number of disparities.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst_disp: Evision.CUDA.GpuMat.t().
Output disparity image. It has the same size as src_disp. The type is CV_8UC4
in BGRA format (alpha = 255).

This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
first to HSV color space (where different disparity values correspond to different hues) and then
converting the pixels to RGB for visualization.
Python prototype (for reference only):
drawColorDisp(src_disp, ndisp[, dst_disp[, stream]]) -> dst_disp

 Link to this function

 drawColorDisp(src_disp, ndisp, opts)

 View Source

 @spec drawColorDisp(Evision.Mat.maybe_mat_in(), integer(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec drawColorDisp(Evision.CUDA.GpuMat.t(), integer(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Colors a disparity image.
Positional Arguments
	src_disp: Evision.Mat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	ndisp: int.
Number of disparities.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst_disp: Evision.Mat.t().
Output disparity image. It has the same size as src_disp. The type is CV_8UC4
in BGRA format (alpha = 255).

This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
first to HSV color space (where different disparity values correspond to different hues) and then
converting the pixels to RGB for visualization.
Python prototype (for reference only):
drawColorDisp(src_disp, ndisp[, dst_disp[, stream]]) -> dst_disp
Variant 2:
Colors a disparity image.
Positional Arguments
	src_disp: Evision.CUDA.GpuMat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	ndisp: int.
Number of disparities.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst_disp: Evision.CUDA.GpuMat.t().
Output disparity image. It has the same size as src_disp. The type is CV_8UC4
in BGRA format (alpha = 255).

This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
first to HSV color space (where different disparity values correspond to different hues) and then
converting the pixels to RGB for visualization.
Python prototype (for reference only):
drawColorDisp(src_disp, ndisp[, dst_disp[, stream]]) -> dst_disp

 Link to this function

 ensureSizeIsEnough(rows, cols, type)

 View Source

 @spec ensureSizeIsEnough(integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Ensures that the size of a matrix is big enough and the matrix has a proper type.
Positional Arguments
	rows: int.
Minimum desired number of rows.

	cols: int.
Minimum desired number of columns.

	type: int.
Desired matrix type.

Return
	arr: Evision.Mat.t().
Destination matrix.

The function does not reallocate memory if the matrix has proper attributes already.
Python prototype (for reference only):
ensureSizeIsEnough(rows, cols, type[, arr]) -> arr

 Link to this function

 ensureSizeIsEnough(rows, cols, type, opts)

 View Source

 @spec ensureSizeIsEnough(
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Ensures that the size of a matrix is big enough and the matrix has a proper type.
Positional Arguments
	rows: int.
Minimum desired number of rows.

	cols: int.
Minimum desired number of columns.

	type: int.
Desired matrix type.

Return
	arr: Evision.Mat.t().
Destination matrix.

The function does not reallocate memory if the matrix has proper attributes already.
Python prototype (for reference only):
ensureSizeIsEnough(rows, cols, type[, arr]) -> arr

 Link to this function

 equalizeHist(src)

 View Source

 @spec equalizeHist(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec equalizeHist(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

@sa equalizeHist
Python prototype (for reference only):
equalizeHist(src[, dst[, stream]]) -> dst
Variant 2:
Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

@sa equalizeHist
Python prototype (for reference only):
equalizeHist(src[, dst[, stream]]) -> dst

 Link to this function

 equalizeHist(src, opts)

 View Source

 @spec equalizeHist(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec equalizeHist(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.Mat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

@sa equalizeHist
Python prototype (for reference only):
equalizeHist(src[, dst[, stream]]) -> dst
Variant 2:
Equalizes the histogram of a grayscale image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

@sa equalizeHist
Python prototype (for reference only):
equalizeHist(src[, dst[, stream]]) -> dst

 Link to this function

 evenLevels(nLevels, lowerLevel, upperLevel)

 View Source

 @spec evenLevels(integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes levels with even distribution.
Positional Arguments
	nLevels: int.
Number of computed levels. nLevels must be at least 2.

	lowerLevel: int.
Lower boundary value of the lowest level.

	upperLevel: int.
Upper boundary value of the greatest level.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	levels: Evision.Mat.t().
Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.

Python prototype (for reference only):
evenLevels(nLevels, lowerLevel, upperLevel[, levels[, stream]]) -> levels

 Link to this function

 evenLevels(nLevels, lowerLevel, upperLevel, opts)

 View Source

 @spec evenLevels(integer(), integer(), integer(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes levels with even distribution.
Positional Arguments
	nLevels: int.
Number of computed levels. nLevels must be at least 2.

	lowerLevel: int.
Lower boundary value of the lowest level.

	upperLevel: int.
Upper boundary value of the greatest level.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	levels: Evision.Mat.t().
Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.

Python prototype (for reference only):
evenLevels(nLevels, lowerLevel, upperLevel[, levels[, stream]]) -> levels

 Link to this function

 exp(src)

 View Source

 @spec exp(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec exp(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an exponent of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa exp
Python prototype (for reference only):
exp(src[, dst[, stream]]) -> dst
Variant 2:
Computes an exponent of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa exp
Python prototype (for reference only):
exp(src[, dst[, stream]]) -> dst

 Link to this function

 exp(src, opts)

 View Source

 @spec exp(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec exp(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an exponent of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa exp
Python prototype (for reference only):
exp(src[, dst[, stream]]) -> dst
Variant 2:
Computes an exponent of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa exp
Python prototype (for reference only):
exp(src[, dst[, stream]]) -> dst

 Link to this function

 fastNlMeansDenoising(src, h)

 View Source

 @spec fastNlMeansDenoising(Evision.CUDA.GpuMat.t(), number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input 8-bit 1-channel, 2-channel or 3-channel image.

	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise

Keyword Arguments
	search_window: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels

	block_size: int.
Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous invocations.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
FastNonLocalMeansDenoising::labMethod.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
fastNlMeansDenoising(src, h[, dst[, search_window[, block_size[, stream]]]]) -> dst

 Link to this function

 fastNlMeansDenoising(src, h, opts)

 View Source

 @spec fastNlMeansDenoising(
 Evision.CUDA.GpuMat.t(),
 number(),
 [search_window: term(), stream: term(), block_size: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Perform image denoising using Non-local Means Denoising algorithm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising with several computational
optimizations. Noise expected to be a gaussian white noise
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input 8-bit 1-channel, 2-channel or 3-channel image.

	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise

Keyword Arguments
	search_window: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels

	block_size: int.
Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous invocations.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image with the same size and type as src .

This function expected to be applied to grayscale images. For colored images look at
FastNonLocalMeansDenoising::labMethod.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
fastNlMeansDenoising(src, h[, dst[, search_window[, block_size[, stream]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColored(src, h_luminance, photo_render)

 View Source

 @spec fastNlMeansDenoisingColored(Evision.CUDA.GpuMat.t(), number(), number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for colored images
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input 8-bit 3-channel image.

	h_luminance: float.
Parameter regulating filter strength. Big h value perfectly removes noise but
also removes image details, smaller h value preserves details but also preserves some noise

	photo_render: float.
float The same as h but for color components. For most images value equals 10 will be
enough to remove colored noise and do not distort colors

Keyword Arguments
	search_window: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels

	block_size: int.
Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous invocations.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image with the same size and type as src .

The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
@sa
fastNlMeansDenoisingColored
Python prototype (for reference only):
fastNlMeansDenoisingColored(src, h_luminance, photo_render[, dst[, search_window[, block_size[, stream]]]]) -> dst

 Link to this function

 fastNlMeansDenoisingColored(src, h_luminance, photo_render, opts)

 View Source

 @spec fastNlMeansDenoisingColored(
 Evision.CUDA.GpuMat.t(),
 number(),
 number(),
 [search_window: term(), stream: term(), block_size: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Modification of fastNlMeansDenoising function for colored images
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input 8-bit 3-channel image.

	h_luminance: float.
Parameter regulating filter strength. Big h value perfectly removes noise but
also removes image details, smaller h value preserves details but also preserves some noise

	photo_render: float.
float The same as h but for color components. For most images value equals 10 will be
enough to remove colored noise and do not distort colors

Keyword Arguments
	search_window: int.
Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
denoising time. Recommended value 21 pixels

	block_size: int.
Size in pixels of the template patch that is used to compute weights. Should be
odd. Recommended value 7 pixels

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous invocations.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image with the same size and type as src .

The function converts image to CIELAB colorspace and then separately denoise L and AB components
with given h parameters using FastNonLocalMeansDenoising::simpleMethod function.
@sa
fastNlMeansDenoisingColored
Python prototype (for reference only):
fastNlMeansDenoisingColored(src, h_luminance, photo_render[, dst[, search_window[, block_size[, stream]]]]) -> dst

 Link to this function

 findMinMax(src)

 View Source

 @spec findMinMax(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec findMinMax(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
findMinMax
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMax(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
findMinMax
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMax(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 findMinMax(src, opts)

 View Source

 @spec findMinMax(Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec findMinMax(Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
findMinMax
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMax(src[, dst[, mask[, stream]]]) -> dst
Variant 2:
findMinMax
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMax(src[, dst[, mask[, stream]]]) -> dst

 Link to this function

 findMinMaxLoc(src)

 View Source

 @spec findMinMaxLoc(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findMinMaxLoc(Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
findMinMaxLoc
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	minMaxVals: Evision.Mat.t().
	loc: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMaxLoc(src[, minMaxVals[, loc[, mask[, stream]]]]) -> minMaxVals, loc
Variant 2:
findMinMaxLoc
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	minMaxVals: Evision.CUDA.GpuMat.t().
	loc: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMaxLoc(src[, minMaxVals[, loc[, mask[, stream]]]]) -> minMaxVals, loc

 Link to this function

 findMinMaxLoc(src, opts)

 View Source

 @spec findMinMaxLoc(Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec findMinMaxLoc(Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
findMinMaxLoc
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().
	stream: Evision.CUDA.Stream.t().

Return
	minMaxVals: Evision.Mat.t().
	loc: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMaxLoc(src[, minMaxVals[, loc[, mask[, stream]]]]) -> minMaxVals, loc
Variant 2:
findMinMaxLoc
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
	stream: Evision.CUDA.Stream.t().

Return
	minMaxVals: Evision.CUDA.GpuMat.t().
	loc: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
findMinMaxLoc(src[, minMaxVals[, loc[, mask[, stream]]]]) -> minMaxVals, loc

 Link to this function

 flip(src, flipCode)

 View Source

 @spec flip(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec flip(Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Flips a 2D matrix around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
CV_32F depth.

	flipCode: int.
Flip mode for the source:
	0 Flips around x-axis.
	> 0 Flips around y-axis.
	\< 0 Flips around both axes.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

@sa flip
Python prototype (for reference only):
flip(src, flipCode[, dst[, stream]]) -> dst
Variant 2:
Flips a 2D matrix around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
CV_32F depth.

	flipCode: int.
Flip mode for the source:
	0 Flips around x-axis.
	> 0 Flips around y-axis.
	\< 0 Flips around both axes.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

@sa flip
Python prototype (for reference only):
flip(src, flipCode[, dst[, stream]]) -> dst

 Link to this function

 flip(src, flipCode, opts)

 View Source

 @spec flip(Evision.Mat.maybe_mat_in(), integer(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec flip(Evision.CUDA.GpuMat.t(), integer(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Flips a 2D matrix around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
CV_32F depth.

	flipCode: int.
Flip mode for the source:
	0 Flips around x-axis.
	> 0 Flips around y-axis.
	\< 0 Flips around both axes.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

@sa flip
Python prototype (for reference only):
flip(src, flipCode[, dst[, stream]]) -> dst
Variant 2:
Flips a 2D matrix around vertical, horizontal, or both axes.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
CV_32F depth.

	flipCode: int.
Flip mode for the source:
	0 Flips around x-axis.
	> 0 Flips around y-axis.
	\< 0 Flips around both axes.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

@sa flip
Python prototype (for reference only):
flip(src, flipCode[, dst[, stream]]) -> dst

 Link to this function

 gammaCorrection(src)

 View Source

 @spec gammaCorrection(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec gammaCorrection(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Routines for correcting image color gamma.
Positional Arguments
	src: Evision.Mat.t().
Source image (3- or 4-channel 8 bit).

Keyword Arguments
	forward: bool.
true for forward gamma correction or false for inverse gamma correction.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
gammaCorrection(src[, dst[, forward[, stream]]]) -> dst
Variant 2:
Routines for correcting image color gamma.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image (3- or 4-channel 8 bit).

Keyword Arguments
	forward: bool.
true for forward gamma correction or false for inverse gamma correction.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
gammaCorrection(src[, dst[, forward[, stream]]]) -> dst

 Link to this function

 gammaCorrection(src, opts)

 View Source

 @spec gammaCorrection(
 Evision.Mat.maybe_mat_in(),
 [stream: term(), forward: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec gammaCorrection(
 Evision.CUDA.GpuMat.t(),
 [stream: term(), forward: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Routines for correcting image color gamma.
Positional Arguments
	src: Evision.Mat.t().
Source image (3- or 4-channel 8 bit).

Keyword Arguments
	forward: bool.
true for forward gamma correction or false for inverse gamma correction.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
gammaCorrection(src[, dst[, forward[, stream]]]) -> dst
Variant 2:
Routines for correcting image color gamma.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image (3- or 4-channel 8 bit).

Keyword Arguments
	forward: bool.
true for forward gamma correction or false for inverse gamma correction.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
gammaCorrection(src[, dst[, forward[, stream]]]) -> dst

 Link to this function

 gemm(src1, src2, alpha, src3, beta)

 View Source

 @spec gemm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec gemm(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.GpuMat.t(),
 number()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.Mat.t().
First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
CV_64FC2 type.

	src2: Evision.Mat.t().
Second multiplied input matrix of the same type as src1 .

	alpha: double.
Weight of the matrix product.

	src3: Evision.Mat.t().
Third optional delta matrix added to the matrix product. It should have the same type
as src1 and src2 .

	beta: double.
Weight of src3 .

Keyword Arguments
	flags: int.
Operation flags:
	GEMM_1_T transpose src1
	GEMM_2_T transpose src2
	GEMM_3_T transpose src3

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix. It has the proper size and the same type as input matrices.

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
	For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
Note: Transposition operation doesn't support CV_64FC2 input type.
@sa gemm

Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags[, stream]]]) -> dst
Variant 2:
Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
CV_64FC2 type.

	src2: Evision.CUDA.GpuMat.t().
Second multiplied input matrix of the same type as src1 .

	alpha: double.
Weight of the matrix product.

	src3: Evision.CUDA.GpuMat.t().
Third optional delta matrix added to the matrix product. It should have the same type
as src1 and src2 .

	beta: double.
Weight of src3 .

Keyword Arguments
	flags: int.
Operation flags:
	GEMM_1_T transpose src1
	GEMM_2_T transpose src2
	GEMM_3_T transpose src3

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix. It has the proper size and the same type as input matrices.

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
	For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
Note: Transposition operation doesn't support CV_64FC2 input type.
@sa gemm

Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags[, stream]]]) -> dst

 Link to this function

 gemm(src1, src2, alpha, src3, beta, opts)

 View Source

 @spec gemm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [flags: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec gemm(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.GpuMat.t(),
 number(),
 [flags: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.Mat.t().
First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
CV_64FC2 type.

	src2: Evision.Mat.t().
Second multiplied input matrix of the same type as src1 .

	alpha: double.
Weight of the matrix product.

	src3: Evision.Mat.t().
Third optional delta matrix added to the matrix product. It should have the same type
as src1 and src2 .

	beta: double.
Weight of src3 .

Keyword Arguments
	flags: int.
Operation flags:
	GEMM_1_T transpose src1
	GEMM_2_T transpose src2
	GEMM_3_T transpose src3

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix. It has the proper size and the same type as input matrices.

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
	For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
Note: Transposition operation doesn't support CV_64FC2 input type.
@sa gemm

Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags[, stream]]]) -> dst
Variant 2:
Performs generalized matrix multiplication.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
CV_64FC2 type.

	src2: Evision.CUDA.GpuMat.t().
Second multiplied input matrix of the same type as src1 .

	alpha: double.
Weight of the matrix product.

	src3: Evision.CUDA.GpuMat.t().
Third optional delta matrix added to the matrix product. It should have the same type
as src1 and src2 .

	beta: double.
Weight of src3 .

Keyword Arguments
	flags: int.
Operation flags:
	GEMM_1_T transpose src1
	GEMM_2_T transpose src2
	GEMM_3_T transpose src3

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix. It has the proper size and the same type as input matrices.

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
	For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
Note: Transposition operation doesn't support CV_64FC2 input type.
@sa gemm

Python prototype (for reference only):
gemm(src1, src2, alpha, src3, beta[, dst[, flags[, stream]]]) -> dst

 Link to this function

 getCudaEnabledDeviceCount()

 View Source

 @spec getCudaEnabledDeviceCount() :: integer() | {:error, String.t()}

Returns the number of installed CUDA-enabled devices.
Return
	retval: int

Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support,
this function returns 0. If the CUDA driver is not installed, or is incompatible, this function
returns -1.
Python prototype (for reference only):
getCudaEnabledDeviceCount() -> retval

 Link to this function

 getDevice()

 View Source

 @spec getDevice() :: integer() | {:error, String.t()}

Returns the current device index set by cuda::setDevice or initialized by default.
Return
	retval: int

Python prototype (for reference only):
getDevice() -> retval

 Link to this function

 histEven(src, histSize, lowerLevel, upperLevel)

 View Source

 @spec histEven(Evision.Mat.maybe_mat_in(), integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec histEven(Evision.CUDA.GpuMat.t(), integer(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates a histogram with evenly distributed bins.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.

	histSize: int.
Size of the histogram.

	lowerLevel: int.
Lower boundary of lowest-level bin.

	upperLevel: int.
Upper boundary of highest-level bin.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, histSize columns, and the CV_32S type.

Python prototype (for reference only):
histEven(src, histSize, lowerLevel, upperLevel[, hist[, stream]]) -> hist
Variant 2:
Calculates a histogram with evenly distributed bins.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.

	histSize: int.
Size of the histogram.

	lowerLevel: int.
Lower boundary of lowest-level bin.

	upperLevel: int.
Upper boundary of highest-level bin.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, histSize columns, and the CV_32S type.

Python prototype (for reference only):
histEven(src, histSize, lowerLevel, upperLevel[, hist[, stream]]) -> hist

 Link to this function

 histEven(src, histSize, lowerLevel, upperLevel, opts)

 View Source

 @spec histEven(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec histEven(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec histEven(
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer()
) ::
 :ok | {:error, String.t()}

 @spec histEven(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer()
) ::
 :ok | {:error, String.t()}

Variant 1:
Calculates a histogram with evenly distributed bins.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.

	histSize: int.
Size of the histogram.

	lowerLevel: int.
Lower boundary of lowest-level bin.

	upperLevel: int.
Upper boundary of highest-level bin.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, histSize columns, and the CV_32S type.

Python prototype (for reference only):
histEven(src, histSize, lowerLevel, upperLevel[, hist[, stream]]) -> hist
Variant 2:
Calculates a histogram with evenly distributed bins.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.

	histSize: int.
Size of the histogram.

	lowerLevel: int.
Lower boundary of lowest-level bin.

	upperLevel: int.
Upper boundary of highest-level bin.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, histSize columns, and the CV_32S type.

Python prototype (for reference only):
histEven(src, histSize, lowerLevel, upperLevel[, hist[, stream]]) -> hist
Variant 3:
histEven
Positional Arguments
	src: Evision.Mat.t()
	hist: GpuMat*
	histSize: int*
	lowerLevel: int*
	upperLevel: int*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histEven(src, hist, histSize, lowerLevel, upperLevel[, stream]) -> None
Variant 4:
histEven
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	hist: GpuMat*
	histSize: int*
	lowerLevel: int*
	upperLevel: int*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histEven(src, hist, histSize, lowerLevel, upperLevel[, stream]) -> None

 Link to this function

 histEven(src, hist, histSize, lowerLevel, upperLevel, opts)

 View Source

 @spec histEven(
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 [{:stream, term()}] | nil
) :: :ok | {:error, String.t()}

 @spec histEven(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 [{:stream, term()}] | nil
) :: :ok | {:error, String.t()}

Variant 1:
histEven
Positional Arguments
	src: Evision.Mat.t()
	hist: GpuMat*
	histSize: int*
	lowerLevel: int*
	upperLevel: int*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histEven(src, hist, histSize, lowerLevel, upperLevel[, stream]) -> None
Variant 2:
histEven
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	hist: GpuMat*
	histSize: int*
	lowerLevel: int*
	upperLevel: int*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histEven(src, hist, histSize, lowerLevel, upperLevel[, stream]) -> None

 Link to this function

 histRange(src, levels)

 View Source

 @spec histRange(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec histRange(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates a histogram with bins determined by the levels array.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.

	levels: Evision.Mat.t().
Number of levels in the histogram.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.

Python prototype (for reference only):
histRange(src, levels[, hist[, stream]]) -> hist
Variant 2:
Calculates a histogram with bins determined by the levels array.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.

	levels: Evision.CUDA.GpuMat.t().
Number of levels in the histogram.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.

Python prototype (for reference only):
histRange(src, levels[, hist[, stream]]) -> hist

 Link to this function

 histRange(src, levels, opts)

 View Source

 @spec histRange(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec histRange(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec histRange(
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) ::
 :ok | {:error, String.t()}

 @spec histRange(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) ::
 :ok | {:error, String.t()}

Variant 1:
Calculates a histogram with bins determined by the levels array.
Positional Arguments
	src: Evision.Mat.t().
Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.

	levels: Evision.Mat.t().
Number of levels in the histogram.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.Mat.t().
Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.

Python prototype (for reference only):
histRange(src, levels[, hist[, stream]]) -> hist
Variant 2:
Calculates a histogram with bins determined by the levels array.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.

	levels: Evision.CUDA.GpuMat.t().
Number of levels in the histogram.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	hist: Evision.CUDA.GpuMat.t().
Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.

Python prototype (for reference only):
histRange(src, levels[, hist[, stream]]) -> hist
Variant 3:
histRange
Positional Arguments
	src: Evision.Mat.t()
	hist: GpuMat*
	levels: GpuMat*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histRange(src, hist, levels[, stream]) -> None
Variant 4:
histRange
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	hist: GpuMat*
	levels: GpuMat*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histRange(src, hist, levels[, stream]) -> None

 Link to this function

 histRange(src, hist, levels, opts)

 View Source

 @spec histRange(
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) :: :ok | {:error, String.t()}

 @spec histRange(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) :: :ok | {:error, String.t()}

Variant 1:
histRange
Positional Arguments
	src: Evision.Mat.t()
	hist: GpuMat*
	levels: GpuMat*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histRange(src, hist, levels[, stream]) -> None
Variant 2:
histRange
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	hist: GpuMat*
	levels: GpuMat*

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Has overloading in C++
Python prototype (for reference only):
histRange(src, hist, levels[, stream]) -> None

 Link to this function

 inRange(src, lowerb, upperb)

 View Source

 @spec inRange(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec inRange(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Checks if array elements lie between two scalars.
Positional Arguments
	src: Evision.Mat.t().
first input array.

	lowerb: Scalar.
inclusive lower boundary cv::Scalar.

	upperb: Scalar.
inclusive upper boundary cv::Scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0 \land \texttt{lowerb}_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb}_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
Note that unlike the CPU inRange, this does NOT accept an array for lowerb or
upperb, only a cv::Scalar.
@sa cv::inRange
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst[, stream]]) -> dst
Variant 2:
Checks if array elements lie between two scalars.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
first input array.

	lowerb: Scalar.
inclusive lower boundary cv::Scalar.

	upperb: Scalar.
inclusive upper boundary cv::Scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0 \land \texttt{lowerb}_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb}_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
Note that unlike the CPU inRange, this does NOT accept an array for lowerb or
upperb, only a cv::Scalar.
@sa cv::inRange
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst[, stream]]) -> dst

 Link to this function

 inRange(src, lowerb, upperb, opts)

 View Source

 @spec inRange(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec inRange(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Checks if array elements lie between two scalars.
Positional Arguments
	src: Evision.Mat.t().
first input array.

	lowerb: Scalar.
inclusive lower boundary cv::Scalar.

	upperb: Scalar.
inclusive upper boundary cv::Scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0 \land \texttt{lowerb}_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb}_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
Note that unlike the CPU inRange, this does NOT accept an array for lowerb or
upperb, only a cv::Scalar.
@sa cv::inRange
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst[, stream]]) -> dst
Variant 2:
Checks if array elements lie between two scalars.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
first input array.

	lowerb: Scalar.
inclusive lower boundary cv::Scalar.

	upperb: Scalar.
inclusive upper boundary cv::Scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
output array of the same size as src and CV_8U type.

The function checks the range as follows:
	For every element of a single-channel input array:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0\f]

	For two-channel arrays:
\f[\texttt{dst} (I)= \texttt{lowerb}_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb}_0 \land \texttt{lowerb}_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb}_1\f]

	and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
specified 1D, 2D, 3D, ... box and 0 otherwise.
Note that unlike the CPU inRange, this does NOT accept an array for lowerb or
upperb, only a cv::Scalar.
@sa cv::inRange
Python prototype (for reference only):
inRange(src, lowerb, upperb[, dst[, stream]]) -> dst

 Link to this function

 integral(src)

 View Source

 @spec integral(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec integral(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an integral image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sum: Evision.Mat.t().
Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .

@sa integral
Python prototype (for reference only):
integral(src[, sum[, stream]]) -> sum
Variant 2:
Computes an integral image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sum: Evision.CUDA.GpuMat.t().
Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .

@sa integral
Python prototype (for reference only):
integral(src[, sum[, stream]]) -> sum

 Link to this function

 integral(src, opts)

 View Source

 @spec integral(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec integral(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an integral image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sum: Evision.Mat.t().
Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .

@sa integral
Python prototype (for reference only):
integral(src[, sum[, stream]]) -> sum
Variant 2:
Computes an integral image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sum: Evision.CUDA.GpuMat.t().
Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .

@sa integral
Python prototype (for reference only):
integral(src[, sum[, stream]]) -> sum

 Link to this function

 log(src)

 View Source

 @spec log(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec log(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a natural logarithm of absolute value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa log
Python prototype (for reference only):
log(src[, dst[, stream]]) -> dst
Variant 2:
Computes a natural logarithm of absolute value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa log
Python prototype (for reference only):
log(src[, dst[, stream]]) -> dst

 Link to this function

 log(src, opts)

 View Source

 @spec log(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec log(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a natural logarithm of absolute value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa log
Python prototype (for reference only):
log(src[, dst[, stream]]) -> dst
Variant 2:
Computes a natural logarithm of absolute value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa log
Python prototype (for reference only):
log(src[, dst[, stream]]) -> dst

 Link to this function

 lshift(src, val)

 View Source

 @spec lshift(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec lshift(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs pixel by pixel right left of an image by a constant value.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
depth.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
lshift(src, val[, dst[, stream]]) -> dst
Variant 2:
Performs pixel by pixel right left of an image by a constant value.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
depth.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
lshift(src, val[, dst[, stream]]) -> dst

 Link to this function

 lshift(src, val, opts)

 View Source

 @spec lshift(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec lshift(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs pixel by pixel right left of an image by a constant value.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
depth.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
lshift(src, val[, dst[, stream]]) -> dst
Variant 2:
Performs pixel by pixel right left of an image by a constant value.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
depth.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
lshift(src, val[, dst[, stream]]) -> dst

 Link to this function

 magnitude(xy)

 View Source

 @spec magnitude(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec magnitude(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.Mat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

@sa magnitude
Python prototype (for reference only):
magnitude(xy[, magnitude[, stream]]) -> magnitude
Variant 2:
Computes magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.CUDA.GpuMat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

@sa magnitude
Python prototype (for reference only):
magnitude(xy[, magnitude[, stream]]) -> magnitude

 Link to this function

 magnitude(xy, opts)

 View Source

 @spec magnitude(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitude(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec magnitude(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitude(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
magnitude
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

Has overloading in C++
computes magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitude(x, y[, magnitude[, stream]]) -> magnitude
Variant 2:
magnitude
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

Has overloading in C++
computes magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitude(x, y[, magnitude[, stream]]) -> magnitude
Variant 3:
Computes magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.Mat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

@sa magnitude
Python prototype (for reference only):
magnitude(xy[, magnitude[, stream]]) -> magnitude
Variant 4:
Computes magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.CUDA.GpuMat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

@sa magnitude
Python prototype (for reference only):
magnitude(xy[, magnitude[, stream]]) -> magnitude

 Link to this function

 magnitude(x, y, opts)

 View Source

 @spec magnitude(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitude(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
magnitude
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitudes (CV_32FC1).

Has overloading in C++
computes magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitude(x, y[, magnitude[, stream]]) -> magnitude
Variant 2:
magnitude
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitudes (CV_32FC1).

Has overloading in C++
computes magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitude(x, y[, magnitude[, stream]]) -> magnitude

 Link to this function

 magnitudeSqr(xy)

 View Source

 @spec magnitudeSqr(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitudeSqr(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes squared magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.Mat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Python prototype (for reference only):
magnitudeSqr(xy[, magnitude[, stream]]) -> magnitude
Variant 2:
Computes squared magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.CUDA.GpuMat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Python prototype (for reference only):
magnitudeSqr(xy[, magnitude[, stream]]) -> magnitude

 Link to this function

 magnitudeSqr(xy, opts)

 View Source

 @spec magnitudeSqr(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitudeSqr(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec magnitudeSqr(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitudeSqr(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
magnitudeSqr
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Has overloading in C++
computes squared magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitudeSqr(x, y[, magnitude[, stream]]) -> magnitude
Variant 2:
magnitudeSqr
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Has overloading in C++
computes squared magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitudeSqr(x, y[, magnitude[, stream]]) -> magnitude
Variant 3:
Computes squared magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.Mat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Python prototype (for reference only):
magnitudeSqr(xy[, magnitude[, stream]]) -> magnitude
Variant 4:
Computes squared magnitudes of complex matrix elements.
Positional Arguments
	xy: Evision.CUDA.GpuMat.t().
Source complex matrix in the interleaved format (CV_32FC2).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Python prototype (for reference only):
magnitudeSqr(xy[, magnitude[, stream]]) -> magnitude

 Link to this function

 magnitudeSqr(x, y, opts)

 View Source

 @spec magnitudeSqr(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec magnitudeSqr(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
magnitudeSqr
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.Mat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Has overloading in C++
computes squared magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitudeSqr(x, y[, magnitude[, stream]]) -> magnitude
Variant 2:
magnitudeSqr
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	magnitude: Evision.CUDA.GpuMat.t().
Destination matrix of float magnitude squares (CV_32FC1).

Has overloading in C++
computes squared magnitude of each (x(i), y(i)) vector
supports only floating-point source
Python prototype (for reference only):
magnitudeSqr(x, y[, magnitude[, stream]]) -> magnitude

 Link to this function

 max(src1, src2)

 View Source

 @spec max(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec max(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the per-element maximum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa max
Python prototype (for reference only):
max(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes the per-element maximum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa max
Python prototype (for reference only):
max(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 max(src1, src2, opts)

 View Source

 @spec max(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec max(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the per-element maximum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa max
Python prototype (for reference only):
max(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes the per-element maximum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa max
Python prototype (for reference only):
max(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 meanShiftFiltering(src, sp, sr)

 View Source

 @spec meanShiftFiltering(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec meanShiftFiltering(Evision.CUDA.GpuMat.t(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs mean-shift filtering for each point of the source image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image containing the color of mapped points. It has the same size and type
as src .

It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
Python prototype (for reference only):
meanShiftFiltering(src, sp, sr[, dst[, criteria[, stream]]]) -> dst
Variant 2:
Performs mean-shift filtering for each point of the source image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image containing the color of mapped points. It has the same size and type
as src .

It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
Python prototype (for reference only):
meanShiftFiltering(src, sp, sr[, dst[, criteria[, stream]]]) -> dst

 Link to this function

 meanShiftFiltering(src, sp, sr, opts)

 View Source

 @spec meanShiftFiltering(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec meanShiftFiltering(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs mean-shift filtering for each point of the source image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image containing the color of mapped points. It has the same size and type
as src .

It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
Python prototype (for reference only):
meanShiftFiltering(src, sp, sr[, dst[, criteria[, stream]]]) -> dst
Variant 2:
Performs mean-shift filtering for each point of the source image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image containing the color of mapped points. It has the same size and type
as src .

It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
Python prototype (for reference only):
meanShiftFiltering(src, sp, sr[, dst[, criteria[, stream]]]) -> dst

 Link to this function

 meanShiftProc(src, sp, sr)

 View Source

 @spec meanShiftProc(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec meanShiftProc(Evision.CUDA.GpuMat.t(), integer(), integer()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dstr: Evision.Mat.t().
Destination image containing the color of mapped points. The size and type is the same
as src .

	dstsp: Evision.Mat.t().
Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .

@sa cuda::meanShiftFiltering
Python prototype (for reference only):
meanShiftProc(src, sp, sr[, dstr[, dstsp[, criteria[, stream]]]]) -> dstr, dstsp
Variant 2:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dstr: Evision.CUDA.GpuMat.t().
Destination image containing the color of mapped points. The size and type is the same
as src .

	dstsp: Evision.CUDA.GpuMat.t().
Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .

@sa cuda::meanShiftFiltering
Python prototype (for reference only):
meanShiftProc(src, sp, sr[, dstr[, dstsp[, criteria[, stream]]]]) -> dstr, dstsp

 Link to this function

 meanShiftProc(src, sp, sr, opts)

 View Source

 @spec meanShiftProc(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec meanShiftProc(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dstr: Evision.Mat.t().
Destination image containing the color of mapped points. The size and type is the same
as src .

	dstsp: Evision.Mat.t().
Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .

@sa cuda::meanShiftFiltering
Python prototype (for reference only):
meanShiftProc(src, sp, sr[, dstr[, dstsp[, criteria[, stream]]]]) -> dstr, dstsp
Variant 2:
Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dstr: Evision.CUDA.GpuMat.t().
Destination image containing the color of mapped points. The size and type is the same
as src .

	dstsp: Evision.CUDA.GpuMat.t().
Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .

@sa cuda::meanShiftFiltering
Python prototype (for reference only):
meanShiftProc(src, sp, sr[, dstr[, dstsp[, criteria[, stream]]]]) -> dstr, dstsp

 Link to this function

 meanShiftSegmentation(src, sp, sr, minsize)

 View Source

 @spec meanShiftSegmentation(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec meanShiftSegmentation(Evision.CUDA.GpuMat.t(), integer(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a mean-shift segmentation of the source image and eliminates small segments.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

	minsize: int.
Minimum segment size. Smaller segments are merged.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Segmented image with the same size and type as src (host or gpu memory).

Python prototype (for reference only):
meanShiftSegmentation(src, sp, sr, minsize[, dst[, criteria[, stream]]]) -> dst
Variant 2:
Performs a mean-shift segmentation of the source image and eliminates small segments.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

	minsize: int.
Minimum segment size. Smaller segments are merged.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Segmented image with the same size and type as src (host or gpu memory).

Python prototype (for reference only):
meanShiftSegmentation(src, sp, sr, minsize[, dst[, criteria[, stream]]]) -> dst

 Link to this function

 meanShiftSegmentation(src, sp, sr, minsize, opts)

 View Source

 @spec meanShiftSegmentation(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec meanShiftSegmentation(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 integer(),
 [criteria: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a mean-shift segmentation of the source image and eliminates small segments.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

	minsize: int.
Minimum segment size. Smaller segments are merged.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Segmented image with the same size and type as src (host or gpu memory).

Python prototype (for reference only):
meanShiftSegmentation(src, sp, sr, minsize[, dst[, criteria[, stream]]]) -> dst
Variant 2:
Performs a mean-shift segmentation of the source image and eliminates small segments.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC4 images are supported for now.

	sp: int.
Spatial window radius.

	sr: int.
Color window radius.

	minsize: int.
Minimum segment size. Smaller segments are merged.

Keyword Arguments
	criteria: TermCriteria.
Termination criteria. See TermCriteria.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Segmented image with the same size and type as src (host or gpu memory).

Python prototype (for reference only):
meanShiftSegmentation(src, sp, sr, minsize[, dst[, criteria[, stream]]]) -> dst

 Link to this function

 meanStdDev(mtx)

 View Source

 @spec meanStdDev(Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}}
 | {:error, String.t()}

 @spec meanStdDev(Evision.CUDA.GpuMat.t()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}}
 | {:error, String.t()}

Variant 1:
meanStdDev
Positional Arguments
	mtx: Evision.Mat.t().
Source matrix. CV_8UC1 and CV_32FC1 matrices are supported for now.

Return
	mean: Scalar.
Mean value.

	stddev: Scalar.
Standard deviation value.

Has overloading in C++
Python prototype (for reference only):
meanStdDev(mtx) -> mean, stddev
Variant 2:
meanStdDev
Positional Arguments
	mtx: Evision.CUDA.GpuMat.t().
Source matrix. CV_8UC1 and CV_32FC1 matrices are supported for now.

Return
	mean: Scalar.
Mean value.

	stddev: Scalar.
Standard deviation value.

Has overloading in C++
Python prototype (for reference only):
meanStdDev(mtx) -> mean, stddev

 Link to this function

 meanStdDev(src, mask)

 View Source

 @spec meanStdDev(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}}
 | {:error, String.t()}

 @spec meanStdDev(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}}
 | {:error, String.t()}

Variant 1:
meanStdDev
Positional Arguments
	src: Evision.Mat.t().
Source matrix. CV_8UC1 and CV_32FC1 matrices are supported for now.

	mask: Evision.Mat.t().
Operation mask.

Return
	mean: Scalar.
Mean value.

	stddev: Scalar.
Standard deviation value.

Has overloading in C++
Python prototype (for reference only):
meanStdDev(src, mask) -> mean, stddev
Variant 2:
meanStdDev
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. CV_8UC1 and CV_32FC1 matrices are supported for now.

	mask: Evision.CUDA.GpuMat.t().
Operation mask.

Return
	mean: Scalar.
Mean value.

	stddev: Scalar.
Standard deviation value.

Has overloading in C++
Python prototype (for reference only):
meanStdDev(src, mask) -> mean, stddev

 Link to this function

 merge(src)

 View Source

 @spec merge([Evision.CUDA.GpuMat.t()]) :: Evision.Mat.t() | {:error, String.t()}

merge
Positional Arguments
	src: [Evision.CUDA.GpuMat]

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
merge(src[, dst[, stream]]) -> dst

 Link to this function

 merge(src, opts)

 View Source

 @spec merge([Evision.CUDA.GpuMat.t()], [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

merge
Positional Arguments
	src: [Evision.CUDA.GpuMat]

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
merge(src[, dst[, stream]]) -> dst

 Link to this function

 min(src1, src2)

 View Source

 @spec min(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec min(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the per-element minimum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa min
Python prototype (for reference only):
min(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes the per-element minimum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa min
Python prototype (for reference only):
min(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 min(src1, src2, opts)

 View Source

 @spec min(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec min(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the per-element minimum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and type as the input array(s).

@sa min
Python prototype (for reference only):
min(src1, src2[, dst[, stream]]) -> dst
Variant 2:
Computes the per-element minimum of two matrices (or a matrix and a scalar).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and type as the input array(s).

@sa min
Python prototype (for reference only):
min(src1, src2[, dst[, stream]]) -> dst

 Link to this function

 minMax(src)

 View Source

 @spec minMax(Evision.Mat.maybe_mat_in()) ::
 {number(), number()} | {:error, String.t()}

 @spec minMax(Evision.CUDA.GpuMat.t()) :: {number(), number()} | {:error, String.t()}

Variant 1:
Finds global minimum and maximum matrix elements and returns their values.
Positional Arguments
	src: Evision.Mat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMax(src[, mask]) -> minVal, maxVal
Variant 2:
Finds global minimum and maximum matrix elements and returns their values.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMax(src[, mask]) -> minVal, maxVal

 Link to this function

 minMax(src, opts)

 View Source

 @spec minMax(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number(), number()} | {:error, String.t()}

 @spec minMax(Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil) ::
 {number(), number()} | {:error, String.t()}

Variant 1:
Finds global minimum and maximum matrix elements and returns their values.
Positional Arguments
	src: Evision.Mat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMax(src[, mask]) -> minVal, maxVal
Variant 2:
Finds global minimum and maximum matrix elements and returns their values.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMax(src[, mask]) -> minVal, maxVal

 Link to this function

 minMaxLoc(src)

 View Source

 @spec minMaxLoc(Evision.Mat.maybe_mat_in()) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

 @spec minMaxLoc(Evision.CUDA.GpuMat.t()) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

Variant 1:
Finds global minimum and maximum matrix elements and returns their values with locations.
Positional Arguments
	src: Evision.Mat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

	minLoc: Point*.
Pointer to the returned minimum location. Use NULL if not required.

	maxLoc: Point*.
Pointer to the returned maximum location. Use NULL if not required.

The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
Variant 2:
Finds global minimum and maximum matrix elements and returns their values with locations.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

	minLoc: Point*.
Pointer to the returned minimum location. Use NULL if not required.

	maxLoc: Point*.
Pointer to the returned maximum location. Use NULL if not required.

The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

 Link to this function

 minMaxLoc(src, opts)

 View Source

 @spec minMaxLoc(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

 @spec minMaxLoc(Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil) ::
 {number(), number(), {number(), number()}, {number(), number()}}
 | {:error, String.t()}

Variant 1:
Finds global minimum and maximum matrix elements and returns their values with locations.
Positional Arguments
	src: Evision.Mat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

	minLoc: Point*.
Pointer to the returned minimum location. Use NULL if not required.

	maxLoc: Point*.
Pointer to the returned maximum location. Use NULL if not required.

The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
Variant 2:
Finds global minimum and maximum matrix elements and returns their values with locations.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Single-channel source image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional mask to select a sub-matrix.

Return
	minVal: double*.
Pointer to the returned minimum value. Use NULL if not required.

	maxVal: double*.
Pointer to the returned maximum value. Use NULL if not required.

	minLoc: Point*.
Pointer to the returned minimum location. Use NULL if not required.

	maxLoc: Point*.
Pointer to the returned maximum location. Use NULL if not required.

The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
@sa minMaxLoc
Python prototype (for reference only):
minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

 Link to this function

 moments(src)

 View Source

 @spec moments(Evision.Mat.maybe_mat_in()) :: map() | {:error, String.t()}

 @spec moments(Evision.CUDA.GpuMat.t()) :: map() | {:error, String.t()}

Variant 1:
Calculates all of the moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.Mat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a rasterized shape. The
results are returned in the structure cv::Moments.
Note: For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host.
The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::spatialMoments
Python prototype (for reference only):
moments(src[, binaryImage[, order[, momentsType]]]) -> retval
Variant 2:
Calculates all of the moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a rasterized shape. The
results are returned in the structure cv::Moments.
Note: For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host.
The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::spatialMoments
Python prototype (for reference only):
moments(src[, binaryImage[, order[, momentsType]]]) -> retval

 Link to this function

 moments(src, opts)

 View Source

 @spec moments(
 Evision.Mat.maybe_mat_in(),
 [momentsType: term(), order: term(), binaryImage: term()] | nil
) :: map() | {:error, String.t()}

 @spec moments(
 Evision.CUDA.GpuMat.t(),
 [momentsType: term(), order: term(), binaryImage: term()] | nil
) ::
 map() | {:error, String.t()}

Variant 1:
Calculates all of the moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.Mat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a rasterized shape. The
results are returned in the structure cv::Moments.
Note: For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host.
The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::spatialMoments
Python prototype (for reference only):
moments(src[, binaryImage[, order[, momentsType]]]) -> retval
Variant 2:
Calculates all of the moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

Return
	retval: Moments

The function computes moments, up to the 3rd order, of a rasterized shape. The
results are returned in the structure cv::Moments.
Note: For maximum performance use the asynchronous version cuda::spatialMoments() as this version interally allocates and deallocates both GpuMat and HostMem to respectively perform the calculation on the device and download the result to the host.
The costly HostMem allocation cannot be avoided however the GpuMat device allocation can be by using BufferPool, e.g.
setBufferPoolUsage(true);
setBufferPoolConfig(getDevice(), numMoments(order) * ((momentsType == CV_64F) ? sizeof(double) : sizeof(float)), 1);
see the \a CUDA_TEST_P(Moments, Accuracy) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::spatialMoments
Python prototype (for reference only):
moments(src[, binaryImage[, order[, momentsType]]]) -> retval

 Link to this function

 mulAndScaleSpectrums(src1, src2, flags, scale)

 View Source

 @spec mulAndScaleSpectrums(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec mulAndScaleSpectrums(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 number()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a per-element multiplication of two Fourier spectrums and scales the result.
Positional Arguments
	src1: Evision.Mat.t().
First spectrum.

	src2: Evision.Mat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity, simply add a 0 value.

	scale: float.
Scale constant.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulAndScaleSpectrums(src1, src2, flags, scale[, dst[, conjB[, stream]]]) -> dst
Variant 2:
Performs a per-element multiplication of two Fourier spectrums and scales the result.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First spectrum.

	src2: Evision.CUDA.GpuMat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity, simply add a 0 value.

	scale: float.
Scale constant.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulAndScaleSpectrums(src1, src2, flags, scale[, dst[, conjB[, stream]]]) -> dst

 Link to this function

 mulAndScaleSpectrums(src1, src2, flags, scale, opts)

 View Source

 @spec mulAndScaleSpectrums(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 [stream: term(), conjB: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec mulAndScaleSpectrums(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 number(),
 [stream: term(), conjB: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a per-element multiplication of two Fourier spectrums and scales the result.
Positional Arguments
	src1: Evision.Mat.t().
First spectrum.

	src2: Evision.Mat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity, simply add a 0 value.

	scale: float.
Scale constant.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulAndScaleSpectrums(src1, src2, flags, scale[, dst[, conjB[, stream]]]) -> dst
Variant 2:
Performs a per-element multiplication of two Fourier spectrums and scales the result.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First spectrum.

	src2: Evision.CUDA.GpuMat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity, simply add a 0 value.

	scale: float.
Scale constant.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulAndScaleSpectrums(src1, src2, flags, scale[, dst[, conjB[, stream]]]) -> dst

 Link to this function

 mulSpectrums(src1, src2, flags)

 View Source

 @spec mulSpectrums(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec mulSpectrums(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a per-element multiplication of two Fourier spectrums.
Positional Arguments
	src1: Evision.Mat.t().
First spectrum.

	src2: Evision.Mat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulSpectrums(src1, src2, flags[, dst[, conjB[, stream]]]) -> dst
Variant 2:
Performs a per-element multiplication of two Fourier spectrums.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First spectrum.

	src2: Evision.CUDA.GpuMat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulSpectrums(src1, src2, flags[, dst[, conjB[, stream]]]) -> dst

 Link to this function

 mulSpectrums(src1, src2, flags, opts)

 View Source

 @spec mulSpectrums(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [stream: term(), conjB: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec mulSpectrums(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [stream: term(), conjB: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs a per-element multiplication of two Fourier spectrums.
Positional Arguments
	src1: Evision.Mat.t().
First spectrum.

	src2: Evision.Mat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulSpectrums(src1, src2, flags[, dst[, conjB[, stream]]]) -> dst
Variant 2:
Performs a per-element multiplication of two Fourier spectrums.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First spectrum.

	src2: Evision.CUDA.GpuMat.t().
Second spectrum with the same size and type as a .

	flags: int.
Mock parameter used for CPU/CUDA interfaces similarity.

Keyword Arguments
	conjB: bool.
Optional flag to specify if the second spectrum needs to be conjugated before the
multiplication.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination spectrum.

Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
@sa mulSpectrums
Python prototype (for reference only):
mulSpectrums(src1, src2, flags[, dst[, conjB[, stream]]]) -> dst

 Link to this function

 multiply(src1, src2)

 View Source

 @spec multiply(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec multiply(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar per-element product.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa multiply
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar per-element product.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa multiply
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst

 Link to this function

 multiply(src1, src2, opts)

 View Source

 @spec multiply(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), dtype: term(), scale: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec multiply(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), dtype: term(), scale: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar per-element product.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa multiply
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar per-element product.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar.

Keyword Arguments
	scale: double.
Optional scale factor.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa multiply
Python prototype (for reference only):
multiply(src1, src2[, dst[, scale[, dtype[, stream]]]]) -> dst

 Link to this function

 nonLocalMeans(src, h)

 View Source

 @spec nonLocalMeans(Evision.CUDA.GpuMat.t(), number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Performs pure non local means denoising without any simplification, and thus it is not fast.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.

	h: float.
Filter sigma regulating filter strength for color.

Keyword Arguments
	search_window: int.
Size of search window.

	block_size: int.
Size of block used for computing weights.

	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

@sa
fastNlMeansDenoising
Python prototype (for reference only):
nonLocalMeans(src, h[, dst[, search_window[, block_size[, borderMode[, stream]]]]]) -> dst

 Link to this function

 nonLocalMeans(src, h, opts)

 View Source

 @spec nonLocalMeans(
 Evision.CUDA.GpuMat.t(),
 number(),
 [
 borderMode: term(),
 search_window: term(),
 stream: term(),
 block_size: term()
]
 | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Performs pure non local means denoising without any simplification, and thus it is not fast.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.

	h: float.
Filter sigma regulating filter strength for color.

Keyword Arguments
	search_window: int.
Size of search window.

	block_size: int.
Size of block used for computing weights.

	borderMode: int.
Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

@sa
fastNlMeansDenoising
Python prototype (for reference only):
nonLocalMeans(src, h[, dst[, search_window[, block_size[, borderMode[, stream]]]]]) -> dst

 Link to this function

 norm(src1, src2)

 View Source

 @spec norm(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

 @spec norm(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 number() | {:error, String.t()}

 @spec norm(Evision.Mat.maybe_mat_in(), integer()) :: number() | {:error, String.t()}

 @spec norm(Evision.CUDA.GpuMat.t(), integer()) :: number() | {:error, String.t()}

Variant 1:
Returns the difference of two matrices.
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. Any matrices except 64F are supported.

	src2: Evision.Mat.t().
Second source matrix (if any) with the same size and type as src1.

Keyword Arguments
	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, src2[, normType]) -> retval
Variant 2:
Returns the difference of two matrices.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. Any matrices except 64F are supported.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix (if any) with the same size and type as src1.

Keyword Arguments
	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, src2[, normType]) -> retval
Variant 3:
Returns the norm of a matrix (or difference of two matrices).
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. Any matrices except 64F are supported.

	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, normType[, mask]) -> retval
Variant 4:
Returns the norm of a matrix (or difference of two matrices).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. Any matrices except 64F are supported.

	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, normType[, mask]) -> retval

 Link to this function

 norm(src1, src2, opts)

 View Source

 @spec norm(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:normType, term()}] | nil
) ::
 number() | {:error, String.t()}

 @spec norm(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:normType, term()}] | nil
) ::
 number() | {:error, String.t()}

 @spec norm(Evision.Mat.maybe_mat_in(), integer(), [{:mask, term()}] | nil) ::
 number() | {:error, String.t()}

 @spec norm(Evision.CUDA.GpuMat.t(), integer(), [{:mask, term()}] | nil) ::
 number() | {:error, String.t()}

Variant 1:
Returns the difference of two matrices.
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. Any matrices except 64F are supported.

	src2: Evision.Mat.t().
Second source matrix (if any) with the same size and type as src1.

Keyword Arguments
	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, src2[, normType]) -> retval
Variant 2:
Returns the difference of two matrices.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. Any matrices except 64F are supported.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix (if any) with the same size and type as src1.

Keyword Arguments
	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, src2[, normType]) -> retval
Variant 3:
Returns the norm of a matrix (or difference of two matrices).
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. Any matrices except 64F are supported.

	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, normType[, mask]) -> retval
Variant 4:
Returns the norm of a matrix (or difference of two matrices).
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. Any matrices except 64F are supported.

	normType: int.
Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: double

@sa norm
Python prototype (for reference only):
norm(src1, normType[, mask]) -> retval

 Link to this function

 normalize(src, alpha, beta, norm_type, dtype)

 View Source

 @spec normalize(Evision.Mat.maybe_mat_in(), number(), number(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec normalize(Evision.CUDA.GpuMat.t(), number(), number(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.Mat.t().
Input array.

	alpha: double.
Norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
Upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
Normalization type (NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF).

	dtype: int.
When negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Output array of the same size as src .

@sa normalize
Python prototype (for reference only):
normalize(src, alpha, beta, norm_type, dtype[, dst[, mask[, stream]]]) -> dst
Variant 2:
Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input array.

	alpha: double.
Norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
Upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
Normalization type (NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF).

	dtype: int.
When negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Output array of the same size as src .

@sa normalize
Python prototype (for reference only):
normalize(src, alpha, beta, norm_type, dtype[, dst[, mask[, stream]]]) -> dst

 Link to this function

 normalize(src, alpha, beta, norm_type, dtype, opts)

 View Source

 @spec normalize(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 integer(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec normalize(
 Evision.CUDA.GpuMat.t(),
 number(),
 number(),
 integer(),
 integer(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.Mat.t().
Input array.

	alpha: double.
Norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
Upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
Normalization type (NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF).

	dtype: int.
When negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Output array of the same size as src .

@sa normalize
Python prototype (for reference only):
normalize(src, alpha, beta, norm_type, dtype[, dst[, mask[, stream]]]) -> dst
Variant 2:
Normalizes the norm or value range of an array.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Input array.

	alpha: double.
Norm value to normalize to or the lower range boundary in case of the range
normalization.

	beta: double.
Upper range boundary in case of the range normalization; it is not used for the norm
normalization.

	norm_type: int.
Normalization type (NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF).

	dtype: int.
When negative, the output array has the same type as src; otherwise, it has the same
number of channels as src and the depth =CV_MAT_DEPTH(dtype).

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Output array of the same size as src .

@sa normalize
Python prototype (for reference only):
normalize(src, alpha, beta, norm_type, dtype[, dst[, mask[, stream]]]) -> dst

 Link to this function

 numMoments(order)

 View Source

 @spec numMoments(Evision.CUDA.MomentsOrder.t()) :: integer() | {:error, String.t()}

Returns the number of image moments less than or equal to the largest image moments \a order.
Positional Arguments
	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

Return
	retval: int

@returns number of image moments.
@sa cuda::moments, cuda::spatialMoments, cuda::MomentsOrder
Python prototype (for reference only):
numMoments(order) -> retval

 Link to this function

 phase(x, y)

 View Source

 @spec phase(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec phase(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes polar angles of complex matrix elements.
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	angle: Evision.Mat.t().
Destination matrix of angles (CV_32FC1).

@sa phase
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees[, stream]]]) -> angle
Variant 2:
Computes polar angles of complex matrix elements.
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	angle: Evision.CUDA.GpuMat.t().
Destination matrix of angles (CV_32FC1).

@sa phase
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees[, stream]]]) -> angle

 Link to this function

 phase(x, y, opts)

 View Source

 @spec phase(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [angleInDegrees: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec phase(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [angleInDegrees: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes polar angles of complex matrix elements.
Positional Arguments
	x: Evision.Mat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.Mat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	angle: Evision.Mat.t().
Destination matrix of angles (CV_32FC1).

@sa phase
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees[, stream]]]) -> angle
Variant 2:
Computes polar angles of complex matrix elements.
Positional Arguments
	x: Evision.CUDA.GpuMat.t().
Source matrix containing real components (CV_32FC1).

	y: Evision.CUDA.GpuMat.t().
Source matrix containing imaginary components (CV_32FC1).

Keyword Arguments
	angleInDegrees: bool.
Flag for angles that must be evaluated in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	angle: Evision.CUDA.GpuMat.t().
Destination matrix of angles (CV_32FC1).

@sa phase
Python prototype (for reference only):
phase(x, y[, angle[, angleInDegrees[, stream]]]) -> angle

 Link to this function

 polarToCart(magnitude, angle)

 View Source

 @spec polarToCart(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec polarToCart(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Converts polar coordinates into Cartesian.
Positional Arguments
	magnitude: Evision.Mat.t().
Source matrix containing magnitudes (CV_32FC1 or CV_64FC1).

	angle: Evision.Mat.t().
Source matrix containing angles (same type as magnitude).

Keyword Arguments
	angleInDegrees: bool.
Flag that indicates angles in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	x: Evision.Mat.t().
Destination matrix of real components (same type as magnitude).

	y: Evision.Mat.t().
Destination matrix of imaginary components (same type as magnitude).

Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees[, stream]]]]) -> x, y
Variant 2:
Converts polar coordinates into Cartesian.
Positional Arguments
	magnitude: Evision.CUDA.GpuMat.t().
Source matrix containing magnitudes (CV_32FC1 or CV_64FC1).

	angle: Evision.CUDA.GpuMat.t().
Source matrix containing angles (same type as magnitude).

Keyword Arguments
	angleInDegrees: bool.
Flag that indicates angles in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	x: Evision.CUDA.GpuMat.t().
Destination matrix of real components (same type as magnitude).

	y: Evision.CUDA.GpuMat.t().
Destination matrix of imaginary components (same type as magnitude).

Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees[, stream]]]]) -> x, y

 Link to this function

 polarToCart(magnitude, angle, opts)

 View Source

 @spec polarToCart(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [angleInDegrees: term(), stream: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec polarToCart(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [angleInDegrees: term(), stream: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Converts polar coordinates into Cartesian.
Positional Arguments
	magnitude: Evision.Mat.t().
Source matrix containing magnitudes (CV_32FC1 or CV_64FC1).

	angle: Evision.Mat.t().
Source matrix containing angles (same type as magnitude).

Keyword Arguments
	angleInDegrees: bool.
Flag that indicates angles in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	x: Evision.Mat.t().
Destination matrix of real components (same type as magnitude).

	y: Evision.Mat.t().
Destination matrix of imaginary components (same type as magnitude).

Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees[, stream]]]]) -> x, y
Variant 2:
Converts polar coordinates into Cartesian.
Positional Arguments
	magnitude: Evision.CUDA.GpuMat.t().
Source matrix containing magnitudes (CV_32FC1 or CV_64FC1).

	angle: Evision.CUDA.GpuMat.t().
Source matrix containing angles (same type as magnitude).

Keyword Arguments
	angleInDegrees: bool.
Flag that indicates angles in degrees.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	x: Evision.CUDA.GpuMat.t().
Destination matrix of real components (same type as magnitude).

	y: Evision.CUDA.GpuMat.t().
Destination matrix of imaginary components (same type as magnitude).

Python prototype (for reference only):
polarToCart(magnitude, angle[, x[, y[, angleInDegrees[, stream]]]]) -> x, y

 Link to this function

 pow(src, power)

 View Source

 @spec pow(Evision.Mat.maybe_mat_in(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec pow(Evision.CUDA.GpuMat.t(), number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Raises every matrix element to a power.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

	power: double.
Exponent of power.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

The function pow raises every element of the input matrix to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
@sa pow
Python prototype (for reference only):
pow(src, power[, dst[, stream]]) -> dst
Variant 2:
Raises every matrix element to a power.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

	power: double.
Exponent of power.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

The function pow raises every element of the input matrix to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
@sa pow
Python prototype (for reference only):
pow(src, power[, dst[, stream]]) -> dst

 Link to this function

 pow(src, power, opts)

 View Source

 @spec pow(Evision.Mat.maybe_mat_in(), number(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec pow(Evision.CUDA.GpuMat.t(), number(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Raises every matrix element to a power.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

	power: double.
Exponent of power.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

The function pow raises every element of the input matrix to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
@sa pow
Python prototype (for reference only):
pow(src, power[, dst[, stream]]) -> dst
Variant 2:
Raises every matrix element to a power.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

	power: double.
Exponent of power.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

The function pow raises every element of the input matrix to power :
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
@sa pow
Python prototype (for reference only):
pow(src, power[, dst[, stream]]) -> dst

 Link to this function

 printCudaDeviceInfo(device)

 View Source

 @spec printCudaDeviceInfo(integer()) :: :ok | {:error, String.t()}

printCudaDeviceInfo
Positional Arguments
	device: int

Python prototype (for reference only):
printCudaDeviceInfo(device) -> None

 Link to this function

 printShortCudaDeviceInfo(device)

 View Source

 @spec printShortCudaDeviceInfo(integer()) :: :ok | {:error, String.t()}

printShortCudaDeviceInfo
Positional Arguments
	device: int

Python prototype (for reference only):
printShortCudaDeviceInfo(device) -> None

 Link to this function

 pyrDown(src)

 View Source

 @spec pyrDown(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec pyrDown(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Smoothes an image and downsamples it.
Positional Arguments
	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same
type as src .

@sa pyrDown
Python prototype (for reference only):
pyrDown(src[, dst[, stream]]) -> dst
Variant 2:
Smoothes an image and downsamples it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same
type as src .

@sa pyrDown
Python prototype (for reference only):
pyrDown(src[, dst[, stream]]) -> dst

 Link to this function

 pyrDown(src, opts)

 View Source

 @spec pyrDown(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec pyrDown(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Smoothes an image and downsamples it.
Positional Arguments
	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same
type as src .

@sa pyrDown
Python prototype (for reference only):
pyrDown(src[, dst[, stream]]) -> dst
Variant 2:
Smoothes an image and downsamples it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same
type as src .

@sa pyrDown
Python prototype (for reference only):
pyrDown(src[, dst[, stream]]) -> dst

 Link to this function

 pyrUp(src)

 View Source

 @spec pyrUp(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec pyrUp(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Upsamples an image and then smoothes it.
Positional Arguments
	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image. Will have Size(src.cols*2, src.rows*2) size and the same type as
src .

Python prototype (for reference only):
pyrUp(src[, dst[, stream]]) -> dst
Variant 2:
Upsamples an image and then smoothes it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image. Will have Size(src.cols*2, src.rows*2) size and the same type as
src .

Python prototype (for reference only):
pyrUp(src[, dst[, stream]]) -> dst

 Link to this function

 pyrUp(src, opts)

 View Source

 @spec pyrUp(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec pyrUp(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Upsamples an image and then smoothes it.
Positional Arguments
	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image. Will have Size(src.cols*2, src.rows*2) size and the same type as
src .

Python prototype (for reference only):
pyrUp(src[, dst[, stream]]) -> dst
Variant 2:
Upsamples an image and then smoothes it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image. Will have Size(src.cols*2, src.rows*2) size and the same type as
src .

Python prototype (for reference only):
pyrUp(src[, dst[, stream]]) -> dst

 Link to this function

 rectStdDev(src, sqr, rect)

 View Source

 @spec rectStdDev(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rectStdDev(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 {number(), number(), number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a standard deviation of integral images.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only the CV_32SC1 type is supported.

	sqr: Evision.Mat.t().
Squared source image. Only the CV_32FC1 type is supported.

	rect: Rect.
Rectangular window.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type and size as src.

Python prototype (for reference only):
rectStdDev(src, sqr, rect[, dst[, stream]]) -> dst
Variant 2:
Computes a standard deviation of integral images.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only the CV_32SC1 type is supported.

	sqr: Evision.CUDA.GpuMat.t().
Squared source image. Only the CV_32FC1 type is supported.

	rect: Rect.
Rectangular window.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type and size as src.

Python prototype (for reference only):
rectStdDev(src, sqr, rect[, dst[, stream]]) -> dst

 Link to this function

 rectStdDev(src, sqr, rect, opts)

 View Source

 @spec rectStdDev(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rectStdDev(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a standard deviation of integral images.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only the CV_32SC1 type is supported.

	sqr: Evision.Mat.t().
Squared source image. Only the CV_32FC1 type is supported.

	rect: Rect.
Rectangular window.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type and size as src.

Python prototype (for reference only):
rectStdDev(src, sqr, rect[, dst[, stream]]) -> dst
Variant 2:
Computes a standard deviation of integral images.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only the CV_32SC1 type is supported.

	sqr: Evision.CUDA.GpuMat.t().
Squared source image. Only the CV_32FC1 type is supported.

	rect: Rect.
Rectangular window.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type and size as src.

Python prototype (for reference only):
rectStdDev(src, sqr, rect[, dst[, stream]]) -> dst

 Link to this function

 reduce(mtx, dim, reduceOp)

 View Source

 @spec reduce(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec reduce(Evision.CUDA.GpuMat.t(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Reduces a matrix to a vector.
Positional Arguments
	mtx: Evision.Mat.t().
Source 2D matrix.

	dim: int.
Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
to a single row. 1 means that the matrix is reduced to a single column.

	reduceOp: int.
Reduction operation that could be one of the following:
	REDUCE_SUM The output is the sum of all rows/columns of the matrix.
	REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.
	REDUCE_MAX The output is the maximum (column/row-wise) of all rows/columns of the
matrix.
	REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns of the
matrix.

Keyword Arguments
	dtype: int.
When it is negative, the destination vector will have the same type as the source
matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	vec: Evision.Mat.t().
Destination vector. Its size and type is defined by dim and dtype parameters.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
@sa reduce
Python prototype (for reference only):
reduce(mtx, dim, reduceOp[, vec[, dtype[, stream]]]) -> vec
Variant 2:
Reduces a matrix to a vector.
Positional Arguments
	mtx: Evision.CUDA.GpuMat.t().
Source 2D matrix.

	dim: int.
Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
to a single row. 1 means that the matrix is reduced to a single column.

	reduceOp: int.
Reduction operation that could be one of the following:
	REDUCE_SUM The output is the sum of all rows/columns of the matrix.
	REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.
	REDUCE_MAX The output is the maximum (column/row-wise) of all rows/columns of the
matrix.
	REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns of the
matrix.

Keyword Arguments
	dtype: int.
When it is negative, the destination vector will have the same type as the source
matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	vec: Evision.CUDA.GpuMat.t().
Destination vector. Its size and type is defined by dim and dtype parameters.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
@sa reduce
Python prototype (for reference only):
reduce(mtx, dim, reduceOp[, vec[, dtype[, stream]]]) -> vec

 Link to this function

 reduce(mtx, dim, reduceOp, opts)

 View Source

 @spec reduce(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [stream: term(), dtype: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec reduce(
 Evision.CUDA.GpuMat.t(),
 integer(),
 integer(),
 [stream: term(), dtype: term()] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Reduces a matrix to a vector.
Positional Arguments
	mtx: Evision.Mat.t().
Source 2D matrix.

	dim: int.
Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
to a single row. 1 means that the matrix is reduced to a single column.

	reduceOp: int.
Reduction operation that could be one of the following:
	REDUCE_SUM The output is the sum of all rows/columns of the matrix.
	REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.
	REDUCE_MAX The output is the maximum (column/row-wise) of all rows/columns of the
matrix.
	REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns of the
matrix.

Keyword Arguments
	dtype: int.
When it is negative, the destination vector will have the same type as the source
matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	vec: Evision.Mat.t().
Destination vector. Its size and type is defined by dim and dtype parameters.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
@sa reduce
Python prototype (for reference only):
reduce(mtx, dim, reduceOp[, vec[, dtype[, stream]]]) -> vec
Variant 2:
Reduces a matrix to a vector.
Positional Arguments
	mtx: Evision.CUDA.GpuMat.t().
Source 2D matrix.

	dim: int.
Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
to a single row. 1 means that the matrix is reduced to a single column.

	reduceOp: int.
Reduction operation that could be one of the following:
	REDUCE_SUM The output is the sum of all rows/columns of the matrix.
	REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.
	REDUCE_MAX The output is the maximum (column/row-wise) of all rows/columns of the
matrix.
	REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns of the
matrix.

Keyword Arguments
	dtype: int.
When it is negative, the destination vector will have the same type as the source
matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	vec: Evision.CUDA.GpuMat.t().
Destination vector. Its size and type is defined by dim and dtype parameters.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
1D vectors and performing the specified operation on the vectors until a single row/column is
obtained. For example, the function can be used to compute horizontal and vertical projections of a
raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
modes.
@sa reduce
Python prototype (for reference only):
reduce(mtx, dim, reduceOp[, vec[, dtype[, stream]]]) -> vec

 Link to this function

 registerPageLocked(m)

 View Source

 @spec registerPageLocked(Evision.Mat.maybe_mat_in()) :: :ok | {:error, String.t()}

Page-locks the memory of matrix and maps it for the device(s).
Positional Arguments
	m: Evision.Mat.t().
Input matrix.

Python prototype (for reference only):
registerPageLocked(m) -> None

 Link to this function

 remap(src, xmap, ymap, interpolation)

 View Source

 @spec remap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec remap(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	xmap: Evision.Mat.t().
X values. Only CV_32FC1 type is supported.

	ymap: Evision.Mat.t().
Y values. Only CV_32FC1 type is supported.

	interpolation: int.
Interpolation method (see resize). INTER_NEAREST , INTER_LINEAR and
INTER_CUBIC are supported for now.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see borderInterpolate). BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the size the same as xmap and the type the same as src .

The function transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f]
Values of pixels with non-integer coordinates are computed using the bilinear interpolation.
@sa remap
Python prototype (for reference only):
remap(src, xmap, ymap, interpolation[, dst[, borderMode[, borderValue[, stream]]]]) -> dst
Variant 2:
Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

	xmap: Evision.CUDA.GpuMat.t().
X values. Only CV_32FC1 type is supported.

	ymap: Evision.CUDA.GpuMat.t().
Y values. Only CV_32FC1 type is supported.

	interpolation: int.
Interpolation method (see resize). INTER_NEAREST , INTER_LINEAR and
INTER_CUBIC are supported for now.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see borderInterpolate). BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the size the same as xmap and the type the same as src .

The function transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f]
Values of pixels with non-integer coordinates are computed using the bilinear interpolation.
@sa remap
Python prototype (for reference only):
remap(src, xmap, ymap, interpolation[, dst[, borderMode[, borderValue[, stream]]]]) -> dst

 Link to this function

 remap(src, xmap, ymap, interpolation, opts)

 View Source

 @spec remap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [borderMode: term(), borderValue: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec remap(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [borderMode: term(), borderValue: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	xmap: Evision.Mat.t().
X values. Only CV_32FC1 type is supported.

	ymap: Evision.Mat.t().
Y values. Only CV_32FC1 type is supported.

	interpolation: int.
Interpolation method (see resize). INTER_NEAREST , INTER_LINEAR and
INTER_CUBIC are supported for now.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see borderInterpolate). BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the size the same as xmap and the type the same as src .

The function transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f]
Values of pixels with non-integer coordinates are computed using the bilinear interpolation.
@sa remap
Python prototype (for reference only):
remap(src, xmap, ymap, interpolation[, dst[, borderMode[, borderValue[, stream]]]]) -> dst
Variant 2:
Applies a generic geometrical transformation to an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

	xmap: Evision.CUDA.GpuMat.t().
X values. Only CV_32FC1 type is supported.

	ymap: Evision.CUDA.GpuMat.t().
Y values. Only CV_32FC1 type is supported.

	interpolation: int.
Interpolation method (see resize). INTER_NEAREST , INTER_LINEAR and
INTER_CUBIC are supported for now.

Keyword Arguments
	borderMode: int.
Pixel extrapolation method (see borderInterpolate). BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.

	borderValue: Scalar.
Value used in case of a constant border. By default, it is 0.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the size the same as xmap and the type the same as src .

The function transforms the source image using the specified map:
\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f]
Values of pixels with non-integer coordinates are computed using the bilinear interpolation.
@sa remap
Python prototype (for reference only):
remap(src, xmap, ymap, interpolation[, dst[, borderMode[, borderValue[, stream]]]]) -> dst

 Link to this function

 reprojectImageTo3D(disp, q)

 View Source

 @spec reprojectImageTo3D(Evision.CUDA.GpuMat.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Reprojects a disparity image to 3D space.
Positional Arguments
	disp: Evision.CUDA.GpuMat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	q: Evision.Mat.t().
\f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .

Keyword Arguments
	dst_cn: int.
The number of channels for output image. Can be 3 or 4.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	xyzw: Evision.CUDA.GpuMat.t().
Output 3- or 4-channel floating-point image of the same size as disp . Each element of
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
disparity map.

@sa reprojectImageTo3D
Python prototype (for reference only):
reprojectImageTo3D(disp, Q[, xyzw[, dst_cn[, stream]]]) -> xyzw

 Link to this function

 reprojectImageTo3D(disp, q, opts)

 View Source

 @spec reprojectImageTo3D(
 Evision.CUDA.GpuMat.t(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), dst_cn: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Reprojects a disparity image to 3D space.
Positional Arguments
	disp: Evision.CUDA.GpuMat.t().
Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
fractional bits.

	q: Evision.Mat.t().
\f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .

Keyword Arguments
	dst_cn: int.
The number of channels for output image. Can be 3 or 4.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	xyzw: Evision.CUDA.GpuMat.t().
Output 3- or 4-channel floating-point image of the same size as disp . Each element of
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
disparity map.

@sa reprojectImageTo3D
Python prototype (for reference only):
reprojectImageTo3D(disp, Q[, xyzw[, dst_cn[, stream]]]) -> xyzw

 Link to this function

 resetDevice()

 View Source

 @spec resetDevice() :: :ok | {:error, String.t()}

Explicitly destroys and cleans up all resources associated with the current device in the current
process.
Any subsequent API call to this device will reinitialize the device.
Python prototype (for reference only):
resetDevice() -> None

 Link to this function

 resize(src, dsize)

 View Source

 @spec resize(
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec resize(
 Evision.CUDA.GpuMat.t(),
 {number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Resizes an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	dsize: Size.
Destination image size. If it is zero, it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
Scale factor along the horizontal axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
Scale factor along the vertical axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src . The size is dsize (when it is non-zero)
or the size is computed from src.size() , fx , and fy .

@sa resize
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation[, stream]]]]]) -> dst
Variant 2:
Resizes an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

	dsize: Size.
Destination image size. If it is zero, it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
Scale factor along the horizontal axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
Scale factor along the vertical axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src . The size is dsize (when it is non-zero)
or the size is computed from src.size() , fx , and fy .

@sa resize
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation[, stream]]]]]) -> dst

 Link to this function

 resize(src, dsize, opts)

 View Source

 @spec resize(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [stream: term(), interpolation: term(), fx: term(), fy: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec resize(
 Evision.CUDA.GpuMat.t(),
 {number(), number()},
 [stream: term(), interpolation: term(), fx: term(), fy: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Resizes an image.
Positional Arguments
	src: Evision.Mat.t().
Source image.

	dsize: Size.
Destination image size. If it is zero, it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
Scale factor along the horizontal axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
Scale factor along the vertical axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src . The size is dsize (when it is non-zero)
or the size is computed from src.size() , fx , and fy .

@sa resize
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation[, stream]]]]]) -> dst
Variant 2:
Resizes an image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image.

	dsize: Size.
Destination image size. If it is zero, it is computed as:
\f[\texttt{dsize = Size(round(fxsrc.cols), round(fysrc.rows))}\f]
Either dsize or both fx and fy must be non-zero.

Keyword Arguments
	fx: double.
Scale factor along the horizontal axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.width/src.cols}\f]

	fy: double.
Scale factor along the vertical axis. If it is zero, it is computed as:
\f[\texttt{(double)dsize.height/src.rows}\f]

	interpolation: int.
Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
supported for now.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src . The size is dsize (when it is non-zero)
or the size is computed from src.size() , fx , and fy .

@sa resize
Python prototype (for reference only):
resize(src, dsize[, dst[, fx[, fy[, interpolation[, stream]]]]]) -> dst

 Link to this function

 rotate(src, dsize, angle)

 View Source

 @spec rotate(Evision.Mat.maybe_mat_in(), {number(), number()}, number()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec rotate(Evision.CUDA.GpuMat.t(), {number(), number()}, number()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Rotates an image around the origin (0,0) and then shifts it.
Positional Arguments
	src: Evision.Mat.t().
Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
depth.

	dsize: Size.
Size of the destination image.

	angle: double.
Angle of rotation in degrees.

Keyword Arguments
	xShift: double.
Shift along the horizontal axis.

	yShift: double.
Shift along the vertical axis.

	interpolation: int.
Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
are supported.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src . The size is dsize .

@sa cuda::warpAffine
Python prototype (for reference only):
rotate(src, dsize, angle[, dst[, xShift[, yShift[, interpolation[, stream]]]]]) -> dst
Variant 2:
Rotates an image around the origin (0,0) and then shifts it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
depth.

	dsize: Size.
Size of the destination image.

	angle: double.
Angle of rotation in degrees.

Keyword Arguments
	xShift: double.
Shift along the horizontal axis.

	yShift: double.
Shift along the vertical axis.

	interpolation: int.
Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
are supported.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src . The size is dsize .

@sa cuda::warpAffine
Python prototype (for reference only):
rotate(src, dsize, angle[, dst[, xShift[, yShift[, interpolation[, stream]]]]]) -> dst

 Link to this function

 rotate(src, dsize, angle, opts)

 View Source

 @spec rotate(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 number(),
 [xShift: term(), stream: term(), yShift: term(), interpolation: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rotate(
 Evision.CUDA.GpuMat.t(),
 {number(), number()},
 number(),
 [xShift: term(), stream: term(), yShift: term(), interpolation: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Rotates an image around the origin (0,0) and then shifts it.
Positional Arguments
	src: Evision.Mat.t().
Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
depth.

	dsize: Size.
Size of the destination image.

	angle: double.
Angle of rotation in degrees.

Keyword Arguments
	xShift: double.
Shift along the horizontal axis.

	yShift: double.
Shift along the vertical axis.

	interpolation: int.
Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
are supported.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image with the same type as src . The size is dsize .

@sa cuda::warpAffine
Python prototype (for reference only):
rotate(src, dsize, angle[, dst[, xShift[, yShift[, interpolation[, stream]]]]]) -> dst
Variant 2:
Rotates an image around the origin (0,0) and then shifts it.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
depth.

	dsize: Size.
Size of the destination image.

	angle: double.
Angle of rotation in degrees.

Keyword Arguments
	xShift: double.
Shift along the horizontal axis.

	yShift: double.
Shift along the vertical axis.

	interpolation: int.
Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
are supported.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image with the same type as src . The size is dsize .

@sa cuda::warpAffine
Python prototype (for reference only):
rotate(src, dsize, angle[, dst[, xShift[, yShift[, interpolation[, stream]]]]]) -> dst

 Link to this function

 rshift(src, val)

 View Source

 @spec rshift(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rshift(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs pixel by pixel right shift of an image by a constant value.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with integers elements.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
rshift(src, val[, dst[, stream]]) -> dst
Variant 2:
Performs pixel by pixel right shift of an image by a constant value.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with integers elements.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
rshift(src, val[, dst[, stream]]) -> dst

 Link to this function

 rshift(src, val, opts)

 View Source

 @spec rshift(
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec rshift(
 Evision.CUDA.GpuMat.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Performs pixel by pixel right shift of an image by a constant value.
Positional Arguments
	src: Evision.Mat.t().
Source matrix. Supports 1, 3 and 4 channels images with integers elements.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
rshift(src, val[, dst[, stream]]) -> dst
Variant 2:
Performs pixel by pixel right shift of an image by a constant value.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix. Supports 1, 3 and 4 channels images with integers elements.

	val: Scalar.
Constant values, one per channel.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
rshift(src, val[, dst[, stream]]) -> dst

 Link to this function

 setBufferPoolConfig(deviceId, stackSize, stackCount)

 View Source

 @spec setBufferPoolConfig(integer(), integer(), integer()) ::
 :ok | {:error, String.t()}

setBufferPoolConfig
Positional Arguments
	deviceId: int
	stackSize: size_t
	stackCount: int

Python prototype (for reference only):
setBufferPoolConfig(deviceId, stackSize, stackCount) -> None

 Link to this function

 setBufferPoolUsage(on)

 View Source

 @spec setBufferPoolUsage(boolean()) :: :ok | {:error, String.t()}

setBufferPoolUsage
Positional Arguments
	on: bool

Python prototype (for reference only):
setBufferPoolUsage(on) -> None

 Link to this function

 setDevice(device)

 View Source

 @spec setDevice(integer()) :: :ok | {:error, String.t()}

Sets a device and initializes it for the current thread.
Positional Arguments
	device: int.
System index of a CUDA device starting with 0.

If the call of this function is omitted, a default device is initialized at the fist CUDA usage.
Python prototype (for reference only):
setDevice(device) -> None

 Link to this function

 spatialMoments(src)

 View Source

 @spec spatialMoments(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec spatialMoments(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.Mat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	moments: Evision.Mat.t().

Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape.
Each moment is returned as a column entry in the 1D \a moments array.
Note: For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == CV_32F \a moments can be allocated as
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cv::Moments constructor. e.g.
HostMem momentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
momentsDevice.download(momentsHostMem, stream);
stream.waitForCompletion();
Mat momentsMat = momentsHostMem.createMatHeader();
cv::Moments cvMoments(momentsMat.at<float>(0), momentsMat.at<float>(1), momentsMat.at<float>(2), momentsMat.at<float>(3), momentsMat.at<float>(4), momentsMat.at<float>(5), momentsMat.at<float>(6), momentsMat.at<float>(7), momentsMat.at<float>(8), momentsMat.at<float>(9));
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments
Python prototype (for reference only):
spatialMoments(src[, moments[, binaryImage[, order[, momentsType[, stream]]]]]) -> moments
Variant 2:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	moments: Evision.CUDA.GpuMat.t().

Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape.
Each moment is returned as a column entry in the 1D \a moments array.
Note: For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == CV_32F \a moments can be allocated as
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cv::Moments constructor. e.g.
HostMem momentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
momentsDevice.download(momentsHostMem, stream);
stream.waitForCompletion();
Mat momentsMat = momentsHostMem.createMatHeader();
cv::Moments cvMoments(momentsMat.at<float>(0), momentsMat.at<float>(1), momentsMat.at<float>(2), momentsMat.at<float>(3), momentsMat.at<float>(4), momentsMat.at<float>(5), momentsMat.at<float>(6), momentsMat.at<float>(7), momentsMat.at<float>(8), momentsMat.at<float>(9));
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments
Python prototype (for reference only):
spatialMoments(src[, moments[, binaryImage[, order[, momentsType[, stream]]]]]) -> moments

 Link to this function

 spatialMoments(src, opts)

 View Source

 @spec spatialMoments(
 Evision.Mat.maybe_mat_in(),
 [momentsType: term(), order: term(), binaryImage: term(), stream: term()]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec spatialMoments(
 Evision.CUDA.GpuMat.t(),
 [momentsType: term(), order: term(), binaryImage: term(), stream: term()]
 | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.Mat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	moments: Evision.Mat.t().

Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape.
Each moment is returned as a column entry in the 1D \a moments array.
Note: For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == CV_32F \a moments can be allocated as
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cv::Moments constructor. e.g.
HostMem momentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
momentsDevice.download(momentsHostMem, stream);
stream.waitForCompletion();
Mat momentsMat = momentsHostMem.createMatHeader();
cv::Moments cvMoments(momentsMat.at<float>(0), momentsMat.at<float>(1), momentsMat.at<float>(2), momentsMat.at<float>(3), momentsMat.at<float>(4), momentsMat.at<float>(5), momentsMat.at<float>(6), momentsMat.at<float>(7), momentsMat.at<float>(8), momentsMat.at<float>(9));
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments
Python prototype (for reference only):
spatialMoments(src[, moments[, binaryImage[, order[, momentsType[, stream]]]]]) -> moments
Variant 2:
Calculates all of the spatial moments up to the 3rd order of a rasterized shape.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Raster image (single-channel 2D array).

Keyword Arguments
	binaryImage: bool.
If it is true, all non-zero image pixels are treated as 1's.

	order: MomentsOrder.
Order of largest moments to calculate with lower order moments requiring less computation.

	momentsType: int.
Precision to use when calculating moments. Available types are CV_32F and CV_64F with the performance of CV_32F an order of magnitude greater than CV_64F. If the image is small the accuracy from CV_32F can be equal or very close to CV_64F.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	moments: Evision.CUDA.GpuMat.t().

Asynchronous version of cuda::moments() which only calculates the spatial (not centralized or normalized) moments, up to the 3rd order, of a rasterized shape.
Each moment is returned as a column entry in the 1D \a moments array.
Note: For maximum performance pre-allocate a 1D GpuMat for \a moments of the correct type and size large enough to store the all the image moments of up to the desired \a order. e.g. With \a order === MomentsOrder::SECOND_ORDER_MOMENTS and \a momentsType == CV_32F \a moments can be allocated as
GpuMat momentsDevice(1,numMoments(MomentsOrder::SECOND_ORDER_MOMENTS),CV_32F)
The central and normalized moments can easily be calculated on the host by downloading the \a moments array and using the cv::Moments constructor. e.g.
HostMem momentsHostMem(1, numMoments(MomentsOrder::SECOND_ORDER_MOMENTS), CV_32F);
momentsDevice.download(momentsHostMem, stream);
stream.waitForCompletion();
Mat momentsMat = momentsHostMem.createMatHeader();
cv::Moments cvMoments(momentsMat.at<float>(0), momentsMat.at<float>(1), momentsMat.at<float>(2), momentsMat.at<float>(3), momentsMat.at<float>(4), momentsMat.at<float>(5), momentsMat.at<float>(6), momentsMat.at<float>(7), momentsMat.at<float>(8), momentsMat.at<float>(9));
see the \a CUDA_TEST_P(Moments, Async) test inside opencv_contrib_source_code/modules/cudaimgproc/test/test_moments.cpp for an example.
@returns cv::Moments.
@sa cuda::moments
Python prototype (for reference only):
spatialMoments(src[, moments[, binaryImage[, order[, momentsType[, stream]]]]]) -> moments

 Link to this function

 split(src)

 View Source

 @spec split(Evision.Mat.maybe_mat_in()) ::
 [Evision.CUDA.GpuMat.t()] | {:error, String.t()}

 @spec split(Evision.CUDA.GpuMat.t()) ::
 [Evision.CUDA.GpuMat.t()] | {:error, String.t()}

Variant 1:
split
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: [Evision.CUDA.GpuMat].

Has overloading in C++
Python prototype (for reference only):
split(src[, dst[, stream]]) -> dst
Variant 2:
split
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: [Evision.CUDA.GpuMat].

Has overloading in C++
Python prototype (for reference only):
split(src[, dst[, stream]]) -> dst

 Link to this function

 split(src, opts)

 View Source

 @spec split(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 [Evision.CUDA.GpuMat.t()] | {:error, String.t()}

 @spec split(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 [Evision.CUDA.GpuMat.t()] | {:error, String.t()}

Variant 1:
split
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: [Evision.CUDA.GpuMat].

Has overloading in C++
Python prototype (for reference only):
split(src[, dst[, stream]]) -> dst
Variant 2:
split
Positional Arguments
	src: Evision.CUDA.GpuMat.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Return
	dst: [Evision.CUDA.GpuMat].

Has overloading in C++
Python prototype (for reference only):
split(src[, dst[, stream]]) -> dst

 Link to this function

 sqr(src)

 View Source

 @spec sqr(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec sqr(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a square value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
sqr(src[, dst[, stream]]) -> dst
Variant 2:
Computes a square value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
sqr(src[, dst[, stream]]) -> dst

 Link to this function

 sqr(src, opts)

 View Source

 @spec sqr(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec sqr(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a square value of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
sqr(src[, dst[, stream]]) -> dst
Variant 2:
Computes a square value of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

Python prototype (for reference only):
sqr(src[, dst[, stream]]) -> dst

 Link to this function

 sqrIntegral(src)

 View Source

 @spec sqrIntegral(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec sqrIntegral(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a squared integral image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sqsum: Evision.Mat.t().
Squared integral image containing 64-bit unsigned integer values packed into
CV_64FC1 .

Python prototype (for reference only):
sqrIntegral(src[, sqsum[, stream]]) -> sqsum
Variant 2:
Computes a squared integral image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sqsum: Evision.CUDA.GpuMat.t().
Squared integral image containing 64-bit unsigned integer values packed into
CV_64FC1 .

Python prototype (for reference only):
sqrIntegral(src[, sqsum[, stream]]) -> sqsum

 Link to this function

 sqrIntegral(src, opts)

 View Source

 @spec sqrIntegral(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec sqrIntegral(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a squared integral image.
Positional Arguments
	src: Evision.Mat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sqsum: Evision.Mat.t().
Squared integral image containing 64-bit unsigned integer values packed into
CV_64FC1 .

Python prototype (for reference only):
sqrIntegral(src[, sqsum[, stream]]) -> sqsum
Variant 2:
Computes a squared integral image.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image. Only CV_8UC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	sqsum: Evision.CUDA.GpuMat.t().
Squared integral image containing 64-bit unsigned integer values packed into
CV_64FC1 .

Python prototype (for reference only):
sqrIntegral(src[, sqsum[, stream]]) -> sqsum

 Link to this function

 sqrSum(src)

 View Source

 @spec sqrSum(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec sqrSum(Evision.CUDA.GpuMat.t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the squared sum of matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
sqrSum(src[, mask]) -> retval
Variant 2:
Returns the squared sum of matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
sqrSum(src[, mask]) -> retval

 Link to this function

 sqrSum(src, opts)

 View Source

 @spec sqrSum(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec sqrSum(Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the squared sum of matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
sqrSum(src[, mask]) -> retval
Variant 2:
Returns the squared sum of matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

Python prototype (for reference only):
sqrSum(src[, mask]) -> retval

 Link to this function

 sqrt(src)

 View Source

 @spec sqrt(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec sqrt(Evision.CUDA.GpuMat.t()) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a square root of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa sqrt
Python prototype (for reference only):
sqrt(src[, dst[, stream]]) -> dst
Variant 2:
Computes a square root of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa sqrt
Python prototype (for reference only):
sqrt(src[, dst[, stream]]) -> dst

 Link to this function

 sqrt(src, opts)

 View Source

 @spec sqrt(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec sqrt(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a square root of each matrix element.
Positional Arguments
	src: Evision.Mat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix with the same size and type as src .

@sa sqrt
Python prototype (for reference only):
sqrt(src[, dst[, stream]]) -> dst
Variant 2:
Computes a square root of each matrix element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source matrix.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix with the same size and type as src .

@sa sqrt
Python prototype (for reference only):
sqrt(src[, dst[, stream]]) -> dst

 Link to this function

 subtract(src1, src2)

 View Source

 @spec subtract(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec subtract(Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar difference.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa subtract
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar difference.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa subtract
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst

 Link to this function

 subtract(src1, src2, opts)

 View Source

 @spec subtract(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), mask: term(), dtype: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec subtract(
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), mask: term(), dtype: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a matrix-matrix or matrix-scalar difference.
Positional Arguments
	src1: Evision.Mat.t().
First source matrix or scalar.

	src2: Evision.Mat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.Mat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa subtract
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst
Variant 2:
Computes a matrix-matrix or matrix-scalar difference.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
First source matrix or scalar.

	src2: Evision.CUDA.GpuMat.t().
Second source matrix or scalar. Matrix should have the same size and type as src1 .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed. The mask can be used only with single channel images.

	dtype: int.
Optional depth of the output array.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix that has the same size and number of channels as the input array(s).
The depth is defined by dtype or src1 depth.

@sa subtract
Python prototype (for reference only):
subtract(src1, src2[, dst[, mask[, dtype[, stream]]]]) -> dst

 Link to this function

 sum(src)

 View Source

 @spec sum(Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec sum(Evision.CUDA.GpuMat.t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the sum of matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

@sa sum
Python prototype (for reference only):
sum(src[, mask]) -> retval
Variant 2:
Returns the sum of matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

@sa sum
Python prototype (for reference only):
sum(src[, mask]) -> retval

 Link to this function

 sum(src, opts)

 View Source

 @spec sum(Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

 @spec sum(Evision.CUDA.GpuMat.t(), [{:mask, term()}] | nil) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Variant 1:
Returns the sum of matrix elements.
Positional Arguments
	src: Evision.Mat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.Mat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

@sa sum
Python prototype (for reference only):
sum(src[, mask]) -> retval
Variant 2:
Returns the sum of matrix elements.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source image of any depth except for CV_64F .

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
optional operation mask; it must have the same size as src1 and CV_8UC1 type.

Return
	retval: Scalar

@sa sum
Python prototype (for reference only):
sum(src[, mask]) -> retval

 Link to this function

 threshold(src, thresh, maxval, type)

 View Source

 @spec threshold(Evision.Mat.maybe_mat_in(), number(), number(), integer()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

 @spec threshold(Evision.CUDA.GpuMat.t(), number(), number(), integer()) ::
 {number(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.Mat.t().
Source array (single-channel).

	thresh: double.
Threshold value.

	maxval: double.
Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.

	type: int.
Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
threshold types are not supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	retval: double

	dst: Evision.Mat.t().
Destination array with the same size and type as src .

@sa threshold
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst[, stream]]) -> retval, dst
Variant 2:
Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source array (single-channel).

	thresh: double.
Threshold value.

	maxval: double.
Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.

	type: int.
Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
threshold types are not supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	retval: double

	dst: Evision.CUDA.GpuMat.t().
Destination array with the same size and type as src .

@sa threshold
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst[, stream]]) -> retval, dst

 Link to this function

 threshold(src, thresh, maxval, type, opts)

 View Source

 @spec threshold(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [{:stream, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

 @spec threshold(
 Evision.CUDA.GpuMat.t(),
 number(),
 number(),
 integer(),
 [{:stream, term()}] | nil
) ::
 {number(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.Mat.t().
Source array (single-channel).

	thresh: double.
Threshold value.

	maxval: double.
Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.

	type: int.
Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
threshold types are not supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	retval: double

	dst: Evision.Mat.t().
Destination array with the same size and type as src .

@sa threshold
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst[, stream]]) -> retval, dst
Variant 2:
Applies a fixed-level threshold to each array element.
Positional Arguments
	src: Evision.CUDA.GpuMat.t().
Source array (single-channel).

	thresh: double.
Threshold value.

	maxval: double.
Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.

	type: int.
Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
threshold types are not supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	retval: double

	dst: Evision.CUDA.GpuMat.t().
Destination array with the same size and type as src .

@sa threshold
Python prototype (for reference only):
threshold(src, thresh, maxval, type[, dst[, stream]]) -> retval, dst

 Link to this function

 transpose(src1)

 View Source

 @spec transpose(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec transpose(Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Transposes a matrix.
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. 1-, 4-, 8-byte element sizes are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

@sa transpose
Python prototype (for reference only):
transpose(src1[, dst[, stream]]) -> dst
Variant 2:
Transposes a matrix.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. 1-, 4-, 8-byte element sizes are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

@sa transpose
Python prototype (for reference only):
transpose(src1[, dst[, stream]]) -> dst

 Link to this function

 transpose(src1, opts)

 View Source

 @spec transpose(Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec transpose(Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Transposes a matrix.
Positional Arguments
	src1: Evision.Mat.t().
Source matrix. 1-, 4-, 8-byte element sizes are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

@sa transpose
Python prototype (for reference only):
transpose(src1[, dst[, stream]]) -> dst
Variant 2:
Transposes a matrix.
Positional Arguments
	src1: Evision.CUDA.GpuMat.t().
Source matrix. 1-, 4-, 8-byte element sizes are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

@sa transpose
Python prototype (for reference only):
transpose(src1[, dst[, stream]]) -> dst

 Link to this function

 unregisterPageLocked(m)

 View Source

 @spec unregisterPageLocked(Evision.Mat.maybe_mat_in()) :: :ok | {:error, String.t()}

Unmaps the memory of matrix and makes it pageable again.
Positional Arguments
	m: Evision.Mat.t().
Input matrix.

Python prototype (for reference only):
unregisterPageLocked(m) -> None

 Link to this function

 warpAffine(src, m, dsize)

 View Source

 @spec warpAffine(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec warpAffine(
 Evision.CUDA.GpuMat.t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
warpAffine
Positional Arguments
	src: Evision.Mat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst
Variant 2:
warpAffine
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst

 Link to this function

 warpAffine(src, m, dsize, opts)

 View Source

 @spec warpAffine(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec warpAffine(
 Evision.CUDA.GpuMat.t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
warpAffine
Positional Arguments
	src: Evision.Mat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst
Variant 2:
warpAffine
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
warpAffine(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst

 Link to this function

 warpPerspective(src, m, dsize)

 View Source

 @spec warpPerspective(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec warpPerspective(
 Evision.CUDA.GpuMat.t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
warpPerspective
Positional Arguments
	src: Evision.Mat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst
Variant 2:
warpPerspective
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst

 Link to this function

 warpPerspective(src, m, dsize, opts)

 View Source

 @spec warpPerspective(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec warpPerspective(
 Evision.CUDA.GpuMat.t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [borderMode: term(), flags: term(), borderValue: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
warpPerspective
Positional Arguments
	src: Evision.Mat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst
Variant 2:
warpPerspective
Positional Arguments
	src: Evision.CUDA.GpuMat.t()
	m: Evision.Mat.t()
	dsize: Size

Keyword Arguments
	flags: int.
	borderMode: int.
	borderValue: Scalar.
	stream: Evision.CUDA.Stream.t().

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
warpPerspective(src, M, dsize[, dst[, flags[, borderMode[, borderValue[, stream]]]]]) -> dst

 Link to this function

 wrapStream(cudaStreamMemoryAddress)

 View Source

 @spec wrapStream(integer()) :: Evision.CUDA.Stream.t() | {:error, String.t()}

Bindings overload to create a Stream object from the address stored in an existing CUDA Runtime API stream pointer (cudaStream_t).
Positional Arguments
	cudaStreamMemoryAddress: size_t.
Memory address stored in a CUDA Runtime API stream pointer (cudaStream_t). The created Stream object does not perform any allocation or deallocation and simply wraps existing raw CUDA Runtime API stream pointer.

Return
	retval: Evision.CUDA.Stream.t()

Note: Overload for generation of bindings only, not exported or intended for use internally from C++.
Python prototype (for reference only):
wrapStream(cudaStreamMemoryAddress) -> retval

 Evision.CUDA.BackgroundSubtractorMOG - Evision v0.1.39

Evision.CUDA.BackgroundSubtractorMOG

 Summary

 Types

 t()

 Type that represents an CUDA.BackgroundSubtractorMOG struct.

 Functions

 apply(self, image, learningRate, stream)

 Variant 1:
apply

 apply(self, image, learningRate, stream, opts)

 Variant 1:
apply

 getBackgroundImage(self, stream)

 getBackgroundImage

 getBackgroundImage(self, stream, opts)

 getBackgroundImage

 getBackgroundRatio(self)

 getBackgroundRatio

 getHistory(self)

 getHistory

 getNMixtures(self)

 getNMixtures

 getNoiseSigma(self)

 getNoiseSigma

 setBackgroundRatio(self, backgroundRatio)

 setBackgroundRatio

 setHistory(self, nframes)

 setHistory

 setNMixtures(self, nmix)

 setNMixtures

 setNoiseSigma(self, noiseSigma)

 setNoiseSigma

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.BackgroundSubtractorMOG{ref: reference()}

Type that represents an CUDA.BackgroundSubtractorMOG struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image, learningRate, stream)

 View Source

 @spec apply(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.CUDA.Stream.t()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.Stream.t()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	image: Evision.Mat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask
Variant 2:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	image: Evision.CUDA.GpuMat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask

 Link to this function

 apply(self, image, learningRate, stream, opts)

 View Source

 @spec apply(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	image: Evision.Mat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask
Variant 2:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	image: Evision.CUDA.GpuMat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask

 Link to this function

 getBackgroundImage(self, stream)

 View Source

 @spec getBackgroundImage(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.CUDA.Stream.t()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	stream: Evision.CUDA.Stream.t()

Return
	backgroundImage: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
getBackgroundImage(stream[, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, stream, opts)

 View Source

 @spec getBackgroundImage(
 Evision.BgSegm.BackgroundSubtractorMOG.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	stream: Evision.CUDA.Stream.t()

Return
	backgroundImage: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
getBackgroundImage(stream[, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundRatio(self)

 View Source

 @spec getBackgroundRatio(Evision.BgSegm.BackgroundSubtractorMOG.t()) ::
 number() | {:error, String.t()}

getBackgroundRatio
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()

Return
	retval: double

Python prototype (for reference only):
getBackgroundRatio() -> retval

 Link to this function

 getHistory(self)

 View Source

 @spec getHistory(Evision.BgSegm.BackgroundSubtractorMOG.t()) ::
 integer() | {:error, String.t()}

getHistory
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()

Return
	retval: int

Python prototype (for reference only):
getHistory() -> retval

 Link to this function

 getNMixtures(self)

 View Source

 @spec getNMixtures(Evision.BgSegm.BackgroundSubtractorMOG.t()) ::
 integer() | {:error, String.t()}

getNMixtures
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()

Return
	retval: int

Python prototype (for reference only):
getNMixtures() -> retval

 Link to this function

 getNoiseSigma(self)

 View Source

 @spec getNoiseSigma(Evision.BgSegm.BackgroundSubtractorMOG.t()) ::
 number() | {:error, String.t()}

getNoiseSigma
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()

Return
	retval: double

Python prototype (for reference only):
getNoiseSigma() -> retval

 Link to this function

 setBackgroundRatio(self, backgroundRatio)

 View Source

 @spec setBackgroundRatio(Evision.BgSegm.BackgroundSubtractorMOG.t(), number()) ::
 Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

setBackgroundRatio
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	backgroundRatio: double

Python prototype (for reference only):
setBackgroundRatio(backgroundRatio) -> None

 Link to this function

 setHistory(self, nframes)

 View Source

 @spec setHistory(Evision.BgSegm.BackgroundSubtractorMOG.t(), integer()) ::
 Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

setHistory
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	nframes: int

Python prototype (for reference only):
setHistory(nframes) -> None

 Link to this function

 setNMixtures(self, nmix)

 View Source

 @spec setNMixtures(Evision.BgSegm.BackgroundSubtractorMOG.t(), integer()) ::
 Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

setNMixtures
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	nmix: int

Python prototype (for reference only):
setNMixtures(nmix) -> None

 Link to this function

 setNoiseSigma(self, noiseSigma)

 View Source

 @spec setNoiseSigma(Evision.BgSegm.BackgroundSubtractorMOG.t(), number()) ::
 Evision.BgSegm.BackgroundSubtractorMOG.t() | {:error, String.t()}

setNoiseSigma
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG.t()
	noiseSigma: double

Python prototype (for reference only):
setNoiseSigma(noiseSigma) -> None

 Evision.CUDA.BackgroundSubtractorMOG2 - Evision v0.1.39

Evision.CUDA.BackgroundSubtractorMOG2

 Summary

 Types

 t()

 Type that represents an CUDA.BackgroundSubtractorMOG2 struct.

 Functions

 apply(self, image, learningRate, stream)

 Variant 1:
apply

 apply(self, image, learningRate, stream, opts)

 Variant 1:
apply

 getBackgroundImage(self, stream)

 getBackgroundImage

 getBackgroundImage(self, stream, opts)

 getBackgroundImage

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.BackgroundSubtractorMOG2{ref: reference()}

Type that represents an CUDA.BackgroundSubtractorMOG2 struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, image, learningRate, stream)

 View Source

 @spec apply(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.CUDA.Stream.t()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.Stream.t()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	image: Evision.Mat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask
Variant 2:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	image: Evision.CUDA.GpuMat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask

 Link to this function

 apply(self, image, learningRate, stream, opts)

 View Source

 @spec apply(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	image: Evision.Mat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.Mat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask
Variant 2:
apply
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	image: Evision.CUDA.GpuMat.t()
	learningRate: double
	stream: Evision.CUDA.Stream.t()

Return
	fgmask: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
apply(image, learningRate, stream[, fgmask]) -> fgmask

 Link to this function

 getBackgroundImage(self, stream)

 View Source

 @spec getBackgroundImage(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.CUDA.Stream.t()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	stream: Evision.CUDA.Stream.t()

Return
	backgroundImage: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
getBackgroundImage(stream[, backgroundImage]) -> backgroundImage

 Link to this function

 getBackgroundImage(self, stream, opts)

 View Source

 @spec getBackgroundImage(
 Evision.BackgroundSubtractorMOG2.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBackgroundImage
Positional Arguments
	self: Evision.CUDA.BackgroundSubtractorMOG2.t()
	stream: Evision.CUDA.Stream.t()

Return
	backgroundImage: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
getBackgroundImage(stream[, backgroundImage]) -> backgroundImage

 Evision.CUDA.BufferPool - Evision v0.1.39

Evision.CUDA.BufferPool

 Summary

 Types

 t()

 Type that represents an CUDA.BufferPool struct.

 Functions

 bufferPool(stream)

 BufferPool

 getAllocator(self)

 getAllocator

 getBuffer(self, size, type)

 getBuffer

 getBuffer(self, rows, cols, type)

 getBuffer

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.BufferPool{ref: reference()}

Type that represents an CUDA.BufferPool struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bufferPool(stream)

 View Source

 @spec bufferPool(Evision.CUDA.Stream.t()) :: t() | {:error, String.t()}

BufferPool
Positional Arguments
	stream: Evision.CUDA.Stream.t()

Return
	self: Evision.CUDA.BufferPool.t()

Python prototype (for reference only):
BufferPool(stream) -> <cuda_BufferPool object>

 Link to this function

 getAllocator(self)

 View Source

 @spec getAllocator(t()) :: reference() | {:error, String.t()}

getAllocator
Positional Arguments
	self: Evision.CUDA.BufferPool.t()

Return
	retval: GpuMat::Allocator

Python prototype (for reference only):
getAllocator() -> retval

 Link to this function

 getBuffer(self, size, type)

 View Source

 @spec getBuffer(t(), {number(), number()}, integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBuffer
Positional Arguments
	self: Evision.CUDA.BufferPool.t()
	size: Size
	type: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
getBuffer(size, type) -> retval

 Link to this function

 getBuffer(self, rows, cols, type)

 View Source

 @spec getBuffer(t(), integer(), integer(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

getBuffer
Positional Arguments
	self: Evision.CUDA.BufferPool.t()
	rows: int
	cols: int
	type: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
getBuffer(rows, cols, type) -> retval

 Evision.CUDA.CLAHE - Evision v0.1.39

Evision.CUDA.CLAHE

 Summary

 Types

 t()

 Type that represents an CUDA.CLAHE struct.

 Functions

 apply(self, src, stream)

 Variant 1:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.

 apply(self, src, stream, opts)

 Variant 1:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.CLAHE{ref: reference()}

Type that represents an CUDA.CLAHE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, src, stream)

 View Source

 @spec apply(Evision.CLAHE.t(), Evision.Mat.maybe_mat_in(), Evision.CUDA.Stream.t()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec apply(Evision.CLAHE.t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.Stream.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CUDA.CLAHE.t()

	src: Evision.Mat.t().
Source image with CV_8UC1 type.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
apply(src, stream[, dst]) -> dst
Variant 2:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CUDA.CLAHE.t()

	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
apply(src, stream[, dst]) -> dst

 Link to this function

 apply(self, src, stream, opts)

 View Source

 @spec apply(
 Evision.CLAHE.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 Evision.CLAHE.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CUDA.CLAHE.t()

	src: Evision.Mat.t().
Source image with CV_8UC1 type.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image.

Python prototype (for reference only):
apply(src, stream[, dst]) -> dst
Variant 2:
Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
Positional Arguments
	self: Evision.CUDA.CLAHE.t()

	src: Evision.CUDA.GpuMat.t().
Source image with CV_8UC1 type.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image.

Python prototype (for reference only):
apply(src, stream[, dst]) -> dst

 Evision.CUDA.CannyEdgeDetector - Evision v0.1.39

Evision.CUDA.CannyEdgeDetector

 Summary

 Types

 t()

 Type that represents an CUDA.CannyEdgeDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, image)

 Variant 1:
Finds edges in an image using the @cite Canny86 algorithm.

 detect(self, image, opts)

 Variant 1:
detect

 detect(self, dx, dy, opts)

 Variant 1:
detect

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getAppertureSize(self)

 getAppertureSize

 getDefaultName(self)

 getDefaultName

 getHighThreshold(self)

 getHighThreshold

 getL2Gradient(self)

 getL2Gradient

 getLowThreshold(self)

 getLowThreshold

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setAppertureSize(self, apperture_size)

 setAppertureSize

 setHighThreshold(self, high_thresh)

 setHighThreshold

 setL2Gradient(self, l2gradient)

 setL2Gradient

 setLowThreshold(self, low_thresh)

 setLowThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.CannyEdgeDetector{ref: reference()}

Type that represents an CUDA.CannyEdgeDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds edges in an image using the @cite Canny86 algorithm.
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	image: Evision.Mat.t().
Single-channel 8-bit input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.Mat.t().
Output edge map. It has the same size and type as image.

Python prototype (for reference only):
detect(image[, edges[, stream]]) -> edges
Variant 2:
Finds edges in an image using the @cite Canny86 algorithm.
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	image: Evision.CUDA.GpuMat.t().
Single-channel 8-bit input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.CUDA.GpuMat.t().
Output edge map. It has the same size and type as image.

Python prototype (for reference only):
detect(image[, edges[, stream]]) -> edges

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec detect(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	dx: Evision.Mat.t().
First derivative of image in the vertical direction. Support only CV_32S type.

	dy: Evision.Mat.t().
First derivative of image in the horizontal direction. Support only CV_32S type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.Mat.t().
Output edge map. It has the same size and type as image.

Has overloading in C++
Python prototype (for reference only):
detect(dx, dy[, edges[, stream]]) -> edges
Variant 2:
detect
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	dx: Evision.CUDA.GpuMat.t().
First derivative of image in the vertical direction. Support only CV_32S type.

	dy: Evision.CUDA.GpuMat.t().
First derivative of image in the horizontal direction. Support only CV_32S type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.CUDA.GpuMat.t().
Output edge map. It has the same size and type as image.

Has overloading in C++
Python prototype (for reference only):
detect(dx, dy[, edges[, stream]]) -> edges
Variant 3:
Finds edges in an image using the @cite Canny86 algorithm.
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	image: Evision.Mat.t().
Single-channel 8-bit input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.Mat.t().
Output edge map. It has the same size and type as image.

Python prototype (for reference only):
detect(image[, edges[, stream]]) -> edges
Variant 4:
Finds edges in an image using the @cite Canny86 algorithm.
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	image: Evision.CUDA.GpuMat.t().
Single-channel 8-bit input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.CUDA.GpuMat.t().
Output edge map. It has the same size and type as image.

Python prototype (for reference only):
detect(image[, edges[, stream]]) -> edges

 Link to this function

 detect(self, dx, dy, opts)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	dx: Evision.Mat.t().
First derivative of image in the vertical direction. Support only CV_32S type.

	dy: Evision.Mat.t().
First derivative of image in the horizontal direction. Support only CV_32S type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.Mat.t().
Output edge map. It has the same size and type as image.

Has overloading in C++
Python prototype (for reference only):
detect(dx, dy[, edges[, stream]]) -> edges
Variant 2:
detect
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

	dx: Evision.CUDA.GpuMat.t().
First derivative of image in the vertical direction. Support only CV_32S type.

	dy: Evision.CUDA.GpuMat.t().
First derivative of image in the horizontal direction. Support only CV_32S type.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	edges: Evision.CUDA.GpuMat.t().
Output edge map. It has the same size and type as image.

Has overloading in C++
Python prototype (for reference only):
detect(dx, dy[, edges[, stream]]) -> edges

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getAppertureSize(self)

 View Source

 @spec getAppertureSize(t()) :: integer() | {:error, String.t()}

getAppertureSize
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: int

Python prototype (for reference only):
getAppertureSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getHighThreshold(self)

 View Source

 @spec getHighThreshold(t()) :: number() | {:error, String.t()}

getHighThreshold
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: double

Python prototype (for reference only):
getHighThreshold() -> retval

 Link to this function

 getL2Gradient(self)

 View Source

 @spec getL2Gradient(t()) :: boolean() | {:error, String.t()}

getL2Gradient
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getL2Gradient() -> retval

 Link to this function

 getLowThreshold(self)

 View Source

 @spec getLowThreshold(t()) :: number() | {:error, String.t()}

getLowThreshold
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()

Return
	retval: double

Python prototype (for reference only):
getLowThreshold() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setAppertureSize(self, apperture_size)

 View Source

 @spec setAppertureSize(t(), integer()) :: t() | {:error, String.t()}

setAppertureSize
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	apperture_size: int

Python prototype (for reference only):
setAppertureSize(apperture_size) -> None

 Link to this function

 setHighThreshold(self, high_thresh)

 View Source

 @spec setHighThreshold(t(), number()) :: t() | {:error, String.t()}

setHighThreshold
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	high_thresh: double

Python prototype (for reference only):
setHighThreshold(high_thresh) -> None

 Link to this function

 setL2Gradient(self, l2gradient)

 View Source

 @spec setL2Gradient(t(), boolean()) :: t() | {:error, String.t()}

setL2Gradient
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	l2gradient: bool

Python prototype (for reference only):
setL2Gradient(L2gradient) -> None

 Link to this function

 setLowThreshold(self, low_thresh)

 View Source

 @spec setLowThreshold(t(), number()) :: t() | {:error, String.t()}

setLowThreshold
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	low_thresh: double

Python prototype (for reference only):
setLowThreshold(low_thresh) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.CannyEdgeDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.CascadeClassifier - Evision v0.1.39

Evision.CUDA.CascadeClassifier

 Summary

 Types

 t()

 Type that represents an CUDA.CascadeClassifier struct.

 Functions

 clear(self)

 Clears the algorithm state

 convert(self, objects)

 Converts objects array from internal representation to standard vector.

 convert(self, objects, opts)

 Converts objects array from internal representation to standard vector.

 create(filename)

 Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.

 detectMultiScale(self, image)

 Variant 1:
Detects objects of different sizes in the input image.

 detectMultiScale(self, image, opts)

 Variant 1:
Detects objects of different sizes in the input image.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getClassifierSize(self)

 getClassifierSize

 getDefaultName(self)

 getDefaultName

 getFindLargestObject(self)

 getFindLargestObject

 getMaxNumObjects(self)

 getMaxNumObjects

 getMaxObjectSize(self)

 getMaxObjectSize

 getMinNeighbors(self)

 getMinNeighbors

 getMinObjectSize(self)

 getMinObjectSize

 getScaleFactor(self)

 getScaleFactor

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setFindLargestObject(self, findLargestObject)

 setFindLargestObject

 setMaxNumObjects(self, maxNumObjects)

 setMaxNumObjects

 setMaxObjectSize(self, maxObjectSize)

 setMaxObjectSize

 setMinNeighbors(self, minNeighbors)

 setMinNeighbors

 setMinObjectSize(self, minSize)

 setMinObjectSize

 setScaleFactor(self, scaleFactor)

 setScaleFactor

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.CascadeClassifier{ref: reference()}

Type that represents an CUDA.CascadeClassifier struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 convert(self, objects)

 View Source

 @spec convert(Evision.CascadeClassifier.t(), [
 {number(), number(), number(), number()}
]) ::
 Evision.Mat.t() | {:error, String.t()}

Converts objects array from internal representation to standard vector.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	objects: [Rect].
Resulting array.

Return
	gpu_objects: Evision.Mat.t().
Objects array in internal representation.

Python prototype (for reference only):
convert(objects[, gpu_objects]) -> gpu_objects

 Link to this function

 convert(self, objects, opts)

 View Source

 @spec convert(
 Evision.CascadeClassifier.t(),
 [{number(), number(), number(), number()}],
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Converts objects array from internal representation to standard vector.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	objects: [Rect].
Resulting array.

Return
	gpu_objects: Evision.Mat.t().
Objects array in internal representation.

Python prototype (for reference only):
convert(objects[, gpu_objects]) -> gpu_objects

 Link to this function

 create(filename)

 View Source

 @spec create(binary()) :: t() | {:error, String.t()}

Loads the classifier from a file. Cascade type is detected automatically by constructor parameter.
Positional Arguments
	filename: String.
Name of the file from which the classifier is loaded. Only the old haar classifier
(trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new
type of OpenCV XML cascade supported for LBP. The working haar models can be found at opencv_folder/data/haarcascades_cuda/

Return
	retval: Evision.CUDA.CascadeClassifier.t()

Python prototype (for reference only):
create(filename) -> retval

 Link to this function

 detectMultiScale(self, image)

 View Source

 @spec detectMultiScale(Evision.CascadeClassifier.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detectMultiScale(Evision.CascadeClassifier.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects objects of different sizes in the input image.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of type CV_8U containing an image where objects should be detected.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	objects: Evision.Mat.t().
Buffer to store detected objects (rectangles).

To get final array of detected objects use CascadeClassifier::convert method.
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
cascade_gpu->detectMultiScale(image_gpu, objbuf);
std::vector<Rect> faces;
cascade_gpu->convert(objbuf, faces);
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
@sa CascadeClassifier::detectMultiScale
Python prototype (for reference only):
detectMultiScale(image[, objects[, stream]]) -> objects
Variant 2:
Detects objects of different sizes in the input image.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	image: Evision.CUDA.GpuMat.t().
Matrix of type CV_8U containing an image where objects should be detected.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	objects: Evision.CUDA.GpuMat.t().
Buffer to store detected objects (rectangles).

To get final array of detected objects use CascadeClassifier::convert method.
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
cascade_gpu->detectMultiScale(image_gpu, objbuf);
std::vector<Rect> faces;
cascade_gpu->convert(objbuf, faces);
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
@sa CascadeClassifier::detectMultiScale
Python prototype (for reference only):
detectMultiScale(image[, objects[, stream]]) -> objects

 Link to this function

 detectMultiScale(self, image, opts)

 View Source

 @spec detectMultiScale(
 Evision.CascadeClassifier.t(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec detectMultiScale(
 Evision.CascadeClassifier.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects objects of different sizes in the input image.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of type CV_8U containing an image where objects should be detected.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	objects: Evision.Mat.t().
Buffer to store detected objects (rectangles).

To get final array of detected objects use CascadeClassifier::convert method.
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
cascade_gpu->detectMultiScale(image_gpu, objbuf);
std::vector<Rect> faces;
cascade_gpu->convert(objbuf, faces);
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
@sa CascadeClassifier::detectMultiScale
Python prototype (for reference only):
detectMultiScale(image[, objects[, stream]]) -> objects
Variant 2:
Detects objects of different sizes in the input image.
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

	image: Evision.CUDA.GpuMat.t().
Matrix of type CV_8U containing an image where objects should be detected.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	objects: Evision.CUDA.GpuMat.t().
Buffer to store detected objects (rectangles).

To get final array of detected objects use CascadeClassifier::convert method.
Ptr<cuda::CascadeClassifier> cascade_gpu = cuda::CascadeClassifier::create(...);
Mat image_cpu = imread(...)
GpuMat image_gpu(image_cpu);
GpuMat objbuf;
cascade_gpu->detectMultiScale(image_gpu, objbuf);
std::vector<Rect> faces;
cascade_gpu->convert(objbuf, faces);
for(int i = 0; i < detections_num; ++i)
cv::rectangle(image_cpu, faces[i], Scalar(255));
imshow("Faces", image_cpu);
@sa CascadeClassifier::detectMultiScale
Python prototype (for reference only):
detectMultiScale(image[, objects[, stream]]) -> objects

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getClassifierSize(self)

 View Source

 @spec getClassifierSize(Evision.CascadeClassifier.t()) ::
 {number(), number()} | {:error, String.t()}

getClassifierSize
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: Size

Python prototype (for reference only):
getClassifierSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getFindLargestObject(self)

 View Source

 @spec getFindLargestObject(Evision.CascadeClassifier.t()) ::
 boolean() | {:error, String.t()}

getFindLargestObject
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
getFindLargestObject() -> retval

 Link to this function

 getMaxNumObjects(self)

 View Source

 @spec getMaxNumObjects(Evision.CascadeClassifier.t()) ::
 integer() | {:error, String.t()}

getMaxNumObjects
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: int

Python prototype (for reference only):
getMaxNumObjects() -> retval

 Link to this function

 getMaxObjectSize(self)

 View Source

 @spec getMaxObjectSize(Evision.CascadeClassifier.t()) ::
 {number(), number()} | {:error, String.t()}

getMaxObjectSize
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: Size

Python prototype (for reference only):
getMaxObjectSize() -> retval

 Link to this function

 getMinNeighbors(self)

 View Source

 @spec getMinNeighbors(Evision.CascadeClassifier.t()) ::
 integer() | {:error, String.t()}

getMinNeighbors
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: int

Python prototype (for reference only):
getMinNeighbors() -> retval

 Link to this function

 getMinObjectSize(self)

 View Source

 @spec getMinObjectSize(Evision.CascadeClassifier.t()) ::
 {number(), number()} | {:error, String.t()}

getMinObjectSize
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: Size

Python prototype (for reference only):
getMinObjectSize() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(Evision.CascadeClassifier.t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()

Return
	retval: double

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setFindLargestObject(self, findLargestObject)

 View Source

 @spec setFindLargestObject(Evision.CascadeClassifier.t(), boolean()) ::
 Evision.CascadeClassifier.t() | {:error, String.t()}

setFindLargestObject
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	findLargestObject: bool

Python prototype (for reference only):
setFindLargestObject(findLargestObject) -> None

 Link to this function

 setMaxNumObjects(self, maxNumObjects)

 View Source

 @spec setMaxNumObjects(Evision.CascadeClassifier.t(), integer()) ::
 Evision.CascadeClassifier.t() | {:error, String.t()}

setMaxNumObjects
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	maxNumObjects: int

Python prototype (for reference only):
setMaxNumObjects(maxNumObjects) -> None

 Link to this function

 setMaxObjectSize(self, maxObjectSize)

 View Source

 @spec setMaxObjectSize(
 Evision.CascadeClassifier.t(),
 {number(), number()}
) :: Evision.CascadeClassifier.t() | {:error, String.t()}

setMaxObjectSize
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	maxObjectSize: Size

Has overloading in C++
Python prototype (for reference only):
setMaxObjectSize(maxObjectSize) -> None

 Link to this function

 setMinNeighbors(self, minNeighbors)

 View Source

 @spec setMinNeighbors(Evision.CascadeClassifier.t(), integer()) ::
 Evision.CascadeClassifier.t() | {:error, String.t()}

setMinNeighbors
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	minNeighbors: int

Python prototype (for reference only):
setMinNeighbors(minNeighbors) -> None

 Link to this function

 setMinObjectSize(self, minSize)

 View Source

 @spec setMinObjectSize(
 Evision.CascadeClassifier.t(),
 {number(), number()}
) :: Evision.CascadeClassifier.t() | {:error, String.t()}

setMinObjectSize
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	minSize: Size

Python prototype (for reference only):
setMinObjectSize(minSize) -> None

 Link to this function

 setScaleFactor(self, scaleFactor)

 View Source

 @spec setScaleFactor(Evision.CascadeClassifier.t(), number()) ::
 Evision.CascadeClassifier.t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	scaleFactor: double

Python prototype (for reference only):
setScaleFactor(scaleFactor) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.CascadeClassifier.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.Convolution - Evision v0.1.39

Evision.CUDA.Convolution

 Summary

 Types

 t()

 Type that represents an CUDA.Convolution struct.

 Functions

 clear(self)

 Clears the algorithm state

 convolve(self, image, templ)

 Variant 1:
Computes a convolution (or cross-correlation) of two images.

 convolve(self, image, templ, opts)

 Variant 1:
Computes a convolution (or cross-correlation) of two images.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.Convolution{ref: reference()}

Type that represents an CUDA.Convolution struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.Convolution.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 convolve(self, image, templ)

 View Source

 @spec convolve(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec convolve(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a convolution (or cross-correlation) of two images.
Positional Arguments
	self: Evision.CUDA.Convolution.t()

	image: Evision.Mat.t().
Source image. Only CV_32FC1 images are supported for now.

	templ: Evision.Mat.t().
Template image. The size is not greater than the image size. The type is the same as
image .

Keyword Arguments
	ccorr: bool.
Flags to evaluate cross-correlation instead of convolution.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Result image. If image is W x H and templ is w x h, then result must be W-w+1 x
H-h+1.

Python prototype (for reference only):
convolve(image, templ[, result[, ccorr[, stream]]]) -> result
Variant 2:
Computes a convolution (or cross-correlation) of two images.
Positional Arguments
	self: Evision.CUDA.Convolution.t()

	image: Evision.CUDA.GpuMat.t().
Source image. Only CV_32FC1 images are supported for now.

	templ: Evision.CUDA.GpuMat.t().
Template image. The size is not greater than the image size. The type is the same as
image .

Keyword Arguments
	ccorr: bool.
Flags to evaluate cross-correlation instead of convolution.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Result image. If image is W x H and templ is w x h, then result must be W-w+1 x
H-h+1.

Python prototype (for reference only):
convolve(image, templ[, result[, ccorr[, stream]]]) -> result

 Link to this function

 convolve(self, image, templ, opts)

 View Source

 @spec convolve(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [ccorr: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec convolve(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [ccorr: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a convolution (or cross-correlation) of two images.
Positional Arguments
	self: Evision.CUDA.Convolution.t()

	image: Evision.Mat.t().
Source image. Only CV_32FC1 images are supported for now.

	templ: Evision.Mat.t().
Template image. The size is not greater than the image size. The type is the same as
image .

Keyword Arguments
	ccorr: bool.
Flags to evaluate cross-correlation instead of convolution.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Result image. If image is W x H and templ is w x h, then result must be W-w+1 x
H-h+1.

Python prototype (for reference only):
convolve(image, templ[, result[, ccorr[, stream]]]) -> result
Variant 2:
Computes a convolution (or cross-correlation) of two images.
Positional Arguments
	self: Evision.CUDA.Convolution.t()

	image: Evision.CUDA.GpuMat.t().
Source image. Only CV_32FC1 images are supported for now.

	templ: Evision.CUDA.GpuMat.t().
Template image. The size is not greater than the image size. The type is the same as
image .

Keyword Arguments
	ccorr: bool.
Flags to evaluate cross-correlation instead of convolution.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Result image. If image is W x H and templ is w x h, then result must be W-w+1 x
H-h+1.

Python prototype (for reference only):
convolve(image, templ[, result[, ccorr[, stream]]]) -> result

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.Convolution.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.Convolution.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.Convolution.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.Convolution.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.Convolution.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.Convolution.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.CornernessCriteria - Evision v0.1.39

Evision.CUDA.CornernessCriteria

 Summary

 Types

 t()

 Type that represents an CUDA.CornernessCriteria struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, src)

 Variant 1:
Computes the cornerness criteria at each image pixel.

 compute(self, src, opts)

 Variant 1:
Computes the cornerness criteria at each image pixel.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.CornernessCriteria{ref: reference()}

Type that represents an CUDA.CornernessCriteria struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, src)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the cornerness criteria at each image pixel.
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.

Python prototype (for reference only):
compute(src[, dst[, stream]]) -> dst
Variant 2:
Computes the cornerness criteria at each image pixel.
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.

Python prototype (for reference only):
compute(src[, dst[, stream]]) -> dst

 Link to this function

 compute(self, src, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes the cornerness criteria at each image pixel.
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

	src: Evision.Mat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.

Python prototype (for reference only):
compute(src[, dst[, stream]]) -> dst
Variant 2:
Computes the cornerness criteria at each image pixel.
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

	src: Evision.CUDA.GpuMat.t().
Source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination image containing cornerness values. It will have the same size as src and
CV_32FC1 type.

Python prototype (for reference only):
compute(src[, dst[, stream]]) -> dst

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.CornernessCriteria.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.CornersDetector - Evision v0.1.39

Evision.CUDA.CornersDetector

 Summary

 Types

 t()

 Type that represents an CUDA.CornersDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, image)

 Variant 1:
Determines strong corners on an image.

 detect(self, image, opts)

 Variant 1:
Determines strong corners on an image.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.CornersDetector{ref: reference()}

Type that represents an CUDA.CornersDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Determines strong corners on an image.
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	corners: Evision.Mat.t().
Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).

Python prototype (for reference only):
detect(image[, corners[, mask[, stream]]]) -> corners
Variant 2:
Determines strong corners on an image.
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

	image: Evision.CUDA.GpuMat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	corners: Evision.CUDA.GpuMat.t().
Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).

Python prototype (for reference only):
detect(image[, corners[, mask[, stream]]]) -> corners

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [mask: term(), stream: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Determines strong corners on an image.
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

	image: Evision.Mat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

Keyword Arguments
	mask: Evision.Mat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	corners: Evision.Mat.t().
Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).

Python prototype (for reference only):
detect(image[, corners[, mask[, stream]]]) -> corners
Variant 2:
Determines strong corners on an image.
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

	image: Evision.CUDA.GpuMat.t().
Input 8-bit or floating-point 32-bit, single-channel image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are detected.

	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	corners: Evision.CUDA.GpuMat.t().
Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
positions).

Python prototype (for reference only):
detect(image[, corners[, mask[, stream]]]) -> corners

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.CornersDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.DFT - Evision v0.1.39

Evision.CUDA.DFT

 Summary

 Types

 t()

 Type that represents an CUDA.DFT struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, image)

 Variant 1:
Computes an FFT of a given image.

 compute(self, image, opts)

 Variant 1:
Computes an FFT of a given image.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.DFT{ref: reference()}

Type that represents an CUDA.DFT struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.DFT.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, image)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an FFT of a given image.
Positional Arguments
	self: Evision.CUDA.DFT.t()

	image: Evision.Mat.t().
Source image. Only CV_32FC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Result image.

Python prototype (for reference only):
compute(image[, result[, stream]]) -> result
Variant 2:
Computes an FFT of a given image.
Positional Arguments
	self: Evision.CUDA.DFT.t()

	image: Evision.CUDA.GpuMat.t().
Source image. Only CV_32FC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Result image.

Python prototype (for reference only):
compute(image[, result[, stream]]) -> result

 Link to this function

 compute(self, image, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes an FFT of a given image.
Positional Arguments
	self: Evision.CUDA.DFT.t()

	image: Evision.Mat.t().
Source image. Only CV_32FC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Result image.

Python prototype (for reference only):
compute(image[, result[, stream]]) -> result
Variant 2:
Computes an FFT of a given image.
Positional Arguments
	self: Evision.CUDA.DFT.t()

	image: Evision.CUDA.GpuMat.t().
Source image. Only CV_32FC1 images are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Result image.

Python prototype (for reference only):
compute(image[, result[, stream]]) -> result

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.DFT.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.DFT.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.DFT.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.DFT.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.DFT.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.DFT.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.DescriptorMatcher - Evision v0.1.39

Evision.CUDA.DescriptorMatcher

 Summary

 Types

 t()

 Type that represents an CUDA.DescriptorMatcher struct.

 Functions

 add(self, descriptors)

 Adds descriptors to train a descriptor collection.

 clear(self)

 Clears the train descriptor collection.

 createBFMatcher()

 Brute-force descriptor matcher.

 createBFMatcher(opts)

 Brute-force descriptor matcher.

 empty(self)

 Returns true if there are no train descriptors in the collection.

 getDefaultName(self)

 getDefaultName

 getTrainDescriptors(self)

 Returns a constant link to the train descriptor collection.

 isMaskSupported(self)

 Returns true if the descriptor matcher supports masking permissible matches.

 knnMatch(self, queryDescriptors, k)

 Variant 1:
knnMatch

 knnMatch(self, queryDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).

 knnMatchAsync(self, queryDescriptors, k)

 Variant 1:
knnMatchAsync

 knnMatchAsync(self, queryDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).

 knnMatchAsync(self, queryDescriptors, trainDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).

 knnMatchConvert(self, gpu_matches)

 Variant 1:
Converts matches array from internal representation to standard matches vector.

 knnMatchConvert(self, gpu_matches, opts)

 Variant 1:
Converts matches array from internal representation to standard matches vector.

 match(self, queryDescriptors)

 Variant 1:
match

 match(self, queryDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set (blocking version).

 match(self, queryDescriptors, trainDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set (blocking version).

 matchAsync(self, queryDescriptors)

 Variant 1:
matchAsync

 matchAsync(self, queryDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).

 matchAsync(self, queryDescriptors, trainDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).

 matchConvert(self, gpu_matches)

 Variant 1:
Converts matches array from internal representation to standard matches vector.

 radiusMatch(self, queryDescriptors, maxDistance)

 Variant 1:
radiusMatch

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).

 radiusMatchAsync(self, queryDescriptors, maxDistance)

 Variant 1:
radiusMatchAsync

 radiusMatchAsync(self, queryDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).

 radiusMatchAsync(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).

 radiusMatchConvert(self, gpu_matches)

 Variant 1:
Converts matches array from internal representation to standard matches vector.

 radiusMatchConvert(self, gpu_matches, opts)

 Variant 1:
Converts matches array from internal representation to standard matches vector.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 train(self)

 Trains a descriptor matcher.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.DescriptorMatcher{ref: reference()}

Type that represents an CUDA.DescriptorMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, descriptors)

 View Source

 @spec add(Evision.DescriptorMatcher.t(), [Evision.CUDA.GpuMat.t()]) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Adds descriptors to train a descriptor collection.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	descriptors: [Evision.CUDA.GpuMat].
Descriptors to add. Each descriptors[i] is a set of descriptors from the same
train image.

If the collection is not empty, the new descriptors are added to existing train descriptors.
Python prototype (for reference only):
add(descriptors) -> None

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clears the train descriptor collection.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 createBFMatcher()

 View Source

 @spec createBFMatcher() :: t() | {:error, String.t()}

Brute-force descriptor matcher.
Keyword Arguments
	normType: int.
One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF).

Return
	retval: Evision.CUDA.DescriptorMatcher.t()

For each descriptor in the first set, this matcher finds the closest descriptor in the second set
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
sets.
Python prototype (for reference only):
createBFMatcher([, normType]) -> retval

 Link to this function

 createBFMatcher(opts)

 View Source

 @spec createBFMatcher([{:normType, term()}] | nil) :: t() | {:error, String.t()}

Brute-force descriptor matcher.
Keyword Arguments
	normType: int.
One of NORM_L1, NORM_L2, NORM_HAMMING. L1 and L2 norms are
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
BRIEF).

Return
	retval: Evision.CUDA.DescriptorMatcher.t()

For each descriptor in the first set, this matcher finds the closest descriptor in the second set
by trying each one. This descriptor matcher supports masking permissible matches of descriptor
sets.
Python prototype (for reference only):
createBFMatcher([, normType]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.DescriptorMatcher.t()) :: boolean() | {:error, String.t()}

Returns true if there are no train descriptors in the collection.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTrainDescriptors(self)

 View Source

 @spec getTrainDescriptors(Evision.DescriptorMatcher.t()) ::
 [Evision.CUDA.GpuMat.t()] | {:error, String.t()}

Returns a constant link to the train descriptor collection.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Return
	retval: [Evision.CUDA.GpuMat]

Python prototype (for reference only):
getTrainDescriptors() -> retval

 Link to this function

 isMaskSupported(self)

 View Source

 @spec isMaskSupported(Evision.DescriptorMatcher.t()) ::
 boolean() | {:error, String.t()}

Returns true if the descriptor matcher supports masking permissible matches.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
isMaskSupported() -> retval

 Link to this function

 knnMatch(self, queryDescriptors, k)

 View Source

 @spec knnMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
knnMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
Variant 2:
knnMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 3:
knnMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches
Variant 4:
knnMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 knnMatchAsync(self, queryDescriptors, k)

 View Source

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec knnMatchAsync(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t(), integer()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
knnMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
Variant 2:
knnMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches

 Link to this function

 knnMatchAsync(self, queryDescriptors, k, opts)

 View Source

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [stream: term(), masks: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [stream: term(), masks: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.

These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.

These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 3:
knnMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches
Variant 4:
knnMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	k: int

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, k[, matches[, masks[, stream]]]) -> matches

 Link to this function

 knnMatchAsync(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec knnMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 integer(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.

These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the k best matches for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::knnMatchConvert method to retrieve results in standard representation.

These extended variants of DescriptorMatcher::matchAsync methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::matchAsync
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatchAsync(queryDescriptors, trainDescriptors, k[, matches[, mask[, stream]]]) -> matches

 Link to this function

 knnMatchConvert(self, gpu_matches)

 View Source

 @spec knnMatchConvert(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatchConvert(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.Mat.t().
Matches, returned from DescriptorMatcher::knnMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result.
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.CUDA.GpuMat.t().
Matches, returned from DescriptorMatcher::knnMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result.
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches

 Link to this function

 knnMatchConvert(self, gpu_matches, opts)

 View Source

 @spec knnMatchConvert(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [{:compactResult, term()}] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatchConvert(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 [{:compactResult, term()}] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.Mat.t().
Matches, returned from DescriptorMatcher::knnMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result.
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.CUDA.GpuMat.t().
Matches, returned from DescriptorMatcher::knnMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::knnMatchAsync to get final result.
Call this method only after DescriptorMatcher::knnMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
knnMatchConvert(gpu_matches[, compactResult]) -> matches

 Link to this function

 match(self, queryDescriptors)

 View Source

 @spec match(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
match
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].

Return
	matches: [Evision.DMatch]

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
Variant 2:
match
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].

Return
	matches: [Evision.DMatch]

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [{:masks, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 [{:masks, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 3:
match
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].

Return
	matches: [Evision.DMatch]

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches
Variant 4:
match
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].

Return
	matches: [Evision.DMatch]

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) :: [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:mask, term()}] | nil
) :: [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 matchAsync(self, queryDescriptors)

 View Source

 @spec matchAsync(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec matchAsync(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
matchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
Variant 2:
matchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches

 Link to this function

 matchAsync(self, queryDescriptors, opts)

 View Source

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), masks: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), masks: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 3:
matchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches
Variant 4:
matchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
matchAsync(queryDescriptors[, matches[, masks[, stream]]]) -> matches

 Link to this function

 matchAsync(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec matchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches
Variant 2:
Finds the best match for each descriptor from a query set (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::matchConvert method to retrieve results in standard representation.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
matchAsync(queryDescriptors, trainDescriptors[, matches[, mask[, stream]]]) -> matches

 Link to this function

 matchConvert(self, gpu_matches)

 View Source

 @spec matchConvert(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec matchConvert(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.Mat.t().
Matches, returned from DescriptorMatcher::matchAsync.

Return
	matches: [Evision.DMatch].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::matchAsync to get final result.
Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
matchConvert(gpu_matches) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.CUDA.GpuMat.t().
Matches, returned from DescriptorMatcher::matchAsync.

Return
	matches: [Evision.DMatch].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::matchAsync to get final result.
Call this method only after DescriptorMatcher::matchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
matchConvert(gpu_matches) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance)

 View Source

 @spec radiusMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), number()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t(), number()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
radiusMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
Variant 2:
radiusMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 3:
radiusMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches
Variant 4:
radiusMatch
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	compactResult: bool.

Return
	matches: [[Evision.DMatch]]

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (blocking version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches

 Link to this function

 radiusMatchAsync(self, queryDescriptors, maxDistance)

 View Source

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 number()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
radiusMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
Variant 2:
radiusMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches

 Link to this function

 radiusMatchAsync(self, queryDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [stream: term(), masks: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 [stream: term(), masks: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 3:
radiusMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.Mat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches
Variant 4:
radiusMatchAsync
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	queryDescriptors: Evision.CUDA.GpuMat.t()
	maxDistance: float

Keyword Arguments
	masks: [Evision.CUDA.GpuMat].
	stream: Evision.CUDA.Stream.t().

Return
	matches: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, maxDistance[, matches[, masks[, stream]]]) -> matches

 Link to this function

 radiusMatchAsync(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec radiusMatchAsync(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 number(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.Mat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches
Variant 2:
For each query descriptor, finds the training descriptors not farther than the specified distance (asynchronous version).
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	queryDescriptors: Evision.CUDA.GpuMat.t().
Query set of descriptors.

	trainDescriptors: Evision.CUDA.GpuMat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	matches: Evision.CUDA.GpuMat.t().
Matches array stored in GPU memory. Internal representation is not defined.
Use DescriptorMatcher::radiusMatchConvert method to retrieve results in standard representation.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatchAsync(queryDescriptors, trainDescriptors, maxDistance[, matches[, mask[, stream]]]) -> matches

 Link to this function

 radiusMatchConvert(self, gpu_matches)

 View Source

 @spec radiusMatchConvert(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatchConvert(Evision.DescriptorMatcher.t(), Evision.CUDA.GpuMat.t()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.Mat.t().
Matches, returned from DescriptorMatcher::radiusMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result.
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.CUDA.GpuMat.t().
Matches, returned from DescriptorMatcher::radiusMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result.
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches

 Link to this function

 radiusMatchConvert(self, gpu_matches, opts)

 View Source

 @spec radiusMatchConvert(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [{:compactResult, term()}] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatchConvert(
 Evision.DescriptorMatcher.t(),
 Evision.CUDA.GpuMat.t(),
 [{:compactResult, term()}] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.Mat.t().
Matches, returned from DescriptorMatcher::radiusMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result.
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches
Variant 2:
Converts matches array from internal representation to standard matches vector.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

	gpu_matches: Evision.CUDA.GpuMat.t().
Matches, returned from DescriptorMatcher::radiusMatchAsync.

Keyword Arguments
	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Vector of DMatch objects.

The method is supposed to be used with DescriptorMatcher::radiusMatchAsync to get final result.
Call this method only after DescriptorMatcher::radiusMatchAsync is completed (ie. after synchronization).
Python prototype (for reference only):
radiusMatchConvert(gpu_matches[, compactResult]) -> matches

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self)

 View Source

 @spec train(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Trains a descriptor matcher.
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()

Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
train() is run every time before matching.
Python prototype (for reference only):
train() -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.DescriptorMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.DeviceInfo - Evision v0.1.39

Evision.CUDA.DeviceInfo

 Summary

 Types

 t()

 Type that represents an CUDA.DeviceInfo struct.

 Functions

 asyncEngineCount(self)

 asyncEngineCount

 canMapHostMemory(self)

 canMapHostMemory

 clockRate(self)

 clockRate

 computeMode(self)

 computeMode

 concurrentKernels(self)

 concurrentKernels

 deviceID(self)

 Returns system index of the CUDA device starting with 0.

 deviceInfo()

 DeviceInfo

 deviceInfo(device_id)

 The constructors.

 eccEnabled(self)

 ECCEnabled

 freeMemory(self)

 freeMemory

 integrated(self)

 integrated

 isCompatible(self)

 Checks the CUDA module and device compatibility.

 kernelExecTimeoutEnabled(self)

 kernelExecTimeoutEnabled

 l2CacheSize(self)

 l2CacheSize

 majorVersion(self)

 majorVersion

 maxGridSize(self)

 maxGridSize

 maxSurface1D(self)

 maxSurface1D

 maxSurface1DLayered(self)

 maxSurface1DLayered

 maxSurface2D(self)

 maxSurface2D

 maxSurface2DLayered(self)

 maxSurface2DLayered

 maxSurface3D(self)

 maxSurface3D

 maxSurfaceCubemap(self)

 maxSurfaceCubemap

 maxSurfaceCubemapLayered(self)

 maxSurfaceCubemapLayered

 maxTexture1D(self)

 maxTexture1D

 maxTexture1DLayered(self)

 maxTexture1DLayered

 maxTexture1DLinear(self)

 maxTexture1DLinear

 maxTexture1DMipmap(self)

 maxTexture1DMipmap

 maxTexture2D(self)

 maxTexture2D

 maxTexture2DGather(self)

 maxTexture2DGather

 maxTexture2DLayered(self)

 maxTexture2DLayered

 maxTexture2DLinear(self)

 maxTexture2DLinear

 maxTexture2DMipmap(self)

 maxTexture2DMipmap

 maxTexture3D(self)

 maxTexture3D

 maxTextureCubemap(self)

 maxTextureCubemap

 maxTextureCubemapLayered(self)

 maxTextureCubemapLayered

 maxThreadsDim(self)

 maxThreadsDim

 maxThreadsPerBlock(self)

 maxThreadsPerBlock

 maxThreadsPerMultiProcessor(self)

 maxThreadsPerMultiProcessor

 memoryBusWidth(self)

 memoryBusWidth

 memoryClockRate(self)

 memoryClockRate

 memPitch(self)

 memPitch

 minorVersion(self)

 minorVersion

 multiProcessorCount(self)

 multiProcessorCount

 pciBusID(self)

 pciBusID

 pciDeviceID(self)

 pciDeviceID

 pciDomainID(self)

 pciDomainID

 queryMemory(self, totalMemory, freeMemory)

 queryMemory

 regsPerBlock(self)

 regsPerBlock

 sharedMemPerBlock(self)

 sharedMemPerBlock

 surfaceAlignment(self)

 surfaceAlignment

 tccDriver(self)

 tccDriver

 textureAlignment(self)

 textureAlignment

 texturePitchAlignment(self)

 texturePitchAlignment

 totalConstMem(self)

 totalConstMem

 totalGlobalMem(self)

 totalGlobalMem

 totalMemory(self)

 totalMemory

 unifiedAddressing(self)

 unifiedAddressing

 warpSize(self)

 warpSize

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.DeviceInfo{ref: reference()}

Type that represents an CUDA.DeviceInfo struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 asyncEngineCount(self)

 View Source

 @spec asyncEngineCount(t()) :: integer() | {:error, String.t()}

asyncEngineCount
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
asyncEngineCount() -> retval

 Link to this function

 canMapHostMemory(self)

 View Source

 @spec canMapHostMemory(t()) :: boolean() | {:error, String.t()}

canMapHostMemory
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
canMapHostMemory() -> retval

 Link to this function

 clockRate(self)

 View Source

 @spec clockRate(t()) :: integer() | {:error, String.t()}

clockRate
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
clockRate() -> retval

 Link to this function

 computeMode(self)

 View Source

 @spec computeMode(t()) :: integer() | {:error, String.t()}

computeMode
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: DeviceInfo::ComputeMode

Python prototype (for reference only):
computeMode() -> retval

 Link to this function

 concurrentKernels(self)

 View Source

 @spec concurrentKernels(t()) :: boolean() | {:error, String.t()}

concurrentKernels
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
concurrentKernels() -> retval

 Link to this function

 deviceID(self)

 View Source

 @spec deviceID(t()) :: integer() | {:error, String.t()}

Returns system index of the CUDA device starting with 0.
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
deviceID() -> retval

 Link to this function

 deviceInfo()

 View Source

 @spec deviceInfo() :: t() | {:error, String.t()}

DeviceInfo
Return
	self: Evision.CUDA.DeviceInfo.t()

Python prototype (for reference only):
DeviceInfo() -> <cuda_DeviceInfo object>

 Link to this function

 deviceInfo(device_id)

 View Source

 @spec deviceInfo(integer()) :: t() | {:error, String.t()}

The constructors.
Positional Arguments
	device_id: int.
System index of the CUDA device starting with 0.

Return
	self: Evision.CUDA.DeviceInfo.t()

Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
constructs an object for the current device.
Python prototype (for reference only):
DeviceInfo(device_id) -> <cuda_DeviceInfo object>

 Link to this function

 eccEnabled(self)

 View Source

 @spec eccEnabled(t()) :: boolean() | {:error, String.t()}

ECCEnabled
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
ECCEnabled() -> retval

 Link to this function

 freeMemory(self)

 View Source

 @spec freeMemory(t()) :: integer() | {:error, String.t()}

freeMemory
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
freeMemory() -> retval

 Link to this function

 integrated(self)

 View Source

 @spec integrated(t()) :: boolean() | {:error, String.t()}

integrated
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
integrated() -> retval

 Link to this function

 isCompatible(self)

 View Source

 @spec isCompatible(t()) :: boolean() | {:error, String.t()}

Checks the CUDA module and device compatibility.
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

This function returns true if the CUDA module can be run on the specified device. Otherwise, it
returns false .
Python prototype (for reference only):
isCompatible() -> retval

 Link to this function

 kernelExecTimeoutEnabled(self)

 View Source

 @spec kernelExecTimeoutEnabled(t()) :: boolean() | {:error, String.t()}

kernelExecTimeoutEnabled
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
kernelExecTimeoutEnabled() -> retval

 Link to this function

 l2CacheSize(self)

 View Source

 @spec l2CacheSize(t()) :: integer() | {:error, String.t()}

l2CacheSize
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
l2CacheSize() -> retval

 Link to this function

 majorVersion(self)

 View Source

 @spec majorVersion(t()) :: integer() | {:error, String.t()}

majorVersion
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
majorVersion() -> retval

 Link to this function

 maxGridSize(self)

 View Source

 @spec maxGridSize(t()) :: {integer(), integer(), integer()} | {:error, String.t()}

maxGridSize
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxGridSize() -> retval

 Link to this function

 maxSurface1D(self)

 View Source

 @spec maxSurface1D(t()) :: integer() | {:error, String.t()}

maxSurface1D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxSurface1D() -> retval

 Link to this function

 maxSurface1DLayered(self)

 View Source

 @spec maxSurface1DLayered(t()) :: {integer(), integer()} | {:error, String.t()}

maxSurface1DLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxSurface1DLayered() -> retval

 Link to this function

 maxSurface2D(self)

 View Source

 @spec maxSurface2D(t()) :: {integer(), integer()} | {:error, String.t()}

maxSurface2D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxSurface2D() -> retval

 Link to this function

 maxSurface2DLayered(self)

 View Source

 @spec maxSurface2DLayered(t()) ::
 {integer(), integer(), integer()} | {:error, String.t()}

maxSurface2DLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxSurface2DLayered() -> retval

 Link to this function

 maxSurface3D(self)

 View Source

 @spec maxSurface3D(t()) :: {integer(), integer(), integer()} | {:error, String.t()}

maxSurface3D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxSurface3D() -> retval

 Link to this function

 maxSurfaceCubemap(self)

 View Source

 @spec maxSurfaceCubemap(t()) :: integer() | {:error, String.t()}

maxSurfaceCubemap
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxSurfaceCubemap() -> retval

 Link to this function

 maxSurfaceCubemapLayered(self)

 View Source

 @spec maxSurfaceCubemapLayered(t()) :: {integer(), integer()} | {:error, String.t()}

maxSurfaceCubemapLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxSurfaceCubemapLayered() -> retval

 Link to this function

 maxTexture1D(self)

 View Source

 @spec maxTexture1D(t()) :: integer() | {:error, String.t()}

maxTexture1D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxTexture1D() -> retval

 Link to this function

 maxTexture1DLayered(self)

 View Source

 @spec maxTexture1DLayered(t()) :: {integer(), integer()} | {:error, String.t()}

maxTexture1DLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxTexture1DLayered() -> retval

 Link to this function

 maxTexture1DLinear(self)

 View Source

 @spec maxTexture1DLinear(t()) :: integer() | {:error, String.t()}

maxTexture1DLinear
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxTexture1DLinear() -> retval

 Link to this function

 maxTexture1DMipmap(self)

 View Source

 @spec maxTexture1DMipmap(t()) :: integer() | {:error, String.t()}

maxTexture1DMipmap
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxTexture1DMipmap() -> retval

 Link to this function

 maxTexture2D(self)

 View Source

 @spec maxTexture2D(t()) :: {integer(), integer()} | {:error, String.t()}

maxTexture2D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxTexture2D() -> retval

 Link to this function

 maxTexture2DGather(self)

 View Source

 @spec maxTexture2DGather(t()) :: {integer(), integer()} | {:error, String.t()}

maxTexture2DGather
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxTexture2DGather() -> retval

 Link to this function

 maxTexture2DLayered(self)

 View Source

 @spec maxTexture2DLayered(t()) ::
 {integer(), integer(), integer()} | {:error, String.t()}

maxTexture2DLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxTexture2DLayered() -> retval

 Link to this function

 maxTexture2DLinear(self)

 View Source

 @spec maxTexture2DLinear(t()) ::
 {integer(), integer(), integer()} | {:error, String.t()}

maxTexture2DLinear
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxTexture2DLinear() -> retval

 Link to this function

 maxTexture2DMipmap(self)

 View Source

 @spec maxTexture2DMipmap(t()) :: {integer(), integer()} | {:error, String.t()}

maxTexture2DMipmap
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxTexture2DMipmap() -> retval

 Link to this function

 maxTexture3D(self)

 View Source

 @spec maxTexture3D(t()) :: {integer(), integer(), integer()} | {:error, String.t()}

maxTexture3D
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxTexture3D() -> retval

 Link to this function

 maxTextureCubemap(self)

 View Source

 @spec maxTextureCubemap(t()) :: integer() | {:error, String.t()}

maxTextureCubemap
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxTextureCubemap() -> retval

 Link to this function

 maxTextureCubemapLayered(self)

 View Source

 @spec maxTextureCubemapLayered(t()) :: {integer(), integer()} | {:error, String.t()}

maxTextureCubemapLayered
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec2i

Python prototype (for reference only):
maxTextureCubemapLayered() -> retval

 Link to this function

 maxThreadsDim(self)

 View Source

 @spec maxThreadsDim(t()) :: {integer(), integer(), integer()} | {:error, String.t()}

maxThreadsDim
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: Vec3i

Python prototype (for reference only):
maxThreadsDim() -> retval

 Link to this function

 maxThreadsPerBlock(self)

 View Source

 @spec maxThreadsPerBlock(t()) :: integer() | {:error, String.t()}

maxThreadsPerBlock
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxThreadsPerBlock() -> retval

 Link to this function

 maxThreadsPerMultiProcessor(self)

 View Source

 @spec maxThreadsPerMultiProcessor(t()) :: integer() | {:error, String.t()}

maxThreadsPerMultiProcessor
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
maxThreadsPerMultiProcessor() -> retval

 Link to this function

 memoryBusWidth(self)

 View Source

 @spec memoryBusWidth(t()) :: integer() | {:error, String.t()}

memoryBusWidth
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
memoryBusWidth() -> retval

 Link to this function

 memoryClockRate(self)

 View Source

 @spec memoryClockRate(t()) :: integer() | {:error, String.t()}

memoryClockRate
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
memoryClockRate() -> retval

 Link to this function

 memPitch(self)

 View Source

 @spec memPitch(t()) :: integer() | {:error, String.t()}

memPitch
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
memPitch() -> retval

 Link to this function

 minorVersion(self)

 View Source

 @spec minorVersion(t()) :: integer() | {:error, String.t()}

minorVersion
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
minorVersion() -> retval

 Link to this function

 multiProcessorCount(self)

 View Source

 @spec multiProcessorCount(t()) :: integer() | {:error, String.t()}

multiProcessorCount
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
multiProcessorCount() -> retval

 Link to this function

 pciBusID(self)

 View Source

 @spec pciBusID(t()) :: integer() | {:error, String.t()}

pciBusID
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
pciBusID() -> retval

 Link to this function

 pciDeviceID(self)

 View Source

 @spec pciDeviceID(t()) :: integer() | {:error, String.t()}

pciDeviceID
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
pciDeviceID() -> retval

 Link to this function

 pciDomainID(self)

 View Source

 @spec pciDomainID(t()) :: integer() | {:error, String.t()}

pciDomainID
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
pciDomainID() -> retval

 Link to this function

 queryMemory(self, totalMemory, freeMemory)

 View Source

 @spec queryMemory(t(), integer(), integer()) :: t() | {:error, String.t()}

queryMemory
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()
	totalMemory: size_t
	freeMemory: size_t

Python prototype (for reference only):
queryMemory(totalMemory, freeMemory) -> None

 Link to this function

 regsPerBlock(self)

 View Source

 @spec regsPerBlock(t()) :: integer() | {:error, String.t()}

regsPerBlock
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
regsPerBlock() -> retval

 Link to this function

 sharedMemPerBlock(self)

 View Source

 @spec sharedMemPerBlock(t()) :: integer() | {:error, String.t()}

sharedMemPerBlock
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
sharedMemPerBlock() -> retval

 Link to this function

 surfaceAlignment(self)

 View Source

 @spec surfaceAlignment(t()) :: integer() | {:error, String.t()}

surfaceAlignment
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
surfaceAlignment() -> retval

 Link to this function

 tccDriver(self)

 View Source

 @spec tccDriver(t()) :: boolean() | {:error, String.t()}

tccDriver
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
tccDriver() -> retval

 Link to this function

 textureAlignment(self)

 View Source

 @spec textureAlignment(t()) :: integer() | {:error, String.t()}

textureAlignment
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
textureAlignment() -> retval

 Link to this function

 texturePitchAlignment(self)

 View Source

 @spec texturePitchAlignment(t()) :: integer() | {:error, String.t()}

texturePitchAlignment
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
texturePitchAlignment() -> retval

 Link to this function

 totalConstMem(self)

 View Source

 @spec totalConstMem(t()) :: integer() | {:error, String.t()}

totalConstMem
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
totalConstMem() -> retval

 Link to this function

 totalGlobalMem(self)

 View Source

 @spec totalGlobalMem(t()) :: integer() | {:error, String.t()}

totalGlobalMem
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
totalGlobalMem() -> retval

 Link to this function

 totalMemory(self)

 View Source

 @spec totalMemory(t()) :: integer() | {:error, String.t()}

totalMemory
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: size_t

Python prototype (for reference only):
totalMemory() -> retval

 Link to this function

 unifiedAddressing(self)

 View Source

 @spec unifiedAddressing(t()) :: boolean() | {:error, String.t()}

unifiedAddressing
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: bool

Python prototype (for reference only):
unifiedAddressing() -> retval

 Link to this function

 warpSize(self)

 View Source

 @spec warpSize(t()) :: integer() | {:error, String.t()}

warpSize
Positional Arguments
	self: Evision.CUDA.DeviceInfo.t()

Return
	retval: int

Python prototype (for reference only):
warpSize() -> retval

 Evision.CUDA.DisparityBilateralFilter - Evision v0.1.39

Evision.CUDA.DisparityBilateralFilter

 Summary

 Types

 t()

 Type that represents an CUDA.DisparityBilateralFilter struct.

 Functions

 apply(self, disparity, image)

 Variant 1:
Refines a disparity map using joint bilateral filtering.

 apply(self, disparity, image, opts)

 Variant 1:
Refines a disparity map using joint bilateral filtering.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getEdgeThreshold(self)

 getEdgeThreshold

 getMaxDiscThreshold(self)

 getMaxDiscThreshold

 getNumDisparities(self)

 getNumDisparities

 getNumIters(self)

 getNumIters

 getRadius(self)

 getRadius

 getSigmaRange(self)

 getSigmaRange

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setEdgeThreshold(self, edge_threshold)

 setEdgeThreshold

 setMaxDiscThreshold(self, max_disc_threshold)

 setMaxDiscThreshold

 setNumDisparities(self, numDisparities)

 setNumDisparities

 setNumIters(self, iters)

 setNumIters

 setRadius(self, radius)

 setRadius

 setSigmaRange(self, sigma_range)

 setSigmaRange

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.DisparityBilateralFilter{ref: reference()}

Type that represents an CUDA.DisparityBilateralFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, disparity, image)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec apply(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Refines a disparity map using joint bilateral filtering.
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

	disparity: Evision.Mat.t().
Input disparity map. CV_8UC1 and CV_16SC1 types are supported.

	image: Evision.Mat.t().
Input image. CV_8UC1 and CV_8UC3 types are supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination disparity map. It has the same size and type as disparity .

Python prototype (for reference only):
apply(disparity, image[, dst[, stream]]) -> dst
Variant 2:
Refines a disparity map using joint bilateral filtering.
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

	disparity: Evision.CUDA.GpuMat.t().
Input disparity map. CV_8UC1 and CV_16SC1 types are supported.

	image: Evision.CUDA.GpuMat.t().
Input image. CV_8UC1 and CV_8UC3 types are supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination disparity map. It has the same size and type as disparity .

Python prototype (for reference only):
apply(disparity, image[, dst[, stream]]) -> dst

 Link to this function

 apply(self, disparity, image, opts)

 View Source

 @spec apply(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec apply(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Refines a disparity map using joint bilateral filtering.
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

	disparity: Evision.Mat.t().
Input disparity map. CV_8UC1 and CV_16SC1 types are supported.

	image: Evision.Mat.t().
Input image. CV_8UC1 and CV_8UC3 types are supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination disparity map. It has the same size and type as disparity .

Python prototype (for reference only):
apply(disparity, image[, dst[, stream]]) -> dst
Variant 2:
Refines a disparity map using joint bilateral filtering.
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

	disparity: Evision.CUDA.GpuMat.t().
Input disparity map. CV_8UC1 and CV_16SC1 types are supported.

	image: Evision.CUDA.GpuMat.t().
Input image. CV_8UC1 and CV_8UC3 types are supported.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination disparity map. It has the same size and type as disparity .

Python prototype (for reference only):
apply(disparity, image[, dst[, stream]]) -> dst

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeThreshold(self)

 View Source

 @spec getEdgeThreshold(t()) :: number() | {:error, String.t()}

getEdgeThreshold
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: double

Python prototype (for reference only):
getEdgeThreshold() -> retval

 Link to this function

 getMaxDiscThreshold(self)

 View Source

 @spec getMaxDiscThreshold(t()) :: number() | {:error, String.t()}

getMaxDiscThreshold
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDiscThreshold() -> retval

 Link to this function

 getNumDisparities(self)

 View Source

 @spec getNumDisparities(t()) :: integer() | {:error, String.t()}

getNumDisparities
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: int

Python prototype (for reference only):
getNumDisparities() -> retval

 Link to this function

 getNumIters(self)

 View Source

 @spec getNumIters(t()) :: integer() | {:error, String.t()}

getNumIters
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: int

Python prototype (for reference only):
getNumIters() -> retval

 Link to this function

 getRadius(self)

 View Source

 @spec getRadius(t()) :: integer() | {:error, String.t()}

getRadius
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: int

Python prototype (for reference only):
getRadius() -> retval

 Link to this function

 getSigmaRange(self)

 View Source

 @spec getSigmaRange(t()) :: number() | {:error, String.t()}

getSigmaRange
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()

Return
	retval: double

Python prototype (for reference only):
getSigmaRange() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setEdgeThreshold(self, edge_threshold)

 View Source

 @spec setEdgeThreshold(t(), number()) :: t() | {:error, String.t()}

setEdgeThreshold
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	edge_threshold: double

Python prototype (for reference only):
setEdgeThreshold(edge_threshold) -> None

 Link to this function

 setMaxDiscThreshold(self, max_disc_threshold)

 View Source

 @spec setMaxDiscThreshold(t(), number()) :: t() | {:error, String.t()}

setMaxDiscThreshold
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	max_disc_threshold: double

Python prototype (for reference only):
setMaxDiscThreshold(max_disc_threshold) -> None

 Link to this function

 setNumDisparities(self, numDisparities)

 View Source

 @spec setNumDisparities(t(), integer()) :: t() | {:error, String.t()}

setNumDisparities
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	numDisparities: int

Python prototype (for reference only):
setNumDisparities(numDisparities) -> None

 Link to this function

 setNumIters(self, iters)

 View Source

 @spec setNumIters(t(), integer()) :: t() | {:error, String.t()}

setNumIters
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	iters: int

Python prototype (for reference only):
setNumIters(iters) -> None

 Link to this function

 setRadius(self, radius)

 View Source

 @spec setRadius(t(), integer()) :: t() | {:error, String.t()}

setRadius
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	radius: int

Python prototype (for reference only):
setRadius(radius) -> None

 Link to this function

 setSigmaRange(self, sigma_range)

 View Source

 @spec setSigmaRange(t(), number()) :: t() | {:error, String.t()}

setSigmaRange
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	sigma_range: double

Python prototype (for reference only):
setSigmaRange(sigma_range) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.DisparityBilateralFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.Event - Evision v0.1.39

Evision.CUDA.Event

 Summary

 Types

 t()

 Type that represents an CUDA.Event struct.

 Functions

 elapsedTime(start, end_)

 elapsedTime

 event()

 Event

 event(opts)

 Event

 queryIfComplete(self)

 queryIfComplete

 record(self)

 record

 record(self, opts)

 record

 waitForCompletion(self)

 waitForCompletion

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.Event{ref: reference()}

Type that represents an CUDA.Event struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 elapsedTime(start, end_)

 View Source

 @spec elapsedTime(t(), t()) :: number() | {:error, String.t()}

elapsedTime
Positional Arguments
	start: Evision.CUDA.Event.t()
	end_: Evision.CUDA.Event.t()

Return
	retval: float

Python prototype (for reference only):
elapsedTime(start, end_) -> retval

 Link to this function

 event()

 View Source

 @spec event() :: t() | {:error, String.t()}

Event
Keyword Arguments
	flags: Event_CreateFlags.

Return
	self: Evision.CUDA.Event.t()

Python prototype (for reference only):
Event([, flags]) -> <cuda_Event object>

 Link to this function

 event(opts)

 View Source

 @spec event([{:flags, term()}] | nil) :: t() | {:error, String.t()}

Event
Keyword Arguments
	flags: Event_CreateFlags.

Return
	self: Evision.CUDA.Event.t()

Python prototype (for reference only):
Event([, flags]) -> <cuda_Event object>

 Link to this function

 queryIfComplete(self)

 View Source

 @spec queryIfComplete(t()) :: boolean() | {:error, String.t()}

queryIfComplete
Positional Arguments
	self: Evision.CUDA.Event.t()

Return
	retval: bool

Python prototype (for reference only):
queryIfComplete() -> retval

 Link to this function

 record(self)

 View Source

 @spec record(t()) :: t() | {:error, String.t()}

record
Positional Arguments
	self: Evision.CUDA.Event.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Python prototype (for reference only):
record([, stream]) -> None

 Link to this function

 record(self, opts)

 View Source

 @spec record(t(), [{:stream, term()}] | nil) :: t() | {:error, String.t()}

record
Positional Arguments
	self: Evision.CUDA.Event.t()

Keyword Arguments
	stream: Evision.CUDA.Stream.t().

Python prototype (for reference only):
record([, stream]) -> None

 Link to this function

 waitForCompletion(self)

 View Source

 @spec waitForCompletion(t()) :: t() | {:error, String.t()}

waitForCompletion
Positional Arguments
	self: Evision.CUDA.Event.t()

Python prototype (for reference only):
waitForCompletion() -> None

 Evision.CUDA.FastFeatureDetector - Evision v0.1.39

Evision.CUDA.FastFeatureDetector

 Summary

 Types

 t()

 Type that represents an CUDA.FastFeatureDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 computeAsync(self, image)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 computeAsync(self, image, opts)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 convert(self, gpu_keypoints)

 Variant 1:
convert

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 detectAndComputeAsync(self, image, mask)

 Variant 1:
detectAndComputeAsync

 detectAndComputeAsync(self, image, mask, opts)

 Variant 1:
detectAndComputeAsync

 detectAsync(self, image)

 Variant 1:
Detects keypoints in an image.

 detectAsync(self, image, opts)

 Variant 1:
Detects keypoints in an image.

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getMaxNumPoints(self)

 getMaxNumPoints

 read(self, arg1)

 Variant 1:
read

 setMaxNumPoints(self, max_npoints)

 setMaxNumPoints

 setThreshold(self, threshold)

 setThreshold

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.FastFeatureDetector{ref: reference()}

Type that represents an CUDA.FastFeatureDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image)

 View Source

 @spec computeAsync(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image, opts)

 View Source

 @spec computeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 convert(self, gpu_keypoints)

 View Source

 @spec convert(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

 @spec convert(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
convert
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	gpu_keypoints: Evision.Mat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints
Variant 2:
convert
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	gpu_keypoints: Evision.CUDA.GpuMat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: int.
	max_npoints: int.

Return
	retval: Evision.CUDA.FastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type[, max_npoints]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 threshold: term(),
 type: term(),
 nonmaxSuppression: term(),
 max_npoints: term()
]
 | nil
) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: int.
	max_npoints: int.

Return
	retval: Evision.CUDA.FastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type[, max_npoints]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask)

 View Source

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask, opts)

 View Source

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), useProvidedKeypoints: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), useProvidedKeypoints: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAsync(self, image)

 View Source

 @spec detectAsync(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 detectAsync(self, image, opts)

 View Source

 @spec detectAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Feature2D.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxNumPoints(self)

 View Source

 @spec getMaxNumPoints(Evision.FastFeatureDetector.t()) ::
 integer() | {:error, String.t()}

getMaxNumPoints
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxNumPoints() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setMaxNumPoints(self, max_npoints)

 View Source

 @spec setMaxNumPoints(Evision.FastFeatureDetector.t(), integer()) ::
 Evision.FastFeatureDetector.t() | {:error, String.t()}

setMaxNumPoints
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	max_npoints: int

Python prototype (for reference only):
setMaxNumPoints(max_npoints) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(Evision.FastFeatureDetector.t(), integer()) ::
 Evision.FastFeatureDetector.t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	threshold: int

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.FastFeatureDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.Feature2DAsync - Evision v0.1.39

Evision.CUDA.Feature2DAsync

 Summary

 Types

 t()

 Type that represents an CUDA.Feature2DAsync struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 computeAsync(self, image)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 computeAsync(self, image, opts)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 convert(self, gpu_keypoints)

 Variant 1:
convert

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 detectAndComputeAsync(self, image, mask)

 Variant 1:
detectAndComputeAsync

 detectAndComputeAsync(self, image, mask, opts)

 Variant 1:
detectAndComputeAsync

 detectAsync(self, image)

 Variant 1:
Detects keypoints in an image.

 detectAsync(self, image, opts)

 Variant 1:
Detects keypoints in an image.

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 read(self, arg1)

 Variant 1:
read

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.Feature2DAsync{ref: reference()}

Type that represents an CUDA.Feature2DAsync struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image)

 View Source

 @spec computeAsync(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image, opts)

 View Source

 @spec computeAsync(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 convert(self, gpu_keypoints)

 View Source

 @spec convert(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

 @spec convert(t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
convert
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	gpu_keypoints: Evision.Mat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints
Variant 2:
convert
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	gpu_keypoints: Evision.CUDA.GpuMat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask)

 View Source

 @spec detectAndComputeAsync(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask, opts)

 View Source

 @spec detectAndComputeAsync(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [stream: term(), useProvidedKeypoints: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [stream: term(), useProvidedKeypoints: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAsync(self, image)

 View Source

 @spec detectAsync(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 detectAsync(self, image, opts)

 View Source

 @spec detectAsync(
 t(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), stream: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(t(), Evision.CUDA.GpuMat.t(), [mask: term(), stream: term()] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Feature2D.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.Feature2DAsync.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.Filter - Evision v0.1.39

Evision.CUDA.Filter

 Summary

 Types

 t()

 Type that represents an CUDA.Filter struct.

 Functions

 apply(self, src)

 Variant 1:
Applies the specified filter to the image.

 apply(self, src, opts)

 Variant 1:
Applies the specified filter to the image.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.Filter{ref: reference()}

Type that represents an CUDA.Filter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, src)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

 @spec apply(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Applies the specified filter to the image.
Positional Arguments
	self: Evision.CUDA.Filter.t()

	src: Evision.Mat.t().
Input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Output image.

Python prototype (for reference only):
apply(src[, dst[, stream]]) -> dst
Variant 2:
Applies the specified filter to the image.
Positional Arguments
	self: Evision.CUDA.Filter.t()

	src: Evision.CUDA.GpuMat.t().
Input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image.

Python prototype (for reference only):
apply(src[, dst[, stream]]) -> dst

 Link to this function

 apply(self, src, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec apply(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Applies the specified filter to the image.
Positional Arguments
	self: Evision.CUDA.Filter.t()

	src: Evision.Mat.t().
Input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Output image.

Python prototype (for reference only):
apply(src[, dst[, stream]]) -> dst
Variant 2:
Applies the specified filter to the image.
Positional Arguments
	self: Evision.CUDA.Filter.t()

	src: Evision.CUDA.GpuMat.t().
Input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Output image.

Python prototype (for reference only):
apply(src[, dst[, stream]]) -> dst

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.Filter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.Filter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.Filter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.Filter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.Filter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.Filter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.Filter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.GpuData - Evision v0.1.39

Evision.CUDA.GpuData

 Summary

 Types

 t()

 Type that represents an CUDA.GpuData struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.GpuData{ref: reference()}

Type that represents an CUDA.GpuData struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CUDA.GpuMat - Evision v0.1.39

Evision.CUDA.GpuMat

 Summary

 Types

 t()

 Type that represents an Evision.CUDA.GpuMat struct.

 Functions

 adjustROI(self, dtop, dbottom, dleft, dright)

 adjustROI

 assignTo(self, m)

 assignTo

 assignTo(self, m, opts)

 assignTo

 channels(self)

 channels

 clone(self)

 clone

 col(self, x)

 col

 colRange(self, r)

 colRange

 colRange(self, startcol, endcol)

 colRange

 convertTo(self, rtype)

 convertTo

 convertTo(self, rtype, opts)

 Variant 1:
convertTo

 convertTo(self, rtype, stream, opts)

 convertTo

 convertTo(self, rtype, alpha, beta, stream)

 convertTo

 convertTo(self, rtype, alpha, beta, stream, opts)

 convertTo

 copyTo(self)

 copyTo

 copyTo(self, opts)

 Variant 1:
copyTo

 copyTo(self, mask, opts)

 Variant 1:
copyTo

 copyTo(self, mask, stream, opts)

 copyTo

 create(self, size, type)

 create

 create(self, rows, cols, type)

 create

 cudaPtr(self)

 cudaPtr

 defaultAllocator()

 defaultAllocator

 depth(self)

 depth

 download(self)

 Performs data download from GpuMat (Blocking call)

 download(self, opts)

 Variant 1:
Performs data download from GpuMat (Non-Blocking call)

 download(self, stream, opts)

 Performs data download from GpuMat (Non-Blocking call)

 elemSize1(self)

 elemSize1

 elemSize(self)

 elemSize

 empty(self)

 empty

 get_step(self)

 gpuMat()

 GpuMat

 gpuMat(opts)

 Variant 1:
GpuMat

 gpuMat(arr, opts)

 Variant 1:
GpuMat

 gpuMat(size, type, opts)

 Variant 1:
GpuMat

 gpuMat(size, type, s, opts)

 Variant 1:
GpuMat

 gpuMat(rows, cols, type, s, opts)

 GpuMat

 isContinuous(self)

 isContinuous

 locateROI(self, wholeSize, ofs)

 locateROI

 release(self)

 release

 reshape(self, cn)

 reshape

 reshape(self, cn, opts)

 reshape

 row(self, y)

 row

 rowRange(self, r)

 rowRange

 rowRange(self, startrow, endrow)

 rowRange

 setDefaultAllocator(allocator)

 setDefaultAllocator

 setTo(self, s)

 setTo

 setTo(self, s, mask)

 Variant 1:
setTo

 setTo(self, s, mask, stream)

 Variant 1:
setTo

 size(self)

 size

 step1(self)

 step1

 swap(self, mat)

 swap

 type(self)

 type

 updateContinuityFlag(self)

 updateContinuityFlag

 upload(self, arr)

 Variant 1:
Performs data upload to GpuMat (Blocking call)

 upload(self, arr, stream)

 Variant 1:
Performs data upload to GpuMat (Non-Blocking call)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.GpuMat{
 channels: integer(),
 elemSize: integer(),
 raw_type: integer(),
 ref: reference(),
 shape: tuple(),
 type: Evision.Mat.mat_type()
}

Type that represents an Evision.CUDA.GpuMat struct.
	channels: int.
The number of matrix channels.

	type: Evision.Mat.mat_type().
Type of the matrix elements, following :nx's convention.

	raw_type: int.
The raw value returned from int cv::Mat::type().

	shape: tuple.
The shape of the matrix.

	elemSize: integer().
Element size in bytes.

	ref: reference.
The underlying erlang resource variable.

Functions

 Link to this function

 adjustROI(self, dtop, dbottom, dleft, dright)

 View Source

 @spec adjustROI(t(), integer(), integer(), integer(), integer()) ::
 t() | {:error, String.t()}

adjustROI
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	dtop: int
	dbottom: int
	dleft: int
	dright: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
adjustROI(dtop, dbottom, dleft, dright) -> retval

 Link to this function

 assignTo(self, m)

 View Source

 @spec assignTo(t(), t()) :: t() | {:error, String.t()}

assignTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	m: Evision.CUDA.GpuMat.t()

Keyword Arguments
	type: int.

Python prototype (for reference only):
assignTo(m[, type]) -> None

 Link to this function

 assignTo(self, m, opts)

 View Source

 @spec assignTo(t(), t(), [{:type, term()}] | nil) :: t() | {:error, String.t()}

assignTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	m: Evision.CUDA.GpuMat.t()

Keyword Arguments
	type: int.

Python prototype (for reference only):
assignTo(m[, type]) -> None

 Link to this function

 channels(self)

 View Source

 @spec channels(t()) :: integer() | {:error, String.t()}

channels
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: int

Python prototype (for reference only):
channels() -> retval

 Link to this function

 clone(self)

 View Source

 @spec clone(t()) :: t() | {:error, String.t()}

clone
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
clone() -> retval

 Link to this function

 col(self, x)

 View Source

 @spec col(t(), integer()) :: t() | {:error, String.t()}

col
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	x: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
col(x) -> retval

 Link to this function

 colRange(self, r)

 View Source

 @spec colRange(t(), {integer(), integer()} | :all) :: t() | {:error, String.t()}

colRange
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	r: Range

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
colRange(r) -> retval

 Link to this function

 colRange(self, startcol, endcol)

 View Source

 @spec colRange(t(), integer(), integer()) :: t() | {:error, String.t()}

colRange
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	startcol: int
	endcol: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
colRange(startcol, endcol) -> retval

 Link to this function

 convertTo(self, rtype)

 View Source

 @spec convertTo(t(), integer()) :: t() | {:error, String.t()}

convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int

Keyword Arguments
	alpha: double.
	beta: double.

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 convertTo(self, rtype, opts)

 View Source

 @spec convertTo(t(), integer(), [alpha: term(), beta: term()] | nil) ::
 t() | {:error, String.t()}

 @spec convertTo(t(), integer(), Evision.CUDA.Stream.t()) :: t() | {:error, String.t()}

Variant 1:
convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype, stream[, dst]) -> dst
Variant 2:
convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int

Keyword Arguments
	alpha: double.
	beta: double.

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype[, dst[, alpha[, beta]]]) -> dst

 Link to this function

 convertTo(self, rtype, stream, opts)

 View Source

 @spec convertTo(
 t(),
 integer(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) ::
 t() | {:error, String.t()}

convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype, stream[, dst]) -> dst

 Link to this function

 convertTo(self, rtype, alpha, beta, stream)

 View Source

 @spec convertTo(t(), integer(), number(), number(), Evision.CUDA.Stream.t()) ::
 t() | {:error, String.t()}

convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int
	alpha: double
	beta: double
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype, alpha, beta, stream[, dst]) -> dst

 Link to this function

 convertTo(self, rtype, alpha, beta, stream, opts)

 View Source

 @spec convertTo(
 t(),
 integer(),
 number(),
 number(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: t() | {:error, String.t()}

convertTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rtype: int
	alpha: double
	beta: double
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
convertTo(rtype, alpha, beta, stream[, dst]) -> dst

 Link to this function

 copyTo(self)

 View Source

 @spec copyTo(t()) :: t() | {:error, String.t()}

copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo([, dst]) -> dst

 Link to this function

 copyTo(self, opts)

 View Source

 @spec copyTo(t(), [{atom(), term()}, ...] | nil) :: t() | {:error, String.t()}

 @spec copyTo(t(), t()) :: t() | {:error, String.t()}

 @spec copyTo(t(), Evision.CUDA.Stream.t()) :: t() | {:error, String.t()}

Variant 1:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(mask[, dst]) -> dst
Variant 2:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(stream[, dst]) -> dst
Variant 3:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo([, dst]) -> dst

 Link to this function

 copyTo(self, mask, opts)

 View Source

 @spec copyTo(t(), t(), [{atom(), term()}, ...] | nil) :: t() | {:error, String.t()}

 @spec copyTo(t(), Evision.CUDA.Stream.t(), [{atom(), term()}, ...] | nil) ::
 t() | {:error, String.t()}

 @spec copyTo(t(), t(), Evision.CUDA.Stream.t()) :: t() | {:error, String.t()}

Variant 1:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(mask, stream[, dst]) -> dst
Variant 2:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(mask[, dst]) -> dst
Variant 3:
copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(stream[, dst]) -> dst

 Link to this function

 copyTo(self, mask, stream, opts)

 View Source

 @spec copyTo(t(), t(), Evision.CUDA.Stream.t(), [{atom(), term()}, ...] | nil) ::
 t() | {:error, String.t()}

copyTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
copyTo(mask, stream[, dst]) -> dst

 Link to this function

 create(self, size, type)

 View Source

 @spec create(t(), {number(), number()}, integer()) :: t() | {:error, String.t()}

create
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	size: Size
	type: int

Python prototype (for reference only):
create(size, type) -> None

 Link to this function

 create(self, rows, cols, type)

 View Source

 @spec create(t(), integer(), integer(), integer()) :: t() | {:error, String.t()}

create
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	rows: int
	cols: int
	type: int

Python prototype (for reference only):
create(rows, cols, type) -> None

 Link to this function

 cudaPtr(self)

 View Source

 @spec cudaPtr(t()) :: :ok | {:error, String.t()}

cudaPtr
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: void*

Python prototype (for reference only):
cudaPtr() -> retval

 Link to this function

 defaultAllocator()

 View Source

 @spec defaultAllocator() :: reference() | {:error, String.t()}

defaultAllocator
Return
	retval: GpuMat::Allocator*

Python prototype (for reference only):
defaultAllocator() -> retval

 Link to this function

 depth(self)

 View Source

 @spec depth(t()) :: integer() | {:error, String.t()}

depth
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: int

Python prototype (for reference only):
depth() -> retval

 Link to this function

 download(self)

 View Source

 @spec download(t()) :: Evision.Mat.t() | {:error, String.t()}

Performs data download from GpuMat (Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.Mat.t().

This function copies data from device memory to host memory. As being a blocking call, it is
guaranteed that the copy operation is finished when this function returns.
Python prototype (for reference only):
download([, dst]) -> dst

 Link to this function

 download(self, opts)

 View Source

 @spec download(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec download(t(), Evision.CUDA.Stream.t()) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
Performs data download from GpuMat (Non-Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.Mat.t().

This function copies data from device memory to host memory. As being a non-blocking call, this
function may return even if the copy operation is not finished.
The copy operation may be overlapped with operations in other non-default streams if \p stream is
not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
Python prototype (for reference only):
download(stream[, dst]) -> dst
Variant 2:
Performs data download from GpuMat (Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	dst: Evision.Mat.t().

This function copies data from device memory to host memory. As being a blocking call, it is
guaranteed that the copy operation is finished when this function returns.
Python prototype (for reference only):
download([, dst]) -> dst

 Link to this function

 download(self, stream, opts)

 View Source

 @spec download(t(), Evision.CUDA.Stream.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Performs data download from GpuMat (Non-Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	dst: Evision.Mat.t().

This function copies data from device memory to host memory. As being a non-blocking call, this
function may return even if the copy operation is not finished.
The copy operation may be overlapped with operations in other non-default streams if \p stream is
not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
Python prototype (for reference only):
download(stream[, dst]) -> dst

 Link to this function

 elemSize1(self)

 View Source

 @spec elemSize1(t()) :: integer() | {:error, String.t()}

elemSize1
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: size_t

Python prototype (for reference only):
elemSize1() -> retval

 Link to this function

 elemSize(self)

 View Source

 @spec elemSize(t()) :: integer() | {:error, String.t()}

elemSize
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: size_t

Python prototype (for reference only):
elemSize() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 get_step(self)

 View Source

 @spec get_step(t()) :: integer()

 Link to this function

 gpuMat()

 View Source

 @spec gpuMat() :: t() | {:error, String.t()}

GpuMat
Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat([, allocator]) -> <cuda_GpuMat object>

 Link to this function

 gpuMat(opts)

 View Source

 @spec gpuMat([{:allocator, term()}] | nil) :: t() | {:error, String.t()}

 @spec gpuMat(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

 @spec gpuMat(t()) :: t() | {:error, String.t()}

 @spec gpuMat(t()) :: t() | {:error, String.t()}

Variant 1:
GpuMat
Positional Arguments
	arr: Evision.Mat.t()

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(arr[, allocator]) -> <cuda_GpuMat object>
Variant 2:
GpuMat
Positional Arguments
	arr: Evision.CUDA.GpuMat.t()

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(arr[, allocator]) -> <cuda_GpuMat object>
Variant 3:
GpuMat
Positional Arguments
	m: Evision.CUDA.GpuMat.t()

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(m) -> <cuda_GpuMat object>
Variant 4:
GpuMat
Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat([, allocator]) -> <cuda_GpuMat object>

 Link to this function

 gpuMat(arr, opts)

 View Source

 @spec gpuMat(Evision.Mat.maybe_mat_in(), [{:allocator, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec gpuMat(t(), [{:allocator, term()}] | nil) :: t() | {:error, String.t()}

 @spec gpuMat(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

 @spec gpuMat(
 {number(), number()},
 integer()
) :: t() | {:error, String.t()}

Variant 1:
GpuMat
Positional Arguments
	m: Evision.CUDA.GpuMat.t()
	roi: Rect

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(m, roi) -> <cuda_GpuMat object>
Variant 2:
GpuMat
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(size, type[, allocator]) -> <cuda_GpuMat object>
Variant 3:
GpuMat
Positional Arguments
	arr: Evision.Mat.t()

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(arr[, allocator]) -> <cuda_GpuMat object>
Variant 4:
GpuMat
Positional Arguments
	arr: Evision.CUDA.GpuMat.t()

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(arr[, allocator]) -> <cuda_GpuMat object>

 Link to this function

 gpuMat(size, type, opts)

 View Source

 @spec gpuMat({number(), number()}, integer(), [{:allocator, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec gpuMat(t(), {integer(), integer()} | :all, {integer(), integer()} | :all) ::
 t() | {:error, String.t()}

 @spec gpuMat(
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

 @spec gpuMat(integer(), integer(), integer()) :: t() | {:error, String.t()}

Variant 1:
GpuMat
Positional Arguments
	m: Evision.CUDA.GpuMat.t()
	rowRange: Range
	colRange: Range

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(m, rowRange, colRange) -> <cuda_GpuMat object>
Variant 2:
GpuMat
Positional Arguments
	size: Size
	type: int
	s: Scalar

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(size, type, s[, allocator]) -> <cuda_GpuMat object>
Variant 3:
GpuMat
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(rows, cols, type[, allocator]) -> <cuda_GpuMat object>
Variant 4:
GpuMat
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(size, type[, allocator]) -> <cuda_GpuMat object>

 Link to this function

 gpuMat(size, type, s, opts)

 View Source

 @spec gpuMat(
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:allocator, term()}] | nil
) :: t() | {:error, String.t()}

 @spec gpuMat(integer(), integer(), integer(), [{:allocator, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec gpuMat(
 integer(),
 integer(),
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

Variant 1:
GpuMat
Positional Arguments
	rows: int
	cols: int
	type: int
	s: Scalar

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(rows, cols, type, s[, allocator]) -> <cuda_GpuMat object>
Variant 2:
GpuMat
Positional Arguments
	size: Size
	type: int
	s: Scalar

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(size, type, s[, allocator]) -> <cuda_GpuMat object>
Variant 3:
GpuMat
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(rows, cols, type[, allocator]) -> <cuda_GpuMat object>

 Link to this function

 gpuMat(rows, cols, type, s, opts)

 View Source

 @spec gpuMat(
 integer(),
 integer(),
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:allocator, term()}] | nil
) :: t() | {:error, String.t()}

GpuMat
Positional Arguments
	rows: int
	cols: int
	type: int
	s: Scalar

Keyword Arguments
	allocator: GpuMat_Allocator*.

Return
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
GpuMat(rows, cols, type, s[, allocator]) -> <cuda_GpuMat object>

 Link to this function

 isContinuous(self)

 View Source

 @spec isContinuous(t()) :: boolean() | {:error, String.t()}

isContinuous
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: bool

Python prototype (for reference only):
isContinuous() -> retval

 Link to this function

 locateROI(self, wholeSize, ofs)

 View Source

 @spec locateROI(t(), {number(), number()}, {number(), number()}) ::
 t() | {:error, String.t()}

locateROI
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	wholeSize: Size
	ofs: Point

Python prototype (for reference only):
locateROI(wholeSize, ofs) -> None

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

release
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
release() -> None

 Link to this function

 reshape(self, cn)

 View Source

 @spec reshape(t(), integer()) :: t() | {:error, String.t()}

reshape
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	cn: int

Keyword Arguments
	rows: int.

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
reshape(cn[, rows]) -> retval

 Link to this function

 reshape(self, cn, opts)

 View Source

 @spec reshape(t(), integer(), [{:rows, term()}] | nil) :: t() | {:error, String.t()}

reshape
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	cn: int

Keyword Arguments
	rows: int.

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
reshape(cn[, rows]) -> retval

 Link to this function

 row(self, y)

 View Source

 @spec row(t(), integer()) :: t() | {:error, String.t()}

row
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	y: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
row(y) -> retval

 Link to this function

 rowRange(self, r)

 View Source

 @spec rowRange(t(), {integer(), integer()} | :all) :: t() | {:error, String.t()}

rowRange
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	r: Range

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
rowRange(r) -> retval

 Link to this function

 rowRange(self, startrow, endrow)

 View Source

 @spec rowRange(t(), integer(), integer()) :: t() | {:error, String.t()}

rowRange
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	startrow: int
	endrow: int

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
rowRange(startrow, endrow) -> retval

 Link to this function

 setDefaultAllocator(allocator)

 View Source

 @spec setDefaultAllocator(reference()) :: :ok | {:error, String.t()}

setDefaultAllocator
Positional Arguments
	allocator: GpuMat_Allocator*

Python prototype (for reference only):
setDefaultAllocator(allocator) -> None

 Link to this function

 setTo(self, s)

 View Source

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s) -> retval

 Link to this function

 setTo(self, s, mask)

 View Source

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 t()
) :: t() | {:error, String.t()}

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 Evision.CUDA.Stream.t()
) :: t() | {:error, String.t()}

Variant 1:
setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar
	mask: Evision.Mat.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s, mask) -> retval
Variant 2:
setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar
	mask: Evision.CUDA.GpuMat.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s, mask) -> retval
Variant 3:
setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar
	stream: Evision.CUDA.Stream.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s, stream) -> retval

 Link to this function

 setTo(self, s, mask, stream)

 View Source

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t()
) :: t() | {:error, String.t()}

 @spec setTo(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 t(),
 Evision.CUDA.Stream.t()
) :: t() | {:error, String.t()}

Variant 1:
setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar
	mask: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s, mask, stream) -> retval
Variant 2:
setTo
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	s: Scalar
	mask: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	retval: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setTo(s, mask, stream) -> retval

 Link to this function

 size(self)

 View Source

 @spec size(t()) :: {number(), number()} | {:error, String.t()}

size
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: Size

Python prototype (for reference only):
size() -> retval

 Link to this function

 step1(self)

 View Source

 @spec step1(t()) :: integer() | {:error, String.t()}

step1
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: size_t

Python prototype (for reference only):
step1() -> retval

 Link to this function

 swap(self, mat)

 View Source

 @spec swap(t(), t()) :: t() | {:error, String.t()}

swap
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	mat: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
swap(mat) -> None

 Link to this function

 type(self)

 View Source

 @spec type(t()) :: integer() | {:error, String.t()}

type
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Return
	retval: int

Python prototype (for reference only):
type() -> retval

 Link to this function

 updateContinuityFlag(self)

 View Source

 @spec updateContinuityFlag(t()) :: t() | {:error, String.t()}

updateContinuityFlag
Positional Arguments
	self: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
updateContinuityFlag() -> None

 Link to this function

 upload(self, arr)

 View Source

 @spec upload(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

 @spec upload(t(), t()) :: t() | {:error, String.t()}

Variant 1:
Performs data upload to GpuMat (Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	arr: Evision.Mat.t()

This function copies data from host memory to device memory. As being a blocking call, it is
guaranteed that the copy operation is finished when this function returns.
Python prototype (for reference only):
upload(arr) -> None
Variant 2:
Performs data upload to GpuMat (Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	arr: Evision.CUDA.GpuMat.t()

This function copies data from host memory to device memory. As being a blocking call, it is
guaranteed that the copy operation is finished when this function returns.
Python prototype (for reference only):
upload(arr) -> None

 Link to this function

 upload(self, arr, stream)

 View Source

 @spec upload(t(), Evision.Mat.maybe_mat_in(), Evision.CUDA.Stream.t()) ::
 t() | {:error, String.t()}

 @spec upload(t(), t(), Evision.CUDA.Stream.t()) :: t() | {:error, String.t()}

Variant 1:
Performs data upload to GpuMat (Non-Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	arr: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

This function copies data from host memory to device memory. As being a non-blocking call, this
function may return even if the copy operation is not finished.
The copy operation may be overlapped with operations in other non-default streams if \p stream is
not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
Python prototype (for reference only):
upload(arr, stream) -> None
Variant 2:
Performs data upload to GpuMat (Non-Blocking call)
Positional Arguments
	self: Evision.CUDA.GpuMat.t()
	arr: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

This function copies data from host memory to device memory. As being a non-blocking call, this
function may return even if the copy operation is not finished.
The copy operation may be overlapped with operations in other non-default streams if \p stream is
not the default stream and \p dst is HostMem allocated with HostMem::PAGE_LOCKED option.
Python prototype (for reference only):
upload(arr, stream) -> None

 Evision.CUDA.GpuMat.Allocator - Evision v0.1.39

Evision.CUDA.GpuMat.Allocator

 Summary

 Types

 t()

 Type that represents an CUDA.GpuMat.Allocator struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.GpuMat.Allocator{ref: reference()}

Type that represents an CUDA.GpuMat.Allocator struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CUDA.GpuMatND - Evision v0.1.39

Evision.CUDA.GpuMatND

 Summary

 Types

 t()

 Type that represents an CUDA.GpuMatND struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.GpuMatND{ref: reference()}

Type that represents an CUDA.GpuMatND struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CUDA.HOG - Evision v0.1.39

Evision.CUDA.HOG

 Summary

 Types

 t()

 Type that represents an CUDA.HOG struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, img)

 Variant 1:
Returns block descriptors computed for the whole image.

 compute(self, img, opts)

 Variant 1:
Returns block descriptors computed for the whole image.

 create()

 Creates the HOG descriptor and detector.

 create(opts)

 Creates the HOG descriptor and detector.

 detect(self, img)

 Variant 1:
Performs object detection without a multi-scale window.

 detectMultiScale(self, img)

 Variant 1:
Performs object detection with a multi-scale window.

 detectMultiScaleWithoutConf(self, img)

 Variant 1:
Performs object detection with a multi-scale window.

 detectWithoutConf(self, img)

 Variant 1:
Performs object detection without a multi-scale window.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBlockHistogramSize(self)

 Returns the block histogram size.

 getDefaultName(self)

 getDefaultName

 getDefaultPeopleDetector(self)

 Returns coefficients of the classifier trained for people detection.

 getDescriptorFormat(self)

 getDescriptorFormat

 getDescriptorSize(self)

 Returns the number of coefficients required for the classification.

 getGammaCorrection(self)

 getGammaCorrection

 getGroupThreshold(self)

 getGroupThreshold

 getHitThreshold(self)

 getHitThreshold

 getL2HysThreshold(self)

 getL2HysThreshold

 getNumLevels(self)

 getNumLevels

 getScaleFactor(self)

 getScaleFactor

 getWinSigma(self)

 getWinSigma

 getWinStride(self)

 getWinStride

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setDescriptorFormat(self, descr_format)

 setDescriptorFormat

 setGammaCorrection(self, gamma_correction)

 setGammaCorrection

 setGroupThreshold(self, group_threshold)

 setGroupThreshold

 setHitThreshold(self, hit_threshold)

 setHitThreshold

 setL2HysThreshold(self, threshold_L2hys)

 setL2HysThreshold

 setNumLevels(self, nlevels)

 setNumLevels

 setScaleFactor(self, scale0)

 setScaleFactor

 setSVMDetector(self, detector)

 Variant 1:
Sets coefficients for the linear SVM classifier.

 setWinSigma(self, win_sigma)

 setWinSigma

 setWinStride(self, win_stride)

 setWinStride

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.HOG{ref: reference()}

Type that represents an CUDA.HOG struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.HOG.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, img)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Returns block descriptors computed for the whole image.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	descriptors: Evision.Mat.t().
2D array of descriptors.

Python prototype (for reference only):
compute(img[, descriptors[, stream]]) -> descriptors
Variant 2:
Returns block descriptors computed for the whole image.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	descriptors: Evision.CUDA.GpuMat.t().
2D array of descriptors.

Python prototype (for reference only):
compute(img[, descriptors[, stream]]) -> descriptors

 Link to this function

 compute(self, img, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Returns block descriptors computed for the whole image.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	descriptors: Evision.Mat.t().
2D array of descriptors.

Python prototype (for reference only):
compute(img[, descriptors[, stream]]) -> descriptors
Variant 2:
Returns block descriptors computed for the whole image.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	descriptors: Evision.CUDA.GpuMat.t().
2D array of descriptors.

Python prototype (for reference only):
compute(img[, descriptors[, stream]]) -> descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates the HOG descriptor and detector.
Keyword Arguments
	win_size: Size.
Detection window size. Align to block size and block stride.

	block_size: Size.
Block size in pixels. Align to cell size. Only (16,16) is supported for now.

	block_stride: Size.
Block stride. It must be a multiple of cell size.

	cell_size: Size.
Cell size. Only (8, 8) is supported for now.

	nbins: int.
Number of bins. Only 9 bins per cell are supported for now.

Return
	retval: HOG

Python prototype (for reference only):
create([, win_size[, block_size[, block_stride[, cell_size[, nbins]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 win_size: term(),
 block_size: term(),
 cell_size: term(),
 nbins: term(),
 block_stride: term()
]
 | nil
) :: t() | {:error, String.t()}

Creates the HOG descriptor and detector.
Keyword Arguments
	win_size: Size.
Detection window size. Align to block size and block stride.

	block_size: Size.
Block size in pixels. Align to cell size. Only (16,16) is supported for now.

	block_stride: Size.
Block stride. It must be a multiple of cell size.

	cell_size: Size.
Cell size. Only (8, 8) is supported for now.

	nbins: int.
Number of bins. Only 9 bins per cell are supported for now.

Return
	retval: HOG

Python prototype (for reference only):
create([, win_size[, block_size[, block_stride[, cell_size[, nbins]]]]]) -> retval

 Link to this function

 detect(self, img)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number()}], [number()]} | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 {[{number(), number()}], [number()]} | {:error, String.t()}

Variant 1:
Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. CV_8UC1 and CV_8UC4 types are supported for now.

Return
	found_locations: [Point].
Left-top corner points of detected objects boundaries.

	confidences: [double].
Optional output array for confidences.

Python prototype (for reference only):
detect(img) -> found_locations, confidences
Variant 2:
Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. CV_8UC1 and CV_8UC4 types are supported for now.

Return
	found_locations: [Point].
Left-top corner points of detected objects boundaries.

	confidences: [double].
Optional output array for confidences.

Python prototype (for reference only):
detect(img) -> found_locations, confidences

 Link to this function

 detectMultiScale(self, img)

 View Source

 @spec detectMultiScale(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

 @spec detectMultiScale(t(), Evision.CUDA.GpuMat.t()) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

Variant 1:
Performs object detection with a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Return
	found_locations: [Rect].
Detected objects boundaries.

	confidences: [double].
Optional output array for confidences.

Python prototype (for reference only):
detectMultiScale(img) -> found_locations, confidences
Variant 2:
Performs object detection with a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Return
	found_locations: [Rect].
Detected objects boundaries.

	confidences: [double].
Optional output array for confidences.

Python prototype (for reference only):
detectMultiScale(img) -> found_locations, confidences

 Link to this function

 detectMultiScaleWithoutConf(self, img)

 View Source

 @spec detectMultiScaleWithoutConf(t(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

 @spec detectMultiScaleWithoutConf(t(), Evision.CUDA.GpuMat.t()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Variant 1:
Performs object detection with a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Return
	found_locations: [Rect].
Detected objects boundaries.

Python prototype (for reference only):
detectMultiScaleWithoutConf(img) -> found_locations
Variant 2:
Performs object detection with a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. See cuda::HOGDescriptor::detect for type limitations.

Return
	found_locations: [Rect].
Detected objects boundaries.

Python prototype (for reference only):
detectMultiScaleWithoutConf(img) -> found_locations

 Link to this function

 detectWithoutConf(self, img)

 View Source

 @spec detectWithoutConf(t(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number()}] | {:error, String.t()}

 @spec detectWithoutConf(t(), Evision.CUDA.GpuMat.t()) ::
 [{number(), number()}] | {:error, String.t()}

Variant 1:
Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.Mat.t().
Source image. CV_8UC1 and CV_8UC4 types are supported for now.

Return
	found_locations: [Point].
Left-top corner points of detected objects boundaries.

Python prototype (for reference only):
detectWithoutConf(img) -> found_locations
Variant 2:
Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.CUDA.HOG.t()

	img: Evision.CUDA.GpuMat.t().
Source image. CV_8UC1 and CV_8UC4 types are supported for now.

Return
	found_locations: [Point].
Left-top corner points of detected objects boundaries.

Python prototype (for reference only):
detectWithoutConf(img) -> found_locations

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockHistogramSize(self)

 View Source

 @spec getBlockHistogramSize(t()) :: integer() | {:error, String.t()}

Returns the block histogram size.
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: size_t

Python prototype (for reference only):
getBlockHistogramSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDefaultPeopleDetector(self)

 View Source

 @spec getDefaultPeopleDetector(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns coefficients of the classifier trained for people detection.
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getDefaultPeopleDetector() -> retval

 Link to this function

 getDescriptorFormat(self)

 View Source

 @spec getDescriptorFormat(t()) ::
 Evision.CUDA.HOGDescriptor_DescriptorStorageFormat.t() | {:error, String.t()}

getDescriptorFormat
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: HOGDescriptor::DescriptorStorageFormat

Python prototype (for reference only):
getDescriptorFormat() -> retval

 Link to this function

 getDescriptorSize(self)

 View Source

 @spec getDescriptorSize(t()) :: integer() | {:error, String.t()}

Returns the number of coefficients required for the classification.
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: size_t

Python prototype (for reference only):
getDescriptorSize() -> retval

 Link to this function

 getGammaCorrection(self)

 View Source

 @spec getGammaCorrection(t()) :: boolean() | {:error, String.t()}

getGammaCorrection
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: bool

Python prototype (for reference only):
getGammaCorrection() -> retval

 Link to this function

 getGroupThreshold(self)

 View Source

 @spec getGroupThreshold(t()) :: integer() | {:error, String.t()}

getGroupThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: int

Python prototype (for reference only):
getGroupThreshold() -> retval

 Link to this function

 getHitThreshold(self)

 View Source

 @spec getHitThreshold(t()) :: number() | {:error, String.t()}

getHitThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: double

Python prototype (for reference only):
getHitThreshold() -> retval

 Link to this function

 getL2HysThreshold(self)

 View Source

 @spec getL2HysThreshold(t()) :: number() | {:error, String.t()}

getL2HysThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: double

Python prototype (for reference only):
getL2HysThreshold() -> retval

 Link to this function

 getNumLevels(self)

 View Source

 @spec getNumLevels(t()) :: integer() | {:error, String.t()}

getNumLevels
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: int

Python prototype (for reference only):
getNumLevels() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: double

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getWinSigma(self)

 View Source

 @spec getWinSigma(t()) :: number() | {:error, String.t()}

getWinSigma
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: double

Python prototype (for reference only):
getWinSigma() -> retval

 Link to this function

 getWinStride(self)

 View Source

 @spec getWinStride(t()) :: {number(), number()} | {:error, String.t()}

getWinStride
Positional Arguments
	self: Evision.CUDA.HOG.t()

Return
	retval: Size

Python prototype (for reference only):
getWinStride() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.HOG.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.HOG.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setDescriptorFormat(self, descr_format)

 View Source

 @spec setDescriptorFormat(t(), Evision.CUDA.HOGDescriptor_DescriptorStorageFormat.t()) ::
 t() | {:error, String.t()}

setDescriptorFormat
Positional Arguments
	self: Evision.CUDA.HOG.t()
	descr_format: HOGDescriptor_DescriptorStorageFormat

Python prototype (for reference only):
setDescriptorFormat(descr_format) -> None

 Link to this function

 setGammaCorrection(self, gamma_correction)

 View Source

 @spec setGammaCorrection(t(), boolean()) :: t() | {:error, String.t()}

setGammaCorrection
Positional Arguments
	self: Evision.CUDA.HOG.t()
	gamma_correction: bool

Python prototype (for reference only):
setGammaCorrection(gamma_correction) -> None

 Link to this function

 setGroupThreshold(self, group_threshold)

 View Source

 @spec setGroupThreshold(t(), integer()) :: t() | {:error, String.t()}

setGroupThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()
	group_threshold: int

Python prototype (for reference only):
setGroupThreshold(group_threshold) -> None

 Link to this function

 setHitThreshold(self, hit_threshold)

 View Source

 @spec setHitThreshold(t(), number()) :: t() | {:error, String.t()}

setHitThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()
	hit_threshold: double

Python prototype (for reference only):
setHitThreshold(hit_threshold) -> None

 Link to this function

 setL2HysThreshold(self, threshold_L2hys)

 View Source

 @spec setL2HysThreshold(t(), number()) :: t() | {:error, String.t()}

setL2HysThreshold
Positional Arguments
	self: Evision.CUDA.HOG.t()
	threshold_L2hys: double

Python prototype (for reference only):
setL2HysThreshold(threshold_L2hys) -> None

 Link to this function

 setNumLevels(self, nlevels)

 View Source

 @spec setNumLevels(t(), integer()) :: t() | {:error, String.t()}

setNumLevels
Positional Arguments
	self: Evision.CUDA.HOG.t()
	nlevels: int

Python prototype (for reference only):
setNumLevels(nlevels) -> None

 Link to this function

 setScaleFactor(self, scale0)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.CUDA.HOG.t()
	scale0: double

Python prototype (for reference only):
setScaleFactor(scale0) -> None

 Link to this function

 setSVMDetector(self, detector)

 View Source

 @spec setSVMDetector(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

 @spec setSVMDetector(t(), Evision.CUDA.GpuMat.t()) :: t() | {:error, String.t()}

Variant 1:
Sets coefficients for the linear SVM classifier.
Positional Arguments
	self: Evision.CUDA.HOG.t()
	detector: Evision.Mat.t()

Python prototype (for reference only):
setSVMDetector(detector) -> None
Variant 2:
Sets coefficients for the linear SVM classifier.
Positional Arguments
	self: Evision.CUDA.HOG.t()
	detector: Evision.CUDA.GpuMat.t()

Python prototype (for reference only):
setSVMDetector(detector) -> None

 Link to this function

 setWinSigma(self, win_sigma)

 View Source

 @spec setWinSigma(t(), number()) :: t() | {:error, String.t()}

setWinSigma
Positional Arguments
	self: Evision.CUDA.HOG.t()
	win_sigma: double

Python prototype (for reference only):
setWinSigma(win_sigma) -> None

 Link to this function

 setWinStride(self, win_stride)

 View Source

 @spec setWinStride(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

setWinStride
Positional Arguments
	self: Evision.CUDA.HOG.t()
	win_stride: Size

Python prototype (for reference only):
setWinStride(win_stride) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.HOG.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.HOG.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.HostMem - Evision v0.1.39

Evision.CUDA.HostMem

 Summary

 Types

 t()

 Type that represents an CUDA.HostMem struct.

 Functions

 channels(self)

 channels

 clone(self)

 clone

 create(self, rows, cols, type)

 create

 createMatHeader(self)

 createMatHeader

 depth(self)

 depth

 elemSize1(self)

 elemSize1

 elemSize(self)

 elemSize

 empty(self)

 empty

 get_step(self)

 hostMem()

 HostMem

 hostMem(opts)

 Variant 1:
HostMem

 hostMem(arr, opts)

 Variant 1:
HostMem

 hostMem(size, type, opts)

 Variant 1:
HostMem

 hostMem(rows, cols, type, opts)

 HostMem

 isContinuous(self)

 Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
for it.

 reshape(self, cn)

 reshape

 reshape(self, cn, opts)

 reshape

 size(self)

 size

 step1(self)

 step1

 swap(self, b)

 swap

 type(self)

 type

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.HostMem{ref: reference()}

Type that represents an CUDA.HostMem struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 channels(self)

 View Source

 @spec channels(t()) :: integer() | {:error, String.t()}

channels
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: int

Python prototype (for reference only):
channels() -> retval

 Link to this function

 clone(self)

 View Source

 @spec clone(t()) :: t() | {:error, String.t()}

clone
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
clone() -> retval

 Link to this function

 create(self, rows, cols, type)

 View Source

 @spec create(t(), integer(), integer(), integer()) :: t() | {:error, String.t()}

create
Positional Arguments
	self: Evision.CUDA.HostMem.t()
	rows: int
	cols: int
	type: int

Python prototype (for reference only):
create(rows, cols, type) -> None

 Link to this function

 createMatHeader(self)

 View Source

 @spec createMatHeader(t()) :: Evision.Mat.t() | {:error, String.t()}

createMatHeader
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
createMatHeader() -> retval

 Link to this function

 depth(self)

 View Source

 @spec depth(t()) :: integer() | {:error, String.t()}

depth
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: int

Python prototype (for reference only):
depth() -> retval

 Link to this function

 elemSize1(self)

 View Source

 @spec elemSize1(t()) :: integer() | {:error, String.t()}

elemSize1
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: size_t

Python prototype (for reference only):
elemSize1() -> retval

 Link to this function

 elemSize(self)

 View Source

 @spec elemSize(t()) :: integer() | {:error, String.t()}

elemSize
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: size_t

Python prototype (for reference only):
elemSize() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 get_step(self)

 View Source

 @spec get_step(t()) :: integer()

 Link to this function

 hostMem()

 View Source

 @spec hostMem() :: t() | {:error, String.t()}

HostMem
Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem([, alloc_type]) -> <cuda_HostMem object>

 Link to this function

 hostMem(opts)

 View Source

 @spec hostMem([{:alloc_type, term()}] | nil) :: t() | {:error, String.t()}

 @spec hostMem(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

 @spec hostMem(Evision.CUDA.GpuMat.t()) :: t() | {:error, String.t()}

Variant 1:
HostMem
Positional Arguments
	arr: Evision.Mat.t()

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(arr[, alloc_type]) -> <cuda_HostMem object>
Variant 2:
HostMem
Positional Arguments
	arr: Evision.CUDA.GpuMat.t()

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(arr[, alloc_type]) -> <cuda_HostMem object>
Variant 3:
HostMem
Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem([, alloc_type]) -> <cuda_HostMem object>

 Link to this function

 hostMem(arr, opts)

 View Source

 @spec hostMem(Evision.Mat.maybe_mat_in(), [{:alloc_type, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec hostMem(Evision.CUDA.GpuMat.t(), [{:alloc_type, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec hostMem(
 {number(), number()},
 integer()
) :: t() | {:error, String.t()}

Variant 1:
HostMem
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(size, type[, alloc_type]) -> <cuda_HostMem object>
Variant 2:
HostMem
Positional Arguments
	arr: Evision.Mat.t()

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(arr[, alloc_type]) -> <cuda_HostMem object>
Variant 3:
HostMem
Positional Arguments
	arr: Evision.CUDA.GpuMat.t()

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(arr[, alloc_type]) -> <cuda_HostMem object>

 Link to this function

 hostMem(size, type, opts)

 View Source

 @spec hostMem({number(), number()}, integer(), [{:alloc_type, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec hostMem(integer(), integer(), integer()) :: t() | {:error, String.t()}

Variant 1:
HostMem
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(rows, cols, type[, alloc_type]) -> <cuda_HostMem object>
Variant 2:
HostMem
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(size, type[, alloc_type]) -> <cuda_HostMem object>

 Link to this function

 hostMem(rows, cols, type, opts)

 View Source

 @spec hostMem(integer(), integer(), integer(), [{:alloc_type, term()}] | nil) ::
 t() | {:error, String.t()}

HostMem
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	alloc_type: HostMem_AllocType.

Return
	self: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
HostMem(rows, cols, type[, alloc_type]) -> <cuda_HostMem object>

 Link to this function

 isContinuous(self)

 View Source

 @spec isContinuous(t()) :: boolean() | {:error, String.t()}

Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting
for it.
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: bool

This can be done only if memory was allocated with the SHARED flag and if it is supported by the
hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which
eliminates an extra copy.
Python prototype (for reference only):
isContinuous() -> retval

 Link to this function

 reshape(self, cn)

 View Source

 @spec reshape(t(), integer()) :: t() | {:error, String.t()}

reshape
Positional Arguments
	self: Evision.CUDA.HostMem.t()
	cn: int

Keyword Arguments
	rows: int.

Return
	retval: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
reshape(cn[, rows]) -> retval

 Link to this function

 reshape(self, cn, opts)

 View Source

 @spec reshape(t(), integer(), [{:rows, term()}] | nil) :: t() | {:error, String.t()}

reshape
Positional Arguments
	self: Evision.CUDA.HostMem.t()
	cn: int

Keyword Arguments
	rows: int.

Return
	retval: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
reshape(cn[, rows]) -> retval

 Link to this function

 size(self)

 View Source

 @spec size(t()) :: {number(), number()} | {:error, String.t()}

size
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: Size

Python prototype (for reference only):
size() -> retval

 Link to this function

 step1(self)

 View Source

 @spec step1(t()) :: integer() | {:error, String.t()}

step1
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: size_t

Python prototype (for reference only):
step1() -> retval

 Link to this function

 swap(self, b)

 View Source

 @spec swap(t(), t()) :: t() | {:error, String.t()}

swap
Positional Arguments
	self: Evision.CUDA.HostMem.t()
	b: Evision.CUDA.HostMem.t()

Python prototype (for reference only):
swap(b) -> None

 Link to this function

 type(self)

 View Source

 @spec type(t()) :: integer() | {:error, String.t()}

type
Positional Arguments
	self: Evision.CUDA.HostMem.t()

Return
	retval: int

Python prototype (for reference only):
type() -> retval

 Evision.CUDA.HoughCirclesDetector - Evision v0.1.39

Evision.CUDA.HoughCirclesDetector

 Summary

 Types

 t()

 Type that represents an CUDA.HoughCirclesDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, src)

 Variant 1:
Finds circles in a grayscale image using the Hough transform.

 detect(self, src, opts)

 Variant 1:
Finds circles in a grayscale image using the Hough transform.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getCannyThreshold(self)

 getCannyThreshold

 getDefaultName(self)

 getDefaultName

 getDp(self)

 getDp

 getMaxCircles(self)

 getMaxCircles

 getMaxRadius(self)

 getMaxRadius

 getMinDist(self)

 getMinDist

 getMinRadius(self)

 getMinRadius

 getVotesThreshold(self)

 getVotesThreshold

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCannyThreshold(self, cannyThreshold)

 setCannyThreshold

 setDp(self, dp)

 setDp

 setMaxCircles(self, maxCircles)

 setMaxCircles

 setMaxRadius(self, maxRadius)

 setMaxRadius

 setMinDist(self, minDist)

 setMinDist

 setMinRadius(self, minRadius)

 setMinRadius

 setVotesThreshold(self, votesThreshold)

 setVotesThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.HoughCirclesDetector{ref: reference()}

Type that represents an CUDA.HoughCirclesDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, src)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel grayscale input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	circles: Evision.Mat.t().
Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$.

@sa HoughCircles
Python prototype (for reference only):
detect(src[, circles[, stream]]) -> circles
Variant 2:
Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel grayscale input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	circles: Evision.CUDA.GpuMat.t().
Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$.

@sa HoughCircles
Python prototype (for reference only):
detect(src[, circles[, stream]]) -> circles

 Link to this function

 detect(self, src, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel grayscale input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	circles: Evision.Mat.t().
Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$.

@sa HoughCircles
Python prototype (for reference only):
detect(src[, circles[, stream]]) -> circles
Variant 2:
Finds circles in a grayscale image using the Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel grayscale input image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	circles: Evision.CUDA.GpuMat.t().
Output vector of found circles. Each vector is encoded as a 3-element
floating-point vector \f$(x, y, radius)\f$.

@sa HoughCircles
Python prototype (for reference only):
detect(src[, circles[, stream]]) -> circles

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCannyThreshold(self)

 View Source

 @spec getCannyThreshold(t()) :: integer() | {:error, String.t()}

getCannyThreshold
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getCannyThreshold() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDp(self)

 View Source

 @spec getDp(t()) :: number() | {:error, String.t()}

getDp
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: float

Python prototype (for reference only):
getDp() -> retval

 Link to this function

 getMaxCircles(self)

 View Source

 @spec getMaxCircles(t()) :: integer() | {:error, String.t()}

getMaxCircles
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxCircles() -> retval

 Link to this function

 getMaxRadius(self)

 View Source

 @spec getMaxRadius(t()) :: integer() | {:error, String.t()}

getMaxRadius
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxRadius() -> retval

 Link to this function

 getMinDist(self)

 View Source

 @spec getMinDist(t()) :: number() | {:error, String.t()}

getMinDist
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: float

Python prototype (for reference only):
getMinDist() -> retval

 Link to this function

 getMinRadius(self)

 View Source

 @spec getMinRadius(t()) :: integer() | {:error, String.t()}

getMinRadius
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMinRadius() -> retval

 Link to this function

 getVotesThreshold(self)

 View Source

 @spec getVotesThreshold(t()) :: integer() | {:error, String.t()}

getVotesThreshold
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getVotesThreshold() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCannyThreshold(self, cannyThreshold)

 View Source

 @spec setCannyThreshold(t(), integer()) :: t() | {:error, String.t()}

setCannyThreshold
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	cannyThreshold: int

Python prototype (for reference only):
setCannyThreshold(cannyThreshold) -> None

 Link to this function

 setDp(self, dp)

 View Source

 @spec setDp(t(), number()) :: t() | {:error, String.t()}

setDp
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	dp: float

Python prototype (for reference only):
setDp(dp) -> None

 Link to this function

 setMaxCircles(self, maxCircles)

 View Source

 @spec setMaxCircles(t(), integer()) :: t() | {:error, String.t()}

setMaxCircles
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	maxCircles: int

Python prototype (for reference only):
setMaxCircles(maxCircles) -> None

 Link to this function

 setMaxRadius(self, maxRadius)

 View Source

 @spec setMaxRadius(t(), integer()) :: t() | {:error, String.t()}

setMaxRadius
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	maxRadius: int

Python prototype (for reference only):
setMaxRadius(maxRadius) -> None

 Link to this function

 setMinDist(self, minDist)

 View Source

 @spec setMinDist(t(), number()) :: t() | {:error, String.t()}

setMinDist
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	minDist: float

Python prototype (for reference only):
setMinDist(minDist) -> None

 Link to this function

 setMinRadius(self, minRadius)

 View Source

 @spec setMinRadius(t(), integer()) :: t() | {:error, String.t()}

setMinRadius
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	minRadius: int

Python prototype (for reference only):
setMinRadius(minRadius) -> None

 Link to this function

 setVotesThreshold(self, votesThreshold)

 View Source

 @spec setVotesThreshold(t(), integer()) :: t() | {:error, String.t()}

setVotesThreshold
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	votesThreshold: int

Python prototype (for reference only):
setVotesThreshold(votesThreshold) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.HoughCirclesDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.HoughLinesDetector - Evision v0.1.39

Evision.CUDA.HoughLinesDetector

 Summary

 Types

 t()

 Type that represents an CUDA.HoughLinesDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, src)

 Variant 1:
Finds lines in a binary image using the classical Hough transform.

 detect(self, src, opts)

 Variant 1:
Finds lines in a binary image using the classical Hough transform.

 downloadResults(self, d_lines)

 Variant 1:
Downloads results from cuda::HoughLinesDetector::detect to host memory.

 downloadResults(self, d_lines, opts)

 Variant 1:
Downloads results from cuda::HoughLinesDetector::detect to host memory.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getDoSort(self)

 getDoSort

 getMaxLines(self)

 getMaxLines

 getRho(self)

 getRho

 getTheta(self)

 getTheta

 getThreshold(self)

 getThreshold

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setDoSort(self, doSort)

 setDoSort

 setMaxLines(self, maxLines)

 setMaxLines

 setRho(self, rho)

 setRho

 setTheta(self, theta)

 setTheta

 setThreshold(self, threshold)

 setThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.HoughLinesDetector{ref: reference()}

Type that represents an CUDA.HoughLinesDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, src)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds lines in a binary image using the classical Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$. \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$).

@sa HoughLines
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds lines in a binary image using the classical Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.CUDA.GpuMat.t().
Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$. \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$).

@sa HoughLines
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines

 Link to this function

 detect(self, src, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds lines in a binary image using the classical Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$. \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$).

@sa HoughLines
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds lines in a binary image using the classical Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.CUDA.GpuMat.t().
Output vector of lines. Each line is represented by a two-element vector
\f$(\rho, \theta)\f$. \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
the image). \f$\theta\f$ is the line rotation angle in radians (
\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$).

@sa HoughLines
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines

 Link to this function

 downloadResults(self, d_lines)

 View Source

 @spec downloadResults(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec downloadResults(t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Downloads results from cuda::HoughLinesDetector::detect to host memory.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	d_lines: Evision.Mat.t().
Result of cuda::HoughLinesDetector::detect .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	h_lines: Evision.Mat.t().
Output host array.

	h_votes: Evision.Mat.t().
Optional output array for line's votes.

Python prototype (for reference only):
downloadResults(d_lines[, h_lines[, h_votes[, stream]]]) -> h_lines, h_votes
Variant 2:
Downloads results from cuda::HoughLinesDetector::detect to host memory.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	d_lines: Evision.CUDA.GpuMat.t().
Result of cuda::HoughLinesDetector::detect .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	h_lines: Evision.CUDA.GpuMat.t().
Output host array.

	h_votes: Evision.CUDA.GpuMat.t().
Optional output array for line's votes.

Python prototype (for reference only):
downloadResults(d_lines[, h_lines[, h_votes[, stream]]]) -> h_lines, h_votes

 Link to this function

 downloadResults(self, d_lines, opts)

 View Source

 @spec downloadResults(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec downloadResults(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Downloads results from cuda::HoughLinesDetector::detect to host memory.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	d_lines: Evision.Mat.t().
Result of cuda::HoughLinesDetector::detect .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	h_lines: Evision.Mat.t().
Output host array.

	h_votes: Evision.Mat.t().
Optional output array for line's votes.

Python prototype (for reference only):
downloadResults(d_lines[, h_lines[, h_votes[, stream]]]) -> h_lines, h_votes
Variant 2:
Downloads results from cuda::HoughLinesDetector::detect to host memory.
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

	d_lines: Evision.CUDA.GpuMat.t().
Result of cuda::HoughLinesDetector::detect .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	h_lines: Evision.CUDA.GpuMat.t().
Output host array.

	h_votes: Evision.CUDA.GpuMat.t().
Optional output array for line's votes.

Python prototype (for reference only):
downloadResults(d_lines[, h_lines[, h_votes[, stream]]]) -> h_lines, h_votes

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDoSort(self)

 View Source

 @spec getDoSort(t()) :: boolean() | {:error, String.t()}

getDoSort
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getDoSort() -> retval

 Link to this function

 getMaxLines(self)

 View Source

 @spec getMaxLines(t()) :: integer() | {:error, String.t()}

getMaxLines
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxLines() -> retval

 Link to this function

 getRho(self)

 View Source

 @spec getRho(t()) :: number() | {:error, String.t()}

getRho
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: float

Python prototype (for reference only):
getRho() -> retval

 Link to this function

 getTheta(self)

 View Source

 @spec getTheta(t()) :: number() | {:error, String.t()}

getTheta
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: float

Python prototype (for reference only):
getTheta() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: integer() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()

Return
	retval: int

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setDoSort(self, doSort)

 View Source

 @spec setDoSort(t(), boolean()) :: t() | {:error, String.t()}

setDoSort
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	doSort: bool

Python prototype (for reference only):
setDoSort(doSort) -> None

 Link to this function

 setMaxLines(self, maxLines)

 View Source

 @spec setMaxLines(t(), integer()) :: t() | {:error, String.t()}

setMaxLines
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	maxLines: int

Python prototype (for reference only):
setMaxLines(maxLines) -> None

 Link to this function

 setRho(self, rho)

 View Source

 @spec setRho(t(), number()) :: t() | {:error, String.t()}

setRho
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	rho: float

Python prototype (for reference only):
setRho(rho) -> None

 Link to this function

 setTheta(self, theta)

 View Source

 @spec setTheta(t(), number()) :: t() | {:error, String.t()}

setTheta
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	theta: float

Python prototype (for reference only):
setTheta(theta) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), integer()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	threshold: int

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.HoughLinesDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.HoughSegmentDetector - Evision v0.1.39

Evision.CUDA.HoughSegmentDetector

 Summary

 Types

 t()

 Type that represents an CUDA.HoughSegmentDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, src)

 Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.

 detect(self, src, opts)

 Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getMaxLineGap(self)

 getMaxLineGap

 getMaxLines(self)

 getMaxLines

 getMinLineLength(self)

 getMinLineLength

 getRho(self)

 getRho

 getTheta(self)

 getTheta

 getThreshold(self)

 getThreshold

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setMaxLineGap(self, maxLineGap)

 setMaxLineGap

 setMaxLines(self, maxLines)

 setMaxLines

 setMinLineLength(self, minLineLength)

 setMinLineLength

 setRho(self, rho)

 setRho

 setTheta(self, theta)

 setTheta

 setThreshold(self, threshold)

 setThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.HoughSegmentDetector{ref: reference()}

Type that represents an CUDA.HoughSegmentDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, src)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.CUDA.GpuMat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines

 Link to this function

 detect(self, src, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detect(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

	src: Evision.Mat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.Mat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines
Variant 2:
Finds line segments in a binary image using the probabilistic Hough transform.
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

	src: Evision.CUDA.GpuMat.t().
8-bit, single-channel binary source image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	lines: Evision.CUDA.GpuMat.t().
Output vector of lines. Each line is represented by a 4-element vector
\f$(x_1, y_1, x_2, y_2)\f$, where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
line segment.

@sa HoughLinesP
Python prototype (for reference only):
detect(src[, lines[, stream]]) -> lines

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxLineGap(self)

 View Source

 @spec getMaxLineGap(t()) :: integer() | {:error, String.t()}

getMaxLineGap
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxLineGap() -> retval

 Link to this function

 getMaxLines(self)

 View Source

 @spec getMaxLines(t()) :: integer() | {:error, String.t()}

getMaxLines
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxLines() -> retval

 Link to this function

 getMinLineLength(self)

 View Source

 @spec getMinLineLength(t()) :: integer() | {:error, String.t()}

getMinLineLength
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMinLineLength() -> retval

 Link to this function

 getRho(self)

 View Source

 @spec getRho(t()) :: number() | {:error, String.t()}

getRho
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: float

Python prototype (for reference only):
getRho() -> retval

 Link to this function

 getTheta(self)

 View Source

 @spec getTheta(t()) :: number() | {:error, String.t()}

getTheta
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: float

Python prototype (for reference only):
getTheta() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: integer() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()

Return
	retval: int

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setMaxLineGap(self, maxLineGap)

 View Source

 @spec setMaxLineGap(t(), integer()) :: t() | {:error, String.t()}

setMaxLineGap
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	maxLineGap: int

Python prototype (for reference only):
setMaxLineGap(maxLineGap) -> None

 Link to this function

 setMaxLines(self, maxLines)

 View Source

 @spec setMaxLines(t(), integer()) :: t() | {:error, String.t()}

setMaxLines
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	maxLines: int

Python prototype (for reference only):
setMaxLines(maxLines) -> None

 Link to this function

 setMinLineLength(self, minLineLength)

 View Source

 @spec setMinLineLength(t(), integer()) :: t() | {:error, String.t()}

setMinLineLength
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	minLineLength: int

Python prototype (for reference only):
setMinLineLength(minLineLength) -> None

 Link to this function

 setRho(self, rho)

 View Source

 @spec setRho(t(), number()) :: t() | {:error, String.t()}

setRho
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	rho: float

Python prototype (for reference only):
setRho(rho) -> None

 Link to this function

 setTheta(self, theta)

 View Source

 @spec setTheta(t(), number()) :: t() | {:error, String.t()}

setTheta
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	theta: float

Python prototype (for reference only):
setTheta(theta) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), integer()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	threshold: int

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.HoughSegmentDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.LookUpTable - Evision v0.1.39

Evision.CUDA.LookUpTable

 Summary

 Types

 t()

 Type that represents an CUDA.LookUpTable struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 transform(self, src)

 Variant 1:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .

 transform(self, src, opts)

 Variant 1:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.LookUpTable{ref: reference()}

Type that represents an CUDA.LookUpTable struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 transform(self, src)

 View Source

 @spec transform(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec transform(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

	src: Evision.Mat.t().
Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

Python prototype (for reference only):
transform(src[, dst[, stream]]) -> dst
Variant 2:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

	src: Evision.CUDA.GpuMat.t().
Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

Python prototype (for reference only):
transform(src[, dst[, stream]]) -> dst

 Link to this function

 transform(self, src, opts)

 View Source

 @spec transform(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec transform(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

	src: Evision.Mat.t().
Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.Mat.t().
Destination matrix.

Python prototype (for reference only):
transform(src[, dst[, stream]]) -> dst
Variant 2:
Transforms the source matrix into the destination matrix using the given look-up table:
dst(I) = lut(src(I)) .
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()

	src: Evision.CUDA.GpuMat.t().
Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	dst: Evision.CUDA.GpuMat.t().
Destination matrix.

Python prototype (for reference only):
transform(src[, dst[, stream]]) -> dst

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.LookUpTable.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.ORB - Evision v0.1.39

Evision.CUDA.ORB

 Summary

 Types

 t()

 Type that represents an CUDA.ORB struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 computeAsync(self, image)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 computeAsync(self, image, opts)

 Variant 1:
Computes the descriptors for a set of keypoints detected in an image.

 convert(self, gpu_keypoints)

 Variant 1:
convert

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 detectAndComputeAsync(self, image, mask)

 Variant 1:
detectAndComputeAsync

 detectAndComputeAsync(self, image, mask, opts)

 Variant 1:
detectAndComputeAsync

 detectAsync(self, image)

 Variant 1:
Detects keypoints in an image.

 detectAsync(self, image, opts)

 Variant 1:
Detects keypoints in an image.

 empty(self)

 empty

 getBlurForDescriptor(self)

 getBlurForDescriptor

 getDefaultName(self)

 getDefaultName

 getEdgeThreshold(self)

 getEdgeThreshold

 getFastThreshold(self)

 getFastThreshold

 getFirstLevel(self)

 getFirstLevel

 getMaxFeatures(self)

 getMaxFeatures

 getNLevels(self)

 getNLevels

 getPatchSize(self)

 getPatchSize

 getScaleFactor(self)

 getScaleFactor

 getScoreType(self)

 getScoreType

 getWTA_K(self)

 getWTA_K

 read(self, arg1)

 Variant 1:
read

 setBlurForDescriptor(self, blurForDescriptor)

 setBlurForDescriptor

 setEdgeThreshold(self, edgeThreshold)

 setEdgeThreshold

 setFastThreshold(self, fastThreshold)

 setFastThreshold

 setFirstLevel(self, firstLevel)

 setFirstLevel

 setMaxFeatures(self, maxFeatures)

 setMaxFeatures

 setNLevels(self, nlevels)

 setNLevels

 setPatchSize(self, patchSize)

 setPatchSize

 setScaleFactor(self, scaleFactor)

 setScaleFactor

 setScoreType(self, scoreType)

 setScoreType

 setWTA_K(self, wta_k)

 setWTA_K

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.ORB{ref: reference()}

Type that represents an CUDA.ORB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.ORB.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.ORB.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image)

 View Source

 @spec computeAsync(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 computeAsync(self, image, opts)

 View Source

 @spec computeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec computeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
Input collection of keypoints.

	descriptors: Evision.Mat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Input collection of keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Computed descriptors. Row j is the descriptor for j-th keypoint.

Python prototype (for reference only):
computeAsync(image[, keypoints[, descriptors[, stream]]]) -> keypoints, descriptors

 Link to this function

 convert(self, gpu_keypoints)

 View Source

 @spec convert(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

 @spec convert(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
convert
Positional Arguments
	self: Evision.CUDA.ORB.t()
	gpu_keypoints: Evision.Mat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints
Variant 2:
convert
Positional Arguments
	self: Evision.CUDA.ORB.t()
	gpu_keypoints: Evision.CUDA.GpuMat.t()

Return
	keypoints: [Evision.KeyPoint]

Converts keypoints array from internal representation to standard vector.
Python prototype (for reference only):
convert(gpu_keypoints) -> keypoints

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	nfeatures: int.
	scaleFactor: float.
	nlevels: int.
	edgeThreshold: int.
	firstLevel: int.
	wTA_K: int.
	scoreType: int.
	patchSize: int.
	fastThreshold: int.
	blurForDescriptor: bool.

Return
	retval: Evision.CUDA.ORB.t()

Python prototype (for reference only):
create([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize[, fastThreshold[, blurForDescriptor]]]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 scaleFactor: term(),
 nfeatures: term(),
 patchSize: term(),
 blurForDescriptor: term(),
 wTA_K: term(),
 nlevels: term(),
 firstLevel: term(),
 fastThreshold: term(),
 scoreType: term(),
 edgeThreshold: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	nfeatures: int.
	scaleFactor: float.
	nlevels: int.
	edgeThreshold: int.
	firstLevel: int.
	wTA_K: int.
	scoreType: int.
	patchSize: int.
	fastThreshold: int.
	blurForDescriptor: bool.

Return
	retval: Evision.CUDA.ORB.t()

Python prototype (for reference only):
create([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize[, fastThreshold[, blurForDescriptor]]]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.ORB.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.CUDA.ORB.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask)

 View Source

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t()
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAndComputeAsync(self, image, mask, opts)

 View Source

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [useProvidedKeypoints: term(), stream: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec detectAndComputeAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [useProvidedKeypoints: term(), stream: term()] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Variant 1:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.Mat.t().
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors
Variant 2:
detectAndComputeAsync
Positional Arguments
	self: Evision.CUDA.ORB.t()
	image: Evision.CUDA.GpuMat.t()
	mask: Evision.CUDA.GpuMat.t()

Keyword Arguments
	useProvidedKeypoints: bool.
	stream: Evision.CUDA.Stream.t().

Return
	keypoints: Evision.CUDA.GpuMat.t().
	descriptors: Evision.CUDA.GpuMat.t().

Detects keypoints and computes the descriptors.
Python prototype (for reference only):
detectAndComputeAsync(image, mask[, keypoints[, descriptors[, useProvidedKeypoints[, stream]]]]) -> keypoints, descriptors

 Link to this function

 detectAsync(self, image)

 View Source

 @spec detectAsync(Evision.CUDA.Feature2DAsync.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(Evision.CUDA.Feature2DAsync.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 detectAsync(self, image, opts)

 View Source

 @spec detectAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.Mat.maybe_mat_in(),
 [mask: term(), stream: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec detectAsync(
 Evision.CUDA.Feature2DAsync.t(),
 Evision.CUDA.GpuMat.t(),
 [mask: term(), stream: term()] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.Mat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints
Variant 2:
Detects keypoints in an image.
Positional Arguments
	self: Evision.CUDA.ORB.t()

	image: Evision.CUDA.GpuMat.t().
Image.

Keyword Arguments
	mask: Evision.CUDA.GpuMat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

	stream: Evision.CUDA.Stream.t().
CUDA stream.

Return
	keypoints: Evision.CUDA.GpuMat.t().
The detected keypoints.

Python prototype (for reference only):
detectAsync(image[, keypoints[, mask[, stream]]]) -> keypoints

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlurForDescriptor(self)

 View Source

 @spec getBlurForDescriptor(Evision.ORB.t()) :: boolean() | {:error, String.t()}

getBlurForDescriptor
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: bool

Python prototype (for reference only):
getBlurForDescriptor() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Feature2D.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeThreshold(self)

 View Source

 @spec getEdgeThreshold(Evision.ORB.t()) :: integer() | {:error, String.t()}

getEdgeThreshold
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getEdgeThreshold() -> retval

 Link to this function

 getFastThreshold(self)

 View Source

 @spec getFastThreshold(Evision.ORB.t()) :: integer() | {:error, String.t()}

getFastThreshold
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getFastThreshold() -> retval

 Link to this function

 getFirstLevel(self)

 View Source

 @spec getFirstLevel(Evision.ORB.t()) :: integer() | {:error, String.t()}

getFirstLevel
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getFirstLevel() -> retval

 Link to this function

 getMaxFeatures(self)

 View Source

 @spec getMaxFeatures(Evision.ORB.t()) :: integer() | {:error, String.t()}

getMaxFeatures
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getMaxFeatures() -> retval

 Link to this function

 getNLevels(self)

 View Source

 @spec getNLevels(Evision.ORB.t()) :: integer() | {:error, String.t()}

getNLevels
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getNLevels() -> retval

 Link to this function

 getPatchSize(self)

 View Source

 @spec getPatchSize(Evision.ORB.t()) :: integer() | {:error, String.t()}

getPatchSize
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getPatchSize() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(Evision.ORB.t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: double

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getScoreType(self)

 View Source

 @spec getScoreType(Evision.ORB.t()) :: integer() | {:error, String.t()}

getScoreType
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getScoreType() -> retval

 Link to this function

 getWTA_K(self)

 View Source

 @spec getWTA_K(Evision.ORB.t()) :: integer() | {:error, String.t()}

getWTA_K
Positional Arguments
	self: Evision.CUDA.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getWTA_K() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.CUDA.ORB.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.CUDA.ORB.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setBlurForDescriptor(self, blurForDescriptor)

 View Source

 @spec setBlurForDescriptor(Evision.ORB.t(), boolean()) ::
 Evision.ORB.t() | {:error, String.t()}

setBlurForDescriptor
Positional Arguments
	self: Evision.CUDA.ORB.t()
	blurForDescriptor: bool

Python prototype (for reference only):
setBlurForDescriptor(blurForDescriptor) -> None

 Link to this function

 setEdgeThreshold(self, edgeThreshold)

 View Source

 @spec setEdgeThreshold(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setEdgeThreshold
Positional Arguments
	self: Evision.CUDA.ORB.t()
	edgeThreshold: int

Python prototype (for reference only):
setEdgeThreshold(edgeThreshold) -> None

 Link to this function

 setFastThreshold(self, fastThreshold)

 View Source

 @spec setFastThreshold(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setFastThreshold
Positional Arguments
	self: Evision.CUDA.ORB.t()
	fastThreshold: int

Python prototype (for reference only):
setFastThreshold(fastThreshold) -> None

 Link to this function

 setFirstLevel(self, firstLevel)

 View Source

 @spec setFirstLevel(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setFirstLevel
Positional Arguments
	self: Evision.CUDA.ORB.t()
	firstLevel: int

Python prototype (for reference only):
setFirstLevel(firstLevel) -> None

 Link to this function

 setMaxFeatures(self, maxFeatures)

 View Source

 @spec setMaxFeatures(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setMaxFeatures
Positional Arguments
	self: Evision.CUDA.ORB.t()
	maxFeatures: int

Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None

 Link to this function

 setNLevels(self, nlevels)

 View Source

 @spec setNLevels(Evision.ORB.t(), integer()) :: Evision.ORB.t() | {:error, String.t()}

setNLevels
Positional Arguments
	self: Evision.CUDA.ORB.t()
	nlevels: int

Python prototype (for reference only):
setNLevels(nlevels) -> None

 Link to this function

 setPatchSize(self, patchSize)

 View Source

 @spec setPatchSize(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setPatchSize
Positional Arguments
	self: Evision.CUDA.ORB.t()
	patchSize: int

Python prototype (for reference only):
setPatchSize(patchSize) -> None

 Link to this function

 setScaleFactor(self, scaleFactor)

 View Source

 @spec setScaleFactor(Evision.ORB.t(), number()) ::
 Evision.ORB.t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.CUDA.ORB.t()
	scaleFactor: double

Python prototype (for reference only):
setScaleFactor(scaleFactor) -> None

 Link to this function

 setScoreType(self, scoreType)

 View Source

 @spec setScoreType(Evision.ORB.t(), integer()) ::
 Evision.ORB.t() | {:error, String.t()}

setScoreType
Positional Arguments
	self: Evision.CUDA.ORB.t()
	scoreType: int

Python prototype (for reference only):
setScoreType(scoreType) -> None

 Link to this function

 setWTA_K(self, wta_k)

 View Source

 @spec setWTA_K(Evision.ORB.t(), integer()) :: Evision.ORB.t() | {:error, String.t()}

setWTA_K
Positional Arguments
	self: Evision.CUDA.ORB.t()
	wta_k: int

Python prototype (for reference only):
setWTA_K(wta_k) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.ORB.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.ORB.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.SURFCUDA - Evision v0.1.39

Evision.CUDA.SURFCUDA

 Summary

 Types

 t()

 Type that represents an CUDA.SURFCUDA struct.

 Functions

 create(hessianThreshold)

 create

 create(hessianThreshold, opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 detect(self, img, mask)

 Finds the keypoints using fast hessian detector used in SURF

 detect(self, img, mask, opts)

 Finds the keypoints using fast hessian detector used in SURF

 detectWithDescriptors(self, img, mask)

 Finds the keypoints and computes their descriptors using fast hessian detector used in SURF

 detectWithDescriptors(self, img, mask, opts)

 Finds the keypoints and computes their descriptors using fast hessian detector used in SURF

 downloadKeypoints(self, keypointsGPU)

 downloadKeypoints

 get_extended(self)

 get_hessianThreshold(self)

 get_keypointsRatio(self)

 get_nOctaveLayers(self)

 get_nOctaves(self)

 get_upright(self)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.SURFCUDA{ref: reference()}

Type that represents an CUDA.SURFCUDA struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(hessianThreshold)

 View Source

 @spec create(number()) :: t() | {:error, String.t()}

create
Positional Arguments
	hessianThreshold: double.
Threshold for hessian keypoint detector used in SURF.

Keyword Arguments
	nOctaves: int.
Number of pyramid octaves the keypoint detector will use.

	nOctaveLayers: int.
Number of octave layers within each octave.

	extended: bool.
Extended descriptor flag (true - use extended 128-element descriptors; false - use
64-element descriptors).

	keypointsRatio: float.
Limits a maximum number of features

	upright: bool.
Up-right or rotated features flag (true - do not compute orientation of features;
false - compute orientation).

Return
	retval: SURF_CUDA

Python prototype (for reference only):
create(_hessianThreshold[, _nOctaves[, _nOctaveLayers[, _extended[, _keypointsRatio[, _upright]]]]]) -> retval

 Link to this function

 create(hessianThreshold, opts)

 View Source

 @spec create(
 number(),
 [
 keypointsRatio: term(),
 nOctaves: term(),
 extended: term(),
 upright: term(),
 nOctaveLayers: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	hessianThreshold: double.
Threshold for hessian keypoint detector used in SURF.

Keyword Arguments
	nOctaves: int.
Number of pyramid octaves the keypoint detector will use.

	nOctaveLayers: int.
Number of octave layers within each octave.

	extended: bool.
Extended descriptor flag (true - use extended 128-element descriptors; false - use
64-element descriptors).

	keypointsRatio: float.
Limits a maximum number of features

	upright: bool.
Up-right or rotated features flag (true - do not compute orientation of features;
false - compute orientation).

Return
	retval: SURF_CUDA

Python prototype (for reference only):
create(_hessianThreshold[, _nOctaves[, _nOctaveLayers[, _extended[, _keypointsRatio[, _upright]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 detect(self, img, mask)

 View Source

 @spec detect(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Finds the keypoints using fast hessian detector used in SURF
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

	img: Evision.CUDA.GpuMat.t().
Source image, currently supports only CV_8UC1 images.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Detected keypoints.

Python prototype (for reference only):
detect(img, mask[, keypoints]) -> keypoints

 Link to this function

 detect(self, img, mask, opts)

 View Source

 @spec detect(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Finds the keypoints using fast hessian detector used in SURF
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

	img: Evision.CUDA.GpuMat.t().
Source image, currently supports only CV_8UC1 images.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Detected keypoints.

Python prototype (for reference only):
detect(img, mask[, keypoints]) -> keypoints

 Link to this function

 detectWithDescriptors(self, img, mask)

 View Source

 @spec detectWithDescriptors(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Finds the keypoints and computes their descriptors using fast hessian detector used in SURF
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

	img: Evision.CUDA.GpuMat.t().
Source image, currently supports only CV_8UC1 images.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	useProvidedKeypoints: bool.
Compute descriptors for the user-provided keypoints and recompute keypoints direction.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Detected keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Keypoint descriptors.

Python prototype (for reference only):
detectWithDescriptors(img, mask[, keypoints[, descriptors[, useProvidedKeypoints]]]) -> keypoints, descriptors

 Link to this function

 detectWithDescriptors(self, img, mask, opts)

 View Source

 @spec detectWithDescriptors(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()} | {:error, String.t()}

Finds the keypoints and computes their descriptors using fast hessian detector used in SURF
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()

	img: Evision.CUDA.GpuMat.t().
Source image, currently supports only CV_8UC1 images.

	mask: Evision.CUDA.GpuMat.t().
A mask image same size as src and of type CV_8UC1.

Keyword Arguments
	useProvidedKeypoints: bool.
Compute descriptors for the user-provided keypoints and recompute keypoints direction.

Return
	keypoints: Evision.CUDA.GpuMat.t().
Detected keypoints.

	descriptors: Evision.CUDA.GpuMat.t().
Keypoint descriptors.

Python prototype (for reference only):
detectWithDescriptors(img, mask[, keypoints[, descriptors[, useProvidedKeypoints]]]) -> keypoints, descriptors

 Link to this function

 downloadKeypoints(self, keypointsGPU)

 View Source

 @spec downloadKeypoints(t(), Evision.CUDA.GpuMat.t()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

downloadKeypoints
Positional Arguments
	self: Evision.CUDA.SURFCUDA.t()
	keypointsGPU: Evision.CUDA.GpuMat.t()

Return
	keypoints: [Evision.KeyPoint]

Python prototype (for reference only):
downloadKeypoints(keypointsGPU) -> keypoints

 Link to this function

 get_extended(self)

 View Source

 @spec get_extended(t()) :: boolean()

 Link to this function

 get_hessianThreshold(self)

 View Source

 @spec get_hessianThreshold(t()) :: number()

 Link to this function

 get_keypointsRatio(self)

 View Source

 @spec get_keypointsRatio(t()) :: number()

 Link to this function

 get_nOctaveLayers(self)

 View Source

 @spec get_nOctaveLayers(t()) :: integer()

 Link to this function

 get_nOctaves(self)

 View Source

 @spec get_nOctaves(t()) :: integer()

 Link to this function

 get_upright(self)

 View Source

 @spec get_upright(t()) :: boolean()

 Evision.CUDA.StereoBM - Evision v0.1.39

Evision.CUDA.StereoBM

 Summary

 Types

 t()

 Type that represents an CUDA.StereoBM struct.

 Functions

 compute(self, left, right, stream)

 Variant 1:
compute

 compute(self, left, right, stream, opts)

 Variant 1:
compute

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.StereoBM{ref: reference()}

Type that represents an CUDA.StereoBM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, left, right, stream)

 View Source

 @spec compute(
 Evision.StereoBM.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute(
 Evision.StereoBM.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.StereoBM.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity
Variant 2:
compute
Positional Arguments
	self: Evision.CUDA.StereoBM.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, stream, opts)

 View Source

 @spec compute(
 Evision.StereoBM.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute(
 Evision.StereoBM.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.StereoBM.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity
Variant 2:
compute
Positional Arguments
	self: Evision.CUDA.StereoBM.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity

 Evision.CUDA.StereoBeliefPropagation - Evision v0.1.39

Evision.CUDA.StereoBeliefPropagation

 Summary

 Types

 t()

 Type that represents an CUDA.StereoBeliefPropagation struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, data)

 Variant 1:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.

 compute(self, data, opts)

 Variant 1:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.

 compute(self, left, right, stream)

 Variant 1:
compute

 compute(self, left, right, stream, opts)

 Variant 1:
compute

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 estimateRecommendedParams(width, height, ndisp, iters, levels)

 Uses a heuristic method to compute the recommended parameters (ndisp, iters and levels) for the
specified image size (width and height).

 getBlockSize(self)

 getBlockSize

 getDataWeight(self)

 getDataWeight

 getDefaultName(self)

 getDefaultName

 getDiscSingleJump(self)

 getDiscSingleJump

 getDisp12MaxDiff(self)

 getDisp12MaxDiff

 getMaxDataTerm(self)

 getMaxDataTerm

 getMaxDiscTerm(self)

 getMaxDiscTerm

 getMinDisparity(self)

 getMinDisparity

 getMsgType(self)

 getMsgType

 getNumDisparities(self)

 getNumDisparities

 getNumIters(self)

 getNumIters

 getNumLevels(self)

 getNumLevels

 getSpeckleRange(self)

 getSpeckleRange

 getSpeckleWindowSize(self)

 getSpeckleWindowSize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBlockSize(self, blockSize)

 setBlockSize

 setDataWeight(self, data_weight)

 setDataWeight

 setDiscSingleJump(self, disc_single_jump)

 setDiscSingleJump

 setDisp12MaxDiff(self, disp12MaxDiff)

 setDisp12MaxDiff

 setMaxDataTerm(self, max_data_term)

 setMaxDataTerm

 setMaxDiscTerm(self, max_disc_term)

 setMaxDiscTerm

 setMinDisparity(self, minDisparity)

 setMinDisparity

 setMsgType(self, msg_type)

 setMsgType

 setNumDisparities(self, numDisparities)

 setNumDisparities

 setNumIters(self, iters)

 setNumIters

 setNumLevels(self, levels)

 setNumLevels

 setSpeckleRange(self, speckleRange)

 setSpeckleRange

 setSpeckleWindowSize(self, speckleWindowSize)

 setSpeckleWindowSize

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.StereoBeliefPropagation{ref: reference()}

Type that represents an CUDA.StereoBeliefPropagation struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, data)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

	data: Evision.Mat.t().
User-specified data cost, a matrix of msg_type type and
Size(\<image columns>*ndisp, \<image rows>) size.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	disparity: Evision.Mat.t().
Output disparity map. If disparity is empty, the output type is CV_16SC1 .
Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
fractional bits.

Python prototype (for reference only):
compute(data[, disparity[, stream]]) -> disparity
Variant 2:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

	data: Evision.CUDA.GpuMat.t().
User-specified data cost, a matrix of msg_type type and
Size(\<image columns>*ndisp, \<image rows>) size.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	disparity: Evision.CUDA.GpuMat.t().
Output disparity map. If disparity is empty, the output type is CV_16SC1 .
Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
fractional bits.

Python prototype (for reference only):
compute(data[, disparity[, stream]]) -> disparity

 Link to this function

 compute(self, data, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{:stream, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

	data: Evision.Mat.t().
User-specified data cost, a matrix of msg_type type and
Size(\<image columns>*ndisp, \<image rows>) size.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	disparity: Evision.Mat.t().
Output disparity map. If disparity is empty, the output type is CV_16SC1 .
Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
fractional bits.

Python prototype (for reference only):
compute(data[, disparity[, stream]]) -> disparity
Variant 2:
Enables the stereo correspondence operator that finds the disparity for the specified data cost.
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

	data: Evision.CUDA.GpuMat.t().
User-specified data cost, a matrix of msg_type type and
Size(\<image columns>*ndisp, \<image rows>) size.

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	disparity: Evision.CUDA.GpuMat.t().
Output disparity map. If disparity is empty, the output type is CV_16SC1 .
Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
fractional bits.

Python prototype (for reference only):
compute(data[, disparity[, stream]]) -> disparity

 Link to this function

 compute(self, left, right, stream)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t()
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t()
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity
Variant 2:
compute
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, stream, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity
Variant 2:
compute
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

Has overloading in C++
Python prototype (for reference only):
compute(left, right, stream[, disparity]) -> disparity

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 estimateRecommendedParams(width, height, ndisp, iters, levels)

 View Source

 @spec estimateRecommendedParams(integer(), integer(), integer(), integer(), integer()) ::
 :ok | {:error, String.t()}

Uses a heuristic method to compute the recommended parameters (ndisp, iters and levels) for the
specified image size (width and height).
Positional Arguments
	width: int
	height: int
	ndisp: int
	iters: int
	levels: int

Python prototype (for reference only):
estimateRecommendedParams(width, height, ndisp, iters, levels) -> None

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDataWeight(self)

 View Source

 @spec getDataWeight(t()) :: number() | {:error, String.t()}

getDataWeight
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: double

Python prototype (for reference only):
getDataWeight() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDiscSingleJump(self)

 View Source

 @spec getDiscSingleJump(t()) :: number() | {:error, String.t()}

getDiscSingleJump
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: double

Python prototype (for reference only):
getDiscSingleJump() -> retval

 Link to this function

 getDisp12MaxDiff(self)

 View Source

 @spec getDisp12MaxDiff(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getDisp12MaxDiff
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getDisp12MaxDiff() -> retval

 Link to this function

 getMaxDataTerm(self)

 View Source

 @spec getMaxDataTerm(t()) :: number() | {:error, String.t()}

getMaxDataTerm
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDataTerm() -> retval

 Link to this function

 getMaxDiscTerm(self)

 View Source

 @spec getMaxDiscTerm(t()) :: number() | {:error, String.t()}

getMaxDiscTerm
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDiscTerm() -> retval

 Link to this function

 getMinDisparity(self)

 View Source

 @spec getMinDisparity(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getMinDisparity
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getMinDisparity() -> retval

 Link to this function

 getMsgType(self)

 View Source

 @spec getMsgType(t()) :: integer() | {:error, String.t()}

getMsgType
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getMsgType() -> retval

 Link to this function

 getNumDisparities(self)

 View Source

 @spec getNumDisparities(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getNumDisparities
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getNumDisparities() -> retval

 Link to this function

 getNumIters(self)

 View Source

 @spec getNumIters(t()) :: integer() | {:error, String.t()}

getNumIters
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getNumIters() -> retval

 Link to this function

 getNumLevels(self)

 View Source

 @spec getNumLevels(t()) :: integer() | {:error, String.t()}

getNumLevels
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getNumLevels() -> retval

 Link to this function

 getSpeckleRange(self)

 View Source

 @spec getSpeckleRange(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getSpeckleRange
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleRange() -> retval

 Link to this function

 getSpeckleWindowSize(self)

 View Source

 @spec getSpeckleWindowSize(Evision.StereoMatcher.t()) ::
 integer() | {:error, String.t()}

getSpeckleWindowSize
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleWindowSize() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBlockSize(self, blockSize)

 View Source

 @spec setBlockSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	blockSize: int

Python prototype (for reference only):
setBlockSize(blockSize) -> None

 Link to this function

 setDataWeight(self, data_weight)

 View Source

 @spec setDataWeight(t(), number()) :: t() | {:error, String.t()}

setDataWeight
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	data_weight: double

Python prototype (for reference only):
setDataWeight(data_weight) -> None

 Link to this function

 setDiscSingleJump(self, disc_single_jump)

 View Source

 @spec setDiscSingleJump(t(), number()) :: t() | {:error, String.t()}

setDiscSingleJump
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	disc_single_jump: double

Python prototype (for reference only):
setDiscSingleJump(disc_single_jump) -> None

 Link to this function

 setDisp12MaxDiff(self, disp12MaxDiff)

 View Source

 @spec setDisp12MaxDiff(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setDisp12MaxDiff
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	disp12MaxDiff: int

Python prototype (for reference only):
setDisp12MaxDiff(disp12MaxDiff) -> None

 Link to this function

 setMaxDataTerm(self, max_data_term)

 View Source

 @spec setMaxDataTerm(t(), number()) :: t() | {:error, String.t()}

setMaxDataTerm
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	max_data_term: double

Python prototype (for reference only):
setMaxDataTerm(max_data_term) -> None

 Link to this function

 setMaxDiscTerm(self, max_disc_term)

 View Source

 @spec setMaxDiscTerm(t(), number()) :: t() | {:error, String.t()}

setMaxDiscTerm
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	max_disc_term: double

Python prototype (for reference only):
setMaxDiscTerm(max_disc_term) -> None

 Link to this function

 setMinDisparity(self, minDisparity)

 View Source

 @spec setMinDisparity(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setMinDisparity
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	minDisparity: int

Python prototype (for reference only):
setMinDisparity(minDisparity) -> None

 Link to this function

 setMsgType(self, msg_type)

 View Source

 @spec setMsgType(t(), integer()) :: t() | {:error, String.t()}

setMsgType
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	msg_type: int

Python prototype (for reference only):
setMsgType(msg_type) -> None

 Link to this function

 setNumDisparities(self, numDisparities)

 View Source

 @spec setNumDisparities(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setNumDisparities
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	numDisparities: int

Python prototype (for reference only):
setNumDisparities(numDisparities) -> None

 Link to this function

 setNumIters(self, iters)

 View Source

 @spec setNumIters(t(), integer()) :: t() | {:error, String.t()}

setNumIters
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	iters: int

Python prototype (for reference only):
setNumIters(iters) -> None

 Link to this function

 setNumLevels(self, levels)

 View Source

 @spec setNumLevels(t(), integer()) :: t() | {:error, String.t()}

setNumLevels
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	levels: int

Python prototype (for reference only):
setNumLevels(levels) -> None

 Link to this function

 setSpeckleRange(self, speckleRange)

 View Source

 @spec setSpeckleRange(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleRange
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	speckleRange: int

Python prototype (for reference only):
setSpeckleRange(speckleRange) -> None

 Link to this function

 setSpeckleWindowSize(self, speckleWindowSize)

 View Source

 @spec setSpeckleWindowSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleWindowSize
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	speckleWindowSize: int

Python prototype (for reference only):
setSpeckleWindowSize(speckleWindowSize) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.StereoBeliefPropagation.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDA.StereoConstantSpaceBP - Evision v0.1.39

Evision.CUDA.StereoConstantSpaceBP

 Summary

 Types

 t()

 Type that represents an CUDA.StereoConstantSpaceBP struct.

 Functions

 estimateRecommendedParams(width, height, ndisp, iters, levels, nr_plane)

 Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
image size (widthand height).

 getNrPlane(self)

 getNrPlane

 getUseLocalInitDataCost(self)

 getUseLocalInitDataCost

 setNrPlane(self, nr_plane)

 setNrPlane

 setUseLocalInitDataCost(self, use_local_init_data_cost)

 setUseLocalInitDataCost

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.StereoConstantSpaceBP{ref: reference()}

Type that represents an CUDA.StereoConstantSpaceBP struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 estimateRecommendedParams(width, height, ndisp, iters, levels, nr_plane)

 View Source

 @spec estimateRecommendedParams(
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer()
) ::
 :ok | {:error, String.t()}

Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
image size (widthand height).
Positional Arguments
	width: int
	height: int
	ndisp: int
	iters: int
	levels: int
	nr_plane: int

Python prototype (for reference only):
estimateRecommendedParams(width, height, ndisp, iters, levels, nr_plane) -> None

 Link to this function

 getNrPlane(self)

 View Source

 @spec getNrPlane(t()) :: integer() | {:error, String.t()}

getNrPlane
Positional Arguments
	self: Evision.CUDA.StereoConstantSpaceBP.t()

Return
	retval: int

Python prototype (for reference only):
getNrPlane() -> retval

 Link to this function

 getUseLocalInitDataCost(self)

 View Source

 @spec getUseLocalInitDataCost(t()) :: boolean() | {:error, String.t()}

getUseLocalInitDataCost
Positional Arguments
	self: Evision.CUDA.StereoConstantSpaceBP.t()

Return
	retval: bool

Python prototype (for reference only):
getUseLocalInitDataCost() -> retval

 Link to this function

 setNrPlane(self, nr_plane)

 View Source

 @spec setNrPlane(t(), integer()) :: t() | {:error, String.t()}

setNrPlane
Positional Arguments
	self: Evision.CUDA.StereoConstantSpaceBP.t()
	nr_plane: int

Python prototype (for reference only):
setNrPlane(nr_plane) -> None

 Link to this function

 setUseLocalInitDataCost(self, use_local_init_data_cost)

 View Source

 @spec setUseLocalInitDataCost(t(), boolean()) :: t() | {:error, String.t()}

setUseLocalInitDataCost
Positional Arguments
	self: Evision.CUDA.StereoConstantSpaceBP.t()
	use_local_init_data_cost: bool

Python prototype (for reference only):
setUseLocalInitDataCost(use_local_init_data_cost) -> None

 Evision.CUDA.StereoSGM - Evision v0.1.39

Evision.CUDA.StereoSGM

 Summary

 Types

 t()

 Type that represents an CUDA.StereoSGM struct.

 Functions

 compute(self, left, right)

 Variant 1:
Computes disparity map for the specified stereo pair

 compute(self, left, right, opts)

 Variant 1:
Computes disparity map for the specified stereo pair

 compute_with_stream(self, left, right, stream)

 Variant 1:
Computes disparity map with specified CUDA Stream

 compute_with_stream(self, left, right, stream, opts)

 Variant 1:
Computes disparity map with specified CUDA Stream

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.StereoSGM{ref: reference()}

Type that represents an CUDA.StereoSGM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, left, right)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec compute(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()

	left: Evision.Mat.t().
Left 8-bit or 16-bit unsigned single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images.
StereoSGM computes 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits).

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity
Variant 2:
Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()

	left: Evision.CUDA.GpuMat.t().
Left 8-bit or 16-bit unsigned single-channel image.

	right: Evision.CUDA.GpuMat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.CUDA.GpuMat.t().
Output disparity map. It has the same size as the input images.
StereoSGM computes 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits).

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()

	left: Evision.Mat.t().
Left 8-bit or 16-bit unsigned single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images.
StereoSGM computes 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits).

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity
Variant 2:
Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()

	left: Evision.CUDA.GpuMat.t().
Left 8-bit or 16-bit unsigned single-channel image.

	right: Evision.CUDA.GpuMat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.CUDA.GpuMat.t().
Output disparity map. It has the same size as the input images.
StereoSGM computes 16-bit fixed-point disparity map (where each disparity value has 4 fractional bits).

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 compute_with_stream(self, left, right, stream)

 View Source

 @spec compute_with_stream(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t()
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute_with_stream(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t()
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes disparity map with specified CUDA Stream
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

@sa compute
Python prototype (for reference only):
compute_with_stream(left, right, stream[, disparity]) -> disparity
Variant 2:
Computes disparity map with specified CUDA Stream
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

@sa compute
Python prototype (for reference only):
compute_with_stream(left, right, stream[, disparity]) -> disparity

 Link to this function

 compute_with_stream(self, left, right, stream, opts)

 View Source

 @spec compute_with_stream(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec compute_with_stream(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.Stream.t(),
 [{atom(), term()}, ...] | nil
) :: Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes disparity map with specified CUDA Stream
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()
	left: Evision.Mat.t()
	right: Evision.Mat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.Mat.t().

@sa compute
Python prototype (for reference only):
compute_with_stream(left, right, stream[, disparity]) -> disparity
Variant 2:
Computes disparity map with specified CUDA Stream
Positional Arguments
	self: Evision.CUDA.StereoSGM.t()
	left: Evision.CUDA.GpuMat.t()
	right: Evision.CUDA.GpuMat.t()
	stream: Evision.CUDA.Stream.t()

Return
	disparity: Evision.CUDA.GpuMat.t().

@sa compute
Python prototype (for reference only):
compute_with_stream(left, right, stream[, disparity]) -> disparity

 Evision.CUDA.Stream - Evision v0.1.39

Evision.CUDA.Stream

 Summary

 Types

 t()

 Type that represents an CUDA.Stream struct.

 Functions

 cudaPtr(self)

 cudaPtr

 null()

 Adds a callback to be called on the host after all currently enqueued items in the stream have
completed.

 queryIfComplete(self)

 Returns true if the current stream queue is finished. Otherwise, it returns false.

 stream()

 Stream

 stream(cudaFlags)

 Variant 1:
creates a new Stream using the cudaFlags argument to determine the behaviors of the stream

 waitEvent(self, event)

 Makes a compute stream wait on an event.

 waitForCompletion(self)

 Blocks the current CPU thread until all operations in the stream are complete.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.Stream{ref: reference()}

Type that represents an CUDA.Stream struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 cudaPtr(self)

 View Source

 @spec cudaPtr(t()) :: :ok | {:error, String.t()}

cudaPtr
Positional Arguments
	self: Evision.CUDA.Stream.t()

Return
	retval: void*

Python prototype (for reference only):
cudaPtr() -> retval

 Link to this function

 null()

 View Source

 @spec null() :: t() | {:error, String.t()}

Adds a callback to be called on the host after all currently enqueued items in the stream have
completed.
Return
	retval: Evision.CUDA.Stream.t()

Note: Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization
that may depend on outstanding device work or other callbacks that are not mandated to run earlier.
Callbacks without a mandated order (in independent streams) execute in undefined order and may be
serialized.
Python prototype (for reference only):
Null() -> retval

 Link to this function

 queryIfComplete(self)

 View Source

 @spec queryIfComplete(t()) :: boolean() | {:error, String.t()}

Returns true if the current stream queue is finished. Otherwise, it returns false.
Positional Arguments
	self: Evision.CUDA.Stream.t()

Return
	retval: bool

Python prototype (for reference only):
queryIfComplete() -> retval

 Link to this function

 stream()

 View Source

 @spec stream() :: t() | {:error, String.t()}

Stream
Return
	self: Evision.CUDA.Stream.t()

Python prototype (for reference only):
Stream() -> <cuda_Stream object>

 Link to this function

 stream(cudaFlags)

 View Source

 @spec stream(integer()) :: t() | {:error, String.t()}

 @spec stream(reference()) :: t() | {:error, String.t()}

Variant 1:
creates a new Stream using the cudaFlags argument to determine the behaviors of the stream
Positional Arguments
	cudaFlags: size_t

Return
	self: Evision.CUDA.Stream.t()

Note: The cudaFlags parameter is passed to the underlying api cudaStreamCreateWithFlags() and
supports the same parameter values.
// creates an OpenCV cuda::Stream that manages an asynchronous, non-blocking,
// non-default CUDA stream
cv::cuda::Stream cvStream(cudaStreamNonBlocking);
Python prototype (for reference only):
Stream(cudaFlags) -> <cuda_Stream object>
Variant 2:
Stream
Positional Arguments
	allocator: GpuMat::Allocator

Return
	self: Evision.CUDA.Stream.t()

Python prototype (for reference only):
Stream(allocator) -> <cuda_Stream object>

 Link to this function

 waitEvent(self, event)

 View Source

 @spec waitEvent(t(), Evision.CUDA.Event.t()) :: t() | {:error, String.t()}

Makes a compute stream wait on an event.
Positional Arguments
	self: Evision.CUDA.Stream.t()
	event: Evision.CUDA.Event.t()

Python prototype (for reference only):
waitEvent(event) -> None

 Link to this function

 waitForCompletion(self)

 View Source

 @spec waitForCompletion(t()) :: t() | {:error, String.t()}

Blocks the current CPU thread until all operations in the stream are complete.
Positional Arguments
	self: Evision.CUDA.Stream.t()

Python prototype (for reference only):
waitForCompletion() -> None

 Evision.CUDA.TargetArchs - Evision v0.1.39

Evision.CUDA.TargetArchs

 Summary

 Types

 t()

 Type that represents an CUDA.TargetArchs struct.

 Functions

 has(major, minor)

 There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
code for the given architecture(s)

 hasBin(major, minor)

 hasBin

 hasEqualOrGreater(major, minor)

 hasEqualOrGreater

 hasEqualOrGreaterBin(major, minor)

 hasEqualOrGreaterBin

 hasEqualOrGreaterPtx(major, minor)

 hasEqualOrGreaterPtx

 hasEqualOrLessPtx(major, minor)

 hasEqualOrLessPtx

 hasPtx(major, minor)

 hasPtx

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.TargetArchs{ref: reference()}

Type that represents an CUDA.TargetArchs struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 has(major, minor)

 View Source

 @spec has(integer(), integer()) :: boolean() | {:error, String.t()}

There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA
code for the given architecture(s):
Positional Arguments
	major: int.
Major compute capability version.

	minor: int.
Minor compute capability version.

Return
	retval: bool

Python prototype (for reference only):
has(major, minor) -> retval

 Link to this function

 hasBin(major, minor)

 View Source

 @spec hasBin(integer(), integer()) :: boolean() | {:error, String.t()}

hasBin
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasBin(major, minor) -> retval

 Link to this function

 hasEqualOrGreater(major, minor)

 View Source

 @spec hasEqualOrGreater(integer(), integer()) :: boolean() | {:error, String.t()}

hasEqualOrGreater
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasEqualOrGreater(major, minor) -> retval

 Link to this function

 hasEqualOrGreaterBin(major, minor)

 View Source

 @spec hasEqualOrGreaterBin(integer(), integer()) :: boolean() | {:error, String.t()}

hasEqualOrGreaterBin
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasEqualOrGreaterBin(major, minor) -> retval

 Link to this function

 hasEqualOrGreaterPtx(major, minor)

 View Source

 @spec hasEqualOrGreaterPtx(integer(), integer()) :: boolean() | {:error, String.t()}

hasEqualOrGreaterPtx
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasEqualOrGreaterPtx(major, minor) -> retval

 Link to this function

 hasEqualOrLessPtx(major, minor)

 View Source

 @spec hasEqualOrLessPtx(integer(), integer()) :: boolean() | {:error, String.t()}

hasEqualOrLessPtx
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasEqualOrLessPtx(major, minor) -> retval

 Link to this function

 hasPtx(major, minor)

 View Source

 @spec hasPtx(integer(), integer()) :: boolean() | {:error, String.t()}

hasPtx
Positional Arguments
	major: int
	minor: int

Return
	retval: bool

Python prototype (for reference only):
hasPtx(major, minor) -> retval

 Evision.CUDA.TemplateMatching - Evision v0.1.39

Evision.CUDA.TemplateMatching

 Summary

 Types

 t()

 Type that represents an CUDA.TemplateMatching struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 match(self, image, templ)

 Variant 1:
Computes a proximity map for a raster template and an image where the template is searched for.

 match(self, image, templ, opts)

 Variant 1:
Computes a proximity map for a raster template and an image where the template is searched for.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDA.TemplateMatching{ref: reference()}

Type that represents an CUDA.TemplateMatching struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 match(self, image, templ)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec match(t(), Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a proximity map for a raster template and an image where the template is searched for.
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

	image: Evision.Mat.t().
Source image.

	templ: Evision.Mat.t().
Template image with the size and type the same as image .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Map containing comparison results (CV_32FC1). If image is W x H and templ is w
x h, then result must be W-w+1 x H-h+1.

Python prototype (for reference only):
match(image, templ[, result[, stream]]) -> result
Variant 2:
Computes a proximity map for a raster template and an image where the template is searched for.
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

	image: Evision.CUDA.GpuMat.t().
Source image.

	templ: Evision.CUDA.GpuMat.t().
Template image with the size and type the same as image .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Map containing comparison results (CV_32FC1). If image is W x H and templ is w
x h, then result must be W-w+1 x H-h+1.

Python prototype (for reference only):
match(image, templ[, result[, stream]]) -> result

 Link to this function

 match(self, image, templ, opts)

 View Source

 @spec match(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:stream, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec match(
 t(),
 Evision.CUDA.GpuMat.t(),
 Evision.CUDA.GpuMat.t(),
 [{:stream, term()}] | nil
) ::
 Evision.CUDA.GpuMat.t() | {:error, String.t()}

Variant 1:
Computes a proximity map for a raster template and an image where the template is searched for.
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

	image: Evision.Mat.t().
Source image.

	templ: Evision.Mat.t().
Template image with the size and type the same as image .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.Mat.t().
Map containing comparison results (CV_32FC1). If image is W x H and templ is w
x h, then result must be W-w+1 x H-h+1.

Python prototype (for reference only):
match(image, templ[, result[, stream]]) -> result
Variant 2:
Computes a proximity map for a raster template and an image where the template is searched for.
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()

	image: Evision.CUDA.GpuMat.t().
Source image.

	templ: Evision.CUDA.GpuMat.t().
Template image with the size and type the same as image .

Keyword Arguments
	stream: Evision.CUDA.Stream.t().
Stream for the asynchronous version.

Return
	result: Evision.CUDA.GpuMat.t().
Map containing comparison results (CV_32FC1). If image is W x H and templ is w
x h, then result must be W-w+1 x H-h+1.

Python prototype (for reference only):
match(image, templ[, result[, stream]]) -> result

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CUDA.TemplateMatching.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CUDACodec - Evision v0.1.39

Evision.CUDACodec

 Summary

 Types

 t()

 Type that represents an CUDACodec struct.

 Functions

 createVideoReader(source)

 Variant 1:
createVideoReader

 createVideoReader(source, opts)

 Variant 1:
createVideoReader

 createVideoWriter(fileName, frameSize)

 Creates video writer.

 createVideoWriter(fileName, frameSize, opts)

 Creates video writer.

 createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params)

 Creates video writer.

 createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params, opts)

 Creates video writer.

 mapHist(hist)

 Utility function demonstrating how to map the luma histogram when FormatInfo::videoFullRangeFlag == false

 mapHist(hist, opts)

 Utility function demonstrating how to map the luma histogram when FormatInfo::videoFullRangeFlag == false

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec{ref: reference()}

Type that represents an CUDACodec struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createVideoReader(source)

 View Source

 @spec createVideoReader(Evision.CUDACodec.RawVideoSource.t()) ::
 Evision.CUDACodec.VideoReader.t() | {:error, String.t()}

 @spec createVideoReader(binary()) ::
 Evision.CUDACodec.VideoReader.t() | {:error, String.t()}

Variant 1:
createVideoReader
Positional Arguments
	source: RawVideoSource.
RAW video source implemented by user.

Keyword Arguments
	params: VideoReaderInitParams.
Initializaton parameters. See cv::cudacodec::VideoReaderInitParams.

Return
	retval: VideoReader

Has overloading in C++
Python prototype (for reference only):
createVideoReader(source[, params]) -> retval
Variant 2:
Creates video reader.
Positional Arguments
	filename: String.
Name of the input video file.

Keyword Arguments
	sourceParams: [int].
Pass through parameters for VideoCapure. VideoCapture with the FFMpeg back end (CAP_FFMPEG) is used to parse the video input.
The sourceParams parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
e.g. when streaming from an RTSP source CAP_PROP_OPEN_TIMEOUT_MSEC may need to be set.

	params: VideoReaderInitParams.
Initializaton parameters. See cv::cudacodec::VideoReaderInitParams.

Return
	retval: VideoReader

FFMPEG is used to read videos. User can implement own demultiplexing with cudacodec::RawVideoSource
Python prototype (for reference only):
createVideoReader(filename[, sourceParams[, params]]) -> retval

 Link to this function

 createVideoReader(source, opts)

 View Source

 @spec createVideoReader(
 Evision.CUDACodec.RawVideoSource.t(),
 [{:params, term()}] | nil
) ::
 Evision.CUDACodec.VideoReader.t() | {:error, String.t()}

 @spec createVideoReader(binary(), [params: term(), sourceParams: term()] | nil) ::
 Evision.CUDACodec.VideoReader.t() | {:error, String.t()}

Variant 1:
createVideoReader
Positional Arguments
	source: RawVideoSource.
RAW video source implemented by user.

Keyword Arguments
	params: VideoReaderInitParams.
Initializaton parameters. See cv::cudacodec::VideoReaderInitParams.

Return
	retval: VideoReader

Has overloading in C++
Python prototype (for reference only):
createVideoReader(source[, params]) -> retval
Variant 2:
Creates video reader.
Positional Arguments
	filename: String.
Name of the input video file.

Keyword Arguments
	sourceParams: [int].
Pass through parameters for VideoCapure. VideoCapture with the FFMpeg back end (CAP_FFMPEG) is used to parse the video input.
The sourceParams parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
e.g. when streaming from an RTSP source CAP_PROP_OPEN_TIMEOUT_MSEC may need to be set.

	params: VideoReaderInitParams.
Initializaton parameters. See cv::cudacodec::VideoReaderInitParams.

Return
	retval: VideoReader

FFMPEG is used to read videos. User can implement own demultiplexing with cudacodec::RawVideoSource
Python prototype (for reference only):
createVideoReader(filename[, sourceParams[, params]]) -> retval

 Link to this function

 createVideoWriter(fileName, frameSize)

 View Source

 @spec createVideoWriter(
 binary(),
 {number(), number()}
) :: Evision.CUDACodec.VideoWriter.t() | {:error, String.t()}

Creates video writer.
Positional Arguments
	fileName: String.
Name of the output video file.

	frameSize: Size.
Size of the input video frames.

Keyword Arguments
	codec: Codec.
Supports Codec::H264 and Codec::HEVC.

	fps: double.
Framerate of the created video stream.

	colorFormat: ColorFormat.
OpenCv color format of the frames to be encoded.

	encoderCallback: EncoderCallback.
Callbacks for video encoder. See cudacodec::EncoderCallback. Required for working with the encoded video stream.

	stream: cuda_Stream.
Stream for frame pre-processing.

Return
	retval: Evision.CUDACodec.VideoWriter.t()

Python prototype (for reference only):
createVideoWriter(fileName, frameSize[, codec[, fps[, colorFormat[, encoderCallback[, stream]]]]]) -> retval

 Link to this function

 createVideoWriter(fileName, frameSize, opts)

 View Source

 @spec createVideoWriter(
 binary(),
 {number(), number()},
 [
 fps: term(),
 colorFormat: term(),
 codec: term(),
 encoderCallback: term(),
 stream: term()
]
 | nil
) :: Evision.CUDACodec.VideoWriter.t() | {:error, String.t()}

Creates video writer.
Positional Arguments
	fileName: String.
Name of the output video file.

	frameSize: Size.
Size of the input video frames.

Keyword Arguments
	codec: Codec.
Supports Codec::H264 and Codec::HEVC.

	fps: double.
Framerate of the created video stream.

	colorFormat: ColorFormat.
OpenCv color format of the frames to be encoded.

	encoderCallback: EncoderCallback.
Callbacks for video encoder. See cudacodec::EncoderCallback. Required for working with the encoded video stream.

	stream: cuda_Stream.
Stream for frame pre-processing.

Return
	retval: Evision.CUDACodec.VideoWriter.t()

Python prototype (for reference only):
createVideoWriter(fileName, frameSize[, codec[, fps[, colorFormat[, encoderCallback[, stream]]]]]) -> retval

 Link to this function

 createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params)

 View Source

 @spec createVideoWriter(
 binary(),
 {number(), number()},
 Evision.CUDACodec.Codec.t(),
 number(),
 Evision.CUDACodec.ColorFormat.t(),
 Evision.CUDACodec.EncoderParams.t()
) :: Evision.CUDACodec.VideoWriter.t() | {:error, String.t()}

Creates video writer.
Positional Arguments
	fileName: String.
Name of the output video file.

	frameSize: Size.
Size of the input video frames.

	codec: Codec.
Supports Codec::H264 and Codec::HEVC.

	fps: double.
Framerate of the created video stream.

	colorFormat: ColorFormat.
OpenCv color format of the frames to be encoded.

	params: EncoderParams.
Additional encoding parameters.

Keyword Arguments
	encoderCallback: EncoderCallback.
Callbacks for video encoder. See cudacodec::EncoderCallback. Required for working with the encoded video stream.

	stream: cuda_Stream.
Stream for frame pre-processing.

Return
	retval: Evision.CUDACodec.VideoWriter.t()

Python prototype (for reference only):
createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params[, encoderCallback[, stream]]) -> retval

 Link to this function

 createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params, opts)

 View Source

 @spec createVideoWriter(
 binary(),
 {number(), number()},
 Evision.CUDACodec.Codec.t(),
 number(),
 Evision.CUDACodec.ColorFormat.t(),
 Evision.CUDACodec.EncoderParams.t(),
 [encoderCallback: term(), stream: term()] | nil
) :: Evision.CUDACodec.VideoWriter.t() | {:error, String.t()}

Creates video writer.
Positional Arguments
	fileName: String.
Name of the output video file.

	frameSize: Size.
Size of the input video frames.

	codec: Codec.
Supports Codec::H264 and Codec::HEVC.

	fps: double.
Framerate of the created video stream.

	colorFormat: ColorFormat.
OpenCv color format of the frames to be encoded.

	params: EncoderParams.
Additional encoding parameters.

Keyword Arguments
	encoderCallback: EncoderCallback.
Callbacks for video encoder. See cudacodec::EncoderCallback. Required for working with the encoded video stream.

	stream: cuda_Stream.
Stream for frame pre-processing.

Return
	retval: Evision.CUDACodec.VideoWriter.t()

Python prototype (for reference only):
createVideoWriter(fileName, frameSize, codec, fps, colorFormat, params[, encoderCallback[, stream]]) -> retval

 Link to this function

 mapHist(hist)

 View Source

 @spec mapHist(Evision.CUDA.GpuMat.t()) :: Evision.Mat.t() | {:error, String.t()}

Utility function demonstrating how to map the luma histogram when FormatInfo::videoFullRangeFlag == false
Positional Arguments
	hist: Evision.CUDA.GpuMat.t().
Luma histogram \a hist returned from VideoReader::nextFrame(GpuMat& frame, GpuMat& hist, Stream& stream).

Return
	histFull: Evision.Mat.t().
Host histogram equivelent to downloading \a hist after calling cuda::calcHist(InputArray frame, OutputArray hist, Stream& stream).

Note:
	This function demonstrates how to map the luma histogram back so that it is equivalent to the result obtained from cuda::calcHist()
if the returned frame was colorFormat::GRAY.

Python prototype (for reference only):
MapHist(hist[, histFull]) -> histFull

 Link to this function

 mapHist(hist, opts)

 View Source

 @spec mapHist(Evision.CUDA.GpuMat.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Utility function demonstrating how to map the luma histogram when FormatInfo::videoFullRangeFlag == false
Positional Arguments
	hist: Evision.CUDA.GpuMat.t().
Luma histogram \a hist returned from VideoReader::nextFrame(GpuMat& frame, GpuMat& hist, Stream& stream).

Return
	histFull: Evision.Mat.t().
Host histogram equivelent to downloading \a hist after calling cuda::calcHist(InputArray frame, OutputArray hist, Stream& stream).

Note:
	This function demonstrates how to map the luma histogram back so that it is equivalent to the result obtained from cuda::calcHist()
if the returned frame was colorFormat::GRAY.

Python prototype (for reference only):
MapHist(hist[, histFull]) -> histFull

 Evision.CUDACodec.EncodeQp - Evision v0.1.39

Evision.CUDACodec.EncodeQp

 Summary

 Types

 t()

 Type that represents an CUDACodec.EncodeQp struct.

 Functions

 get_qpInterB(self)

 get_qpInterP(self)

 get_qpIntra(self)

 set_qpInterB(self, prop)

 set_qpInterP(self, prop)

 set_qpIntra(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.EncodeQp{ref: reference()}

Type that represents an CUDACodec.EncodeQp struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_qpInterB(self)

 View Source

 @spec get_qpInterB(t()) :: integer()

 Link to this function

 get_qpInterP(self)

 View Source

 @spec get_qpInterP(t()) :: integer()

 Link to this function

 get_qpIntra(self)

 View Source

 @spec get_qpIntra(t()) :: integer()

 Link to this function

 set_qpInterB(self, prop)

 View Source

 @spec set_qpInterB(t(), integer()) :: t()

 Link to this function

 set_qpInterP(self, prop)

 View Source

 @spec set_qpInterP(t(), integer()) :: t()

 Link to this function

 set_qpIntra(self, prop)

 View Source

 @spec set_qpIntra(t(), integer()) :: t()

 Evision.CUDACodec.EncoderCallback - Evision v0.1.39

Evision.CUDACodec.EncoderCallback

 Summary

 Types

 t()

 Type that represents an CUDACodec.EncoderCallback struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.EncoderCallback{ref: reference()}

Type that represents an CUDACodec.EncoderCallback struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CUDACodec.EncoderParams - Evision v0.1.39

Evision.CUDACodec.EncoderParams

 Summary

 Types

 t()

 Type that represents an CUDACodec.EncoderParams struct.

 Functions

 encoderParams()

 EncoderParams

 get_averageBitRate(self)

 get_constQp(self)

 get_encodingProfile(self)

 get_gopLength(self)

 get_idrPeriod(self)

 get_maxBitRate(self)

 get_multiPassEncoding(self)

 get_nvPreset(self)

 get_rateControlMode(self)

 get_targetQuality(self)

 get_tuningInfo(self)

 set_averageBitRate(self, prop)

 set_constQp(self, prop)

 set_encodingProfile(self, prop)

 set_gopLength(self, prop)

 set_idrPeriod(self, prop)

 set_maxBitRate(self, prop)

 set_multiPassEncoding(self, prop)

 set_nvPreset(self, prop)

 set_rateControlMode(self, prop)

 set_targetQuality(self, prop)

 set_tuningInfo(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.EncoderParams{ref: reference()}

Type that represents an CUDACodec.EncoderParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 encoderParams()

 View Source

 @spec encoderParams() :: t() | {:error, String.t()}

EncoderParams
Return
	self: EncoderParams

Python prototype (for reference only):
EncoderParams() -> <cudacodec_EncoderParams object>

 Link to this function

 get_averageBitRate(self)

 View Source

 @spec get_averageBitRate(t()) :: integer()

 Link to this function

 get_constQp(self)

 View Source

 @spec get_constQp(t()) :: Evision.CUDACodec.EncodeQp.t()

 Link to this function

 get_encodingProfile(self)

 View Source

 @spec get_encodingProfile(t()) :: Evision.CUDACodec.EncodeProfile.t()

 Link to this function

 get_gopLength(self)

 View Source

 @spec get_gopLength(t()) :: integer()

 Link to this function

 get_idrPeriod(self)

 View Source

 @spec get_idrPeriod(t()) :: integer()

 Link to this function

 get_maxBitRate(self)

 View Source

 @spec get_maxBitRate(t()) :: integer()

 Link to this function

 get_multiPassEncoding(self)

 View Source

 @spec get_multiPassEncoding(t()) :: Evision.CUDACodec.EncodeMultiPass.t()

 Link to this function

 get_nvPreset(self)

 View Source

 @spec get_nvPreset(t()) :: Evision.CUDACodec.EncodePreset.t()

 Link to this function

 get_rateControlMode(self)

 View Source

 @spec get_rateControlMode(t()) :: Evision.CUDACodec.EncodeParamsRcMode.t()

 Link to this function

 get_targetQuality(self)

 View Source

 @spec get_targetQuality(t()) :: integer()

 Link to this function

 get_tuningInfo(self)

 View Source

 @spec get_tuningInfo(t()) :: Evision.CUDACodec.EncodeTuningInfo.t()

 Link to this function

 set_averageBitRate(self, prop)

 View Source

 @spec set_averageBitRate(t(), integer()) :: t()

 Link to this function

 set_constQp(self, prop)

 View Source

 @spec set_constQp(t(), Evision.CUDACodec.EncodeQp.t()) :: t()

 Link to this function

 set_encodingProfile(self, prop)

 View Source

 @spec set_encodingProfile(t(), Evision.CUDACodec.EncodeProfile.t()) :: t()

 Link to this function

 set_gopLength(self, prop)

 View Source

 @spec set_gopLength(t(), integer()) :: t()

 Link to this function

 set_idrPeriod(self, prop)

 View Source

 @spec set_idrPeriod(t(), integer()) :: t()

 Link to this function

 set_maxBitRate(self, prop)

 View Source

 @spec set_maxBitRate(t(), integer()) :: t()

 Link to this function

 set_multiPassEncoding(self, prop)

 View Source

 @spec set_multiPassEncoding(t(), Evision.CUDACodec.EncodeMultiPass.t()) :: t()

 Link to this function

 set_nvPreset(self, prop)

 View Source

 @spec set_nvPreset(t(), Evision.CUDACodec.EncodePreset.t()) :: t()

 Link to this function

 set_rateControlMode(self, prop)

 View Source

 @spec set_rateControlMode(t(), Evision.CUDACodec.EncodeParamsRcMode.t()) :: t()

 Link to this function

 set_targetQuality(self, prop)

 View Source

 @spec set_targetQuality(t(), integer()) :: t()

 Link to this function

 set_tuningInfo(self, prop)

 View Source

 @spec set_tuningInfo(t(), Evision.CUDACodec.EncodeTuningInfo.t()) :: t()

 Evision.CUDACodec.FormatInfo - Evision v0.1.39

Evision.CUDACodec.FormatInfo

 Summary

 Types

 t()

 Type that represents an CUDACodec.FormatInfo struct.

 Functions

 formatInfo()

 FormatInfo

 get_chromaFormat(self)

 get_codec(self)

 get_deinterlaceMode(self)

 get_displayArea(self)

 get_enableHistogram(self)

 get_fps(self)

 get_height(self)

 get_nBitDepthChromaMinus8(self)

 get_nBitDepthMinus8(self)

 get_nCounterBitDepth(self)

 get_nMaxHistogramBins(self)

 get_srcRoi(self)

 get_targetRoi(self)

 get_targetSz(self)

 get_ulHeight(self)

 get_ulNumDecodeSurfaces(self)

 get_ulWidth(self)

 get_valid(self)

 get_videoFullRangeFlag(self)

 get_width(self)

 set_chromaFormat(self, prop)

 set_codec(self, prop)

 set_deinterlaceMode(self, prop)

 set_displayArea(self, prop)

 set_enableHistogram(self, prop)

 set_fps(self, prop)

 set_height(self, prop)

 set_nBitDepthChromaMinus8(self, prop)

 set_nBitDepthMinus8(self, prop)

 set_nCounterBitDepth(self, prop)

 set_nMaxHistogramBins(self, prop)

 set_srcRoi(self, prop)

 set_targetRoi(self, prop)

 set_targetSz(self, prop)

 set_ulHeight(self, prop)

 set_ulNumDecodeSurfaces(self, prop)

 set_ulWidth(self, prop)

 set_valid(self, prop)

 set_videoFullRangeFlag(self, prop)

 set_width(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.FormatInfo{ref: reference()}

Type that represents an CUDACodec.FormatInfo struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 formatInfo()

 View Source

 @spec formatInfo() :: t() | {:error, String.t()}

FormatInfo
Return
	self: FormatInfo

Python prototype (for reference only):
FormatInfo() -> <cudacodec_FormatInfo object>

 Link to this function

 get_chromaFormat(self)

 View Source

 @spec get_chromaFormat(t()) :: Evision.CUDACodec.ChromaFormat.t()

 Link to this function

 get_codec(self)

 View Source

 @spec get_codec(t()) :: Evision.CUDACodec.Codec.t()

 Link to this function

 get_deinterlaceMode(self)

 View Source

 @spec get_deinterlaceMode(t()) :: Evision.CUDACodec.DeinterlaceMode.t()

 Link to this function

 get_displayArea(self)

 View Source

 @spec get_displayArea(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_enableHistogram(self)

 View Source

 @spec get_enableHistogram(t()) :: boolean()

 Link to this function

 get_fps(self)

 View Source

 @spec get_fps(t()) :: number()

 Link to this function

 get_height(self)

 View Source

 @spec get_height(t()) :: integer()

 Link to this function

 get_nBitDepthChromaMinus8(self)

 View Source

 @spec get_nBitDepthChromaMinus8(t()) :: integer()

 Link to this function

 get_nBitDepthMinus8(self)

 View Source

 @spec get_nBitDepthMinus8(t()) :: integer()

 Link to this function

 get_nCounterBitDepth(self)

 View Source

 @spec get_nCounterBitDepth(t()) :: integer()

 Link to this function

 get_nMaxHistogramBins(self)

 View Source

 @spec get_nMaxHistogramBins(t()) :: integer()

 Link to this function

 get_srcRoi(self)

 View Source

 @spec get_srcRoi(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_targetRoi(self)

 View Source

 @spec get_targetRoi(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_targetSz(self)

 View Source

 @spec get_targetSz(t()) :: {number(), number()}

 Link to this function

 get_ulHeight(self)

 View Source

 @spec get_ulHeight(t()) :: integer()

 Link to this function

 get_ulNumDecodeSurfaces(self)

 View Source

 @spec get_ulNumDecodeSurfaces(t()) :: integer()

 Link to this function

 get_ulWidth(self)

 View Source

 @spec get_ulWidth(t()) :: integer()

 Link to this function

 get_valid(self)

 View Source

 @spec get_valid(t()) :: boolean()

 Link to this function

 get_videoFullRangeFlag(self)

 View Source

 @spec get_videoFullRangeFlag(t()) :: boolean()

 Link to this function

 get_width(self)

 View Source

 @spec get_width(t()) :: integer()

 Link to this function

 set_chromaFormat(self, prop)

 View Source

 @spec set_chromaFormat(t(), Evision.CUDACodec.ChromaFormat.t()) :: t()

 Link to this function

 set_codec(self, prop)

 View Source

 @spec set_codec(t(), Evision.CUDACodec.Codec.t()) :: t()

 Link to this function

 set_deinterlaceMode(self, prop)

 View Source

 @spec set_deinterlaceMode(t(), Evision.CUDACodec.DeinterlaceMode.t()) :: t()

 Link to this function

 set_displayArea(self, prop)

 View Source

 @spec set_displayArea(t(), {number(), number(), number(), number()}) :: t()

 Link to this function

 set_enableHistogram(self, prop)

 View Source

 @spec set_enableHistogram(t(), boolean()) :: t()

 Link to this function

 set_fps(self, prop)

 View Source

 @spec set_fps(t(), number()) :: t()

 Link to this function

 set_height(self, prop)

 View Source

 @spec set_height(t(), integer()) :: t()

 Link to this function

 set_nBitDepthChromaMinus8(self, prop)

 View Source

 @spec set_nBitDepthChromaMinus8(t(), integer()) :: t()

 Link to this function

 set_nBitDepthMinus8(self, prop)

 View Source

 @spec set_nBitDepthMinus8(t(), integer()) :: t()

 Link to this function

 set_nCounterBitDepth(self, prop)

 View Source

 @spec set_nCounterBitDepth(t(), integer()) :: t()

 Link to this function

 set_nMaxHistogramBins(self, prop)

 View Source

 @spec set_nMaxHistogramBins(t(), integer()) :: t()

 Link to this function

 set_srcRoi(self, prop)

 View Source

 @spec set_srcRoi(t(), {number(), number(), number(), number()}) :: t()

 Link to this function

 set_targetRoi(self, prop)

 View Source

 @spec set_targetRoi(t(), {number(), number(), number(), number()}) :: t()

 Link to this function

 set_targetSz(self, prop)

 View Source

 @spec set_targetSz(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_ulHeight(self, prop)

 View Source

 @spec set_ulHeight(t(), integer()) :: t()

 Link to this function

 set_ulNumDecodeSurfaces(self, prop)

 View Source

 @spec set_ulNumDecodeSurfaces(t(), integer()) :: t()

 Link to this function

 set_ulWidth(self, prop)

 View Source

 @spec set_ulWidth(t(), integer()) :: t()

 Link to this function

 set_valid(self, prop)

 View Source

 @spec set_valid(t(), boolean()) :: t()

 Link to this function

 set_videoFullRangeFlag(self, prop)

 View Source

 @spec set_videoFullRangeFlag(t(), boolean()) :: t()

 Link to this function

 set_width(self, prop)

 View Source

 @spec set_width(t(), integer()) :: t()

 Evision.CUDACodec.RawVideoSource - Evision v0.1.39

Evision.CUDACodec.RawVideoSource

 Summary

 Types

 t()

 Type that represents an CUDACodec.RawVideoSource struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.RawVideoSource{ref: reference()}

Type that represents an CUDACodec.RawVideoSource struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CUDACodec.VideoReader - Evision v0.1.39

Evision.CUDACodec.VideoReader

 Summary

 Types

 t()

 Type that represents an CUDACodec.VideoReader struct.

 Functions

 format(self)

 Returns information about video file format.

 get(self, propertyId)

 Retrieves the specified property used by the VideoSource.

 getVideoReaderProps(self, propertyId)

 Returns the specified VideoReader property

 getVideoReaderProps(self, propertyId, opts)

 Returns the specified VideoReader property

 grab(self)

 Grabs the next frame from the video source.

 grab(self, opts)

 Grabs the next frame from the video source.

 nextFrame(self)

 Grabs, decodes and returns the next video frame.

 nextFrame(self, opts)

 Grabs, decodes and returns the next video frame.

 nextFrameWithHist(self)

 Grabs, decodes and returns the next video frame and frame luma histogram.

 nextFrameWithHist(self, opts)

 Grabs, decodes and returns the next video frame and frame luma histogram.

 retrieve(self)

 Returns the next video frame.

 retrieve(self, idx)

 Returns previously grabbed encoded video data.

 retrieve(self, idx, opts)

 Returns previously grabbed encoded video data.

 set(self, colorFormat)

 Set the desired ColorFormat for the frame returned by nextFrame()/retrieve().

 setVideoReaderProps(self, propertyId, propertyVal)

 Sets a property in the VideoReader.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.VideoReader{ref: reference()}

Type that represents an CUDACodec.VideoReader struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 format(self)

 View Source

 @spec format(t()) :: Evision.CUDACodec.FormatInfo.t() | {:error, String.t()}

Returns information about video file format.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Return
	retval: FormatInfo

Python prototype (for reference only):
format() -> retval

 Link to this function

 get(self, propertyId)

 View Source

 @spec get(t(), integer()) :: number() | false | {:error, String.t()}

Retrieves the specified property used by the VideoSource.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

	propertyId: int.
Property identifier from cv::VideoCaptureProperties (eg. cv::CAP_PROP_POS_MSEC, cv::CAP_PROP_POS_FRAMES, ...)
or one from @ref videoio_flags_others.

Return
	retval: bool

	propertyVal: double.
Value for the specified property.

@return true unless the property is unset set or not supported.
Python prototype (for reference only):
get(propertyId) -> retval, propertyVal

 Link to this function

 getVideoReaderProps(self, propertyId)

 View Source

 @spec getVideoReaderProps(t(), Evision.CUDACodec.VideoReaderProps.t()) ::
 number() | false | {:error, String.t()}

Returns the specified VideoReader property
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

	propertyId: VideoReaderProps.
Property identifier from cv::cudacodec::VideoReaderProps (eg. cv::cudacodec::VideoReaderProps::PROP_DECODED_FRAME_IDX,
cv::cudacodec::VideoReaderProps::PROP_EXTRA_DATA_INDEX, ...).

Keyword Arguments
	propertyValIn: double.

Return
	retval: bool
	propertyValOut: double

@return true unless the property is not supported.
Python prototype (for reference only):
getVideoReaderProps(propertyId[, propertyValIn]) -> retval, propertyValOut

 Link to this function

 getVideoReaderProps(self, propertyId, opts)

 View Source

 @spec getVideoReaderProps(
 t(),
 Evision.CUDACodec.VideoReaderProps.t(),
 [{:propertyValIn, term()}] | nil
) ::
 number() | false | {:error, String.t()}

Returns the specified VideoReader property
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

	propertyId: VideoReaderProps.
Property identifier from cv::cudacodec::VideoReaderProps (eg. cv::cudacodec::VideoReaderProps::PROP_DECODED_FRAME_IDX,
cv::cudacodec::VideoReaderProps::PROP_EXTRA_DATA_INDEX, ...).

Keyword Arguments
	propertyValIn: double.

Return
	retval: bool
	propertyValOut: double

@return true unless the property is not supported.
Python prototype (for reference only):
getVideoReaderProps(propertyId[, propertyValIn]) -> retval, propertyValOut

 Link to this function

 grab(self)

 View Source

 @spec grab(t()) :: boolean() | {:error, String.t()}

Grabs the next frame from the video source.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool

@return true (non-zero) in the case of success.
The method/function grabs the next frame from video file or camera and returns true (non-zero) in
the case of success.
The primary use of the function is for reading both the encoded and decoded video data when rawMode is enabled. With rawMode enabled
retrieve() can be called following grab() to retrieve all the data associated with the current video source since the last call to grab() or the creation of the VideoReader.
Python prototype (for reference only):
grab([, stream]) -> retval

 Link to this function

 grab(self, opts)

 View Source

 @spec grab(t(), [{:stream, term()}] | nil) :: boolean() | {:error, String.t()}

Grabs the next frame from the video source.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool

@return true (non-zero) in the case of success.
The method/function grabs the next frame from video file or camera and returns true (non-zero) in
the case of success.
The primary use of the function is for reading both the encoded and decoded video data when rawMode is enabled. With rawMode enabled
retrieve() can be called following grab() to retrieve all the data associated with the current video source since the last call to grab() or the creation of the VideoReader.
Python prototype (for reference only):
grab([, stream]) -> retval

 Link to this function

 nextFrame(self)

 View Source

 @spec nextFrame(t()) :: Evision.CUDA.GpuMat.t() | false | {:error, String.t()}

Grabs, decodes and returns the next video frame.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool
	frame: Evision.CUDA.GpuMat.t()

@return false if no frames have been grabbed.
If no frames have been grabbed (there are no more frames in video file), the methods return false.
The method throws an Exception if error occurs.
Python prototype (for reference only):
nextFrame([, stream]) -> retval, frame

 Link to this function

 nextFrame(self, opts)

 View Source

 @spec nextFrame(t(), [{:stream, term()}] | nil) ::
 Evision.CUDA.GpuMat.t() | false | {:error, String.t()}

Grabs, decodes and returns the next video frame.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool
	frame: Evision.CUDA.GpuMat.t()

@return false if no frames have been grabbed.
If no frames have been grabbed (there are no more frames in video file), the methods return false.
The method throws an Exception if error occurs.
Python prototype (for reference only):
nextFrame([, stream]) -> retval, frame

 Link to this function

 nextFrameWithHist(self)

 View Source

 @spec nextFrameWithHist(t()) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()}
 | false
 | {:error, String.t()}

Grabs, decodes and returns the next video frame and frame luma histogram.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool
	frame: Evision.CUDA.GpuMat.t()
	histogram: Evision.CUDA.GpuMat.t()

@return false if no frames have been grabbed.
If no frames have been grabbed (there are no more frames in video file), the methods return false.
The method throws an Exception if error occurs.
Note: Histogram data is collected by NVDEC during the decoding process resulting in zero performance penalty. NVDEC computes the histogram data for only the luma component of decoded output, not on post-processed frame(i.e. when scaling, cropping, etc. applied). If the source is encoded using a limited range of luma values (FormatInfo::videoFullRangeFlag == false) then the histogram bin values will correspond to to this limited range of values and will need to be mapped to contain the same output as cuda::calcHist(). The MapHist() utility function can be used to perform this mapping on the host if required.
Python prototype (for reference only):
nextFrameWithHist([, stream]) -> retval, frame, histogram

 Link to this function

 nextFrameWithHist(self, opts)

 View Source

 @spec nextFrameWithHist(t(), [{:stream, term()}] | nil) ::
 {Evision.CUDA.GpuMat.t(), Evision.CUDA.GpuMat.t()}
 | false
 | {:error, String.t()}

Grabs, decodes and returns the next video frame and frame luma histogram.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Keyword Arguments
	stream: cuda_Stream.
Stream for the asynchronous version.

Return
	retval: bool
	frame: Evision.CUDA.GpuMat.t()
	histogram: Evision.CUDA.GpuMat.t()

@return false if no frames have been grabbed.
If no frames have been grabbed (there are no more frames in video file), the methods return false.
The method throws an Exception if error occurs.
Note: Histogram data is collected by NVDEC during the decoding process resulting in zero performance penalty. NVDEC computes the histogram data for only the luma component of decoded output, not on post-processed frame(i.e. when scaling, cropping, etc. applied). If the source is encoded using a limited range of luma values (FormatInfo::videoFullRangeFlag == false) then the histogram bin values will correspond to to this limited range of values and will need to be mapped to contain the same output as cuda::calcHist(). The MapHist() utility function can be used to perform this mapping on the host if required.
Python prototype (for reference only):
nextFrameWithHist([, stream]) -> retval, frame, histogram

 Link to this function

 retrieve(self)

 View Source

 @spec retrieve(t()) :: Evision.CUDA.GpuMat.t() | false | {:error, String.t()}

Returns the next video frame.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

Return
	retval: bool
	frame: Evision.CUDA.GpuMat.t()

@return false if no frames have been grabbed
The method returns data associated with the current video source since the last call to grab(). If no data is present
the method returns false and the function returns an empty image.
Python prototype (for reference only):
retrieve() -> retval, frame

 Link to this function

 retrieve(self, idx)

 View Source

 @spec retrieve(t(), integer()) :: Evision.Mat.t() | false | {:error, String.t()}

Returns previously grabbed encoded video data.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()
	idx: size_t.Determines the returned data inside image. The returned data can be the:	Extra data if available, idx = get(PROP_EXTRA_DATA_INDEX).
	Raw encoded data package. To retrieve package i, idx = get(PROP_RAW_PACKAGES_BASE_INDEX) + i with i < get(PROP_NUMBER_OF_RAW_PACKAGES_SINCE_LAST_GRAB)

Return
	retval: bool
	frame: Evision.Mat.t().

@return false if no frames have been grabbed
The method returns data associated with the current video source since the last call to grab() or the creation of the VideoReader. If no data is present
the method returns false and the function returns an empty image.
Python prototype (for reference only):
retrieve(idx[, frame]) -> retval, frame

 Link to this function

 retrieve(self, idx, opts)

 View Source

 @spec retrieve(t(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

Returns previously grabbed encoded video data.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()
	idx: size_t.Determines the returned data inside image. The returned data can be the:	Extra data if available, idx = get(PROP_EXTRA_DATA_INDEX).
	Raw encoded data package. To retrieve package i, idx = get(PROP_RAW_PACKAGES_BASE_INDEX) + i with i < get(PROP_NUMBER_OF_RAW_PACKAGES_SINCE_LAST_GRAB)

Return
	retval: bool
	frame: Evision.Mat.t().

@return false if no frames have been grabbed
The method returns data associated with the current video source since the last call to grab() or the creation of the VideoReader. If no data is present
the method returns false and the function returns an empty image.
Python prototype (for reference only):
retrieve(idx[, frame]) -> retval, frame

 Link to this function

 set(self, colorFormat)

 View Source

 @spec set(t(), Evision.CUDACodec.ColorFormat.t()) :: boolean() | {:error, String.t()}

Set the desired ColorFormat for the frame returned by nextFrame()/retrieve().
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

	colorFormat: ColorFormat.
Value of the ColorFormat.

Return
	retval: bool

@return true unless the colorFormat is not supported.
Python prototype (for reference only):
set(colorFormat) -> retval

 Link to this function

 setVideoReaderProps(self, propertyId, propertyVal)

 View Source

 @spec setVideoReaderProps(t(), Evision.CUDACodec.VideoReaderProps.t(), number()) ::
 boolean() | {:error, String.t()}

Sets a property in the VideoReader.
Positional Arguments
	self: Evision.CUDACodec.VideoReader.t()

	propertyId: VideoReaderProps.
Property identifier from cv::cudacodec::VideoReaderProps (eg. cv::cudacodec::VideoReaderProps::PROP_DECODED_FRAME_IDX,
cv::cudacodec::VideoReaderProps::PROP_EXTRA_DATA_INDEX, ...).

	propertyVal: double.
Value of the property.

Return
	retval: bool

@return true if the property has been set.
Python prototype (for reference only):
setVideoReaderProps(propertyId, propertyVal) -> retval

 Evision.CUDACodec.VideoReaderInitParams - Evision v0.1.39

Evision.CUDACodec.VideoReaderInitParams

 Summary

 Types

 t()

 Type that represents an CUDACodec.VideoReaderInitParams struct.

 Functions

 get_allowFrameDrop(self)

 get_enableHistogram(self)

 get_firstFrameIdx(self)

 get_minNumDecodeSurfaces(self)

 get_rawMode(self)

 get_srcRoi(self)

 get_targetRoi(self)

 get_targetSz(self)

 get_udpSource(self)

 set_allowFrameDrop(self, prop)

 set_enableHistogram(self, prop)

 set_firstFrameIdx(self, prop)

 set_minNumDecodeSurfaces(self, prop)

 set_rawMode(self, prop)

 set_srcRoi(self, prop)

 set_targetRoi(self, prop)

 set_targetSz(self, prop)

 set_udpSource(self, prop)

 videoReaderInitParams()

 VideoReaderInitParams

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.VideoReaderInitParams{ref: reference()}

Type that represents an CUDACodec.VideoReaderInitParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_allowFrameDrop(self)

 View Source

 @spec get_allowFrameDrop(t()) :: boolean()

 Link to this function

 get_enableHistogram(self)

 View Source

 @spec get_enableHistogram(t()) :: boolean()

 Link to this function

 get_firstFrameIdx(self)

 View Source

 @spec get_firstFrameIdx(t()) :: integer()

 Link to this function

 get_minNumDecodeSurfaces(self)

 View Source

 @spec get_minNumDecodeSurfaces(t()) :: integer()

 Link to this function

 get_rawMode(self)

 View Source

 @spec get_rawMode(t()) :: boolean()

 Link to this function

 get_srcRoi(self)

 View Source

 @spec get_srcRoi(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_targetRoi(self)

 View Source

 @spec get_targetRoi(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_targetSz(self)

 View Source

 @spec get_targetSz(t()) :: {number(), number()}

 Link to this function

 get_udpSource(self)

 View Source

 @spec get_udpSource(t()) :: boolean()

 Link to this function

 set_allowFrameDrop(self, prop)

 View Source

 @spec set_allowFrameDrop(t(), boolean()) :: t()

 Link to this function

 set_enableHistogram(self, prop)

 View Source

 @spec set_enableHistogram(t(), boolean()) :: t()

 Link to this function

 set_firstFrameIdx(self, prop)

 View Source

 @spec set_firstFrameIdx(t(), integer()) :: t()

 Link to this function

 set_minNumDecodeSurfaces(self, prop)

 View Source

 @spec set_minNumDecodeSurfaces(t(), integer()) :: t()

 Link to this function

 set_rawMode(self, prop)

 View Source

 @spec set_rawMode(t(), boolean()) :: t()

 Link to this function

 set_srcRoi(self, prop)

 View Source

 @spec set_srcRoi(t(), {number(), number(), number(), number()}) :: t()

 Link to this function

 set_targetRoi(self, prop)

 View Source

 @spec set_targetRoi(t(), {number(), number(), number(), number()}) :: t()

 Link to this function

 set_targetSz(self, prop)

 View Source

 @spec set_targetSz(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_udpSource(self, prop)

 View Source

 @spec set_udpSource(t(), boolean()) :: t()

 Link to this function

 videoReaderInitParams()

 View Source

 @spec videoReaderInitParams() :: t() | {:error, String.t()}

VideoReaderInitParams
Return
	self: VideoReaderInitParams

Python prototype (for reference only):
VideoReaderInitParams() -> <cudacodec_VideoReaderInitParams object>

 Evision.CUDACodec.VideoWriter - Evision v0.1.39

Evision.CUDACodec.VideoWriter

 Summary

 Types

 t()

 Type that represents an CUDACodec.VideoWriter struct.

 Functions

 getEncoderParams(self)

 Retrieve the encoding parameters.

 release(self)

 Waits until the encoding process has finished before calling EncoderCallback::onEncodingFinished().

 write(self, frame)

 Variant 1:
Writes the next video frame.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CUDACodec.VideoWriter{ref: reference()}

Type that represents an CUDACodec.VideoWriter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getEncoderParams(self)

 View Source

 @spec getEncoderParams(Evision.VideoWriter.t()) ::
 Evision.CUDACodec.EncoderParams.t() | {:error, String.t()}

Retrieve the encoding parameters.
Positional Arguments
	self: Evision.CUDACodec.VideoWriter.t()

Return
	retval: EncoderParams

Python prototype (for reference only):
getEncoderParams() -> retval

 Link to this function

 release(self)

 View Source

 @spec release(Evision.VideoWriter.t()) ::
 Evision.VideoWriter.t() | {:error, String.t()}

Waits until the encoding process has finished before calling EncoderCallback::onEncodingFinished().
Positional Arguments
	self: Evision.CUDACodec.VideoWriter.t()

Python prototype (for reference only):
release() -> None

 Link to this function

 write(self, frame)

 View Source

 @spec write(Evision.VideoWriter.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.VideoWriter.t() | {:error, String.t()}

 @spec write(Evision.VideoWriter.t(), Evision.CUDA.GpuMat.t()) ::
 Evision.VideoWriter.t() | {:error, String.t()}

Variant 1:
Writes the next video frame.
Positional Arguments
	self: Evision.CUDACodec.VideoWriter.t()

	frame: Evision.Mat.t().
The framet to be written.

The method encodes the specified image to a video stream. The image must have the same size and the same
surface format as has been specified when opening the video writer.
Python prototype (for reference only):
write(frame) -> None
Variant 2:
Writes the next video frame.
Positional Arguments
	self: Evision.CUDACodec.VideoWriter.t()

	frame: Evision.CUDA.GpuMat.t().
The framet to be written.

The method encodes the specified image to a video stream. The image must have the same size and the same
surface format as has been specified when opening the video writer.
Python prototype (for reference only):
write(frame) -> None

 Evision.CalibrateCRF - Evision v0.1.39

Evision.CalibrateCRF

 Summary

 Types

 t()

 Type that represents an CalibrateCRF struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 process(self, src, times)

 Recovers inverse camera response.

 process(self, src, times, opts)

 Recovers inverse camera response.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CalibrateCRF{ref: reference()}

Type that represents an CalibrateCRF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CalibrateCRF.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CalibrateCRF.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CalibrateCRF.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 process(self, src, times)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()], Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateCRF.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateCRF.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CalibrateCRF.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CalibrateCRF.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CalibrateCRF.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CalibrateCRF.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CalibrateDebevec - Evision v0.1.39

Evision.CalibrateDebevec

 Summary

 Types

 t()

 Type that represents an CalibrateDebevec struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getLambda(self)

 getLambda

 getRandom(self)

 getRandom

 getSamples(self)

 getSamples

 process(self, src, times)

 Recovers inverse camera response.

 process(self, src, times, opts)

 Recovers inverse camera response.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setLambda(self, lambda)

 setLambda

 setRandom(self, random)

 setRandom

 setSamples(self, samples)

 setSamples

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CalibrateDebevec{ref: reference()}

Type that represents an CalibrateDebevec struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLambda(self)

 View Source

 @spec getLambda(t()) :: number() | {:error, String.t()}

getLambda
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Return
	retval: float

Python prototype (for reference only):
getLambda() -> retval

 Link to this function

 getRandom(self)

 View Source

 @spec getRandom(t()) :: boolean() | {:error, String.t()}

getRandom
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Return
	retval: bool

Python prototype (for reference only):
getRandom() -> retval

 Link to this function

 getSamples(self)

 View Source

 @spec getSamples(t()) :: integer() | {:error, String.t()}

getSamples
Positional Arguments
	self: Evision.CalibrateDebevec.t()

Return
	retval: int

Python prototype (for reference only):
getSamples() -> retval

 Link to this function

 process(self, src, times)

 View Source

 @spec process(
 Evision.CalibrateCRF.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateDebevec.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, opts)

 View Source

 @spec process(
 Evision.CalibrateCRF.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateDebevec.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setLambda(self, lambda)

 View Source

 @spec setLambda(t(), number()) :: t() | {:error, String.t()}

setLambda
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	lambda: float

Python prototype (for reference only):
setLambda(lambda) -> None

 Link to this function

 setRandom(self, random)

 View Source

 @spec setRandom(t(), boolean()) :: t() | {:error, String.t()}

setRandom
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	random: bool

Python prototype (for reference only):
setRandom(random) -> None

 Link to this function

 setSamples(self, samples)

 View Source

 @spec setSamples(t(), integer()) :: t() | {:error, String.t()}

setSamples
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	samples: int

Python prototype (for reference only):
setSamples(samples) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CalibrateDebevec.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CalibrateRobertson - Evision v0.1.39

Evision.CalibrateRobertson

 Summary

 Types

 t()

 Type that represents an CalibrateRobertson struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getMaxIter(self)

 getMaxIter

 getRadiance(self)

 getRadiance

 getThreshold(self)

 getThreshold

 process(self, src, times)

 Recovers inverse camera response.

 process(self, src, times, opts)

 Recovers inverse camera response.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setMaxIter(self, max_iter)

 setMaxIter

 setThreshold(self, threshold)

 setThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CalibrateRobertson{ref: reference()}

Type that represents an CalibrateRobertson struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxIter(self)

 View Source

 @spec getMaxIter(t()) :: integer() | {:error, String.t()}

getMaxIter
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Return
	retval: int

Python prototype (for reference only):
getMaxIter() -> retval

 Link to this function

 getRadiance(self)

 View Source

 @spec getRadiance(t()) :: Evision.Mat.t() | {:error, String.t()}

getRadiance
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getRadiance() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.CalibrateRobertson.t()

Return
	retval: float

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 process(self, src, times)

 View Source

 @spec process(
 Evision.CalibrateCRF.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateRobertson.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, opts)

 View Source

 @spec process(
 Evision.CalibrateCRF.t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Recovers inverse camera response.
Positional Arguments
	self: Evision.CalibrateRobertson.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

Return
	dst: Evision.Mat.t().
256x1 matrix with inverse camera response function

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setMaxIter(self, max_iter)

 View Source

 @spec setMaxIter(t(), integer()) :: t() | {:error, String.t()}

setMaxIter
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	max_iter: int

Python prototype (for reference only):
setMaxIter(max_iter) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	threshold: float

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.CalibrateRobertson.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.CascadeClassifier - Evision v0.1.39

Evision.CascadeClassifier

 Summary

 Types

 t()

 Type that represents an CascadeClassifier struct.

 Functions

 cascadeClassifier()

 CascadeClassifier

 cascadeClassifier(filename)

 Loads a classifier from a file.

 convert(oldcascade, newcascade)

 convert

 detectMultiScale2(self, image)

 detectMultiScale2

 detectMultiScale2(self, image, opts)

 detectMultiScale2

 detectMultiScale3(self, image)

 detectMultiScale3

 detectMultiScale3(self, image, opts)

 detectMultiScale3

 detectMultiScale(self, image)

 Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.

 detectMultiScale(self, image, opts)

 Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.

 empty(self)

 Checks whether the classifier has been loaded.

 getFeatureType(self)

 getFeatureType

 getOriginalWindowSize(self)

 getOriginalWindowSize

 isOldFormatCascade(self)

 isOldFormatCascade

 load(self, filename)

 Loads a classifier from a file.

 read(self, node)

 Reads a classifier from a FileStorage node.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CascadeClassifier{ref: reference()}

Type that represents an CascadeClassifier struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 cascadeClassifier()

 View Source

 @spec cascadeClassifier() :: t() | {:error, String.t()}

CascadeClassifier
Return
	self: Evision.CascadeClassifier.t()

Python prototype (for reference only):
CascadeClassifier() -> <CascadeClassifier object>

 Link to this function

 cascadeClassifier(filename)

 View Source

 @spec cascadeClassifier(binary()) :: t() | {:error, String.t()}

Loads a classifier from a file.
Positional Arguments
	filename: String.
Name of the file from which the classifier is loaded.

Return
	self: Evision.CascadeClassifier.t()

Python prototype (for reference only):
CascadeClassifier(filename) -> <CascadeClassifier object>

 Link to this function

 convert(oldcascade, newcascade)

 View Source

 @spec convert(binary(), binary()) :: boolean() | {:error, String.t()}

convert
Positional Arguments
	oldcascade: String
	newcascade: String

Return
	retval: bool

Python prototype (for reference only):
convert(oldcascade, newcascade) -> retval

 Link to this function

 detectMultiScale2(self, image)

 View Source

 @spec detectMultiScale2(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [integer()]}
 | {:error, String.t()}

detectMultiScale2
Positional Arguments
	self: Evision.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of the type CV_8U containing an image where objects are detected.

Keyword Arguments
	scaleFactor: double.
Parameter specifying how much the image size is reduced at each image scale.

	minNeighbors: int.
Parameter specifying how many neighbors each candidate rectangle should have
to retain it.

	flags: int.
Parameter with the same meaning for an old cascade as in the function
cvHaarDetectObjects. It is not used for a new cascade.

	minSize: Size.
Minimum possible object size. Objects smaller than that are ignored.

	maxSize: Size.
Maximum possible object size. Objects larger than that are ignored. If maxSize == minSize model is evaluated on single scale.

Return
	objects: [Rect].
Vector of rectangles where each rectangle contains the detected object, the
rectangles may be partially outside the original image.

	numDetections: [int].
Vector of detection numbers for the corresponding objects. An object's number
of detections is the number of neighboring positively classified rectangles that were joined
together to form the object.

Has overloading in C++
Python prototype (for reference only):
detectMultiScale2(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects, numDetections

 Link to this function

 detectMultiScale2(self, image, opts)

 View Source

 @spec detectMultiScale2(
 t(),
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 scaleFactor: term(),
 minNeighbors: term(),
 minSize: term(),
 maxSize: term()
]
 | nil
) ::
 {[{number(), number(), number(), number()}], [integer()]}
 | {:error, String.t()}

detectMultiScale2
Positional Arguments
	self: Evision.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of the type CV_8U containing an image where objects are detected.

Keyword Arguments
	scaleFactor: double.
Parameter specifying how much the image size is reduced at each image scale.

	minNeighbors: int.
Parameter specifying how many neighbors each candidate rectangle should have
to retain it.

	flags: int.
Parameter with the same meaning for an old cascade as in the function
cvHaarDetectObjects. It is not used for a new cascade.

	minSize: Size.
Minimum possible object size. Objects smaller than that are ignored.

	maxSize: Size.
Maximum possible object size. Objects larger than that are ignored. If maxSize == minSize model is evaluated on single scale.

Return
	objects: [Rect].
Vector of rectangles where each rectangle contains the detected object, the
rectangles may be partially outside the original image.

	numDetections: [int].
Vector of detection numbers for the corresponding objects. An object's number
of detections is the number of neighboring positively classified rectangles that were joined
together to form the object.

Has overloading in C++
Python prototype (for reference only):
detectMultiScale2(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects, numDetections

 Link to this function

 detectMultiScale3(self, image)

 View Source

 @spec detectMultiScale3(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [integer()], [number()]}
 | {:error, String.t()}

detectMultiScale3
Positional Arguments
	self: Evision.CascadeClassifier.t()
	image: Evision.Mat.t()

Keyword Arguments
	scaleFactor: double.
	minNeighbors: int.
	flags: int.
	minSize: Size.
	maxSize: Size.
	outputRejectLevels: bool.

Return
	objects: [Rect]
	rejectLevels: [int]
	levelWeights: [double]

Has overloading in C++
This function allows you to retrieve the final stage decision certainty of classification.
For this, one needs to set outputRejectLevels on true and provide the rejectLevels and levelWeights parameter.
For each resulting detection, levelWeights will then contain the certainty of classification at the final stage.
This value can then be used to separate strong from weaker classifications.
A code sample on how to use it efficiently can be found below:
Mat img;
vector<double> weights;
vector<int> levels;
vector<Rect> detections;
CascadeClassifier model("/path/to/your/model.xml");
model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
Python prototype (for reference only):
detectMultiScale3(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize[, outputRejectLevels]]]]]]) -> objects, rejectLevels, levelWeights

 Link to this function

 detectMultiScale3(self, image, opts)

 View Source

 @spec detectMultiScale3(
 t(),
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 scaleFactor: term(),
 minNeighbors: term(),
 outputRejectLevels: term(),
 minSize: term(),
 maxSize: term()
]
 | nil
) ::
 {[{number(), number(), number(), number()}], [integer()], [number()]}
 | {:error, String.t()}

detectMultiScale3
Positional Arguments
	self: Evision.CascadeClassifier.t()
	image: Evision.Mat.t()

Keyword Arguments
	scaleFactor: double.
	minNeighbors: int.
	flags: int.
	minSize: Size.
	maxSize: Size.
	outputRejectLevels: bool.

Return
	objects: [Rect]
	rejectLevels: [int]
	levelWeights: [double]

Has overloading in C++
This function allows you to retrieve the final stage decision certainty of classification.
For this, one needs to set outputRejectLevels on true and provide the rejectLevels and levelWeights parameter.
For each resulting detection, levelWeights will then contain the certainty of classification at the final stage.
This value can then be used to separate strong from weaker classifications.
A code sample on how to use it efficiently can be found below:
Mat img;
vector<double> weights;
vector<int> levels;
vector<Rect> detections;
CascadeClassifier model("/path/to/your/model.xml");
model.detectMultiScale(img, detections, levels, weights, 1.1, 3, 0, Size(), Size(), true);
cerr << "Detection " << detections[0] << " with weight " << weights[0] << endl;
Python prototype (for reference only):
detectMultiScale3(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize[, outputRejectLevels]]]]]]) -> objects, rejectLevels, levelWeights

 Link to this function

 detectMultiScale(self, image)

 View Source

 @spec detectMultiScale(t(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.
Positional Arguments
	self: Evision.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of the type CV_8U containing an image where objects are detected.

Keyword Arguments
	scaleFactor: double.
Parameter specifying how much the image size is reduced at each image scale.

	minNeighbors: int.
Parameter specifying how many neighbors each candidate rectangle should have
to retain it.

	flags: int.
Parameter with the same meaning for an old cascade as in the function
cvHaarDetectObjects. It is not used for a new cascade.

	minSize: Size.
Minimum possible object size. Objects smaller than that are ignored.

	maxSize: Size.
Maximum possible object size. Objects larger than that are ignored. If maxSize == minSize model is evaluated on single scale.

Return
	objects: [Rect].
Vector of rectangles where each rectangle contains the detected object, the
rectangles may be partially outside the original image.

Python prototype (for reference only):
detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects

 Link to this function

 detectMultiScale(self, image, opts)

 View Source

 @spec detectMultiScale(
 t(),
 Evision.Mat.maybe_mat_in(),
 [
 flags: term(),
 scaleFactor: term(),
 minNeighbors: term(),
 minSize: term(),
 maxSize: term()
]
 | nil
) :: [{number(), number(), number(), number()}] | {:error, String.t()}

Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.
Positional Arguments
	self: Evision.CascadeClassifier.t()

	image: Evision.Mat.t().
Matrix of the type CV_8U containing an image where objects are detected.

Keyword Arguments
	scaleFactor: double.
Parameter specifying how much the image size is reduced at each image scale.

	minNeighbors: int.
Parameter specifying how many neighbors each candidate rectangle should have
to retain it.

	flags: int.
Parameter with the same meaning for an old cascade as in the function
cvHaarDetectObjects. It is not used for a new cascade.

	minSize: Size.
Minimum possible object size. Objects smaller than that are ignored.

	maxSize: Size.
Maximum possible object size. Objects larger than that are ignored. If maxSize == minSize model is evaluated on single scale.

Return
	objects: [Rect].
Vector of rectangles where each rectangle contains the detected object, the
rectangles may be partially outside the original image.

Python prototype (for reference only):
detectMultiScale(image[, scaleFactor[, minNeighbors[, flags[, minSize[, maxSize]]]]]) -> objects

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Checks whether the classifier has been loaded.
Positional Arguments
	self: Evision.CascadeClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getFeatureType(self)

 View Source

 @spec getFeatureType(t()) :: integer() | {:error, String.t()}

getFeatureType
Positional Arguments
	self: Evision.CascadeClassifier.t()

Return
	retval: int

Python prototype (for reference only):
getFeatureType() -> retval

 Link to this function

 getOriginalWindowSize(self)

 View Source

 @spec getOriginalWindowSize(t()) :: {number(), number()} | {:error, String.t()}

getOriginalWindowSize
Positional Arguments
	self: Evision.CascadeClassifier.t()

Return
	retval: Size

Python prototype (for reference only):
getOriginalWindowSize() -> retval

 Link to this function

 isOldFormatCascade(self)

 View Source

 @spec isOldFormatCascade(t()) :: boolean() | {:error, String.t()}

isOldFormatCascade
Positional Arguments
	self: Evision.CascadeClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
isOldFormatCascade() -> retval

 Link to this function

 load(self, filename)

 View Source

 @spec load(t(), binary()) :: boolean() | {:error, String.t()}

Loads a classifier from a file.
Positional Arguments
	self: Evision.CascadeClassifier.t()

	filename: String.
Name of the file from which the classifier is loaded. The file may contain an old
HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
traincascade application.

Return
	retval: bool

Python prototype (for reference only):
load(filename) -> retval

 Link to this function

 read(self, node)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: boolean() | {:error, String.t()}

Reads a classifier from a FileStorage node.
Positional Arguments
	self: Evision.CascadeClassifier.t()
	node: Evision.FileNode.t()

Return
	retval: bool

Note: The file may contain a new cascade classifier (trained by the traincascade application) only.
Python prototype (for reference only):
read(node) -> retval

 Evision.ChiHistogramCostExtractor - Evision v0.1.39

Evision.ChiHistogramCostExtractor

 Summary

 Types

 t()

 Type that represents an ChiHistogramCostExtractor struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ChiHistogramCostExtractor{ref: reference()}

Type that represents an ChiHistogramCostExtractor struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.CirclesGridFinderParameters - Evision v0.1.39

Evision.CirclesGridFinderParameters

 Summary

 Types

 t()

 Type that represents an CirclesGridFinderParameters struct.

 Functions

 circlesGridFinderParameters()

 CirclesGridFinderParameters

 get_convexHullFactor(self)

 get_densityNeighborhoodSize(self)

 get_edgeGain(self)

 get_edgePenalty(self)

 get_existingVertexGain(self)

 get_keypointScale(self)

 get_kmeansAttempts(self)

 get_maxRectifiedDistance(self)

 get_minDensity(self)

 get_minDistanceToAddKeypoint(self)

 get_minGraphConfidence(self)

 get_minRNGEdgeSwitchDist(self)

 get_squareSize(self)

 get_vertexGain(self)

 get_vertexPenalty(self)

 set_convexHullFactor(self, prop)

 set_densityNeighborhoodSize(self, prop)

 set_edgeGain(self, prop)

 set_edgePenalty(self, prop)

 set_existingVertexGain(self, prop)

 set_keypointScale(self, prop)

 set_kmeansAttempts(self, prop)

 set_maxRectifiedDistance(self, prop)

 set_minDensity(self, prop)

 set_minDistanceToAddKeypoint(self, prop)

 set_minGraphConfidence(self, prop)

 set_minRNGEdgeSwitchDist(self, prop)

 set_squareSize(self, prop)

 set_vertexGain(self, prop)

 set_vertexPenalty(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.CirclesGridFinderParameters{ref: reference()}

Type that represents an CirclesGridFinderParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 circlesGridFinderParameters()

 View Source

 @spec circlesGridFinderParameters() :: t() | {:error, String.t()}

CirclesGridFinderParameters
Return
	self: Evision.CirclesGridFinderParameters.t()

Python prototype (for reference only):
CirclesGridFinderParameters() -> <CirclesGridFinderParameters object>

 Link to this function

 get_convexHullFactor(self)

 View Source

 @spec get_convexHullFactor(t()) :: number()

 Link to this function

 get_densityNeighborhoodSize(self)

 View Source

 @spec get_densityNeighborhoodSize(t()) :: {number(), number()}

 Link to this function

 get_edgeGain(self)

 View Source

 @spec get_edgeGain(t()) :: number()

 Link to this function

 get_edgePenalty(self)

 View Source

 @spec get_edgePenalty(t()) :: number()

 Link to this function

 get_existingVertexGain(self)

 View Source

 @spec get_existingVertexGain(t()) :: number()

 Link to this function

 get_keypointScale(self)

 View Source

 @spec get_keypointScale(t()) :: integer()

 Link to this function

 get_kmeansAttempts(self)

 View Source

 @spec get_kmeansAttempts(t()) :: integer()

 Link to this function

 get_maxRectifiedDistance(self)

 View Source

 @spec get_maxRectifiedDistance(t()) :: number()

 Link to this function

 get_minDensity(self)

 View Source

 @spec get_minDensity(t()) :: number()

 Link to this function

 get_minDistanceToAddKeypoint(self)

 View Source

 @spec get_minDistanceToAddKeypoint(t()) :: integer()

 Link to this function

 get_minGraphConfidence(self)

 View Source

 @spec get_minGraphConfidence(t()) :: number()

 Link to this function

 get_minRNGEdgeSwitchDist(self)

 View Source

 @spec get_minRNGEdgeSwitchDist(t()) :: number()

 Link to this function

 get_squareSize(self)

 View Source

 @spec get_squareSize(t()) :: number()

 Link to this function

 get_vertexGain(self)

 View Source

 @spec get_vertexGain(t()) :: number()

 Link to this function

 get_vertexPenalty(self)

 View Source

 @spec get_vertexPenalty(t()) :: number()

 Link to this function

 set_convexHullFactor(self, prop)

 View Source

 @spec set_convexHullFactor(t(), number()) :: t()

 Link to this function

 set_densityNeighborhoodSize(self, prop)

 View Source

 @spec set_densityNeighborhoodSize(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_edgeGain(self, prop)

 View Source

 @spec set_edgeGain(t(), number()) :: t()

 Link to this function

 set_edgePenalty(self, prop)

 View Source

 @spec set_edgePenalty(t(), number()) :: t()

 Link to this function

 set_existingVertexGain(self, prop)

 View Source

 @spec set_existingVertexGain(t(), number()) :: t()

 Link to this function

 set_keypointScale(self, prop)

 View Source

 @spec set_keypointScale(t(), integer()) :: t()

 Link to this function

 set_kmeansAttempts(self, prop)

 View Source

 @spec set_kmeansAttempts(t(), integer()) :: t()

 Link to this function

 set_maxRectifiedDistance(self, prop)

 View Source

 @spec set_maxRectifiedDistance(t(), number()) :: t()

 Link to this function

 set_minDensity(self, prop)

 View Source

 @spec set_minDensity(t(), number()) :: t()

 Link to this function

 set_minDistanceToAddKeypoint(self, prop)

 View Source

 @spec set_minDistanceToAddKeypoint(t(), integer()) :: t()

 Link to this function

 set_minGraphConfidence(self, prop)

 View Source

 @spec set_minGraphConfidence(t(), number()) :: t()

 Link to this function

 set_minRNGEdgeSwitchDist(self, prop)

 View Source

 @spec set_minRNGEdgeSwitchDist(t(), number()) :: t()

 Link to this function

 set_squareSize(self, prop)

 View Source

 @spec set_squareSize(t(), number()) :: t()

 Link to this function

 set_vertexGain(self, prop)

 View Source

 @spec set_vertexGain(t(), number()) :: t()

 Link to this function

 set_vertexPenalty(self, prop)

 View Source

 @spec set_vertexPenalty(t(), number()) :: t()

 Evision.ColoredKinFu - Evision v0.1.39

Evision.ColoredKinFu

 Summary

 Types

 t()

 Type that represents an ColoredKinFu struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ColoredKinFu{ref: reference()}

Type that represents an ColoredKinFu struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.ColoredKinFu.ColoredKinFu - Evision v0.1.39

Evision.ColoredKinFu.ColoredKinFu

 Summary

 Types

 t()

 Type that represents an ColoredKinFu.ColoredKinFu struct.

 Functions

 create(params)

 create

 getCloud(self)

 Gets points, normals and colors of current 3d mesh

 getCloud(self, opts)

 Gets points, normals and colors of current 3d mesh

 getNormals(self, points)

 Calculates normals for given points

 getNormals(self, points, opts)

 Calculates normals for given points

 getPoints(self)

 Gets points of current 3d mesh

 getPoints(self, opts)

 Gets points of current 3d mesh

 render(self)

 Renders a volume into an image

 render(self, opts)

 Variant 1:
Renders a volume into an image

 render(self, cameraPose, opts)

 Renders a volume into an image

 reset(self)

 Resets the algorithm

 update(self, depth, rgb)

 Process next depth frame

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ColoredKinFu.ColoredKinFu{ref: reference()}

Type that represents an ColoredKinFu.ColoredKinFu struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(params)

 View Source

 @spec create(Evision.ColoredKinFu.Params.t()) ::
 Evision.ColoredKinFu.t() | {:error, String.t()}

create
Positional Arguments
	params: Params

Return
	retval: Evision.ColoredKinFu.t()

Python prototype (for reference only):
create(_params) -> retval

 Link to this function

 getCloud(self)

 View Source

 @spec getCloud(Evision.ColoredKinFu.t()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points, normals and colors of current 3d mesh
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

	colors: Evision.Mat.t().
vector of colors which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals[, colors]]]) -> points, normals, colors

 Link to this function

 getCloud(self, opts)

 View Source

 @spec getCloud(Evision.ColoredKinFu.t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points, normals and colors of current 3d mesh
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

	colors: Evision.Mat.t().
vector of colors which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals[, colors]]]) -> points, normals, colors

 Link to this function

 getNormals(self, points)

 View Source

 @spec getNormals(Evision.ColoredKinFu.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getNormals(self, points, opts)

 View Source

 @spec getNormals(
 Evision.ColoredKinFu.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getPoints(self)

 View Source

 @spec getPoints(Evision.ColoredKinFu.t()) :: Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 getPoints(self, opts)

 View Source

 @spec getPoints(Evision.ColoredKinFu.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 render(self)

 View Source

 @spec render(Evision.ColoredKinFu.t()) :: Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, opts)

 View Source

 @spec render(Evision.ColoredKinFu.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec render(Evision.ColoredKinFu.t(), Evision.Mat.t()) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
Renders a volume into an image
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render(cameraPose[, image]) -> image
Variant 2:
Renders a volume into an image
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, cameraPose, opts)

 View Source

 @spec render(Evision.ColoredKinFu.t(), Evision.Mat.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render(cameraPose[, image]) -> image

 Link to this function

 reset(self)

 View Source

 @spec reset(Evision.ColoredKinFu.t()) ::
 Evision.ColoredKinFu.t() | {:error, String.t()}

Resets the algorithm
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

Clears current model and resets a pose.
Python prototype (for reference only):
reset() -> None

 Link to this function

 update(self, depth, rgb)

 View Source

 @spec update(
 Evision.ColoredKinFu.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Process next depth frame
Positional Arguments
	self: Evision.ColoredKinFu.ColoredKinFu.t()

	depth: Evision.Mat.t().
input Mat of depth frame

	rgb: Evision.Mat.t().
input Mat of rgb (colored) frame

Return
	retval: bool

@return true if succeeded to align new frame with current scene, false if opposite
Python prototype (for reference only):
update(depth, rgb) -> retval

 Evision.ColoredKinFu.Params - Evision v0.1.39

Evision.ColoredKinFu.Params

 Summary

 Types

 t()

 Type that represents an ColoredKinFu.Params struct.

 Functions

 coarseParams()

 Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.

 coloredTSDFParams(isCoarse)

 ColoredTSDF parameters
A set of parameters suitable for use with HashTSDFVolume

 defaultParams()

 Default parameters
A set of parameters which provides better model quality, can be very slow.

 get_bilateral_kernel_size(self)

 get_bilateral_sigma_depth(self)

 get_bilateral_sigma_spatial(self)

 get_depthFactor(self)

 get_frameSize(self)

 get_icpAngleThresh(self)

 get_icpDistThresh(self)

 get_icpIterations(self)

 get_intr(self)

 get_lightPose(self)

 get_pyramidLevels(self)

 get_raycast_step_factor(self)

 get_rgb_frameSize(self)

 get_rgb_intr(self)

 get_truncateThreshold(self)

 get_tsdf_max_weight(self)

 get_tsdf_min_camera_movement(self)

 get_tsdf_trunc_dist(self)

 get_volumeDims(self)

 get_volumeType(self)

 get_voxelSize(self)

 hashTSDFParams(isCoarse)

 HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume

 params()

 Params

 params(volumeInitialPose)

 Constructor for Params
Sets the initial pose of the TSDF volume.

 params(volumeInitialPoseRot, volumeInitialPoseTransl)

 Constructor for Params
Sets the initial pose of the TSDF volume.

 set_bilateral_kernel_size(self, prop)

 set_bilateral_sigma_depth(self, prop)

 set_bilateral_sigma_spatial(self, prop)

 set_depthFactor(self, prop)

 set_frameSize(self, prop)

 set_icpAngleThresh(self, prop)

 set_icpDistThresh(self, prop)

 set_icpIterations(self, prop)

 set_intr(self, prop)

 set_lightPose(self, prop)

 set_pyramidLevels(self, prop)

 set_raycast_step_factor(self, prop)

 set_rgb_frameSize(self, prop)

 set_rgb_intr(self, prop)

 set_truncateThreshold(self, prop)

 set_tsdf_max_weight(self, prop)

 set_tsdf_min_camera_movement(self, prop)

 set_tsdf_trunc_dist(self, prop)

 set_volumeDims(self, prop)

 set_volumeType(self, prop)

 set_voxelSize(self, prop)

 setInitialVolumePose(self, homogen_tf)

 Set Initial Volume Pose
Sets the initial pose of the TSDF volume.

 setInitialVolumePose(self, r, t)

 Set Initial Volume Pose
Sets the initial pose of the TSDF volume.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ColoredKinFu.Params{ref: reference()}

Type that represents an ColoredKinFu.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 coarseParams()

 View Source

 @spec coarseParams() :: t() | {:error, String.t()}

Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
Return
	retval: Params

Python prototype (for reference only):
coarseParams() -> retval

 Link to this function

 coloredTSDFParams(isCoarse)

 View Source

 @spec coloredTSDFParams(boolean()) :: t() | {:error, String.t()}

ColoredTSDF parameters
A set of parameters suitable for use with HashTSDFVolume
Positional Arguments
	isCoarse: bool

Return
	retval: Params

Python prototype (for reference only):
coloredTSDFParams(isCoarse) -> retval

 Link to this function

 defaultParams()

 View Source

 @spec defaultParams() :: t() | {:error, String.t()}

Default parameters
A set of parameters which provides better model quality, can be very slow.
Return
	retval: Params

Python prototype (for reference only):
defaultParams() -> retval

 Link to this function

 get_bilateral_kernel_size(self)

 View Source

 @spec get_bilateral_kernel_size(t()) :: integer()

 Link to this function

 get_bilateral_sigma_depth(self)

 View Source

 @spec get_bilateral_sigma_depth(t()) :: number()

 Link to this function

 get_bilateral_sigma_spatial(self)

 View Source

 @spec get_bilateral_sigma_spatial(t()) :: number()

 Link to this function

 get_depthFactor(self)

 View Source

 @spec get_depthFactor(t()) :: number()

 Link to this function

 get_frameSize(self)

 View Source

 @spec get_frameSize(t()) :: {number(), number()}

 Link to this function

 get_icpAngleThresh(self)

 View Source

 @spec get_icpAngleThresh(t()) :: number()

 Link to this function

 get_icpDistThresh(self)

 View Source

 @spec get_icpDistThresh(t()) :: number()

 Link to this function

 get_icpIterations(self)

 View Source

 @spec get_icpIterations(t()) :: [integer()]

 Link to this function

 get_intr(self)

 View Source

 @spec get_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_lightPose(self)

 View Source

 @spec get_lightPose(t()) :: {number(), number(), number()}

 Link to this function

 get_pyramidLevels(self)

 View Source

 @spec get_pyramidLevels(t()) :: integer()

 Link to this function

 get_raycast_step_factor(self)

 View Source

 @spec get_raycast_step_factor(t()) :: number()

 Link to this function

 get_rgb_frameSize(self)

 View Source

 @spec get_rgb_frameSize(t()) :: {number(), number()}

 Link to this function

 get_rgb_intr(self)

 View Source

 @spec get_rgb_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_truncateThreshold(self)

 View Source

 @spec get_truncateThreshold(t()) :: number()

 Link to this function

 get_tsdf_max_weight(self)

 View Source

 @spec get_tsdf_max_weight(t()) :: integer()

 Link to this function

 get_tsdf_min_camera_movement(self)

 View Source

 @spec get_tsdf_min_camera_movement(t()) :: number()

 Link to this function

 get_tsdf_trunc_dist(self)

 View Source

 @spec get_tsdf_trunc_dist(t()) :: number()

 Link to this function

 get_volumeDims(self)

 View Source

 @spec get_volumeDims(t()) :: {integer(), integer(), integer()}

 Link to this function

 get_volumeType(self)

 View Source

 @spec get_volumeType(t()) :: integer()

 Link to this function

 get_voxelSize(self)

 View Source

 @spec get_voxelSize(t()) :: number()

 Link to this function

 hashTSDFParams(isCoarse)

 View Source

 @spec hashTSDFParams(boolean()) :: t() | {:error, String.t()}

HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume
Positional Arguments
	isCoarse: bool

Return
	retval: Params

Python prototype (for reference only):
hashTSDFParams(isCoarse) -> retval

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

Params
Return
	self: Params

Python prototype (for reference only):
Params() -> <colored_kinfu_Params object>

 Link to this function

 params(volumeInitialPose)

 View Source

 @spec params(Evision.Mat.t()) :: t() | {:error, String.t()}

Constructor for Params
Sets the initial pose of the TSDF volume.
Positional Arguments
	volumeInitialPose: Evision.Mat.t().
4 by 4 Homogeneous Transform matrix to set the intial pose of TSDF volume

Return
	self: Params

Python prototype (for reference only):
Params(volumeInitialPose) -> <colored_kinfu_Params object>

 Link to this function

 params(volumeInitialPoseRot, volumeInitialPoseTransl)

 View Source

 @spec params(Evision.Mat.t(), {number(), number(), number()}) ::
 t() | {:error, String.t()}

Constructor for Params
Sets the initial pose of the TSDF volume.
Positional Arguments
	volumeInitialPoseRot: Evision.Mat.t().
rotation matrix

	volumeInitialPoseTransl: Vec3f.
translation vector

Return
	self: Params

Python prototype (for reference only):
Params(volumeInitialPoseRot, volumeInitialPoseTransl) -> <colored_kinfu_Params object>

 Link to this function

 set_bilateral_kernel_size(self, prop)

 View Source

 @spec set_bilateral_kernel_size(t(), integer()) :: t()

 Link to this function

 set_bilateral_sigma_depth(self, prop)

 View Source

 @spec set_bilateral_sigma_depth(t(), number()) :: t()

 Link to this function

 set_bilateral_sigma_spatial(self, prop)

 View Source

 @spec set_bilateral_sigma_spatial(t(), number()) :: t()

 Link to this function

 set_depthFactor(self, prop)

 View Source

 @spec set_depthFactor(t(), number()) :: t()

 Link to this function

 set_frameSize(self, prop)

 View Source

 @spec set_frameSize(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_icpAngleThresh(self, prop)

 View Source

 @spec set_icpAngleThresh(t(), number()) :: t()

 Link to this function

 set_icpDistThresh(self, prop)

 View Source

 @spec set_icpDistThresh(t(), number()) :: t()

 Link to this function

 set_icpIterations(self, prop)

 View Source

 @spec set_icpIterations(t(), [integer()]) :: t()

 Link to this function

 set_intr(self, prop)

 View Source

 @spec set_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_lightPose(self, prop)

 View Source

 @spec set_lightPose(t(), {number(), number(), number()}) :: t()

 Link to this function

 set_pyramidLevels(self, prop)

 View Source

 @spec set_pyramidLevels(t(), integer()) :: t()

 Link to this function

 set_raycast_step_factor(self, prop)

 View Source

 @spec set_raycast_step_factor(t(), number()) :: t()

 Link to this function

 set_rgb_frameSize(self, prop)

 View Source

 @spec set_rgb_frameSize(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_rgb_intr(self, prop)

 View Source

 @spec set_rgb_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_truncateThreshold(self, prop)

 View Source

 @spec set_truncateThreshold(t(), number()) :: t()

 Link to this function

 set_tsdf_max_weight(self, prop)

 View Source

 @spec set_tsdf_max_weight(t(), integer()) :: t()

 Link to this function

 set_tsdf_min_camera_movement(self, prop)

 View Source

 @spec set_tsdf_min_camera_movement(t(), number()) :: t()

 Link to this function

 set_tsdf_trunc_dist(self, prop)

 View Source

 @spec set_tsdf_trunc_dist(t(), number()) :: t()

 Link to this function

 set_volumeDims(self, prop)

 View Source

 @spec set_volumeDims(t(), {integer(), integer(), integer()}) :: t()

 Link to this function

 set_volumeType(self, prop)

 View Source

 @spec set_volumeType(t(), integer()) :: t()

 Link to this function

 set_voxelSize(self, prop)

 View Source

 @spec set_voxelSize(t(), number()) :: t()

 Link to this function

 setInitialVolumePose(self, homogen_tf)

 View Source

 @spec setInitialVolumePose(t(), Evision.Mat.t()) :: t() | {:error, String.t()}

Set Initial Volume Pose
Sets the initial pose of the TSDF volume.
Positional Arguments
	self: Evision.ColoredKinFu.Params.t()

	homogen_tf: Evision.Mat.t().
4 by 4 Homogeneous Transform matrix to set the intial pose of TSDF volume

Python prototype (for reference only):
setInitialVolumePose(homogen_tf) -> None

 Link to this function

 setInitialVolumePose(self, r, t)

 View Source

 @spec setInitialVolumePose(t(), Evision.Mat.t(), {number(), number(), number()}) ::
 t() | {:error, String.t()}

Set Initial Volume Pose
Sets the initial pose of the TSDF volume.
Positional Arguments
	self: Evision.ColoredKinFu.Params.t()

	r: Evision.Mat.t().
rotation matrix

	t: Vec3f.
translation vector

Python prototype (for reference only):
setInitialVolumePose(R, t) -> None

 Evision.Constant - Evision v0.1.39

Evision.Constant

 Summary

 Functions

 cv_8S()

 cv_8SC1()

 cv_8SC2()

 cv_8SC3()

 cv_8SC4()

 cv_8SC(cn)

 cv_8U()

 cv_8UC1()

 cv_8UC2()

 cv_8UC3()

 cv_8UC4()

 cv_8UC(cn)

 cv_16F()

 cv_16FC1()

 cv_16FC2()

 cv_16FC3()

 cv_16FC4()

 cv_16FC(cn)

 cv_16S()

 cv_16SC1()

 cv_16SC2()

 cv_16SC3()

 cv_16SC4()

 cv_16SC(cn)

 cv_16U()

 cv_16UC1()

 cv_16UC2()

 cv_16UC3()

 cv_16UC4()

 cv_16UC(cn)

 cv_32F()

 cv_32FC1()

 cv_32FC2()

 cv_32FC3()

 cv_32FC4()

 cv_32FC(cn)

 cv_32S()

 cv_32SC1()

 cv_32SC2()

 cv_32SC3()

 cv_32SC4()

 cv_32SC(cn)

 cv_64F()

 cv_64FC1()

 cv_64FC2()

 cv_64FC3()

 cv_64FC4()

 cv_64FC(cn)

 cv_ACCESS_FAST()

 cv_ACCESS_MASK()

 cv_ACCESS_READ()

 cv_ACCESS_RW()

 cv_ACCESS_WRITE()

 cv_ADAPTIVE_THRESH_GAUSSIAN_C()

 cv_ADAPTIVE_THRESH_MEAN_C()

 cv_Adaptive()

 cv_AGAST_5_8()

 cv_AGAST_7_12d()

 cv_AGAST_7_12s()

 cv_ALGORITHM()

 cv_ALPHA_ATOP()

 cv_ALPHA_ATOP_PREMUL()

 cv_ALPHA_IN()

 cv_ALPHA_IN_PREMUL()

 cv_ALPHA_OUT()

 cv_ALPHA_OUT_PREMUL()

 cv_ALPHA_OVER()

 cv_ALPHA_OVER_PREMUL()

 cv_ALPHA_PLUS()

 cv_ALPHA_PLUS_PREMUL()

 cv_ALPHA_PREMUL()

 cv_ALPHA_XOR()

 cv_ALPHA_XOR_PREMUL()

 cv_AM_FILTER()

 cv_ANGLE_ROW()

 cv_ANNEAL()

 cv_APPEND()

 cv_ARO_0_45()

 cv_ARO_45_90()

 cv_ARO_45_135()

 cv_ARO_90_135()

 cv_ARO_315_0()

 cv_ARO_315_45()

 cv_ARO_315_135()

 cv_ARO_CTR_HOR()

 cv_ARO_CTR_VER()

 cv_ARRAY_BUFFER()

 cv_ARUCO_CCW_CENTER()

 cv_ARUCO_CW_TOP_LEFT_CORNER()

 cv_AS_IS()

 cv_ASGD()

 cv_ASYMMETRIC_GRID()

 cv_ASYNC_CLEANUP()

 cv_AUTO_STEP()

 cv_AV1()

 cv_BACKPROP()

 cv_BASE64()

 cv_BATCH()

 cv_BadAlign()

 cv_BadAlphaChannel()

 cv_BadCallBack()

 cv_BadCOI()

 cv_BadDataPtr()

 cv_BadDepth()

 cv_BadImageSize()

 cv_BadModelOrChSeq()

 cv_BadNumChannel1U()

 cv_BadNumChannels()

 cv_BadOffset()

 cv_BadOrder()

 cv_BadOrigin()

 cv_BadROISize()

 cv_BadStep()

 cv_BadTileSize()

 cv_BGR()

 cv_BGRA()

 cv_BINARIZATION_NIBLACK()

 cv_BINARIZATION_NICK()

 cv_BINARIZATION_SAUVOLA()

 cv_BINARIZATION_WOLF()

 cv_BLOCK_MEAN_HASH_MODE_0()

 cv_BLOCK_MEAN_HASH_MODE_1()

 cv_BLOCKING_SYNC()

 cv_BM3D_STEP1()

 cv_BM3D_STEP2()

 cv_BM3D_STEPALL()

 cv_BOOLEAN()

 cv_BORDER_CONSTANT()

 cv_BORDER_DEFAULT()

 cv_BORDER_ISOLATED()

 cv_BORDER_REFLECT101()

 cv_BORDER_REFLECT()

 cv_BORDER_REFLECT_101()

 cv_BORDER_REPLICATE()

 cv_BORDER_TRANSPARENT()

 cv_BORDER_WRAP()

 cv_Bob()

 cv_Boost_REAL()

 cv_BRUTE_FORCE()

 cv_BRUTEFORCE()

 cv_BRUTEFORCE_HAMMING()

 cv_BRUTEFORCE_HAMMINGLUT()

 cv_BRUTEFORCE_L1()

 cv_BRUTEFORCE_SL2()

 cv_Buffer_READ_ONLY()

 cv_Buffer_READ_WRITE()

 cv_Buffer_WRITE_ONLY()

 cv_C()

 cv_C_SVC()

 cv_CACHE_ALL()

 cv_CACHE_DST()

 cv_CACHE_SRC()

 cv_CALIB_CB_ACCURACY()

 cv_CALIB_CB_ADAPTIVE_THRESH()

 cv_CALIB_CB_ASYMMETRIC_GRID()

 cv_CALIB_CB_CLUSTERING()

 cv_CALIB_CB_EXHAUSTIVE()

 cv_CALIB_CB_FAST_CHECK()

 cv_CALIB_CB_FILTER_QUADS()

 cv_CALIB_CB_LARGER()

 cv_CALIB_CB_MARKER()

 cv_CALIB_CB_NORMALIZE_IMAGE()

 cv_CALIB_CB_PLAIN()

 cv_CALIB_CB_SYMMETRIC_GRID()

 cv_CALIB_CHECK_COND()

 cv_CALIB_FIX_ASPECT_RATIO()

 cv_CALIB_FIX_CENTER()

 cv_CALIB_FIX_FOCAL_LENGTH()

 cv_CALIB_FIX_GAMMA()

 cv_CALIB_FIX_INTRINSIC()

 cv_CALIB_FIX_K1()

 cv_CALIB_FIX_K2()

 cv_CALIB_FIX_K3()

 cv_CALIB_FIX_K4()

 cv_CALIB_FIX_K5()

 cv_CALIB_FIX_K6()

 cv_CALIB_FIX_P1()

 cv_CALIB_FIX_P2()

 cv_CALIB_FIX_PRINCIPAL_POINT()

 cv_CALIB_FIX_S1_S2_S3_S4()

 cv_CALIB_FIX_SKEW()

 cv_CALIB_FIX_TANGENT_DIST()

 cv_CALIB_FIX_TAUX_TAUY()

 cv_CALIB_FIX_XI()

 cv_CALIB_HAND_EYE_ANDREFF()

 cv_CALIB_HAND_EYE_DANIILIDIS()

 cv_CALIB_HAND_EYE_HORAUD()

 cv_CALIB_HAND_EYE_PARK()

 cv_CALIB_HAND_EYE_TSAI()

 cv_CALIB_NINTRINSIC()

 cv_CALIB_RATIONAL_MODEL()

 cv_CALIB_RECOMPUTE_EXTRINSIC()

 cv_CALIB_ROBOT_WORLD_HAND_EYE_LI()

 cv_CALIB_ROBOT_WORLD_HAND_EYE_SHAH()

 cv_CALIB_SAME_FOCAL_LENGTH()

 cv_CALIB_THIN_PRISM_MODEL()

 cv_CALIB_TILTED_MODEL()

 cv_CALIB_USE_EXTRINSIC_GUESS()

 cv_CALIB_USE_GUESS()

 cv_CALIB_USE_INTRINSIC_GUESS()

 cv_CALIB_USE_LU()

 cv_CALIB_USE_QR()

 cv_CALIB_ZERO_DISPARITY()

 cv_CALIB_ZERO_TANGENT_DIST()

 cv_CAP_ANDROID()

 cv_CAP_ANY()

 cv_CAP_ARAVIS()

 cv_CAP_AVFOUNDATION()

 cv_CAP_CMU1394()

 cv_CAP_DC1394()

 cv_CAP_DSHOW()

 cv_CAP_FFMPEG()

 cv_CAP_FIREWARE()

 cv_CAP_FIREWIRE()

 cv_CAP_GIGANETIX()

 cv_CAP_GPHOTO2()

 cv_CAP_GSTREAMER()

 cv_CAP_IEEE1394()

 cv_CAP_IMAGES()

 cv_CAP_INTEL_MFX()

 cv_CAP_INTELPERC()

 cv_CAP_INTELPERC_DEPTH_GENERATOR()

 cv_CAP_INTELPERC_DEPTH_MAP()

 cv_CAP_INTELPERC_GENERATORS_MASK()

 cv_CAP_INTELPERC_IMAGE()

 cv_CAP_INTELPERC_IMAGE_GENERATOR()

 cv_CAP_INTELPERC_IR_GENERATOR()

 cv_CAP_INTELPERC_IR_MAP()

 cv_CAP_INTELPERC_UVDEPTH_MAP()

 cv_CAP_MSMF()

 cv_CAP_OBSENSOR()

 cv_CAP_OBSENSOR_BGR_IMAGE()

 cv_CAP_OBSENSOR_DEPTH_GENERATOR()

 cv_CAP_OBSENSOR_DEPTH_MAP()

 cv_CAP_OBSENSOR_GENERATORS_MASK()

 cv_CAP_OBSENSOR_IMAGE_GENERATOR()

 cv_CAP_OBSENSOR_IR_GENERATOR()

 cv_CAP_OBSENSOR_IR_IMAGE()

 cv_CAP_OPENCV_MJPEG()

 cv_CAP_OPENNI2()

 cv_CAP_OPENNI2_ASTRA()

 cv_CAP_OPENNI2_ASUS()

 cv_CAP_OPENNI()

 cv_CAP_OPENNI_ASUS()

 cv_CAP_OPENNI_BGR_IMAGE()

 cv_CAP_OPENNI_DEPTH_GENERATOR()

 cv_CAP_OPENNI_DEPTH_GENERATOR_BASELINE()

 cv_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH()

 cv_CAP_OPENNI_DEPTH_GENERATOR_PRESENT()

 cv_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION()

 cv_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON()

 cv_CAP_OPENNI_DEPTH_MAP()

 cv_CAP_OPENNI_DISPARITY_MAP()

 cv_CAP_OPENNI_DISPARITY_MAP_32F()

 cv_CAP_OPENNI_GENERATORS_MASK()

 cv_CAP_OPENNI_GRAY_IMAGE()

 cv_CAP_OPENNI_IMAGE_GENERATOR()

 cv_CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE()

 cv_CAP_OPENNI_IMAGE_GENERATOR_PRESENT()

 cv_CAP_OPENNI_IR_GENERATOR()

 cv_CAP_OPENNI_IR_GENERATOR_PRESENT()

 cv_CAP_OPENNI_IR_IMAGE()

 cv_CAP_OPENNI_POINT_CLOUD_MAP()

 cv_CAP_OPENNI_QVGA_30HZ()

 cv_CAP_OPENNI_QVGA_60HZ()

 cv_CAP_OPENNI_SXGA_15HZ()

 cv_CAP_OPENNI_SXGA_30HZ()

 cv_CAP_OPENNI_VALID_DEPTH_MASK()

 cv_CAP_OPENNI_VGA_30HZ()

 cv_CAP_PROP_APERTURE()

 cv_CAP_PROP_ARAVIS_AUTOTRIGGER()

 cv_CAP_PROP_AUDIO_BASE_INDEX()

 cv_CAP_PROP_AUDIO_DATA_DEPTH()

 cv_CAP_PROP_AUDIO_POS()

 cv_CAP_PROP_AUDIO_SAMPLES_PER_SECOND()

 cv_CAP_PROP_AUDIO_SHIFT_NSEC()

 cv_CAP_PROP_AUDIO_STREAM()

 cv_CAP_PROP_AUDIO_SYNCHRONIZE()

 cv_CAP_PROP_AUDIO_TOTAL_CHANNELS()

 cv_CAP_PROP_AUDIO_TOTAL_STREAMS()

 cv_CAP_PROP_AUTO_EXPOSURE()

 cv_CAP_PROP_AUTO_WB()

 cv_CAP_PROP_AUTOFOCUS()

 cv_CAP_PROP_BACKEND()

 cv_CAP_PROP_BACKLIGHT()

 cv_CAP_PROP_BITRATE()

 cv_CAP_PROP_BRIGHTNESS()

 cv_CAP_PROP_BUFFERSIZE()

 cv_CAP_PROP_CHANNEL()

 cv_CAP_PROP_CODEC_EXTRADATA_INDEX()

 cv_CAP_PROP_CODEC_PIXEL_FORMAT()

 cv_CAP_PROP_CONTRAST()

 cv_CAP_PROP_CONVERT_RGB()

 cv_CAP_PROP_DC1394_MAX()

 cv_CAP_PROP_DC1394_MODE_AUTO()

 cv_CAP_PROP_DC1394_MODE_MANUAL()

 cv_CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO()

 cv_CAP_PROP_DC1394_OFF()

 cv_CAP_PROP_EXPOSURE()

 cv_CAP_PROP_EXPOSUREPROGRAM()

 cv_CAP_PROP_FOCUS()

 cv_CAP_PROP_FORMAT()

 cv_CAP_PROP_FOURCC()

 cv_CAP_PROP_FPS()

 cv_CAP_PROP_FRAME_COUNT()

 cv_CAP_PROP_FRAME_HEIGHT()

 cv_CAP_PROP_FRAME_TYPE()

 cv_CAP_PROP_FRAME_WIDTH()

 cv_CAP_PROP_GAIN()

 cv_CAP_PROP_GAMMA()

 cv_CAP_PROP_GIGA_FRAME_HEIGH_MAX()

 cv_CAP_PROP_GIGA_FRAME_OFFSET_X()

 cv_CAP_PROP_GIGA_FRAME_OFFSET_Y()

 cv_CAP_PROP_GIGA_FRAME_SENS_HEIGH()

 cv_CAP_PROP_GIGA_FRAME_SENS_WIDTH()

 cv_CAP_PROP_GIGA_FRAME_WIDTH_MAX()

 cv_CAP_PROP_GPHOTO2_COLLECT_MSGS()

 cv_CAP_PROP_GPHOTO2_FLUSH_MSGS()

 cv_CAP_PROP_GPHOTO2_PREVIEW()

 cv_CAP_PROP_GPHOTO2_RELOAD_CONFIG()

 cv_CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE()

 cv_CAP_PROP_GPHOTO2_WIDGET_ENUMERATE()

 cv_CAP_PROP_GSTREAMER_QUEUE_LENGTH()

 cv_CAP_PROP_GUID()

 cv_CAP_PROP_HUE()

 cv_CAP_PROP_HW_ACCELERATION()

 cv_CAP_PROP_HW_ACCELERATION_USE_OPENCL()

 cv_CAP_PROP_HW_DEVICE()

 cv_CAP_PROP_IMAGES_BASE()

 cv_CAP_PROP_IMAGES_LAST()

 cv_CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD()

 cv_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ()

 cv_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT()

 cv_CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE()

 cv_CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE()

 cv_CAP_PROP_INTELPERC_PROFILE_COUNT()

 cv_CAP_PROP_INTELPERC_PROFILE_IDX()

 cv_CAP_PROP_IOS_DEVICE_EXPOSURE()

 cv_CAP_PROP_IOS_DEVICE_FLASH()

 cv_CAP_PROP_IOS_DEVICE_FOCUS()

 cv_CAP_PROP_IOS_DEVICE_TORCH()

 cv_CAP_PROP_IOS_DEVICE_WHITEBALANCE()

 cv_CAP_PROP_IRIS()

 cv_CAP_PROP_ISO_SPEED()

 cv_CAP_PROP_LRF_HAS_KEY_FRAME()

 cv_CAP_PROP_MODE()

 cv_CAP_PROP_MONOCHROME()

 cv_CAP_PROP_N_THREADS()

 cv_CAP_PROP_OBSENSOR_INTRINSIC_CX()

 cv_CAP_PROP_OBSENSOR_INTRINSIC_CY()

 cv_CAP_PROP_OBSENSOR_INTRINSIC_FX()

 cv_CAP_PROP_OBSENSOR_INTRINSIC_FY()

 cv_CAP_PROP_OPEN_TIMEOUT_MSEC()

 cv_CAP_PROP_OPENNI2_MIRROR()

 cv_CAP_PROP_OPENNI2_SYNC()

 cv_CAP_PROP_OPENNI_APPROX_FRAME_SYNC()

 cv_CAP_PROP_OPENNI_BASELINE()

 cv_CAP_PROP_OPENNI_CIRCLE_BUFFER()

 cv_CAP_PROP_OPENNI_FOCAL_LENGTH()

 cv_CAP_PROP_OPENNI_FRAME_MAX_DEPTH()

 cv_CAP_PROP_OPENNI_GENERATOR_PRESENT()

 cv_CAP_PROP_OPENNI_MAX_BUFFER_SIZE()

 cv_CAP_PROP_OPENNI_MAX_TIME_DURATION()

 cv_CAP_PROP_OPENNI_OUTPUT_MODE()

 cv_CAP_PROP_OPENNI_REGISTRATION()

 cv_CAP_PROP_OPENNI_REGISTRATION_ON()

 cv_CAP_PROP_ORIENTATION_AUTO()

 cv_CAP_PROP_ORIENTATION_META()

 cv_CAP_PROP_PAN()

 cv_CAP_PROP_POS_AVI_RATIO()

 cv_CAP_PROP_POS_FRAMES()

 cv_CAP_PROP_POS_MSEC()

 cv_CAP_PROP_PVAPI_BINNINGX()

 cv_CAP_PROP_PVAPI_BINNINGY()

 cv_CAP_PROP_PVAPI_DECIMATIONHORIZONTAL()

 cv_CAP_PROP_PVAPI_DECIMATIONVERTICAL()

 cv_CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE()

 cv_CAP_PROP_PVAPI_MULTICASTIP()

 cv_CAP_PROP_PVAPI_PIXELFORMAT()

 cv_CAP_PROP_READ_TIMEOUT_MSEC()

 cv_CAP_PROP_RECTIFICATION()

 cv_CAP_PROP_ROLL()

 cv_CAP_PROP_SAR_DEN()

 cv_CAP_PROP_SAR_NUM()

 cv_CAP_PROP_SATURATION()

 cv_CAP_PROP_SETTINGS()

 cv_CAP_PROP_SHARPNESS()

 cv_CAP_PROP_SPEED()

 cv_CAP_PROP_STREAM_OPEN_TIME_USEC()

 cv_CAP_PROP_TEMPERATURE()

 cv_CAP_PROP_TILT()

 cv_CAP_PROP_TRIGGER()

 cv_CAP_PROP_TRIGGER_DELAY()

 cv_CAP_PROP_VIDEO_STREAM()

 cv_CAP_PROP_VIDEO_TOTAL_CHANNELS()

 cv_CAP_PROP_VIEWFINDER()

 cv_CAP_PROP_WB_TEMPERATURE()

 cv_CAP_PROP_WHITE_BALANCE_BLUE_U()

 cv_CAP_PROP_WHITE_BALANCE_RED_V()

 cv_CAP_PROP_XI_ACQ_BUFFER_SIZE()

 cv_CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT()

 cv_CAP_PROP_XI_ACQ_FRAME_BURST_COUNT()

 cv_CAP_PROP_XI_ACQ_TIMING_MODE()

 cv_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT()

 cv_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE()

 cv_CAP_PROP_XI_AE_MAX_LIMIT()

 cv_CAP_PROP_XI_AEAG()

 cv_CAP_PROP_XI_AEAG_LEVEL()

 cv_CAP_PROP_XI_AEAG_ROI_HEIGHT()

 cv_CAP_PROP_XI_AEAG_ROI_OFFSET_X()

 cv_CAP_PROP_XI_AEAG_ROI_OFFSET_Y()

 cv_CAP_PROP_XI_AEAG_ROI_WIDTH()

 cv_CAP_PROP_XI_AG_MAX_LIMIT()

 cv_CAP_PROP_XI_APPLY_CMS()

 cv_CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION()

 cv_CAP_PROP_XI_AUTO_WB()

 cv_CAP_PROP_XI_AVAILABLE_BANDWIDTH()

 cv_CAP_PROP_XI_BINNING_HORIZONTAL()

 cv_CAP_PROP_XI_BINNING_PATTERN()

 cv_CAP_PROP_XI_BINNING_SELECTOR()

 cv_CAP_PROP_XI_BINNING_VERTICAL()

 cv_CAP_PROP_XI_BPC()

 cv_CAP_PROP_XI_BUFFER_POLICY()

 cv_CAP_PROP_XI_BUFFERS_QUEUE_SIZE()

 cv_CAP_PROP_XI_CC_MATRIX_00()

 cv_CAP_PROP_XI_CC_MATRIX_01()

 cv_CAP_PROP_XI_CC_MATRIX_02()

 cv_CAP_PROP_XI_CC_MATRIX_03()

 cv_CAP_PROP_XI_CC_MATRIX_10()

 cv_CAP_PROP_XI_CC_MATRIX_11()

 cv_CAP_PROP_XI_CC_MATRIX_12()

 cv_CAP_PROP_XI_CC_MATRIX_13()

 cv_CAP_PROP_XI_CC_MATRIX_20()

 cv_CAP_PROP_XI_CC_MATRIX_21()

 cv_CAP_PROP_XI_CC_MATRIX_22()

 cv_CAP_PROP_XI_CC_MATRIX_23()

 cv_CAP_PROP_XI_CC_MATRIX_30()

 cv_CAP_PROP_XI_CC_MATRIX_31()

 cv_CAP_PROP_XI_CC_MATRIX_32()

 cv_CAP_PROP_XI_CC_MATRIX_33()

 cv_CAP_PROP_XI_CHIP_TEMP()

 cv_CAP_PROP_XI_CMS()

 cv_CAP_PROP_XI_COLOR_FILTER_ARRAY()

 cv_CAP_PROP_XI_COLUMN_FPN_CORRECTION()

 cv_CAP_PROP_XI_COOLING()

 cv_CAP_PROP_XI_COUNTER_SELECTOR()

 cv_CAP_PROP_XI_COUNTER_VALUE()

 cv_CAP_PROP_XI_DATA_FORMAT()

 cv_CAP_PROP_XI_DEBOUNCE_EN()

 cv_CAP_PROP_XI_DEBOUNCE_POL()

 cv_CAP_PROP_XI_DEBOUNCE_T0()

 cv_CAP_PROP_XI_DEBOUNCE_T1()

 cv_CAP_PROP_XI_DEBUG_LEVEL()

 cv_CAP_PROP_XI_DECIMATION_HORIZONTAL()

 cv_CAP_PROP_XI_DECIMATION_PATTERN()

 cv_CAP_PROP_XI_DECIMATION_SELECTOR()

 cv_CAP_PROP_XI_DECIMATION_VERTICAL()

 cv_CAP_PROP_XI_DEFAULT_CC_MATRIX()

 cv_CAP_PROP_XI_DEVICE_MODEL_ID()

 cv_CAP_PROP_XI_DEVICE_RESET()

 cv_CAP_PROP_XI_DEVICE_SN()

 cv_CAP_PROP_XI_DOWNSAMPLING()

 cv_CAP_PROP_XI_DOWNSAMPLING_TYPE()

 cv_CAP_PROP_XI_EXP_PRIORITY()

 cv_CAP_PROP_XI_EXPOSURE()

 cv_CAP_PROP_XI_EXPOSURE_BURST_COUNT()

 cv_CAP_PROP_XI_FFS_ACCESS_KEY()

 cv_CAP_PROP_XI_FFS_FILE_ID()

 cv_CAP_PROP_XI_FFS_FILE_SIZE()

 cv_CAP_PROP_XI_FRAMERATE()

 cv_CAP_PROP_XI_FREE_FFS_SIZE()

 cv_CAP_PROP_XI_GAIN()

 cv_CAP_PROP_XI_GAIN_SELECTOR()

 cv_CAP_PROP_XI_GAMMAC()

 cv_CAP_PROP_XI_GAMMAY()

 cv_CAP_PROP_XI_GPI_LEVEL()

 cv_CAP_PROP_XI_GPI_MODE()

 cv_CAP_PROP_XI_GPI_SELECTOR()

 cv_CAP_PROP_XI_GPO_MODE()

 cv_CAP_PROP_XI_GPO_SELECTOR()

 cv_CAP_PROP_XI_HDR()

 cv_CAP_PROP_XI_HDR_KNEEPOINT_COUNT()

 cv_CAP_PROP_XI_HDR_T1()

 cv_CAP_PROP_XI_HDR_T2()

 cv_CAP_PROP_XI_HEIGHT()

 cv_CAP_PROP_XI_HOUS_BACK_SIDE_TEMP()

 cv_CAP_PROP_XI_HOUS_TEMP()

 cv_CAP_PROP_XI_HW_REVISION()

 cv_CAP_PROP_XI_IMAGE_BLACK_LEVEL()

 cv_CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH()

 cv_CAP_PROP_XI_IMAGE_DATA_FORMAT()

 cv_CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA()

 cv_CAP_PROP_XI_IMAGE_IS_COLOR()

 cv_CAP_PROP_XI_IMAGE_PAYLOAD_SIZE()

 cv_CAP_PROP_XI_IS_COOLED()

 cv_CAP_PROP_XI_IS_DEVICE_EXIST()

 cv_CAP_PROP_XI_KNEEPOINT1()

 cv_CAP_PROP_XI_KNEEPOINT2()

 cv_CAP_PROP_XI_LED_MODE()

 cv_CAP_PROP_XI_LED_SELECTOR()

 cv_CAP_PROP_XI_LENS_APERTURE_VALUE()

 cv_CAP_PROP_XI_LENS_FEATURE()

 cv_CAP_PROP_XI_LENS_FEATURE_SELECTOR()

 cv_CAP_PROP_XI_LENS_FOCAL_LENGTH()

 cv_CAP_PROP_XI_LENS_FOCUS_DISTANCE()

 cv_CAP_PROP_XI_LENS_FOCUS_MOVE()

 cv_CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE()

 cv_CAP_PROP_XI_LENS_MODE()

 cv_CAP_PROP_XI_LIMIT_BANDWIDTH()

 cv_CAP_PROP_XI_LUT_EN()

 cv_CAP_PROP_XI_LUT_INDEX()

 cv_CAP_PROP_XI_LUT_VALUE()

 cv_CAP_PROP_XI_MANUAL_WB()

 cv_CAP_PROP_XI_OFFSET_X()

 cv_CAP_PROP_XI_OFFSET_Y()

 cv_CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH()

 cv_CAP_PROP_XI_OUTPUT_DATA_PACKING()

 cv_CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE()

 cv_CAP_PROP_XI_RECENT_FRAME()

 cv_CAP_PROP_XI_REGION_MODE()

 cv_CAP_PROP_XI_REGION_SELECTOR()

 cv_CAP_PROP_XI_ROW_FPN_CORRECTION()

 cv_CAP_PROP_XI_SENSOR_BOARD_TEMP()

 cv_CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ()

 cv_CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX()

 cv_CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH()

 cv_CAP_PROP_XI_SENSOR_FEATURE_SELECTOR()

 cv_CAP_PROP_XI_SENSOR_FEATURE_VALUE()

 cv_CAP_PROP_XI_SENSOR_MODE()

 cv_CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT()

 cv_CAP_PROP_XI_SENSOR_TAPS()

 cv_CAP_PROP_XI_SHARPNESS()

 cv_CAP_PROP_XI_SHUTTER_TYPE()

 cv_CAP_PROP_XI_TARGET_TEMP()

 cv_CAP_PROP_XI_TEST_PATTERN()

 cv_CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR()

 cv_CAP_PROP_XI_TIMEOUT()

 cv_CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT()

 cv_CAP_PROP_XI_TRG_DELAY()

 cv_CAP_PROP_XI_TRG_SELECTOR()

 cv_CAP_PROP_XI_TRG_SOFTWARE()

 cv_CAP_PROP_XI_TRG_SOURCE()

 cv_CAP_PROP_XI_TS_RST_MODE()

 cv_CAP_PROP_XI_TS_RST_SOURCE()

 cv_CAP_PROP_XI_USED_FFS_SIZE()

 cv_CAP_PROP_XI_WB_KB()

 cv_CAP_PROP_XI_WB_KG()

 cv_CAP_PROP_XI_WB_KR()

 cv_CAP_PROP_XI_WIDTH()

 cv_CAP_PROP_ZOOM()

 cv_CAP_PVAPI()

 cv_CAP_PVAPI_DECIMATION_2OUTOF4()

 cv_CAP_PVAPI_DECIMATION_2OUTOF8()

 cv_CAP_PVAPI_DECIMATION_2OUTOF16()

 cv_CAP_PVAPI_DECIMATION_OFF()

 cv_CAP_PVAPI_FSTRIGMODE_FIXEDRATE()

 cv_CAP_PVAPI_FSTRIGMODE_FREERUN()

 cv_CAP_PVAPI_FSTRIGMODE_SOFTWARE()

 cv_CAP_PVAPI_FSTRIGMODE_SYNCIN1()

 cv_CAP_PVAPI_FSTRIGMODE_SYNCIN2()

 cv_CAP_PVAPI_PIXELFORMAT_BAYER8()

 cv_CAP_PVAPI_PIXELFORMAT_BAYER16()

 cv_CAP_PVAPI_PIXELFORMAT_BGR24()

 cv_CAP_PVAPI_PIXELFORMAT_BGRA32()

 cv_CAP_PVAPI_PIXELFORMAT_MONO8()

 cv_CAP_PVAPI_PIXELFORMAT_MONO16()

 cv_CAP_PVAPI_PIXELFORMAT_RGB24()

 cv_CAP_PVAPI_PIXELFORMAT_RGBA32()

 cv_CAP_QT()

 cv_CAP_REALSENSE()

 cv_CAP_UEYE()

 cv_CAP_UNICAP()

 cv_CAP_V4L2()

 cv_CAP_V4L()

 cv_CAP_VFW()

 cv_CAP_WINRT()

 cv_CAP_XIAPI()

 cv_CAP_XINE()

 cv_CASCADE_DO_CANNY_PRUNING()

 cv_CASCADE_DO_ROUGH_SEARCH()

 cv_CASCADE_FIND_BIGGEST_OBJECT()

 cv_CASCADE_SCALE_IMAGE()

 cv_CC_STAT_AREA()

 cv_CC_STAT_HEIGHT()

 cv_CC_STAT_LEFT()

 cv_CC_STAT_MAX()

 cv_CC_STAT_TOP()

 cv_CC_STAT_WIDTH()

 cv_CCL_BBDT()

 cv_CCL_BKE()

 cv_CCL_BOLELLI()

 cv_CCL_DEFAULT()

 cv_CCL_GRANA()

 cv_CCL_SAUF()

 cv_CCL_SPAGHETTI()

 cv_CCL_WU()

 cv_CCM_3x3()

 cv_CCM_4x3()

 cv_CHAIN_APPROX_NONE()

 cv_CHAIN_APPROX_SIMPLE()

 cv_CHAIN_APPROX_TC89_KCOS()

 cv_CHAIN_APPROX_TC89_L1()

 cv_CHANNELS()

 cv_CHANNELS_BLOCKS()

 cv_CHI2()

 cv_CMP_EQ()

 cv_CMP_GE()

 cv_CMP_GT()

 cv_CMP_LE()

 cv_CMP_LT()

 cv_CMP_NE()

 cv_CN()

 cv_COEF()

 cv_COL_SAMPLE()

 cv_COLOR()

 cv_COLOR_BayerBG2BGR()

 cv_COLOR_BayerBG2BGR_EA()

 cv_COLOR_BayerBG2BGR_MHT()

 cv_COLOR_BayerBG2BGR_VNG()

 cv_COLOR_BayerBG2BGRA()

 cv_COLOR_BayerBG2GRAY()

 cv_COLOR_BayerBG2GRAY_MHT()

 cv_COLOR_BayerBG2RGB()

 cv_COLOR_BayerBG2RGB_EA()

 cv_COLOR_BayerBG2RGB_MHT()

 cv_COLOR_BayerBG2RGB_VNG()

 cv_COLOR_BayerBG2RGBA()

 cv_COLOR_BayerBGGR2BGR()

 cv_COLOR_BayerBGGR2BGR_EA()

 cv_COLOR_BayerBGGR2BGR_VNG()

 cv_COLOR_BayerBGGR2BGRA()

 cv_COLOR_BayerBGGR2GRAY()

 cv_COLOR_BayerBGGR2RGB()

 cv_COLOR_BayerBGGR2RGB_EA()

 cv_COLOR_BayerBGGR2RGB_VNG()

 cv_COLOR_BayerBGGR2RGBA()

 cv_COLOR_BayerGB2BGR()

 cv_COLOR_BayerGB2BGR_EA()

 cv_COLOR_BayerGB2BGR_MHT()

 cv_COLOR_BayerGB2BGR_VNG()

 cv_COLOR_BayerGB2BGRA()

 cv_COLOR_BayerGB2GRAY()

 cv_COLOR_BayerGB2GRAY_MHT()

 cv_COLOR_BayerGB2RGB()

 cv_COLOR_BayerGB2RGB_EA()

 cv_COLOR_BayerGB2RGB_MHT()

 cv_COLOR_BayerGB2RGB_VNG()

 cv_COLOR_BayerGB2RGBA()

 cv_COLOR_BayerGBRG2BGR()

 cv_COLOR_BayerGBRG2BGR_EA()

 cv_COLOR_BayerGBRG2BGR_VNG()

 cv_COLOR_BayerGBRG2BGRA()

 cv_COLOR_BayerGBRG2GRAY()

 cv_COLOR_BayerGBRG2RGB()

 cv_COLOR_BayerGBRG2RGB_EA()

 cv_COLOR_BayerGBRG2RGB_VNG()

 cv_COLOR_BayerGBRG2RGBA()

 cv_COLOR_BayerGR2BGR()

 cv_COLOR_BayerGR2BGR_EA()

 cv_COLOR_BayerGR2BGR_MHT()

 cv_COLOR_BayerGR2BGR_VNG()

 cv_COLOR_BayerGR2BGRA()

 cv_COLOR_BayerGR2GRAY()

 cv_COLOR_BayerGR2GRAY_MHT()

 cv_COLOR_BayerGR2RGB()

 cv_COLOR_BayerGR2RGB_EA()

 cv_COLOR_BayerGR2RGB_MHT()

 cv_COLOR_BayerGR2RGB_VNG()

 cv_COLOR_BayerGR2RGBA()

 cv_COLOR_BayerGRBG2BGR()

 cv_COLOR_BayerGRBG2BGR_EA()

 cv_COLOR_BayerGRBG2BGR_VNG()

 cv_COLOR_BayerGRBG2BGRA()

 cv_COLOR_BayerGRBG2GRAY()

 cv_COLOR_BayerGRBG2RGB()

 cv_COLOR_BayerGRBG2RGB_EA()

 cv_COLOR_BayerGRBG2RGB_VNG()

 cv_COLOR_BayerGRBG2RGBA()

 cv_COLOR_BayerRG2BGR()

 cv_COLOR_BayerRG2BGR_EA()

 cv_COLOR_BayerRG2BGR_MHT()

 cv_COLOR_BayerRG2BGR_VNG()

 cv_COLOR_BayerRG2BGRA()

 cv_COLOR_BayerRG2GRAY()

 cv_COLOR_BayerRG2GRAY_MHT()

 cv_COLOR_BayerRG2RGB()

 cv_COLOR_BayerRG2RGB_EA()

 cv_COLOR_BayerRG2RGB_MHT()

 cv_COLOR_BayerRG2RGB_VNG()

 cv_COLOR_BayerRG2RGBA()

 cv_COLOR_BayerRGGB2BGR()

 cv_COLOR_BayerRGGB2BGR_EA()

 cv_COLOR_BayerRGGB2BGR_VNG()

 cv_COLOR_BayerRGGB2BGRA()

 cv_COLOR_BayerRGGB2GRAY()

 cv_COLOR_BayerRGGB2RGB()

 cv_COLOR_BayerRGGB2RGB_EA()

 cv_COLOR_BayerRGGB2RGB_VNG()

 cv_COLOR_BayerRGGB2RGBA()

 cv_COLOR_BGR2BGR555()

 cv_COLOR_BGR2BGR565()

 cv_COLOR_BGR2BGRA()

 cv_COLOR_BGR2GRAY()

 cv_COLOR_BGR2HLS()

 cv_COLOR_BGR2HLS_FULL()

 cv_COLOR_BGR2HSV()

 cv_COLOR_BGR2HSV_FULL()

 cv_COLOR_BGR2Lab()

 cv_COLOR_BGR2Luv()

 cv_COLOR_BGR2RGB()

 cv_COLOR_BGR2RGBA()

 cv_COLOR_BGR2XYZ()

 cv_COLOR_BGR2YCrCb()

 cv_COLOR_BGR2YUV()

 cv_COLOR_BGR2YUV_I420()

 cv_COLOR_BGR2YUV_IYUV()

 cv_COLOR_BGR2YUV_UYNV()

 cv_COLOR_BGR2YUV_UYVY()

 cv_COLOR_BGR2YUV_Y422()

 cv_COLOR_BGR2YUV_YUNV()

 cv_COLOR_BGR2YUV_YUY2()

 cv_COLOR_BGR2YUV_YUYV()

 cv_COLOR_BGR2YUV_YV12()

 cv_COLOR_BGR2YUV_YVYU()

 cv_COLOR_BGR5552BGR()

 cv_COLOR_BGR5552BGRA()

 cv_COLOR_BGR5552GRAY()

 cv_COLOR_BGR5552RGB()

 cv_COLOR_BGR5552RGBA()

 cv_COLOR_BGR5652BGR()

 cv_COLOR_BGR5652BGRA()

 cv_COLOR_BGR5652GRAY()

 cv_COLOR_BGR5652RGB()

 cv_COLOR_BGR5652RGBA()

 cv_COLOR_BGRA2BGR555()

 cv_COLOR_BGRA2BGR565()

 cv_COLOR_BGRA2BGR()

 cv_COLOR_BGRA2GRAY()

 cv_COLOR_BGRA2RGB()

 cv_COLOR_BGRA2RGBA()

 cv_COLOR_BGRA2YUV_I420()

 cv_COLOR_BGRA2YUV_IYUV()

 cv_COLOR_BGRA2YUV_UYNV()

 cv_COLOR_BGRA2YUV_UYVY()

 cv_COLOR_BGRA2YUV_Y422()

 cv_COLOR_BGRA2YUV_YUNV()

 cv_COLOR_BGRA2YUV_YUY2()

 cv_COLOR_BGRA2YUV_YUYV()

 cv_COLOR_BGRA2YUV_YV12()

 cv_COLOR_BGRA2YUV_YVYU()

 cv_COLOR_COLORCVT_MAX()

 cv_COLOR_GRAD()

 cv_COLOR_GRAY2BGR555()

 cv_COLOR_GRAY2BGR565()

 cv_COLOR_GRAY2BGR()

 cv_COLOR_GRAY2BGRA()

 cv_COLOR_GRAY2RGB()

 cv_COLOR_GRAY2RGBA()

 cv_COLOR_HLS2BGR()

 cv_COLOR_HLS2BGR_FULL()

 cv_COLOR_HLS2RGB()

 cv_COLOR_HLS2RGB_FULL()

 cv_COLOR_HSV2BGR()

 cv_COLOR_HSV2BGR_FULL()

 cv_COLOR_HSV2RGB()

 cv_COLOR_HSV2RGB_FULL()

 cv_COLOR_Lab2BGR()

 cv_COLOR_Lab2LBGR()

 cv_COLOR_Lab2LRGB()

 cv_COLOR_Lab2RGB()

 cv_COLOR_LBGR2Lab()

 cv_COLOR_LBGR2Luv()

 cv_COLOR_LRGB2Lab()

 cv_COLOR_LRGB2Luv()

 cv_COLOR_Luv2BGR()

 cv_COLOR_Luv2LBGR()

 cv_COLOR_Luv2LRGB()

 cv_COLOR_Luv2RGB()

 cv_COLOR_mRGBA2RGBA()

 cv_COLOR_RGB2BGR555()

 cv_COLOR_RGB2BGR565()

 cv_COLOR_RGB2BGR()

 cv_COLOR_RGB2BGRA()

 cv_COLOR_RGB2GRAY()

 cv_COLOR_RGB2HLS()

 cv_COLOR_RGB2HLS_FULL()

 cv_COLOR_RGB2HSV()

 cv_COLOR_RGB2HSV_FULL()

 cv_COLOR_RGB2Lab()

 cv_COLOR_RGB2Luv()

 cv_COLOR_RGB2RGBA()

 cv_COLOR_RGB2XYZ()

 cv_COLOR_RGB2YCrCb()

 cv_COLOR_RGB2YUV()

 cv_COLOR_RGB2YUV_I420()

 cv_COLOR_RGB2YUV_IYUV()

 cv_COLOR_RGB2YUV_UYNV()

 cv_COLOR_RGB2YUV_UYVY()

 cv_COLOR_RGB2YUV_Y422()

 cv_COLOR_RGB2YUV_YUNV()

 cv_COLOR_RGB2YUV_YUY2()

 cv_COLOR_RGB2YUV_YUYV()

 cv_COLOR_RGB2YUV_YV12()

 cv_COLOR_RGB2YUV_YVYU()

 cv_COLOR_RGBA2BGR555()

 cv_COLOR_RGBA2BGR565()

 cv_COLOR_RGBA2BGR()

 cv_COLOR_RGBA2BGRA()

 cv_COLOR_RGBA2GRAY()

 cv_COLOR_RGBA2mRGBA()

 cv_COLOR_RGBA2RGB()

 cv_COLOR_RGBA2YUV_I420()

 cv_COLOR_RGBA2YUV_IYUV()

 cv_COLOR_RGBA2YUV_UYNV()

 cv_COLOR_RGBA2YUV_UYVY()

 cv_COLOR_RGBA2YUV_Y422()

 cv_COLOR_RGBA2YUV_YUNV()

 cv_COLOR_RGBA2YUV_YUY2()

 cv_COLOR_RGBA2YUV_YUYV()

 cv_COLOR_RGBA2YUV_YV12()

 cv_COLOR_RGBA2YUV_YVYU()

 cv_COLOR_SPACE_AdobeRGB()

 cv_COLOR_SPACE_AdobeRGBL()

 cv_COLOR_SPACE_AppleRGB()

 cv_COLOR_SPACE_AppleRGBL()

 cv_COLOR_SPACE_DCI_P3_RGB()

 cv_COLOR_SPACE_DCI_P3_RGBL()

 cv_COLOR_SPACE_Lab_A_2()

 cv_COLOR_SPACE_Lab_A_10()

 cv_COLOR_SPACE_Lab_D50_2()

 cv_COLOR_SPACE_Lab_D50_10()

 cv_COLOR_SPACE_Lab_D55_2()

 cv_COLOR_SPACE_Lab_D55_10()

 cv_COLOR_SPACE_Lab_D65_2()

 cv_COLOR_SPACE_Lab_D65_10()

 cv_COLOR_SPACE_Lab_D75_2()

 cv_COLOR_SPACE_Lab_D75_10()

 cv_COLOR_SPACE_Lab_E_2()

 cv_COLOR_SPACE_Lab_E_10()

 cv_COLOR_SPACE_ProPhotoRGB()

 cv_COLOR_SPACE_ProPhotoRGBL()

 cv_COLOR_SPACE_REC_709_RGB()

 cv_COLOR_SPACE_REC_709_RGBL()

 cv_COLOR_SPACE_REC_2020_RGB()

 cv_COLOR_SPACE_REC_2020_RGBL()

 cv_COLOR_SPACE_sRGB()

 cv_COLOR_SPACE_sRGBL()

 cv_COLOR_SPACE_WideGamutRGB()

 cv_COLOR_SPACE_WideGamutRGBL()

 cv_COLOR_SPACE_XYZ_A_2()

 cv_COLOR_SPACE_XYZ_A_10()

 cv_COLOR_SPACE_XYZ_D50_2()

 cv_COLOR_SPACE_XYZ_D50_10()

 cv_COLOR_SPACE_XYZ_D55_2()

 cv_COLOR_SPACE_XYZ_D55_10()

 cv_COLOR_SPACE_XYZ_D65_2()

 cv_COLOR_SPACE_XYZ_D65_10()

 cv_COLOR_SPACE_XYZ_D75_2()

 cv_COLOR_SPACE_XYZ_D75_10()

 cv_COLOR_SPACE_XYZ_E_2()

 cv_COLOR_SPACE_XYZ_E_10()

 cv_COLOR_XYZ2BGR()

 cv_COLOR_XYZ2RGB()

 cv_COLOR_YCrCb2BGR()

 cv_COLOR_YCrCb2RGB()

 cv_COLOR_YUV2BGR()

 cv_COLOR_YUV2BGR_I420()

 cv_COLOR_YUV2BGR_IYUV()

 cv_COLOR_YUV2BGR_NV12()

 cv_COLOR_YUV2BGR_NV21()

 cv_COLOR_YUV2BGR_UYNV()

 cv_COLOR_YUV2BGR_UYVY()

 cv_COLOR_YUV2BGR_Y422()

 cv_COLOR_YUV2BGR_YUNV()

 cv_COLOR_YUV2BGR_YUY2()

 cv_COLOR_YUV2BGR_YUYV()

 cv_COLOR_YUV2BGR_YV12()

 cv_COLOR_YUV2BGR_YVYU()

 cv_COLOR_YUV2BGRA_I420()

 cv_COLOR_YUV2BGRA_IYUV()

 cv_COLOR_YUV2BGRA_NV12()

 cv_COLOR_YUV2BGRA_NV21()

 cv_COLOR_YUV2BGRA_UYNV()

 cv_COLOR_YUV2BGRA_UYVY()

 cv_COLOR_YUV2BGRA_Y422()

 cv_COLOR_YUV2BGRA_YUNV()

 cv_COLOR_YUV2BGRA_YUY2()

 cv_COLOR_YUV2BGRA_YUYV()

 cv_COLOR_YUV2BGRA_YV12()

 cv_COLOR_YUV2BGRA_YVYU()

 cv_COLOR_YUV2GRAY_420()

 cv_COLOR_YUV2GRAY_I420()

 cv_COLOR_YUV2GRAY_IYUV()

 cv_COLOR_YUV2GRAY_NV12()

 cv_COLOR_YUV2GRAY_NV21()

 cv_COLOR_YUV2GRAY_UYNV()

 cv_COLOR_YUV2GRAY_UYVY()

 cv_COLOR_YUV2GRAY_Y422()

 cv_COLOR_YUV2GRAY_YUNV()

 cv_COLOR_YUV2GRAY_YUY2()

 cv_COLOR_YUV2GRAY_YUYV()

 cv_COLOR_YUV2GRAY_YV12()

 cv_COLOR_YUV2GRAY_YVYU()

 cv_COLOR_YUV2RGB()

 cv_COLOR_YUV2RGB_I420()

 cv_COLOR_YUV2RGB_IYUV()

 cv_COLOR_YUV2RGB_NV12()

 cv_COLOR_YUV2RGB_NV21()

 cv_COLOR_YUV2RGB_UYNV()

 cv_COLOR_YUV2RGB_UYVY()

 cv_COLOR_YUV2RGB_Y422()

 cv_COLOR_YUV2RGB_YUNV()

 cv_COLOR_YUV2RGB_YUY2()

 cv_COLOR_YUV2RGB_YUYV()

 cv_COLOR_YUV2RGB_YV12()

 cv_COLOR_YUV2RGB_YVYU()

 cv_COLOR_YUV2RGBA_I420()

 cv_COLOR_YUV2RGBA_IYUV()

 cv_COLOR_YUV2RGBA_NV12()

 cv_COLOR_YUV2RGBA_NV21()

 cv_COLOR_YUV2RGBA_UYNV()

 cv_COLOR_YUV2RGBA_UYVY()

 cv_COLOR_YUV2RGBA_Y422()

 cv_COLOR_YUV2RGBA_YUNV()

 cv_COLOR_YUV2RGBA_YUY2()

 cv_COLOR_YUV2RGBA_YUYV()

 cv_COLOR_YUV2RGBA_YV12()

 cv_COLOR_YUV2RGBA_YVYU()

 cv_COLOR_YUV420p2BGR()

 cv_COLOR_YUV420p2BGRA()

 cv_COLOR_YUV420p2GRAY()

 cv_COLOR_YUV420p2RGB()

 cv_COLOR_YUV420p2RGBA()

 cv_COLOR_YUV420sp2BGR()

 cv_COLOR_YUV420sp2BGRA()

 cv_COLOR_YUV420sp2GRAY()

 cv_COLOR_YUV420sp2RGB()

 cv_COLOR_YUV420sp2RGBA()

 cv_COLORCHECKER_DigitalSG()

 cv_COLORCHECKER_Macbeth()

 cv_COLORCHECKER_Vinyl()

 cv_COLOREDTSDF()

 cv_COLORMAP_AUTUMN()

 cv_COLORMAP_BONE()

 cv_COLORMAP_CIVIDIS()

 cv_COLORMAP_COOL()

 cv_COLORMAP_DEEPGREEN()

 cv_COLORMAP_HOT()

 cv_COLORMAP_HSV()

 cv_COLORMAP_INFERNO()

 cv_COLORMAP_JET()

 cv_COLORMAP_MAGMA()

 cv_COLORMAP_OCEAN()

 cv_COLORMAP_PARULA()

 cv_COLORMAP_PINK()

 cv_COLORMAP_PLASMA()

 cv_COLORMAP_RAINBOW()

 cv_COLORMAP_SPRING()

 cv_COLORMAP_SUMMER()

 cv_COLORMAP_TURBO()

 cv_COLORMAP_TWILIGHT()

 cv_COLORMAP_TWILIGHT_SHIFTED()

 cv_COLORMAP_VIRIDIS()

 cv_COLORMAP_WINTER()

 cv_COMPRESSED_INPUT()

 cv_CONSTANT()

 cv_CONTOURS_MATCH_I1()

 cv_CONTOURS_MATCH_I2()

 cv_CONTOURS_MATCH_I3()

 cv_COPY_ON_MAP()

 cv_CORNER_REFINE_APRILTAG()

 cv_CORNER_REFINE_CONTOUR()

 cv_CORNER_REFINE_NONE()

 cv_CORNER_REFINE_SUBPIX()

 cv_CORRECT_LEVEL_H()

 cv_CORRECT_LEVEL_L()

 cv_CORRECT_LEVEL_M()

 cv_CORRECT_LEVEL_Q()

 cv_COST_COLOR()

 cv_COST_COLOR_GRAD()

 cv_COUNT()

 cv_COV_MAT_DEFAULT()

 cv_COV_MAT_DIAGONAL()

 cv_COV_MAT_GENERIC()

 cv_COV_MAT_SPHERICAL()

 cv_COV_POLISHER()

 cv_COVAR_COLS()

 cv_COVAR_NORMAL()

 cv_COVAR_ROWS()

 cv_COVAR_SCALE()

 cv_COVAR_SCRAMBLED()

 cv_COVAR_USE_AVG()

 cv_ColorFormat_RGB()

 cv_ColorFormat_RGBA()

 cv_ComputeModeDefault()

 cv_ComputeModeExclusive()

 cv_ComputeModeExclusiveProcess()

 cv_ComputeModeProhibited()

 cv_CROP()

 cv_CUDA_GPU_MAT()

 cv_CUDA_HOST_MEM()

 cv_CUSTOM()

 cv_CV_CS_CENSUS()

 cv_CV_DENSE_CENSUS()

 cv_CV_MEAN_VARIATION()

 cv_CV_MODIFIED_CENSUS_TRANSFORM()

 cv_CV_MODIFIED_CS_CENSUS()

 cv_CV_QUADRATIC_INTERPOLATION()

 cv_CV_SIMETRICV_INTERPOLATION()

 cv_CV_SPARSE_CENSUS()

 cv_CV_SPECKLE_REMOVAL_ALGORITHM()

 cv_CV_SPECKLE_REMOVAL_AVG_ALGORITHM()

 cv_CV_STAR_KERNEL()

 cv_cn_shift()

 cv_DATA_AS_COL()

 cv_DATA_AS_ROW()

 cv_DCT_INVERSE()

 cv_DCT_ROWS()

 cv_DECODE_3D_UNDERWORLD()

 cv_DECOMP_CHOLESKY()

 cv_DECOMP_EIG()

 cv_DECOMP_LU()

 cv_DECOMP_NORMAL()

 cv_DECOMP_QR()

 cv_DECOMP_SVD()

 cv_DEFAULT()

 cv_DEFAULT_MAX_ITERS()

 cv_DEFAULT_NCLUSTERS()

 cv_DEFAULT_NLEVELS()

 cv_DEGREE()

 cv_DEPTH_CLEANER_NIL()

 cv_DEPTH_COMPONENT()

 cv_DEPTH_MASK()

 cv_DEPTH_MASK_8S()

 cv_DEPTH_MASK_8U()

 cv_DEPTH_MASK_16F()

 cv_DEPTH_MASK_16S()

 cv_DEPTH_MASK_16U()

 cv_DEPTH_MASK_32F()

 cv_DEPTH_MASK_32S()

 cv_DEPTH_MASK_64F()

 cv_DEPTH_MASK_ALL()

 cv_DEPTH_MASK_ALL_16F()

 cv_DEPTH_MASK_ALL_BUT_8S()

 cv_DEPTH_MASK_FLT()

 cv_DESCR_FORMAT_COL_BY_COL()

 cv_DESCR_FORMAT_ROW_BY_ROW()

 cv_DESCRIPTOR_KAZE()

 cv_DESCRIPTOR_KAZE_UPRIGHT()

 cv_DESCRIPTOR_MLDB()

 cv_DESCRIPTOR_MLDB_UPRIGHT()

 cv_DEVICE_COPY_OBSOLETE()

 cv_DEVICE_MEM_MAPPED()

 cv_DFT_COMPLEX_INPUT()

 cv_DFT_COMPLEX_OUTPUT()

 cv_DFT_INVERSE()

 cv_DFT_REAL_OUTPUT()

 cv_DFT_ROWS()

 cv_DFT_SCALE()

 cv_DICT_4X4_50()

 cv_DICT_4X4_100()

 cv_DICT_4X4_250()

 cv_DICT_4X4_1000()

 cv_DICT_5X5_50()

 cv_DICT_5X5_100()

 cv_DICT_5X5_250()

 cv_DICT_5X5_1000()

 cv_DICT_6X6_50()

 cv_DICT_6X6_100()

 cv_DICT_6X6_250()

 cv_DICT_6X6_1000()

 cv_DICT_7X7_50()

 cv_DICT_7X7_100()

 cv_DICT_7X7_250()

 cv_DICT_7X7_1000()

 cv_DICT_APRILTAG_16h5()

 cv_DICT_APRILTAG_25h9()

 cv_DICT_APRILTAG_36h10()

 cv_DICT_APRILTAG_36h11()

 cv_DICT_ARUCO_MIP_36h12()

 cv_DICT_ARUCO_ORIGINAL()

 cv_DIFF_CHARBONNIER()

 cv_DIFF_PM_G1()

 cv_DIFF_PM_G2()

 cv_DIFF_WEICKERT()

 cv_DISABLE_TIMING()

 cv_DISCRETE()

 cv_DISP_SCALE()

 cv_DISP_SHIFT()

 cv_DIST_C()

 cv_DIST_FAIR()

 cv_DIST_HUBER()

 cv_DIST_L1()

 cv_DIST_L2()

 cv_DIST_L12()

 cv_DIST_LABEL_CCOMP()

 cv_DIST_LABEL_PIXEL()

 cv_DIST_MASK_3()

 cv_DIST_MASK_5()

 cv_DIST_MASK_PRECISE()

 cv_DIST_USER()

 cv_DIST_WELSCH()

 cv_DISTANCE_CIE76()

 cv_DISTANCE_CIE94_GRAPHIC_ARTS()

 cv_DISTANCE_CIE94_TEXTILES()

 cv_DISTANCE_CIE2000()

 cv_DISTANCE_CMC_1TO1()

 cv_DISTANCE_CMC_2TO1()

 cv_DISTANCE_RGB()

 cv_DISTANCE_RGBL()

 cv_DNN_BACKEND_CANN()

 cv_DNN_BACKEND_CUDA()

 cv_DNN_BACKEND_DEFAULT()

 cv_DNN_BACKEND_HALIDE()

 cv_DNN_BACKEND_INFERENCE_ENGINE()

 cv_DNN_BACKEND_OPENCV()

 cv_DNN_BACKEND_TIMVX()

 cv_DNN_BACKEND_VKCOM()

 cv_DNN_BACKEND_WEBNN()

 cv_DNN_LAYOUT_NCDHW()

 cv_DNN_LAYOUT_NCHW()

 cv_DNN_LAYOUT_ND()

 cv_DNN_LAYOUT_NDHWC()

 cv_DNN_LAYOUT_NHWC()

 cv_DNN_LAYOUT_PLANAR()

 cv_DNN_LAYOUT_UNKNOWN()

 cv_DNN_PMODE_CROP_CENTER()

 cv_DNN_PMODE_LETTERBOX()

 cv_DNN_PMODE_NULL()

 cv_DNN_TARGET_CPU()

 cv_DNN_TARGET_CPU_FP16()

 cv_DNN_TARGET_CUDA()

 cv_DNN_TARGET_CUDA_FP16()

 cv_DNN_TARGET_FPGA()

 cv_DNN_TARGET_HDDL()

 cv_DNN_TARGET_MYRIAD()

 cv_DNN_TARGET_NPU()

 cv_DNN_TARGET_OPENCL()

 cv_DNN_TARGET_OPENCL_FP16()

 cv_DNN_TARGET_VULKAN()

 cv_DP_SEAM()

 cv_DRAW_OVER_OUTIMG()

 cv_DRAW_RICH_KEYPOINTS()

 cv_DTF_IC()

 cv_DTF_NC()

 cv_DTF_RF()

 cv_DYNAMIC_PARALLELISM()

 cv_depth_max()

 cv_ECI_UTF8()

 cv_ELEMENT_ARRAY_BUFFER()

 cv_EMPTY()

 cv_ENC_CODEC_PROFILE_AUTOSELECT()

 cv_ENC_H264_PROFILE_BASELINE()

 cv_ENC_H264_PROFILE_CONSTRAINED_HIGH()

 cv_ENC_H264_PROFILE_HIGH()

 cv_ENC_H264_PROFILE_HIGH_444()

 cv_ENC_H264_PROFILE_MAIN()

 cv_ENC_H264_PROFILE_PROGRESSIVE_HIGH()

 cv_ENC_H264_PROFILE_STEREO()

 cv_ENC_HEVC_PROFILE_FREXT()

 cv_ENC_HEVC_PROFILE_MAIN10()

 cv_ENC_HEVC_PROFILE_MAIN()

 cv_ENC_MULTI_PASS_DISABLED()

 cv_ENC_PARAMS_RC_CBR()

 cv_ENC_PARAMS_RC_CONSTQP()

 cv_ENC_PARAMS_RC_VBR()

 cv_ENC_PRESET_P1()

 cv_ENC_PRESET_P2()

 cv_ENC_PRESET_P3()

 cv_ENC_PRESET_P4()

 cv_ENC_PRESET_P5()

 cv_ENC_PRESET_P6()

 cv_ENC_PRESET_P7()

 cv_ENC_TUNING_INFO_COUNT()

 cv_ENC_TUNING_INFO_HIGH_QUALITY()

 cv_ENC_TUNING_INFO_LOSSLESS()

 cv_ENC_TUNING_INFO_LOW_LATENCY()

 cv_ENC_TUNING_INFO_ULTRA_LOW_LATENCY()

 cv_ENC_TUNING_INFO_UNDEFINED()

 cv_ENC_TWO_PASS_FULL_RESOLUTION()

 cv_ENC_TWO_PASS_QUARTER_RESOLUTION()

 cv_EPS()

 cv_EPS_SVR()

 cv_ERFILTER_NM_IHSGrad()

 cv_ERFILTER_NM_RGBLGrad()

 cv_ERGROUPING_ORIENTATION_ANY()

 cv_ERGROUPING_ORIENTATION_HORIZ()

 cv_ERR_CAMERA_PARAMS_ADJUST_FAIL()

 cv_ERR_HOMOGRAPHY_EST_FAIL()

 cv_ERR_NEED_MORE_IMGS()

 cv_EULER_ANGLES_MAX_VALUE()

 cv_EVENT_FLAG_ALTKEY()

 cv_EVENT_FLAG_CTRLKEY()

 cv_EVENT_FLAG_LBUTTON()

 cv_EVENT_FLAG_MBUTTON()

 cv_EVENT_FLAG_RBUTTON()

 cv_EVENT_FLAG_SHIFTKEY()

 cv_EVENT_LBUTTONDBLCLK()

 cv_EVENT_LBUTTONDOWN()

 cv_EVENT_LBUTTONUP()

 cv_EVENT_MBUTTONDBLCLK()

 cv_EVENT_MBUTTONDOWN()

 cv_EVENT_MBUTTONUP()

 cv_EVENT_MOUSEHWHEEL()

 cv_EVENT_MOUSEMOVE()

 cv_EVENT_MOUSEWHEEL()

 cv_EVENT_RBUTTONDBLCLK()

 cv_EVENT_RBUTTONDOWN()

 cv_EVENT_RBUTTONUP()

 cv_EXEC_KERNEL()

 cv_EXEC_NATIVE_KERNEL()

 cv_EXPR()

 cv_EXT_XYX()

 cv_EXT_XYZ()

 cv_EXT_XZX()

 cv_EXT_XZY()

 cv_EXT_YXY()

 cv_EXT_YXZ()

 cv_EXT_YZX()

 cv_EXT_YZY()

 cv_EXT_ZXY()

 cv_EXT_ZXZ()

 cv_EXT_ZYX()

 cv_EXT_ZYZ()

 cv_FAPS()

 cv_FAST_N()

 cv_FAST_SCORE()

 cv_FEATHER()

 cv_FEATURE_SET_COMPUTE_10()

 cv_FEATURE_SET_COMPUTE_11()

 cv_FEATURE_SET_COMPUTE_12()

 cv_FEATURE_SET_COMPUTE_13()

 cv_FEATURE_SET_COMPUTE_20()

 cv_FEATURE_SET_COMPUTE_21()

 cv_FEATURE_SET_COMPUTE_30()

 cv_FEATURE_SET_COMPUTE_32()

 cv_FEATURE_SET_COMPUTE_35()

 cv_FEATURE_SET_COMPUTE_50()

 cv_FHT_ADD()

 cv_FHT_AVE()

 cv_FHT_MAX()

 cv_FHT_MIN()

 cv_FILLED()

 cv_FILTER_SCHARR()

 cv_FIRST_ORDER_MOMENTS()

 cv_FIXED_SIZE()

 cv_FIXED_TYPE()

 cv_FileNode_FLOAT()

 cv_FileNode_INT()

 cv_FileNode_NONE()

 cv_FileNode_STRING()

 cv_FileNode_TYPE_MASK()

 cv_FileNode_UNIFORM()

 cv_FLANN_INDEX_TYPE_8S()

 cv_FLANN_INDEX_TYPE_8U()

 cv_FLANN_INDEX_TYPE_16S()

 cv_FLANN_INDEX_TYPE_16U()

 cv_FLANN_INDEX_TYPE_32F()

 cv_FLANN_INDEX_TYPE_32S()

 cv_FLANN_INDEX_TYPE_64F()

 cv_FLANN_INDEX_TYPE_ALGORITHM()

 cv_FLANN_INDEX_TYPE_BOOL()

 cv_FLANN_INDEX_TYPE_STRING()

 cv_FLANNBASED()

 cv_FLOAT()

 cv_FLOODFILL_FIXED_RANGE()

 cv_FLOODFILL_MASK_ONLY()

 cv_FLOW()

 cv_FM_7POINT()

 cv_FM_8POINT()

 cv_FM_LMEDS()

 cv_FM_RANSAC()

 cv_FMT_C()

 cv_FMT_CSV()

 cv_FMT_DEFAULT()

 cv_FMT_MATLAB()

 cv_FMT_NUMPY()

 cv_FMT_PYTHON()

 cv_FONT_HERSHEY_COMPLEX()

 cv_FONT_HERSHEY_COMPLEX_SMALL()

 cv_FONT_HERSHEY_DUPLEX()

 cv_FONT_HERSHEY_PLAIN()

 cv_FONT_HERSHEY_SCRIPT_COMPLEX()

 cv_FONT_HERSHEY_SCRIPT_SIMPLEX()

 cv_FONT_HERSHEY_SIMPLEX()

 cv_FONT_HERSHEY_TRIPLEX()

 cv_FONT_ITALIC()

 cv_FORMAT_AUTO()

 cv_FORMAT_JSON()

 cv_FORMAT_MASK()

 cv_FORMAT_XML()

 cv_FORMAT_YAML()

 cv_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT()

 cv_FP_DENORM()

 cv_FP_FMA()

 cv_FP_INF_NAN()

 cv_FP_ROUND_TO_INF()

 cv_FP_ROUND_TO_NEAREST()

 cv_FP_ROUND_TO_ZERO()

 cv_FP_SOFT_FLOAT()

 cv_FR_COSINE()

 cv_FR_NORM_L2()

 cv_FTP()

 cv_FULL_UV()

 cv_fisheye_CALIB_FIX_FOCAL_LENGTH()

 cv_fisheye_CALIB_FIX_INTRINSIC()

 cv_fisheye_CALIB_FIX_K1()

 cv_fisheye_CALIB_FIX_K2()

 cv_fisheye_CALIB_FIX_K3()

 cv_fisheye_CALIB_FIX_K4()

 cv_fisheye_CALIB_FIX_PRINCIPAL_POINT()

 cv_fisheye_CALIB_USE_INTRINSIC_GUESS()

 cv_fisheye_CALIB_ZERO_DISPARITY()

 cv_ft_LINEAR()

 cv_GAIN()

 cv_GAIN_BLOCKS()

 cv_GAMMA()

 cv_GAUSSIAN()

 cv_GC_BGD()

 cv_GC_EVAL()

 cv_GC_EVAL_FREEZE_MODEL()

 cv_GC_FGD()

 cv_GC_INIT_WITH_MASK()

 cv_GC_INIT_WITH_RECT()

 cv_GC_PR_BGD()

 cv_GC_PR_FGD()

 cv_GEMM_1_T()

 cv_GEMM_2_T()

 cv_GEMM_3_T()

 cv_GENTLE()

 cv_GLOBAL_ATOMICS()

 cv_GpuApiCallError()

 cv_GpuNotSupported()

 cv_GRAY()

 cv_GUIDED_FILTER()

 cv_H264()

 cv_H264_MVC()

 cv_H264_SVC()

 cv_HAAR()

 cv_HARD_MARGIN()

 cv_HARRIS_SCORE()

 cv_HASH_BIT()

 cv_HASH_SCALE()

 cv_HASHTSDF()

 cv_HDO_DESKEW()

 cv_HDO_RAW()

 cv_HESSIAN_ROW()

 cv_HEURISTIC()

 cv_HEVC()

 cv_HeaderIsNull()

 cv_HISTCMP_BHATTACHARYYA()

 cv_HISTCMP_CHISQR()

 cv_HISTCMP_CHISQR_ALT()

 cv_HISTCMP_CORREL()

 cv_HISTCMP_HELLINGER()

 cv_HISTCMP_INTERSECT()

 cv_HISTCMP_KL_DIV()

 cv_HOG()

 cv_HOST_COPY_OBSOLETE()

 cv_HOUGH_GRADIENT()

 cv_HOUGH_GRADIENT_ALT()

 cv_HOUGH_MULTI_SCALE()

 cv_HOUGH_PROBABILISTIC()

 cv_HOUGH_STANDARD()

 cv_IDENTITY()

 cv_IMREAD_ANYCOLOR()

 cv_IMREAD_ANYDEPTH()

 cv_IMREAD_COLOR()

 cv_IMREAD_GRAYSCALE()

 cv_IMREAD_IGNORE_ORIENTATION()

 cv_IMREAD_LOAD_GDAL()

 cv_IMREAD_REDUCED_COLOR_2()

 cv_IMREAD_REDUCED_COLOR_4()

 cv_IMREAD_REDUCED_COLOR_8()

 cv_IMREAD_REDUCED_GRAYSCALE_2()

 cv_IMREAD_REDUCED_GRAYSCALE_4()

 cv_IMREAD_REDUCED_GRAYSCALE_8()

 cv_IMREAD_UNCHANGED()

 cv_IMWRITE_AVIF_DEPTH()

 cv_IMWRITE_AVIF_QUALITY()

 cv_IMWRITE_AVIF_SPEED()

 cv_IMWRITE_EXR_COMPRESSION()

 cv_IMWRITE_EXR_COMPRESSION_B44()

 cv_IMWRITE_EXR_COMPRESSION_B44A()

 cv_IMWRITE_EXR_COMPRESSION_DWAA()

 cv_IMWRITE_EXR_COMPRESSION_DWAB()

 cv_IMWRITE_EXR_COMPRESSION_NO()

 cv_IMWRITE_EXR_COMPRESSION_PIZ()

 cv_IMWRITE_EXR_COMPRESSION_PXR24()

 cv_IMWRITE_EXR_COMPRESSION_RLE()

 cv_IMWRITE_EXR_COMPRESSION_ZIP()

 cv_IMWRITE_EXR_COMPRESSION_ZIPS()

 cv_IMWRITE_EXR_DWA_COMPRESSION_LEVEL()

 cv_IMWRITE_EXR_TYPE()

 cv_IMWRITE_EXR_TYPE_FLOAT()

 cv_IMWRITE_EXR_TYPE_HALF()

 cv_IMWRITE_HDR_COMPRESSION()

 cv_IMWRITE_HDR_COMPRESSION_NONE()

 cv_IMWRITE_HDR_COMPRESSION_RLE()

 cv_IMWRITE_JPEG2000_COMPRESSION_X1000()

 cv_IMWRITE_JPEG_CHROMA_QUALITY()

 cv_IMWRITE_JPEG_LUMA_QUALITY()

 cv_IMWRITE_JPEG_OPTIMIZE()

 cv_IMWRITE_JPEG_PROGRESSIVE()

 cv_IMWRITE_JPEG_QUALITY()

 cv_IMWRITE_JPEG_RST_INTERVAL()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_411()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_420()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_422()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_440()

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_444()

 cv_IMWRITE_PAM_FORMAT_BLACKANDWHITE()

 cv_IMWRITE_PAM_FORMAT_GRAYSCALE()

 cv_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA()

 cv_IMWRITE_PAM_FORMAT_NULL()

 cv_IMWRITE_PAM_FORMAT_RGB()

 cv_IMWRITE_PAM_FORMAT_RGB_ALPHA()

 cv_IMWRITE_PAM_TUPLETYPE()

 cv_IMWRITE_PNG_BILEVEL()

 cv_IMWRITE_PNG_COMPRESSION()

 cv_IMWRITE_PNG_STRATEGY()

 cv_IMWRITE_PNG_STRATEGY_DEFAULT()

 cv_IMWRITE_PNG_STRATEGY_FILTERED()

 cv_IMWRITE_PNG_STRATEGY_FIXED()

 cv_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY()

 cv_IMWRITE_PNG_STRATEGY_RLE()

 cv_IMWRITE_PXM_BINARY()

 cv_IMWRITE_TIFF_COMPRESSION()

 cv_IMWRITE_TIFF_RESUNIT()

 cv_IMWRITE_TIFF_XDPI()

 cv_IMWRITE_TIFF_YDPI()

 cv_IMWRITE_WEBP_QUALITY()

 cv_INITIAL_METHOD_LEAST_SQUARE()

 cv_INITIAL_METHOD_WHITE_BALANCE()

 cv_INPAINT_FSR_BEST()

 cv_INPAINT_FSR_FAST()

 cv_INPAINT_NS()

 cv_INPAINT_SHIFTMAP()

 cv_INPAINT_TELEA()

 cv_INSIDE_MAP()

 cv_INT()

 cv_INT_XYX()

 cv_INT_XYZ()

 cv_INT_XZX()

 cv_INT_XZY()

 cv_INT_YXY()

 cv_INT_YXZ()

 cv_INT_YZX()

 cv_INT_YZY()

 cv_INT_ZXY()

 cv_INT_ZXZ()

 cv_INT_ZYX()

 cv_INT_ZYZ()

 cv_INTER()

 cv_INTER_AREA()

 cv_INTER_BITS2()

 cv_INTER_BITS()

 cv_INTER_CUBIC()

 cv_INTER_LANCZOS4()

 cv_INTER_LINEAR()

 cv_INTER_LINEAR_EXACT()

 cv_INTER_MAX()

 cv_INTER_NEAREST()

 cv_INTER_NEAREST_EXACT()

 cv_INTER_TAB_SIZE2()

 cv_INTER_TAB_SIZE()

 cv_INTERPROCESS()

 cv_INTERSECT_FULL()

 cv_INTERSECT_NONE()

 cv_INTERSECT_PARTIAL()

 cv_InputArray_MAT()

 cv_ITERATIVE()

 cv_JPEG()

 cv_KDTREE()

 cv_KIND_MASK()

 cv_KIND_SHIFT()

 cv_KMEANS_PP_CENTERS()

 cv_KMEANS_RANDOM_CENTERS()

 cv_KMEANS_USE_INITIAL_LABELS()

 cv_L0_5()

 cv_L0_25()

 cv_L1()

 cv_L2()

 cv_L2Hys()

 cv_L2SQUARED()

 cv_L5()

 cv_L_INFINITY()

 cv_LAPLACIAN_ROW()

 cv_LAST_VALUE_FLANN_INDEX_TYPE()

 cv_LBP()

 cv_LDR_SIZE()

 cv_LEAKYRELU()

 cv_LINE_4()

 cv_LINE_8()

 cv_LINE_AA()

 cv_LINE_LOOP()

 cv_LINE_STRIP()

 cv_LINEAR()

 cv_LINEARIZATION_COLORLOGPOLYFIT()

 cv_LINEARIZATION_COLORPOLYFIT()

 cv_LINEARIZATION_GAMMA()

 cv_LINEARIZATION_GRAYLOGPOLYFIT()

 cv_LINEARIZATION_GRAYPOLYFIT()

 cv_LINEARIZATION_IDENTITY()

 cv_LINES()

 cv_LMEDS()

 cv_LOCAL()

 cv_LOCAL_IS_GLOBAL()

 cv_LOCAL_IS_LOCAL()

 cv_LOCAL_OPTIM_GC()

 cv_LOCAL_OPTIM_INNER_AND_ITER_LO()

 cv_LOCAL_OPTIM_INNER_LO()

 cv_LOCAL_OPTIM_NULL()

 cv_LOCAL_OPTIM_SIGMA()

 cv_LOGIT()

 cv_LSBP_CAMERA_MOTION_COMPENSATION_LK()

 cv_LSBP_CAMERA_MOTION_COMPENSATION_NONE()

 cv_LSD()

 cv_LSD_REFINE_ADV()

 cv_LSD_REFINE_NONE()

 cv_LSD_REFINE_STD()

 cv_LSQ_POLISHER()

 cv_MAGIC_MASK()

 cv_MAGIC_VAL()

 cv_MAGSAC()

 cv_MAP()

 cv_MARKER_CROSS()

 cv_MARKER_DIAMOND()

 cv_MARKER_SQUARE()

 cv_MARKER_STAR()

 cv_MARKER_TILTED_CROSS()

 cv_MARKER_TRIANGLE_DOWN()

 cv_MARKER_TRIANGLE_UP()

 cv_MAT()

 cv_MAT_VECTOR()

 cv_MATX()

 cv_MAX_DIM()

 cv_MAX_ITER()

 cv_MaskIsTiled()

 cv_MCC24()

 cv_MEMORY()

 cv_MINI_BATCH()

 cv_MINUS()

 cv_MIXED_CLONE()

 cv_MODE_ALPHANUMERIC()

 cv_MODE_AUTO()

 cv_MODE_BYTE()

 cv_MODE_CLASSIFY()

 cv_MODE_DETECT()

 cv_MODE_ECI()

 cv_MODE_HH4()

 cv_MODE_HH()

 cv_MODE_INIT_NEG()

 cv_MODE_INIT_POS()

 cv_MODE_KANJI()

 cv_MODE_NEGATIVE()

 cv_MODE_NUMERIC()

 cv_MODE_POSITIVE()

 cv_MODE_SGBM()

 cv_MODE_SGBM_3WAY()

 cv_MODE_STRUCTURED_APPEND()

 cv_MODE_TRACK_NEG()

 cv_MODE_TRACK_POS()

 cv_MODIFY_A()

 cv_MONOCHROME_TRANSFER()

 cv_MORPH_BLACKHAT()

 cv_MORPH_CLOSE()

 cv_MORPH_CROSS()

 cv_MORPH_DILATE()

 cv_MORPH_ELLIPSE()

 cv_MORPH_ERODE()

 cv_MORPH_GRADIENT()

 cv_MORPH_HITMISS()

 cv_MORPH_OPEN()

 cv_MORPH_RECT()

 cv_MORPH_TOPHAT()

 cv_MOTION_AFFINE()

 cv_MOTION_EUCLIDEAN()

 cv_MOTION_HOMOGRAPHY()

 cv_MOTION_TRANSLATION()

 cv_Monochrome()

 cv_MPEG1()

 cv_MPEG2()

 cv_MPEG4()

 cv_MSLIC()

 cv_MULTI_BAND()

 cv_MULTI_STEP()

 cv_maketype(depth, cn)

 cv_mat_depth_mask()

 cv_NAME_EXPECTED()

 cv_NAMED()

 cv_NATIVE_DOUBLE()

 cv_NEIGH_FLANN_KNN()

 cv_NEIGH_FLANN_RADIUS()

 cv_NEIGH_GRID()

 cv_NEXT_AROUND_DST()

 cv_NEXT_AROUND_LEFT()

 cv_NEXT_AROUND_ORG()

 cv_NEXT_AROUND_RIGHT()

 cv_NO()

 cv_NO_CACHE()

 cv_NO_INPUT_SCALE()

 cv_NO_LOCAL_MEM()

 cv_NO_OUTPUT_SCALE()

 cv_NO_SIZE()

 cv_NO_UV()

 cv_NONE()

 cv_NONE_POLISHER()

 cv_NONMAX_SUPPRESSION()

 cv_NORM_HAMMING2()

 cv_NORM_HAMMING()

 cv_NORM_INF()

 cv_NORM_L1()

 cv_NORM_L2()

 cv_NORM_L2SQR()

 cv_NORM_MINMAX()

 cv_NORM_RELATIVE()

 cv_NORM_TYPE_MASK()

 cv_NORMAL()

 cv_NORMAL_CLONE()

 cv_NORMCONV_FILTER()

 cv_NOT_DRAW_SINGLE_POINTS()

 cv_NRM_FULL()

 cv_NRM_NONE()

 cv_NRM_PARTIAL()

 cv_NRM_SIFT()

 cv_NU()

 cv_NU_SVC()

 cv_NU_SVR()

 cv_NumCodecs()

 cv_NumFormats()

 cv_NV_AYUV()

 cv_NV_IYUV()

 cv_NV_NV12()

 cv_NV_YUV444()

 cv_NV_YV12()

 cv_OAST_9_16()

 cv_OCL_VECTOR_DEFAULT()

 cv_OCL_VECTOR_MAX()

 cv_OCL_VECTOR_OWN()

 cv_OCR_CNN_CLASSIFIER()

 cv_OCR_DECODER_VITERBI()

 cv_OCR_KNN_CLASSIFIER()

 cv_OCR_LEVEL_TEXTLINE()

 cv_OCR_LEVEL_WORD()

 cv_OCTAVE_ROW()

 cv_OEM_CUBE_ONLY()

 cv_OEM_DEFAULT()

 cv_OEM_TESSERACT_CUBE_COMBINED()

 cv_OEM_TESSERACT_ONLY()

 cv_OK()

 cv_OMNIDIRECTIONAL()

 cv_ONE_CLASS()

 cv_ONE_STEP()

 cv_OPENGL_BUFFER()

 cv_OPTFLOW_FARNEBACK_GAUSSIAN()

 cv_OPTFLOW_LK_GET_MIN_EIGENVALS()

 cv_OPTFLOW_USE_INITIAL_FLOW()

 cv_OpenCLApiCallError()

 cv_OpenCLDoubleNotSupported()

 cv_OpenCLInitError()

 cv_OpenCLNoAMDBlasFft()

 cv_OpenGlApiCallError()

 cv_OpenGlNotSupported()

 cv_omnidir_CALIB_FIX_K1()

 cv_omnidir_CALIB_FIX_K2()

 cv_omnidir_CALIB_FIX_SKEW()

 cv_P()

 cv_PAGE_LOCKED()

 cv_PANORAMA()

 cv_PCTSignatures_GAUSSIAN()

 cv_PCTSignatures_NORMAL()

 cv_PINHOLE()

 cv_PIXEL_PACK_BUFFER()

 cv_PIXEL_UNPACK_BUFFER()

 cv_POINTS()

 cv_POLY()

 cv_POLYGON()

 cv_PREDICT_AUTO()

 cv_PREDICT_MASK()

 cv_PREDICT_MAX_VOTE()

 cv_PREDICT_SUM()

 cv_PREFILTER_NORMALIZED_RESPONSE()

 cv_PREFILTER_XSOBEL()

 cv_PREPROCESSED_INPUT()

 cv_PRESET_FAST()

 cv_PRESET_MEDIUM()

 cv_PRESET_ULTRAFAST()

 cv_PREV_AROUND_DST()

 cv_PREV_AROUND_LEFT()

 cv_PREV_AROUND_ORG()

 cv_PREV_AROUND_RIGHT()

 cv_PREWITT()

 cv_PROJ_SPHERICAL_EQRECT()

 cv_PROJ_SPHERICAL_ORTHO()

 cv_PROP_ALLOW_FRAME_DROP()

 cv_PROP_COLOR_FORMAT()

 cv_PROP_DECODED_FRAME_IDX()

 cv_PROP_EXTRA_DATA_INDEX()

 cv_PROP_LRF_HAS_KEY_FRAME()

 cv_PROP_NOT_SUPPORTED()

 cv_PROP_NUMBER_OF_RAW_PACKAGES_SINCE_LAST_GRAB()

 cv_PROP_RAW_MODE()

 cv_PROP_RAW_PACKAGES_BASE_INDEX()

 cv_PROP_UDP_SOURCE()

 cv_PSM_AUTO()

 cv_PSM_AUTO_ONLY()

 cv_PSM_AUTO_OSD()

 cv_PSM_CIRCLE_WORD()

 cv_PSM_OSD_ONLY()

 cv_PSM_SINGLE_BLOCK()

 cv_PSM_SINGLE_BLOCK_VERT_TEXT()

 cv_PSM_SINGLE_CHAR()

 cv_PSM_SINGLE_COLUMN()

 cv_PSM_SINGLE_LINE()

 cv_PSM_SINGLE_WORD()

 cv_PSP()

 cv_PTLOC_ERROR()

 cv_PTLOC_INSIDE()

 cv_PTLOC_ON_EDGE()

 cv_PTLOC_OUTSIDE_RECT()

 cv_PTLOC_VERTEX()

 cv_PTR_ONLY()

 cv_QT_CHECKBOX()

 cv_QT_FONT_BLACK()

 cv_QT_FONT_BOLD()

 cv_QT_FONT_DEMIBOLD()

 cv_QT_FONT_LIGHT()

 cv_QT_FONT_NORMAL()

 cv_QT_NEW_BUTTONBAR()

 cv_QT_PUSH_BUTTON()

 cv_QT_RADIOBOX()

 cv_QT_STYLE_ITALIC()

 cv_QT_STYLE_NORMAL()

 cv_QT_STYLE_OBLIQUE()

 cv_QUAD_STRIP()

 cv_QUADS()

 cv_QUAT_ASSUME_NOT_UNIT()

 cv_QUAT_ASSUME_UNIT()

 cv_RANSAC()

 cv_RAW_OUTPUT()

 cv_RBF()

 cv_READ()

 cv_READ_ONLY()

 cv_READ_ONLY_CACHE()

 cv_READ_WRITE()

 cv_READ_WRITE_CACHE()

 cv_REAL()

 cv_RECTIFY_CYLINDRICAL()

 cv_RECTIFY_LONGLATI()

 cv_RECTIFY_PERSPECTIVE()

 cv_RECTIFY_STEREOGRAPHIC()

 cv_RECURS_FILTER()

 cv_REDUCE_AVG()

 cv_REDUCE_MAX()

 cv_REDUCE_MIN()

 cv_REDUCE_SUM2()

 cv_REDUCE_SUM()

 cv_REG_DISABLE()

 cv_REG_L1()

 cv_REG_L2()

 cv_REGULAR()

 cv_RELU()

 cv_RETINA_COLOR_BAYER()

 cv_RETINA_COLOR_DIAGONAL()

 cv_RETINA_COLOR_RANDOM()

 cv_RETR_CCOMP()

 cv_RETR_EXTERNAL()

 cv_RETR_FLOODFILL()

 cv_RETR_LIST()

 cv_RETR_TREE()

 cv_RGB()

 cv_RGBA()

 cv_RGBD_NORMALS_METHOD_FALS()

 cv_RGBD_NORMALS_METHOD_LINEMOD()

 cv_RGBD_NORMALS_METHOD_SRI()

 cv_RGBD_PLANE_METHOD_DEFAULT()

 cv_RHO()

 cv_RIGID_BODY_MOTION()

 cv_ROTATE_90_CLOCKWISE()

 cv_ROTATE_90_COUNTERCLOCKWISE()

 cv_ROTATE_180()

 cv_ROTATION()

 cv_ROW_SAMPLE()

 cv_ROWS_COUNT()

 cv_RPROP()

 cv_SAMPLING_NAPSAC()

 cv_SAMPLING_PROGRESSIVE_NAPSAC()

 cv_SAMPLING_PROSAC()

 cv_SAMPLING_UNIFORM()

 cv_SCALAR()

 cv_SCANS()

 cv_SCHARR()

 cv_SCORE_METHOD_LMEDS()

 cv_SCORE_METHOD_MAGSAC()

 cv_SCORE_METHOD_MSAC()

 cv_SCORE_METHOD_RANSAC()

 cv_SECOND_ORDER_MOMENTS()

 cv_SEQ()

 cv_SG140()

 cv_SGD()

 cv_SHARED()

 cv_SHARED_ATOMICS()

 cv_SIGMOID()

 cv_SIGMOID_SYM()

 cv_SINUS()

 cv_SIZE_256_BITS()

 cv_SIZE_512_BITS()

 cv_SIZE_ROW()

 cv_SLIC()

 cv_SLICO()

 cv_SOBEL()

 cv_SOFT_MARGIN()

 cv_SOFTNMS_GAUSSIAN()

 cv_SOFTNMS_LINEAR()

 cv_SOLVELP_LOST()

 cv_SOLVELP_MULTI()

 cv_SOLVELP_SINGLE()

 cv_SOLVELP_UNBOUNDED()

 cv_SOLVELP_UNFEASIBLE()

 cv_SOLVEPNP_AP3P()

 cv_SOLVEPNP_DLS()

 cv_SOLVEPNP_EPNP()

 cv_SOLVEPNP_IPPE()

 cv_SOLVEPNP_IPPE_SQUARE()

 cv_SOLVEPNP_ITERATIVE()

 cv_SOLVEPNP_MAX_COUNT()

 cv_SOLVEPNP_P3P()

 cv_SOLVEPNP_SQPNP()

 cv_SOLVEPNP_UPNP()

 cv_SORT_ASCENDING()

 cv_SORT_DESCENDING()

 cv_SORT_EVERY_COLUMN()

 cv_SORT_EVERY_ROW()

 cv_SparseMat_MAGIC_VAL()

 cv_START_AUTO_STEP()

 cv_START_E_STEP()

 cv_START_M_STEP()

 cv_STD_ARRAY()

 cv_STD_ARRAY_MAT()

 cv_STD_BOOL_VECTOR()

 cv_STD_VECTOR()

 cv_STD_VECTOR_CUDA_GPU_MAT()

 cv_STD_VECTOR_MAT()

 cv_STD_VECTOR_UMAT()

 cv_STD_VECTOR_VECTOR()

 cv_STR()

 cv_STRING()

 cv_StsAssert()

 cv_StsAutoTrace()

 cv_StsBackTrace()

 cv_StsBadArg()

 cv_StsBadFlag()

 cv_StsBadFunc()

 cv_StsBadMask()

 cv_StsBadMemBlock()

 cv_StsBadPoint()

 cv_StsBadSize()

 cv_StsDivByZero()

 cv_StsError()

 cv_StsFilterOffsetErr()

 cv_StsFilterStructContentErr()

 cv_StsInplaceNotSupported()

 cv_StsInternal()

 cv_StsKernelStructContentErr()

 cv_StsNoConv()

 cv_StsNoMem()

 cv_StsNotImplemented()

 cv_StsNullPtr()

 cv_StsObjectNotFound()

 cv_StsOk()

 cv_StsOutOfRange()

 cv_StsParseError()

 cv_StsUnmatchedFormats()

 cv_StsUnmatchedSizes()

 cv_StsUnsupportedFormat()

 cv_StsVecLengthErr()

 cv_SYMMETRIC_GRID()

 cv_TEBLID_SIZE_256_BITS()

 cv_TEBLID_SIZE_512_BITS()

 cv_TEMP_COPIED_UMAT()

 cv_TEMP_UMAT()

 cv_TEST_CUSTOM()

 cv_TEST_EQ()

 cv_TEST_ERROR()

 cv_TEST_GE()

 cv_TEST_GT()

 cv_TEST_LE()

 cv_TEST_LT()

 cv_TEST_NE()

 cv_Texture2D_NONE()

 cv_THINNING_GUOHALL()

 cv_THINNING_ZHANGSUEN()

 cv_THIRD_ORDER_MOMENTS()

 cv_THRESH_BINARY()

 cv_THRESH_BINARY_INV()

 cv_THRESH_MASK()

 cv_THRESH_OTSU()

 cv_THRESH_TOZERO()

 cv_THRESH_TOZERO_INV()

 cv_THRESH_TRIANGLE()

 cv_THRESH_TRUNC()

 cv_THRESHOLD()

 cv_TM_CCOEFF()

 cv_TM_CCOEFF_NORMED()

 cv_TM_CCORR()

 cv_TM_CCORR_NORMED()

 cv_TM_SQDIFF()

 cv_TM_SQDIFF_NORMED()

 cv_TRAIN_ERROR()

 cv_TRANSLATION()

 cv_TRIANGLE_FAN()

 cv_TRIANGLE_STRIP()

 cv_TRIANGLES()

 cv_TrackerKCF_CUSTOM()

 cv_TrackerKCF_GRAY()

 cv_TSDF()

 cv_TYPE_5_8()

 cv_TYPE_7_12()

 cv_TYPE_9_16()

 cv_TYPE_ACCELERATOR()

 cv_TYPE_ALL()

 cv_TYPE_CPU()

 cv_TYPE_DEFAULT()

 cv_TYPE_DGPU()

 cv_TYPE_GPU()

 cv_TYPE_IGPU()

 cv_TYPE_MASK()

 cv_UCHAR()

 cv_UINT64()

 cv_UMAT()

 cv_UMAT_USAGE_FLAGS_32BIT()

 cv_UNDEFINED()

 cv_UNIFORM()

 cv_UNKNOWN_VENDOR()

 cv_UNSIGNED_INT()

 cv_Uncompressed_NV12()

 cv_Uncompressed_UYVY()

 cv_Uncompressed_YUV420()

 cv_Uncompressed_YUYV()

 cv_Uncompressed_YV12()

 cv_UPDATE_MODEL()

 cv_UPDATE_WEIGHTS()

 cv_USAC_ACCURATE()

 cv_USAC_DEFAULT()

 cv_USAC_FAST()

 cv_USAC_FM_8PTS()

 cv_USAC_MAGSAC()

 cv_USAC_PARALLEL()

 cv_USAC_PROSAC()

 cv_USAGE_ALLOCATE_DEVICE_MEMORY()

 cv_USAGE_ALLOCATE_HOST_MEMORY()

 cv_USAGE_ALLOCATE_SHARED_MEMORY()

 cv_USAGE_DEFAULT()

 cv_USE_AVG()

 cv_USER_ALLOCATED()

 cv_VALUE_EXPECTED()

 cv_VAR_CATEGORICAL()

 cv_VAR_NUMERICAL()

 cv_VAR_ORDERED()

 cv_VC1()

 cv_VENDOR_AMD()

 cv_VENDOR_INTEL()

 cv_VENDOR_NVIDIA()

 cv_VIDEO_ACCELERATION_ANY()

 cv_VIDEO_ACCELERATION_D3D11()

 cv_VIDEO_ACCELERATION_MFX()

 cv_VIDEO_ACCELERATION_NONE()

 cv_VIDEO_ACCELERATION_VAAPI()

 cv_VIDEOWRITER_PROP_DEPTH()

 cv_VIDEOWRITER_PROP_FRAMEBYTES()

 cv_VIDEOWRITER_PROP_HW_ACCELERATION()

 cv_VIDEOWRITER_PROP_HW_ACCELERATION_USE_OPENCL()

 cv_VIDEOWRITER_PROP_HW_DEVICE()

 cv_VIDEOWRITER_PROP_IS_COLOR()

 cv_VIDEOWRITER_PROP_KEY_FLAG()

 cv_VIDEOWRITER_PROP_KEY_INTERVAL()

 cv_VIDEOWRITER_PROP_NSTRIPES()

 cv_VIDEOWRITER_PROP_QUALITY()

 cv_VIDEOWRITER_PROP_RAW_VIDEO()

 cv_VINYL18()

 cv_VideoReaderProps_PROP_NOT_SUPPORTED()

 cv_VORONOI_SEAM()

 cv_VP8()

 cv_VP9()

 cv_WARP_FILL_OUTLIERS()

 cv_WARP_INVERSE_MAP()

 cv_WARP_POLAR_LINEAR()

 cv_WARP_POLAR_LOG()

 cv_WARP_SHUFFLE_FUNCTIONS()

 cv_WAVE_CORRECT_AUTO()

 cv_WAVE_CORRECT_HORIZ()

 cv_WAVE_CORRECT_VERT()

 cv_Weave()

 cv_WINDOW_AUTOSIZE()

 cv_WINDOW_FREERATIO()

 cv_WINDOW_FULLSCREEN()

 cv_WINDOW_GUI_EXPANDED()

 cv_WINDOW_GUI_NORMAL()

 cv_WINDOW_KEEPRATIO()

 cv_WINDOW_NORMAL()

 cv_WINDOW_OPENGL()

 cv_WMF_COS()

 cv_WMF_EXP()

 cv_WMF_IV1()

 cv_WMF_IV2()

 cv_WMF_JAC()

 cv_WMF_OFF()

 cv_WND_PROP_ASPECT_RATIO()

 cv_WND_PROP_AUTOSIZE()

 cv_WND_PROP_FULLSCREEN()

 cv_WND_PROP_OPENGL()

 cv_WND_PROP_TOPMOST()

 cv_WND_PROP_VISIBLE()

 cv_WND_PROP_VSYNC()

 cv_WRITE()

 cv_WRITE_BASE64()

 cv_WRITE_COMBINED()

 cv_WRITE_ONLY()

 cv_X_ROW()

 cv_XYZ()

 cv_XYZRGB()

 cv_Y_ROW()

 cv_YUV420()

 cv_YUV422()

 cv_YUV444()

Functions

 Link to this function

 cv_8S()

 View Source

 Link to this function

 cv_8SC1()

 View Source

 Link to this function

 cv_8SC2()

 View Source

 Link to this function

 cv_8SC3()

 View Source

 Link to this function

 cv_8SC4()

 View Source

 Link to this function

 cv_8SC(cn)

 View Source

 Link to this function

 cv_8U()

 View Source

 Link to this function

 cv_8UC1()

 View Source

 Link to this function

 cv_8UC2()

 View Source

 Link to this function

 cv_8UC3()

 View Source

 Link to this function

 cv_8UC4()

 View Source

 Link to this function

 cv_8UC(cn)

 View Source

 Link to this function

 cv_16F()

 View Source

 Link to this function

 cv_16FC1()

 View Source

 Link to this function

 cv_16FC2()

 View Source

 Link to this function

 cv_16FC3()

 View Source

 Link to this function

 cv_16FC4()

 View Source

 Link to this function

 cv_16FC(cn)

 View Source

 Link to this function

 cv_16S()

 View Source

 Link to this function

 cv_16SC1()

 View Source

 Link to this function

 cv_16SC2()

 View Source

 Link to this function

 cv_16SC3()

 View Source

 Link to this function

 cv_16SC4()

 View Source

 Link to this function

 cv_16SC(cn)

 View Source

 Link to this function

 cv_16U()

 View Source

 Link to this function

 cv_16UC1()

 View Source

 Link to this function

 cv_16UC2()

 View Source

 Link to this function

 cv_16UC3()

 View Source

 Link to this function

 cv_16UC4()

 View Source

 Link to this function

 cv_16UC(cn)

 View Source

 Link to this function

 cv_32F()

 View Source

 Link to this function

 cv_32FC1()

 View Source

 Link to this function

 cv_32FC2()

 View Source

 Link to this function

 cv_32FC3()

 View Source

 Link to this function

 cv_32FC4()

 View Source

 Link to this function

 cv_32FC(cn)

 View Source

 Link to this function

 cv_32S()

 View Source

 Link to this function

 cv_32SC1()

 View Source

 Link to this function

 cv_32SC2()

 View Source

 Link to this function

 cv_32SC3()

 View Source

 Link to this function

 cv_32SC4()

 View Source

 Link to this function

 cv_32SC(cn)

 View Source

 Link to this function

 cv_64F()

 View Source

 Link to this function

 cv_64FC1()

 View Source

 Link to this function

 cv_64FC2()

 View Source

 Link to this function

 cv_64FC3()

 View Source

 Link to this function

 cv_64FC4()

 View Source

 Link to this function

 cv_64FC(cn)

 View Source

 Link to this function

 cv_ACCESS_FAST()

 View Source

 Link to this function

 cv_ACCESS_MASK()

 View Source

 Link to this function

 cv_ACCESS_READ()

 View Source

 Link to this function

 cv_ACCESS_RW()

 View Source

 Link to this function

 cv_ACCESS_WRITE()

 View Source

 Link to this function

 cv_ADAPTIVE_THRESH_GAUSSIAN_C()

 View Source

 Link to this function

 cv_ADAPTIVE_THRESH_MEAN_C()

 View Source

 Link to this function

 cv_Adaptive()

 View Source

 Link to this function

 cv_AGAST_5_8()

 View Source

 Link to this function

 cv_AGAST_7_12d()

 View Source

 Link to this function

 cv_AGAST_7_12s()

 View Source

 Link to this function

 cv_ALGORITHM()

 View Source

 Link to this function

 cv_ALPHA_ATOP()

 View Source

 Link to this function

 cv_ALPHA_ATOP_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_IN()

 View Source

 Link to this function

 cv_ALPHA_IN_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_OUT()

 View Source

 Link to this function

 cv_ALPHA_OUT_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_OVER()

 View Source

 Link to this function

 cv_ALPHA_OVER_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_PLUS()

 View Source

 Link to this function

 cv_ALPHA_PLUS_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_PREMUL()

 View Source

 Link to this function

 cv_ALPHA_XOR()

 View Source

 Link to this function

 cv_ALPHA_XOR_PREMUL()

 View Source

 Link to this function

 cv_AM_FILTER()

 View Source

 Link to this function

 cv_ANGLE_ROW()

 View Source

 Link to this function

 cv_ANNEAL()

 View Source

 Link to this function

 cv_APPEND()

 View Source

 Link to this function

 cv_ARO_0_45()

 View Source

 Link to this function

 cv_ARO_45_90()

 View Source

 Link to this function

 cv_ARO_45_135()

 View Source

 Link to this function

 cv_ARO_90_135()

 View Source

 Link to this function

 cv_ARO_315_0()

 View Source

 Link to this function

 cv_ARO_315_45()

 View Source

 Link to this function

 cv_ARO_315_135()

 View Source

 Link to this function

 cv_ARO_CTR_HOR()

 View Source

 Link to this function

 cv_ARO_CTR_VER()

 View Source

 Link to this function

 cv_ARRAY_BUFFER()

 View Source

 Link to this function

 cv_ARUCO_CCW_CENTER()

 View Source

 Link to this function

 cv_ARUCO_CW_TOP_LEFT_CORNER()

 View Source

 Link to this function

 cv_AS_IS()

 View Source

 Link to this function

 cv_ASGD()

 View Source

 Link to this function

 cv_ASYMMETRIC_GRID()

 View Source

 Link to this function

 cv_ASYNC_CLEANUP()

 View Source

 Link to this function

 cv_AUTO_STEP()

 View Source

 Link to this function

 cv_AV1()

 View Source

 Link to this function

 cv_BACKPROP()

 View Source

 Link to this function

 cv_BASE64()

 View Source

 Link to this function

 cv_BATCH()

 View Source

 Link to this function

 cv_BadAlign()

 View Source

 Link to this function

 cv_BadAlphaChannel()

 View Source

 Link to this function

 cv_BadCallBack()

 View Source

 Link to this function

 cv_BadCOI()

 View Source

 Link to this function

 cv_BadDataPtr()

 View Source

 Link to this function

 cv_BadDepth()

 View Source

 Link to this function

 cv_BadImageSize()

 View Source

 Link to this function

 cv_BadModelOrChSeq()

 View Source

 Link to this function

 cv_BadNumChannel1U()

 View Source

 Link to this function

 cv_BadNumChannels()

 View Source

 Link to this function

 cv_BadOffset()

 View Source

 Link to this function

 cv_BadOrder()

 View Source

 Link to this function

 cv_BadOrigin()

 View Source

 Link to this function

 cv_BadROISize()

 View Source

 Link to this function

 cv_BadStep()

 View Source

 Link to this function

 cv_BadTileSize()

 View Source

 Link to this function

 cv_BGR()

 View Source

 Link to this function

 cv_BGRA()

 View Source

 Link to this function

 cv_BINARIZATION_NIBLACK()

 View Source

 Link to this function

 cv_BINARIZATION_NICK()

 View Source

 Link to this function

 cv_BINARIZATION_SAUVOLA()

 View Source

 Link to this function

 cv_BINARIZATION_WOLF()

 View Source

 Link to this function

 cv_BLOCK_MEAN_HASH_MODE_0()

 View Source

 Link to this function

 cv_BLOCK_MEAN_HASH_MODE_1()

 View Source

 Link to this function

 cv_BLOCKING_SYNC()

 View Source

 Link to this function

 cv_BM3D_STEP1()

 View Source

 Link to this function

 cv_BM3D_STEP2()

 View Source

 Link to this function

 cv_BM3D_STEPALL()

 View Source

 Link to this function

 cv_BOOLEAN()

 View Source

 Link to this function

 cv_BORDER_CONSTANT()

 View Source

 Link to this function

 cv_BORDER_DEFAULT()

 View Source

 Link to this function

 cv_BORDER_ISOLATED()

 View Source

 Link to this function

 cv_BORDER_REFLECT101()

 View Source

 Link to this function

 cv_BORDER_REFLECT()

 View Source

 Link to this function

 cv_BORDER_REFLECT_101()

 View Source

 Link to this function

 cv_BORDER_REPLICATE()

 View Source

 Link to this function

 cv_BORDER_TRANSPARENT()

 View Source

 Link to this function

 cv_BORDER_WRAP()

 View Source

 Link to this function

 cv_Bob()

 View Source

 Link to this function

 cv_Boost_REAL()

 View Source

 Link to this function

 cv_BRUTE_FORCE()

 View Source

 Link to this function

 cv_BRUTEFORCE()

 View Source

 Link to this function

 cv_BRUTEFORCE_HAMMING()

 View Source

 Link to this function

 cv_BRUTEFORCE_HAMMINGLUT()

 View Source

 Link to this function

 cv_BRUTEFORCE_L1()

 View Source

 Link to this function

 cv_BRUTEFORCE_SL2()

 View Source

 Link to this function

 cv_Buffer_READ_ONLY()

 View Source

 Link to this function

 cv_Buffer_READ_WRITE()

 View Source

 Link to this function

 cv_Buffer_WRITE_ONLY()

 View Source

 Link to this function

 cv_C()

 View Source

 Link to this function

 cv_C_SVC()

 View Source

 Link to this function

 cv_CACHE_ALL()

 View Source

 Link to this function

 cv_CACHE_DST()

 View Source

 Link to this function

 cv_CACHE_SRC()

 View Source

 Link to this function

 cv_CALIB_CB_ACCURACY()

 View Source

 Link to this function

 cv_CALIB_CB_ADAPTIVE_THRESH()

 View Source

 Link to this function

 cv_CALIB_CB_ASYMMETRIC_GRID()

 View Source

 Link to this function

 cv_CALIB_CB_CLUSTERING()

 View Source

 Link to this function

 cv_CALIB_CB_EXHAUSTIVE()

 View Source

 Link to this function

 cv_CALIB_CB_FAST_CHECK()

 View Source

 Link to this function

 cv_CALIB_CB_FILTER_QUADS()

 View Source

 Link to this function

 cv_CALIB_CB_LARGER()

 View Source

 Link to this function

 cv_CALIB_CB_MARKER()

 View Source

 Link to this function

 cv_CALIB_CB_NORMALIZE_IMAGE()

 View Source

 Link to this function

 cv_CALIB_CB_PLAIN()

 View Source

 Link to this function

 cv_CALIB_CB_SYMMETRIC_GRID()

 View Source

 Link to this function

 cv_CALIB_CHECK_COND()

 View Source

 Link to this function

 cv_CALIB_FIX_ASPECT_RATIO()

 View Source

 Link to this function

 cv_CALIB_FIX_CENTER()

 View Source

 Link to this function

 cv_CALIB_FIX_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_CALIB_FIX_GAMMA()

 View Source

 Link to this function

 cv_CALIB_FIX_INTRINSIC()

 View Source

 Link to this function

 cv_CALIB_FIX_K1()

 View Source

 Link to this function

 cv_CALIB_FIX_K2()

 View Source

 Link to this function

 cv_CALIB_FIX_K3()

 View Source

 Link to this function

 cv_CALIB_FIX_K4()

 View Source

 Link to this function

 cv_CALIB_FIX_K5()

 View Source

 Link to this function

 cv_CALIB_FIX_K6()

 View Source

 Link to this function

 cv_CALIB_FIX_P1()

 View Source

 Link to this function

 cv_CALIB_FIX_P2()

 View Source

 Link to this function

 cv_CALIB_FIX_PRINCIPAL_POINT()

 View Source

 Link to this function

 cv_CALIB_FIX_S1_S2_S3_S4()

 View Source

 Link to this function

 cv_CALIB_FIX_SKEW()

 View Source

 Link to this function

 cv_CALIB_FIX_TANGENT_DIST()

 View Source

 Link to this function

 cv_CALIB_FIX_TAUX_TAUY()

 View Source

 Link to this function

 cv_CALIB_FIX_XI()

 View Source

 Link to this function

 cv_CALIB_HAND_EYE_ANDREFF()

 View Source

 Link to this function

 cv_CALIB_HAND_EYE_DANIILIDIS()

 View Source

 Link to this function

 cv_CALIB_HAND_EYE_HORAUD()

 View Source

 Link to this function

 cv_CALIB_HAND_EYE_PARK()

 View Source

 Link to this function

 cv_CALIB_HAND_EYE_TSAI()

 View Source

 Link to this function

 cv_CALIB_NINTRINSIC()

 View Source

 Link to this function

 cv_CALIB_RATIONAL_MODEL()

 View Source

 Link to this function

 cv_CALIB_RECOMPUTE_EXTRINSIC()

 View Source

 Link to this function

 cv_CALIB_ROBOT_WORLD_HAND_EYE_LI()

 View Source

 Link to this function

 cv_CALIB_ROBOT_WORLD_HAND_EYE_SHAH()

 View Source

 Link to this function

 cv_CALIB_SAME_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_CALIB_THIN_PRISM_MODEL()

 View Source

 Link to this function

 cv_CALIB_TILTED_MODEL()

 View Source

 Link to this function

 cv_CALIB_USE_EXTRINSIC_GUESS()

 View Source

 Link to this function

 cv_CALIB_USE_GUESS()

 View Source

 Link to this function

 cv_CALIB_USE_INTRINSIC_GUESS()

 View Source

 Link to this function

 cv_CALIB_USE_LU()

 View Source

 Link to this function

 cv_CALIB_USE_QR()

 View Source

 Link to this function

 cv_CALIB_ZERO_DISPARITY()

 View Source

 Link to this function

 cv_CALIB_ZERO_TANGENT_DIST()

 View Source

 Link to this function

 cv_CAP_ANDROID()

 View Source

 Link to this function

 cv_CAP_ANY()

 View Source

 Link to this function

 cv_CAP_ARAVIS()

 View Source

 Link to this function

 cv_CAP_AVFOUNDATION()

 View Source

 Link to this function

 cv_CAP_CMU1394()

 View Source

 Link to this function

 cv_CAP_DC1394()

 View Source

 Link to this function

 cv_CAP_DSHOW()

 View Source

 Link to this function

 cv_CAP_FFMPEG()

 View Source

 Link to this function

 cv_CAP_FIREWARE()

 View Source

 Link to this function

 cv_CAP_FIREWIRE()

 View Source

 Link to this function

 cv_CAP_GIGANETIX()

 View Source

 Link to this function

 cv_CAP_GPHOTO2()

 View Source

 Link to this function

 cv_CAP_GSTREAMER()

 View Source

 Link to this function

 cv_CAP_IEEE1394()

 View Source

 Link to this function

 cv_CAP_IMAGES()

 View Source

 Link to this function

 cv_CAP_INTEL_MFX()

 View Source

 Link to this function

 cv_CAP_INTELPERC()

 View Source

 Link to this function

 cv_CAP_INTELPERC_DEPTH_GENERATOR()

 View Source

 Link to this function

 cv_CAP_INTELPERC_DEPTH_MAP()

 View Source

 Link to this function

 cv_CAP_INTELPERC_GENERATORS_MASK()

 View Source

 Link to this function

 cv_CAP_INTELPERC_IMAGE()

 View Source

 Link to this function

 cv_CAP_INTELPERC_IMAGE_GENERATOR()

 View Source

 Link to this function

 cv_CAP_INTELPERC_IR_GENERATOR()

 View Source

 Link to this function

 cv_CAP_INTELPERC_IR_MAP()

 View Source

 Link to this function

 cv_CAP_INTELPERC_UVDEPTH_MAP()

 View Source

 Link to this function

 cv_CAP_MSMF()

 View Source

 Link to this function

 cv_CAP_OBSENSOR()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_BGR_IMAGE()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_DEPTH_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_DEPTH_MAP()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_GENERATORS_MASK()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_IMAGE_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_IR_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OBSENSOR_IR_IMAGE()

 View Source

 Link to this function

 cv_CAP_OPENCV_MJPEG()

 View Source

 Link to this function

 cv_CAP_OPENNI2()

 View Source

 Link to this function

 cv_CAP_OPENNI2_ASTRA()

 View Source

 Link to this function

 cv_CAP_OPENNI2_ASUS()

 View Source

 Link to this function

 cv_CAP_OPENNI()

 View Source

 Link to this function

 cv_CAP_OPENNI_ASUS()

 View Source

 Link to this function

 cv_CAP_OPENNI_BGR_IMAGE()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR_BASELINE()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR_PRESENT()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON()

 View Source

 Link to this function

 cv_CAP_OPENNI_DEPTH_MAP()

 View Source

 Link to this function

 cv_CAP_OPENNI_DISPARITY_MAP()

 View Source

 Link to this function

 cv_CAP_OPENNI_DISPARITY_MAP_32F()

 View Source

 Link to this function

 cv_CAP_OPENNI_GENERATORS_MASK()

 View Source

 Link to this function

 cv_CAP_OPENNI_GRAY_IMAGE()

 View Source

 Link to this function

 cv_CAP_OPENNI_IMAGE_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE()

 View Source

 Link to this function

 cv_CAP_OPENNI_IMAGE_GENERATOR_PRESENT()

 View Source

 Link to this function

 cv_CAP_OPENNI_IR_GENERATOR()

 View Source

 Link to this function

 cv_CAP_OPENNI_IR_GENERATOR_PRESENT()

 View Source

 Link to this function

 cv_CAP_OPENNI_IR_IMAGE()

 View Source

 Link to this function

 cv_CAP_OPENNI_POINT_CLOUD_MAP()

 View Source

 Link to this function

 cv_CAP_OPENNI_QVGA_30HZ()

 View Source

 Link to this function

 cv_CAP_OPENNI_QVGA_60HZ()

 View Source

 Link to this function

 cv_CAP_OPENNI_SXGA_15HZ()

 View Source

 Link to this function

 cv_CAP_OPENNI_SXGA_30HZ()

 View Source

 Link to this function

 cv_CAP_OPENNI_VALID_DEPTH_MASK()

 View Source

 Link to this function

 cv_CAP_OPENNI_VGA_30HZ()

 View Source

 Link to this function

 cv_CAP_PROP_APERTURE()

 View Source

 Link to this function

 cv_CAP_PROP_ARAVIS_AUTOTRIGGER()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_BASE_INDEX()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_DATA_DEPTH()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_POS()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_SAMPLES_PER_SECOND()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_SHIFT_NSEC()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_STREAM()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_SYNCHRONIZE()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_TOTAL_CHANNELS()

 View Source

 Link to this function

 cv_CAP_PROP_AUDIO_TOTAL_STREAMS()

 View Source

 Link to this function

 cv_CAP_PROP_AUTO_EXPOSURE()

 View Source

 Link to this function

 cv_CAP_PROP_AUTO_WB()

 View Source

 Link to this function

 cv_CAP_PROP_AUTOFOCUS()

 View Source

 Link to this function

 cv_CAP_PROP_BACKEND()

 View Source

 Link to this function

 cv_CAP_PROP_BACKLIGHT()

 View Source

 Link to this function

 cv_CAP_PROP_BITRATE()

 View Source

 Link to this function

 cv_CAP_PROP_BRIGHTNESS()

 View Source

 Link to this function

 cv_CAP_PROP_BUFFERSIZE()

 View Source

 Link to this function

 cv_CAP_PROP_CHANNEL()

 View Source

 Link to this function

 cv_CAP_PROP_CODEC_EXTRADATA_INDEX()

 View Source

 Link to this function

 cv_CAP_PROP_CODEC_PIXEL_FORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_CONTRAST()

 View Source

 Link to this function

 cv_CAP_PROP_CONVERT_RGB()

 View Source

 Link to this function

 cv_CAP_PROP_DC1394_MAX()

 View Source

 Link to this function

 cv_CAP_PROP_DC1394_MODE_AUTO()

 View Source

 Link to this function

 cv_CAP_PROP_DC1394_MODE_MANUAL()

 View Source

 Link to this function

 cv_CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO()

 View Source

 Link to this function

 cv_CAP_PROP_DC1394_OFF()

 View Source

 Link to this function

 cv_CAP_PROP_EXPOSURE()

 View Source

 Link to this function

 cv_CAP_PROP_EXPOSUREPROGRAM()

 View Source

 Link to this function

 cv_CAP_PROP_FOCUS()

 View Source

 Link to this function

 cv_CAP_PROP_FORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_FOURCC()

 View Source

 Link to this function

 cv_CAP_PROP_FPS()

 View Source

 Link to this function

 cv_CAP_PROP_FRAME_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_FRAME_HEIGHT()

 View Source

 Link to this function

 cv_CAP_PROP_FRAME_TYPE()

 View Source

 Link to this function

 cv_CAP_PROP_FRAME_WIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_GAIN()

 View Source

 Link to this function

 cv_CAP_PROP_GAMMA()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_HEIGH_MAX()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_OFFSET_X()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_OFFSET_Y()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_SENS_HEIGH()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_SENS_WIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_GIGA_FRAME_WIDTH_MAX()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_COLLECT_MSGS()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_FLUSH_MSGS()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_PREVIEW()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_RELOAD_CONFIG()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE()

 View Source

 Link to this function

 cv_CAP_PROP_GPHOTO2_WIDGET_ENUMERATE()

 View Source

 Link to this function

 cv_CAP_PROP_GSTREAMER_QUEUE_LENGTH()

 View Source

 Link to this function

 cv_CAP_PROP_GUID()

 View Source

 Link to this function

 cv_CAP_PROP_HUE()

 View Source

 Link to this function

 cv_CAP_PROP_HW_ACCELERATION()

 View Source

 Link to this function

 cv_CAP_PROP_HW_ACCELERATION_USE_OPENCL()

 View Source

 Link to this function

 cv_CAP_PROP_HW_DEVICE()

 View Source

 Link to this function

 cv_CAP_PROP_IMAGES_BASE()

 View Source

 Link to this function

 cv_CAP_PROP_IMAGES_LAST()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_PROFILE_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_INTELPERC_PROFILE_IDX()

 View Source

 Link to this function

 cv_CAP_PROP_IOS_DEVICE_EXPOSURE()

 View Source

 Link to this function

 cv_CAP_PROP_IOS_DEVICE_FLASH()

 View Source

 Link to this function

 cv_CAP_PROP_IOS_DEVICE_FOCUS()

 View Source

 Link to this function

 cv_CAP_PROP_IOS_DEVICE_TORCH()

 View Source

 Link to this function

 cv_CAP_PROP_IOS_DEVICE_WHITEBALANCE()

 View Source

 Link to this function

 cv_CAP_PROP_IRIS()

 View Source

 Link to this function

 cv_CAP_PROP_ISO_SPEED()

 View Source

 Link to this function

 cv_CAP_PROP_LRF_HAS_KEY_FRAME()

 View Source

 Link to this function

 cv_CAP_PROP_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_MONOCHROME()

 View Source

 Link to this function

 cv_CAP_PROP_N_THREADS()

 View Source

 Link to this function

 cv_CAP_PROP_OBSENSOR_INTRINSIC_CX()

 View Source

 Link to this function

 cv_CAP_PROP_OBSENSOR_INTRINSIC_CY()

 View Source

 Link to this function

 cv_CAP_PROP_OBSENSOR_INTRINSIC_FX()

 View Source

 Link to this function

 cv_CAP_PROP_OBSENSOR_INTRINSIC_FY()

 View Source

 Link to this function

 cv_CAP_PROP_OPEN_TIMEOUT_MSEC()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI2_MIRROR()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI2_SYNC()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_APPROX_FRAME_SYNC()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_BASELINE()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_CIRCLE_BUFFER()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_FRAME_MAX_DEPTH()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_GENERATOR_PRESENT()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_MAX_BUFFER_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_MAX_TIME_DURATION()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_OUTPUT_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_REGISTRATION()

 View Source

 Link to this function

 cv_CAP_PROP_OPENNI_REGISTRATION_ON()

 View Source

 Link to this function

 cv_CAP_PROP_ORIENTATION_AUTO()

 View Source

 Link to this function

 cv_CAP_PROP_ORIENTATION_META()

 View Source

 Link to this function

 cv_CAP_PROP_PAN()

 View Source

 Link to this function

 cv_CAP_PROP_POS_AVI_RATIO()

 View Source

 Link to this function

 cv_CAP_PROP_POS_FRAMES()

 View Source

 Link to this function

 cv_CAP_PROP_POS_MSEC()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_BINNINGX()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_BINNINGY()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_DECIMATIONHORIZONTAL()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_DECIMATIONVERTICAL()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_MULTICASTIP()

 View Source

 Link to this function

 cv_CAP_PROP_PVAPI_PIXELFORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_READ_TIMEOUT_MSEC()

 View Source

 Link to this function

 cv_CAP_PROP_RECTIFICATION()

 View Source

 Link to this function

 cv_CAP_PROP_ROLL()

 View Source

 Link to this function

 cv_CAP_PROP_SAR_DEN()

 View Source

 Link to this function

 cv_CAP_PROP_SAR_NUM()

 View Source

 Link to this function

 cv_CAP_PROP_SATURATION()

 View Source

 Link to this function

 cv_CAP_PROP_SETTINGS()

 View Source

 Link to this function

 cv_CAP_PROP_SHARPNESS()

 View Source

 Link to this function

 cv_CAP_PROP_SPEED()

 View Source

 Link to this function

 cv_CAP_PROP_STREAM_OPEN_TIME_USEC()

 View Source

 Link to this function

 cv_CAP_PROP_TEMPERATURE()

 View Source

 Link to this function

 cv_CAP_PROP_TILT()

 View Source

 Link to this function

 cv_CAP_PROP_TRIGGER()

 View Source

 Link to this function

 cv_CAP_PROP_TRIGGER_DELAY()

 View Source

 Link to this function

 cv_CAP_PROP_VIDEO_STREAM()

 View Source

 Link to this function

 cv_CAP_PROP_VIDEO_TOTAL_CHANNELS()

 View Source

 Link to this function

 cv_CAP_PROP_VIEWFINDER()

 View Source

 Link to this function

 cv_CAP_PROP_WB_TEMPERATURE()

 View Source

 Link to this function

 cv_CAP_PROP_WHITE_BALANCE_BLUE_U()

 View Source

 Link to this function

 cv_CAP_PROP_WHITE_BALANCE_RED_V()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_BUFFER_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_FRAME_BURST_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_TIMING_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AE_MAX_LIMIT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG_LEVEL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG_ROI_HEIGHT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG_ROI_OFFSET_X()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG_ROI_OFFSET_Y()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AEAG_ROI_WIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AG_MAX_LIMIT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_APPLY_CMS()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AUTO_WB()

 View Source

 Link to this function

 cv_CAP_PROP_XI_AVAILABLE_BANDWIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BINNING_HORIZONTAL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BINNING_PATTERN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BINNING_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BINNING_VERTICAL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BPC()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BUFFER_POLICY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_BUFFERS_QUEUE_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_00()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_01()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_02()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_03()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_10()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_11()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_12()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_13()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_20()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_21()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_22()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_23()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_30()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_31()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_32()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CC_MATRIX_33()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CHIP_TEMP()

 View Source

 Link to this function

 cv_CAP_PROP_XI_CMS()

 View Source

 Link to this function

 cv_CAP_PROP_XI_COLOR_FILTER_ARRAY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_COLUMN_FPN_CORRECTION()

 View Source

 Link to this function

 cv_CAP_PROP_XI_COOLING()

 View Source

 Link to this function

 cv_CAP_PROP_XI_COUNTER_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_COUNTER_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DATA_FORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEBOUNCE_EN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEBOUNCE_POL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEBOUNCE_T0()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEBOUNCE_T1()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEBUG_LEVEL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DECIMATION_HORIZONTAL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DECIMATION_PATTERN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DECIMATION_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DECIMATION_VERTICAL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEFAULT_CC_MATRIX()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEVICE_MODEL_ID()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEVICE_RESET()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DEVICE_SN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DOWNSAMPLING()

 View Source

 Link to this function

 cv_CAP_PROP_XI_DOWNSAMPLING_TYPE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_EXP_PRIORITY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_EXPOSURE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_EXPOSURE_BURST_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_FFS_ACCESS_KEY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_FFS_FILE_ID()

 View Source

 Link to this function

 cv_CAP_PROP_XI_FFS_FILE_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_FRAMERATE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_FREE_FFS_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GAIN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GAIN_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GAMMAC()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GAMMAY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GPI_LEVEL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GPI_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GPI_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GPO_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_GPO_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HDR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HDR_KNEEPOINT_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HDR_T1()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HDR_T2()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HEIGHT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HOUS_BACK_SIDE_TEMP()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HOUS_TEMP()

 View Source

 Link to this function

 cv_CAP_PROP_XI_HW_REVISION()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_BLACK_LEVEL()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_DATA_FORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_IS_COLOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IMAGE_PAYLOAD_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IS_COOLED()

 View Source

 Link to this function

 cv_CAP_PROP_XI_IS_DEVICE_EXIST()

 View Source

 Link to this function

 cv_CAP_PROP_XI_KNEEPOINT1()

 View Source

 Link to this function

 cv_CAP_PROP_XI_KNEEPOINT2()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LED_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LED_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_APERTURE_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FEATURE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FEATURE_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FOCUS_DISTANCE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FOCUS_MOVE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LENS_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LIMIT_BANDWIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LUT_EN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LUT_INDEX()

 View Source

 Link to this function

 cv_CAP_PROP_XI_LUT_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_MANUAL_WB()

 View Source

 Link to this function

 cv_CAP_PROP_XI_OFFSET_X()

 View Source

 Link to this function

 cv_CAP_PROP_XI_OFFSET_Y()

 View Source

 Link to this function

 cv_CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_OUTPUT_DATA_PACKING()

 View Source

 Link to this function

 cv_CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_RECENT_FRAME()

 View Source

 Link to this function

 cv_CAP_PROP_XI_REGION_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_REGION_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_ROW_FPN_CORRECTION()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_BOARD_TEMP()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_FEATURE_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_FEATURE_VALUE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SENSOR_TAPS()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SHARPNESS()

 View Source

 Link to this function

 cv_CAP_PROP_XI_SHUTTER_TYPE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TARGET_TEMP()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TEST_PATTERN()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TIMEOUT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TRG_DELAY()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TRG_SELECTOR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TRG_SOFTWARE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TRG_SOURCE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TS_RST_MODE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_TS_RST_SOURCE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_USED_FFS_SIZE()

 View Source

 Link to this function

 cv_CAP_PROP_XI_WB_KB()

 View Source

 Link to this function

 cv_CAP_PROP_XI_WB_KG()

 View Source

 Link to this function

 cv_CAP_PROP_XI_WB_KR()

 View Source

 Link to this function

 cv_CAP_PROP_XI_WIDTH()

 View Source

 Link to this function

 cv_CAP_PROP_ZOOM()

 View Source

 Link to this function

 cv_CAP_PVAPI()

 View Source

 Link to this function

 cv_CAP_PVAPI_DECIMATION_2OUTOF4()

 View Source

 Link to this function

 cv_CAP_PVAPI_DECIMATION_2OUTOF8()

 View Source

 Link to this function

 cv_CAP_PVAPI_DECIMATION_2OUTOF16()

 View Source

 Link to this function

 cv_CAP_PVAPI_DECIMATION_OFF()

 View Source

 Link to this function

 cv_CAP_PVAPI_FSTRIGMODE_FIXEDRATE()

 View Source

 Link to this function

 cv_CAP_PVAPI_FSTRIGMODE_FREERUN()

 View Source

 Link to this function

 cv_CAP_PVAPI_FSTRIGMODE_SOFTWARE()

 View Source

 Link to this function

 cv_CAP_PVAPI_FSTRIGMODE_SYNCIN1()

 View Source

 Link to this function

 cv_CAP_PVAPI_FSTRIGMODE_SYNCIN2()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_BAYER8()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_BAYER16()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_BGR24()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_BGRA32()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_MONO8()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_MONO16()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_RGB24()

 View Source

 Link to this function

 cv_CAP_PVAPI_PIXELFORMAT_RGBA32()

 View Source

 Link to this function

 cv_CAP_QT()

 View Source

 Link to this function

 cv_CAP_REALSENSE()

 View Source

 Link to this function

 cv_CAP_UEYE()

 View Source

 Link to this function

 cv_CAP_UNICAP()

 View Source

 Link to this function

 cv_CAP_V4L2()

 View Source

 Link to this function

 cv_CAP_V4L()

 View Source

 Link to this function

 cv_CAP_VFW()

 View Source

 Link to this function

 cv_CAP_WINRT()

 View Source

 Link to this function

 cv_CAP_XIAPI()

 View Source

 Link to this function

 cv_CAP_XINE()

 View Source

 Link to this function

 cv_CASCADE_DO_CANNY_PRUNING()

 View Source

 Link to this function

 cv_CASCADE_DO_ROUGH_SEARCH()

 View Source

 Link to this function

 cv_CASCADE_FIND_BIGGEST_OBJECT()

 View Source

 Link to this function

 cv_CASCADE_SCALE_IMAGE()

 View Source

 Link to this function

 cv_CC_STAT_AREA()

 View Source

 Link to this function

 cv_CC_STAT_HEIGHT()

 View Source

 Link to this function

 cv_CC_STAT_LEFT()

 View Source

 Link to this function

 cv_CC_STAT_MAX()

 View Source

 Link to this function

 cv_CC_STAT_TOP()

 View Source

 Link to this function

 cv_CC_STAT_WIDTH()

 View Source

 Link to this function

 cv_CCL_BBDT()

 View Source

 Link to this function

 cv_CCL_BKE()

 View Source

 Link to this function

 cv_CCL_BOLELLI()

 View Source

 Link to this function

 cv_CCL_DEFAULT()

 View Source

 Link to this function

 cv_CCL_GRANA()

 View Source

 Link to this function

 cv_CCL_SAUF()

 View Source

 Link to this function

 cv_CCL_SPAGHETTI()

 View Source

 Link to this function

 cv_CCL_WU()

 View Source

 Link to this function

 cv_CCM_3x3()

 View Source

 Link to this function

 cv_CCM_4x3()

 View Source

 Link to this function

 cv_CHAIN_APPROX_NONE()

 View Source

 Link to this function

 cv_CHAIN_APPROX_SIMPLE()

 View Source

 Link to this function

 cv_CHAIN_APPROX_TC89_KCOS()

 View Source

 Link to this function

 cv_CHAIN_APPROX_TC89_L1()

 View Source

 Link to this function

 cv_CHANNELS()

 View Source

 Link to this function

 cv_CHANNELS_BLOCKS()

 View Source

 Link to this function

 cv_CHI2()

 View Source

 Link to this function

 cv_CMP_EQ()

 View Source

 Link to this function

 cv_CMP_GE()

 View Source

 Link to this function

 cv_CMP_GT()

 View Source

 Link to this function

 cv_CMP_LE()

 View Source

 Link to this function

 cv_CMP_LT()

 View Source

 Link to this function

 cv_CMP_NE()

 View Source

 Link to this function

 cv_CN()

 View Source

 Link to this function

 cv_COEF()

 View Source

 Link to this function

 cv_COL_SAMPLE()

 View Source

 Link to this function

 cv_COLOR()

 View Source

 Link to this function

 cv_COLOR_BayerBG2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerBG2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerBG2BGR_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerBG2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerBG2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerBG2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerBG2GRAY_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerBG2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerBG2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerBG2RGB_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerBG2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerBG2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerBGGR2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerGB2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerGB2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGB2BGR_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGB2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGB2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerGB2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerGB2GRAY_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGB2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerGB2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGB2RGB_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGB2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGB2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGBRG2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerGR2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerGR2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGR2BGR_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGR2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGR2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerGR2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerGR2GRAY_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGR2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerGR2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGR2RGB_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerGR2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGR2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerGRBG2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerRG2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerRG2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerRG2BGR_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerRG2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerRG2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerRG2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerRG2GRAY_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerRG2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerRG2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerRG2RGB_MHT()

 View Source

 Link to this function

 cv_COLOR_BayerRG2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerRG2RGBA()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2BGR()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2BGR_EA()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2BGR_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2BGRA()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2GRAY()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2RGB()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2RGB_EA()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2RGB_VNG()

 View Source

 Link to this function

 cv_COLOR_BayerRGGB2RGBA()

 View Source

 Link to this function

 cv_COLOR_BGR2BGR555()

 View Source

 Link to this function

 cv_COLOR_BGR2BGR565()

 View Source

 Link to this function

 cv_COLOR_BGR2BGRA()

 View Source

 Link to this function

 cv_COLOR_BGR2GRAY()

 View Source

 Link to this function

 cv_COLOR_BGR2HLS()

 View Source

 Link to this function

 cv_COLOR_BGR2HLS_FULL()

 View Source

 Link to this function

 cv_COLOR_BGR2HSV()

 View Source

 Link to this function

 cv_COLOR_BGR2HSV_FULL()

 View Source

 Link to this function

 cv_COLOR_BGR2Lab()

 View Source

 Link to this function

 cv_COLOR_BGR2Luv()

 View Source

 Link to this function

 cv_COLOR_BGR2RGB()

 View Source

 Link to this function

 cv_COLOR_BGR2RGBA()

 View Source

 Link to this function

 cv_COLOR_BGR2XYZ()

 View Source

 Link to this function

 cv_COLOR_BGR2YCrCb()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_I420()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_IYUV()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_UYNV()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_UYVY()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_Y422()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_YUNV()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_YUY2()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_YUYV()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_YV12()

 View Source

 Link to this function

 cv_COLOR_BGR2YUV_YVYU()

 View Source

 Link to this function

 cv_COLOR_BGR5552BGR()

 View Source

 Link to this function

 cv_COLOR_BGR5552BGRA()

 View Source

 Link to this function

 cv_COLOR_BGR5552GRAY()

 View Source

 Link to this function

 cv_COLOR_BGR5552RGB()

 View Source

 Link to this function

 cv_COLOR_BGR5552RGBA()

 View Source

 Link to this function

 cv_COLOR_BGR5652BGR()

 View Source

 Link to this function

 cv_COLOR_BGR5652BGRA()

 View Source

 Link to this function

 cv_COLOR_BGR5652GRAY()

 View Source

 Link to this function

 cv_COLOR_BGR5652RGB()

 View Source

 Link to this function

 cv_COLOR_BGR5652RGBA()

 View Source

 Link to this function

 cv_COLOR_BGRA2BGR555()

 View Source

 Link to this function

 cv_COLOR_BGRA2BGR565()

 View Source

 Link to this function

 cv_COLOR_BGRA2BGR()

 View Source

 Link to this function

 cv_COLOR_BGRA2GRAY()

 View Source

 Link to this function

 cv_COLOR_BGRA2RGB()

 View Source

 Link to this function

 cv_COLOR_BGRA2RGBA()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_I420()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_IYUV()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_UYNV()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_UYVY()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_Y422()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_YUNV()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_YUY2()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_YUYV()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_YV12()

 View Source

 Link to this function

 cv_COLOR_BGRA2YUV_YVYU()

 View Source

 Link to this function

 cv_COLOR_COLORCVT_MAX()

 View Source

 Link to this function

 cv_COLOR_GRAD()

 View Source

 Link to this function

 cv_COLOR_GRAY2BGR555()

 View Source

 Link to this function

 cv_COLOR_GRAY2BGR565()

 View Source

 Link to this function

 cv_COLOR_GRAY2BGR()

 View Source

 Link to this function

 cv_COLOR_GRAY2BGRA()

 View Source

 Link to this function

 cv_COLOR_GRAY2RGB()

 View Source

 Link to this function

 cv_COLOR_GRAY2RGBA()

 View Source

 Link to this function

 cv_COLOR_HLS2BGR()

 View Source

 Link to this function

 cv_COLOR_HLS2BGR_FULL()

 View Source

 Link to this function

 cv_COLOR_HLS2RGB()

 View Source

 Link to this function

 cv_COLOR_HLS2RGB_FULL()

 View Source

 Link to this function

 cv_COLOR_HSV2BGR()

 View Source

 Link to this function

 cv_COLOR_HSV2BGR_FULL()

 View Source

 Link to this function

 cv_COLOR_HSV2RGB()

 View Source

 Link to this function

 cv_COLOR_HSV2RGB_FULL()

 View Source

 Link to this function

 cv_COLOR_Lab2BGR()

 View Source

 Link to this function

 cv_COLOR_Lab2LBGR()

 View Source

 Link to this function

 cv_COLOR_Lab2LRGB()

 View Source

 Link to this function

 cv_COLOR_Lab2RGB()

 View Source

 Link to this function

 cv_COLOR_LBGR2Lab()

 View Source

 Link to this function

 cv_COLOR_LBGR2Luv()

 View Source

 Link to this function

 cv_COLOR_LRGB2Lab()

 View Source

 Link to this function

 cv_COLOR_LRGB2Luv()

 View Source

 Link to this function

 cv_COLOR_Luv2BGR()

 View Source

 Link to this function

 cv_COLOR_Luv2LBGR()

 View Source

 Link to this function

 cv_COLOR_Luv2LRGB()

 View Source

 Link to this function

 cv_COLOR_Luv2RGB()

 View Source

 Link to this function

 cv_COLOR_mRGBA2RGBA()

 View Source

 Link to this function

 cv_COLOR_RGB2BGR555()

 View Source

 Link to this function

 cv_COLOR_RGB2BGR565()

 View Source

 Link to this function

 cv_COLOR_RGB2BGR()

 View Source

 Link to this function

 cv_COLOR_RGB2BGRA()

 View Source

 Link to this function

 cv_COLOR_RGB2GRAY()

 View Source

 Link to this function

 cv_COLOR_RGB2HLS()

 View Source

 Link to this function

 cv_COLOR_RGB2HLS_FULL()

 View Source

 Link to this function

 cv_COLOR_RGB2HSV()

 View Source

 Link to this function

 cv_COLOR_RGB2HSV_FULL()

 View Source

 Link to this function

 cv_COLOR_RGB2Lab()

 View Source

 Link to this function

 cv_COLOR_RGB2Luv()

 View Source

 Link to this function

 cv_COLOR_RGB2RGBA()

 View Source

 Link to this function

 cv_COLOR_RGB2XYZ()

 View Source

 Link to this function

 cv_COLOR_RGB2YCrCb()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_I420()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_IYUV()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_UYNV()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_UYVY()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_Y422()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_YUNV()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_YUY2()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_YUYV()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_YV12()

 View Source

 Link to this function

 cv_COLOR_RGB2YUV_YVYU()

 View Source

 Link to this function

 cv_COLOR_RGBA2BGR555()

 View Source

 Link to this function

 cv_COLOR_RGBA2BGR565()

 View Source

 Link to this function

 cv_COLOR_RGBA2BGR()

 View Source

 Link to this function

 cv_COLOR_RGBA2BGRA()

 View Source

 Link to this function

 cv_COLOR_RGBA2GRAY()

 View Source

 Link to this function

 cv_COLOR_RGBA2mRGBA()

 View Source

 Link to this function

 cv_COLOR_RGBA2RGB()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_I420()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_IYUV()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_UYNV()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_UYVY()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_Y422()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_YUNV()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_YUY2()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_YUYV()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_YV12()

 View Source

 Link to this function

 cv_COLOR_RGBA2YUV_YVYU()

 View Source

 Link to this function

 cv_COLOR_SPACE_AdobeRGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_AdobeRGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_AppleRGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_AppleRGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_DCI_P3_RGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_DCI_P3_RGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_A_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_A_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D50_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D50_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D55_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D55_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D65_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D65_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D75_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_D75_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_E_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_Lab_E_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_ProPhotoRGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_ProPhotoRGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_REC_709_RGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_REC_709_RGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_REC_2020_RGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_REC_2020_RGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_sRGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_sRGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_WideGamutRGB()

 View Source

 Link to this function

 cv_COLOR_SPACE_WideGamutRGBL()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_A_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_A_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D50_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D50_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D55_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D55_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D65_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D65_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D75_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_D75_10()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_E_2()

 View Source

 Link to this function

 cv_COLOR_SPACE_XYZ_E_10()

 View Source

 Link to this function

 cv_COLOR_XYZ2BGR()

 View Source

 Link to this function

 cv_COLOR_XYZ2RGB()

 View Source

 Link to this function

 cv_COLOR_YCrCb2BGR()

 View Source

 Link to this function

 cv_COLOR_YCrCb2RGB()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_I420()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_IYUV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_NV12()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_NV21()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_UYNV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_UYVY()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_Y422()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_YUNV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_YUY2()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_YUYV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_YV12()

 View Source

 Link to this function

 cv_COLOR_YUV2BGR_YVYU()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_I420()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_IYUV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_NV12()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_NV21()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_UYNV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_UYVY()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_Y422()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_YUNV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_YUY2()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_YUYV()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_YV12()

 View Source

 Link to this function

 cv_COLOR_YUV2BGRA_YVYU()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_420()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_I420()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_IYUV()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_NV12()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_NV21()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_UYNV()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_UYVY()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_Y422()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_YUNV()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_YUY2()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_YUYV()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_YV12()

 View Source

 Link to this function

 cv_COLOR_YUV2GRAY_YVYU()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_I420()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_IYUV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_NV12()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_NV21()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_UYNV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_UYVY()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_Y422()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_YUNV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_YUY2()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_YUYV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_YV12()

 View Source

 Link to this function

 cv_COLOR_YUV2RGB_YVYU()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_I420()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_IYUV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_NV12()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_NV21()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_UYNV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_UYVY()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_Y422()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_YUNV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_YUY2()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_YUYV()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_YV12()

 View Source

 Link to this function

 cv_COLOR_YUV2RGBA_YVYU()

 View Source

 Link to this function

 cv_COLOR_YUV420p2BGR()

 View Source

 Link to this function

 cv_COLOR_YUV420p2BGRA()

 View Source

 Link to this function

 cv_COLOR_YUV420p2GRAY()

 View Source

 Link to this function

 cv_COLOR_YUV420p2RGB()

 View Source

 Link to this function

 cv_COLOR_YUV420p2RGBA()

 View Source

 Link to this function

 cv_COLOR_YUV420sp2BGR()

 View Source

 Link to this function

 cv_COLOR_YUV420sp2BGRA()

 View Source

 Link to this function

 cv_COLOR_YUV420sp2GRAY()

 View Source

 Link to this function

 cv_COLOR_YUV420sp2RGB()

 View Source

 Link to this function

 cv_COLOR_YUV420sp2RGBA()

 View Source

 Link to this function

 cv_COLORCHECKER_DigitalSG()

 View Source

 Link to this function

 cv_COLORCHECKER_Macbeth()

 View Source

 Link to this function

 cv_COLORCHECKER_Vinyl()

 View Source

 Link to this function

 cv_COLOREDTSDF()

 View Source

 Link to this function

 cv_COLORMAP_AUTUMN()

 View Source

 Link to this function

 cv_COLORMAP_BONE()

 View Source

 Link to this function

 cv_COLORMAP_CIVIDIS()

 View Source

 Link to this function

 cv_COLORMAP_COOL()

 View Source

 Link to this function

 cv_COLORMAP_DEEPGREEN()

 View Source

 Link to this function

 cv_COLORMAP_HOT()

 View Source

 Link to this function

 cv_COLORMAP_HSV()

 View Source

 Link to this function

 cv_COLORMAP_INFERNO()

 View Source

 Link to this function

 cv_COLORMAP_JET()

 View Source

 Link to this function

 cv_COLORMAP_MAGMA()

 View Source

 Link to this function

 cv_COLORMAP_OCEAN()

 View Source

 Link to this function

 cv_COLORMAP_PARULA()

 View Source

 Link to this function

 cv_COLORMAP_PINK()

 View Source

 Link to this function

 cv_COLORMAP_PLASMA()

 View Source

 Link to this function

 cv_COLORMAP_RAINBOW()

 View Source

 Link to this function

 cv_COLORMAP_SPRING()

 View Source

 Link to this function

 cv_COLORMAP_SUMMER()

 View Source

 Link to this function

 cv_COLORMAP_TURBO()

 View Source

 Link to this function

 cv_COLORMAP_TWILIGHT()

 View Source

 Link to this function

 cv_COLORMAP_TWILIGHT_SHIFTED()

 View Source

 Link to this function

 cv_COLORMAP_VIRIDIS()

 View Source

 Link to this function

 cv_COLORMAP_WINTER()

 View Source

 Link to this function

 cv_COMPRESSED_INPUT()

 View Source

 Link to this function

 cv_CONSTANT()

 View Source

 Link to this function

 cv_CONTOURS_MATCH_I1()

 View Source

 Link to this function

 cv_CONTOURS_MATCH_I2()

 View Source

 Link to this function

 cv_CONTOURS_MATCH_I3()

 View Source

 Link to this function

 cv_COPY_ON_MAP()

 View Source

 Link to this function

 cv_CORNER_REFINE_APRILTAG()

 View Source

 Link to this function

 cv_CORNER_REFINE_CONTOUR()

 View Source

 Link to this function

 cv_CORNER_REFINE_NONE()

 View Source

 Link to this function

 cv_CORNER_REFINE_SUBPIX()

 View Source

 Link to this function

 cv_CORRECT_LEVEL_H()

 View Source

 Link to this function

 cv_CORRECT_LEVEL_L()

 View Source

 Link to this function

 cv_CORRECT_LEVEL_M()

 View Source

 Link to this function

 cv_CORRECT_LEVEL_Q()

 View Source

 Link to this function

 cv_COST_COLOR()

 View Source

 Link to this function

 cv_COST_COLOR_GRAD()

 View Source

 Link to this function

 cv_COUNT()

 View Source

 Link to this function

 cv_COV_MAT_DEFAULT()

 View Source

 Link to this function

 cv_COV_MAT_DIAGONAL()

 View Source

 Link to this function

 cv_COV_MAT_GENERIC()

 View Source

 Link to this function

 cv_COV_MAT_SPHERICAL()

 View Source

 Link to this function

 cv_COV_POLISHER()

 View Source

 Link to this function

 cv_COVAR_COLS()

 View Source

 Link to this function

 cv_COVAR_NORMAL()

 View Source

 Link to this function

 cv_COVAR_ROWS()

 View Source

 Link to this function

 cv_COVAR_SCALE()

 View Source

 Link to this function

 cv_COVAR_SCRAMBLED()

 View Source

 Link to this function

 cv_COVAR_USE_AVG()

 View Source

 Link to this function

 cv_ColorFormat_RGB()

 View Source

 Link to this function

 cv_ColorFormat_RGBA()

 View Source

 Link to this function

 cv_ComputeModeDefault()

 View Source

 Link to this function

 cv_ComputeModeExclusive()

 View Source

 Link to this function

 cv_ComputeModeExclusiveProcess()

 View Source

 Link to this function

 cv_ComputeModeProhibited()

 View Source

 Link to this function

 cv_CROP()

 View Source

 Link to this function

 cv_CUDA_GPU_MAT()

 View Source

 Link to this function

 cv_CUDA_HOST_MEM()

 View Source

 Link to this function

 cv_CUSTOM()

 View Source

 Link to this function

 cv_CV_CS_CENSUS()

 View Source

 Link to this function

 cv_CV_DENSE_CENSUS()

 View Source

 Link to this function

 cv_CV_MEAN_VARIATION()

 View Source

 Link to this function

 cv_CV_MODIFIED_CENSUS_TRANSFORM()

 View Source

 Link to this function

 cv_CV_MODIFIED_CS_CENSUS()

 View Source

 Link to this function

 cv_CV_QUADRATIC_INTERPOLATION()

 View Source

 Link to this function

 cv_CV_SIMETRICV_INTERPOLATION()

 View Source

 Link to this function

 cv_CV_SPARSE_CENSUS()

 View Source

 Link to this function

 cv_CV_SPECKLE_REMOVAL_ALGORITHM()

 View Source

 Link to this function

 cv_CV_SPECKLE_REMOVAL_AVG_ALGORITHM()

 View Source

 Link to this function

 cv_CV_STAR_KERNEL()

 View Source

 Link to this function

 cv_cn_shift()

 View Source

 Link to this function

 cv_DATA_AS_COL()

 View Source

 Link to this function

 cv_DATA_AS_ROW()

 View Source

 Link to this function

 cv_DCT_INVERSE()

 View Source

 Link to this function

 cv_DCT_ROWS()

 View Source

 Link to this function

 cv_DECODE_3D_UNDERWORLD()

 View Source

 Link to this function

 cv_DECOMP_CHOLESKY()

 View Source

 Link to this function

 cv_DECOMP_EIG()

 View Source

 Link to this function

 cv_DECOMP_LU()

 View Source

 Link to this function

 cv_DECOMP_NORMAL()

 View Source

 Link to this function

 cv_DECOMP_QR()

 View Source

 Link to this function

 cv_DECOMP_SVD()

 View Source

 Link to this function

 cv_DEFAULT()

 View Source

 Link to this function

 cv_DEFAULT_MAX_ITERS()

 View Source

 Link to this function

 cv_DEFAULT_NCLUSTERS()

 View Source

 Link to this function

 cv_DEFAULT_NLEVELS()

 View Source

 Link to this function

 cv_DEGREE()

 View Source

 Link to this function

 cv_DEPTH_CLEANER_NIL()

 View Source

 Link to this function

 cv_DEPTH_COMPONENT()

 View Source

 Link to this function

 cv_DEPTH_MASK()

 View Source

 Link to this function

 cv_DEPTH_MASK_8S()

 View Source

 Link to this function

 cv_DEPTH_MASK_8U()

 View Source

 Link to this function

 cv_DEPTH_MASK_16F()

 View Source

 Link to this function

 cv_DEPTH_MASK_16S()

 View Source

 Link to this function

 cv_DEPTH_MASK_16U()

 View Source

 Link to this function

 cv_DEPTH_MASK_32F()

 View Source

 Link to this function

 cv_DEPTH_MASK_32S()

 View Source

 Link to this function

 cv_DEPTH_MASK_64F()

 View Source

 Link to this function

 cv_DEPTH_MASK_ALL()

 View Source

 Link to this function

 cv_DEPTH_MASK_ALL_16F()

 View Source

 Link to this function

 cv_DEPTH_MASK_ALL_BUT_8S()

 View Source

 Link to this function

 cv_DEPTH_MASK_FLT()

 View Source

 Link to this function

 cv_DESCR_FORMAT_COL_BY_COL()

 View Source

 Link to this function

 cv_DESCR_FORMAT_ROW_BY_ROW()

 View Source

 Link to this function

 cv_DESCRIPTOR_KAZE()

 View Source

 Link to this function

 cv_DESCRIPTOR_KAZE_UPRIGHT()

 View Source

 Link to this function

 cv_DESCRIPTOR_MLDB()

 View Source

 Link to this function

 cv_DESCRIPTOR_MLDB_UPRIGHT()

 View Source

 Link to this function

 cv_DEVICE_COPY_OBSOLETE()

 View Source

 Link to this function

 cv_DEVICE_MEM_MAPPED()

 View Source

 Link to this function

 cv_DFT_COMPLEX_INPUT()

 View Source

 Link to this function

 cv_DFT_COMPLEX_OUTPUT()

 View Source

 Link to this function

 cv_DFT_INVERSE()

 View Source

 Link to this function

 cv_DFT_REAL_OUTPUT()

 View Source

 Link to this function

 cv_DFT_ROWS()

 View Source

 Link to this function

 cv_DFT_SCALE()

 View Source

 Link to this function

 cv_DICT_4X4_50()

 View Source

 Link to this function

 cv_DICT_4X4_100()

 View Source

 Link to this function

 cv_DICT_4X4_250()

 View Source

 Link to this function

 cv_DICT_4X4_1000()

 View Source

 Link to this function

 cv_DICT_5X5_50()

 View Source

 Link to this function

 cv_DICT_5X5_100()

 View Source

 Link to this function

 cv_DICT_5X5_250()

 View Source

 Link to this function

 cv_DICT_5X5_1000()

 View Source

 Link to this function

 cv_DICT_6X6_50()

 View Source

 Link to this function

 cv_DICT_6X6_100()

 View Source

 Link to this function

 cv_DICT_6X6_250()

 View Source

 Link to this function

 cv_DICT_6X6_1000()

 View Source

 Link to this function

 cv_DICT_7X7_50()

 View Source

 Link to this function

 cv_DICT_7X7_100()

 View Source

 Link to this function

 cv_DICT_7X7_250()

 View Source

 Link to this function

 cv_DICT_7X7_1000()

 View Source

 Link to this function

 cv_DICT_APRILTAG_16h5()

 View Source

 Link to this function

 cv_DICT_APRILTAG_25h9()

 View Source

 Link to this function

 cv_DICT_APRILTAG_36h10()

 View Source

 Link to this function

 cv_DICT_APRILTAG_36h11()

 View Source

 Link to this function

 cv_DICT_ARUCO_MIP_36h12()

 View Source

 Link to this function

 cv_DICT_ARUCO_ORIGINAL()

 View Source

 Link to this function

 cv_DIFF_CHARBONNIER()

 View Source

 Link to this function

 cv_DIFF_PM_G1()

 View Source

 Link to this function

 cv_DIFF_PM_G2()

 View Source

 Link to this function

 cv_DIFF_WEICKERT()

 View Source

 Link to this function

 cv_DISABLE_TIMING()

 View Source

 Link to this function

 cv_DISCRETE()

 View Source

 Link to this function

 cv_DISP_SCALE()

 View Source

 Link to this function

 cv_DISP_SHIFT()

 View Source

 Link to this function

 cv_DIST_C()

 View Source

 Link to this function

 cv_DIST_FAIR()

 View Source

 Link to this function

 cv_DIST_HUBER()

 View Source

 Link to this function

 cv_DIST_L1()

 View Source

 Link to this function

 cv_DIST_L2()

 View Source

 Link to this function

 cv_DIST_L12()

 View Source

 Link to this function

 cv_DIST_LABEL_CCOMP()

 View Source

 Link to this function

 cv_DIST_LABEL_PIXEL()

 View Source

 Link to this function

 cv_DIST_MASK_3()

 View Source

 Link to this function

 cv_DIST_MASK_5()

 View Source

 Link to this function

 cv_DIST_MASK_PRECISE()

 View Source

 Link to this function

 cv_DIST_USER()

 View Source

 Link to this function

 cv_DIST_WELSCH()

 View Source

 Link to this function

 cv_DISTANCE_CIE76()

 View Source

 Link to this function

 cv_DISTANCE_CIE94_GRAPHIC_ARTS()

 View Source

 Link to this function

 cv_DISTANCE_CIE94_TEXTILES()

 View Source

 Link to this function

 cv_DISTANCE_CIE2000()

 View Source

 Link to this function

 cv_DISTANCE_CMC_1TO1()

 View Source

 Link to this function

 cv_DISTANCE_CMC_2TO1()

 View Source

 Link to this function

 cv_DISTANCE_RGB()

 View Source

 Link to this function

 cv_DISTANCE_RGBL()

 View Source

 Link to this function

 cv_DNN_BACKEND_CANN()

 View Source

 Link to this function

 cv_DNN_BACKEND_CUDA()

 View Source

 Link to this function

 cv_DNN_BACKEND_DEFAULT()

 View Source

 Link to this function

 cv_DNN_BACKEND_HALIDE()

 View Source

 Link to this function

 cv_DNN_BACKEND_INFERENCE_ENGINE()

 View Source

 Link to this function

 cv_DNN_BACKEND_OPENCV()

 View Source

 Link to this function

 cv_DNN_BACKEND_TIMVX()

 View Source

 Link to this function

 cv_DNN_BACKEND_VKCOM()

 View Source

 Link to this function

 cv_DNN_BACKEND_WEBNN()

 View Source

 Link to this function

 cv_DNN_LAYOUT_NCDHW()

 View Source

 Link to this function

 cv_DNN_LAYOUT_NCHW()

 View Source

 Link to this function

 cv_DNN_LAYOUT_ND()

 View Source

 Link to this function

 cv_DNN_LAYOUT_NDHWC()

 View Source

 Link to this function

 cv_DNN_LAYOUT_NHWC()

 View Source

 Link to this function

 cv_DNN_LAYOUT_PLANAR()

 View Source

 Link to this function

 cv_DNN_LAYOUT_UNKNOWN()

 View Source

 Link to this function

 cv_DNN_PMODE_CROP_CENTER()

 View Source

 Link to this function

 cv_DNN_PMODE_LETTERBOX()

 View Source

 Link to this function

 cv_DNN_PMODE_NULL()

 View Source

 Link to this function

 cv_DNN_TARGET_CPU()

 View Source

 Link to this function

 cv_DNN_TARGET_CPU_FP16()

 View Source

 Link to this function

 cv_DNN_TARGET_CUDA()

 View Source

 Link to this function

 cv_DNN_TARGET_CUDA_FP16()

 View Source

 Link to this function

 cv_DNN_TARGET_FPGA()

 View Source

 Link to this function

 cv_DNN_TARGET_HDDL()

 View Source

 Link to this function

 cv_DNN_TARGET_MYRIAD()

 View Source

 Link to this function

 cv_DNN_TARGET_NPU()

 View Source

 Link to this function

 cv_DNN_TARGET_OPENCL()

 View Source

 Link to this function

 cv_DNN_TARGET_OPENCL_FP16()

 View Source

 Link to this function

 cv_DNN_TARGET_VULKAN()

 View Source

 Link to this function

 cv_DP_SEAM()

 View Source

 Link to this function

 cv_DRAW_OVER_OUTIMG()

 View Source

 Link to this function

 cv_DRAW_RICH_KEYPOINTS()

 View Source

 Link to this function

 cv_DTF_IC()

 View Source

 Link to this function

 cv_DTF_NC()

 View Source

 Link to this function

 cv_DTF_RF()

 View Source

 Link to this function

 cv_DYNAMIC_PARALLELISM()

 View Source

 Link to this function

 cv_depth_max()

 View Source

 Link to this function

 cv_ECI_UTF8()

 View Source

 Link to this function

 cv_ELEMENT_ARRAY_BUFFER()

 View Source

 Link to this function

 cv_EMPTY()

 View Source

 Link to this function

 cv_ENC_CODEC_PROFILE_AUTOSELECT()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_BASELINE()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_CONSTRAINED_HIGH()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_HIGH()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_HIGH_444()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_MAIN()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_PROGRESSIVE_HIGH()

 View Source

 Link to this function

 cv_ENC_H264_PROFILE_STEREO()

 View Source

 Link to this function

 cv_ENC_HEVC_PROFILE_FREXT()

 View Source

 Link to this function

 cv_ENC_HEVC_PROFILE_MAIN10()

 View Source

 Link to this function

 cv_ENC_HEVC_PROFILE_MAIN()

 View Source

 Link to this function

 cv_ENC_MULTI_PASS_DISABLED()

 View Source

 Link to this function

 cv_ENC_PARAMS_RC_CBR()

 View Source

 Link to this function

 cv_ENC_PARAMS_RC_CONSTQP()

 View Source

 Link to this function

 cv_ENC_PARAMS_RC_VBR()

 View Source

 Link to this function

 cv_ENC_PRESET_P1()

 View Source

 Link to this function

 cv_ENC_PRESET_P2()

 View Source

 Link to this function

 cv_ENC_PRESET_P3()

 View Source

 Link to this function

 cv_ENC_PRESET_P4()

 View Source

 Link to this function

 cv_ENC_PRESET_P5()

 View Source

 Link to this function

 cv_ENC_PRESET_P6()

 View Source

 Link to this function

 cv_ENC_PRESET_P7()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_COUNT()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_HIGH_QUALITY()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_LOSSLESS()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_LOW_LATENCY()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_ULTRA_LOW_LATENCY()

 View Source

 Link to this function

 cv_ENC_TUNING_INFO_UNDEFINED()

 View Source

 Link to this function

 cv_ENC_TWO_PASS_FULL_RESOLUTION()

 View Source

 Link to this function

 cv_ENC_TWO_PASS_QUARTER_RESOLUTION()

 View Source

 Link to this function

 cv_EPS()

 View Source

 Link to this function

 cv_EPS_SVR()

 View Source

 Link to this function

 cv_ERFILTER_NM_IHSGrad()

 View Source

 Link to this function

 cv_ERFILTER_NM_RGBLGrad()

 View Source

 Link to this function

 cv_ERGROUPING_ORIENTATION_ANY()

 View Source

 Link to this function

 cv_ERGROUPING_ORIENTATION_HORIZ()

 View Source

 Link to this function

 cv_ERR_CAMERA_PARAMS_ADJUST_FAIL()

 View Source

 Link to this function

 cv_ERR_HOMOGRAPHY_EST_FAIL()

 View Source

 Link to this function

 cv_ERR_NEED_MORE_IMGS()

 View Source

 Link to this function

 cv_EULER_ANGLES_MAX_VALUE()

 View Source

 Link to this function

 cv_EVENT_FLAG_ALTKEY()

 View Source

 Link to this function

 cv_EVENT_FLAG_CTRLKEY()

 View Source

 Link to this function

 cv_EVENT_FLAG_LBUTTON()

 View Source

 Link to this function

 cv_EVENT_FLAG_MBUTTON()

 View Source

 Link to this function

 cv_EVENT_FLAG_RBUTTON()

 View Source

 Link to this function

 cv_EVENT_FLAG_SHIFTKEY()

 View Source

 Link to this function

 cv_EVENT_LBUTTONDBLCLK()

 View Source

 Link to this function

 cv_EVENT_LBUTTONDOWN()

 View Source

 Link to this function

 cv_EVENT_LBUTTONUP()

 View Source

 Link to this function

 cv_EVENT_MBUTTONDBLCLK()

 View Source

 Link to this function

 cv_EVENT_MBUTTONDOWN()

 View Source

 Link to this function

 cv_EVENT_MBUTTONUP()

 View Source

 Link to this function

 cv_EVENT_MOUSEHWHEEL()

 View Source

 Link to this function

 cv_EVENT_MOUSEMOVE()

 View Source

 Link to this function

 cv_EVENT_MOUSEWHEEL()

 View Source

 Link to this function

 cv_EVENT_RBUTTONDBLCLK()

 View Source

 Link to this function

 cv_EVENT_RBUTTONDOWN()

 View Source

 Link to this function

 cv_EVENT_RBUTTONUP()

 View Source

 Link to this function

 cv_EXEC_KERNEL()

 View Source

 Link to this function

 cv_EXEC_NATIVE_KERNEL()

 View Source

 Link to this function

 cv_EXPR()

 View Source

 Link to this function

 cv_EXT_XYX()

 View Source

 Link to this function

 cv_EXT_XYZ()

 View Source

 Link to this function

 cv_EXT_XZX()

 View Source

 Link to this function

 cv_EXT_XZY()

 View Source

 Link to this function

 cv_EXT_YXY()

 View Source

 Link to this function

 cv_EXT_YXZ()

 View Source

 Link to this function

 cv_EXT_YZX()

 View Source

 Link to this function

 cv_EXT_YZY()

 View Source

 Link to this function

 cv_EXT_ZXY()

 View Source

 Link to this function

 cv_EXT_ZXZ()

 View Source

 Link to this function

 cv_EXT_ZYX()

 View Source

 Link to this function

 cv_EXT_ZYZ()

 View Source

 Link to this function

 cv_FAPS()

 View Source

 Link to this function

 cv_FAST_N()

 View Source

 Link to this function

 cv_FAST_SCORE()

 View Source

 Link to this function

 cv_FEATHER()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_10()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_11()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_12()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_13()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_20()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_21()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_30()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_32()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_35()

 View Source

 Link to this function

 cv_FEATURE_SET_COMPUTE_50()

 View Source

 Link to this function

 cv_FHT_ADD()

 View Source

 Link to this function

 cv_FHT_AVE()

 View Source

 Link to this function

 cv_FHT_MAX()

 View Source

 Link to this function

 cv_FHT_MIN()

 View Source

 Link to this function

 cv_FILLED()

 View Source

 Link to this function

 cv_FILTER_SCHARR()

 View Source

 Link to this function

 cv_FIRST_ORDER_MOMENTS()

 View Source

 Link to this function

 cv_FIXED_SIZE()

 View Source

 Link to this function

 cv_FIXED_TYPE()

 View Source

 Link to this function

 cv_FileNode_FLOAT()

 View Source

 Link to this function

 cv_FileNode_INT()

 View Source

 Link to this function

 cv_FileNode_NONE()

 View Source

 Link to this function

 cv_FileNode_STRING()

 View Source

 Link to this function

 cv_FileNode_TYPE_MASK()

 View Source

 Link to this function

 cv_FileNode_UNIFORM()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_8S()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_8U()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_16S()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_16U()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_32F()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_32S()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_64F()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_ALGORITHM()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_BOOL()

 View Source

 Link to this function

 cv_FLANN_INDEX_TYPE_STRING()

 View Source

 Link to this function

 cv_FLANNBASED()

 View Source

 Link to this function

 cv_FLOAT()

 View Source

 Link to this function

 cv_FLOODFILL_FIXED_RANGE()

 View Source

 Link to this function

 cv_FLOODFILL_MASK_ONLY()

 View Source

 Link to this function

 cv_FLOW()

 View Source

 Link to this function

 cv_FM_7POINT()

 View Source

 Link to this function

 cv_FM_8POINT()

 View Source

 Link to this function

 cv_FM_LMEDS()

 View Source

 Link to this function

 cv_FM_RANSAC()

 View Source

 Link to this function

 cv_FMT_C()

 View Source

 Link to this function

 cv_FMT_CSV()

 View Source

 Link to this function

 cv_FMT_DEFAULT()

 View Source

 Link to this function

 cv_FMT_MATLAB()

 View Source

 Link to this function

 cv_FMT_NUMPY()

 View Source

 Link to this function

 cv_FMT_PYTHON()

 View Source

 Link to this function

 cv_FONT_HERSHEY_COMPLEX()

 View Source

 Link to this function

 cv_FONT_HERSHEY_COMPLEX_SMALL()

 View Source

 Link to this function

 cv_FONT_HERSHEY_DUPLEX()

 View Source

 Link to this function

 cv_FONT_HERSHEY_PLAIN()

 View Source

 Link to this function

 cv_FONT_HERSHEY_SCRIPT_COMPLEX()

 View Source

 Link to this function

 cv_FONT_HERSHEY_SCRIPT_SIMPLEX()

 View Source

 Link to this function

 cv_FONT_HERSHEY_SIMPLEX()

 View Source

 Link to this function

 cv_FONT_HERSHEY_TRIPLEX()

 View Source

 Link to this function

 cv_FONT_ITALIC()

 View Source

 Link to this function

 cv_FORMAT_AUTO()

 View Source

 Link to this function

 cv_FORMAT_JSON()

 View Source

 Link to this function

 cv_FORMAT_MASK()

 View Source

 Link to this function

 cv_FORMAT_XML()

 View Source

 Link to this function

 cv_FORMAT_YAML()

 View Source

 Link to this function

 cv_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT()

 View Source

 Link to this function

 cv_FP_DENORM()

 View Source

 Link to this function

 cv_FP_FMA()

 View Source

 Link to this function

 cv_FP_INF_NAN()

 View Source

 Link to this function

 cv_FP_ROUND_TO_INF()

 View Source

 Link to this function

 cv_FP_ROUND_TO_NEAREST()

 View Source

 Link to this function

 cv_FP_ROUND_TO_ZERO()

 View Source

 Link to this function

 cv_FP_SOFT_FLOAT()

 View Source

 Link to this function

 cv_FR_COSINE()

 View Source

 Link to this function

 cv_FR_NORM_L2()

 View Source

 Link to this function

 cv_FTP()

 View Source

 Link to this function

 cv_FULL_UV()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_FOCAL_LENGTH()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_INTRINSIC()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_K1()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_K2()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_K3()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_K4()

 View Source

 Link to this function

 cv_fisheye_CALIB_FIX_PRINCIPAL_POINT()

 View Source

 Link to this function

 cv_fisheye_CALIB_USE_INTRINSIC_GUESS()

 View Source

 Link to this function

 cv_fisheye_CALIB_ZERO_DISPARITY()

 View Source

 Link to this function

 cv_ft_LINEAR()

 View Source

 Link to this function

 cv_GAIN()

 View Source

 Link to this function

 cv_GAIN_BLOCKS()

 View Source

 Link to this function

 cv_GAMMA()

 View Source

 Link to this function

 cv_GAUSSIAN()

 View Source

 Link to this function

 cv_GC_BGD()

 View Source

 Link to this function

 cv_GC_EVAL()

 View Source

 Link to this function

 cv_GC_EVAL_FREEZE_MODEL()

 View Source

 Link to this function

 cv_GC_FGD()

 View Source

 Link to this function

 cv_GC_INIT_WITH_MASK()

 View Source

 Link to this function

 cv_GC_INIT_WITH_RECT()

 View Source

 Link to this function

 cv_GC_PR_BGD()

 View Source

 Link to this function

 cv_GC_PR_FGD()

 View Source

 Link to this function

 cv_GEMM_1_T()

 View Source

 Link to this function

 cv_GEMM_2_T()

 View Source

 Link to this function

 cv_GEMM_3_T()

 View Source

 Link to this function

 cv_GENTLE()

 View Source

 Link to this function

 cv_GLOBAL_ATOMICS()

 View Source

 Link to this function

 cv_GpuApiCallError()

 View Source

 Link to this function

 cv_GpuNotSupported()

 View Source

 Link to this function

 cv_GRAY()

 View Source

 Link to this function

 cv_GUIDED_FILTER()

 View Source

 Link to this function

 cv_H264()

 View Source

 Link to this function

 cv_H264_MVC()

 View Source

 Link to this function

 cv_H264_SVC()

 View Source

 Link to this function

 cv_HAAR()

 View Source

 Link to this function

 cv_HARD_MARGIN()

 View Source

 Link to this function

 cv_HARRIS_SCORE()

 View Source

 Link to this function

 cv_HASH_BIT()

 View Source

 Link to this function

 cv_HASH_SCALE()

 View Source

 Link to this function

 cv_HASHTSDF()

 View Source

 Link to this function

 cv_HDO_DESKEW()

 View Source

 Link to this function

 cv_HDO_RAW()

 View Source

 Link to this function

 cv_HESSIAN_ROW()

 View Source

 Link to this function

 cv_HEURISTIC()

 View Source

 Link to this function

 cv_HEVC()

 View Source

 Link to this function

 cv_HeaderIsNull()

 View Source

 Link to this function

 cv_HISTCMP_BHATTACHARYYA()

 View Source

 Link to this function

 cv_HISTCMP_CHISQR()

 View Source

 Link to this function

 cv_HISTCMP_CHISQR_ALT()

 View Source

 Link to this function

 cv_HISTCMP_CORREL()

 View Source

 Link to this function

 cv_HISTCMP_HELLINGER()

 View Source

 Link to this function

 cv_HISTCMP_INTERSECT()

 View Source

 Link to this function

 cv_HISTCMP_KL_DIV()

 View Source

 Link to this function

 cv_HOG()

 View Source

 Link to this function

 cv_HOST_COPY_OBSOLETE()

 View Source

 Link to this function

 cv_HOUGH_GRADIENT()

 View Source

 Link to this function

 cv_HOUGH_GRADIENT_ALT()

 View Source

 Link to this function

 cv_HOUGH_MULTI_SCALE()

 View Source

 Link to this function

 cv_HOUGH_PROBABILISTIC()

 View Source

 Link to this function

 cv_HOUGH_STANDARD()

 View Source

 Link to this function

 cv_IDENTITY()

 View Source

 Link to this function

 cv_IMREAD_ANYCOLOR()

 View Source

 Link to this function

 cv_IMREAD_ANYDEPTH()

 View Source

 Link to this function

 cv_IMREAD_COLOR()

 View Source

 Link to this function

 cv_IMREAD_GRAYSCALE()

 View Source

 Link to this function

 cv_IMREAD_IGNORE_ORIENTATION()

 View Source

 Link to this function

 cv_IMREAD_LOAD_GDAL()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_COLOR_2()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_COLOR_4()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_COLOR_8()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_GRAYSCALE_2()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_GRAYSCALE_4()

 View Source

 Link to this function

 cv_IMREAD_REDUCED_GRAYSCALE_8()

 View Source

 Link to this function

 cv_IMREAD_UNCHANGED()

 View Source

 Link to this function

 cv_IMWRITE_AVIF_DEPTH()

 View Source

 Link to this function

 cv_IMWRITE_AVIF_QUALITY()

 View Source

 Link to this function

 cv_IMWRITE_AVIF_SPEED()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_B44()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_B44A()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_DWAA()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_DWAB()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_NO()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_PIZ()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_PXR24()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_RLE()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_ZIP()

 View Source

 Link to this function

 cv_IMWRITE_EXR_COMPRESSION_ZIPS()

 View Source

 Link to this function

 cv_IMWRITE_EXR_DWA_COMPRESSION_LEVEL()

 View Source

 Link to this function

 cv_IMWRITE_EXR_TYPE()

 View Source

 Link to this function

 cv_IMWRITE_EXR_TYPE_FLOAT()

 View Source

 Link to this function

 cv_IMWRITE_EXR_TYPE_HALF()

 View Source

 Link to this function

 cv_IMWRITE_HDR_COMPRESSION()

 View Source

 Link to this function

 cv_IMWRITE_HDR_COMPRESSION_NONE()

 View Source

 Link to this function

 cv_IMWRITE_HDR_COMPRESSION_RLE()

 View Source

 Link to this function

 cv_IMWRITE_JPEG2000_COMPRESSION_X1000()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_CHROMA_QUALITY()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_LUMA_QUALITY()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_OPTIMIZE()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_PROGRESSIVE()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_QUALITY()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_RST_INTERVAL()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_411()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_420()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_422()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_440()

 View Source

 Link to this function

 cv_IMWRITE_JPEG_SAMPLING_FACTOR_444()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_BLACKANDWHITE()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_GRAYSCALE()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_NULL()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_RGB()

 View Source

 Link to this function

 cv_IMWRITE_PAM_FORMAT_RGB_ALPHA()

 View Source

 Link to this function

 cv_IMWRITE_PAM_TUPLETYPE()

 View Source

 Link to this function

 cv_IMWRITE_PNG_BILEVEL()

 View Source

 Link to this function

 cv_IMWRITE_PNG_COMPRESSION()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY_DEFAULT()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY_FILTERED()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY_FIXED()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY()

 View Source

 Link to this function

 cv_IMWRITE_PNG_STRATEGY_RLE()

 View Source

 Link to this function

 cv_IMWRITE_PXM_BINARY()

 View Source

 Link to this function

 cv_IMWRITE_TIFF_COMPRESSION()

 View Source

 Link to this function

 cv_IMWRITE_TIFF_RESUNIT()

 View Source

 Link to this function

 cv_IMWRITE_TIFF_XDPI()

 View Source

 Link to this function

 cv_IMWRITE_TIFF_YDPI()

 View Source

 Link to this function

 cv_IMWRITE_WEBP_QUALITY()

 View Source

 Link to this function

 cv_INITIAL_METHOD_LEAST_SQUARE()

 View Source

 Link to this function

 cv_INITIAL_METHOD_WHITE_BALANCE()

 View Source

 Link to this function

 cv_INPAINT_FSR_BEST()

 View Source

 Link to this function

 cv_INPAINT_FSR_FAST()

 View Source

 Link to this function

 cv_INPAINT_NS()

 View Source

 Link to this function

 cv_INPAINT_SHIFTMAP()

 View Source

 Link to this function

 cv_INPAINT_TELEA()

 View Source

 Link to this function

 cv_INSIDE_MAP()

 View Source

 Link to this function

 cv_INT()

 View Source

 Link to this function

 cv_INT_XYX()

 View Source

 Link to this function

 cv_INT_XYZ()

 View Source

 Link to this function

 cv_INT_XZX()

 View Source

 Link to this function

 cv_INT_XZY()

 View Source

 Link to this function

 cv_INT_YXY()

 View Source

 Link to this function

 cv_INT_YXZ()

 View Source

 Link to this function

 cv_INT_YZX()

 View Source

 Link to this function

 cv_INT_YZY()

 View Source

 Link to this function

 cv_INT_ZXY()

 View Source

 Link to this function

 cv_INT_ZXZ()

 View Source

 Link to this function

 cv_INT_ZYX()

 View Source

 Link to this function

 cv_INT_ZYZ()

 View Source

 Link to this function

 cv_INTER()

 View Source

 Link to this function

 cv_INTER_AREA()

 View Source

 Link to this function

 cv_INTER_BITS2()

 View Source

 Link to this function

 cv_INTER_BITS()

 View Source

 Link to this function

 cv_INTER_CUBIC()

 View Source

 Link to this function

 cv_INTER_LANCZOS4()

 View Source

 Link to this function

 cv_INTER_LINEAR()

 View Source

 Link to this function

 cv_INTER_LINEAR_EXACT()

 View Source

 Link to this function

 cv_INTER_MAX()

 View Source

 Link to this function

 cv_INTER_NEAREST()

 View Source

 Link to this function

 cv_INTER_NEAREST_EXACT()

 View Source

 Link to this function

 cv_INTER_TAB_SIZE2()

 View Source

 Link to this function

 cv_INTER_TAB_SIZE()

 View Source

 Link to this function

 cv_INTERPROCESS()

 View Source

 Link to this function

 cv_INTERSECT_FULL()

 View Source

 Link to this function

 cv_INTERSECT_NONE()

 View Source

 Link to this function

 cv_INTERSECT_PARTIAL()

 View Source

 Link to this function

 cv_InputArray_MAT()

 View Source

 Link to this function

 cv_ITERATIVE()

 View Source

 Link to this function

 cv_JPEG()

 View Source

 Link to this function

 cv_KDTREE()

 View Source

 Link to this function

 cv_KIND_MASK()

 View Source

 Link to this function

 cv_KIND_SHIFT()

 View Source

 Link to this function

 cv_KMEANS_PP_CENTERS()

 View Source

 Link to this function

 cv_KMEANS_RANDOM_CENTERS()

 View Source

 Link to this function

 cv_KMEANS_USE_INITIAL_LABELS()

 View Source

 Link to this function

 cv_L0_5()

 View Source

 Link to this function

 cv_L0_25()

 View Source

 Link to this function

 cv_L1()

 View Source

 Link to this function

 cv_L2()

 View Source

 Link to this function

 cv_L2Hys()

 View Source

 Link to this function

 cv_L2SQUARED()

 View Source

 Link to this function

 cv_L5()

 View Source

 Link to this function

 cv_L_INFINITY()

 View Source

 Link to this function

 cv_LAPLACIAN_ROW()

 View Source

 Link to this function

 cv_LAST_VALUE_FLANN_INDEX_TYPE()

 View Source

 Link to this function

 cv_LBP()

 View Source

 Link to this function

 cv_LDR_SIZE()

 View Source

 Link to this function

 cv_LEAKYRELU()

 View Source

 Link to this function

 cv_LINE_4()

 View Source

 Link to this function

 cv_LINE_8()

 View Source

 Link to this function

 cv_LINE_AA()

 View Source

 Link to this function

 cv_LINE_LOOP()

 View Source

 Link to this function

 cv_LINE_STRIP()

 View Source

 Link to this function

 cv_LINEAR()

 View Source

 Link to this function

 cv_LINEARIZATION_COLORLOGPOLYFIT()

 View Source

 Link to this function

 cv_LINEARIZATION_COLORPOLYFIT()

 View Source

 Link to this function

 cv_LINEARIZATION_GAMMA()

 View Source

 Link to this function

 cv_LINEARIZATION_GRAYLOGPOLYFIT()

 View Source

 Link to this function

 cv_LINEARIZATION_GRAYPOLYFIT()

 View Source

 Link to this function

 cv_LINEARIZATION_IDENTITY()

 View Source

 Link to this function

 cv_LINES()

 View Source

 Link to this function

 cv_LMEDS()

 View Source

 Link to this function

 cv_LOCAL()

 View Source

 Link to this function

 cv_LOCAL_IS_GLOBAL()

 View Source

 Link to this function

 cv_LOCAL_IS_LOCAL()

 View Source

 Link to this function

 cv_LOCAL_OPTIM_GC()

 View Source

 Link to this function

 cv_LOCAL_OPTIM_INNER_AND_ITER_LO()

 View Source

 Link to this function

 cv_LOCAL_OPTIM_INNER_LO()

 View Source

 Link to this function

 cv_LOCAL_OPTIM_NULL()

 View Source

 Link to this function

 cv_LOCAL_OPTIM_SIGMA()

 View Source

 Link to this function

 cv_LOGIT()

 View Source

 Link to this function

 cv_LSBP_CAMERA_MOTION_COMPENSATION_LK()

 View Source

 Link to this function

 cv_LSBP_CAMERA_MOTION_COMPENSATION_NONE()

 View Source

 Link to this function

 cv_LSD()

 View Source

 Link to this function

 cv_LSD_REFINE_ADV()

 View Source

 Link to this function

 cv_LSD_REFINE_NONE()

 View Source

 Link to this function

 cv_LSD_REFINE_STD()

 View Source

 Link to this function

 cv_LSQ_POLISHER()

 View Source

 Link to this function

 cv_MAGIC_MASK()

 View Source

 Link to this function

 cv_MAGIC_VAL()

 View Source

 Link to this function

 cv_MAGSAC()

 View Source

 Link to this function

 cv_MAP()

 View Source

 Link to this function

 cv_MARKER_CROSS()

 View Source

 Link to this function

 cv_MARKER_DIAMOND()

 View Source

 Link to this function

 cv_MARKER_SQUARE()

 View Source

 Link to this function

 cv_MARKER_STAR()

 View Source

 Link to this function

 cv_MARKER_TILTED_CROSS()

 View Source

 Link to this function

 cv_MARKER_TRIANGLE_DOWN()

 View Source

 Link to this function

 cv_MARKER_TRIANGLE_UP()

 View Source

 Link to this function

 cv_MAT()

 View Source

 Link to this function

 cv_MAT_VECTOR()

 View Source

 Link to this function

 cv_MATX()

 View Source

 Link to this function

 cv_MAX_DIM()

 View Source

 Link to this function

 cv_MAX_ITER()

 View Source

 Link to this function

 cv_MaskIsTiled()

 View Source

 Link to this function

 cv_MCC24()

 View Source

 Link to this function

 cv_MEMORY()

 View Source

 Link to this function

 cv_MINI_BATCH()

 View Source

 Link to this function

 cv_MINUS()

 View Source

 Link to this function

 cv_MIXED_CLONE()

 View Source

 Link to this function

 cv_MODE_ALPHANUMERIC()

 View Source

 Link to this function

 cv_MODE_AUTO()

 View Source

 Link to this function

 cv_MODE_BYTE()

 View Source

 Link to this function

 cv_MODE_CLASSIFY()

 View Source

 Link to this function

 cv_MODE_DETECT()

 View Source

 Link to this function

 cv_MODE_ECI()

 View Source

 Link to this function

 cv_MODE_HH4()

 View Source

 Link to this function

 cv_MODE_HH()

 View Source

 Link to this function

 cv_MODE_INIT_NEG()

 View Source

 Link to this function

 cv_MODE_INIT_POS()

 View Source

 Link to this function

 cv_MODE_KANJI()

 View Source

 Link to this function

 cv_MODE_NEGATIVE()

 View Source

 Link to this function

 cv_MODE_NUMERIC()

 View Source

 Link to this function

 cv_MODE_POSITIVE()

 View Source

 Link to this function

 cv_MODE_SGBM()

 View Source

 Link to this function

 cv_MODE_SGBM_3WAY()

 View Source

 Link to this function

 cv_MODE_STRUCTURED_APPEND()

 View Source

 Link to this function

 cv_MODE_TRACK_NEG()

 View Source

 Link to this function

 cv_MODE_TRACK_POS()

 View Source

 Link to this function

 cv_MODIFY_A()

 View Source

 Link to this function

 cv_MONOCHROME_TRANSFER()

 View Source

 Link to this function

 cv_MORPH_BLACKHAT()

 View Source

 Link to this function

 cv_MORPH_CLOSE()

 View Source

 Link to this function

 cv_MORPH_CROSS()

 View Source

 Link to this function

 cv_MORPH_DILATE()

 View Source

 Link to this function

 cv_MORPH_ELLIPSE()

 View Source

 Link to this function

 cv_MORPH_ERODE()

 View Source

 Link to this function

 cv_MORPH_GRADIENT()

 View Source

 Link to this function

 cv_MORPH_HITMISS()

 View Source

 Link to this function

 cv_MORPH_OPEN()

 View Source

 Link to this function

 cv_MORPH_RECT()

 View Source

 Link to this function

 cv_MORPH_TOPHAT()

 View Source

 Link to this function

 cv_MOTION_AFFINE()

 View Source

 Link to this function

 cv_MOTION_EUCLIDEAN()

 View Source

 Link to this function

 cv_MOTION_HOMOGRAPHY()

 View Source

 Link to this function

 cv_MOTION_TRANSLATION()

 View Source

 Link to this function

 cv_Monochrome()

 View Source

 Link to this function

 cv_MPEG1()

 View Source

 Link to this function

 cv_MPEG2()

 View Source

 Link to this function

 cv_MPEG4()

 View Source

 Link to this function

 cv_MSLIC()

 View Source

 Link to this function

 cv_MULTI_BAND()

 View Source

 Link to this function

 cv_MULTI_STEP()

 View Source

 Link to this function

 cv_maketype(depth, cn)

 View Source

 Link to this function

 cv_mat_depth_mask()

 View Source

 Link to this function

 cv_NAME_EXPECTED()

 View Source

 Link to this function

 cv_NAMED()

 View Source

 Link to this function

 cv_NATIVE_DOUBLE()

 View Source

 Link to this function

 cv_NEIGH_FLANN_KNN()

 View Source

 Link to this function

 cv_NEIGH_FLANN_RADIUS()

 View Source

 Link to this function

 cv_NEIGH_GRID()

 View Source

 Link to this function

 cv_NEXT_AROUND_DST()

 View Source

 Link to this function

 cv_NEXT_AROUND_LEFT()

 View Source

 Link to this function

 cv_NEXT_AROUND_ORG()

 View Source

 Link to this function

 cv_NEXT_AROUND_RIGHT()

 View Source

 Link to this function

 cv_NO()

 View Source

 Link to this function

 cv_NO_CACHE()

 View Source

 Link to this function

 cv_NO_INPUT_SCALE()

 View Source

 Link to this function

 cv_NO_LOCAL_MEM()

 View Source

 Link to this function

 cv_NO_OUTPUT_SCALE()

 View Source

 Link to this function

 cv_NO_SIZE()

 View Source

 Link to this function

 cv_NO_UV()

 View Source

 Link to this function

 cv_NONE()

 View Source

 Link to this function

 cv_NONE_POLISHER()

 View Source

 Link to this function

 cv_NONMAX_SUPPRESSION()

 View Source

 Link to this function

 cv_NORM_HAMMING2()

 View Source

 Link to this function

 cv_NORM_HAMMING()

 View Source

 Link to this function

 cv_NORM_INF()

 View Source

 Link to this function

 cv_NORM_L1()

 View Source

 Link to this function

 cv_NORM_L2()

 View Source

 Link to this function

 cv_NORM_L2SQR()

 View Source

 Link to this function

 cv_NORM_MINMAX()

 View Source

 Link to this function

 cv_NORM_RELATIVE()

 View Source

 Link to this function

 cv_NORM_TYPE_MASK()

 View Source

 Link to this function

 cv_NORMAL()

 View Source

 Link to this function

 cv_NORMAL_CLONE()

 View Source

 Link to this function

 cv_NORMCONV_FILTER()

 View Source

 Link to this function

 cv_NOT_DRAW_SINGLE_POINTS()

 View Source

 Link to this function

 cv_NRM_FULL()

 View Source

 Link to this function

 cv_NRM_NONE()

 View Source

 Link to this function

 cv_NRM_PARTIAL()

 View Source

 Link to this function

 cv_NRM_SIFT()

 View Source

 Link to this function

 cv_NU()

 View Source

 Link to this function

 cv_NU_SVC()

 View Source

 Link to this function

 cv_NU_SVR()

 View Source

 Link to this function

 cv_NumCodecs()

 View Source

 Link to this function

 cv_NumFormats()

 View Source

 Link to this function

 cv_NV_AYUV()

 View Source

 Link to this function

 cv_NV_IYUV()

 View Source

 Link to this function

 cv_NV_NV12()

 View Source

 Link to this function

 cv_NV_YUV444()

 View Source

 Link to this function

 cv_NV_YV12()

 View Source

 Link to this function

 cv_OAST_9_16()

 View Source

 Link to this function

 cv_OCL_VECTOR_DEFAULT()

 View Source

 Link to this function

 cv_OCL_VECTOR_MAX()

 View Source

 Link to this function

 cv_OCL_VECTOR_OWN()

 View Source

 Link to this function

 cv_OCR_CNN_CLASSIFIER()

 View Source

 Link to this function

 cv_OCR_DECODER_VITERBI()

 View Source

 Link to this function

 cv_OCR_KNN_CLASSIFIER()

 View Source

 Link to this function

 cv_OCR_LEVEL_TEXTLINE()

 View Source

 Link to this function

 cv_OCR_LEVEL_WORD()

 View Source

 Link to this function

 cv_OCTAVE_ROW()

 View Source

 Link to this function

 cv_OEM_CUBE_ONLY()

 View Source

 Link to this function

 cv_OEM_DEFAULT()

 View Source

 Link to this function

 cv_OEM_TESSERACT_CUBE_COMBINED()

 View Source

 Link to this function

 cv_OEM_TESSERACT_ONLY()

 View Source

 Link to this function

 cv_OK()

 View Source

 Link to this function

 cv_OMNIDIRECTIONAL()

 View Source

 Link to this function

 cv_ONE_CLASS()

 View Source

 Link to this function

 cv_ONE_STEP()

 View Source

 Link to this function

 cv_OPENGL_BUFFER()

 View Source

 Link to this function

 cv_OPTFLOW_FARNEBACK_GAUSSIAN()

 View Source

 Link to this function

 cv_OPTFLOW_LK_GET_MIN_EIGENVALS()

 View Source

 Link to this function

 cv_OPTFLOW_USE_INITIAL_FLOW()

 View Source

 Link to this function

 cv_OpenCLApiCallError()

 View Source

 Link to this function

 cv_OpenCLDoubleNotSupported()

 View Source

 Link to this function

 cv_OpenCLInitError()

 View Source

 Link to this function

 cv_OpenCLNoAMDBlasFft()

 View Source

 Link to this function

 cv_OpenGlApiCallError()

 View Source

 Link to this function

 cv_OpenGlNotSupported()

 View Source

 Link to this function

 cv_omnidir_CALIB_FIX_K1()

 View Source

 Link to this function

 cv_omnidir_CALIB_FIX_K2()

 View Source

 Link to this function

 cv_omnidir_CALIB_FIX_SKEW()

 View Source

 Link to this function

 cv_P()

 View Source

 Link to this function

 cv_PAGE_LOCKED()

 View Source

 Link to this function

 cv_PANORAMA()

 View Source

 Link to this function

 cv_PCTSignatures_GAUSSIAN()

 View Source

 Link to this function

 cv_PCTSignatures_NORMAL()

 View Source

 Link to this function

 cv_PINHOLE()

 View Source

 Link to this function

 cv_PIXEL_PACK_BUFFER()

 View Source

 Link to this function

 cv_PIXEL_UNPACK_BUFFER()

 View Source

 Link to this function

 cv_POINTS()

 View Source

 Link to this function

 cv_POLY()

 View Source

 Link to this function

 cv_POLYGON()

 View Source

 Link to this function

 cv_PREDICT_AUTO()

 View Source

 Link to this function

 cv_PREDICT_MASK()

 View Source

 Link to this function

 cv_PREDICT_MAX_VOTE()

 View Source

 Link to this function

 cv_PREDICT_SUM()

 View Source

 Link to this function

 cv_PREFILTER_NORMALIZED_RESPONSE()

 View Source

 Link to this function

 cv_PREFILTER_XSOBEL()

 View Source

 Link to this function

 cv_PREPROCESSED_INPUT()

 View Source

 Link to this function

 cv_PRESET_FAST()

 View Source

 Link to this function

 cv_PRESET_MEDIUM()

 View Source

 Link to this function

 cv_PRESET_ULTRAFAST()

 View Source

 Link to this function

 cv_PREV_AROUND_DST()

 View Source

 Link to this function

 cv_PREV_AROUND_LEFT()

 View Source

 Link to this function

 cv_PREV_AROUND_ORG()

 View Source

 Link to this function

 cv_PREV_AROUND_RIGHT()

 View Source

 Link to this function

 cv_PREWITT()

 View Source

 Link to this function

 cv_PROJ_SPHERICAL_EQRECT()

 View Source

 Link to this function

 cv_PROJ_SPHERICAL_ORTHO()

 View Source

 Link to this function

 cv_PROP_ALLOW_FRAME_DROP()

 View Source

 Link to this function

 cv_PROP_COLOR_FORMAT()

 View Source

 Link to this function

 cv_PROP_DECODED_FRAME_IDX()

 View Source

 Link to this function

 cv_PROP_EXTRA_DATA_INDEX()

 View Source

 Link to this function

 cv_PROP_LRF_HAS_KEY_FRAME()

 View Source

 Link to this function

 cv_PROP_NOT_SUPPORTED()

 View Source

 Link to this function

 cv_PROP_NUMBER_OF_RAW_PACKAGES_SINCE_LAST_GRAB()

 View Source

 Link to this function

 cv_PROP_RAW_MODE()

 View Source

 Link to this function

 cv_PROP_RAW_PACKAGES_BASE_INDEX()

 View Source

 Link to this function

 cv_PROP_UDP_SOURCE()

 View Source

 Link to this function

 cv_PSM_AUTO()

 View Source

 Link to this function

 cv_PSM_AUTO_ONLY()

 View Source

 Link to this function

 cv_PSM_AUTO_OSD()

 View Source

 Link to this function

 cv_PSM_CIRCLE_WORD()

 View Source

 Link to this function

 cv_PSM_OSD_ONLY()

 View Source

 Link to this function

 cv_PSM_SINGLE_BLOCK()

 View Source

 Link to this function

 cv_PSM_SINGLE_BLOCK_VERT_TEXT()

 View Source

 Link to this function

 cv_PSM_SINGLE_CHAR()

 View Source

 Link to this function

 cv_PSM_SINGLE_COLUMN()

 View Source

 Link to this function

 cv_PSM_SINGLE_LINE()

 View Source

 Link to this function

 cv_PSM_SINGLE_WORD()

 View Source

 Link to this function

 cv_PSP()

 View Source

 Link to this function

 cv_PTLOC_ERROR()

 View Source

 Link to this function

 cv_PTLOC_INSIDE()

 View Source

 Link to this function

 cv_PTLOC_ON_EDGE()

 View Source

 Link to this function

 cv_PTLOC_OUTSIDE_RECT()

 View Source

 Link to this function

 cv_PTLOC_VERTEX()

 View Source

 Link to this function

 cv_PTR_ONLY()

 View Source

 Link to this function

 cv_QT_CHECKBOX()

 View Source

 Link to this function

 cv_QT_FONT_BLACK()

 View Source

 Link to this function

 cv_QT_FONT_BOLD()

 View Source

 Link to this function

 cv_QT_FONT_DEMIBOLD()

 View Source

 Link to this function

 cv_QT_FONT_LIGHT()

 View Source

 Link to this function

 cv_QT_FONT_NORMAL()

 View Source

 Link to this function

 cv_QT_NEW_BUTTONBAR()

 View Source

 Link to this function

 cv_QT_PUSH_BUTTON()

 View Source

 Link to this function

 cv_QT_RADIOBOX()

 View Source

 Link to this function

 cv_QT_STYLE_ITALIC()

 View Source

 Link to this function

 cv_QT_STYLE_NORMAL()

 View Source

 Link to this function

 cv_QT_STYLE_OBLIQUE()

 View Source

 Link to this function

 cv_QUAD_STRIP()

 View Source

 Link to this function

 cv_QUADS()

 View Source

 Link to this function

 cv_QUAT_ASSUME_NOT_UNIT()

 View Source

 Link to this function

 cv_QUAT_ASSUME_UNIT()

 View Source

 Link to this function

 cv_RANSAC()

 View Source

 Link to this function

 cv_RAW_OUTPUT()

 View Source

 Link to this function

 cv_RBF()

 View Source

 Link to this function

 cv_READ()

 View Source

 Link to this function

 cv_READ_ONLY()

 View Source

 Link to this function

 cv_READ_ONLY_CACHE()

 View Source

 Link to this function

 cv_READ_WRITE()

 View Source

 Link to this function

 cv_READ_WRITE_CACHE()

 View Source

 Link to this function

 cv_REAL()

 View Source

 Link to this function

 cv_RECTIFY_CYLINDRICAL()

 View Source

 Link to this function

 cv_RECTIFY_LONGLATI()

 View Source

 Link to this function

 cv_RECTIFY_PERSPECTIVE()

 View Source

 Link to this function

 cv_RECTIFY_STEREOGRAPHIC()

 View Source

 Link to this function

 cv_RECURS_FILTER()

 View Source

 Link to this function

 cv_REDUCE_AVG()

 View Source

 Link to this function

 cv_REDUCE_MAX()

 View Source

 Link to this function

 cv_REDUCE_MIN()

 View Source

 Link to this function

 cv_REDUCE_SUM2()

 View Source

 Link to this function

 cv_REDUCE_SUM()

 View Source

 Link to this function

 cv_REG_DISABLE()

 View Source

 Link to this function

 cv_REG_L1()

 View Source

 Link to this function

 cv_REG_L2()

 View Source

 Link to this function

 cv_REGULAR()

 View Source

 Link to this function

 cv_RELU()

 View Source

 Link to this function

 cv_RETINA_COLOR_BAYER()

 View Source

 Link to this function

 cv_RETINA_COLOR_DIAGONAL()

 View Source

 Link to this function

 cv_RETINA_COLOR_RANDOM()

 View Source

 Link to this function

 cv_RETR_CCOMP()

 View Source

 Link to this function

 cv_RETR_EXTERNAL()

 View Source

 Link to this function

 cv_RETR_FLOODFILL()

 View Source

 Link to this function

 cv_RETR_LIST()

 View Source

 Link to this function

 cv_RETR_TREE()

 View Source

 Link to this function

 cv_RGB()

 View Source

 Link to this function

 cv_RGBA()

 View Source

 Link to this function

 cv_RGBD_NORMALS_METHOD_FALS()

 View Source

 Link to this function

 cv_RGBD_NORMALS_METHOD_LINEMOD()

 View Source

 Link to this function

 cv_RGBD_NORMALS_METHOD_SRI()

 View Source

 Link to this function

 cv_RGBD_PLANE_METHOD_DEFAULT()

 View Source

 Link to this function

 cv_RHO()

 View Source

 Link to this function

 cv_RIGID_BODY_MOTION()

 View Source

 Link to this function

 cv_ROTATE_90_CLOCKWISE()

 View Source

 Link to this function

 cv_ROTATE_90_COUNTERCLOCKWISE()

 View Source

 Link to this function

 cv_ROTATE_180()

 View Source

 Link to this function

 cv_ROTATION()

 View Source

 Link to this function

 cv_ROW_SAMPLE()

 View Source

 Link to this function

 cv_ROWS_COUNT()

 View Source

 Link to this function

 cv_RPROP()

 View Source

 Link to this function

 cv_SAMPLING_NAPSAC()

 View Source

 Link to this function

 cv_SAMPLING_PROGRESSIVE_NAPSAC()

 View Source

 Link to this function

 cv_SAMPLING_PROSAC()

 View Source

 Link to this function

 cv_SAMPLING_UNIFORM()

 View Source

 Link to this function

 cv_SCALAR()

 View Source

 Link to this function

 cv_SCANS()

 View Source

 Link to this function

 cv_SCHARR()

 View Source

 Link to this function

 cv_SCORE_METHOD_LMEDS()

 View Source

 Link to this function

 cv_SCORE_METHOD_MAGSAC()

 View Source

 Link to this function

 cv_SCORE_METHOD_MSAC()

 View Source

 Link to this function

 cv_SCORE_METHOD_RANSAC()

 View Source

 Link to this function

 cv_SECOND_ORDER_MOMENTS()

 View Source

 Link to this function

 cv_SEQ()

 View Source

 Link to this function

 cv_SG140()

 View Source

 Link to this function

 cv_SGD()

 View Source

 Link to this function

 cv_SHARED()

 View Source

 Link to this function

 cv_SHARED_ATOMICS()

 View Source

 Link to this function

 cv_SIGMOID()

 View Source

 Link to this function

 cv_SIGMOID_SYM()

 View Source

 Link to this function

 cv_SINUS()

 View Source

 Link to this function

 cv_SIZE_256_BITS()

 View Source

 Link to this function

 cv_SIZE_512_BITS()

 View Source

 Link to this function

 cv_SIZE_ROW()

 View Source

 Link to this function

 cv_SLIC()

 View Source

 Link to this function

 cv_SLICO()

 View Source

 Link to this function

 cv_SOBEL()

 View Source

 Link to this function

 cv_SOFT_MARGIN()

 View Source

 Link to this function

 cv_SOFTNMS_GAUSSIAN()

 View Source

 Link to this function

 cv_SOFTNMS_LINEAR()

 View Source

 Link to this function

 cv_SOLVELP_LOST()

 View Source

 Link to this function

 cv_SOLVELP_MULTI()

 View Source

 Link to this function

 cv_SOLVELP_SINGLE()

 View Source

 Link to this function

 cv_SOLVELP_UNBOUNDED()

 View Source

 Link to this function

 cv_SOLVELP_UNFEASIBLE()

 View Source

 Link to this function

 cv_SOLVEPNP_AP3P()

 View Source

 Link to this function

 cv_SOLVEPNP_DLS()

 View Source

 Link to this function

 cv_SOLVEPNP_EPNP()

 View Source

 Link to this function

 cv_SOLVEPNP_IPPE()

 View Source

 Link to this function

 cv_SOLVEPNP_IPPE_SQUARE()

 View Source

 Link to this function

 cv_SOLVEPNP_ITERATIVE()

 View Source

 Link to this function

 cv_SOLVEPNP_MAX_COUNT()

 View Source

 Link to this function

 cv_SOLVEPNP_P3P()

 View Source

 Link to this function

 cv_SOLVEPNP_SQPNP()

 View Source

 Link to this function

 cv_SOLVEPNP_UPNP()

 View Source

 Link to this function

 cv_SORT_ASCENDING()

 View Source

 Link to this function

 cv_SORT_DESCENDING()

 View Source

 Link to this function

 cv_SORT_EVERY_COLUMN()

 View Source

 Link to this function

 cv_SORT_EVERY_ROW()

 View Source

 Link to this function

 cv_SparseMat_MAGIC_VAL()

 View Source

 Link to this function

 cv_START_AUTO_STEP()

 View Source

 Link to this function

 cv_START_E_STEP()

 View Source

 Link to this function

 cv_START_M_STEP()

 View Source

 Link to this function

 cv_STD_ARRAY()

 View Source

 Link to this function

 cv_STD_ARRAY_MAT()

 View Source

 Link to this function

 cv_STD_BOOL_VECTOR()

 View Source

 Link to this function

 cv_STD_VECTOR()

 View Source

 Link to this function

 cv_STD_VECTOR_CUDA_GPU_MAT()

 View Source

 Link to this function

 cv_STD_VECTOR_MAT()

 View Source

 Link to this function

 cv_STD_VECTOR_UMAT()

 View Source

 Link to this function

 cv_STD_VECTOR_VECTOR()

 View Source

 Link to this function

 cv_STR()

 View Source

 Link to this function

 cv_STRING()

 View Source

 Link to this function

 cv_StsAssert()

 View Source

 Link to this function

 cv_StsAutoTrace()

 View Source

 Link to this function

 cv_StsBackTrace()

 View Source

 Link to this function

 cv_StsBadArg()

 View Source

 Link to this function

 cv_StsBadFlag()

 View Source

 Link to this function

 cv_StsBadFunc()

 View Source

 Link to this function

 cv_StsBadMask()

 View Source

 Link to this function

 cv_StsBadMemBlock()

 View Source

 Link to this function

 cv_StsBadPoint()

 View Source

 Link to this function

 cv_StsBadSize()

 View Source

 Link to this function

 cv_StsDivByZero()

 View Source

 Link to this function

 cv_StsError()

 View Source

 Link to this function

 cv_StsFilterOffsetErr()

 View Source

 Link to this function

 cv_StsFilterStructContentErr()

 View Source

 Link to this function

 cv_StsInplaceNotSupported()

 View Source

 Link to this function

 cv_StsInternal()

 View Source

 Link to this function

 cv_StsKernelStructContentErr()

 View Source

 Link to this function

 cv_StsNoConv()

 View Source

 Link to this function

 cv_StsNoMem()

 View Source

 Link to this function

 cv_StsNotImplemented()

 View Source

 Link to this function

 cv_StsNullPtr()

 View Source

 Link to this function

 cv_StsObjectNotFound()

 View Source

 Link to this function

 cv_StsOk()

 View Source

 Link to this function

 cv_StsOutOfRange()

 View Source

 Link to this function

 cv_StsParseError()

 View Source

 Link to this function

 cv_StsUnmatchedFormats()

 View Source

 Link to this function

 cv_StsUnmatchedSizes()

 View Source

 Link to this function

 cv_StsUnsupportedFormat()

 View Source

 Link to this function

 cv_StsVecLengthErr()

 View Source

 Link to this function

 cv_SYMMETRIC_GRID()

 View Source

 Link to this function

 cv_TEBLID_SIZE_256_BITS()

 View Source

 Link to this function

 cv_TEBLID_SIZE_512_BITS()

 View Source

 Link to this function

 cv_TEMP_COPIED_UMAT()

 View Source

 Link to this function

 cv_TEMP_UMAT()

 View Source

 Link to this function

 cv_TEST_CUSTOM()

 View Source

 Link to this function

 cv_TEST_EQ()

 View Source

 Link to this function

 cv_TEST_ERROR()

 View Source

 Link to this function

 cv_TEST_GE()

 View Source

 Link to this function

 cv_TEST_GT()

 View Source

 Link to this function

 cv_TEST_LE()

 View Source

 Link to this function

 cv_TEST_LT()

 View Source

 Link to this function

 cv_TEST_NE()

 View Source

 Link to this function

 cv_Texture2D_NONE()

 View Source

 Link to this function

 cv_THINNING_GUOHALL()

 View Source

 Link to this function

 cv_THINNING_ZHANGSUEN()

 View Source

 Link to this function

 cv_THIRD_ORDER_MOMENTS()

 View Source

 Link to this function

 cv_THRESH_BINARY()

 View Source

 Link to this function

 cv_THRESH_BINARY_INV()

 View Source

 Link to this function

 cv_THRESH_MASK()

 View Source

 Link to this function

 cv_THRESH_OTSU()

 View Source

 Link to this function

 cv_THRESH_TOZERO()

 View Source

 Link to this function

 cv_THRESH_TOZERO_INV()

 View Source

 Link to this function

 cv_THRESH_TRIANGLE()

 View Source

 Link to this function

 cv_THRESH_TRUNC()

 View Source

 Link to this function

 cv_THRESHOLD()

 View Source

 Link to this function

 cv_TM_CCOEFF()

 View Source

 Link to this function

 cv_TM_CCOEFF_NORMED()

 View Source

 Link to this function

 cv_TM_CCORR()

 View Source

 Link to this function

 cv_TM_CCORR_NORMED()

 View Source

 Link to this function

 cv_TM_SQDIFF()

 View Source

 Link to this function

 cv_TM_SQDIFF_NORMED()

 View Source

 Link to this function

 cv_TRAIN_ERROR()

 View Source

 Link to this function

 cv_TRANSLATION()

 View Source

 Link to this function

 cv_TRIANGLE_FAN()

 View Source

 Link to this function

 cv_TRIANGLE_STRIP()

 View Source

 Link to this function

 cv_TRIANGLES()

 View Source

 Link to this function

 cv_TrackerKCF_CUSTOM()

 View Source

 Link to this function

 cv_TrackerKCF_GRAY()

 View Source

 Link to this function

 cv_TSDF()

 View Source

 Link to this function

 cv_TYPE_5_8()

 View Source

 Link to this function

 cv_TYPE_7_12()

 View Source

 Link to this function

 cv_TYPE_9_16()

 View Source

 Link to this function

 cv_TYPE_ACCELERATOR()

 View Source

 Link to this function

 cv_TYPE_ALL()

 View Source

 Link to this function

 cv_TYPE_CPU()

 View Source

 Link to this function

 cv_TYPE_DEFAULT()

 View Source

 Link to this function

 cv_TYPE_DGPU()

 View Source

 Link to this function

 cv_TYPE_GPU()

 View Source

 Link to this function

 cv_TYPE_IGPU()

 View Source

 Link to this function

 cv_TYPE_MASK()

 View Source

 Link to this function

 cv_UCHAR()

 View Source

 Link to this function

 cv_UINT64()

 View Source

 Link to this function

 cv_UMAT()

 View Source

 Link to this function

 cv_UMAT_USAGE_FLAGS_32BIT()

 View Source

 Link to this function

 cv_UNDEFINED()

 View Source

 Link to this function

 cv_UNIFORM()

 View Source

 Link to this function

 cv_UNKNOWN_VENDOR()

 View Source

 Link to this function

 cv_UNSIGNED_INT()

 View Source

 Link to this function

 cv_Uncompressed_NV12()

 View Source

 Link to this function

 cv_Uncompressed_UYVY()

 View Source

 Link to this function

 cv_Uncompressed_YUV420()

 View Source

 Link to this function

 cv_Uncompressed_YUYV()

 View Source

 Link to this function

 cv_Uncompressed_YV12()

 View Source

 Link to this function

 cv_UPDATE_MODEL()

 View Source

 Link to this function

 cv_UPDATE_WEIGHTS()

 View Source

 Link to this function

 cv_USAC_ACCURATE()

 View Source

 Link to this function

 cv_USAC_DEFAULT()

 View Source

 Link to this function

 cv_USAC_FAST()

 View Source

 Link to this function

 cv_USAC_FM_8PTS()

 View Source

 Link to this function

 cv_USAC_MAGSAC()

 View Source

 Link to this function

 cv_USAC_PARALLEL()

 View Source

 Link to this function

 cv_USAC_PROSAC()

 View Source

 Link to this function

 cv_USAGE_ALLOCATE_DEVICE_MEMORY()

 View Source

 Link to this function

 cv_USAGE_ALLOCATE_HOST_MEMORY()

 View Source

 Link to this function

 cv_USAGE_ALLOCATE_SHARED_MEMORY()

 View Source

 Link to this function

 cv_USAGE_DEFAULT()

 View Source

 Link to this function

 cv_USE_AVG()

 View Source

 Link to this function

 cv_USER_ALLOCATED()

 View Source

 Link to this function

 cv_VALUE_EXPECTED()

 View Source

 Link to this function

 cv_VAR_CATEGORICAL()

 View Source

 Link to this function

 cv_VAR_NUMERICAL()

 View Source

 Link to this function

 cv_VAR_ORDERED()

 View Source

 Link to this function

 cv_VC1()

 View Source

 Link to this function

 cv_VENDOR_AMD()

 View Source

 Link to this function

 cv_VENDOR_INTEL()

 View Source

 Link to this function

 cv_VENDOR_NVIDIA()

 View Source

 Link to this function

 cv_VIDEO_ACCELERATION_ANY()

 View Source

 Link to this function

 cv_VIDEO_ACCELERATION_D3D11()

 View Source

 Link to this function

 cv_VIDEO_ACCELERATION_MFX()

 View Source

 Link to this function

 cv_VIDEO_ACCELERATION_NONE()

 View Source

 Link to this function

 cv_VIDEO_ACCELERATION_VAAPI()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_DEPTH()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_FRAMEBYTES()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_HW_ACCELERATION()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_HW_ACCELERATION_USE_OPENCL()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_HW_DEVICE()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_IS_COLOR()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_KEY_FLAG()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_KEY_INTERVAL()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_NSTRIPES()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_QUALITY()

 View Source

 Link to this function

 cv_VIDEOWRITER_PROP_RAW_VIDEO()

 View Source

 Link to this function

 cv_VINYL18()

 View Source

 Link to this function

 cv_VideoReaderProps_PROP_NOT_SUPPORTED()

 View Source

 Link to this function

 cv_VORONOI_SEAM()

 View Source

 Link to this function

 cv_VP8()

 View Source

 Link to this function

 cv_VP9()

 View Source

 Link to this function

 cv_WARP_FILL_OUTLIERS()

 View Source

 Link to this function

 cv_WARP_INVERSE_MAP()

 View Source

 Link to this function

 cv_WARP_POLAR_LINEAR()

 View Source

 Link to this function

 cv_WARP_POLAR_LOG()

 View Source

 Link to this function

 cv_WARP_SHUFFLE_FUNCTIONS()

 View Source

 Link to this function

 cv_WAVE_CORRECT_AUTO()

 View Source

 Link to this function

 cv_WAVE_CORRECT_HORIZ()

 View Source

 Link to this function

 cv_WAVE_CORRECT_VERT()

 View Source

 Link to this function

 cv_Weave()

 View Source

 Link to this function

 cv_WINDOW_AUTOSIZE()

 View Source

 Link to this function

 cv_WINDOW_FREERATIO()

 View Source

 Link to this function

 cv_WINDOW_FULLSCREEN()

 View Source

 Link to this function

 cv_WINDOW_GUI_EXPANDED()

 View Source

 Link to this function

 cv_WINDOW_GUI_NORMAL()

 View Source

 Link to this function

 cv_WINDOW_KEEPRATIO()

 View Source

 Link to this function

 cv_WINDOW_NORMAL()

 View Source

 Link to this function

 cv_WINDOW_OPENGL()

 View Source

 Link to this function

 cv_WMF_COS()

 View Source

 Link to this function

 cv_WMF_EXP()

 View Source

 Link to this function

 cv_WMF_IV1()

 View Source

 Link to this function

 cv_WMF_IV2()

 View Source

 Link to this function

 cv_WMF_JAC()

 View Source

 Link to this function

 cv_WMF_OFF()

 View Source

 Link to this function

 cv_WND_PROP_ASPECT_RATIO()

 View Source

 Link to this function

 cv_WND_PROP_AUTOSIZE()

 View Source

 Link to this function

 cv_WND_PROP_FULLSCREEN()

 View Source

 Link to this function

 cv_WND_PROP_OPENGL()

 View Source

 Link to this function

 cv_WND_PROP_TOPMOST()

 View Source

 Link to this function

 cv_WND_PROP_VISIBLE()

 View Source

 Link to this function

 cv_WND_PROP_VSYNC()

 View Source

 Link to this function

 cv_WRITE()

 View Source

 Link to this function

 cv_WRITE_BASE64()

 View Source

 Link to this function

 cv_WRITE_COMBINED()

 View Source

 Link to this function

 cv_WRITE_ONLY()

 View Source

 Link to this function

 cv_X_ROW()

 View Source

 Link to this function

 cv_XYZ()

 View Source

 Link to this function

 cv_XYZRGB()

 View Source

 Link to this function

 cv_Y_ROW()

 View Source

 Link to this function

 cv_YUV420()

 View Source

 Link to this function

 cv_YUV422()

 View Source

 Link to this function

 cv_YUV444()

 View Source

 Evision.DISOpticalFlow - Evision v0.1.39

Evision.DISOpticalFlow

 Summary

 Types

 t()

 Type that represents an DISOpticalFlow struct.

 Functions

 create()

 Creates an instance of DISOpticalFlow

 create(opts)

 Creates an instance of DISOpticalFlow

 getFinestScale(self)

 Finest level of the Gaussian pyramid on which the flow is computed (zero level
corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.

 getGradientDescentIterations(self)

 Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
may improve quality in some cases.

 getPatchSize(self)

 Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
enough in most cases.

 getPatchStride(self)

 Stride between neighbor patches. Must be less than patch size. Lower values correspond
to higher flow quality.

 getUseMeanNormalization(self)

 Whether to use mean-normalization of patches when computing patch distance. It is turned on
by default as it typically provides a noticeable quality boost because of increased robustness to
illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
in illumination.

 getUseSpatialPropagation(self)

 Whether to use spatial propagation of good optical flow vectors. This option is turned on by
default, as it tends to work better on average and can sometimes help recover from major errors
introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
option off can make the output flow field a bit smoother, however.

 getVariationalRefinementAlpha(self)

 Weight of the smoothness term

 getVariationalRefinementDelta(self)

 Weight of the color constancy term

 getVariationalRefinementGamma(self)

 Weight of the gradient constancy term

 getVariationalRefinementIterations(self)

 Number of fixed point iterations of variational refinement per scale. Set to zero to
disable variational refinement completely. Higher values will typically result in more smooth and
high-quality flow.

 setFinestScale(self, val)

 setFinestScale

 setGradientDescentIterations(self, val)

 setGradientDescentIterations

 setPatchSize(self, val)

 setPatchSize

 setPatchStride(self, val)

 setPatchStride

 setUseMeanNormalization(self, val)

 setUseMeanNormalization

 setUseSpatialPropagation(self, val)

 setUseSpatialPropagation

 setVariationalRefinementAlpha(self, val)

 setVariationalRefinementAlpha

 setVariationalRefinementDelta(self, val)

 setVariationalRefinementDelta

 setVariationalRefinementGamma(self, val)

 setVariationalRefinementGamma

 setVariationalRefinementIterations(self, val)

 setVariationalRefinementIterations

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DISOpticalFlow{ref: reference()}

Type that represents an DISOpticalFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates an instance of DISOpticalFlow
Keyword Arguments
	preset: int.
one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM

Return
	retval: Evision.DISOpticalFlow.t()

Python prototype (for reference only):
create([, preset]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:preset, term()}] | nil) :: t() | {:error, String.t()}

Creates an instance of DISOpticalFlow
Keyword Arguments
	preset: int.
one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM

Return
	retval: Evision.DISOpticalFlow.t()

Python prototype (for reference only):
create([, preset]) -> retval

 Link to this function

 getFinestScale(self)

 View Source

 @spec getFinestScale(t()) :: integer() | {:error, String.t()}

Finest level of the Gaussian pyramid on which the flow is computed (zero level
corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: int

@see setFinestScale/2
Python prototype (for reference only):
getFinestScale() -> retval

 Link to this function

 getGradientDescentIterations(self)

 View Source

 @spec getGradientDescentIterations(t()) :: integer() | {:error, String.t()}

Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
may improve quality in some cases.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: int

@see setGradientDescentIterations/2
Python prototype (for reference only):
getGradientDescentIterations() -> retval

 Link to this function

 getPatchSize(self)

 View Source

 @spec getPatchSize(t()) :: integer() | {:error, String.t()}

Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
enough in most cases.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: int

@see setPatchSize/2
Python prototype (for reference only):
getPatchSize() -> retval

 Link to this function

 getPatchStride(self)

 View Source

 @spec getPatchStride(t()) :: integer() | {:error, String.t()}

Stride between neighbor patches. Must be less than patch size. Lower values correspond
to higher flow quality.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: int

@see setPatchStride/2
Python prototype (for reference only):
getPatchStride() -> retval

 Link to this function

 getUseMeanNormalization(self)

 View Source

 @spec getUseMeanNormalization(t()) :: boolean() | {:error, String.t()}

Whether to use mean-normalization of patches when computing patch distance. It is turned on
by default as it typically provides a noticeable quality boost because of increased robustness to
illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
in illumination.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: bool

@see setUseMeanNormalization/2
Python prototype (for reference only):
getUseMeanNormalization() -> retval

 Link to this function

 getUseSpatialPropagation(self)

 View Source

 @spec getUseSpatialPropagation(t()) :: boolean() | {:error, String.t()}

Whether to use spatial propagation of good optical flow vectors. This option is turned on by
default, as it tends to work better on average and can sometimes help recover from major errors
introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
option off can make the output flow field a bit smoother, however.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: bool

@see setUseSpatialPropagation/2
Python prototype (for reference only):
getUseSpatialPropagation() -> retval

 Link to this function

 getVariationalRefinementAlpha(self)

 View Source

 @spec getVariationalRefinementAlpha(t()) :: number() | {:error, String.t()}

Weight of the smoothness term
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: float

@see setVariationalRefinementAlpha/2
Python prototype (for reference only):
getVariationalRefinementAlpha() -> retval

 Link to this function

 getVariationalRefinementDelta(self)

 View Source

 @spec getVariationalRefinementDelta(t()) :: number() | {:error, String.t()}

Weight of the color constancy term
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: float

@see setVariationalRefinementDelta/2
Python prototype (for reference only):
getVariationalRefinementDelta() -> retval

 Link to this function

 getVariationalRefinementGamma(self)

 View Source

 @spec getVariationalRefinementGamma(t()) :: number() | {:error, String.t()}

Weight of the gradient constancy term
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: float

@see setVariationalRefinementGamma/2
Python prototype (for reference only):
getVariationalRefinementGamma() -> retval

 Link to this function

 getVariationalRefinementIterations(self)

 View Source

 @spec getVariationalRefinementIterations(t()) :: integer() | {:error, String.t()}

Number of fixed point iterations of variational refinement per scale. Set to zero to
disable variational refinement completely. Higher values will typically result in more smooth and
high-quality flow.
Positional Arguments
	self: Evision.DISOpticalFlow.t()

Return
	retval: int

@see setGradientDescentIterations/2
Python prototype (for reference only):
getVariationalRefinementIterations() -> retval

 Link to this function

 setFinestScale(self, val)

 View Source

 @spec setFinestScale(t(), integer()) :: t() | {:error, String.t()}

setFinestScale
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: int

@see getFinestScale/1
Python prototype (for reference only):
setFinestScale(val) -> None

 Link to this function

 setGradientDescentIterations(self, val)

 View Source

 @spec setGradientDescentIterations(t(), integer()) :: t() | {:error, String.t()}

setGradientDescentIterations
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: int

@see getGradientDescentIterations/1
Python prototype (for reference only):
setGradientDescentIterations(val) -> None

 Link to this function

 setPatchSize(self, val)

 View Source

 @spec setPatchSize(t(), integer()) :: t() | {:error, String.t()}

setPatchSize
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: int

@see getPatchSize/1
Python prototype (for reference only):
setPatchSize(val) -> None

 Link to this function

 setPatchStride(self, val)

 View Source

 @spec setPatchStride(t(), integer()) :: t() | {:error, String.t()}

setPatchStride
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: int

@see getPatchStride/1
Python prototype (for reference only):
setPatchStride(val) -> None

 Link to this function

 setUseMeanNormalization(self, val)

 View Source

 @spec setUseMeanNormalization(t(), boolean()) :: t() | {:error, String.t()}

setUseMeanNormalization
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: bool

@see getUseMeanNormalization/1
Python prototype (for reference only):
setUseMeanNormalization(val) -> None

 Link to this function

 setUseSpatialPropagation(self, val)

 View Source

 @spec setUseSpatialPropagation(t(), boolean()) :: t() | {:error, String.t()}

setUseSpatialPropagation
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: bool

@see getUseSpatialPropagation/1
Python prototype (for reference only):
setUseSpatialPropagation(val) -> None

 Link to this function

 setVariationalRefinementAlpha(self, val)

 View Source

 @spec setVariationalRefinementAlpha(t(), number()) :: t() | {:error, String.t()}

setVariationalRefinementAlpha
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: float

@see getVariationalRefinementAlpha/1
Python prototype (for reference only):
setVariationalRefinementAlpha(val) -> None

 Link to this function

 setVariationalRefinementDelta(self, val)

 View Source

 @spec setVariationalRefinementDelta(t(), number()) :: t() | {:error, String.t()}

setVariationalRefinementDelta
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: float

@see getVariationalRefinementDelta/1
Python prototype (for reference only):
setVariationalRefinementDelta(val) -> None

 Link to this function

 setVariationalRefinementGamma(self, val)

 View Source

 @spec setVariationalRefinementGamma(t(), number()) :: t() | {:error, String.t()}

setVariationalRefinementGamma
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: float

@see getVariationalRefinementGamma/1
Python prototype (for reference only):
setVariationalRefinementGamma(val) -> None

 Link to this function

 setVariationalRefinementIterations(self, val)

 View Source

 @spec setVariationalRefinementIterations(t(), integer()) :: t() | {:error, String.t()}

setVariationalRefinementIterations
Positional Arguments
	self: Evision.DISOpticalFlow.t()
	val: int

@see getGradientDescentIterations/1
Python prototype (for reference only):
setVariationalRefinementIterations(val) -> None

 Evision.DMatch - Evision v0.1.39

Evision.DMatch

 Summary

 Types

 t()

 Type that represents an DMatch struct.

 Functions

 dMatcher()

 DMatch

 dMatcher(queryIdx, trainIdx, distance)

 DMatch

 dMatcher(queryIdx, trainIdx, imgIdx, distance)

 DMatch

 get_distance(self)

 get_imgIdx(self)

 get_queryIdx(self)

 get_trainIdx(self)

 set_distance(self, prop)

 set_imgIdx(self, prop)

 set_queryIdx(self, prop)

 set_trainIdx(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DMatch{ref: reference()}

Type that represents an DMatch struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 dMatcher()

 View Source

 @spec dMatcher() :: t() | {:error, String.t()}

DMatch
Return
	self: Evision.DMatch.t()

Python prototype (for reference only):
DMatch() -> <DMatch object>

 Link to this function

 dMatcher(queryIdx, trainIdx, distance)

 View Source

 @spec dMatcher(integer(), integer(), number()) :: t() | {:error, String.t()}

DMatch
Positional Arguments
	queryIdx: int
	trainIdx: int
	distance: float

Return
	self: Evision.DMatch.t()

Python prototype (for reference only):
DMatch(_queryIdx, _trainIdx, _distance) -> <DMatch object>

 Link to this function

 dMatcher(queryIdx, trainIdx, imgIdx, distance)

 View Source

 @spec dMatcher(integer(), integer(), integer(), number()) ::
 t() | {:error, String.t()}

DMatch
Positional Arguments
	queryIdx: int
	trainIdx: int
	imgIdx: int
	distance: float

Return
	self: Evision.DMatch.t()

Python prototype (for reference only):
DMatch(_queryIdx, _trainIdx, _imgIdx, _distance) -> <DMatch object>

 Link to this function

 get_distance(self)

 View Source

 @spec get_distance(t()) :: number()

 Link to this function

 get_imgIdx(self)

 View Source

 @spec get_imgIdx(t()) :: integer()

 Link to this function

 get_queryIdx(self)

 View Source

 @spec get_queryIdx(t()) :: integer()

 Link to this function

 get_trainIdx(self)

 View Source

 @spec get_trainIdx(t()) :: integer()

 Link to this function

 set_distance(self, prop)

 View Source

 @spec set_distance(t(), number()) :: t()

 Link to this function

 set_imgIdx(self, prop)

 View Source

 @spec set_imgIdx(t(), integer()) :: t()

 Link to this function

 set_queryIdx(self, prop)

 View Source

 @spec set_queryIdx(t(), integer()) :: t()

 Link to this function

 set_trainIdx(self, prop)

 View Source

 @spec set_trainIdx(t(), integer()) :: t()

 Evision.DNN - Evision v0.1.39

Evision.DNN

 Summary

 Types

 t()

 Type that represents an DNN struct.

 Functions

 blobFromImage(image)

 Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.

 blobFromImage(image, opts)

 Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.

 blobFromImages(images)

 Creates 4-dimensional blob from series of images. Optionally resizes and
crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
swap Blue and Red channels.

 blobFromImages(images, opts)

 Creates 4-dimensional blob from series of images. Optionally resizes and
crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
swap Blue and Red channels.

 blobFromImagesWithParams(images)

 blobFromImagesWithParams

 blobFromImagesWithParams(images, opts)

 blobFromImagesWithParams

 blobFromImageWithParams(image)

 blobFromImageWithParams

 blobFromImageWithParams(image, opts)

 blobFromImageWithParams

 getAvailableTargets(be)

 getAvailableTargets

 imagesFromBlob(blob_)

 Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
(std::vector<cv::Mat>).

 imagesFromBlob(blob_, opts)

 Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
(std::vector<cv::Mat>).

 nmsBoxes(bboxes, scores, score_threshold, nms_threshold)

 Performs non maximum suppression given boxes and corresponding scores.

 nmsBoxes(bboxes, scores, score_threshold, nms_threshold, opts)

 Performs non maximum suppression given boxes and corresponding scores.

 nmsBoxesBatched(bboxes, scores, class_ids, score_threshold, nms_threshold)

 Performs batched non maximum suppression on given boxes and corresponding scores across different classes.

 nmsBoxesBatched(bboxes, scores, class_ids, score_threshold, nms_threshold, opts)

 Performs batched non maximum suppression on given boxes and corresponding scores across different classes.

 nmsBoxesRotated(bboxes, scores, score_threshold, nms_threshold)

 NMSBoxesRotated

 nmsBoxesRotated(bboxes, scores, score_threshold, nms_threshold, opts)

 NMSBoxesRotated

 readNet(model)

 Read deep learning network represented in one of the supported formats.

 readNet(model, opts)

 Variant 1:
Read deep learning network represented in one of the supported formats.

 readNet(framework, bufferModel, opts)

 Read deep learning network represented in one of the supported formats.

 readNetFromCaffe(prototxt)

 Reads a network model stored in Caffe framework's format.

 readNetFromCaffe(prototxt, opts)

 Reads a network model stored in Caffe framework's format.

 readNetFromCaffeBuffer(bufferProto)

 Reads a network model stored in Caffe model in memory.

 readNetFromCaffeBuffer(bufferProto, opts)

 Reads a network model stored in Caffe model in memory.

 readNetFromDarknet(cfgFile)

 Reads a network model stored in Darknet model files.

 readNetFromDarknet(cfgFile, opts)

 Reads a network model stored in Darknet model files.

 readNetFromDarknetBuffer(bufferCfg)

 Reads a network model stored in Darknet model files.

 readNetFromDarknetBuffer(bufferCfg, opts)

 Reads a network model stored in Darknet model files.

 readNetFromModelOptimizer(xml)

 Load a network from Intel's Model Optimizer intermediate representation.

 readNetFromModelOptimizer(xml, opts)

 Load a network from Intel's Model Optimizer intermediate representation.

 readNetFromModelOptimizerBuffer(bufferModelConfig, bufferWeights)

 Load a network from Intel's Model Optimizer intermediate representation.

 readNetFromONNX(onnxFile)

 Reads a network model ONNX.

 readNetFromONNXBuffer(buffer)

 Reads a network model from ONNX
in-memory buffer.

 readNetFromTensorflow(model)

 Reads a network model stored in TensorFlow framework's format.

 readNetFromTensorflow(model, opts)

 Reads a network model stored in TensorFlow framework's format.

 readNetFromTensorflowBuffer(bufferModel)

 Reads a network model stored in TensorFlow framework's format.

 readNetFromTensorflowBuffer(bufferModel, opts)

 Reads a network model stored in TensorFlow framework's format.

 readNetFromTFLite(model)

 Reads a network model stored in TFLite framework's format.

 readNetFromTFLiteBuffer(bufferModel)

 Reads a network model stored in TFLite framework's format.

 readNetFromTorch(model)

 Reads a network model stored in Torch7 framework's format.

 readNetFromTorch(model, opts)

 Reads a network model stored in Torch7 framework's format.

 readTensorFromONNX(path)

 Creates blob from .pb file.

 readTorchBlob(filename)

 Loads blob which was serialized as torch.Tensor object of Torch7 framework.

 readTorchBlob(filename, opts)

 Loads blob which was serialized as torch.Tensor object of Torch7 framework.

 shrinkCaffeModel(src, dst)

 Convert all weights of Caffe network to half precision floating point.

 shrinkCaffeModel(src, dst, opts)

 Convert all weights of Caffe network to half precision floating point.

 softNMSBoxes(bboxes, scores, score_threshold, nms_threshold)

 Performs soft non maximum suppression given boxes and corresponding scores.
Reference: https://arxiv.org/abs/1704.04503

 softNMSBoxes(bboxes, scores, score_threshold, nms_threshold, opts)

 Performs soft non maximum suppression given boxes and corresponding scores.
Reference: https://arxiv.org/abs/1704.04503

 writeTextGraph(model, output)

 Create a text representation for a binary network stored in protocol buffer format.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN{ref: reference()}

Type that represents an DNN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blobFromImage(image)

 View Source

 @spec blobFromImage(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
Positional Arguments
	image: Evision.Mat.t().
input image (with 1-, 3- or 4-channels).

Keyword Arguments
	scalefactor: double.
multiplier for @p images values.

	size: Size.
spatial size for output image

	mean: Scalar.
scalar with mean values which are subtracted from channels. Values are intended
to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.

	swapRB: bool.
flag which indicates that swap first and last channels
in 3-channel image is necessary.

	crop: bool.
flag which indicates whether image will be cropped after resize or not

	ddepth: int.
Depth of output blob. Choose CV_32F or CV_8U.

Return
	retval: Evision.Mat.t()

@details if @p crop is true, input image is resized so one side after resize is equal to corresponding
 dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
 If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
@returns 4-dimensional Mat with NCHW dimensions order.
Note:
 The order and usage of scalefactor and mean are (input - mean) * scalefactor.
Python prototype (for reference only):
blobFromImage(image[, scalefactor[, size[, mean[, swapRB[, crop[, ddepth]]]]]]) -> retval

 Link to this function

 blobFromImage(image, opts)

 View Source

 @spec blobFromImage(
 Evision.Mat.maybe_mat_in(),
 [
 mean: term(),
 crop: term(),
 scalefactor: term(),
 size: term(),
 ddepth: term(),
 swapRB: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
Positional Arguments
	image: Evision.Mat.t().
input image (with 1-, 3- or 4-channels).

Keyword Arguments
	scalefactor: double.
multiplier for @p images values.

	size: Size.
spatial size for output image

	mean: Scalar.
scalar with mean values which are subtracted from channels. Values are intended
to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.

	swapRB: bool.
flag which indicates that swap first and last channels
in 3-channel image is necessary.

	crop: bool.
flag which indicates whether image will be cropped after resize or not

	ddepth: int.
Depth of output blob. Choose CV_32F or CV_8U.

Return
	retval: Evision.Mat.t()

@details if @p crop is true, input image is resized so one side after resize is equal to corresponding
 dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
 If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
@returns 4-dimensional Mat with NCHW dimensions order.
Note:
 The order and usage of scalefactor and mean are (input - mean) * scalefactor.
Python prototype (for reference only):
blobFromImage(image[, scalefactor[, size[, mean[, swapRB[, crop[, ddepth]]]]]]) -> retval

 Link to this function

 blobFromImages(images)

 View Source

 @spec blobFromImages([Evision.Mat.maybe_mat_in()]) ::
 Evision.Mat.t() | {:error, String.t()}

Creates 4-dimensional blob from series of images. Optionally resizes and
crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
swap Blue and Red channels.
Positional Arguments
	images: [Evision.Mat].
input images (all with 1-, 3- or 4-channels).

Keyword Arguments
	scalefactor: double.
multiplier for @p images values.

	size: Size.
spatial size for output image

	mean: Scalar.
scalar with mean values which are subtracted from channels. Values are intended
to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.

	swapRB: bool.
flag which indicates that swap first and last channels
in 3-channel image is necessary.

	crop: bool.
flag which indicates whether image will be cropped after resize or not

	ddepth: int.
Depth of output blob. Choose CV_32F or CV_8U.

Return
	retval: Evision.Mat.t()

@details if @p crop is true, input image is resized so one side after resize is equal to corresponding
 dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
 If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
@returns 4-dimensional Mat with NCHW dimensions order.
Note:
 The order and usage of scalefactor and mean are (input - mean) * scalefactor.
Python prototype (for reference only):
blobFromImages(images[, scalefactor[, size[, mean[, swapRB[, crop[, ddepth]]]]]]) -> retval

 Link to this function

 blobFromImages(images, opts)

 View Source

 @spec blobFromImages(
 [Evision.Mat.maybe_mat_in()],
 [
 mean: term(),
 crop: term(),
 scalefactor: term(),
 size: term(),
 ddepth: term(),
 swapRB: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Creates 4-dimensional blob from series of images. Optionally resizes and
crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
swap Blue and Red channels.
Positional Arguments
	images: [Evision.Mat].
input images (all with 1-, 3- or 4-channels).

Keyword Arguments
	scalefactor: double.
multiplier for @p images values.

	size: Size.
spatial size for output image

	mean: Scalar.
scalar with mean values which are subtracted from channels. Values are intended
to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.

	swapRB: bool.
flag which indicates that swap first and last channels
in 3-channel image is necessary.

	crop: bool.
flag which indicates whether image will be cropped after resize or not

	ddepth: int.
Depth of output blob. Choose CV_32F or CV_8U.

Return
	retval: Evision.Mat.t()

@details if @p crop is true, input image is resized so one side after resize is equal to corresponding
 dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
 If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
@returns 4-dimensional Mat with NCHW dimensions order.
Note:
 The order and usage of scalefactor and mean are (input - mean) * scalefactor.
Python prototype (for reference only):
blobFromImages(images[, scalefactor[, size[, mean[, swapRB[, crop[, ddepth]]]]]]) -> retval

 Link to this function

 blobFromImagesWithParams(images)

 View Source

 @spec blobFromImagesWithParams([Evision.Mat.maybe_mat_in()]) ::
 Evision.Mat.t() | {:error, String.t()}

blobFromImagesWithParams
Positional Arguments
	images: [Evision.Mat]

Keyword Arguments
	param: Image2BlobParams.

Return
	blob: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
blobFromImagesWithParams(images[, blob[, param]]) -> blob

 Link to this function

 blobFromImagesWithParams(images, opts)

 View Source

 @spec blobFromImagesWithParams([Evision.Mat.maybe_mat_in()], [{:param, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

blobFromImagesWithParams
Positional Arguments
	images: [Evision.Mat]

Keyword Arguments
	param: Image2BlobParams.

Return
	blob: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
blobFromImagesWithParams(images[, blob[, param]]) -> blob

 Link to this function

 blobFromImageWithParams(image)

 View Source

 @spec blobFromImageWithParams(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

blobFromImageWithParams
Positional Arguments
	image: Evision.Mat.t()

Keyword Arguments
	param: Image2BlobParams.

Return
	blob: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
blobFromImageWithParams(image[, blob[, param]]) -> blob

 Link to this function

 blobFromImageWithParams(image, opts)

 View Source

 @spec blobFromImageWithParams(Evision.Mat.maybe_mat_in(), [{:param, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

blobFromImageWithParams
Positional Arguments
	image: Evision.Mat.t()

Keyword Arguments
	param: Image2BlobParams.

Return
	blob: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
blobFromImageWithParams(image[, blob[, param]]) -> blob

 Link to this function

 getAvailableTargets(be)

 View Source

 @spec getAvailableTargets(integer()) :: [integer()] | {:error, String.t()}

getAvailableTargets
Positional Arguments
	be: dnn_Backend

Return
	retval: [Target]

Python prototype (for reference only):
getAvailableTargets(be) -> retval

 Link to this function

 imagesFromBlob(blob_)

 View Source

 @spec imagesFromBlob(Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
(std::vector<cv::Mat>).
Positional Arguments
	blob_: Evision.Mat.t().
4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
which you would like to extract the images.

Return
	images_: [Evision.Mat].
array of 2D Mat containing the images extracted from the blob in floating point precision
(CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).

Python prototype (for reference only):
imagesFromBlob(blob_[, images_]) -> images_

 Link to this function

 imagesFromBlob(blob_, opts)

 View Source

 @spec imagesFromBlob(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
(std::vector<cv::Mat>).
Positional Arguments
	blob_: Evision.Mat.t().
4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
which you would like to extract the images.

Return
	images_: [Evision.Mat].
array of 2D Mat containing the images extracted from the blob in floating point precision
(CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).

Python prototype (for reference only):
imagesFromBlob(blob_[, images_]) -> images_

 Link to this function

 nmsBoxes(bboxes, scores, score_threshold, nms_threshold)

 View Source

 @spec nmsBoxes(
 [{number(), number(), number(), number()}] | Evision.Mat.t() | Nx.Tensor.t(),
 [number()],
 number(),
 number()
) :: [integer()] | {:error, String.t()}

Performs non maximum suppression given boxes and corresponding scores.
Positional Arguments
	bboxes: [Rect2d], Nx.Tensor.t(), Evision.Mat.t()..
 a set of bounding boxes to apply NMS.

	scores: [float].
 a set of corresponding confidences.

	score_threshold: float.
 a threshold used to filter boxes by score.

	nms_threshold: float.
 a threshold used in non maximum suppression.

Keyword Arguments
	eta: float.

 Evision.DNN.ClassificationModel - Evision v0.1.39

Evision.DNN.ClassificationModel

 Summary

 Types

 t()

 Type that represents an DNN.ClassificationModel struct.

 Functions

 classificationModel(network)

 Variant 1:
Create model from deep learning network.

 classificationModel(model, opts)

 Create classification model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 classify(self, frame)

 classify

 enableWinograd(self, useWinograd)

 enableWinograd

 getEnableSoftmaxPostProcessing(self)

 Get enable/disable softmax post processing option.

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setEnableSoftmaxPostProcessing(self, enable)

 Set enable/disable softmax post processing option.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.ClassificationModel{ref: reference()}

Type that represents an DNN.ClassificationModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 classificationModel(network)

 View Source

 @spec classificationModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

 @spec classificationModel(binary()) :: t() | {:error, String.t()}

Variant 1:
Create model from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.ClassificationModel.t()

Python prototype (for reference only):
ClassificationModel(network) -> <dnn_ClassificationModel object>
Variant 2:
Create classification model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.ClassificationModel.t()

Python prototype (for reference only):
ClassificationModel(model[, config]) -> <dnn_ClassificationModel object>

 Link to this function

 classificationModel(model, opts)

 View Source

 @spec classificationModel(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create classification model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.ClassificationModel.t()

Python prototype (for reference only):
ClassificationModel(model[, config]) -> <dnn_ClassificationModel object>

 Link to this function

 classify(self, frame)

 View Source

 @spec classify(t(), Evision.Mat.maybe_mat_in()) ::
 {integer(), number()} | {:error, String.t()}

classify
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	frame: Evision.Mat.t()

Return
	classId: int
	conf: float

Has overloading in C++
Python prototype (for reference only):
classify(frame) -> classId, conf

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 getEnableSoftmaxPostProcessing(self)

 View Source

 @spec getEnableSoftmaxPostProcessing(t()) :: boolean() | {:error, String.t()}

Get enable/disable softmax post processing option.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

Return
	retval: bool

 This option defaults to false, softmax post processing is not applied within the classify() function.
Python prototype (for reference only):
getEnableSoftmaxPostProcessing() -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setEnableSoftmaxPostProcessing(self, enable)

 View Source

 @spec setEnableSoftmaxPostProcessing(t(), boolean()) :: t() | {:error, String.t()}

Set enable/disable softmax post processing option.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	enable: bool.
Set enable softmax post processing within the classify() function.

Return
	retval: Evision.DNN.ClassificationModel.t()

 If this option is true, softmax is applied after forward inference within the classify() function
 to convert the confidences range to [0.0-1.0].
 This function allows you to toggle this behavior.
 Please turn true when not contain softmax layer in model.
Python prototype (for reference only):
setEnableSoftmaxPostProcessing(enable) -> retval

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), size: term(), scale: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.ClassificationModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.DetectionModel - Evision v0.1.39

Evision.DNN.DetectionModel

 Summary

 Types

 t()

 Type that represents an DNN.DetectionModel struct.

 Functions

 detect(self, frame)

 Given the @p input frame, create input blob, run net and return result detections.

 detect(self, frame, opts)

 Given the @p input frame, create input blob, run net and return result detections.

 detectionModel(network)

 Variant 1:
Create model from deep learning network.

 detectionModel(model, opts)

 Create detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 enableWinograd(self, useWinograd)

 enableWinograd

 getNmsAcrossClasses(self)

 Getter for nmsAcrossClasses. This variable defaults to false,
such that when non max suppression is used during the detect() function, it will do so only per-class

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setNmsAcrossClasses(self, value)

 nmsAcrossClasses defaults to false,
such that when non max suppression is used during the detect() function, it will do so per-class.
This function allows you to toggle this behaviour.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.DetectionModel{ref: reference()}

Type that represents an DNN.DetectionModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detect(self, frame)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {[integer()], [number()], [{number(), number(), number(), number()}]}
 | {:error, String.t()}

Given the @p input frame, create input blob, run net and return result detections.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	frame: Evision.Mat.t()

Keyword Arguments
	confThreshold: float.
A threshold used to filter boxes by confidences.

	nmsThreshold: float.
A threshold used in non maximum suppression.

Return
	classIds: [int].
Class indexes in result detection.

	confidences: [float].
A set of corresponding confidences.

	boxes: [Rect].
A set of bounding boxes.

Python prototype (for reference only):
detect(frame[, confThreshold[, nmsThreshold]]) -> classIds, confidences, boxes

 Link to this function

 detect(self, frame, opts)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 [nmsThreshold: term(), confThreshold: term()] | nil
) ::
 {[integer()], [number()], [{number(), number(), number(), number()}]}
 | {:error, String.t()}

Given the @p input frame, create input blob, run net and return result detections.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	frame: Evision.Mat.t()

Keyword Arguments
	confThreshold: float.
A threshold used to filter boxes by confidences.

	nmsThreshold: float.
A threshold used in non maximum suppression.

Return
	classIds: [int].
Class indexes in result detection.

	confidences: [float].
A set of corresponding confidences.

	boxes: [Rect].
A set of bounding boxes.

Python prototype (for reference only):
detect(frame[, confThreshold[, nmsThreshold]]) -> classIds, confidences, boxes

 Link to this function

 detectionModel(network)

 View Source

 @spec detectionModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

 @spec detectionModel(binary()) :: t() | {:error, String.t()}

Variant 1:
Create model from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.DetectionModel.t()

Python prototype (for reference only):
DetectionModel(network) -> <dnn_DetectionModel object>
Variant 2:
Create detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.DetectionModel.t()

Python prototype (for reference only):
DetectionModel(model[, config]) -> <dnn_DetectionModel object>

 Link to this function

 detectionModel(model, opts)

 View Source

 @spec detectionModel(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.DetectionModel.t()

Python prototype (for reference only):
DetectionModel(model[, config]) -> <dnn_DetectionModel object>

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 getNmsAcrossClasses(self)

 View Source

 @spec getNmsAcrossClasses(t()) :: boolean() | {:error, String.t()}

Getter for nmsAcrossClasses. This variable defaults to false,
such that when non max suppression is used during the detect() function, it will do so only per-class
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

Return
	retval: bool

Python prototype (for reference only):
getNmsAcrossClasses() -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), size: term(), scale: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setNmsAcrossClasses(self, value)

 View Source

 @spec setNmsAcrossClasses(t(), boolean()) :: t() | {:error, String.t()}

nmsAcrossClasses defaults to false,
such that when non max suppression is used during the detect() function, it will do so per-class.
This function allows you to toggle this behaviour.
Positional Arguments
	self: Evision.DNN.DetectionModel.t()

	value: bool.
The new value for nmsAcrossClasses

Return
	retval: Evision.DNN.DetectionModel.t()

Python prototype (for reference only):
setNmsAcrossClasses(value) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.DetectionModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.DictValue - Evision v0.1.39

Evision.DNN.DictValue

 Summary

 Types

 t()

 Type that represents an DNN.DictValue struct.

 Functions

 dictValue(s)

 Variant 1:
DictValue

 getIntValue(self)

 getIntValue

 getIntValue(self, opts)

 getIntValue

 getRealValue(self)

 getRealValue

 getRealValue(self, opts)

 getRealValue

 getStringValue(self)

 getStringValue

 getStringValue(self, opts)

 getStringValue

 isInt(self)

 isInt

 isReal(self)

 isReal

 isString(self)

 isString

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.DictValue{ref: reference()}

Type that represents an DNN.DictValue struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 dictValue(s)

 View Source

 @spec dictValue(binary()) :: t() | {:error, String.t()}

 @spec dictValue(number()) :: t() | {:error, String.t()}

 @spec dictValue(integer()) :: t() | {:error, String.t()}

Variant 1:
DictValue
Positional Arguments
	s: String

Return
	self: Evision.DNN.DictValue.t()

Python prototype (for reference only):
DictValue(s) -> <dnn_DictValue object>
Variant 2:
DictValue
Positional Arguments
	p: double

Return
	self: Evision.DNN.DictValue.t()

Python prototype (for reference only):
DictValue(p) -> <dnn_DictValue object>
Variant 3:
DictValue
Positional Arguments
	i: int

Return
	self: Evision.DNN.DictValue.t()

Python prototype (for reference only):
DictValue(i) -> <dnn_DictValue object>

 Link to this function

 getIntValue(self)

 View Source

 @spec getIntValue(t()) :: integer() | {:error, String.t()}

getIntValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: int

Python prototype (for reference only):
getIntValue([, idx]) -> retval

 Link to this function

 getIntValue(self, opts)

 View Source

 @spec getIntValue(t(), [{:idx, term()}] | nil) :: integer() | {:error, String.t()}

getIntValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: int

Python prototype (for reference only):
getIntValue([, idx]) -> retval

 Link to this function

 getRealValue(self)

 View Source

 @spec getRealValue(t()) :: number() | {:error, String.t()}

getRealValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: double

Python prototype (for reference only):
getRealValue([, idx]) -> retval

 Link to this function

 getRealValue(self, opts)

 View Source

 @spec getRealValue(t(), [{:idx, term()}] | nil) :: number() | {:error, String.t()}

getRealValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: double

Python prototype (for reference only):
getRealValue([, idx]) -> retval

 Link to this function

 getStringValue(self)

 View Source

 @spec getStringValue(t()) :: binary() | {:error, String.t()}

getStringValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: String

Python prototype (for reference only):
getStringValue([, idx]) -> retval

 Link to this function

 getStringValue(self, opts)

 View Source

 @spec getStringValue(t(), [{:idx, term()}] | nil) :: binary() | {:error, String.t()}

getStringValue
Positional Arguments
	self: Evision.DNN.DictValue.t()

Keyword Arguments
	idx: int.

Return
	retval: String

Python prototype (for reference only):
getStringValue([, idx]) -> retval

 Link to this function

 isInt(self)

 View Source

 @spec isInt(t()) :: boolean() | {:error, String.t()}

isInt
Positional Arguments
	self: Evision.DNN.DictValue.t()

Return
	retval: bool

Python prototype (for reference only):
isInt() -> retval

 Link to this function

 isReal(self)

 View Source

 @spec isReal(t()) :: boolean() | {:error, String.t()}

isReal
Positional Arguments
	self: Evision.DNN.DictValue.t()

Return
	retval: bool

Python prototype (for reference only):
isReal() -> retval

 Link to this function

 isString(self)

 View Source

 @spec isString(t()) :: boolean() | {:error, String.t()}

isString
Positional Arguments
	self: Evision.DNN.DictValue.t()

Return
	retval: bool

Python prototype (for reference only):
isString() -> retval

 Evision.DNN.Image2BlobParams - Evision v0.1.39

Evision.DNN.Image2BlobParams

 Summary

 Types

 t()

 Type that represents an DNN.Image2BlobParams struct.

 Functions

 blobRectsToImageRects(self, rBlob, size)

 Get rectangle coordinates in original image system from rectangle in blob coordinates.

 blobRectToImageRect(self, rBlob, size)

 Get rectangle coordinates in original image system from rectangle in blob coordinates.

 get_borderValue(self)

 get_datalayout(self)

 get_ddepth(self)

 get_mean(self)

 get_paddingmode(self)

 get_scalefactor(self)

 get_size(self)

 get_swapRB(self)

 image2BlobParams()

 Image2BlobParams

 image2BlobParams(scalefactor)

 Image2BlobParams

 image2BlobParams(scalefactor, opts)

 Image2BlobParams

 set_borderValue(self, prop)

 set_datalayout(self, prop)

 set_ddepth(self, prop)

 set_mean(self, prop)

 set_paddingmode(self, prop)

 set_scalefactor(self, prop)

 set_size(self, prop)

 set_swapRB(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.Image2BlobParams{ref: reference()}

Type that represents an DNN.Image2BlobParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blobRectsToImageRects(self, rBlob, size)

 View Source

 @spec blobRectsToImageRects(
 t(),
 [{number(), number(), number(), number()}],
 {number(), number()}
) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Get rectangle coordinates in original image system from rectangle in blob coordinates.
Positional Arguments
	self: Evision.DNN.Image2BlobParams.t()

	rBlob: [Rect].
rect in blob coordinates.

	size: Size.
original input image size.

Return
	rImg: [Rect].
result rect in image coordinates.

Python prototype (for reference only):
blobRectsToImageRects(rBlob, size) -> rImg

 Link to this function

 blobRectToImageRect(self, rBlob, size)

 View Source

 @spec blobRectToImageRect(
 t(),
 {number(), number(), number(), number()},
 {number(), number()}
) ::
 {number(), number(), number(), number()} | {:error, String.t()}

Get rectangle coordinates in original image system from rectangle in blob coordinates.
Positional Arguments
	self: Evision.DNN.Image2BlobParams.t()

	rBlob: Rect.
rect in blob coordinates.

	size: Size.
original input image size.

Return
	retval: Rect

@returns rectangle in original image coordinates.
Python prototype (for reference only):
blobRectToImageRect(rBlob, size) -> retval

 Link to this function

 get_borderValue(self)

 View Source

 @spec get_borderValue(t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}

 Link to this function

 get_datalayout(self)

 View Source

 @spec get_datalayout(t()) :: integer()

 Link to this function

 get_ddepth(self)

 View Source

 @spec get_ddepth(t()) :: integer()

 Link to this function

 get_mean(self)

 View Source

 @spec get_mean(t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}

 Link to this function

 get_paddingmode(self)

 View Source

 @spec get_paddingmode(t()) :: integer()

 Link to this function

 get_scalefactor(self)

 View Source

 @spec get_scalefactor(t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}

 Link to this function

 get_size(self)

 View Source

 @spec get_size(t()) :: {number(), number()}

 Link to this function

 get_swapRB(self)

 View Source

 @spec get_swapRB(t()) :: boolean()

 Link to this function

 image2BlobParams()

 View Source

 @spec image2BlobParams() :: t() | {:error, String.t()}

Image2BlobParams
Return
	self: Image2BlobParams

Python prototype (for reference only):
Image2BlobParams() -> <dnn_Image2BlobParams object>

 Link to this function

 image2BlobParams(scalefactor)

 View Source

 @spec image2BlobParams(
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

Image2BlobParams
Positional Arguments
	scalefactor: Scalar

Keyword Arguments
	size: Size.
	mean: Scalar.
	swapRB: bool.
	ddepth: int.
	datalayout: DataLayout.
	mode: ImagePaddingMode.
	borderValue: Scalar.

Return
	self: Image2BlobParams

Python prototype (for reference only):
Image2BlobParams(scalefactor[, size[, mean[, swapRB[, ddepth[, datalayout[, mode[, borderValue]]]]]]]) -> <dnn_Image2BlobParams object>

 Link to this function

 image2BlobParams(scalefactor, opts)

 View Source

 @spec image2BlobParams(
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [
 mean: term(),
 size: term(),
 ddepth: term(),
 mode: term(),
 datalayout: term(),
 borderValue: term(),
 swapRB: term()
]
 | nil
) :: t() | {:error, String.t()}

Image2BlobParams
Positional Arguments
	scalefactor: Scalar

Keyword Arguments
	size: Size.
	mean: Scalar.
	swapRB: bool.
	ddepth: int.
	datalayout: DataLayout.
	mode: ImagePaddingMode.
	borderValue: Scalar.

Return
	self: Image2BlobParams

Python prototype (for reference only):
Image2BlobParams(scalefactor[, size[, mean[, swapRB[, ddepth[, datalayout[, mode[, borderValue]]]]]]]) -> <dnn_Image2BlobParams object>

 Link to this function

 set_borderValue(self, prop)

 View Source

 @spec set_borderValue(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t()

 Link to this function

 set_datalayout(self, prop)

 View Source

 @spec set_datalayout(t(), integer()) :: t()

 Link to this function

 set_ddepth(self, prop)

 View Source

 @spec set_ddepth(t(), integer()) :: t()

 Link to this function

 set_mean(self, prop)

 View Source

 @spec set_mean(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t()

 Link to this function

 set_paddingmode(self, prop)

 View Source

 @spec set_paddingmode(t(), integer()) :: t()

 Link to this function

 set_scalefactor(self, prop)

 View Source

 @spec set_scalefactor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t()

 Link to this function

 set_size(self, prop)

 View Source

 @spec set_size(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_swapRB(self, prop)

 View Source

 @spec set_swapRB(t(), boolean()) :: t()

 Evision.DNN.KeypointsModel - Evision v0.1.39

Evision.DNN.KeypointsModel

 Summary

 Types

 t()

 Type that represents an DNN.KeypointsModel struct.

 Functions

 enableWinograd(self, useWinograd)

 enableWinograd

 estimate(self, frame)

 Given the @p input frame, create input blob, run net

 estimate(self, frame, opts)

 Given the @p input frame, create input blob, run net

 keypointsModel(network)

 Variant 1:
Create model from deep learning network.

 keypointsModel(model, opts)

 Create keypoints model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.KeypointsModel{ref: reference()}

Type that represents an DNN.KeypointsModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 estimate(self, frame)

 View Source

 @spec estimate(t(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number()}] | {:error, String.t()}

Given the @p input frame, create input blob, run net
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	frame: Evision.Mat.t()

Keyword Arguments
	thresh: float.
minimum confidence threshold to select a keypoint

Return
	retval: [Point2f]

@returns a vector holding the x and y coordinates of each detected keypoint
Python prototype (for reference only):
estimate(frame[, thresh]) -> retval

 Link to this function

 estimate(self, frame, opts)

 View Source

 @spec estimate(t(), Evision.Mat.maybe_mat_in(), [{:thresh, term()}] | nil) ::
 [{number(), number()}] | {:error, String.t()}

Given the @p input frame, create input blob, run net
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	frame: Evision.Mat.t()

Keyword Arguments
	thresh: float.
minimum confidence threshold to select a keypoint

Return
	retval: [Point2f]

@returns a vector holding the x and y coordinates of each detected keypoint
Python prototype (for reference only):
estimate(frame[, thresh]) -> retval

 Link to this function

 keypointsModel(network)

 View Source

 @spec keypointsModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

 @spec keypointsModel(binary()) :: t() | {:error, String.t()}

Variant 1:
Create model from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.KeypointsModel.t()

Python prototype (for reference only):
KeypointsModel(network) -> <dnn_KeypointsModel object>
Variant 2:
Create keypoints model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.KeypointsModel.t()

Python prototype (for reference only):
KeypointsModel(model[, config]) -> <dnn_KeypointsModel object>

 Link to this function

 keypointsModel(model, opts)

 View Source

 @spec keypointsModel(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create keypoints model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.KeypointsModel.t()

Python prototype (for reference only):
KeypointsModel(model[, config]) -> <dnn_KeypointsModel object>

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), size: term(), scale: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.KeypointsModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.Layer - Evision v0.1.39

Evision.DNN.Layer

 Summary

 Types

 t()

 Type that represents an DNN.Layer struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 finalize(self, inputs)

 Computes and sets internal parameters according to inputs, outputs and blobs.

 finalize(self, inputs, opts)

 Computes and sets internal parameters according to inputs, outputs and blobs.

 get_blobs(self)

 get_name(self)

 get_preferableTarget(self)

 get_type(self)

 getDefaultName(self)

 getDefaultName

 outputNameToIndex(self, outputName)

 Returns index of output blob in output array.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 run(self, inputs, internals)

 Allocates layer and computes output.

 run(self, inputs, internals, opts)

 Allocates layer and computes output.

 save(self, filename)

 save

 set_blobs(self, prop)

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.Layer{ref: reference()}

Type that represents an DNN.Layer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.DNN.Layer.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.DNN.Layer.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 finalize(self, inputs)

 View Source

 @spec finalize(t(), [Evision.Mat.maybe_mat_in()]) ::
 [Evision.Mat.t()] | {:error, String.t()}

Computes and sets internal parameters according to inputs, outputs and blobs.
Positional Arguments
	self: Evision.DNN.Layer.t()
	inputs: [Evision.Mat]

Return
	outputs: [Evision.Mat].
vector of already allocated output blobs

 If this method is called after network has allocated all memory for input and output blobs
 and before inferencing.
Python prototype (for reference only):
finalize(inputs[, outputs]) -> outputs

 Link to this function

 finalize(self, inputs, opts)

 View Source

 @spec finalize(t(), [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Computes and sets internal parameters according to inputs, outputs and blobs.
Positional Arguments
	self: Evision.DNN.Layer.t()
	inputs: [Evision.Mat]

Return
	outputs: [Evision.Mat].
vector of already allocated output blobs

 If this method is called after network has allocated all memory for input and output blobs
 and before inferencing.
Python prototype (for reference only):
finalize(inputs[, outputs]) -> outputs

 Link to this function

 get_blobs(self)

 View Source

 @spec get_blobs(t()) :: [Evision.Mat.t()]

 Link to this function

 get_name(self)

 View Source

 @spec get_name(t()) :: binary()

 Link to this function

 get_preferableTarget(self)

 View Source

 @spec get_preferableTarget(t()) :: integer()

 Link to this function

 get_type(self)

 View Source

 @spec get_type(t()) :: binary()

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.DNN.Layer.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 outputNameToIndex(self, outputName)

 View Source

 @spec outputNameToIndex(t(), binary()) :: integer() | {:error, String.t()}

Returns index of output blob in output array.
Positional Arguments
	self: Evision.DNN.Layer.t()
	outputName: String

Return
	retval: int

@see inputNameToIndex()
Python prototype (for reference only):
outputNameToIndex(outputName) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.DNN.Layer.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 run(self, inputs, internals)

 View Source

 @spec run(t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()]) ::
 {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Allocates layer and computes output.
Positional Arguments
	self: Evision.DNN.Layer.t()
	inputs: [Evision.Mat]

Return
	outputs: [Evision.Mat].
	internals: [Evision.Mat]

@deprecated This method will be removed in the future release.
Python prototype (for reference only):
run(inputs, internals[, outputs]) -> outputs, internals

 Link to this function

 run(self, inputs, internals, opts)

 View Source

 @spec run(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.Mat.t()], [Evision.Mat.t()]} | {:error, String.t()}

Allocates layer and computes output.
Positional Arguments
	self: Evision.DNN.Layer.t()
	inputs: [Evision.Mat]

Return
	outputs: [Evision.Mat].
	internals: [Evision.Mat]

@deprecated This method will be removed in the future release.
Python prototype (for reference only):
run(inputs, internals[, outputs]) -> outputs, internals

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.DNN.Layer.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 set_blobs(self, prop)

 View Source

 @spec set_blobs(t(), [Evision.Mat.maybe_mat_in()]) :: t()

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.DNN.Layer.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.DNN.Layer.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.DNN.Model - Evision v0.1.39

Evision.DNN.Model

 Summary

 Types

 t()

 Type that represents an DNN.Model struct.

 Functions

 enableWinograd(self, useWinograd)

 enableWinograd

 model(network)

 Variant 1:
Create model from deep learning network.

 model(model, opts)

 Create model from deep learning network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.Model{ref: reference()}

Type that represents an DNN.Model struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(t(), boolean()) :: t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.Model.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 model(network)

 View Source

 @spec model(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

 @spec model(binary()) :: t() | {:error, String.t()}

Variant 1:
Create model from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.Model.t()

Python prototype (for reference only):
Model(network) -> <dnn_Model object>
Variant 2:
Create model from deep learning network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.Model.t()

Python prototype (for reference only):
Model(model[, config]) -> <dnn_Model object>

 Link to this function

 model(model, opts)

 View Source

 @spec model(binary(), [{:config, term()}] | nil) :: t() | {:error, String.t()}

Create model from deep learning network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.Model.t()

Python prototype (for reference only):
Model(model[, config]) -> <dnn_Model object>

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.Model.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.Model.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(t(), boolean()) :: t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(t()) :: t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 t(),
 [mean: term(), crop: term(), size: term(), scale: term(), swapRB: term()]
 | nil
) :: t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(t(), integer(), integer()) :: t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.Model.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(t(), boolean()) :: t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.Model.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(t(), integer()) :: t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.Model.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(t(), integer()) :: t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.Model.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.Net - Evision v0.1.39

Evision.DNN.Net

 Summary

 Types

 t()

 Type that represents an DNN.Net struct.

 Functions

 connect(self, outPin, inpPin)

 Connects output of the first layer to input of the second layer.

 dump(self)

 Dump net to String

 dumpToFile(self, path)

 Dump net structure, hyperparameters, backend, target and fusion to dot file

 empty(self)

 empty

 enableFusion(self, fusion)

 Enables or disables layer fusion in the network.

 enableWinograd(self, useWinograd)

 Enables or disables the Winograd compute branch. The Winograd compute branch can speed up
3x3 Convolution at a small loss of accuracy.

 forward(self, opts \\ nil)

 Runs forward pass to compute outputs of layers listed in @p outBlobNames.

 forwardAndRetrieve(self, outBlobNames)

 Runs forward pass to compute outputs of layers listed in @p outBlobNames.

 forwardAsync(self)

 Runs forward pass to compute output of layer with name @p outputName.

 forwardAsync(self, opts)

 Runs forward pass to compute output of layer with name @p outputName.

 getFLOPS(self, netInputShape)

 getFLOPS

 getFLOPS(self, layerId, netInputShape)

 getFLOPS

 getInputDetails(self)

 Returns input scale and zeropoint for a quantized Net.

 getLayer(self, layerId)

 Variant 1:
getLayer

 getLayerId(self, layer)

 Converts string name of the layer to the integer identifier.

 getLayerNames(self)

 getLayerNames

 getLayerShapes(self, opts \\ nil)

 getLayerShapes

 getLayersCount(self, layerType)

 Returns count of layers of specified type.

 getLayersShapes(self, opts \\ nil)

 getLayersShapes

 getLayerTypes(self)

 Returns list of types for layer used in model.

 getMemoryConsumption(self, netInputShape)

 getMemoryConsumption

 getMemoryConsumption(self, layerId, netInputShape)

 getMemoryConsumption

 getOutputDetails(self)

 Returns output scale and zeropoint for a quantized Net.

 getParam(self, layerName)

 Variant 1:
getParam

 getParam(self, layerName, opts)

 Variant 1:
getParam

 getPerfProfile(self)

 Returns overall time for inference and timings (in ticks) for layers.

 getUnconnectedOutLayers(self)

 Returns indexes of layers with unconnected outputs.

 getUnconnectedOutLayersNames(self)

 Returns names of layers with unconnected outputs.

 net()

 Net

 quantize(self, calibData, inputsDtype, outputsDtype)

 Returns a quantized Net from a floating-point Net.

 quantize(self, calibData, inputsDtype, outputsDtype, opts)

 Returns a quantized Net from a floating-point Net.

 readFromModelOptimizer(bufferModelConfig, bufferWeights)

 Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).

 setHalideScheduler(self, scheduler)

 Compile Halide layers.

 setInput(self, blob)

 Sets the new input value for the network

 setInput(self, blob, opts)

 Sets the new input value for the network

 setInputShape(self, inputName, shape)

 Specify shape of network input.

 setInputsNames(self, inputBlobNames)

 Sets outputs names of the network input pseudo layer.

 setParam(self, layerName, numParam, blob)

 Variant 1:
setParam

 setPreferableBackend(self, backendId)

 Ask network to use specific computation backend where it supported.

 setPreferableTarget(self, targetId)

 Ask network to make computations on specific target device.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.Net{ref: reference()}

Type that represents an DNN.Net struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 connect(self, outPin, inpPin)

 View Source

 @spec connect(t(), binary(), binary()) :: t() | {:error, String.t()}

Connects output of the first layer to input of the second layer.
Positional Arguments
	self: Evision.DNN.Net.t()

	outPin: String.
descriptor of the first layer output.

	inpPin: String.
descriptor of the second layer input.

 Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
	the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
If this part is empty then the network input pseudo layer will be used;

	the second optional part of the template <DFN>input_number</DFN>
is either number of the layer input, either label one.
If this part is omitted then the first layer input will be used.

@see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
Python prototype (for reference only):
connect(outPin, inpPin) -> None

 Link to this function

 dump(self)

 View Source

 @spec dump(t()) :: binary() | {:error, String.t()}

Dump net to String
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: String

@returns String with structure, hyperparameters, backend, target and fusion
 Call method after setInput(). To see correct backend, target and fusion run after forward().
Python prototype (for reference only):
dump() -> retval

 Link to this function

 dumpToFile(self, path)

 View Source

 @spec dumpToFile(t(), binary()) :: t() | {:error, String.t()}

Dump net structure, hyperparameters, backend, target and fusion to dot file
Positional Arguments
	self: Evision.DNN.Net.t()

	path: String.
path to output file with .dot extension

@see dump()
Python prototype (for reference only):
dumpToFile(path) -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: bool

Returns true if there are no layers in the network.
Python prototype (for reference only):
empty() -> retval

 Link to this function

 enableFusion(self, fusion)

 View Source

 @spec enableFusion(t(), boolean()) :: t() | {:error, String.t()}

Enables or disables layer fusion in the network.
Positional Arguments
	self: Evision.DNN.Net.t()

	fusion: bool.
true to enable the fusion, false to disable. The fusion is enabled by default.

Python prototype (for reference only):
enableFusion(fusion) -> None

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(t(), boolean()) :: t() | {:error, String.t()}

Enables or disables the Winograd compute branch. The Winograd compute branch can speed up
3x3 Convolution at a small loss of accuracy.
Positional Arguments
	self: Evision.DNN.Net.t()

	useWinograd: bool.
true to enable the Winograd compute branch. The default is true.

Python prototype (for reference only):
enableWinograd(useWinograd) -> None

 Link to this function

 forward(self, opts \\ nil)

 View Source

 @spec forward(Evision.Net.t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | Evision.Mat.t() | {:error, String.t()}

Runs forward pass to compute outputs of layers listed in @p outBlobNames.
Positional Arguments
	self: Evision.DNN.Net.t()

	outBlobNames: [String].
names for layers which outputs are needed to get

Return
	outputBlobs: [Evision.Mat].
contains blobs for first outputs of specified layers.

Python prototype (for reference only):
forward(outBlobNames[, outputBlobs]) -> outputBlobs

 Link to this function

 forwardAndRetrieve(self, outBlobNames)

 View Source

 @spec forwardAndRetrieve(t(), [binary()]) ::
 [[Evision.Mat.t()]] | {:error, String.t()}

Runs forward pass to compute outputs of layers listed in @p outBlobNames.
Positional Arguments
	self: Evision.DNN.Net.t()

	outBlobNames: [String].
names for layers which outputs are needed to get

Return
	outputBlobs: [[Evision.Mat]].
contains all output blobs for each layer specified in @p outBlobNames.

Python prototype (for reference only):
forwardAndRetrieve(outBlobNames) -> outputBlobs

 Link to this function

 forwardAsync(self)

 View Source

 @spec forwardAsync(t()) :: Evision.AsyncArray.t() | {:error, String.t()}

Runs forward pass to compute output of layer with name @p outputName.
Positional Arguments
	self: Evision.DNN.Net.t()

Keyword Arguments
	outputName: String.
name for layer which output is needed to get

Return
	retval: Evision.AsyncArray.t()

@details By default runs forward pass for the whole network.
 This is an asynchronous version of forward(const String&).
 dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
Python prototype (for reference only):
forwardAsync([, outputName]) -> retval

 Link to this function

 forwardAsync(self, opts)

 View Source

 @spec forwardAsync(t(), [{:outputName, term()}] | nil) ::
 Evision.AsyncArray.t() | {:error, String.t()}

Runs forward pass to compute output of layer with name @p outputName.
Positional Arguments
	self: Evision.DNN.Net.t()

Keyword Arguments
	outputName: String.
name for layer which output is needed to get

Return
	retval: Evision.AsyncArray.t()

@details By default runs forward pass for the whole network.
 This is an asynchronous version of forward(const String&).
 dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
Python prototype (for reference only):
forwardAsync([, outputName]) -> retval

 Link to this function

 getFLOPS(self, netInputShape)

 View Source

 @spec getFLOPS(t(), [integer()]) :: integer() | {:error, String.t()}

getFLOPS
Positional Arguments
	self: Evision.DNN.Net.t()
	netInputShape: MatShape

Return
	retval: int64

Has overloading in C++
Python prototype (for reference only):
getFLOPS(netInputShape) -> retval

 Link to this function

 getFLOPS(self, layerId, netInputShape)

 View Source

 @spec getFLOPS(t(), integer(), [integer()]) :: integer() | {:error, String.t()}

getFLOPS
Positional Arguments
	self: Evision.DNN.Net.t()
	layerId: int
	netInputShape: MatShape

Return
	retval: int64

Has overloading in C++
Python prototype (for reference only):
getFLOPS(layerId, netInputShape) -> retval

 Link to this function

 getInputDetails(self)

 View Source

 @spec getInputDetails(t()) :: {[number()], [integer()]} | {:error, String.t()}

Returns input scale and zeropoint for a quantized Net.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	scales: [float].
output parameter for returning input scales.

	zeropoints: [int].
output parameter for returning input zeropoints.

Python prototype (for reference only):
getInputDetails() -> scales, zeropoints

 Link to this function

 getLayer(self, layerId)

 View Source

 @spec getLayer(t(), term()) :: Evision.DNN.Layer.t() | {:error, String.t()}

 @spec getLayer(t(), binary()) :: Evision.DNN.Layer.t() | {:error, String.t()}

 @spec getLayer(t(), integer()) :: Evision.DNN.Layer.t() | {:error, String.t()}

Variant 1:
getLayer
Positional Arguments
	self: Evision.DNN.Net.t()
	layerId: LayerId

Return
	retval: Evision.DNN.Layer.t()

Has overloading in C++
@deprecated to be removed
Python prototype (for reference only):
getLayer(layerId) -> retval
Variant 2:
getLayer
Positional Arguments
	self: Evision.DNN.Net.t()
	layerName: String

Return
	retval: Evision.DNN.Layer.t()

Has overloading in C++
@deprecated Use int getLayerId(const String &layer)
Python prototype (for reference only):
getLayer(layerName) -> retval
Variant 3:
Returns pointer to layer with specified id or name which the network use.
Positional Arguments
	self: Evision.DNN.Net.t()
	layerId: int

Return
	retval: Evision.DNN.Layer.t()

Python prototype (for reference only):
getLayer(layerId) -> retval

 Link to this function

 getLayerId(self, layer)

 View Source

 @spec getLayerId(t(), binary()) :: integer() | {:error, String.t()}

Converts string name of the layer to the integer identifier.
Positional Arguments
	self: Evision.DNN.Net.t()
	layer: String

Return
	retval: int

@returns id of the layer, or -1 if the layer wasn't found.
Python prototype (for reference only):
getLayerId(layer) -> retval

 Link to this function

 getLayerNames(self)

 View Source

 @spec getLayerNames(t()) :: [binary()] | {:error, String.t()}

getLayerNames
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: [String]

Python prototype (for reference only):
getLayerNames() -> retval

 Link to this function

 getLayerShapes(self, opts \\ nil)

 View Source

 @spec getLayerShapes(Evision.Net.t(), [{{atom(), term()}}, ...] | nil) ::
 {[[integer()]], [[integer()]]} | {:error, String.t()}

 @spec getLayerShapes(Evision.Net.t(), [{{atom(), term()}}, ...] | nil) ::
 {[integer()], [[[integer()]]], [[[integer()]]]} | {:error, String.t()}

getLayerShapes
Positional Arguments
	self: Evision.DNN.Net.t()
	netInputShapes: [MatShape]
	layerId: int

Return
	inLayerShapes: [MatShape]
	outLayerShapes: [MatShape]

Has overloading in C++
Python prototype (for reference only):
getLayerShapes(netInputShapes, layerId) -> inLayerShapes, outLayerShapes

 Link to this function

 getLayersCount(self, layerType)

 View Source

 @spec getLayersCount(t(), binary()) :: integer() | {:error, String.t()}

Returns count of layers of specified type.
Positional Arguments
	self: Evision.DNN.Net.t()

	layerType: String.
type.

Return
	retval: int

@returns count of layers
Python prototype (for reference only):
getLayersCount(layerType) -> retval

 Link to this function

 getLayersShapes(self, opts \\ nil)

 View Source

getLayersShapes
Positional Arguments
	self: Evision.DNN.Net.t()
	netInputShape: MatShape

Return
	layersIds: [int]
	inLayersShapes: [[MatShape]]
	outLayersShapes: [[MatShape]]

Has overloading in C++
Python prototype (for reference only):
getLayersShapes(netInputShape) -> layersIds, inLayersShapes, outLayersShapes

 Link to this function

 getLayerTypes(self)

 View Source

 @spec getLayerTypes(t()) :: [binary()] | {:error, String.t()}

Returns list of types for layer used in model.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	layersTypes: [String].
output parameter for returning types.

Python prototype (for reference only):
getLayerTypes() -> layersTypes

 Link to this function

 getMemoryConsumption(self, netInputShape)

 View Source

 @spec getMemoryConsumption(t(), [integer()]) ::
 {integer(), integer()} | {:error, String.t()}

getMemoryConsumption
Positional Arguments
	self: Evision.DNN.Net.t()
	netInputShape: MatShape

Return
	weights: size_t
	blobs: size_t

Has overloading in C++
Python prototype (for reference only):
getMemoryConsumption(netInputShape) -> weights, blobs

 Link to this function

 getMemoryConsumption(self, layerId, netInputShape)

 View Source

 @spec getMemoryConsumption(t(), integer(), [integer()]) ::
 {integer(), integer()} | {:error, String.t()}

getMemoryConsumption
Positional Arguments
	self: Evision.DNN.Net.t()
	layerId: int
	netInputShape: MatShape

Return
	weights: size_t
	blobs: size_t

Has overloading in C++
Python prototype (for reference only):
getMemoryConsumption(layerId, netInputShape) -> weights, blobs

 Link to this function

 getOutputDetails(self)

 View Source

 @spec getOutputDetails(t()) :: {[number()], [integer()]} | {:error, String.t()}

Returns output scale and zeropoint for a quantized Net.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	scales: [float].
output parameter for returning output scales.

	zeropoints: [int].
output parameter for returning output zeropoints.

Python prototype (for reference only):
getOutputDetails() -> scales, zeropoints

 Link to this function

 getParam(self, layerName)

 View Source

 @spec getParam(t(), binary()) :: Evision.Mat.t() | {:error, String.t()}

 @spec getParam(t(), integer()) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
getParam
Positional Arguments
	self: Evision.DNN.Net.t()
	layerName: String

Keyword Arguments
	numParam: int.

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getParam(layerName[, numParam]) -> retval
Variant 2:
Returns parameter blob of the layer.
Positional Arguments
	self: Evision.DNN.Net.t()

	layer: int.
name or id of the layer.

Keyword Arguments
	numParam: int.
index of the layer parameter in the Layer::blobs array.

Return
	retval: Evision.Mat.t()

@see Layer::blobs
Python prototype (for reference only):
getParam(layer[, numParam]) -> retval

 Link to this function

 getParam(self, layerName, opts)

 View Source

 @spec getParam(t(), binary(), [{:numParam, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec getParam(t(), integer(), [{:numParam, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
getParam
Positional Arguments
	self: Evision.DNN.Net.t()
	layerName: String

Keyword Arguments
	numParam: int.

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getParam(layerName[, numParam]) -> retval
Variant 2:
Returns parameter blob of the layer.
Positional Arguments
	self: Evision.DNN.Net.t()

	layer: int.
name or id of the layer.

Keyword Arguments
	numParam: int.
index of the layer parameter in the Layer::blobs array.

Return
	retval: Evision.Mat.t()

@see Layer::blobs
Python prototype (for reference only):
getParam(layer[, numParam]) -> retval

 Link to this function

 getPerfProfile(self)

 View Source

 @spec getPerfProfile(t()) :: {integer(), [number()]} | {:error, String.t()}

Returns overall time for inference and timings (in ticks) for layers.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: int64

	timings: [double].
vector for tick timings for all layers.

 Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
 in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
@return overall ticks for model inference.
Python prototype (for reference only):
getPerfProfile() -> retval, timings

 Link to this function

 getUnconnectedOutLayers(self)

 View Source

 @spec getUnconnectedOutLayers(t()) :: [integer()] | {:error, String.t()}

Returns indexes of layers with unconnected outputs.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: [int]

 FIXIT: Rework API to registerOutput() approach, deprecate this call
Python prototype (for reference only):
getUnconnectedOutLayers() -> retval

 Link to this function

 getUnconnectedOutLayersNames(self)

 View Source

 @spec getUnconnectedOutLayersNames(t()) :: [binary()] | {:error, String.t()}

Returns names of layers with unconnected outputs.
Positional Arguments
	self: Evision.DNN.Net.t()

Return
	retval: [String]

 FIXIT: Rework API to registerOutput() approach, deprecate this call
Python prototype (for reference only):
getUnconnectedOutLayersNames() -> retval

 Link to this function

 net()

 View Source

 @spec net() :: t() | {:error, String.t()}

Net
Return
	self: Evision.DNN.Net.t()

Python prototype (for reference only):
Net() -> <dnn_Net object>

 Link to this function

 quantize(self, calibData, inputsDtype, outputsDtype)

 View Source

 @spec quantize(t(), [Evision.Mat.maybe_mat_in()], integer(), integer()) ::
 t() | {:error, String.t()}

Returns a quantized Net from a floating-point Net.
Positional Arguments
	self: Evision.DNN.Net.t()

	calibData: [Evision.Mat].
Calibration data to compute the quantization parameters.

	inputsDtype: int.
Datatype of quantized net's inputs. Can be CV_32F or CV_8S.

	outputsDtype: int.
Datatype of quantized net's outputs. Can be CV_32F or CV_8S.

Keyword Arguments
	perChannel: bool.
Quantization granularity of quantized Net. The default is true, that means quantize model
in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).

Return
	retval: Evision.DNN.Net.t()

Python prototype (for reference only):
quantize(calibData, inputsDtype, outputsDtype[, perChannel]) -> retval

 Link to this function

 quantize(self, calibData, inputsDtype, outputsDtype, opts)

 View Source

 @spec quantize(
 t(),
 [Evision.Mat.maybe_mat_in()],
 integer(),
 integer(),
 [{:perChannel, term()}] | nil
) ::
 t() | {:error, String.t()}

Returns a quantized Net from a floating-point Net.
Positional Arguments
	self: Evision.DNN.Net.t()

	calibData: [Evision.Mat].
Calibration data to compute the quantization parameters.

	inputsDtype: int.
Datatype of quantized net's inputs. Can be CV_32F or CV_8S.

	outputsDtype: int.
Datatype of quantized net's outputs. Can be CV_32F or CV_8S.

Keyword Arguments
	perChannel: bool.
Quantization granularity of quantized Net. The default is true, that means quantize model
in per-channel way (channel-wise). Set it false to quantize model in per-tensor way (or tensor-wise).

Return
	retval: Evision.DNN.Net.t()

Python prototype (for reference only):
quantize(calibData, inputsDtype, outputsDtype[, perChannel]) -> retval

 Link to this function

 readFromModelOptimizer(bufferModelConfig, bufferWeights)

 View Source

 @spec readFromModelOptimizer(binary(), binary()) :: t() | {:error, String.t()}

Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
Positional Arguments
	bufferModelConfig: [uchar].
buffer with model's configuration.

	bufferWeights: [uchar].
buffer with model's trained weights.

Return
	retval: Evision.DNN.Net.t()

@returns Net object.
Python prototype (for reference only):
readFromModelOptimizer(bufferModelConfig, bufferWeights) -> retval

 Link to this function

 setHalideScheduler(self, scheduler)

 View Source

 @spec setHalideScheduler(t(), binary()) :: t() | {:error, String.t()}

Compile Halide layers.
Positional Arguments
	self: Evision.DNN.Net.t()

	scheduler: String.
Path to YAML file with scheduling directives.

@see setPreferableBackend/2
 Schedule layers that support Halide backend. Then compile them for
 specific target. For layers that not represented in scheduling file
 or if no manual scheduling used at all, automatic scheduling will be applied.
Python prototype (for reference only):
setHalideScheduler(scheduler) -> None

 Link to this function

 setInput(self, blob)

 View Source

 @spec setInput(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Sets the new input value for the network
Positional Arguments
	self: Evision.DNN.Net.t()

	blob: Evision.Mat.t().
A new blob. Should have CV_32F or CV_8U depth.

Keyword Arguments
	name: String.
A name of input layer.

	scalefactor: double.
An optional normalization scale.

	mean: Scalar.
An optional mean subtraction values.

@see connect(String, String) to know format of the descriptor.
 If scale or mean values are specified, a final input blob is computed
 as:
 \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
Python prototype (for reference only):
setInput(blob[, name[, scalefactor[, mean]]]) -> None

 Link to this function

 setInput(self, blob, opts)

 View Source

 @spec setInput(
 t(),
 Evision.Mat.maybe_mat_in(),
 [name: term(), mean: term(), scalefactor: term()] | nil
) ::
 t() | {:error, String.t()}

Sets the new input value for the network
Positional Arguments
	self: Evision.DNN.Net.t()

	blob: Evision.Mat.t().
A new blob. Should have CV_32F or CV_8U depth.

Keyword Arguments
	name: String.
A name of input layer.

	scalefactor: double.
An optional normalization scale.

	mean: Scalar.
An optional mean subtraction values.

@see connect(String, String) to know format of the descriptor.
 If scale or mean values are specified, a final input blob is computed
 as:
 \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
Python prototype (for reference only):
setInput(blob[, name[, scalefactor[, mean]]]) -> None

 Link to this function

 setInputShape(self, inputName, shape)

 View Source

 @spec setInputShape(t(), binary(), [integer()]) :: t() | {:error, String.t()}

Specify shape of network input.
Positional Arguments
	self: Evision.DNN.Net.t()
	inputName: String
	shape: MatShape

Python prototype (for reference only):
setInputShape(inputName, shape) -> None

 Link to this function

 setInputsNames(self, inputBlobNames)

 View Source

 @spec setInputsNames(t(), [binary()]) :: t() | {:error, String.t()}

Sets outputs names of the network input pseudo layer.
Positional Arguments
	self: Evision.DNN.Net.t()
	inputBlobNames: [String]

 Each net always has special own the network input pseudo layer with id=0.
 This layer stores the user blobs only and don't make any computations.
 In fact, this layer provides the only way to pass user data into the network.
 As any other layer, this layer can label its outputs and this function provides an easy way to do this.
Python prototype (for reference only):
setInputsNames(inputBlobNames) -> None

 Link to this function

 setParam(self, layerName, numParam, blob)

 View Source

 @spec setParam(t(), binary(), integer(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

 @spec setParam(t(), integer(), integer(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Variant 1:
setParam
Positional Arguments
	self: Evision.DNN.Net.t()
	layerName: String
	numParam: int
	blob: Evision.Mat.t()

Python prototype (for reference only):
setParam(layerName, numParam, blob) -> None
Variant 2:
Sets the new value for the learned param of the layer.
Positional Arguments
	self: Evision.DNN.Net.t()

	layer: int.
name or id of the layer.

	numParam: int.
index of the layer parameter in the Layer::blobs array.

	blob: Evision.Mat.t().
the new value.

@see Layer::blobs
Note: If shape of the new blob differs from the previous shape,
 then the following forward pass may fail.
Python prototype (for reference only):
setParam(layer, numParam, blob) -> None

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(t(), integer()) :: t() | {:error, String.t()}

Ask network to use specific computation backend where it supported.
Positional Arguments
	self: Evision.DNN.Net.t()

	backendId: int.
backend identifier.

@see Backend
Python prototype (for reference only):
setPreferableBackend(backendId) -> None

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(t(), integer()) :: t() | {:error, String.t()}

Ask network to make computations on specific target device.
Positional Arguments
	self: Evision.DNN.Net.t()

	targetId: int.
target identifier.

@see Target
 List of supported combinations backend / target:
	DNN_BACKEND_OPENCV	DNN_BACKEND_INFERENCE_ENGINE	DNN_BACKEND_HALIDE	DNN_BACKEND_CUDA
DNN_TARGET_CPU	+	+	+	
DNN_TARGET_OPENCL	+	+	+	
DNN_TARGET_OPENCL_FP16	+	+		
DNN_TARGET_MYRIAD		+		
DNN_TARGET_FPGA		+		
DNN_TARGET_CUDA				+
DNN_TARGET_CUDA_FP16				+
DNN_TARGET_HDDL		+		
Python prototype (for reference only):
setPreferableTarget(targetId) -> None

 Evision.DNN.SegmentationModel - Evision v0.1.39

Evision.DNN.SegmentationModel

 Summary

 Types

 t()

 Type that represents an DNN.SegmentationModel struct.

 Functions

 enableWinograd(self, useWinograd)

 enableWinograd

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 segment(self, frame)

 Given the @p input frame, create input blob, run net

 segment(self, frame, opts)

 Given the @p input frame, create input blob, run net

 segmentationModel(network)

 Variant 1:
Create model from deep learning network.

 segmentationModel(model, opts)

 Create segmentation model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.SegmentationModel{ref: reference()}

Type that represents an DNN.SegmentationModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 segment(self, frame)

 View Source

 @spec segment(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Given the @p input frame, create input blob, run net
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	frame: Evision.Mat.t()

Return
	mask: Evision.Mat.t().
Allocated class prediction for each pixel

Python prototype (for reference only):
segment(frame[, mask]) -> mask

 Link to this function

 segment(self, frame, opts)

 View Source

 @spec segment(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Given the @p input frame, create input blob, run net
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	frame: Evision.Mat.t()

Return
	mask: Evision.Mat.t().
Allocated class prediction for each pixel

Python prototype (for reference only):
segment(frame[, mask]) -> mask

 Link to this function

 segmentationModel(network)

 View Source

 @spec segmentationModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

 @spec segmentationModel(binary()) :: t() | {:error, String.t()}

Variant 1:
Create model from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.SegmentationModel.t()

Python prototype (for reference only):
SegmentationModel(network) -> <dnn_SegmentationModel object>
Variant 2:
Create segmentation model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.SegmentationModel.t()

Python prototype (for reference only):
SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>

 Link to this function

 segmentationModel(model, opts)

 View Source

 @spec segmentationModel(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create segmentation model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: String.
Binary file contains trained weights.

Keyword Arguments
	config: String.
Text file contains network configuration.

Return
	self: Evision.DNN.SegmentationModel.t()

Python prototype (for reference only):
SegmentationModel(model[, config]) -> <dnn_SegmentationModel object>

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), scale: term(), size: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.SegmentationModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.TextDetectionModel - Evision v0.1.39

Evision.DNN.TextDetectionModel

 Summary

 Types

 t()

 Type that represents an DNN.TextDetectionModel struct.

 Functions

 detect(self, frame)

 detect

 detectTextRectangles(self, frame)

 Performs detection

 enableWinograd(self, useWinograd)

 enableWinograd

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.TextDetectionModel{ref: reference()}

Type that represents an DNN.TextDetectionModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detect(self, frame)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 [[{number(), number()}]] | {:error, String.t()}

detect
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	frame: Evision.Mat.t()

Return
	detections: [[Point]]

Has overloading in C++
Python prototype (for reference only):
detect(frame) -> detections

 Link to this function

 detectTextRectangles(self, frame)

 View Source

 @spec detectTextRectangles(t(), Evision.Mat.maybe_mat_in()) ::
 {[{{number(), number()}, {number(), number()}, number()}], [number()]}
 | {:error, String.t()}

Performs detection
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	frame: Evision.Mat.t().
the input image

Return
	detections: [{centre={x, y}, size={s1, s2}, angle}].
array with detections' RotationRect results

	confidences: [float].
array with detection confidences

 Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
 Each result is rotated rectangle.
Note: Result may be inaccurate in case of strong perspective transformations.
Python prototype (for reference only):
detectTextRectangles(frame) -> detections, confidences

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), scale: term(), size: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.TextDetectionModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Evision.DNN.TextDetectionModelDB - Evision v0.1.39

Evision.DNN.TextDetectionModelDB

 Summary

 Types

 t()

 Type that represents an DNN.TextDetectionModelDB struct.

 Functions

 detect(self, frame)

 detect

 detectTextRectangles(self, frame)

 Performs detection

 enableWinograd(self, useWinograd)

 enableWinograd

 getBinaryThreshold(self)

 getBinaryThreshold

 getMaxCandidates(self)

 getMaxCandidates

 getPolygonThreshold(self)

 getPolygonThreshold

 getUnclipRatio(self)

 getUnclipRatio

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setBinaryThreshold(self, binaryThreshold)

 setBinaryThreshold

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setMaxCandidates(self, maxCandidates)

 setMaxCandidates

 setPolygonThreshold(self, polygonThreshold)

 setPolygonThreshold

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

 setUnclipRatio(self, unclipRatio)

 setUnclipRatio

 textDetectionModelDB(model)

 Variant 1:
Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 textDetectionModelDB(model, opts)

 Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.TextDetectionModelDB{ref: reference()}

Type that represents an DNN.TextDetectionModelDB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detect(self, frame)

 View Source

 @spec detect(Evision.DNN.TextDetectionModel.t(), Evision.Mat.maybe_mat_in()) ::
 [[{number(), number()}]] | {:error, String.t()}

detect
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	frame: Evision.Mat.t()

Return
	detections: [[Point]]

Has overloading in C++
Python prototype (for reference only):
detect(frame) -> detections

 Link to this function

 detectTextRectangles(self, frame)

 View Source

 @spec detectTextRectangles(
 Evision.DNN.TextDetectionModel.t(),
 Evision.Mat.maybe_mat_in()
) ::
 {[{{number(), number()}, {number(), number()}, number()}], [number()]}
 | {:error, String.t()}

Performs detection
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	frame: Evision.Mat.t().
the input image

Return
	detections: [{centre={x, y}, size={s1, s2}, angle}].
array with detections' RotationRect results

	confidences: [float].
array with detection confidences

 Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
 Each result is rotated rectangle.
Note: Result may be inaccurate in case of strong perspective transformations.
Python prototype (for reference only):
detectTextRectangles(frame) -> detections, confidences

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 getBinaryThreshold(self)

 View Source

 @spec getBinaryThreshold(t()) :: number() | {:error, String.t()}

getBinaryThreshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Return
	retval: float

Python prototype (for reference only):
getBinaryThreshold() -> retval

 Link to this function

 getMaxCandidates(self)

 View Source

 @spec getMaxCandidates(t()) :: integer() | {:error, String.t()}

getMaxCandidates
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Return
	retval: int

Python prototype (for reference only):
getMaxCandidates() -> retval

 Link to this function

 getPolygonThreshold(self)

 View Source

 @spec getPolygonThreshold(t()) :: number() | {:error, String.t()}

getPolygonThreshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Return
	retval: float

Python prototype (for reference only):
getPolygonThreshold() -> retval

 Link to this function

 getUnclipRatio(self)

 View Source

 @spec getUnclipRatio(t()) :: number() | {:error, String.t()}

getUnclipRatio
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Return
	retval: double

Python prototype (for reference only):
getUnclipRatio() -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setBinaryThreshold(self, binaryThreshold)

 View Source

 @spec setBinaryThreshold(t(), number()) :: t() | {:error, String.t()}

setBinaryThreshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	binaryThreshold: float

Return
	retval: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
setBinaryThreshold(binaryThreshold) -> retval

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), scale: term(), size: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setMaxCandidates(self, maxCandidates)

 View Source

 @spec setMaxCandidates(t(), integer()) :: t() | {:error, String.t()}

setMaxCandidates
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	maxCandidates: int

Return
	retval: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
setMaxCandidates(maxCandidates) -> retval

 Link to this function

 setPolygonThreshold(self, polygonThreshold)

 View Source

 @spec setPolygonThreshold(t(), number()) :: t() | {:error, String.t()}

setPolygonThreshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	polygonThreshold: float

Return
	retval: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
setPolygonThreshold(polygonThreshold) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Link to this function

 setUnclipRatio(self, unclipRatio)

 View Source

 @spec setUnclipRatio(t(), number()) :: t() | {:error, String.t()}

setUnclipRatio
Positional Arguments
	self: Evision.DNN.TextDetectionModelDB.t()
	unclipRatio: double

Return
	retval: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
setUnclipRatio(unclipRatio) -> retval

 Link to this function

 textDetectionModelDB(model)

 View Source

 @spec textDetectionModelDB(binary()) :: t() | {:error, String.t()}

 @spec textDetectionModelDB(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

Variant 1:
Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: string.
Binary file contains trained weights.

Keyword Arguments
	config: string.
Text file contains network configuration.

Return
	self: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
TextDetectionModel_DB(model[, config]) -> <dnn_TextDetectionModel_DB object>
Variant 2:
Create text detection algorithm from deep learning network.
Positional Arguments
	network: Evision.DNN.Net.t().
Net object.

Return
	self: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
TextDetectionModel_DB(network) -> <dnn_TextDetectionModel_DB object>

 Link to this function

 textDetectionModelDB(model, opts)

 View Source

 @spec textDetectionModelDB(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: string.
Binary file contains trained weights.

Keyword Arguments
	config: string.
Text file contains network configuration.

Return
	self: Evision.DNN.TextDetectionModelDB.t()

Python prototype (for reference only):
TextDetectionModel_DB(model[, config]) -> <dnn_TextDetectionModel_DB object>

 Evision.DNN.TextDetectionModelEAST - Evision v0.1.39

Evision.DNN.TextDetectionModelEAST

 Summary

 Types

 t()

 Type that represents an DNN.TextDetectionModelEAST struct.

 Functions

 detect(self, frame)

 detect

 detectTextRectangles(self, frame)

 Performs detection

 enableWinograd(self, useWinograd)

 enableWinograd

 getConfidenceThreshold(self)

 Get the detection confidence threshold

 getNMSThreshold(self)

 Get the detection confidence threshold

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 setConfidenceThreshold(self, confThreshold)

 Set the detection confidence threshold

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setNMSThreshold(self, nmsThreshold)

 Set the detection NMS filter threshold

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

 textDetectionModelEAST(model)

 Variant 1:
Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

 textDetectionModelEAST(model, opts)

 Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.TextDetectionModelEAST{ref: reference()}

Type that represents an DNN.TextDetectionModelEAST struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detect(self, frame)

 View Source

 @spec detect(Evision.DNN.TextDetectionModel.t(), Evision.Mat.maybe_mat_in()) ::
 [[{number(), number()}]] | {:error, String.t()}

detect
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	frame: Evision.Mat.t()

Return
	detections: [[Point]]

Has overloading in C++
Python prototype (for reference only):
detect(frame) -> detections

 Link to this function

 detectTextRectangles(self, frame)

 View Source

 @spec detectTextRectangles(
 Evision.DNN.TextDetectionModel.t(),
 Evision.Mat.maybe_mat_in()
) ::
 {[{{number(), number()}, {number(), number()}, number()}], [number()]}
 | {:error, String.t()}

Performs detection
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	frame: Evision.Mat.t().
the input image

Return
	detections: [{centre={x, y}, size={s1, s2}, angle}].
array with detections' RotationRect results

	confidences: [float].
array with detection confidences

 Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
 Each result is rotated rectangle.
Note: Result may be inaccurate in case of strong perspective transformations.
Python prototype (for reference only):
detectTextRectangles(frame) -> detections, confidences

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 getConfidenceThreshold(self)

 View Source

 @spec getConfidenceThreshold(t()) :: number() | {:error, String.t()}

Get the detection confidence threshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

Return
	retval: float

Python prototype (for reference only):
getConfidenceThreshold() -> retval

 Link to this function

 getNMSThreshold(self)

 View Source

 @spec getNMSThreshold(t()) :: number() | {:error, String.t()}

Get the detection confidence threshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

Return
	retval: float

Python prototype (for reference only):
getNMSThreshold() -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 setConfidenceThreshold(self, confThreshold)

 View Source

 @spec setConfidenceThreshold(t(), number()) :: t() | {:error, String.t()}

Set the detection confidence threshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	confThreshold: float.
A threshold used to filter boxes by confidences

Return
	retval: Evision.DNN.TextDetectionModelEAST.t()

Python prototype (for reference only):
setConfidenceThreshold(confThreshold) -> retval

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), scale: term(), size: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setNMSThreshold(self, nmsThreshold)

 View Source

 @spec setNMSThreshold(t(), number()) :: t() | {:error, String.t()}

Set the detection NMS filter threshold
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()

	nmsThreshold: float.
A threshold used in non maximum suppression

Return
	retval: Evision.DNN.TextDetectionModelEAST.t()

Python prototype (for reference only):
setNMSThreshold(nmsThreshold) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.TextDetectionModelEAST.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Link to this function

 textDetectionModelEAST(model)

 View Source

 @spec textDetectionModelEAST(binary()) :: t() | {:error, String.t()}

 @spec textDetectionModelEAST(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

Variant 1:
Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: string.
Binary file contains trained weights.

Keyword Arguments
	config: string.
Text file contains network configuration.

Return
	self: Evision.DNN.TextDetectionModelEAST.t()

Python prototype (for reference only):
TextDetectionModel_EAST(model[, config]) -> <dnn_TextDetectionModel_EAST object>
Variant 2:
Create text detection algorithm from deep learning network
Positional Arguments
	network: Evision.DNN.Net.t().
Net object

Return
	self: Evision.DNN.TextDetectionModelEAST.t()

Python prototype (for reference only):
TextDetectionModel_EAST(network) -> <dnn_TextDetectionModel_EAST object>

 Link to this function

 textDetectionModelEAST(model, opts)

 View Source

 @spec textDetectionModelEAST(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create text detection model from network represented in one of the supported formats.
An order of @p model and @p config arguments does not matter.
Positional Arguments
	model: string.
Binary file contains trained weights.

Keyword Arguments
	config: string.
Text file contains network configuration.

Return
	self: Evision.DNN.TextDetectionModelEAST.t()

Python prototype (for reference only):
TextDetectionModel_EAST(model[, config]) -> <dnn_TextDetectionModel_EAST object>

 Evision.DNN.TextRecognitionModel - Evision v0.1.39

Evision.DNN.TextRecognitionModel

 Summary

 Types

 t()

 Type that represents an DNN.TextRecognitionModel struct.

 Functions

 enableWinograd(self, useWinograd)

 enableWinograd

 getDecodeType(self)

 Get the decoding method

 getVocabulary(self)

 Get the vocabulary for recognition.

 predict(self, frame)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 predict(self, frame, opts)

 Given the @p input frame, create input blob, run net and return the output @p blobs.

 recognize(self, frame)

 Given the @p input frame, create input blob, run net and return recognition result

 recognize(self, frame, roiRects)

 Given the @p input frame, create input blob, run net and return recognition result

 setDecodeOptsCTCPrefixBeamSearch(self, beamSize)

 Set the decoding method options for "CTC-prefix-beam-search" decode usage

 setDecodeOptsCTCPrefixBeamSearch(self, beamSize, opts)

 Set the decoding method options for "CTC-prefix-beam-search" decode usage

 setDecodeType(self, decodeType)

 Set the decoding method of translating the network output into string

 setInputCrop(self, crop)

 Set flag crop for frame.

 setInputMean(self, mean)

 Set mean value for frame.

 setInputParams(self)

 Set preprocessing parameters for frame.

 setInputParams(self, opts)

 Set preprocessing parameters for frame.

 setInputScale(self, scale)

 Set scalefactor value for frame.

 setInputSize(self, size)

 Set input size for frame.

 setInputSize(self, width, height)

 setInputSize

 setInputSwapRB(self, swapRB)

 Set flag swapRB for frame.

 setPreferableBackend(self, backendId)

 setPreferableBackend

 setPreferableTarget(self, targetId)

 setPreferableTarget

 setVocabulary(self, vocabulary)

 Set the vocabulary for recognition.

 textRecognitionModel(model)

 Variant 1:
Create text recognition model from network represented in one of the supported formats
Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method

 textRecognitionModel(model, opts)

 Create text recognition model from network represented in one of the supported formats
Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNN.TextRecognitionModel{ref: reference()}

Type that represents an DNN.TextRecognitionModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 enableWinograd(self, useWinograd)

 View Source

 @spec enableWinograd(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

enableWinograd
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	useWinograd: bool

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
enableWinograd(useWinograd) -> retval

 Link to this function

 getDecodeType(self)

 View Source

 @spec getDecodeType(t()) :: binary() | {:error, String.t()}

Get the decoding method
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

Return
	retval: string

@return the decoding method
Python prototype (for reference only):
getDecodeType() -> retval

 Link to this function

 getVocabulary(self)

 View Source

 @spec getVocabulary(t()) :: [binary()] | {:error, String.t()}

Get the vocabulary for recognition.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

Return
	retval: [string]

@return vocabulary the associated vocabulary
Python prototype (for reference only):
getVocabulary() -> retval

 Link to this function

 predict(self, frame)

 View Source

 @spec predict(Evision.DNN.Model.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 predict(self, frame, opts)

 View Source

 @spec predict(
 Evision.DNN.Model.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return the output @p blobs.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	frame: Evision.Mat.t()

Return
	outs: [Evision.Mat].
Allocated output blobs, which will store results of the computation.

Python prototype (for reference only):
predict(frame[, outs]) -> outs

 Link to this function

 recognize(self, frame)

 View Source

 @spec recognize(t(), Evision.Mat.maybe_mat_in()) :: binary() | {:error, String.t()}

Given the @p input frame, create input blob, run net and return recognition result
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	frame: Evision.Mat.t().
The input image

Return
	retval: string

@return The text recognition result
Python prototype (for reference only):
recognize(frame) -> retval

 Link to this function

 recognize(self, frame, roiRects)

 View Source

 @spec recognize(t(), Evision.Mat.maybe_mat_in(), [Evision.Mat.maybe_mat_in()]) ::
 [binary()] | {:error, String.t()}

Given the @p input frame, create input blob, run net and return recognition result
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	frame: Evision.Mat.t().
The input image

	roiRects: [Evision.Mat].
List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs

Return
	results: [string].
A set of text recognition results.

Python prototype (for reference only):
recognize(frame, roiRects) -> results

 Link to this function

 setDecodeOptsCTCPrefixBeamSearch(self, beamSize)

 View Source

 @spec setDecodeOptsCTCPrefixBeamSearch(t(), integer()) :: t() | {:error, String.t()}

Set the decoding method options for "CTC-prefix-beam-search" decode usage
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	beamSize: int.
Beam size for search

Keyword Arguments
	vocPruneSize: int.
Parameter to optimize big vocabulary search,
only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.

Return
	retval: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
setDecodeOptsCTCPrefixBeamSearch(beamSize[, vocPruneSize]) -> retval

 Link to this function

 setDecodeOptsCTCPrefixBeamSearch(self, beamSize, opts)

 View Source

 @spec setDecodeOptsCTCPrefixBeamSearch(
 t(),
 integer(),
 [{:vocPruneSize, term()}] | nil
) ::
 t() | {:error, String.t()}

Set the decoding method options for "CTC-prefix-beam-search" decode usage
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	beamSize: int.
Beam size for search

Keyword Arguments
	vocPruneSize: int.
Parameter to optimize big vocabulary search,
only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.

Return
	retval: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
setDecodeOptsCTCPrefixBeamSearch(beamSize[, vocPruneSize]) -> retval

 Link to this function

 setDecodeType(self, decodeType)

 View Source

 @spec setDecodeType(t(), binary()) :: t() | {:error, String.t()}

Set the decoding method of translating the network output into string
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	decodeType: string.The decoding method of translating the network output into string, currently supported type:	"CTC-greedy" greedy decoding for the output of CTC-based methods
	"CTC-prefix-beam-search" Prefix beam search decoding for the output of CTC-based methods

Return
	retval: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
setDecodeType(decodeType) -> retval

 Link to this function

 setInputCrop(self, crop)

 View Source

 @spec setInputCrop(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag crop for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputCrop(crop) -> retval

 Link to this function

 setInputMean(self, mean)

 View Source

 @spec setInputMean(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set mean value for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputMean(mean) -> retval

 Link to this function

 setInputParams(self)

 View Source

 @spec setInputParams(Evision.DNN.Model.t()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputParams(self, opts)

 View Source

 @spec setInputParams(
 Evision.DNN.Model.t(),
 [mean: term(), crop: term(), scale: term(), size: term(), swapRB: term()]
 | nil
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set preprocessing parameters for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

Keyword Arguments
	scale: double.
Multiplier for frame values.

	size: Size.
New input size.

	mean: Scalar.
Scalar with mean values which are subtracted from channels.

	swapRB: bool.
Flag which indicates that swap first and last channels.

	crop: bool.
Flag which indicates whether image will be cropped after resize or not.
blob(n, c, y, x) = scale * resize(frame(y, x, c)) - mean(c))

Python prototype (for reference only):
setInputParams([, scale[, size[, mean[, swapRB[, crop]]]]]) -> None

 Link to this function

 setInputScale(self, scale)

 View Source

 @spec setInputScale(
 Evision.DNN.Model.t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set scalefactor value for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	scale: Scalar.
Multiplier for frame values.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputScale(scale) -> retval

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.DNN.Model.t(),
 {number(), number()}
) :: Evision.DNN.Model.t() | {:error, String.t()}

Set input size for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	size: Size.
New input size.

Return
	retval: Evision.DNN.Model.t()

Note: If shape of the new blob less than 0, then frame size not change.
Python prototype (for reference only):
setInputSize(size) -> retval

 Link to this function

 setInputSize(self, width, height)

 View Source

 @spec setInputSize(Evision.DNN.Model.t(), integer(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setInputSize
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	width: int.
New input width.

	height: int.
New input height.

Return
	retval: Evision.DNN.Model.t()

Has overloading in C++
Python prototype (for reference only):
setInputSize(width, height) -> retval

 Link to this function

 setInputSwapRB(self, swapRB)

 View Source

 @spec setInputSwapRB(Evision.DNN.Model.t(), boolean()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

Set flag swapRB for frame.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	swapRB: bool.
Flag which indicates that swap first and last channels.

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setInputSwapRB(swapRB) -> retval

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableBackend
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	backendId: dnn_Backend

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableBackend(backendId) -> retval

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(Evision.DNN.Model.t(), integer()) ::
 Evision.DNN.Model.t() | {:error, String.t()}

setPreferableTarget
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()
	targetId: dnn_Target

Return
	retval: Evision.DNN.Model.t()

Python prototype (for reference only):
setPreferableTarget(targetId) -> retval

 Link to this function

 setVocabulary(self, vocabulary)

 View Source

 @spec setVocabulary(t(), [binary()]) :: t() | {:error, String.t()}

Set the vocabulary for recognition.
Positional Arguments
	self: Evision.DNN.TextRecognitionModel.t()

	vocabulary: [string].
the associated vocabulary of the network.

Return
	retval: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
setVocabulary(vocabulary) -> retval

 Link to this function

 textRecognitionModel(model)

 View Source

 @spec textRecognitionModel(binary()) :: t() | {:error, String.t()}

 @spec textRecognitionModel(Evision.DNN.Net.t()) :: t() | {:error, String.t()}

Variant 1:
Create text recognition model from network represented in one of the supported formats
Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
Positional Arguments
	model: string.
Binary file contains trained weights

Keyword Arguments
	config: string.
Text file contains network configuration

Return
	self: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
TextRecognitionModel(model[, config]) -> <dnn_TextRecognitionModel object>
Variant 2:
Create Text Recognition model from deep learning network
Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
Positional Arguments
	network: Evision.DNN.Net.t().
Net object

Return
	self: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
TextRecognitionModel(network) -> <dnn_TextRecognitionModel object>

 Link to this function

 textRecognitionModel(model, opts)

 View Source

 @spec textRecognitionModel(binary(), [{:config, term()}] | nil) ::
 t() | {:error, String.t()}

Create text recognition model from network represented in one of the supported formats
Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
Positional Arguments
	model: string.
Binary file contains trained weights

Keyword Arguments
	config: string.
Text file contains network configuration

Return
	self: Evision.DNN.TextRecognitionModel.t()

Python prototype (for reference only):
TextRecognitionModel(model[, config]) -> <dnn_TextRecognitionModel object>

 Evision.DNNSuperRes - Evision v0.1.39

Evision.DNNSuperRes

 Summary

 Types

 t()

 Type that represents an DNNSuperRes struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNNSuperRes{ref: reference()}

Type that represents an DNNSuperRes struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.DNNSuperRes.DNNSuperResImpl - Evision v0.1.39

Evision.DNNSuperRes.DNNSuperResImpl

 Summary

 Types

 t()

 Type that represents an DNNSuperRes.DNNSuperResImpl struct.

 Functions

 create()

 Empty constructor for python

 getAlgorithm(self)

 Returns the scale factor of the model

 getScale(self)

 Returns the scale factor of the model

 readModel(self, path)

 Read the model from the given path

 setModel(self, algo, scale)

 Set desired model

 setPreferableBackend(self, backendId)

 Set computation backend

 setPreferableTarget(self, targetId)

 Set computation target

 upsample(self, img)

 Upsample via neural network

 upsample(self, img, opts)

 Upsample via neural network

 upsampleMultioutput(self, img, imgs_new, scale_factors, node_names)

 Upsample via neural network of multiple outputs

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DNNSuperRes.DNNSuperResImpl{ref: reference()}

Type that represents an DNNSuperRes.DNNSuperResImpl struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Empty constructor for python
Return
	retval: Evision.DNNSuperRes.DNNSuperResImpl.t()

Python prototype (for reference only):
create() -> retval

 Link to this function

 getAlgorithm(self)

 View Source

 @spec getAlgorithm(t()) :: binary() | {:error, String.t()}

Returns the scale factor of the model:
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

Return
	retval: String

@return Current algorithm.
Python prototype (for reference only):
getAlgorithm() -> retval

 Link to this function

 getScale(self)

 View Source

 @spec getScale(t()) :: integer() | {:error, String.t()}

Returns the scale factor of the model:
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

Return
	retval: int

@return Current scale factor.
Python prototype (for reference only):
getScale() -> retval

 Link to this function

 readModel(self, path)

 View Source

 @spec readModel(t(), binary()) :: t() | {:error, String.t()}

Read the model from the given path
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

	path: String.
Path to the model file.

Python prototype (for reference only):
readModel(path) -> None

 Link to this function

 setModel(self, algo, scale)

 View Source

 @spec setModel(t(), binary(), integer()) :: t() | {:error, String.t()}

Set desired model
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

	algo: String.
String containing one of the desired models:
	edsr
	espcn
	fsrcnn
	lapsrn

	scale: int.
Integer specifying the upscale factor

Python prototype (for reference only):
setModel(algo, scale) -> None

 Link to this function

 setPreferableBackend(self, backendId)

 View Source

 @spec setPreferableBackend(t(), integer()) :: t() | {:error, String.t()}

Set computation backend
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()
	backendId: int

Python prototype (for reference only):
setPreferableBackend(backendId) -> None

 Link to this function

 setPreferableTarget(self, targetId)

 View Source

 @spec setPreferableTarget(t(), integer()) :: t() | {:error, String.t()}

Set computation target
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()
	targetId: int

Python prototype (for reference only):
setPreferableTarget(targetId) -> None

 Link to this function

 upsample(self, img)

 View Source

 @spec upsample(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Upsample via neural network
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

	img: Evision.Mat.t().
Image to upscale

Return
	result: Evision.Mat.t().
Destination upscaled image

Python prototype (for reference only):
upsample(img[, result]) -> result

 Link to this function

 upsample(self, img, opts)

 View Source

 @spec upsample(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Upsample via neural network
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

	img: Evision.Mat.t().
Image to upscale

Return
	result: Evision.Mat.t().
Destination upscaled image

Python prototype (for reference only):
upsample(img[, result]) -> result

 Link to this function

 upsampleMultioutput(self, img, imgs_new, scale_factors, node_names)

 View Source

 @spec upsampleMultioutput(
 t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [integer()],
 [
 binary()
]
) :: t() | {:error, String.t()}

Upsample via neural network of multiple outputs
Positional Arguments
	self: Evision.DNNSuperRes.DNNSuperResImpl.t()

	img: Evision.Mat.t().
Image to upscale

	imgs_new: [Evision.Mat].
Destination upscaled images

	scale_factors: [int].
Scaling factors of the output nodes

	node_names: [String].
Names of the output nodes in the neural network

Python prototype (for reference only):
upsampleMultioutput(img, imgs_new, scale_factors, node_names) -> None

 Evision.DenseOpticalFlow - Evision v0.1.39

Evision.DenseOpticalFlow

 Summary

 Types

 t()

 Type that represents an DenseOpticalFlow struct.

 Functions

 calc(self, i0, i1, flow)

 Calculates an optical flow.

 clear(self)

 Clears the algorithm state

 collectGarbage(self)

 Releases all inner buffers.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DenseOpticalFlow{ref: reference()}

Type that represents an DenseOpticalFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calc(self, i0, i1, flow)

 View Source

 @spec calc(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates an optical flow.
Positional Arguments
	self: Evision.DenseOpticalFlow.t()

	i0: Evision.Mat.t().
first 8-bit single-channel input image.

	i1: Evision.Mat.t().
second input image of the same size and the same type as prev.

Return
	flow: Evision.Mat.t().
computed flow image that has the same size as prev and type CV_32FC2.

Python prototype (for reference only):
calc(I0, I1, flow) -> flow

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.DenseOpticalFlow.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(t()) :: t() | {:error, String.t()}

Releases all inner buffers.
Positional Arguments
	self: Evision.DenseOpticalFlow.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.DenseOpticalFlow.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.DenseOpticalFlow.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.DenseOpticalFlow.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.DenseOpticalFlow.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.DenseOpticalFlow.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.DenseOpticalFlow.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.DescriptorMatcher - Evision v0.1.39

Evision.DescriptorMatcher

 Summary

 Types

 t()

 Type that represents an DescriptorMatcher struct.

 Functions

 add(self, descriptors)

 Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.

 clear(self)

 Clears the train descriptor collections.

 clone(self)

 Clones the matcher.

 clone(self, opts)

 Clones the matcher.

 create(matcherType)

 Variant 1:
create

 empty(self)

 Returns true if there are no train descriptors in the both collections.

 getDefaultName(self)

 getDefaultName

 getTrainDescriptors(self)

 Returns a constant link to the train descriptor collection trainDescCollection .

 isMaskSupported(self)

 Returns true if the descriptor matcher supports masking permissible matches.

 knnMatch(self, queryDescriptors, k)

 knnMatch

 knnMatch(self, queryDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set.

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 Finds the k best matches for each descriptor from a query set.

 match(self, queryDescriptors)

 match

 match(self, queryDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set.

 match(self, queryDescriptors, trainDescriptors, opts)

 Finds the best match for each descriptor from a query set.

 radiusMatch(self, queryDescriptors, maxDistance)

 radiusMatch

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 For each query descriptor, finds the training descriptors not farther than the specified distance.

 read(self, arg1)

 Variant 1:
read

 save(self, filename)

 save

 train(self)

 Trains a descriptor matcher

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DescriptorMatcher{ref: reference()}

Type that represents an DescriptorMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, descriptors)

 View Source

 @spec add(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	descriptors: [Evision.Mat].
Descriptors to add. Each descriptors[i] is a set of descriptors from the same
train image.

If the collection is not empty, the new descriptors are added to existing train descriptors.
Python prototype (for reference only):
add(descriptors) -> None

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Clears the train descriptor collections.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clone(self)

 View Source

 @spec clone(t()) :: t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 clone(self, opts)

 View Source

 @spec clone(t(), [{:emptyTrainData, term()}] | nil) :: t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 create(matcherType)

 View Source

 @spec create(integer()) :: t() | {:error, String.t()}

 @spec create(binary()) :: t() | {:error, String.t()}

Variant 1:
create
Positional Arguments
	matcherType: DescriptorMatcher_MatcherType

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
create(matcherType) -> retval
Variant 2:
Creates a descriptor matcher of a given type with the default parameters (using default
constructor).
Positional Arguments
	descriptorMatcherType: String.Descriptor matcher type. Now the following matcher types are
supported:	BruteForce (it uses L2)
	BruteForce-L1
	BruteForce-Hamming
	BruteForce-Hamming(2)
	FlannBased

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
create(descriptorMatcherType) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Returns true if there are no train descriptors in the both collections.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTrainDescriptors(self)

 View Source

 @spec getTrainDescriptors(t()) :: [Evision.Mat.t()] | {:error, String.t()}

Returns a constant link to the train descriptor collection trainDescCollection .
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getTrainDescriptors() -> retval

 Link to this function

 isMaskSupported(self)

 View Source

 @spec isMaskSupported(t()) :: boolean() | {:error, String.t()}

Returns true if the descriptor matcher supports masking permissible matches.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
isMaskSupported() -> retval

 Link to this function

 knnMatch(self, queryDescriptors, k)

 View Source

 @spec knnMatch(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

knnMatch
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, k, opts)

 View Source

 @spec knnMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), masks: term()] | nil
) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
knnMatch
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 match(self, queryDescriptors)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

match
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, opts)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in(), [{:masks, term()}] | nil) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
match
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec match(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance)

 View Source

 @spec radiusMatch(t(), Evision.Mat.maybe_mat_in(), number()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

radiusMatch
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
radiusMatch
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.DescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches

 Link to this function

 read(self, arg1)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

 @spec read(t(), binary()) :: t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.DescriptorMatcher.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.DescriptorMatcher.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.DescriptorMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self)

 View Source

 @spec train(t()) :: t() | {:error, String.t()}

Trains a descriptor matcher
Positional Arguments
	self: Evision.DescriptorMatcher.t()

Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
have an empty implementation of this method. Other matchers really train their inner structures (for
example, FlannBasedMatcher trains flann::Index).
Python prototype (for reference only):
train() -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(t(), binary()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.DescriptorMatcher.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.DescriptorMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Detail - Evision v0.1.39

Evision.Detail

 Summary

 Types

 t()

 Type that represents an Detail struct.

 Functions

 calibrateRotatingCamera(hs)

 Estimates focal lengths for each given camera.

 calibrateRotatingCamera(hs, opts)

 Estimates focal lengths for each given camera.

 computeImageFeatures2(featuresFinder, image)

 Positional Arguments
	featuresFinder: Evision.Feature2D.t().

 Evision.Detail.AffineBasedEstimator - Evision v0.1.39

Evision.Detail.AffineBasedEstimator

 Summary

 Types

 t()

 Type that represents an Detail.AffineBasedEstimator struct.

 Functions

 affineBasedEstimator()

 AffineBasedEstimator

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.AffineBasedEstimator{ref: reference()}

Type that represents an Detail.AffineBasedEstimator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 affineBasedEstimator()

 View Source

 @spec affineBasedEstimator() :: t() | {:error, String.t()}

AffineBasedEstimator
Return
	self: Evision.Detail.AffineBasedEstimator.t()

Python prototype (for reference only):
AffineBasedEstimator() -> <detail_AffineBasedEstimator object>

 Evision.Detail.AffineBestOf2NearestMatcher - Evision v0.1.39

Evision.Detail.AffineBestOf2NearestMatcher

 Summary

 Types

 t()

 Type that represents an Detail.AffineBestOf2NearestMatcher struct.

 Functions

 affineBestOf2NearestMatcher()

 Constructs a "best of 2 nearest" matcher that expects affine transformation
between images

 affineBestOf2NearestMatcher(opts)

 Constructs a "best of 2 nearest" matcher that expects affine transformation
between images

 apply2(self, features)

 Performs images matching.

 apply2(self, features, opts)

 Performs images matching.

 apply(self, features1, features2)

 apply

 collectGarbage(self)

 collectGarbage

 create()

 create

 create(opts)

 create

 isThreadSafe(self)

 isThreadSafe

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.AffineBestOf2NearestMatcher{ref: reference()}

Type that represents an Detail.AffineBestOf2NearestMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 affineBestOf2NearestMatcher()

 View Source

 @spec affineBestOf2NearestMatcher() :: t() | {:error, String.t()}

Constructs a "best of 2 nearest" matcher that expects affine transformation
between images
Keyword Arguments
	full_affine: bool.
whether to use full affine transformation with 6 degress of freedom or reduced
transformation with 4 degrees of freedom using only rotation, translation and uniform scaling

	try_use_gpu: bool.
Should try to use GPU or not

	match_conf: float.
Match distances ration threshold

	num_matches_thresh1: int.
Minimum number of matches required for the 2D affine transform
estimation used in the inliers classification step

Return
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

@sa cv::estimateAffine2D cv::estimateAffinePartial2D
Python prototype (for reference only):
AffineBestOf2NearestMatcher([, full_affine[, try_use_gpu[, match_conf[, num_matches_thresh1]]]]) -> <detail_AffineBestOf2NearestMatcher object>

 Link to this function

 affineBestOf2NearestMatcher(opts)

 View Source

 @spec affineBestOf2NearestMatcher(
 [
 match_conf: term(),
 full_affine: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: t() | {:error, String.t()}

Constructs a "best of 2 nearest" matcher that expects affine transformation
between images
Keyword Arguments
	full_affine: bool.
whether to use full affine transformation with 6 degress of freedom or reduced
transformation with 4 degrees of freedom using only rotation, translation and uniform scaling

	try_use_gpu: bool.
Should try to use GPU or not

	match_conf: float.
Match distances ration threshold

	num_matches_thresh1: int.
Minimum number of matches required for the 2D affine transform
estimation used in the inliers classification step

Return
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

@sa cv::estimateAffine2D cv::estimateAffinePartial2D
Python prototype (for reference only):
AffineBestOf2NearestMatcher([, full_affine[, try_use_gpu[, match_conf[, num_matches_thresh1]]]]) -> <detail_AffineBestOf2NearestMatcher object>

 Link to this function

 apply2(self, features)

 View Source

 @spec apply2(Evision.Detail.FeaturesMatcher.t(), [Evision.Detail.ImageFeatures.t()]) ::
 [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply2(self, features, opts)

 View Source

 @spec apply2(
 Evision.Detail.FeaturesMatcher.t(),
 [Evision.Detail.ImageFeatures.t()],
 [{:mask, term()}] | nil
) :: [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply(self, features1, features2)

 View Source

 @spec apply(
 Evision.Detail.FeaturesMatcher.t(),
 Evision.Detail.ImageFeatures.t(),
 Evision.Detail.ImageFeatures.t()
) :: Evision.Detail.MatchesInfo.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

	features1: Evision.Detail.ImageFeatures.t().
First image features

	features2: Evision.Detail.ImageFeatures.t().
Second image features

Return
	matches_info: Evision.Detail.MatchesInfo.t().
Found matches

Has overloading in C++
Python prototype (for reference only):
apply(features1, features2) -> matches_info

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(Evision.Detail.BestOf2NearestMatcher.t()) ::
 Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

collectGarbage
Positional Arguments
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 create()

 View Source

 @spec create() :: Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 match_conf: term(),
 matches_confindece_thresh: term(),
 num_matches_thresh2: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 isThreadSafe(self)

 View Source

 @spec isThreadSafe(Evision.Detail.FeaturesMatcher.t()) ::
 boolean() | {:error, String.t()}

isThreadSafe
Positional Arguments
	self: Evision.Detail.AffineBestOf2NearestMatcher.t()

Return
	retval: bool

@return True, if it's possible to use the same matcher instance in parallel, false otherwise
Python prototype (for reference only):
isThreadSafe() -> retval

 Evision.Detail.BestOf2NearestMatcher - Evision v0.1.39

Evision.Detail.BestOf2NearestMatcher

 Summary

 Types

 t()

 Type that represents an Detail.BestOf2NearestMatcher struct.

 Functions

 apply2(self, features)

 Performs images matching.

 apply2(self, features, opts)

 Performs images matching.

 apply(self, features1, features2)

 apply

 bestOf2NearestMatcher()

 Constructs a "best of 2 nearest" matcher.

 bestOf2NearestMatcher(opts)

 Constructs a "best of 2 nearest" matcher.

 collectGarbage(self)

 collectGarbage

 create()

 create

 create(opts)

 create

 isThreadSafe(self)

 isThreadSafe

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BestOf2NearestMatcher{ref: reference()}

Type that represents an Detail.BestOf2NearestMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply2(self, features)

 View Source

 @spec apply2(Evision.Detail.FeaturesMatcher.t(), [Evision.Detail.ImageFeatures.t()]) ::
 [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.BestOf2NearestMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply2(self, features, opts)

 View Source

 @spec apply2(
 Evision.Detail.FeaturesMatcher.t(),
 [Evision.Detail.ImageFeatures.t()],
 [{:mask, term()}] | nil
) :: [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.BestOf2NearestMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply(self, features1, features2)

 View Source

 @spec apply(
 Evision.Detail.FeaturesMatcher.t(),
 Evision.Detail.ImageFeatures.t(),
 Evision.Detail.ImageFeatures.t()
) :: Evision.Detail.MatchesInfo.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.BestOf2NearestMatcher.t()

	features1: Evision.Detail.ImageFeatures.t().
First image features

	features2: Evision.Detail.ImageFeatures.t().
Second image features

Return
	matches_info: Evision.Detail.MatchesInfo.t().
Found matches

Has overloading in C++
Python prototype (for reference only):
apply(features1, features2) -> matches_info

 Link to this function

 bestOf2NearestMatcher()

 View Source

 @spec bestOf2NearestMatcher() :: t() | {:error, String.t()}

Constructs a "best of 2 nearest" matcher.
Keyword Arguments
	try_use_gpu: bool.
Should try to use GPU or not

	match_conf: float.
Match distances ration threshold

	num_matches_thresh1: int.
Minimum number of matches required for the 2D projective transform
estimation used in the inliers classification step

	num_matches_thresh2: int.
Minimum number of matches required for the 2D projective transform
re-estimation on inliers

	matches_confindece_thresh: double.
Matching confidence threshold to take the match into account.
The threshold was determined experimentally and set to 3 by default.

Return
	self: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
BestOf2NearestMatcher([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> <detail_BestOf2NearestMatcher object>

 Link to this function

 bestOf2NearestMatcher(opts)

 View Source

 @spec bestOf2NearestMatcher(
 [
 match_conf: term(),
 matches_confindece_thresh: term(),
 num_matches_thresh2: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: t() | {:error, String.t()}

Constructs a "best of 2 nearest" matcher.
Keyword Arguments
	try_use_gpu: bool.
Should try to use GPU or not

	match_conf: float.
Match distances ration threshold

	num_matches_thresh1: int.
Minimum number of matches required for the 2D projective transform
estimation used in the inliers classification step

	num_matches_thresh2: int.
Minimum number of matches required for the 2D projective transform
re-estimation on inliers

	matches_confindece_thresh: double.
Matching confidence threshold to take the match into account.
The threshold was determined experimentally and set to 3 by default.

Return
	self: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
BestOf2NearestMatcher([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> <detail_BestOf2NearestMatcher object>

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(t()) :: t() | {:error, String.t()}

collectGarbage
Positional Arguments
	self: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 match_conf: term(),
 matches_confindece_thresh: term(),
 num_matches_thresh2: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 isThreadSafe(self)

 View Source

 @spec isThreadSafe(Evision.Detail.FeaturesMatcher.t()) ::
 boolean() | {:error, String.t()}

isThreadSafe
Positional Arguments
	self: Evision.Detail.BestOf2NearestMatcher.t()

Return
	retval: bool

@return True, if it's possible to use the same matcher instance in parallel, false otherwise
Python prototype (for reference only):
isThreadSafe() -> retval

 Evision.Detail.BestOf2NearestRangeMatcher - Evision v0.1.39

Evision.Detail.BestOf2NearestRangeMatcher

 Summary

 Types

 t()

 Type that represents an Detail.BestOf2NearestRangeMatcher struct.

 Functions

 apply2(self, features)

 Performs images matching.

 apply2(self, features, opts)

 Performs images matching.

 apply(self, features1, features2)

 apply

 bestOf2NearestRangeMatcher()

 BestOf2NearestRangeMatcher

 bestOf2NearestRangeMatcher(opts)

 BestOf2NearestRangeMatcher

 collectGarbage(self)

 collectGarbage

 create()

 create

 create(opts)

 create

 isThreadSafe(self)

 isThreadSafe

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BestOf2NearestRangeMatcher{ref: reference()}

Type that represents an Detail.BestOf2NearestRangeMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply2(self, features)

 View Source

 @spec apply2(Evision.Detail.FeaturesMatcher.t(), [Evision.Detail.ImageFeatures.t()]) ::
 [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply2(self, features, opts)

 View Source

 @spec apply2(
 Evision.Detail.FeaturesMatcher.t(),
 [Evision.Detail.ImageFeatures.t()],
 [{:mask, term()}] | nil
) :: [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply(self, features1, features2)

 View Source

 @spec apply(
 Evision.Detail.FeaturesMatcher.t(),
 Evision.Detail.ImageFeatures.t(),
 Evision.Detail.ImageFeatures.t()
) :: Evision.Detail.MatchesInfo.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

	features1: Evision.Detail.ImageFeatures.t().
First image features

	features2: Evision.Detail.ImageFeatures.t().
Second image features

Return
	matches_info: Evision.Detail.MatchesInfo.t().
Found matches

Has overloading in C++
Python prototype (for reference only):
apply(features1, features2) -> matches_info

 Link to this function

 bestOf2NearestRangeMatcher()

 View Source

 @spec bestOf2NearestRangeMatcher() :: t() | {:error, String.t()}

BestOf2NearestRangeMatcher
Keyword Arguments
	range_width: int.
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.

Return
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

Python prototype (for reference only):
BestOf2NearestRangeMatcher([, range_width[, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2]]]]]) -> <detail_BestOf2NearestRangeMatcher object>

 Link to this function

 bestOf2NearestRangeMatcher(opts)

 View Source

 @spec bestOf2NearestRangeMatcher(
 [
 match_conf: term(),
 range_width: term(),
 num_matches_thresh2: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: t() | {:error, String.t()}

BestOf2NearestRangeMatcher
Keyword Arguments
	range_width: int.
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.

Return
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

Python prototype (for reference only):
BestOf2NearestRangeMatcher([, range_width[, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2]]]]]) -> <detail_BestOf2NearestRangeMatcher object>

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(Evision.Detail.BestOf2NearestMatcher.t()) ::
 Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

collectGarbage
Positional Arguments
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 create()

 View Source

 @spec create() :: Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 match_conf: term(),
 matches_confindece_thresh: term(),
 num_matches_thresh2: term(),
 num_matches_thresh1: term(),
 try_use_gpu: term()
]
 | nil
) :: Evision.Detail.BestOf2NearestMatcher.t() | {:error, String.t()}

create
Keyword Arguments
	try_use_gpu: bool.
	match_conf: float.
	num_matches_thresh1: int.
	num_matches_thresh2: int.
	matches_confindece_thresh: double.

Return
	retval: Evision.Detail.BestOf2NearestMatcher.t()

Python prototype (for reference only):
create([, try_use_gpu[, match_conf[, num_matches_thresh1[, num_matches_thresh2[, matches_confindece_thresh]]]]]) -> retval

 Link to this function

 isThreadSafe(self)

 View Source

 @spec isThreadSafe(Evision.Detail.FeaturesMatcher.t()) ::
 boolean() | {:error, String.t()}

isThreadSafe
Positional Arguments
	self: Evision.Detail.BestOf2NearestRangeMatcher.t()

Return
	retval: bool

@return True, if it's possible to use the same matcher instance in parallel, false otherwise
Python prototype (for reference only):
isThreadSafe() -> retval

 Evision.Detail.Blender - Evision v0.1.39

Evision.Detail.Blender

 Summary

 Types

 t()

 Type that represents an Detail.Blender struct.

 Functions

 blend(self, dst, dst_mask)

 Blends and returns the final pano.

 createDefault(type)

 createDefault

 createDefault(type, opts)

 createDefault

 feed(self, img, mask, tl)

 Processes the image.

 prepare(self, dst_roi)

 prepare

 prepare(self, corners, sizes)

 Prepares the blender for blending.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.Blender{ref: reference()}

Type that represents an Detail.Blender struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blend(self, dst, dst_mask)

 View Source

 @spec blend(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Blends and returns the final pano.
Positional Arguments
	self: Evision.Detail.Blender.t()

Return
	dst: Evision.Mat.t().
Final pano

	dst_mask: Evision.Mat.t().
Final pano mask

Python prototype (for reference only):
blend(dst, dst_mask) -> dst, dst_mask

 Link to this function

 createDefault(type)

 View Source

 @spec createDefault(integer()) :: t() | {:error, String.t()}

createDefault
Positional Arguments
	type: int

Keyword Arguments
	try_gpu: bool.

Return
	retval: Evision.Detail.Blender.t()

Python prototype (for reference only):
createDefault(type[, try_gpu]) -> retval

 Link to this function

 createDefault(type, opts)

 View Source

 @spec createDefault(integer(), [{:try_gpu, term()}] | nil) ::
 t() | {:error, String.t()}

createDefault
Positional Arguments
	type: int

Keyword Arguments
	try_gpu: bool.

Return
	retval: Evision.Detail.Blender.t()

Python prototype (for reference only):
createDefault(type[, try_gpu]) -> retval

 Link to this function

 feed(self, img, mask, tl)

 View Source

 @spec feed(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 t() | {:error, String.t()}

Processes the image.
Positional Arguments
	self: Evision.Detail.Blender.t()

	img: Evision.Mat.t().
Source image

	mask: Evision.Mat.t().
Source image mask

	tl: Point.
Source image top-left corners

Python prototype (for reference only):
feed(img, mask, tl) -> None

 Link to this function

 prepare(self, dst_roi)

 View Source

 @spec prepare(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

prepare
Positional Arguments
	self: Evision.Detail.Blender.t()
	dst_roi: Rect

Has overloading in C++
Python prototype (for reference only):
prepare(dst_roi) -> None

 Link to this function

 prepare(self, corners, sizes)

 View Source

 @spec prepare(t(), [{number(), number()}], [{number(), number()}]) ::
 t() | {:error, String.t()}

Prepares the blender for blending.
Positional Arguments
	self: Evision.Detail.Blender.t()

	corners: [Point].
Source images top-left corners

	sizes: [Size].
Source image sizes

Python prototype (for reference only):
prepare(corners, sizes) -> None

 Evision.Detail.BlocksChannelsCompensator - Evision v0.1.39

Evision.Detail.BlocksChannelsCompensator

 Summary

 Types

 t()

 Type that represents an Detail.BlocksChannelsCompensator struct.

 Functions

 blocksChannelsCompensator()

 BlocksChannelsCompensator

 blocksChannelsCompensator(opts)

 BlocksChannelsCompensator

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BlocksChannelsCompensator{ref: reference()}

Type that represents an Detail.BlocksChannelsCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blocksChannelsCompensator()

 View Source

 @spec blocksChannelsCompensator() :: t() | {:error, String.t()}

BlocksChannelsCompensator
Keyword Arguments
	bl_width: int.
	bl_height: int.
	nr_feeds: int.

Return
	self: Evision.Detail.BlocksChannelsCompensator.t()

Python prototype (for reference only):
BlocksChannelsCompensator([, bl_width[, bl_height[, nr_feeds]]]) -> <detail_BlocksChannelsCompensator object>

 Link to this function

 blocksChannelsCompensator(opts)

 View Source

 @spec blocksChannelsCompensator(
 [bl_height: term(), bl_width: term(), nr_feeds: term()]
 | nil
) ::
 t() | {:error, String.t()}

BlocksChannelsCompensator
Keyword Arguments
	bl_width: int.
	bl_height: int.
	nr_feeds: int.

Return
	self: Evision.Detail.BlocksChannelsCompensator.t()

Python prototype (for reference only):
BlocksChannelsCompensator([, bl_width[, bl_height[, nr_feeds]]]) -> <detail_BlocksChannelsCompensator object>

 Evision.Detail.BlocksCompensator - Evision v0.1.39

Evision.Detail.BlocksCompensator

 Summary

 Types

 t()

 Type that represents an Detail.BlocksCompensator struct.

 Functions

 apply(self, index, corner, image, mask)

 apply

 getBlockSize(self)

 getBlockSize

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 getNrFeeds(self)

 getNrFeeds

 getNrGainsFilteringIterations(self)

 getNrGainsFilteringIterations

 getSimilarityThreshold(self)

 getSimilarityThreshold

 setBlockSize(self, size)

 setBlockSize

 setBlockSize(self, width, height)

 setBlockSize

 setMatGains(self, umv)

 setMatGains

 setNrFeeds(self, nr_feeds)

 setNrFeeds

 setNrGainsFilteringIterations(self, nr_iterations)

 setNrGainsFilteringIterations

 setSimilarityThreshold(self, similarity_threshold)

 setSimilarityThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BlocksCompensator{ref: reference()}

Type that represents an Detail.BlocksCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, index, corner, image, mask)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	index: int
	corner: Point
	mask: Evision.Mat.t()

Return
	image: Evision.Mat.t()

Python prototype (for reference only):
apply(index, corner, image, mask) -> image

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(t()) :: {number(), number()} | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	retval: Size

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getNrFeeds(self)

 View Source

 @spec getNrFeeds(t()) :: integer() | {:error, String.t()}

getNrFeeds
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	retval: int

Python prototype (for reference only):
getNrFeeds() -> retval

 Link to this function

 getNrGainsFilteringIterations(self)

 View Source

 @spec getNrGainsFilteringIterations(t()) :: integer() | {:error, String.t()}

getNrGainsFilteringIterations
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	retval: int

Python prototype (for reference only):
getNrGainsFilteringIterations() -> retval

 Link to this function

 getSimilarityThreshold(self)

 View Source

 @spec getSimilarityThreshold(t()) :: number() | {:error, String.t()}

getSimilarityThreshold
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()

Return
	retval: double

Python prototype (for reference only):
getSimilarityThreshold() -> retval

 Link to this function

 setBlockSize(self, size)

 View Source

 @spec setBlockSize(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	size: Size

Python prototype (for reference only):
setBlockSize(size) -> None

 Link to this function

 setBlockSize(self, width, height)

 View Source

 @spec setBlockSize(t(), integer(), integer()) :: t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	width: int
	height: int

Python prototype (for reference only):
setBlockSize(width, height) -> None

 Link to this function

 setMatGains(self, umv)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	umv: [Evision.Mat]

Python prototype (for reference only):
setMatGains(umv) -> None

 Link to this function

 setNrFeeds(self, nr_feeds)

 View Source

 @spec setNrFeeds(t(), integer()) :: t() | {:error, String.t()}

setNrFeeds
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	nr_feeds: int

Python prototype (for reference only):
setNrFeeds(nr_feeds) -> None

 Link to this function

 setNrGainsFilteringIterations(self, nr_iterations)

 View Source

 @spec setNrGainsFilteringIterations(t(), integer()) :: t() | {:error, String.t()}

setNrGainsFilteringIterations
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	nr_iterations: int

Python prototype (for reference only):
setNrGainsFilteringIterations(nr_iterations) -> None

 Link to this function

 setSimilarityThreshold(self, similarity_threshold)

 View Source

 @spec setSimilarityThreshold(t(), number()) :: t() | {:error, String.t()}

setSimilarityThreshold
Positional Arguments
	self: Evision.Detail.BlocksCompensator.t()
	similarity_threshold: double

Python prototype (for reference only):
setSimilarityThreshold(similarity_threshold) -> None

 Evision.Detail.BlocksGainCompensator - Evision v0.1.39

Evision.Detail.BlocksGainCompensator

 Summary

 Types

 t()

 Type that represents an Detail.BlocksGainCompensator struct.

 Functions

 apply(self, index, corner, image, mask)

 apply

 blocksGainCompensator()

 BlocksGainCompensator

 blocksGainCompensator(opts)

 BlocksGainCompensator

 blocksGainCompensator(bl_width, bl_height, nr_feeds)

 BlocksGainCompensator

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 setMatGains(self, umv)

 setMatGains

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BlocksGainCompensator{ref: reference()}

Type that represents an Detail.BlocksGainCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, index, corner, image, mask)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.BlocksGainCompensator.t()
	index: int
	corner: Point
	mask: Evision.Mat.t()

Return
	image: Evision.Mat.t()

Python prototype (for reference only):
apply(index, corner, image, mask) -> image

 Link to this function

 blocksGainCompensator()

 View Source

 @spec blocksGainCompensator() :: t() | {:error, String.t()}

BlocksGainCompensator
Keyword Arguments
	bl_width: int.
	bl_height: int.

Return
	self: Evision.Detail.BlocksGainCompensator.t()

Python prototype (for reference only):
BlocksGainCompensator([, bl_width[, bl_height]]) -> <detail_BlocksGainCompensator object>

 Link to this function

 blocksGainCompensator(opts)

 View Source

 @spec blocksGainCompensator([bl_height: term(), bl_width: term()] | nil) ::
 t() | {:error, String.t()}

BlocksGainCompensator
Keyword Arguments
	bl_width: int.
	bl_height: int.

Return
	self: Evision.Detail.BlocksGainCompensator.t()

Python prototype (for reference only):
BlocksGainCompensator([, bl_width[, bl_height]]) -> <detail_BlocksGainCompensator object>

 Link to this function

 blocksGainCompensator(bl_width, bl_height, nr_feeds)

 View Source

 @spec blocksGainCompensator(integer(), integer(), integer()) ::
 t() | {:error, String.t()}

BlocksGainCompensator
Positional Arguments
	bl_width: int
	bl_height: int
	nr_feeds: int

Return
	self: Evision.Detail.BlocksGainCompensator.t()

Python prototype (for reference only):
BlocksGainCompensator(bl_width, bl_height, nr_feeds) -> <detail_BlocksGainCompensator object>

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.BlocksGainCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.BlocksGainCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 setMatGains(self, umv)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.BlocksGainCompensator.t()
	umv: [Evision.Mat]

Python prototype (for reference only):
setMatGains(umv) -> None

 Evision.Detail.BundleAdjusterAffine - Evision v0.1.39

Evision.Detail.BundleAdjusterAffine

 Summary

 Types

 t()

 Type that represents an Detail.BundleAdjusterAffine struct.

 Functions

 bundleAdjusterAffine()

 BundleAdjusterAffine

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BundleAdjusterAffine{ref: reference()}

Type that represents an Detail.BundleAdjusterAffine struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bundleAdjusterAffine()

 View Source

 @spec bundleAdjusterAffine() :: t() | {:error, String.t()}

BundleAdjusterAffine
Return
	self: Evision.Detail.BundleAdjusterAffine.t()

Python prototype (for reference only):
BundleAdjusterAffine() -> <detail_BundleAdjusterAffine object>

 Evision.Detail.BundleAdjusterAffinePartial - Evision v0.1.39

Evision.Detail.BundleAdjusterAffinePartial

 Summary

 Types

 t()

 Type that represents an Detail.BundleAdjusterAffinePartial struct.

 Functions

 bundleAdjusterAffinePartial()

 BundleAdjusterAffinePartial

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BundleAdjusterAffinePartial{ref: reference()}

Type that represents an Detail.BundleAdjusterAffinePartial struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bundleAdjusterAffinePartial()

 View Source

 @spec bundleAdjusterAffinePartial() :: t() | {:error, String.t()}

BundleAdjusterAffinePartial
Return
	self: Evision.Detail.BundleAdjusterAffinePartial.t()

Python prototype (for reference only):
BundleAdjusterAffinePartial() -> <detail_BundleAdjusterAffinePartial object>

 Evision.Detail.BundleAdjusterBase - Evision v0.1.39

Evision.Detail.BundleAdjusterBase

 Summary

 Types

 t()

 Type that represents an Detail.BundleAdjusterBase struct.

 Functions

 confThresh(self)

 confThresh

 refinementMask(self)

 refinementMask

 setConfThresh(self, conf_thresh)

 setConfThresh

 setRefinementMask(self, mask)

 setRefinementMask

 setTermCriteria(self, term_criteria)

 setTermCriteria

 termCriteria(self)

 termCriteria

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BundleAdjusterBase{ref: reference()}

Type that represents an Detail.BundleAdjusterBase struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 confThresh(self)

 View Source

 @spec confThresh(t()) :: number() | {:error, String.t()}

confThresh
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()

Return
	retval: double

Python prototype (for reference only):
confThresh() -> retval

 Link to this function

 refinementMask(self)

 View Source

 @spec refinementMask(t()) :: Evision.Mat.t() | {:error, String.t()}

refinementMask
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
refinementMask() -> retval

 Link to this function

 setConfThresh(self, conf_thresh)

 View Source

 @spec setConfThresh(t(), number()) :: t() | {:error, String.t()}

setConfThresh
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()
	conf_thresh: double

Python prototype (for reference only):
setConfThresh(conf_thresh) -> None

 Link to this function

 setRefinementMask(self, mask)

 View Source

 @spec setRefinementMask(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setRefinementMask
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()
	mask: Evision.Mat.t()

Python prototype (for reference only):
setRefinementMask(mask) -> None

 Link to this function

 setTermCriteria(self, term_criteria)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()
	term_criteria: TermCriteria

Python prototype (for reference only):
setTermCriteria(term_criteria) -> None

 Link to this function

 termCriteria(self)

 View Source

 @spec termCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

termCriteria
Positional Arguments
	self: Evision.Detail.BundleAdjusterBase.t()

Return
	retval: TermCriteria

Python prototype (for reference only):
termCriteria() -> retval

 Evision.Detail.BundleAdjusterRay - Evision v0.1.39

Evision.Detail.BundleAdjusterRay

 Summary

 Types

 t()

 Type that represents an Detail.BundleAdjusterRay struct.

 Functions

 bundleAdjusterRay()

 BundleAdjusterRay

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BundleAdjusterRay{ref: reference()}

Type that represents an Detail.BundleAdjusterRay struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bundleAdjusterRay()

 View Source

 @spec bundleAdjusterRay() :: t() | {:error, String.t()}

BundleAdjusterRay
Return
	self: Evision.Detail.BundleAdjusterRay.t()

Python prototype (for reference only):
BundleAdjusterRay() -> <detail_BundleAdjusterRay object>

 Evision.Detail.BundleAdjusterReproj - Evision v0.1.39

Evision.Detail.BundleAdjusterReproj

 Summary

 Types

 t()

 Type that represents an Detail.BundleAdjusterReproj struct.

 Functions

 bundleAdjusterReproj()

 BundleAdjusterReproj

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.BundleAdjusterReproj{ref: reference()}

Type that represents an Detail.BundleAdjusterReproj struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 bundleAdjusterReproj()

 View Source

 @spec bundleAdjusterReproj() :: t() | {:error, String.t()}

BundleAdjusterReproj
Return
	self: Evision.Detail.BundleAdjusterReproj.t()

Python prototype (for reference only):
BundleAdjusterReproj() -> <detail_BundleAdjusterReproj object>

 Evision.Detail.CameraParams - Evision v0.1.39

Evision.Detail.CameraParams

 Summary

 Types

 t()

 Type that represents an Detail.CameraParams struct.

 Functions

 get_aspect(self)

 get_focal(self)

 get_ppx(self)

 get_ppy(self)

 get_R(self)

 get_t(self)

 k(self)

 K

 set_aspect(self, prop)

 set_focal(self, prop)

 set_ppx(self, prop)

 set_ppy(self, prop)

 set_R(self, prop)

 set_t(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.CameraParams{ref: reference()}

Type that represents an Detail.CameraParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_aspect(self)

 View Source

 @spec get_aspect(t()) :: number()

 Link to this function

 get_focal(self)

 View Source

 @spec get_focal(t()) :: number()

 Link to this function

 get_ppx(self)

 View Source

 @spec get_ppx(t()) :: number()

 Link to this function

 get_ppy(self)

 View Source

 @spec get_ppy(t()) :: number()

 Link to this function

 get_R(self)

 View Source

 @spec get_R(t()) :: Evision.Mat.t()

 Link to this function

 get_t(self)

 View Source

 @spec get_t(t()) :: Evision.Mat.t()

 Link to this function

 k(self)

 View Source

 @spec k(t()) :: Evision.Mat.t() | {:error, String.t()}

K
Positional Arguments
	self: Evision.Detail.CameraParams.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
K() -> retval

 Link to this function

 set_aspect(self, prop)

 View Source

 @spec set_aspect(t(), number()) :: t()

 Link to this function

 set_focal(self, prop)

 View Source

 @spec set_focal(t(), number()) :: t()

 Link to this function

 set_ppx(self, prop)

 View Source

 @spec set_ppx(t(), number()) :: t()

 Link to this function

 set_ppy(self, prop)

 View Source

 @spec set_ppy(t(), number()) :: t()

 Link to this function

 set_R(self, prop)

 View Source

 @spec set_R(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_t(self, prop)

 View Source

 @spec set_t(t(), Evision.Mat.maybe_mat_in()) :: t()

 Evision.Detail.ChannelsCompensator - Evision v0.1.39

Evision.Detail.ChannelsCompensator

 Summary

 Types

 t()

 Type that represents an Detail.ChannelsCompensator struct.

 Functions

 apply(self, index, corner, image, mask)

 apply

 channelsCompensator()

 ChannelsCompensator

 channelsCompensator(opts)

 ChannelsCompensator

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 getNrFeeds(self)

 getNrFeeds

 getSimilarityThreshold(self)

 getSimilarityThreshold

 setMatGains(self, umv)

 setMatGains

 setNrFeeds(self, nr_feeds)

 setNrFeeds

 setSimilarityThreshold(self, similarity_threshold)

 setSimilarityThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.ChannelsCompensator{ref: reference()}

Type that represents an Detail.ChannelsCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, index, corner, image, mask)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()
	index: int
	corner: Point
	mask: Evision.Mat.t()

Return
	image: Evision.Mat.t()

Python prototype (for reference only):
apply(index, corner, image, mask) -> image

 Link to this function

 channelsCompensator()

 View Source

 @spec channelsCompensator() :: t() | {:error, String.t()}

ChannelsCompensator
Keyword Arguments
	nr_feeds: int.

Return
	self: Evision.Detail.ChannelsCompensator.t()

Python prototype (for reference only):
ChannelsCompensator([, nr_feeds]) -> <detail_ChannelsCompensator object>

 Link to this function

 channelsCompensator(opts)

 View Source

 @spec channelsCompensator([{:nr_feeds, term()}] | nil) :: t() | {:error, String.t()}

ChannelsCompensator
Keyword Arguments
	nr_feeds: int.

Return
	self: Evision.Detail.ChannelsCompensator.t()

Python prototype (for reference only):
ChannelsCompensator([, nr_feeds]) -> <detail_ChannelsCompensator object>

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getNrFeeds(self)

 View Source

 @spec getNrFeeds(t()) :: integer() | {:error, String.t()}

getNrFeeds
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()

Return
	retval: int

Python prototype (for reference only):
getNrFeeds() -> retval

 Link to this function

 getSimilarityThreshold(self)

 View Source

 @spec getSimilarityThreshold(t()) :: number() | {:error, String.t()}

getSimilarityThreshold
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()

Return
	retval: double

Python prototype (for reference only):
getSimilarityThreshold() -> retval

 Link to this function

 setMatGains(self, umv)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()
	umv: [Evision.Mat]

Python prototype (for reference only):
setMatGains(umv) -> None

 Link to this function

 setNrFeeds(self, nr_feeds)

 View Source

 @spec setNrFeeds(t(), integer()) :: t() | {:error, String.t()}

setNrFeeds
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()
	nr_feeds: int

Python prototype (for reference only):
setNrFeeds(nr_feeds) -> None

 Link to this function

 setSimilarityThreshold(self, similarity_threshold)

 View Source

 @spec setSimilarityThreshold(t(), number()) :: t() | {:error, String.t()}

setSimilarityThreshold
Positional Arguments
	self: Evision.Detail.ChannelsCompensator.t()
	similarity_threshold: double

Python prototype (for reference only):
setSimilarityThreshold(similarity_threshold) -> None

 Evision.Detail.DpSeamFinder - Evision v0.1.39

Evision.Detail.DpSeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.DpSeamFinder struct.

 Functions

 dpSeamFinder(costFunc)

 DpSeamFinder

 setCostFunction(self, val)

 setCostFunction

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.DpSeamFinder{ref: reference()}

Type that represents an Detail.DpSeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 dpSeamFinder(costFunc)

 View Source

 @spec dpSeamFinder(binary()) :: t() | {:error, String.t()}

DpSeamFinder
Positional Arguments
	costFunc: String

Return
	self: Evision.Detail.DpSeamFinder.t()

Python prototype (for reference only):
DpSeamFinder(costFunc) -> <detail_DpSeamFinder object>

 Link to this function

 setCostFunction(self, val)

 View Source

 @spec setCostFunction(t(), binary()) :: t() | {:error, String.t()}

setCostFunction
Positional Arguments
	self: Evision.Detail.DpSeamFinder.t()
	val: String

Python prototype (for reference only):
setCostFunction(val) -> None

 Evision.Detail.Estimator - Evision v0.1.39

Evision.Detail.Estimator

 Summary

 Types

 t()

 Type that represents an Detail.Estimator struct.

 Functions

 apply(self, features, pairwise_matches, cameras)

 Estimates camera parameters.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.Estimator{ref: reference()}

Type that represents an Detail.Estimator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, features, pairwise_matches, cameras)

 View Source

 @spec apply(
 t(),
 [Evision.Detail.ImageFeatures.t()],
 [Evision.Detail.MatchesInfo.t()],
 [
 Evision.Detail.CameraParams.t()
]
) :: [Evision.Detail.CameraParams.t()] | false | {:error, String.t()}

Estimates camera parameters.
Positional Arguments
	self: Evision.Detail.Estimator.t()

	features: [Evision.Detail.ImageFeatures].
Features of images

	pairwise_matches: [Evision.Detail.MatchesInfo].
Pairwise matches of images

Return
	retval: bool

	cameras: [Evision.Detail.CameraParams].
Estimated camera parameters

@return True in case of success, false otherwise
Python prototype (for reference only):
apply(features, pairwise_matches, cameras) -> retval, cameras

 Evision.Detail.ExposureCompensator - Evision v0.1.39

Evision.Detail.ExposureCompensator

 Summary

 Types

 t()

 Type that represents an Detail.ExposureCompensator struct.

 Functions

 apply(self, index, corner, image, mask)

 Compensate exposure in the specified image.

 createDefault(type)

 createDefault

 feed(self, corners, images, masks)

 feed

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 getUpdateGain(self)

 getUpdateGain

 setMatGains(self, arg1)

 setMatGains

 setUpdateGain(self, b)

 setUpdateGain

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.ExposureCompensator{ref: reference()}

Type that represents an Detail.ExposureCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, index, corner, image, mask)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Compensate exposure in the specified image.
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()

	index: int.
Image index

	corner: Point.
Image top-left corner

	mask: Evision.Mat.t().
Image mask

Return
	image: Evision.Mat.t().
Image to process

Python prototype (for reference only):
apply(index, corner, image, mask) -> image

 Link to this function

 createDefault(type)

 View Source

 @spec createDefault(integer()) :: t() | {:error, String.t()}

createDefault
Positional Arguments
	type: int

Return
	retval: Evision.Detail.ExposureCompensator.t()

Python prototype (for reference only):
createDefault(type) -> retval

 Link to this function

 feed(self, corners, images, masks)

 View Source

 @spec feed(t(), [{number(), number()}], [Evision.Mat.maybe_mat_in()], [
 Evision.Mat.maybe_mat_in()
]) ::
 t() | {:error, String.t()}

feed
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()

	corners: [Point].
Source image top-left corners

	images: [Evision.Mat].
Source images

	masks: [Evision.Mat].
Image masks to update (second value in pair specifies the value which should be used
to detect where image is)

Python prototype (for reference only):
feed(corners, images, masks) -> None

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()

Return
	arg1: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, arg1]) -> arg1

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()

Return
	arg1: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, arg1]) -> arg1

 Link to this function

 getUpdateGain(self)

 View Source

 @spec getUpdateGain(t()) :: boolean() | {:error, String.t()}

getUpdateGain
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()

Return
	retval: bool

Python prototype (for reference only):
getUpdateGain() -> retval

 Link to this function

 setMatGains(self, arg1)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()
	arg1: [Evision.Mat]

Python prototype (for reference only):
setMatGains(arg1) -> None

 Link to this function

 setUpdateGain(self, b)

 View Source

 @spec setUpdateGain(t(), boolean()) :: t() | {:error, String.t()}

setUpdateGain
Positional Arguments
	self: Evision.Detail.ExposureCompensator.t()
	b: bool

Python prototype (for reference only):
setUpdateGain(b) -> None

 Evision.Detail.FeatherBlender - Evision v0.1.39

Evision.Detail.FeatherBlender

 Summary

 Types

 t()

 Type that represents an Detail.FeatherBlender struct.

 Functions

 blend(self, dst, dst_mask)

 blend

 createWeightMaps(self, masks, corners, weight_maps)

 createWeightMaps

 featherBlender()

 FeatherBlender

 featherBlender(opts)

 FeatherBlender

 feed(self, img, mask, tl)

 feed

 prepare(self, dst_roi)

 prepare

 setSharpness(self, val)

 setSharpness

 sharpness(self)

 sharpness

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.FeatherBlender{ref: reference()}

Type that represents an Detail.FeatherBlender struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blend(self, dst, dst_mask)

 View Source

 @spec blend(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

blend
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()

Return
	dst: Evision.Mat.t()
	dst_mask: Evision.Mat.t()

Python prototype (for reference only):
blend(dst, dst_mask) -> dst, dst_mask

 Link to this function

 createWeightMaps(self, masks, corners, weight_maps)

 View Source

 @spec createWeightMaps(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 {{number(), number(), number(), number()}, [Evision.Mat.t()]}
 | {:error, String.t()}

createWeightMaps
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()
	masks: [Evision.Mat]
	corners: [Point]

Return
	retval: Rect
	weight_maps: [Evision.Mat]

Python prototype (for reference only):
createWeightMaps(masks, corners, weight_maps) -> retval, weight_maps

 Link to this function

 featherBlender()

 View Source

 @spec featherBlender() :: t() | {:error, String.t()}

FeatherBlender
Keyword Arguments
	sharpness: float.

Return
	self: Evision.Detail.FeatherBlender.t()

Python prototype (for reference only):
FeatherBlender([, sharpness]) -> <detail_FeatherBlender object>

 Link to this function

 featherBlender(opts)

 View Source

 @spec featherBlender([{:sharpness, term()}] | nil) :: t() | {:error, String.t()}

FeatherBlender
Keyword Arguments
	sharpness: float.

Return
	self: Evision.Detail.FeatherBlender.t()

Python prototype (for reference only):
FeatherBlender([, sharpness]) -> <detail_FeatherBlender object>

 Link to this function

 feed(self, img, mask, tl)

 View Source

 @spec feed(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 t() | {:error, String.t()}

feed
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()
	img: Evision.Mat.t()
	mask: Evision.Mat.t()
	tl: Point

Python prototype (for reference only):
feed(img, mask, tl) -> None

 Link to this function

 prepare(self, dst_roi)

 View Source

 @spec prepare(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

prepare
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()
	dst_roi: Rect

Python prototype (for reference only):
prepare(dst_roi) -> None

 Link to this function

 setSharpness(self, val)

 View Source

 @spec setSharpness(t(), number()) :: t() | {:error, String.t()}

setSharpness
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()
	val: float

Python prototype (for reference only):
setSharpness(val) -> None

 Link to this function

 sharpness(self)

 View Source

 @spec sharpness(t()) :: number() | {:error, String.t()}

sharpness
Positional Arguments
	self: Evision.Detail.FeatherBlender.t()

Return
	retval: float

Python prototype (for reference only):
sharpness() -> retval

 Evision.Detail.FeaturesMatcher - Evision v0.1.39

Evision.Detail.FeaturesMatcher

 Summary

 Types

 t()

 Type that represents an Detail.FeaturesMatcher struct.

 Functions

 apply2(self, features)

 Performs images matching.

 apply2(self, features, opts)

 Performs images matching.

 apply(self, features1, features2)

 apply

 collectGarbage(self)

 Frees unused memory allocated before if there is any.

 isThreadSafe(self)

 isThreadSafe

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.FeaturesMatcher{ref: reference()}

Type that represents an Detail.FeaturesMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply2(self, features)

 View Source

 @spec apply2(t(), [Evision.Detail.ImageFeatures.t()]) ::
 [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.FeaturesMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply2(self, features, opts)

 View Source

 @spec apply2(t(), [Evision.Detail.ImageFeatures.t()], [{:mask, term()}] | nil) ::
 [Evision.Detail.MatchesInfo.t()] | {:error, String.t()}

Performs images matching.
Positional Arguments
	self: Evision.Detail.FeaturesMatcher.t()

	features: [Evision.Detail.ImageFeatures].
Features of the source images

Keyword Arguments
	mask: Evision.Mat.t().
Mask indicating which image pairs must be matched

Return
	pairwise_matches: [Evision.Detail.MatchesInfo].
Found pairwise matches

The function is parallelized with the TBB library.
@sa detail::MatchesInfo
Python prototype (for reference only):
apply2(features[, mask]) -> pairwise_matches

 Link to this function

 apply(self, features1, features2)

 View Source

 @spec apply(t(), Evision.Detail.ImageFeatures.t(), Evision.Detail.ImageFeatures.t()) ::
 Evision.Detail.MatchesInfo.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.FeaturesMatcher.t()

	features1: Evision.Detail.ImageFeatures.t().
First image features

	features2: Evision.Detail.ImageFeatures.t().
Second image features

Return
	matches_info: Evision.Detail.MatchesInfo.t().
Found matches

Has overloading in C++
Python prototype (for reference only):
apply(features1, features2) -> matches_info

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(t()) :: t() | {:error, String.t()}

Frees unused memory allocated before if there is any.
Positional Arguments
	self: Evision.Detail.FeaturesMatcher.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 isThreadSafe(self)

 View Source

 @spec isThreadSafe(t()) :: boolean() | {:error, String.t()}

isThreadSafe
Positional Arguments
	self: Evision.Detail.FeaturesMatcher.t()

Return
	retval: bool

@return True, if it's possible to use the same matcher instance in parallel, false otherwise
Python prototype (for reference only):
isThreadSafe() -> retval

 Evision.Detail.GainCompensator - Evision v0.1.39

Evision.Detail.GainCompensator

 Summary

 Types

 t()

 Type that represents an Detail.GainCompensator struct.

 Functions

 apply(self, index, corner, image, mask)

 apply

 gainCompensator()

 GainCompensator

 gainCompensator(nr_feeds)

 GainCompensator

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 getNrFeeds(self)

 getNrFeeds

 getSimilarityThreshold(self)

 getSimilarityThreshold

 setMatGains(self, umv)

 setMatGains

 setNrFeeds(self, nr_feeds)

 setNrFeeds

 setSimilarityThreshold(self, similarity_threshold)

 setSimilarityThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.GainCompensator{ref: reference()}

Type that represents an Detail.GainCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, index, corner, image, mask)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.GainCompensator.t()
	index: int
	corner: Point
	mask: Evision.Mat.t()

Return
	image: Evision.Mat.t()

Python prototype (for reference only):
apply(index, corner, image, mask) -> image

 Link to this function

 gainCompensator()

 View Source

 @spec gainCompensator() :: t() | {:error, String.t()}

GainCompensator
Return
	self: Evision.Detail.GainCompensator.t()

Python prototype (for reference only):
GainCompensator() -> <detail_GainCompensator object>

 Link to this function

 gainCompensator(nr_feeds)

 View Source

 @spec gainCompensator(integer()) :: t() | {:error, String.t()}

GainCompensator
Positional Arguments
	nr_feeds: int

Return
	self: Evision.Detail.GainCompensator.t()

Python prototype (for reference only):
GainCompensator(nr_feeds) -> <detail_GainCompensator object>

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.GainCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.GainCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getNrFeeds(self)

 View Source

 @spec getNrFeeds(t()) :: integer() | {:error, String.t()}

getNrFeeds
Positional Arguments
	self: Evision.Detail.GainCompensator.t()

Return
	retval: int

Python prototype (for reference only):
getNrFeeds() -> retval

 Link to this function

 getSimilarityThreshold(self)

 View Source

 @spec getSimilarityThreshold(t()) :: number() | {:error, String.t()}

getSimilarityThreshold
Positional Arguments
	self: Evision.Detail.GainCompensator.t()

Return
	retval: double

Python prototype (for reference only):
getSimilarityThreshold() -> retval

 Link to this function

 setMatGains(self, umv)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.GainCompensator.t()
	umv: [Evision.Mat]

Python prototype (for reference only):
setMatGains(umv) -> None

 Link to this function

 setNrFeeds(self, nr_feeds)

 View Source

 @spec setNrFeeds(t(), integer()) :: t() | {:error, String.t()}

setNrFeeds
Positional Arguments
	self: Evision.Detail.GainCompensator.t()
	nr_feeds: int

Python prototype (for reference only):
setNrFeeds(nr_feeds) -> None

 Link to this function

 setSimilarityThreshold(self, similarity_threshold)

 View Source

 @spec setSimilarityThreshold(t(), number()) :: t() | {:error, String.t()}

setSimilarityThreshold
Positional Arguments
	self: Evision.Detail.GainCompensator.t()
	similarity_threshold: double

Python prototype (for reference only):
setSimilarityThreshold(similarity_threshold) -> None

 Evision.Detail.GraphCutSeamFinder - Evision v0.1.39

Evision.Detail.GraphCutSeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.GraphCutSeamFinder struct.

 Functions

 find(self, src, corners, masks)

 find

 graphCutSeamFinder(cost_type)

 GraphCutSeamFinder

 graphCutSeamFinder(cost_type, opts)

 GraphCutSeamFinder

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.GraphCutSeamFinder{ref: reference()}

Type that represents an Detail.GraphCutSeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 find(self, src, corners, masks)

 View Source

 @spec find(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

find
Positional Arguments
	self: Evision.Detail.GraphCutSeamFinder.t()
	src: [Evision.Mat]
	corners: [Point]

Return
	masks: [Evision.Mat]

Python prototype (for reference only):
find(src, corners, masks) -> masks

 Link to this function

 graphCutSeamFinder(cost_type)

 View Source

 @spec graphCutSeamFinder(binary()) :: t() | {:error, String.t()}

GraphCutSeamFinder
Positional Arguments
	cost_type: String

Keyword Arguments
	terminal_cost: float.
	bad_region_penalty: float.

Return
	self: Evision.Detail.GraphCutSeamFinder.t()

Python prototype (for reference only):
GraphCutSeamFinder(cost_type[, terminal_cost[, bad_region_penalty]]) -> <detail_GraphCutSeamFinder object>

 Link to this function

 graphCutSeamFinder(cost_type, opts)

 View Source

 @spec graphCutSeamFinder(
 binary(),
 [bad_region_penalty: term(), terminal_cost: term()] | nil
) ::
 t() | {:error, String.t()}

GraphCutSeamFinder
Positional Arguments
	cost_type: String

Keyword Arguments
	terminal_cost: float.
	bad_region_penalty: float.

Return
	self: Evision.Detail.GraphCutSeamFinder.t()

Python prototype (for reference only):
GraphCutSeamFinder(cost_type[, terminal_cost[, bad_region_penalty]]) -> <detail_GraphCutSeamFinder object>

 Evision.Detail.HomographyBasedEstimator - Evision v0.1.39

Evision.Detail.HomographyBasedEstimator

 Summary

 Types

 t()

 Type that represents an Detail.HomographyBasedEstimator struct.

 Functions

 homographyBasedEstimator()

 HomographyBasedEstimator

 homographyBasedEstimator(opts)

 HomographyBasedEstimator

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.HomographyBasedEstimator{ref: reference()}

Type that represents an Detail.HomographyBasedEstimator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 homographyBasedEstimator()

 View Source

 @spec homographyBasedEstimator() :: t() | {:error, String.t()}

HomographyBasedEstimator
Keyword Arguments
	is_focals_estimated: bool.

Return
	self: Evision.Detail.HomographyBasedEstimator.t()

Python prototype (for reference only):
HomographyBasedEstimator([, is_focals_estimated]) -> <detail_HomographyBasedEstimator object>

 Link to this function

 homographyBasedEstimator(opts)

 View Source

 @spec homographyBasedEstimator([{:is_focals_estimated, term()}] | nil) ::
 t() | {:error, String.t()}

HomographyBasedEstimator
Keyword Arguments
	is_focals_estimated: bool.

Return
	self: Evision.Detail.HomographyBasedEstimator.t()

Python prototype (for reference only):
HomographyBasedEstimator([, is_focals_estimated]) -> <detail_HomographyBasedEstimator object>

 Evision.Detail.ImageFeatures - Evision v0.1.39

Evision.Detail.ImageFeatures

 Summary

 Types

 t()

 Type that represents an Detail.ImageFeatures struct.

 Functions

 get_descriptors(self)

 get_img_idx(self)

 get_img_size(self)

 get_keypoints(self)

 getKeypoints(self)

 getKeypoints

 set_descriptors(self, prop)

 set_img_idx(self, prop)

 set_img_size(self, prop)

 set_keypoints(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.ImageFeatures{ref: reference()}

Type that represents an Detail.ImageFeatures struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_descriptors(self)

 View Source

 @spec get_descriptors(t()) :: Evision.Mat.t()

 Link to this function

 get_img_idx(self)

 View Source

 @spec get_img_idx(t()) :: integer()

 Link to this function

 get_img_size(self)

 View Source

 @spec get_img_size(t()) :: {number(), number()}

 Link to this function

 get_keypoints(self)

 View Source

 @spec get_keypoints(t()) :: [Evision.KeyPoint.t()]

 Link to this function

 getKeypoints(self)

 View Source

 @spec getKeypoints(t()) :: [Evision.KeyPoint.t()] | {:error, String.t()}

getKeypoints
Positional Arguments
	self: Evision.Detail.ImageFeatures.t()

Return
	retval: [Evision.KeyPoint]

Python prototype (for reference only):
getKeypoints() -> retval

 Link to this function

 set_descriptors(self, prop)

 View Source

 @spec set_descriptors(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_img_idx(self, prop)

 View Source

 @spec set_img_idx(t(), integer()) :: t()

 Link to this function

 set_img_size(self, prop)

 View Source

 @spec set_img_size(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_keypoints(self, prop)

 View Source

 @spec set_keypoints(t(), [Evision.KeyPoint.t()]) :: t()

 Evision.Detail.MatchesInfo - Evision v0.1.39

Evision.Detail.MatchesInfo

 Summary

 Types

 t()

 Type that represents an Detail.MatchesInfo struct.

 Functions

 get_confidence(self)

 get_dst_img_idx(self)

 get_H(self)

 get_inliers_mask(self)

 get_matches(self)

 get_num_inliers(self)

 get_src_img_idx(self)

 getInliers(self)

 getInliers

 getMatches(self)

 getMatches

 set_confidence(self, prop)

 set_dst_img_idx(self, prop)

 set_H(self, prop)

 set_inliers_mask(self, prop)

 set_matches(self, prop)

 set_num_inliers(self, prop)

 set_src_img_idx(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.MatchesInfo{ref: reference()}

Type that represents an Detail.MatchesInfo struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_confidence(self)

 View Source

 @spec get_confidence(t()) :: number()

 Link to this function

 get_dst_img_idx(self)

 View Source

 @spec get_dst_img_idx(t()) :: integer()

 Link to this function

 get_H(self)

 View Source

 @spec get_H(t()) :: Evision.Mat.t()

 Link to this function

 get_inliers_mask(self)

 View Source

 @spec get_inliers_mask(t()) :: binary()

 Link to this function

 get_matches(self)

 View Source

 @spec get_matches(t()) :: [Evision.DMatch.t()]

 Link to this function

 get_num_inliers(self)

 View Source

 @spec get_num_inliers(t()) :: integer()

 Link to this function

 get_src_img_idx(self)

 View Source

 @spec get_src_img_idx(t()) :: integer()

 Link to this function

 getInliers(self)

 View Source

 @spec getInliers(t()) :: binary() | {:error, String.t()}

getInliers
Positional Arguments
	self: Evision.Detail.MatchesInfo.t()

Return
	retval: [uchar]

Python prototype (for reference only):
getInliers() -> retval

 Link to this function

 getMatches(self)

 View Source

 @spec getMatches(t()) :: [Evision.DMatch.t()] | {:error, String.t()}

getMatches
Positional Arguments
	self: Evision.Detail.MatchesInfo.t()

Return
	retval: [Evision.DMatch]

Python prototype (for reference only):
getMatches() -> retval

 Link to this function

 set_confidence(self, prop)

 View Source

 @spec set_confidence(t(), number()) :: t()

 Link to this function

 set_dst_img_idx(self, prop)

 View Source

 @spec set_dst_img_idx(t(), integer()) :: t()

 Link to this function

 set_H(self, prop)

 View Source

 @spec set_H(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_inliers_mask(self, prop)

 View Source

 @spec set_inliers_mask(t(), binary()) :: t()

 Link to this function

 set_matches(self, prop)

 View Source

 @spec set_matches(t(), [Evision.DMatch.t()]) :: t()

 Link to this function

 set_num_inliers(self, prop)

 View Source

 @spec set_num_inliers(t(), integer()) :: t()

 Link to this function

 set_src_img_idx(self, prop)

 View Source

 @spec set_src_img_idx(t(), integer()) :: t()

 Evision.Detail.MultiBandBlender - Evision v0.1.39

Evision.Detail.MultiBandBlender

 Summary

 Types

 t()

 Type that represents an Detail.MultiBandBlender struct.

 Functions

 blend(self, dst, dst_mask)

 blend

 feed(self, img, mask, tl)

 feed

 multiBandBlender()

 MultiBandBlender

 multiBandBlender(opts)

 MultiBandBlender

 numBands(self)

 numBands

 prepare(self, dst_roi)

 prepare

 setNumBands(self, val)

 setNumBands

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.MultiBandBlender{ref: reference()}

Type that represents an Detail.MultiBandBlender struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 blend(self, dst, dst_mask)

 View Source

 @spec blend(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

blend
Positional Arguments
	self: Evision.Detail.MultiBandBlender.t()

Return
	dst: Evision.Mat.t()
	dst_mask: Evision.Mat.t()

Python prototype (for reference only):
blend(dst, dst_mask) -> dst, dst_mask

 Link to this function

 feed(self, img, mask, tl)

 View Source

 @spec feed(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 t() | {:error, String.t()}

feed
Positional Arguments
	self: Evision.Detail.MultiBandBlender.t()
	img: Evision.Mat.t()
	mask: Evision.Mat.t()
	tl: Point

Python prototype (for reference only):
feed(img, mask, tl) -> None

 Link to this function

 multiBandBlender()

 View Source

 @spec multiBandBlender() :: t() | {:error, String.t()}

MultiBandBlender
Keyword Arguments
	try_gpu: int.
	num_bands: int.
	weight_type: int.

Return
	self: Evision.Detail.MultiBandBlender.t()

Python prototype (for reference only):
MultiBandBlender([, try_gpu[, num_bands[, weight_type]]]) -> <detail_MultiBandBlender object>

 Link to this function

 multiBandBlender(opts)

 View Source

 @spec multiBandBlender(
 [try_gpu: term(), weight_type: term(), num_bands: term()]
 | nil
) ::
 t() | {:error, String.t()}

MultiBandBlender
Keyword Arguments
	try_gpu: int.
	num_bands: int.
	weight_type: int.

Return
	self: Evision.Detail.MultiBandBlender.t()

Python prototype (for reference only):
MultiBandBlender([, try_gpu[, num_bands[, weight_type]]]) -> <detail_MultiBandBlender object>

 Link to this function

 numBands(self)

 View Source

 @spec numBands(t()) :: integer() | {:error, String.t()}

numBands
Positional Arguments
	self: Evision.Detail.MultiBandBlender.t()

Return
	retval: int

Python prototype (for reference only):
numBands() -> retval

 Link to this function

 prepare(self, dst_roi)

 View Source

 @spec prepare(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

prepare
Positional Arguments
	self: Evision.Detail.MultiBandBlender.t()
	dst_roi: Rect

Python prototype (for reference only):
prepare(dst_roi) -> None

 Link to this function

 setNumBands(self, val)

 View Source

 @spec setNumBands(t(), integer()) :: t() | {:error, String.t()}

setNumBands
Positional Arguments
	self: Evision.Detail.MultiBandBlender.t()
	val: int

Python prototype (for reference only):
setNumBands(val) -> None

 Evision.Detail.NoBundleAdjuster - Evision v0.1.39

Evision.Detail.NoBundleAdjuster

 Summary

 Types

 t()

 Type that represents an Detail.NoBundleAdjuster struct.

 Functions

 noBundleAdjuster()

 NoBundleAdjuster

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.NoBundleAdjuster{ref: reference()}

Type that represents an Detail.NoBundleAdjuster struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 noBundleAdjuster()

 View Source

 @spec noBundleAdjuster() :: t() | {:error, String.t()}

NoBundleAdjuster
Return
	self: Evision.Detail.NoBundleAdjuster.t()

Python prototype (for reference only):
NoBundleAdjuster() -> <detail_NoBundleAdjuster object>

 Evision.Detail.NoExposureCompensator - Evision v0.1.39

Evision.Detail.NoExposureCompensator

 Summary

 Types

 t()

 Type that represents an Detail.NoExposureCompensator struct.

 Functions

 apply(self, arg1, arg2, arg3, arg4)

 apply

 getMatGains(self)

 getMatGains

 getMatGains(self, opts)

 getMatGains

 setMatGains(self, umv)

 setMatGains

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.NoExposureCompensator{ref: reference()}

Type that represents an Detail.NoExposureCompensator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, arg1, arg2, arg3, arg4)

 View Source

 @spec apply(
 t(),
 integer(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Detail.NoExposureCompensator.t()
	arg1: int
	arg2: Point
	arg4: Evision.Mat.t()

Return
	arg3: Evision.Mat.t()

Python prototype (for reference only):
apply(arg1, arg2, arg3, arg4) -> arg3

 Link to this function

 getMatGains(self)

 View Source

 @spec getMatGains(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.NoExposureCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 getMatGains(self, opts)

 View Source

 @spec getMatGains(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

getMatGains
Positional Arguments
	self: Evision.Detail.NoExposureCompensator.t()

Return
	umv: [Evision.Mat].

Python prototype (for reference only):
getMatGains([, umv]) -> umv

 Link to this function

 setMatGains(self, umv)

 View Source

 @spec setMatGains(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

setMatGains
Positional Arguments
	self: Evision.Detail.NoExposureCompensator.t()
	umv: [Evision.Mat]

Python prototype (for reference only):
setMatGains(umv) -> None

 Evision.Detail.NoSeamFinder - Evision v0.1.39

Evision.Detail.NoSeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.NoSeamFinder struct.

 Functions

 find(self, arg1, arg2, arg3)

 find

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.NoSeamFinder{ref: reference()}

Type that represents an Detail.NoSeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 find(self, arg1, arg2, arg3)

 View Source

 @spec find(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

find
Positional Arguments
	self: Evision.Detail.NoSeamFinder.t()
	arg1: [Evision.Mat]
	arg2: [Point]

Return
	arg3: [Evision.Mat]

Python prototype (for reference only):
find(arg1, arg2, arg3) -> arg3

 Evision.Detail.PairwiseSeamFinder - Evision v0.1.39

Evision.Detail.PairwiseSeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.PairwiseSeamFinder struct.

 Functions

 find(self, src, corners, masks)

 find

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.PairwiseSeamFinder{ref: reference()}

Type that represents an Detail.PairwiseSeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 find(self, src, corners, masks)

 View Source

 @spec find(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

find
Positional Arguments
	self: Evision.Detail.PairwiseSeamFinder.t()
	src: [Evision.Mat]
	corners: [Point]

Return
	masks: [Evision.Mat]

Python prototype (for reference only):
find(src, corners, masks) -> masks

 Evision.Detail.ProjectorBase - Evision v0.1.39

Evision.Detail.ProjectorBase

 Summary

 Types

 t()

 Type that represents an Detail.ProjectorBase struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.ProjectorBase{ref: reference()}

Type that represents an Detail.ProjectorBase struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Detail.SeamFinder - Evision v0.1.39

Evision.Detail.SeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.SeamFinder struct.

 Functions

 createDefault(type)

 createDefault

 find(self, src, corners, masks)

 Estimates seams.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.SeamFinder{ref: reference()}

Type that represents an Detail.SeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createDefault(type)

 View Source

 @spec createDefault(integer()) :: t() | {:error, String.t()}

createDefault
Positional Arguments
	type: int

Return
	retval: Evision.Detail.SeamFinder.t()

Python prototype (for reference only):
createDefault(type) -> retval

 Link to this function

 find(self, src, corners, masks)

 View Source

 @spec find(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

Estimates seams.
Positional Arguments
	self: Evision.Detail.SeamFinder.t()

	src: [Evision.Mat].
Source images

	corners: [Point].
Source image top-left corners

Return
	masks: [Evision.Mat].
Source image masks to update

Python prototype (for reference only):
find(src, corners, masks) -> masks

 Evision.Detail.SphericalProjector - Evision v0.1.39

Evision.Detail.SphericalProjector

 Summary

 Types

 t()

 Type that represents an Detail.SphericalProjector struct.

 Functions

 mapBackward(self, u, v, x, y)

 mapBackward

 mapForward(self, x, y, u, v)

 mapForward

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.SphericalProjector{ref: reference()}

Type that represents an Detail.SphericalProjector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 mapBackward(self, u, v, x, y)

 View Source

 @spec mapBackward(t(), number(), number(), number(), number()) ::
 t() | {:error, String.t()}

mapBackward
Positional Arguments
	self: Evision.Detail.SphericalProjector.t()
	u: float
	v: float
	x: float
	y: float

Python prototype (for reference only):
mapBackward(u, v, x, y) -> None

 Link to this function

 mapForward(self, x, y, u, v)

 View Source

 @spec mapForward(t(), number(), number(), number(), number()) ::
 t() | {:error, String.t()}

mapForward
Positional Arguments
	self: Evision.Detail.SphericalProjector.t()
	x: float
	y: float
	u: float
	v: float

Python prototype (for reference only):
mapForward(x, y, u, v) -> None

 Evision.Detail.Timelapser - Evision v0.1.39

Evision.Detail.Timelapser

 Summary

 Types

 t()

 Type that represents an Detail.Timelapser struct.

 Functions

 createDefault(type)

 createDefault

 getDst(self)

 getDst

 initialize(self, corners, sizes)

 initialize

 process(self, img, mask, tl)

 process

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.Timelapser{ref: reference()}

Type that represents an Detail.Timelapser struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createDefault(type)

 View Source

 @spec createDefault(integer()) :: t() | {:error, String.t()}

createDefault
Positional Arguments
	type: int

Return
	retval: Evision.Detail.Timelapser.t()

Python prototype (for reference only):
createDefault(type) -> retval

 Link to this function

 getDst(self)

 View Source

 @spec getDst(t()) :: Evision.Mat.t() | {:error, String.t()}

getDst
Positional Arguments
	self: Evision.Detail.Timelapser.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getDst() -> retval

 Link to this function

 initialize(self, corners, sizes)

 View Source

 @spec initialize(t(), [{number(), number()}], [{number(), number()}]) ::
 t() | {:error, String.t()}

initialize
Positional Arguments
	self: Evision.Detail.Timelapser.t()
	corners: [Point]
	sizes: [Size]

Python prototype (for reference only):
initialize(corners, sizes) -> None

 Link to this function

 process(self, img, mask, tl)

 View Source

 @spec process(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.Detail.Timelapser.t()
	img: Evision.Mat.t()
	mask: Evision.Mat.t()
	tl: Point

Python prototype (for reference only):
process(img, mask, tl) -> None

 Evision.Detail.TimelapserCrop - Evision v0.1.39

Evision.Detail.TimelapserCrop

 Summary

 Types

 t()

 Type that represents an Detail.TimelapserCrop struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.TimelapserCrop{ref: reference()}

Type that represents an Detail.TimelapserCrop struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Detail.VoronoiSeamFinder - Evision v0.1.39

Evision.Detail.VoronoiSeamFinder

 Summary

 Types

 t()

 Type that represents an Detail.VoronoiSeamFinder struct.

 Functions

 find(self, src, corners, masks)

 find

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Detail.VoronoiSeamFinder{ref: reference()}

Type that represents an Detail.VoronoiSeamFinder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 find(self, src, corners, masks)

 View Source

 @spec find(t(), [Evision.Mat.maybe_mat_in()], [{number(), number()}], [
 Evision.Mat.maybe_mat_in()
]) ::
 [Evision.Mat.t()] | {:error, String.t()}

find
Positional Arguments
	self: Evision.Detail.VoronoiSeamFinder.t()
	src: [Evision.Mat]
	corners: [Point]

Return
	masks: [Evision.Mat]

Python prototype (for reference only):
find(src, corners, masks) -> masks

 Evision.DynaFu - Evision v0.1.39

Evision.DynaFu

 Summary

 Types

 t()

 Type that represents an DynaFu struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DynaFu{ref: reference()}

Type that represents an DynaFu struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.DynaFu.DynaFu - Evision v0.1.39

Evision.DynaFu.DynaFu

 Summary

 Types

 t()

 Type that represents an DynaFu.DynaFu struct.

 Functions

 create(params)

 create

 getCloud(self)

 Gets points and normals of current 3d mesh

 getCloud(self, opts)

 Gets points and normals of current 3d mesh

 getNormals(self, points)

 Calculates normals for given points

 getNormals(self, points, opts)

 Calculates normals for given points

 getPoints(self)

 Gets points of current 3d mesh

 getPoints(self, opts)

 Gets points of current 3d mesh

 render(self)

 Renders a volume into an image

 render(self, opts)

 Renders a volume into an image

 reset(self)

 Resets the algorithm

 update(self, depth)

 Process next depth frame

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.DynaFu.DynaFu{ref: reference()}

Type that represents an DynaFu.DynaFu struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(params)

 View Source

 @spec create(Evision.KinFu.Params.t()) :: t() | {:error, String.t()}

create
Positional Arguments
	params: kinfu::Params

Return
	retval: DynaFu

Python prototype (for reference only):
create(_params) -> retval

 Link to this function

 getCloud(self)

 View Source

 @spec getCloud(t()) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points and normals of current 3d mesh
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getCloud(self, opts)

 View Source

 @spec getCloud(t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points and normals of current 3d mesh
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getNormals(self, points)

 View Source

 @spec getNormals(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getNormals(self, points, opts)

 View Source

 @spec getNormals(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getPoints(self)

 View Source

 @spec getPoints(t()) :: Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 getPoints(self, opts)

 View Source

 @spec getPoints(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 render(self)

 View Source

 @spec render(t()) :: Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Keyword Arguments
	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in DynaFu params.
Python prototype (for reference only):
render([, image[, cameraPose]]) -> image

 Link to this function

 render(self, opts)

 View Source

 @spec render(t(), [{:cameraPose, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Keyword Arguments
	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in DynaFu params.
Python prototype (for reference only):
render([, image[, cameraPose]]) -> image

 Link to this function

 reset(self)

 View Source

 @spec reset(t()) :: t() | {:error, String.t()}

Resets the algorithm
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

Clears current model and resets a pose.
Python prototype (for reference only):
reset() -> None

 Link to this function

 update(self, depth)

 View Source

 @spec update(t(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}

Process next depth frame
Positional Arguments
	self: Evision.DynaFu.DynaFu.t()

	depth: Evision.Mat.t().
one-channel image which size and depth scale is described in algorithm's parameters

Return
	retval: bool

Integrates depth into voxel space with respect to its ICP-calculated pose.
Input image is converted to CV_32F internally if has another type.
@return true if succeeded to align new frame with current scene, false if opposite
Python prototype (for reference only):
update(depth) -> retval

 Evision.EMDHistogramCostExtractor - Evision v0.1.39

Evision.EMDHistogramCostExtractor

 Summary

 Types

 t()

 Type that represents an EMDHistogramCostExtractor struct.

 Functions

 getNormFlag(self)

 getNormFlag

 setNormFlag(self, flag)

 setNormFlag

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.EMDHistogramCostExtractor{ref: reference()}

Type that represents an EMDHistogramCostExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getNormFlag(self)

 View Source

 @spec getNormFlag(t()) :: integer() | {:error, String.t()}

getNormFlag
Positional Arguments
	self: Evision.EMDHistogramCostExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getNormFlag() -> retval

 Link to this function

 setNormFlag(self, flag)

 View Source

 @spec setNormFlag(t(), integer()) :: t() | {:error, String.t()}

setNormFlag
Positional Arguments
	self: Evision.EMDHistogramCostExtractor.t()
	flag: int

Python prototype (for reference only):
setNormFlag(flag) -> None

 Evision.EMDL1HistogramCostExtractor - Evision v0.1.39

Evision.EMDL1HistogramCostExtractor

 Summary

 Types

 t()

 Type that represents an EMDL1HistogramCostExtractor struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.EMDL1HistogramCostExtractor{ref: reference()}

Type that represents an EMDL1HistogramCostExtractor struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face - Evision v0.1.39

Evision.Face

 Summary

 Types

 t()

 Type that represents an Face struct.

 Functions

 createFacemarkAAM()

 createFacemarkAAM

 createFacemarkKazemi()

 createFacemarkKazemi

 createFacemarkLBF()

 createFacemarkLBF

 drawFacemarks(image, points)

 Utility to draw the detected facial landmark points

 drawFacemarks(image, points, opts)

 Utility to draw the detected facial landmark points

 getFacesHAAR(image, face_cascade_name)

 Default face detector
This function is mainly utilized by the implementation of a Facemark Algorithm.
End users are advised to use function Facemark::getFaces which can be manually defined
and circumvented to the algorithm by Facemark::setFaceDetector.

 getFacesHAAR(image, face_cascade_name, opts)

 Default face detector
This function is mainly utilized by the implementation of a Facemark Algorithm.
End users are advised to use function Facemark::getFaces which can be manually defined
and circumvented to the algorithm by Facemark::setFaceDetector.

 loadDatasetList(imageList, annotationList, images, annotations)

 A utility to load list of paths to training image and annotation file.

 loadFacePoints(filename)

 A utility to load facial landmark information from a given file.

 loadFacePoints(filename, opts)

 A utility to load facial landmark information from a given file.

 loadTrainingData(filename, images)

 A utility to load facial landmark dataset from a single file.

 loadTrainingData(filename, images, opts)

 Variant 1:
This function extracts the data for training from .txt files which contains the corresponding image name and landmarks.
The first file in each file should give the path of the image whose
landmarks are being described in the file. Then in the subsequent
lines there should be coordinates of the landmarks in the image
i.e each line should be of the form x,y
where x represents the x coordinate of the landmark and y represents
the y coordinate of the landmark.

 loadTrainingData(imageList, groundTruth, images, opts)

 A utility to load facial landmark information from the dataset.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face{ref: reference()}

Type that represents an Face struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createFacemarkAAM()

 View Source

 @spec createFacemarkAAM() :: Evision.Face.Facemark.t() | {:error, String.t()}

createFacemarkAAM
Return
	retval: Evision.Face.Facemark.t()

Python prototype (for reference only):
createFacemarkAAM() -> retval

 Link to this function

 createFacemarkKazemi()

 View Source

 @spec createFacemarkKazemi() :: Evision.Face.Facemark.t() | {:error, String.t()}

createFacemarkKazemi
Return
	retval: Evision.Face.Facemark.t()

Python prototype (for reference only):
createFacemarkKazemi() -> retval

 Link to this function

 createFacemarkLBF()

 View Source

 @spec createFacemarkLBF() :: Evision.Face.Facemark.t() | {:error, String.t()}

createFacemarkLBF
Return
	retval: Evision.Face.Facemark.t()

Python prototype (for reference only):
createFacemarkLBF() -> retval

 Link to this function

 drawFacemarks(image, points)

 View Source

 @spec drawFacemarks(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Utility to draw the detected facial landmark points
Positional Arguments
	points: Evision.Mat.t().
Contains the data of points which will be drawn.

Keyword Arguments
	color: Scalar.
The color of points in BGR format represented by cv::Scalar.

Return
	image: Evision.Mat.t().
The input image to be processed.

Example of usagestd::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->getFaces(img, faces);
facemark->fit(img, faces, landmarks);
for(int j=0;j<rects.size();j++){
face::drawFacemarks(frame, landmarks[j], Scalar(0,0,255));
}
Python prototype (for reference only):
drawFacemarks(image, points[, color]) -> image

 Link to this function

 drawFacemarks(image, points, opts)

 View Source

 @spec drawFacemarks(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:color, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Utility to draw the detected facial landmark points
Positional Arguments
	points: Evision.Mat.t().
Contains the data of points which will be drawn.

Keyword Arguments
	color: Scalar.
The color of points in BGR format represented by cv::Scalar.

Return
	image: Evision.Mat.t().
The input image to be processed.

Example of usagestd::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->getFaces(img, faces);
facemark->fit(img, faces, landmarks);
for(int j=0;j<rects.size();j++){
face::drawFacemarks(frame, landmarks[j], Scalar(0,0,255));
}
Python prototype (for reference only):
drawFacemarks(image, points[, color]) -> image

 Link to this function

 getFacesHAAR(image, face_cascade_name)

 View Source

 @spec getFacesHAAR(Evision.Mat.maybe_mat_in(), binary()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Default face detector
This function is mainly utilized by the implementation of a Facemark Algorithm.
End users are advised to use function Facemark::getFaces which can be manually defined
and circumvented to the algorithm by Facemark::setFaceDetector.
Positional Arguments
	image: Evision.Mat.t().
The input image to be processed.

	face_cascade_name: String

Return
	retval: bool

	faces: Evision.Mat.t().
Output of the function which represent region of interest of the detected faces.
Each face is stored in cv::Rect container.

Example of usagestd::vector<cv::Rect> faces;
CParams params("haarcascade_frontalface_alt.xml");
cv::face::getFaces(frame, faces, ¶ms);
for(int j=0;j<faces.size();j++){
cv::rectangle(frame, faces[j], cv::Scalar(255,0,255));
}
cv::imshow("detection", frame);
Python prototype (for reference only):
getFacesHAAR(image, face_cascade_name[, faces]) -> retval, faces

 Link to this function

 getFacesHAAR(image, face_cascade_name, opts)

 View Source

 @spec getFacesHAAR(
 Evision.Mat.maybe_mat_in(),
 binary(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | false | {:error, String.t()}

Default face detector
This function is mainly utilized by the implementation of a Facemark Algorithm.
End users are advised to use function Facemark::getFaces which can be manually defined
and circumvented to the algorithm by Facemark::setFaceDetector.
Positional Arguments
	image: Evision.Mat.t().
The input image to be processed.

	face_cascade_name: String

Return
	retval: bool

	faces: Evision.Mat.t().
Output of the function which represent region of interest of the detected faces.
Each face is stored in cv::Rect container.

Example of usagestd::vector<cv::Rect> faces;
CParams params("haarcascade_frontalface_alt.xml");
cv::face::getFaces(frame, faces, ¶ms);
for(int j=0;j<faces.size();j++){
cv::rectangle(frame, faces[j], cv::Scalar(255,0,255));
}
cv::imshow("detection", frame);
Python prototype (for reference only):
getFacesHAAR(image, face_cascade_name[, faces]) -> retval, faces

 Link to this function

 loadDatasetList(imageList, annotationList, images, annotations)

 View Source

 @spec loadDatasetList(binary(), binary(), [binary()], [binary()]) ::
 boolean() | {:error, String.t()}

A utility to load list of paths to training image and annotation file.
Positional Arguments
	imageList: String.
The specified file contains paths to the training images.

	annotationList: String.
The specified file contains paths to the training annotations.

	images: [String].
The loaded paths of training images.

	annotations: [String].
The loaded paths of annotation files.

Return
	retval: bool

Example of usage:
String imageFiles = "images_path.txt";
String ptsFiles = "annotations_path.txt";
std::vector<String> images_train;
std::vector<String> landmarks_train;
loadDatasetList(imageFiles,ptsFiles,images_train,landmarks_train);
Python prototype (for reference only):
loadDatasetList(imageList, annotationList, images, annotations) -> retval

 Link to this function

 loadFacePoints(filename)

 View Source

 @spec loadFacePoints(binary()) :: Evision.Mat.t() | false | {:error, String.t()}

A utility to load facial landmark information from a given file.
Positional Arguments
	filename: String.
The filename of file contains the facial landmarks data.

Keyword Arguments
	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	points: Evision.Mat.t().
The loaded facial landmark points.

Example of usagestd::vector<Point2f> points;
face::loadFacePoints("filename.txt", points, 0.0f);
The annotation file should follow the default format which is
version: 1
n_points: 68
{
212.716603 499.771793
230.232816 566.290071
...
}
where n_points is the number of points considered
and each point is represented as its position in x and y.
Python prototype (for reference only):
loadFacePoints(filename[, points[, offset]]) -> retval, points

 Link to this function

 loadFacePoints(filename, opts)

 View Source

 @spec loadFacePoints(binary(), [{:offset, term()}] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

A utility to load facial landmark information from a given file.
Positional Arguments
	filename: String.
The filename of file contains the facial landmarks data.

Keyword Arguments
	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	points: Evision.Mat.t().
The loaded facial landmark points.

Example of usagestd::vector<Point2f> points;
face::loadFacePoints("filename.txt", points, 0.0f);
The annotation file should follow the default format which is
version: 1
n_points: 68
{
212.716603 499.771793
230.232816 566.290071
...
}
where n_points is the number of points considered
and each point is represented as its position in x and y.
Python prototype (for reference only):
loadFacePoints(filename[, points[, offset]]) -> retval, points

 Link to this function

 loadTrainingData(filename, images)

 View Source

 @spec loadTrainingData(binary(), [binary()]) ::
 Evision.Mat.t() | false | {:error, String.t()}

A utility to load facial landmark dataset from a single file.
Positional Arguments
	filename: String.
The filename of a file that contains the dataset information.
Each line contains the filename of an image followed by
pairs of x and y values of facial landmarks points separated by a space.
Example

	images: [String].
A vector where each element represent the filename of image in the dataset.
Images are not loaded by default to save the memory.

Keyword Arguments
	delim: char.
Delimiter between each element, the default value is a whitespace.

	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	facePoints: Evision.Mat.t().
The loaded landmark points for all training data.

/home/user/ibug/image_003_1.jpg 336.820955 240.864510 334.238298 260.922709 335.266918 ...
/home/user/ibug/image_005_1.jpg 376.158428 230.845712 376.736984 254.924635 383.265403 ...
Example of usagecv::String imageFiles = "../data/images_train.txt";
cv::String ptsFiles = "../data/points_train.txt";
std::vector<String> images;
std::vector<std::vector<Point2f> > facePoints;
loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f);
Python prototype (for reference only):
loadTrainingData(filename, images[, facePoints[, delim[, offset]]]) -> retval, facePoints

 Link to this function

 loadTrainingData(filename, images, opts)

 View Source

 @spec loadTrainingData(binary(), [binary()], [offset: term(), delim: term()] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

 @spec loadTrainingData([binary()], [[{number(), number()}]], [binary()]) ::
 boolean() | {:error, String.t()}

 @spec loadTrainingData(binary(), binary(), [binary()]) ::
 Evision.Mat.t() | false | {:error, String.t()}

Variant 1:
This function extracts the data for training from .txt files which contains the corresponding image name and landmarks.
The first file in each file should give the path of the image whose
landmarks are being described in the file. Then in the subsequent
lines there should be coordinates of the landmarks in the image
i.e each line should be of the form x,y
where x represents the x coordinate of the landmark and y represents
the y coordinate of the landmark.
Positional Arguments
	filename: [String].
A vector of type cv::String containing name of the .txt files.

	trainlandmarks: [[Point2f]].
A vector of type cv::Point2f that would store shape or landmarks of all images.

	trainimages: [String].
A vector of type cv::String which stores the name of images whose landmarks are tracked

Return
	retval: bool

For reference you can see the files as provided in the
HELEN dataset@returns A boolean value. It returns true when it reads the data successfully and false otherwise
Python prototype (for reference only):
loadTrainingData(filename, trainlandmarks, trainimages) -> retval
Variant 2:
A utility to load facial landmark information from the dataset.
Positional Arguments
	imageList: String.
A file contains the list of image filenames in the training dataset.

	groundTruth: String.
A file contains the list of filenames
where the landmarks points information are stored.
The content in each file should follow the standard format (see face::loadFacePoints).

	images: [String].
A vector where each element represent the filename of image in the dataset.
Images are not loaded by default to save the memory.

Keyword Arguments
	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	facePoints: Evision.Mat.t().
The loaded landmark points for all training data.

Example of usagecv::String imageFiles = "../data/images_train.txt";
cv::String ptsFiles = "../data/points_train.txt";
std::vector<String> images;
std::vector<std::vector<Point2f> > facePoints;
loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f);
example of content in the images_train.txt
/home/user/ibug/image_003_1.jpg
/home/user/ibug/image_004_1.jpg
/home/user/ibug/image_005_1.jpg
/home/user/ibug/image_006.jpg
example of content in the points_train.txt
/home/user/ibug/image_003_1.pts
/home/user/ibug/image_004_1.pts
/home/user/ibug/image_005_1.pts
/home/user/ibug/image_006.pts
Python prototype (for reference only):
loadTrainingData(imageList, groundTruth, images[, facePoints[, offset]]) -> retval, facePoints
Variant 3:
A utility to load facial landmark dataset from a single file.
Positional Arguments
	filename: String.
The filename of a file that contains the dataset information.
Each line contains the filename of an image followed by
pairs of x and y values of facial landmarks points separated by a space.
Example

	images: [String].
A vector where each element represent the filename of image in the dataset.
Images are not loaded by default to save the memory.

Keyword Arguments
	delim: char.
Delimiter between each element, the default value is a whitespace.

	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	facePoints: Evision.Mat.t().
The loaded landmark points for all training data.

/home/user/ibug/image_003_1.jpg 336.820955 240.864510 334.238298 260.922709 335.266918 ...
/home/user/ibug/image_005_1.jpg 376.158428 230.845712 376.736984 254.924635 383.265403 ...
Example of usagecv::String imageFiles = "../data/images_train.txt";
cv::String ptsFiles = "../data/points_train.txt";
std::vector<String> images;
std::vector<std::vector<Point2f> > facePoints;
loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f);
Python prototype (for reference only):
loadTrainingData(filename, images[, facePoints[, delim[, offset]]]) -> retval, facePoints

 Link to this function

 loadTrainingData(imageList, groundTruth, images, opts)

 View Source

 @spec loadTrainingData(binary(), binary(), [binary()], [{:offset, term()}] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

A utility to load facial landmark information from the dataset.
Positional Arguments
	imageList: String.
A file contains the list of image filenames in the training dataset.

	groundTruth: String.
A file contains the list of filenames
where the landmarks points information are stored.
The content in each file should follow the standard format (see face::loadFacePoints).

	images: [String].
A vector where each element represent the filename of image in the dataset.
Images are not loaded by default to save the memory.

Keyword Arguments
	offset: float.
An offset value to adjust the loaded points.

Return
	retval: bool

	facePoints: Evision.Mat.t().
The loaded landmark points for all training data.

Example of usagecv::String imageFiles = "../data/images_train.txt";
cv::String ptsFiles = "../data/points_train.txt";
std::vector<String> images;
std::vector<std::vector<Point2f> > facePoints;
loadTrainingData(imageFiles, ptsFiles, images, facePoints, 0.0f);
example of content in the images_train.txt
/home/user/ibug/image_003_1.jpg
/home/user/ibug/image_004_1.jpg
/home/user/ibug/image_005_1.jpg
/home/user/ibug/image_006.jpg
example of content in the points_train.txt
/home/user/ibug/image_003_1.pts
/home/user/ibug/image_004_1.pts
/home/user/ibug/image_005_1.pts
/home/user/ibug/image_006.pts
Python prototype (for reference only):
loadTrainingData(imageList, groundTruth, images[, facePoints[, offset]]) -> retval, facePoints

 Evision.Face.BIF - Evision v0.1.39

Evision.Face.BIF

 Summary

 Types

 t()

 Type that represents an Face.BIF struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, image)

 compute

 compute(self, image, opts)

 compute

 create()

 create

 create(opts)

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getNumBands(self)

 getNumBands

 getNumRotations(self)

 getNumRotations

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.BIF{ref: reference()}

Type that represents an Face.BIF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Face.BIF.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, image)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

compute
Positional Arguments
	self: Evision.Face.BIF.t()

	image: Evision.Mat.t().
Input image (CV_32FC1).

Return
	features: Evision.Mat.t().
Feature vector (CV_32FC1).

Computes features sby input image.
Python prototype (for reference only):
compute(image[, features]) -> features

 Link to this function

 compute(self, image, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

compute
Positional Arguments
	self: Evision.Face.BIF.t()

	image: Evision.Mat.t().
Input image (CV_32FC1).

Return
	features: Evision.Mat.t().
Feature vector (CV_32FC1).

Computes features sby input image.
Python prototype (for reference only):
compute(image[, features]) -> features

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	num_bands: int.
The number of filter bands (<=8) used for computing BIF.

	num_rotations: int.
The number of image rotations for computing BIF.

Return
	retval: BIF

@returns Object for computing BIF.
Python prototype (for reference only):
create([, num_bands[, num_rotations]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([num_rotations: term(), num_bands: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	num_bands: int.
The number of filter bands (<=8) used for computing BIF.

	num_rotations: int.
The number of image rotations for computing BIF.

Return
	retval: BIF

@returns Object for computing BIF.
Python prototype (for reference only):
create([, num_bands[, num_rotations]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Face.BIF.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Face.BIF.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNumBands(self)

 View Source

 @spec getNumBands(t()) :: integer() | {:error, String.t()}

getNumBands
Positional Arguments
	self: Evision.Face.BIF.t()

Return
	retval: int

@returns The number of filter bands used for computing BIF.
Python prototype (for reference only):
getNumBands() -> retval

 Link to this function

 getNumRotations(self)

 View Source

 @spec getNumRotations(t()) :: integer() | {:error, String.t()}

getNumRotations
Positional Arguments
	self: Evision.Face.BIF.t()

Return
	retval: int

@returns The number of image rotations.
Python prototype (for reference only):
getNumRotations() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Face.BIF.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Face.BIF.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Face.BIF.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Face.BIF.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Face.BasicFaceRecognizer - Evision v0.1.39

Evision.Face.BasicFaceRecognizer

 Summary

 Types

 t()

 Type that represents an Face.BasicFaceRecognizer struct.

 Functions

 getEigenValues(self)

 getEigenValues

 getEigenVectors(self)

 getEigenVectors

 getLabels(self)

 getLabels

 getMean(self)

 getMean

 getNumComponents(self)

 getNumComponents

 getProjections(self)

 getProjections

 getThreshold(self)

 getThreshold

 setNumComponents(self, val)

 setNumComponents

 setThreshold(self, val)

 setThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.BasicFaceRecognizer{ref: reference()}

Type that represents an Face.BasicFaceRecognizer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getEigenValues(self)

 View Source

 @spec getEigenValues(t()) :: Evision.Mat.t() | {:error, String.t()}

getEigenValues
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getEigenValues() -> retval

 Link to this function

 getEigenVectors(self)

 View Source

 @spec getEigenVectors(t()) :: Evision.Mat.t() | {:error, String.t()}

getEigenVectors
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getEigenVectors() -> retval

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

getLabels
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getLabels() -> retval

 Link to this function

 getMean(self)

 View Source

 @spec getMean(t()) :: Evision.Mat.t() | {:error, String.t()}

getMean
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getMean() -> retval

 Link to this function

 getNumComponents(self)

 View Source

 @spec getNumComponents(t()) :: integer() | {:error, String.t()}

getNumComponents
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: int

@see setNumComponents/2
Python prototype (for reference only):
getNumComponents() -> retval

 Link to this function

 getProjections(self)

 View Source

 @spec getProjections(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getProjections
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getProjections() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()

Return
	retval: double

@see setThreshold/2
Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 setNumComponents(self, val)

 View Source

 @spec setNumComponents(t(), integer()) :: t() | {:error, String.t()}

setNumComponents
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()
	val: int

@see getNumComponents/1
Python prototype (for reference only):
setNumComponents(val) -> None

 Link to this function

 setThreshold(self, val)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.Face.BasicFaceRecognizer.t()
	val: double

@see getThreshold/1
Python prototype (for reference only):
setThreshold(val) -> None

 Evision.Face.EigenFaceRecognizer - Evision v0.1.39

Evision.Face.EigenFaceRecognizer

 Summary

 Types

 t()

 Type that represents an Face.EigenFaceRecognizer struct.

 Functions

 create()

 create

 create(opts)

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.EigenFaceRecognizer{ref: reference()}

Type that represents an Face.EigenFaceRecognizer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	num_components: int.
The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.

	threshold: double.
The threshold applied in the prediction.

Return
	retval: EigenFaceRecognizer

 Notes:

	Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.

	THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.

	This model does not support updating.

 Model internal data:

	num_components see EigenFaceRecognizer::create.

	threshold see EigenFaceRecognizer::create.

	eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).

	eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
eigenvalue).

	mean The sample mean calculated from the training data.

	projections The projections of the training data.

	labels The threshold applied in the prediction. If the distance to the nearest neighbor is
larger than the threshold, this method returns -1.

Python prototype (for reference only):
create([, num_components[, threshold]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([threshold: term(), num_components: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	num_components: int.
The number of components (read: Eigenfaces) kept for this Principal
Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
kept for good reconstruction capabilities. It is based on your input data, so experiment with the
number. Keeping 80 components should almost always be sufficient.

	threshold: double.
The threshold applied in the prediction.

Return
	retval: EigenFaceRecognizer

 Notes:

	Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.

	THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.

	This model does not support updating.

 Model internal data:

	num_components see EigenFaceRecognizer::create.

	threshold see EigenFaceRecognizer::create.

	eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).

	eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
eigenvalue).

	mean The sample mean calculated from the training data.

	projections The projections of the training data.

	labels The threshold applied in the prediction. If the distance to the nearest neighbor is
larger than the threshold, this method returns -1.

Python prototype (for reference only):
create([, num_components[, threshold]]) -> retval

 Evision.Face.FaceRecognizer - Evision v0.1.39

Evision.Face.FaceRecognizer

 Summary

 Types

 t()

 Type that represents an Face.FaceRecognizer struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getLabelInfo(self, label)

 Gets string information by label.

 getLabelsByString(self, str)

 Gets vector of labels by string.

 predict(self, src)

 Predicts a label and associated confidence (e.g. distance) for a given input image.

 predict_collect(self, src, collector)

 	if implemented - send all result of prediction to collector that can be used for somehow custom result handling

Positional Arguments
	self: Evision.Face.FaceRecognizer.t()

 Evision.Face.Facemark - Evision v0.1.39

Evision.Face.Facemark

 Summary

 Types

 t()

 Type that represents an Face.Facemark struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 fit(self, image, faces)

 Detect facial landmarks from an image.

 fit(self, image, faces, opts)

 Detect facial landmarks from an image.

 getDefaultName(self)

 getDefaultName

 loadModel(self, model)

 A function to load the trained model before the fitting process.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.Facemark{ref: reference()}

Type that represents an Face.Facemark struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Face.Facemark.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Face.Facemark.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 fit(self, image, faces)

 View Source

 @spec fit(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Detect facial landmarks from an image.
Positional Arguments
	self: Evision.Face.Facemark.t()

	image: Evision.Mat.t().
Input image.

	faces: Evision.Mat.t().
Output of the function which represent region of interest of the detected faces.
Each face is stored in cv::Rect container.

Return
	retval: bool

	landmarks: [Evision.Mat].
The detected landmark points for each faces.

Example of usageMat image = imread("image.jpg");
std::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->fit(image, faces, landmarks);
Python prototype (for reference only):
fit(image, faces[, landmarks]) -> retval, landmarks

 Link to this function

 fit(self, image, faces, opts)

 View Source

 @spec fit(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Detect facial landmarks from an image.
Positional Arguments
	self: Evision.Face.Facemark.t()

	image: Evision.Mat.t().
Input image.

	faces: Evision.Mat.t().
Output of the function which represent region of interest of the detected faces.
Each face is stored in cv::Rect container.

Return
	retval: bool

	landmarks: [Evision.Mat].
The detected landmark points for each faces.

Example of usageMat image = imread("image.jpg");
std::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->fit(image, faces, landmarks);
Python prototype (for reference only):
fit(image, faces[, landmarks]) -> retval, landmarks

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Face.Facemark.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 loadModel(self, model)

 View Source

 @spec loadModel(t(), binary()) :: t() | {:error, String.t()}

A function to load the trained model before the fitting process.
Positional Arguments
	self: Evision.Face.Facemark.t()

	model: String.
A string represent the filename of a trained model.

Example of usagefacemark->loadModel("../data/lbf.model");
Python prototype (for reference only):
loadModel(model) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Face.Facemark.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Face.Facemark.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Face.Facemark.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Face.Facemark.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Face.FacemarkAAM - Evision v0.1.39

Evision.Face.FacemarkAAM

 Summary

 Types

 t()

 Type that represents an Face.FacemarkAAM struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.FacemarkAAM{ref: reference()}

Type that represents an Face.FacemarkAAM struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face.FacemarkKazemi - Evision v0.1.39

Evision.Face.FacemarkKazemi

 Summary

 Types

 t()

 Type that represents an Face.FacemarkKazemi struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.FacemarkKazemi{ref: reference()}

Type that represents an Face.FacemarkKazemi struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face.FacemarkLBF - Evision v0.1.39

Evision.Face.FacemarkLBF

 Summary

 Types

 t()

 Type that represents an Face.FacemarkLBF struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.FacemarkLBF{ref: reference()}

Type that represents an Face.FacemarkLBF struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face.FacemarkTrain - Evision v0.1.39

Evision.Face.FacemarkTrain

 Summary

 Types

 t()

 Type that represents an Face.FacemarkTrain struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.FacemarkTrain{ref: reference()}

Type that represents an Face.FacemarkTrain struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face.FisherFaceRecognizer - Evision v0.1.39

Evision.Face.FisherFaceRecognizer

 Summary

 Types

 t()

 Type that represents an Face.FisherFaceRecognizer struct.

 Functions

 create()

 create

 create(opts)

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.FisherFaceRecognizer{ref: reference()}

Type that represents an Face.FisherFaceRecognizer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	num_components: int.
The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.

	threshold: double.
The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.

Return
	retval: FisherFaceRecognizer

 Notes:

	Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.

	THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.

	This model does not support updating.

 Model internal data:

	num_components see FisherFaceRecognizer::create.

	threshold see FisherFaceRecognizer::create.

	eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).

	eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).

	mean The sample mean calculated from the training data.

	projections The projections of the training data.

	labels The labels corresponding to the projections.

Python prototype (for reference only):
create([, num_components[, threshold]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([threshold: term(), num_components: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	num_components: int.
The number of components (read: Fisherfaces) kept for this Linear
Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
means the number of your classes c (read: subjects, persons you want to recognize). If you leave
this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
correct number (c-1) automatically.

	threshold: double.
The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.

Return
	retval: FisherFaceRecognizer

 Notes:

	Training and prediction must be done on grayscale images, use cvtColor to convert between the
color spaces.

	THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
SIZE. (caps-lock, because I got so many mails asking for this). You have to make sure your
input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
the images.

	This model does not support updating.

 Model internal data:

	num_components see FisherFaceRecognizer::create.

	threshold see FisherFaceRecognizer::create.

	eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).

	eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
eigenvalue).

	mean The sample mean calculated from the training data.

	projections The projections of the training data.

	labels The labels corresponding to the projections.

Python prototype (for reference only):
create([, num_components[, threshold]]) -> retval

 Evision.Face.LBPHFaceRecognizer - Evision v0.1.39

Evision.Face.LBPHFaceRecognizer

 Summary

 Types

 t()

 Type that represents an Face.LBPHFaceRecognizer struct.

 Functions

 create()

 create

 create(opts)

 create

 getGridX(self)

 getGridX

 getGridY(self)

 getGridY

 getHistograms(self)

 getHistograms

 getLabels(self)

 getLabels

 getNeighbors(self)

 getNeighbors

 getRadius(self)

 getRadius

 getThreshold(self)

 getThreshold

 setGridX(self, val)

 setGridX

 setGridY(self, val)

 setGridY

 setNeighbors(self, val)

 setNeighbors

 setRadius(self, val)

 setRadius

 setThreshold(self, val)

 setThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.LBPHFaceRecognizer{ref: reference()}

Type that represents an Face.LBPHFaceRecognizer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	radius: int.
The radius used for building the Circular Local Binary Pattern. The greater the
radius, the smoother the image but more spatial information you can get.

	neighbors: int.
The number of sample points to build a Circular Local Binary Pattern from. An
appropriate value is to use 8 sample points. Keep in mind: the more sample points you include,
the higher the computational cost.

	grid_x: int.
The number of cells in the horizontal direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.

	grid_y: int.
The number of cells in the vertical direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.

	threshold: double.
The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.

Return
	retval: LBPHFaceRecognizer

 Notes:

	The Circular Local Binary Patterns (used in training and prediction) expect the data given as
grayscale images, use cvtColor to convert between the color spaces.

	This model supports updating.

 Model internal data:

	radius see LBPHFaceRecognizer::create.

	neighbors see LBPHFaceRecognizer::create.

	grid_x see LLBPHFaceRecognizer::create.

	grid_y see LBPHFaceRecognizer::create.

	threshold see LBPHFaceRecognizer::create.

	histograms Local Binary Patterns Histograms calculated from the given training data (empty if
none was given).

	labels Labels corresponding to the calculated Local Binary Patterns Histograms.

Python prototype (for reference only):
create([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 grid_x: term(),
 radius: term(),
 threshold: term(),
 grid_y: term(),
 neighbors: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	radius: int.
The radius used for building the Circular Local Binary Pattern. The greater the
radius, the smoother the image but more spatial information you can get.

	neighbors: int.
The number of sample points to build a Circular Local Binary Pattern from. An
appropriate value is to use 8 sample points. Keep in mind: the more sample points you include,
the higher the computational cost.

	grid_x: int.
The number of cells in the horizontal direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.

	grid_y: int.
The number of cells in the vertical direction, 8 is a common value used in
publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
feature vector.

	threshold: double.
The threshold applied in the prediction. If the distance to the nearest neighbor
is larger than the threshold, this method returns -1.

Return
	retval: LBPHFaceRecognizer

 Notes:

	The Circular Local Binary Patterns (used in training and prediction) expect the data given as
grayscale images, use cvtColor to convert between the color spaces.

	This model supports updating.

 Model internal data:

	radius see LBPHFaceRecognizer::create.

	neighbors see LBPHFaceRecognizer::create.

	grid_x see LLBPHFaceRecognizer::create.

	grid_y see LBPHFaceRecognizer::create.

	threshold see LBPHFaceRecognizer::create.

	histograms Local Binary Patterns Histograms calculated from the given training data (empty if
none was given).

	labels Labels corresponding to the calculated Local Binary Patterns Histograms.

Python prototype (for reference only):
create([, radius[, neighbors[, grid_x[, grid_y[, threshold]]]]]) -> retval

 Link to this function

 getGridX(self)

 View Source

 @spec getGridX(t()) :: integer() | {:error, String.t()}

getGridX
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: int

@see setGridX/2
Python prototype (for reference only):
getGridX() -> retval

 Link to this function

 getGridY(self)

 View Source

 @spec getGridY(t()) :: integer() | {:error, String.t()}

getGridY
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: int

@see setGridY/2
Python prototype (for reference only):
getGridY() -> retval

 Link to this function

 getHistograms(self)

 View Source

 @spec getHistograms(t()) :: [Evision.Mat.t()] | {:error, String.t()}

getHistograms
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getHistograms() -> retval

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

getLabels
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getLabels() -> retval

 Link to this function

 getNeighbors(self)

 View Source

 @spec getNeighbors(t()) :: integer() | {:error, String.t()}

getNeighbors
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: int

@see setNeighbors/2
Python prototype (for reference only):
getNeighbors() -> retval

 Link to this function

 getRadius(self)

 View Source

 @spec getRadius(t()) :: integer() | {:error, String.t()}

getRadius
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: int

@see setRadius/2
Python prototype (for reference only):
getRadius() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()

Return
	retval: double

@see setThreshold/2
Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 setGridX(self, val)

 View Source

 @spec setGridX(t(), integer()) :: t() | {:error, String.t()}

setGridX
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()
	val: int

@see getGridX/1
Python prototype (for reference only):
setGridX(val) -> None

 Link to this function

 setGridY(self, val)

 View Source

 @spec setGridY(t(), integer()) :: t() | {:error, String.t()}

setGridY
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()
	val: int

@see getGridY/1
Python prototype (for reference only):
setGridY(val) -> None

 Link to this function

 setNeighbors(self, val)

 View Source

 @spec setNeighbors(t(), integer()) :: t() | {:error, String.t()}

setNeighbors
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()
	val: int

@see getNeighbors/1
Python prototype (for reference only):
setNeighbors(val) -> None

 Link to this function

 setRadius(self, val)

 View Source

 @spec setRadius(t(), integer()) :: t() | {:error, String.t()}

setRadius
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()
	val: int

@see getRadius/1
Python prototype (for reference only):
setRadius(val) -> None

 Link to this function

 setThreshold(self, val)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.Face.LBPHFaceRecognizer.t()
	val: double

@see getThreshold/1
Python prototype (for reference only):
setThreshold(val) -> None

 Evision.Face.MACE - Evision v0.1.39

Evision.Face.MACE

 Summary

 Types

 t()

 Type that represents an Face.MACE struct.

 Functions

 clear(self)

 Clears the algorithm state

 create()

 constructor

 create(opts)

 constructor

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 load(filename)

 constructor

 load(filename, opts)

 constructor

 read(self, fn_)

 Reads algorithm parameters from a file storage

 salt(self, passphrase)

 optionally encrypt images with random convolution

 same(self, query)

 correlate query img and threshold to min class value

 save(self, filename)

 save

 train(self, images)

 train it on positive features
compute the mace filter: h = D(-1) * X * (X(+) * D(-1) * X)(-1) * C
also calculate a minimal threshold for this class, the smallest self-similarity from the train images

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.MACE{ref: reference()}

Type that represents an Face.MACE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Face.MACE.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

constructor
Keyword Arguments
	iMGSIZE: int.
images will get resized to this (should be an even number)

Return
	retval: cv::Ptr<MACE>

Python prototype (for reference only):
create([, IMGSIZE]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:iMGSIZE, term()}] | nil) :: t() | {:error, String.t()}

constructor
Keyword Arguments
	iMGSIZE: int.
images will get resized to this (should be an even number)

Return
	retval: cv::Ptr<MACE>

Python prototype (for reference only):
create([, IMGSIZE]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Face.MACE.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Face.MACE.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 load(filename)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

constructor
Positional Arguments
	filename: String.
build a new MACE instance from a pre-serialized FileStorage

Keyword Arguments
	objname: String.
(optional) top-level node in the FileStorage

Return
	retval: cv::Ptr<MACE>

Python prototype (for reference only):
load(filename[, objname]) -> retval

 Link to this function

 load(filename, opts)

 View Source

 @spec load(binary(), [{:objname, term()}] | nil) :: t() | {:error, String.t()}

constructor
Positional Arguments
	filename: String.
build a new MACE instance from a pre-serialized FileStorage

Keyword Arguments
	objname: String.
(optional) top-level node in the FileStorage

Return
	retval: cv::Ptr<MACE>

Python prototype (for reference only):
load(filename[, objname]) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Face.MACE.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 salt(self, passphrase)

 View Source

 @spec salt(t(), binary()) :: t() | {:error, String.t()}

optionally encrypt images with random convolution
Positional Arguments
	self: Evision.Face.MACE.t()

	passphrase: String.
a crc64 random seed will get generated from this

Python prototype (for reference only):
salt(passphrase) -> None

 Link to this function

 same(self, query)

 View Source

 @spec same(t(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}

correlate query img and threshold to min class value
Positional Arguments
	self: Evision.Face.MACE.t()

	query: Evision.Mat.t().
a Mat with query image

Return
	retval: bool

Python prototype (for reference only):
same(query) -> retval

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Face.MACE.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self, images)

 View Source

 @spec train(t(), [Evision.Mat.maybe_mat_in()]) :: t() | {:error, String.t()}

train it on positive features
compute the mace filter: h = D(-1) * X * (X(+) * D(-1) * X)(-1) * C
also calculate a minimal threshold for this class, the smallest self-similarity from the train images
Positional Arguments
	self: Evision.Face.MACE.t()

	images: [Evision.Mat].
a vector<Mat> with the train images

Python prototype (for reference only):
train(images) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Face.MACE.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Face.MACE.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Face.PredictCollector - Evision v0.1.39

Evision.Face.PredictCollector

 Summary

 Types

 t()

 Type that represents an Face.PredictCollector struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.PredictCollector{ref: reference()}

Type that represents an Face.PredictCollector struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Face.StandardCollector - Evision v0.1.39

Evision.Face.StandardCollector

 Summary

 Types

 t()

 Type that represents an Face.StandardCollector struct.

 Functions

 create()

 Static constructor

 create(opts)

 Static constructor

 getMinDist(self)

 Returns minimal distance value

 getMinLabel(self)

 Returns label with minimal distance

 getResults(self)

 Return results as vector

 getResults(self, opts)

 Return results as vector

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Face.StandardCollector{ref: reference()}

Type that represents an Face.StandardCollector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Static constructor
Keyword Arguments
	threshold: double.
set threshold

Return
	retval: StandardCollector

Python prototype (for reference only):
create([, threshold]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:threshold, term()}] | nil) :: t() | {:error, String.t()}

Static constructor
Keyword Arguments
	threshold: double.
set threshold

Return
	retval: StandardCollector

Python prototype (for reference only):
create([, threshold]) -> retval

 Link to this function

 getMinDist(self)

 View Source

 @spec getMinDist(t()) :: number() | {:error, String.t()}

Returns minimal distance value
Positional Arguments
	self: Evision.Face.StandardCollector.t()

Return
	retval: double

Python prototype (for reference only):
getMinDist() -> retval

 Link to this function

 getMinLabel(self)

 View Source

 @spec getMinLabel(t()) :: integer() | {:error, String.t()}

Returns label with minimal distance
Positional Arguments
	self: Evision.Face.StandardCollector.t()

Return
	retval: int

Python prototype (for reference only):
getMinLabel() -> retval

 Link to this function

 getResults(self)

 View Source

 @spec getResults(t()) :: [{integer(), number()}] | {:error, String.t()}

Return results as vector
Positional Arguments
	self: Evision.Face.StandardCollector.t()

Keyword Arguments
	sorted: bool.
If set, results will be sorted by distance
Each values is a pair of label and distance.

Return
	retval: [pair<int, double>]

Python prototype (for reference only):
getResults([, sorted]) -> retval

 Link to this function

 getResults(self, opts)

 View Source

 @spec getResults(t(), [{:sorted, term()}] | nil) ::
 [{integer(), number()}] | {:error, String.t()}

Return results as vector
Positional Arguments
	self: Evision.Face.StandardCollector.t()

Keyword Arguments
	sorted: bool.
If set, results will be sorted by distance
Each values is a pair of label and distance.

Return
	retval: [pair<int, double>]

Python prototype (for reference only):
getResults([, sorted]) -> retval

 Evision.FaceDetectorYN - Evision v0.1.39

Evision.FaceDetectorYN

 Summary

 Types

 t()

 Type that represents an FaceDetectorYN struct.

 Functions

 create(model, config, input_size)

 Creates an instance of face detector class with given parameters

 create(model, config, input_size, opts)

 Variant 1:
create

 create(framework, bufferModel, bufferConfig, input_size, opts)

 create

 detect(self, image)

 Detects faces in the input image. Following is an example output.

 detect(self, image, opts)

 Detects faces in the input image. Following is an example output.

 getInputSize(self)

 getInputSize

 getNMSThreshold(self)

 getNMSThreshold

 getScoreThreshold(self)

 getScoreThreshold

 getTopK(self)

 getTopK

 setInputSize(self, input_size)

 Set the size for the network input, which overwrites the input size of creating model. Call this method when the size of input image does not match the input size when creating model

 setNMSThreshold(self, nms_threshold)

 Set the Non-maximum-suppression threshold to suppress bounding boxes that have IoU greater than the given value

 setScoreThreshold(self, score_threshold)

 Set the score threshold to filter out bounding boxes of score less than the given value

 setTopK(self, top_k)

 Set the number of bounding boxes preserved before NMS

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FaceDetectorYN{ref: reference()}

Type that represents an FaceDetectorYN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(model, config, input_size)

 View Source

 @spec create(binary(), binary(), {number(), number()}) :: t() | {:error, String.t()}

Creates an instance of face detector class with given parameters
Positional Arguments
	model: String.
the path to the requested model

	config: String.
the path to the config file for compability, which is not requested for ONNX models

	input_size: Size.
the size of the input image

Keyword Arguments
	score_threshold: float.
the threshold to filter out bounding boxes of score smaller than the given value

	nms_threshold: float.
the threshold to suppress bounding boxes of IoU bigger than the given value

	top_k: int.
keep top K bboxes before NMS

	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceDetectorYN.t()

Python prototype (for reference only):
create(model, config, input_size[, score_threshold[, nms_threshold[, top_k[, backend_id[, target_id]]]]]) -> retval

 Link to this function

 create(model, config, input_size, opts)

 View Source

 @spec create(
 binary(),
 binary(),
 {number(), number()},
 [
 score_threshold: term(),
 top_k: term(),
 backend_id: term(),
 nms_threshold: term(),
 target_id: term()
]
 | nil
) :: t() | {:error, String.t()}

 @spec create(binary(), binary(), binary(), {number(), number()}) ::
 t() | {:error, String.t()}

Variant 1:
create
Positional Arguments
	framework: String.
Name of origin framework

	bufferModel: [uchar].
A buffer with a content of binary file with weights

	bufferConfig: [uchar].
A buffer with a content of text file contains network configuration

	input_size: Size.
the size of the input image

Keyword Arguments
	score_threshold: float.
the threshold to filter out bounding boxes of score smaller than the given value

	nms_threshold: float.
the threshold to suppress bounding boxes of IoU bigger than the given value

	top_k: int.
keep top K bboxes before NMS

	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceDetectorYN.t()

Has overloading in C++
Python prototype (for reference only):
create(framework, bufferModel, bufferConfig, input_size[, score_threshold[, nms_threshold[, top_k[, backend_id[, target_id]]]]]) -> retval
Variant 2:
Creates an instance of face detector class with given parameters
Positional Arguments
	model: String.
the path to the requested model

	config: String.
the path to the config file for compability, which is not requested for ONNX models

	input_size: Size.
the size of the input image

Keyword Arguments
	score_threshold: float.
the threshold to filter out bounding boxes of score smaller than the given value

	nms_threshold: float.
the threshold to suppress bounding boxes of IoU bigger than the given value

	top_k: int.
keep top K bboxes before NMS

	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceDetectorYN.t()

Python prototype (for reference only):
create(model, config, input_size[, score_threshold[, nms_threshold[, top_k[, backend_id[, target_id]]]]]) -> retval

 Link to this function

 create(framework, bufferModel, bufferConfig, input_size, opts)

 View Source

 @spec create(
 binary(),
 binary(),
 binary(),
 {number(), number()},
 [
 score_threshold: term(),
 top_k: term(),
 backend_id: term(),
 nms_threshold: term(),
 target_id: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	framework: String.
Name of origin framework

	bufferModel: [uchar].
A buffer with a content of binary file with weights

	bufferConfig: [uchar].
A buffer with a content of text file contains network configuration

	input_size: Size.
the size of the input image

Keyword Arguments
	score_threshold: float.
the threshold to filter out bounding boxes of score smaller than the given value

	nms_threshold: float.
the threshold to suppress bounding boxes of IoU bigger than the given value

	top_k: int.
keep top K bboxes before NMS

	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceDetectorYN.t()

Has overloading in C++
Python prototype (for reference only):
create(framework, bufferModel, bufferConfig, input_size[, score_threshold[, nms_threshold[, top_k[, backend_id[, target_id]]]]]) -> retval

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Detects faces in the input image. Following is an example output.
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	image: Evision.Mat.t().
an image to detect

Return
	retval: int
	faces: Evision.Mat.t().detection results stored in a 2D cv::Mat of shape [num_faces, 15]	0-1: x, y of bbox top left corner
	2-3: width, height of bbox
	4-5: x, y of right eye (blue point in the example image)
	6-7: x, y of left eye (red point in the example image)
	8-9: x, y of nose tip (green point in the example image)
	10-11: x, y of right corner of mouth (pink point in the example image)
	12-13: x, y of left corner of mouth (yellow point in the example image)
	14: face score

 [image: image]
Python prototype (for reference only):
detect(image[, faces]) -> retval, faces

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Detects faces in the input image. Following is an example output.
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	image: Evision.Mat.t().
an image to detect

Return
	retval: int
	faces: Evision.Mat.t().detection results stored in a 2D cv::Mat of shape [num_faces, 15]	0-1: x, y of bbox top left corner
	2-3: width, height of bbox
	4-5: x, y of right eye (blue point in the example image)
	6-7: x, y of left eye (red point in the example image)
	8-9: x, y of nose tip (green point in the example image)
	10-11: x, y of right corner of mouth (pink point in the example image)
	12-13: x, y of left corner of mouth (yellow point in the example image)
	14: face score

 [image: image]
Python prototype (for reference only):
detect(image[, faces]) -> retval, faces

 Link to this function

 getInputSize(self)

 View Source

 @spec getInputSize(t()) :: {number(), number()} | {:error, String.t()}

getInputSize
Positional Arguments
	self: Evision.FaceDetectorYN.t()

Return
	retval: Size

Python prototype (for reference only):
getInputSize() -> retval

 Link to this function

 getNMSThreshold(self)

 View Source

 @spec getNMSThreshold(t()) :: number() | {:error, String.t()}

getNMSThreshold
Positional Arguments
	self: Evision.FaceDetectorYN.t()

Return
	retval: float

Python prototype (for reference only):
getNMSThreshold() -> retval

 Link to this function

 getScoreThreshold(self)

 View Source

 @spec getScoreThreshold(t()) :: number() | {:error, String.t()}

getScoreThreshold
Positional Arguments
	self: Evision.FaceDetectorYN.t()

Return
	retval: float

Python prototype (for reference only):
getScoreThreshold() -> retval

 Link to this function

 getTopK(self)

 View Source

 @spec getTopK(t()) :: integer() | {:error, String.t()}

getTopK
Positional Arguments
	self: Evision.FaceDetectorYN.t()

Return
	retval: int

Python prototype (for reference only):
getTopK() -> retval

 Link to this function

 setInputSize(self, input_size)

 View Source

 @spec setInputSize(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

Set the size for the network input, which overwrites the input size of creating model. Call this method when the size of input image does not match the input size when creating model
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	input_size: Size.
the size of the input image

Python prototype (for reference only):
setInputSize(input_size) -> None

 Link to this function

 setNMSThreshold(self, nms_threshold)

 View Source

 @spec setNMSThreshold(t(), number()) :: t() | {:error, String.t()}

Set the Non-maximum-suppression threshold to suppress bounding boxes that have IoU greater than the given value
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	nms_threshold: float.
threshold for NMS operation

Python prototype (for reference only):
setNMSThreshold(nms_threshold) -> None

 Link to this function

 setScoreThreshold(self, score_threshold)

 View Source

 @spec setScoreThreshold(t(), number()) :: t() | {:error, String.t()}

Set the score threshold to filter out bounding boxes of score less than the given value
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	score_threshold: float.
threshold for filtering out bounding boxes

Python prototype (for reference only):
setScoreThreshold(score_threshold) -> None

 Link to this function

 setTopK(self, top_k)

 View Source

 @spec setTopK(t(), integer()) :: t() | {:error, String.t()}

Set the number of bounding boxes preserved before NMS
Positional Arguments
	self: Evision.FaceDetectorYN.t()

	top_k: int.
the number of bounding boxes to preserve from top rank based on score

Python prototype (for reference only):
setTopK(top_k) -> None

 Evision.FaceRecognizerSF - Evision v0.1.39

Evision.FaceRecognizerSF

 Summary

 Types

 t()

 Type that represents an FaceRecognizerSF struct.

 Functions

 alignCrop(self, src_img, face_box)

 Aligning image to put face on the standard position

 alignCrop(self, src_img, face_box, opts)

 Aligning image to put face on the standard position

 create(model, config)

 Creates an instance of this class with given parameters

 create(model, config, opts)

 Creates an instance of this class with given parameters

 feature(self, aligned_img)

 Extracting face feature from aligned image

 feature(self, aligned_img, opts)

 Extracting face feature from aligned image

 match(self, face_feature1, face_feature2)

 Calculating the distance between two face features

 match(self, face_feature1, face_feature2, opts)

 Calculating the distance between two face features

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FaceRecognizerSF{ref: reference()}

Type that represents an FaceRecognizerSF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 alignCrop(self, src_img, face_box)

 View Source

 @spec alignCrop(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Aligning image to put face on the standard position
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	src_img: Evision.Mat.t().
input image

	face_box: Evision.Mat.t().
the detection result used for indicate face in input image

Return
	aligned_img: Evision.Mat.t().
output aligned image

Python prototype (for reference only):
alignCrop(src_img, face_box[, aligned_img]) -> aligned_img

 Link to this function

 alignCrop(self, src_img, face_box, opts)

 View Source

 @spec alignCrop(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Aligning image to put face on the standard position
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	src_img: Evision.Mat.t().
input image

	face_box: Evision.Mat.t().
the detection result used for indicate face in input image

Return
	aligned_img: Evision.Mat.t().
output aligned image

Python prototype (for reference only):
alignCrop(src_img, face_box[, aligned_img]) -> aligned_img

 Link to this function

 create(model, config)

 View Source

 @spec create(binary(), binary()) :: t() | {:error, String.t()}

Creates an instance of this class with given parameters
Positional Arguments
	model: String.
the path of the onnx model used for face recognition

	config: String.
the path to the config file for compability, which is not requested for ONNX models

Keyword Arguments
	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceRecognizerSF.t()

Python prototype (for reference only):
create(model, config[, backend_id[, target_id]]) -> retval

 Link to this function

 create(model, config, opts)

 View Source

 @spec create(binary(), binary(), [target_id: term(), backend_id: term()] | nil) ::
 t() | {:error, String.t()}

Creates an instance of this class with given parameters
Positional Arguments
	model: String.
the path of the onnx model used for face recognition

	config: String.
the path to the config file for compability, which is not requested for ONNX models

Keyword Arguments
	backend_id: int.
the id of backend

	target_id: int.
the id of target device

Return
	retval: Evision.FaceRecognizerSF.t()

Python prototype (for reference only):
create(model, config[, backend_id[, target_id]]) -> retval

 Link to this function

 feature(self, aligned_img)

 View Source

 @spec feature(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Extracting face feature from aligned image
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	aligned_img: Evision.Mat.t().
input aligned image

Return
	face_feature: Evision.Mat.t().
output face feature

Python prototype (for reference only):
feature(aligned_img[, face_feature]) -> face_feature

 Link to this function

 feature(self, aligned_img, opts)

 View Source

 @spec feature(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Extracting face feature from aligned image
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	aligned_img: Evision.Mat.t().
input aligned image

Return
	face_feature: Evision.Mat.t().
output face feature

Python prototype (for reference only):
feature(aligned_img[, face_feature]) -> face_feature

 Link to this function

 match(self, face_feature1, face_feature2)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Calculating the distance between two face features
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	face_feature1: Evision.Mat.t().
the first input feature

	face_feature2: Evision.Mat.t().
the second input feature of the same size and the same type as face_feature1

Keyword Arguments
	dis_type: int.
defining the similarity with optional values "FR_OSINE" or "FR_NORM_L2"

Return
	retval: double

Python prototype (for reference only):
match(face_feature1, face_feature2[, dis_type]) -> retval

 Link to this function

 match(self, face_feature1, face_feature2, opts)

 View Source

 @spec match(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:dis_type, term()}] | nil
) ::
 number() | {:error, String.t()}

Calculating the distance between two face features
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	face_feature1: Evision.Mat.t().
the first input feature

	face_feature2: Evision.Mat.t().
the second input feature of the same size and the same type as face_feature1

Keyword Arguments
	dis_type: int.
defining the similarity with optional values "FR_OSINE" or "FR_NORM_L2"

Return
	retval: double

Python prototype (for reference only):
match(face_feature1, face_feature2[, dis_type]) -> retval

 Evision.FarnebackOpticalFlow - Evision v0.1.39

Evision.FarnebackOpticalFlow

 Summary

 Types

 t()

 Type that represents an FarnebackOpticalFlow struct.

 Functions

 create()

 create

 create(opts)

 create

 getFastPyramids(self)

 getFastPyramids

 getFlags(self)

 getFlags

 getNumIters(self)

 getNumIters

 getNumLevels(self)

 getNumLevels

 getPolyN(self)

 getPolyN

 getPolySigma(self)

 getPolySigma

 getPyrScale(self)

 getPyrScale

 getWinSize(self)

 getWinSize

 setFastPyramids(self, fastPyramids)

 setFastPyramids

 setFlags(self, flags)

 setFlags

 setNumIters(self, numIters)

 setNumIters

 setNumLevels(self, numLevels)

 setNumLevels

 setPolyN(self, polyN)

 setPolyN

 setPolySigma(self, polySigma)

 setPolySigma

 setPyrScale(self, pyrScale)

 setPyrScale

 setWinSize(self, winSize)

 setWinSize

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FarnebackOpticalFlow{ref: reference()}

Type that represents an FarnebackOpticalFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	numLevels: int.
	pyrScale: double.
	fastPyramids: bool.
	winSize: int.
	numIters: int.
	polyN: int.
	polySigma: double.
	flags: int.

Return
	retval: Evision.FarnebackOpticalFlow.t()

Python prototype (for reference only):
create([, numLevels[, pyrScale[, fastPyramids[, winSize[, numIters[, polyN[, polySigma[, flags]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 flags: term(),
 winSize: term(),
 numLevels: term(),
 polySigma: term(),
 polyN: term(),
 pyrScale: term(),
 numIters: term(),
 fastPyramids: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	numLevels: int.
	pyrScale: double.
	fastPyramids: bool.
	winSize: int.
	numIters: int.
	polyN: int.
	polySigma: double.
	flags: int.

Return
	retval: Evision.FarnebackOpticalFlow.t()

Python prototype (for reference only):
create([, numLevels[, pyrScale[, fastPyramids[, winSize[, numIters[, polyN[, polySigma[, flags]]]]]]]]) -> retval

 Link to this function

 getFastPyramids(self)

 View Source

 @spec getFastPyramids(t()) :: boolean() | {:error, String.t()}

getFastPyramids
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: bool

Python prototype (for reference only):
getFastPyramids() -> retval

 Link to this function

 getFlags(self)

 View Source

 @spec getFlags(t()) :: integer() | {:error, String.t()}

getFlags
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getFlags() -> retval

 Link to this function

 getNumIters(self)

 View Source

 @spec getNumIters(t()) :: integer() | {:error, String.t()}

getNumIters
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getNumIters() -> retval

 Link to this function

 getNumLevels(self)

 View Source

 @spec getNumLevels(t()) :: integer() | {:error, String.t()}

getNumLevels
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getNumLevels() -> retval

 Link to this function

 getPolyN(self)

 View Source

 @spec getPolyN(t()) :: integer() | {:error, String.t()}

getPolyN
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getPolyN() -> retval

 Link to this function

 getPolySigma(self)

 View Source

 @spec getPolySigma(t()) :: number() | {:error, String.t()}

getPolySigma
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: double

Python prototype (for reference only):
getPolySigma() -> retval

 Link to this function

 getPyrScale(self)

 View Source

 @spec getPyrScale(t()) :: number() | {:error, String.t()}

getPyrScale
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: double

Python prototype (for reference only):
getPyrScale() -> retval

 Link to this function

 getWinSize(self)

 View Source

 @spec getWinSize(t()) :: integer() | {:error, String.t()}

getWinSize
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getWinSize() -> retval

 Link to this function

 setFastPyramids(self, fastPyramids)

 View Source

 @spec setFastPyramids(t(), boolean()) :: t() | {:error, String.t()}

setFastPyramids
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	fastPyramids: bool

Python prototype (for reference only):
setFastPyramids(fastPyramids) -> None

 Link to this function

 setFlags(self, flags)

 View Source

 @spec setFlags(t(), integer()) :: t() | {:error, String.t()}

setFlags
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	flags: int

Python prototype (for reference only):
setFlags(flags) -> None

 Link to this function

 setNumIters(self, numIters)

 View Source

 @spec setNumIters(t(), integer()) :: t() | {:error, String.t()}

setNumIters
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	numIters: int

Python prototype (for reference only):
setNumIters(numIters) -> None

 Link to this function

 setNumLevels(self, numLevels)

 View Source

 @spec setNumLevels(t(), integer()) :: t() | {:error, String.t()}

setNumLevels
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	numLevels: int

Python prototype (for reference only):
setNumLevels(numLevels) -> None

 Link to this function

 setPolyN(self, polyN)

 View Source

 @spec setPolyN(t(), integer()) :: t() | {:error, String.t()}

setPolyN
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	polyN: int

Python prototype (for reference only):
setPolyN(polyN) -> None

 Link to this function

 setPolySigma(self, polySigma)

 View Source

 @spec setPolySigma(t(), number()) :: t() | {:error, String.t()}

setPolySigma
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	polySigma: double

Python prototype (for reference only):
setPolySigma(polySigma) -> None

 Link to this function

 setPyrScale(self, pyrScale)

 View Source

 @spec setPyrScale(t(), number()) :: t() | {:error, String.t()}

setPyrScale
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	pyrScale: double

Python prototype (for reference only):
setPyrScale(pyrScale) -> None

 Link to this function

 setWinSize(self, winSize)

 View Source

 @spec setWinSize(t(), integer()) :: t() | {:error, String.t()}

setWinSize
Positional Arguments
	self: Evision.FarnebackOpticalFlow.t()
	winSize: int

Python prototype (for reference only):
setWinSize(winSize) -> None

 Evision.FastFeatureDetector - Evision v0.1.39

Evision.FastFeatureDetector

 Summary

 Types

 t()

 Type that represents an FastFeatureDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getNonmaxSuppression(self)

 getNonmaxSuppression

 getThreshold(self)

 getThreshold

 getType(self)

 getType

 read(self, arg1)

 Variant 1:
read

 setNonmaxSuppression(self, f)

 setNonmaxSuppression

 setThreshold(self, threshold)

 setThreshold

 setType(self, type)

 setType

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FastFeatureDetector{ref: reference()}

Type that represents an FastFeatureDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: FastFeatureDetector_DetectorType.

Return
	retval: Evision.FastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([threshold: term(), type: term(), nonmaxSuppression: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	threshold: int.
	nonmaxSuppression: bool.
	type: FastFeatureDetector_DetectorType.

Return
	retval: Evision.FastFeatureDetector.t()

Python prototype (for reference only):
create([, threshold[, nonmaxSuppression[, type]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.FastFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNonmaxSuppression(self)

 View Source

 @spec getNonmaxSuppression(t()) :: boolean() | {:error, String.t()}

getNonmaxSuppression
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getNonmaxSuppression() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: integer() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 getType(self)

 View Source

 @spec getType(t()) :: integer() | {:error, String.t()}

getType
Positional Arguments
	self: Evision.FastFeatureDetector.t()

Return
	retval: FastFeatureDetector::DetectorType

Python prototype (for reference only):
getType() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setNonmaxSuppression(self, f)

 View Source

 @spec setNonmaxSuppression(t(), boolean()) :: t() | {:error, String.t()}

setNonmaxSuppression
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	f: bool

Python prototype (for reference only):
setNonmaxSuppression(f) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), integer()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	threshold: int

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 setType(self, type)

 View Source

 @spec setType(t(), integer()) :: t() | {:error, String.t()}

setType
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	type: FastFeatureDetector_DetectorType

Python prototype (for reference only):
setType(type) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.FastFeatureDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Feature2D - Evision v0.1.39

Evision.Feature2D

 Summary

 Types

 t()

 Type that represents an Feature2D struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 read(self, arg1)

 Variant 1:
read

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Feature2D{ref: reference()}

Type that represents an Feature2D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(t(), [Evision.Mat.maybe_mat_in()], [[Evision.KeyPoint.t()]]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [Evision.KeyPoint.t()]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.Feature2D.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.Feature2D.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.Feature2D.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.Feature2D.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.Feature2D.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.Feature2D.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.Feature2D.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.Feature2D.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.Feature2D.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(t(), [Evision.Mat.maybe_mat_in()], [{:masks, term()}] | nil) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.Feature2D.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.Feature2D.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.Feature2D.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.Feature2D.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.Feature2D.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Feature2D.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

 @spec read(t(), binary()) :: t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.Feature2D.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.Feature2D.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(t(), binary()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Feature2D.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Feature2D.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.FileNode - Evision v0.1.39

Evision.FileNode

 Summary

 Types

 t()

 Type that represents an FileNode struct.

 Functions

 at(self, i)

 at

 empty(self)

 empty

 fileNode()

 The constructors.

 getNode(self, nodename)

 getNode

 isInt(self)

 isInt

 isMap(self)

 isMap

 isNamed(self)

 isNamed

 isNone(self)

 isNone

 isReal(self)

 isReal

 isSeq(self)

 isSeq

 isString(self)

 isString

 keys(self)

 Returns keys of a mapping node.

 mat(self)

 mat

 name(self)

 name

 rawSize(self)

 rawSize

 real(self)

 real

 size(self)

 size

 string(self)

 string

 type(self)

 Returns type of the node.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FileNode{ref: reference()}

Type that represents an FileNode struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 at(self, i)

 View Source

 @spec at(t(), integer()) :: t() | {:error, String.t()}

at
Positional Arguments
	self: Evision.FileNode.t()

	i: int.
Index of an element in the sequence node.

Return
	retval: Evision.FileNode.t()

Has overloading in C++
Python prototype (for reference only):
at(i) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 fileNode()

 View Source

 @spec fileNode() :: t() | {:error, String.t()}

The constructors.
Return
	self: Evision.FileNode.t()

These constructors are used to create a default file node, construct it from obsolete structures or
from the another file node.
Python prototype (for reference only):
FileNode() -> <FileNode object>

 Link to this function

 getNode(self, nodename)

 View Source

 @spec getNode(t(), binary()) :: t() | {:error, String.t()}

getNode
Positional Arguments
	self: Evision.FileNode.t()

	nodename: c_string.
Name of an element in the mapping node.

Return
	retval: Evision.FileNode.t()

Has overloading in C++
Python prototype (for reference only):
getNode(nodename) -> retval

 Link to this function

 isInt(self)

 View Source

 @spec isInt(t()) :: boolean() | {:error, String.t()}

isInt
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isInt() -> retval

 Link to this function

 isMap(self)

 View Source

 @spec isMap(t()) :: boolean() | {:error, String.t()}

isMap
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isMap() -> retval

 Link to this function

 isNamed(self)

 View Source

 @spec isNamed(t()) :: boolean() | {:error, String.t()}

isNamed
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isNamed() -> retval

 Link to this function

 isNone(self)

 View Source

 @spec isNone(t()) :: boolean() | {:error, String.t()}

isNone
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isNone() -> retval

 Link to this function

 isReal(self)

 View Source

 @spec isReal(t()) :: boolean() | {:error, String.t()}

isReal
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isReal() -> retval

 Link to this function

 isSeq(self)

 View Source

 @spec isSeq(t()) :: boolean() | {:error, String.t()}

isSeq
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isSeq() -> retval

 Link to this function

 isString(self)

 View Source

 @spec isString(t()) :: boolean() | {:error, String.t()}

isString
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: bool

Python prototype (for reference only):
isString() -> retval

 Link to this function

 keys(self)

 View Source

 @spec keys(t()) :: [binary()] | {:error, String.t()}

Returns keys of a mapping node.
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: [String]

@returns Keys of a mapping node.
Python prototype (for reference only):
keys() -> retval

 Link to this function

 mat(self)

 View Source

 @spec mat(t()) :: Evision.Mat.t() | {:error, String.t()}

mat
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
mat() -> retval

 Link to this function

 name(self)

 View Source

 @spec name(t()) :: binary() | {:error, String.t()}

name
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: string

Python prototype (for reference only):
name() -> retval

 Link to this function

 rawSize(self)

 View Source

 @spec rawSize(t()) :: integer() | {:error, String.t()}

rawSize
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: size_t

Python prototype (for reference only):
rawSize() -> retval

 Link to this function

 real(self)

 View Source

 @spec real(t()) :: number() | {:error, String.t()}

real
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: double

Internal method used when reading FileStorage.
Sets the type (int, real or string) and value of the previously created node.
Python prototype (for reference only):
real() -> retval

 Link to this function

 size(self)

 View Source

 @spec size(t()) :: integer() | {:error, String.t()}

size
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: size_t

Python prototype (for reference only):
size() -> retval

 Link to this function

 string(self)

 View Source

 @spec string(t()) :: binary() | {:error, String.t()}

string
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: string

Python prototype (for reference only):
string() -> retval

 Link to this function

 type(self)

 View Source

 @spec type(t()) :: integer() | {:error, String.t()}

Returns type of the node.
Positional Arguments
	self: Evision.FileNode.t()

Return
	retval: int

@returns Type of the node. See FileNode::Type
Python prototype (for reference only):
type() -> retval

 Evision.FileStorage - Evision v0.1.39

Evision.FileStorage

 Summary

 Types

 t()

 Type that represents an FileStorage struct.

 Functions

 endWriteStruct(self)

 Finishes writing nested structure (should pair startWriteStruct())

 fileStorage()

 The constructors.

 fileStorage(filename, flags)

 FileStorage

 fileStorage(filename, flags, opts)

 FileStorage

 getFirstTopLevelNode(self)

 Returns the first element of the top-level mapping.

 getFormat(self)

 Returns the current format.

 getNode(self, nodename)

 getNode

 isOpened(self)

 Checks whether the file is opened.

 open(self, filename, flags)

 Opens a file.

 open(self, filename, flags, opts)

 Opens a file.

 release(self)

 Closes the file and releases all the memory buffers.

 releaseAndGetString(self)

 Closes the file and releases all the memory buffers.

 root(self)

 Returns the top-level mapping

 root(self, opts)

 Returns the top-level mapping

 startWriteStruct(self, name, flags)

 Starts to write a nested structure (sequence or a mapping).

 startWriteStruct(self, name, flags, opts)

 Starts to write a nested structure (sequence or a mapping).

 write(self, name, val)

 Variant 1:
write

 writeComment(self, comment)

 Writes a comment.

 writeComment(self, comment, opts)

 Writes a comment.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FileStorage{ref: reference()}

Type that represents an FileStorage struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 endWriteStruct(self)

 View Source

 @spec endWriteStruct(t()) :: t() | {:error, String.t()}

Finishes writing nested structure (should pair startWriteStruct())
Positional Arguments
	self: Evision.FileStorage.t()

Python prototype (for reference only):
endWriteStruct() -> None

 Link to this function

 fileStorage()

 View Source

 @spec fileStorage() :: t() | {:error, String.t()}

The constructors.
Return
	self: Evision.FileStorage.t()

The full constructor opens the file. Alternatively you can use the default constructor and then
call FileStorage::open.
Python prototype (for reference only):
FileStorage() -> <FileStorage object>

 Link to this function

 fileStorage(filename, flags)

 View Source

 @spec fileStorage(binary(), integer()) :: t() | {:error, String.t()}

FileStorage
Positional Arguments
	filename: String
	flags: int

Keyword Arguments
	encoding: String.

Return
	self: Evision.FileStorage.t()

Has overloading in C++
@copydoc open()
Python prototype (for reference only):
FileStorage(filename, flags[, encoding]) -> <FileStorage object>

 Link to this function

 fileStorage(filename, flags, opts)

 View Source

 @spec fileStorage(binary(), integer(), [{:encoding, term()}] | nil) ::
 t() | {:error, String.t()}

FileStorage
Positional Arguments
	filename: String
	flags: int

Keyword Arguments
	encoding: String.

Return
	self: Evision.FileStorage.t()

Has overloading in C++
@copydoc open()
Python prototype (for reference only):
FileStorage(filename, flags[, encoding]) -> <FileStorage object>

 Link to this function

 getFirstTopLevelNode(self)

 View Source

 @spec getFirstTopLevelNode(t()) :: Evision.FileNode.t() | {:error, String.t()}

Returns the first element of the top-level mapping.
Positional Arguments
	self: Evision.FileStorage.t()

Return
	retval: Evision.FileNode.t()

@returns The first element of the top-level mapping.
Python prototype (for reference only):
getFirstTopLevelNode() -> retval

 Link to this function

 getFormat(self)

 View Source

 @spec getFormat(t()) :: integer() | {:error, String.t()}

Returns the current format.
Positional Arguments
	self: Evision.FileStorage.t()

Return
	retval: int

@returns The current format, see FileStorage::Mode
Python prototype (for reference only):
getFormat() -> retval

 Link to this function

 getNode(self, nodename)

 View Source

 @spec getNode(t(), binary()) :: Evision.FileNode.t() | {:error, String.t()}

getNode
Positional Arguments
	self: Evision.FileStorage.t()
	nodename: c_string

Return
	retval: Evision.FileNode.t()

Has overloading in C++
Python prototype (for reference only):
getNode(nodename) -> retval

 Link to this function

 isOpened(self)

 View Source

 @spec isOpened(t()) :: boolean() | {:error, String.t()}

Checks whether the file is opened.
Positional Arguments
	self: Evision.FileStorage.t()

Return
	retval: bool

@returns true if the object is associated with the current file and false otherwise. It is a
good practice to call this method after you tried to open a file.
Python prototype (for reference only):
isOpened() -> retval

 Link to this function

 open(self, filename, flags)

 View Source

 @spec open(t(), binary(), integer()) :: boolean() | {:error, String.t()}

Opens a file.
Positional Arguments
	self: Evision.FileStorage.t()

	filename: String.
Name of the file to open or the text string to read the data from.
Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON
respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both
FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify
the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters.
You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to
FileStorage::BASE64 flag.

	flags: int.
Mode of operation. One of FileStorage::Mode

Keyword Arguments
	encoding: String.
Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
you should use 8-bit encoding instead of it.

Return
	retval: bool

See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release
before opening the file.
Python prototype (for reference only):
open(filename, flags[, encoding]) -> retval

 Link to this function

 open(self, filename, flags, opts)

 View Source

 @spec open(t(), binary(), integer(), [{:encoding, term()}] | nil) ::
 boolean() | {:error, String.t()}

Opens a file.
Positional Arguments
	self: Evision.FileStorage.t()

	filename: String.
Name of the file to open or the text string to read the data from.
Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON
respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both
FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify
the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters.
You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to
FileStorage::BASE64 flag.

	flags: int.
Mode of operation. One of FileStorage::Mode

Keyword Arguments
	encoding: String.
Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
you should use 8-bit encoding instead of it.

Return
	retval: bool

See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release
before opening the file.
Python prototype (for reference only):
open(filename, flags[, encoding]) -> retval

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

Closes the file and releases all the memory buffers.
Positional Arguments
	self: Evision.FileStorage.t()

Call this method after all I/O operations with the storage are finished.
Python prototype (for reference only):
release() -> None

 Link to this function

 releaseAndGetString(self)

 View Source

 @spec releaseAndGetString(t()) :: binary() | {:error, String.t()}

Closes the file and releases all the memory buffers.
Positional Arguments
	self: Evision.FileStorage.t()

Return
	retval: String

Call this method after all I/O operations with the storage are finished. If the storage was
opened for writing data and FileStorage::WRITE was specified
Python prototype (for reference only):
releaseAndGetString() -> retval

 Link to this function

 root(self)

 View Source

 @spec root(t()) :: Evision.FileNode.t() | {:error, String.t()}

Returns the top-level mapping
Positional Arguments
	self: Evision.FileStorage.t()

Keyword Arguments
	streamidx: int.
Zero-based index of the stream. In most cases there is only one stream in the file.
However, YAML supports multiple streams and so there can be several.

Return
	retval: Evision.FileNode.t()

@returns The top-level mapping.
Python prototype (for reference only):
root([, streamidx]) -> retval

 Link to this function

 root(self, opts)

 View Source

 @spec root(t(), [{:streamidx, term()}] | nil) ::
 Evision.FileNode.t() | {:error, String.t()}

Returns the top-level mapping
Positional Arguments
	self: Evision.FileStorage.t()

Keyword Arguments
	streamidx: int.
Zero-based index of the stream. In most cases there is only one stream in the file.
However, YAML supports multiple streams and so there can be several.

Return
	retval: Evision.FileNode.t()

@returns The top-level mapping.
Python prototype (for reference only):
root([, streamidx]) -> retval

 Link to this function

 startWriteStruct(self, name, flags)

 View Source

 @spec startWriteStruct(t(), binary(), integer()) :: t() | {:error, String.t()}

Starts to write a nested structure (sequence or a mapping).
Positional Arguments
	self: Evision.FileStorage.t()

	name: String.
name of the structure. When writing to sequences (a.k.a. "arrays"), pass an empty string.

	flags: int.
type of the structure (FileNode::MAP or FileNode::SEQ (both with optional FileNode::FLOW)).

Keyword Arguments
	typeName: String.
optional name of the type you store. The effect of setting this depends on the storage format.
I.e. if the format has a specification for storing type information, this parameter is used.

Python prototype (for reference only):
startWriteStruct(name, flags[, typeName]) -> None

 Link to this function

 startWriteStruct(self, name, flags, opts)

 View Source

 @spec startWriteStruct(t(), binary(), integer(), [{:typeName, term()}] | nil) ::
 t() | {:error, String.t()}

Starts to write a nested structure (sequence or a mapping).
Positional Arguments
	self: Evision.FileStorage.t()

	name: String.
name of the structure. When writing to sequences (a.k.a. "arrays"), pass an empty string.

	flags: int.
type of the structure (FileNode::MAP or FileNode::SEQ (both with optional FileNode::FLOW)).

Keyword Arguments
	typeName: String.
optional name of the type you store. The effect of setting this depends on the storage format.
I.e. if the format has a specification for storing type information, this parameter is used.

Python prototype (for reference only):
startWriteStruct(name, flags[, typeName]) -> None

 Link to this function

 write(self, name, val)

 View Source

 @spec write(t(), binary(), [binary()]) :: t() | {:error, String.t()}

 @spec write(t(), binary(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

 @spec write(t(), binary(), binary()) :: t() | {:error, String.t()}

 @spec write(t(), binary(), number()) :: t() | {:error, String.t()}

 @spec write(t(), binary(), integer()) :: t() | {:error, String.t()}

Variant 1:
write
Positional Arguments
	self: Evision.FileStorage.t()
	name: String
	val: [String]

Python prototype (for reference only):
write(name, val) -> None
Variant 2:
write
Positional Arguments
	self: Evision.FileStorage.t()
	name: String
	val: Evision.Mat.t()

Python prototype (for reference only):
write(name, val) -> None
Variant 3:
write
Positional Arguments
	self: Evision.FileStorage.t()
	name: String
	val: String

Python prototype (for reference only):
write(name, val) -> None
Variant 4:
write
Positional Arguments
	self: Evision.FileStorage.t()
	name: String
	val: double

Python prototype (for reference only):
write(name, val) -> None
Variant 5:
Simplified writing API to use with bindings.
Positional Arguments
	self: Evision.FileStorage.t()

	name: String.
Name of the written object. When writing to sequences (a.k.a. "arrays"), pass an empty string.

	val: int.
Value of the written object.

Python prototype (for reference only):
write(name, val) -> None

 Link to this function

 writeComment(self, comment)

 View Source

 @spec writeComment(t(), binary()) :: t() | {:error, String.t()}

Writes a comment.
Positional Arguments
	self: Evision.FileStorage.t()

	comment: String.
The written comment, single-line or multi-line

Keyword Arguments
	append: bool.
If true, the function tries to put the comment at the end of current line.
Else if the comment is multi-line, or if it does not fit at the end of the current
line, the comment starts a new line.

The function writes a comment into file storage. The comments are skipped when the storage is read.
Python prototype (for reference only):
writeComment(comment[, append]) -> None

 Link to this function

 writeComment(self, comment, opts)

 View Source

 @spec writeComment(t(), binary(), [{:append, term()}] | nil) ::
 t() | {:error, String.t()}

Writes a comment.
Positional Arguments
	self: Evision.FileStorage.t()

	comment: String.
The written comment, single-line or multi-line

Keyword Arguments
	append: bool.
If true, the function tries to put the comment at the end of current line.
Else if the comment is multi-line, or if it does not fit at the end of the current
line, the comment starts a new line.

The function writes a comment into file storage. The comments are skipped when the storage is read.
Python prototype (for reference only):
writeComment(comment[, append]) -> None

 Evision.FishEye - Evision v0.1.39

Evision.FishEye

 Summary

 Types

 t()

 Type that represents an FishEye struct.

 Functions

 calibrate(objectPoints, imagePoints, image_size, k, d)

 Performs camera calibration

 calibrate(objectPoints, imagePoints, image_size, k, d, opts)

 Performs camera calibration

 distortPoints(undistorted, k, d)

 Distorts 2D points using fisheye model.

 distortPoints(undistorted, k, d, opts)

 Distorts 2D points using fisheye model.

 estimateNewCameraMatrixForUndistortRectify(k, d, image_size, r)

 Estimates new camera intrinsic matrix for undistortion or rectification.

 estimateNewCameraMatrixForUndistortRectify(k, d, image_size, r, opts)

 Estimates new camera intrinsic matrix for undistortion or rectification.

 initUndistortRectifyMap(k, d, r, p, size, m1type)

 Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
distortion is used, if R or P is empty identity matrixes are used.

 initUndistortRectifyMap(k, d, r, p, size, m1type, opts)

 Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
distortion is used, if R or P is empty identity matrixes are used.

 projectPoints(objectPoints, rvec, tvec, k, d)

 projectPoints

 projectPoints(objectPoints, rvec, tvec, k, d, opts)

 projectPoints

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, k1, d1, k2, d2, imageSize)

 stereoCalibrate

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, k1, d1, k2, d2, imageSize, opts)

 stereoCalibrate

 stereoRectify(k1, d1, k2, d2, imageSize, r, tvec, flags)

 Stereo rectification for fisheye camera model

 stereoRectify(k1, d1, k2, d2, imageSize, r, tvec, flags, opts)

 Stereo rectification for fisheye camera model

 undistortImage(distorted, k, d)

 Transforms an image to compensate for fisheye lens distortion.

 undistortImage(distorted, k, d, opts)

 Transforms an image to compensate for fisheye lens distortion.

 undistortPoints(distorted, k, d)

 Undistorts 2D points using fisheye model

 undistortPoints(distorted, k, d, opts)

 Undistorts 2D points using fisheye model

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FishEye{ref: reference()}

Type that represents an FishEye struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calibrate(objectPoints, imagePoints, image_size, k, d)

 View Source

 @spec calibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

Performs camera calibration
Positional Arguments
	objectPoints: [Evision.Mat].
vector of vectors of calibration pattern points in the calibration pattern
coordinate space.

	imagePoints: [Evision.Mat].
vector of vectors of the projections of calibration pattern points.
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
objectPoints[i].size() for each i.

	image_size: Size.
Size of the image used only to initialize the camera intrinsic matrix.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
	@ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
	@ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
	@ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
	@ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
are set to zeros and stay zero.
	@ref fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
	@ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	k: Evision.Mat.t().
Output 3x3 floating-point camera intrinsic matrix
\f$\cameramatrix{A}\f$. If

	d: Evision.Mat.t().
Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each pattern view.
That is, each k-th rotation vector together with the corresponding k-th translation vector (see
the next output parameter description) brings the calibration pattern from the model coordinate
space (in which object points are specified) to the world coordinate space, that is, a real
position of the calibration pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

@ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.
Python prototype (for reference only):
calibrate(objectPoints, imagePoints, image_size, K, D[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, K, D, rvecs, tvecs

 Link to this function

 calibrate(objectPoints, imagePoints, image_size, k, d, opts)

 View Source

 @spec calibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), [Evision.Mat.t()],
 [Evision.Mat.t()]}
 | {:error, String.t()}

Performs camera calibration
Positional Arguments
	objectPoints: [Evision.Mat].
vector of vectors of calibration pattern points in the calibration pattern
coordinate space.

	imagePoints: [Evision.Mat].
vector of vectors of the projections of calibration pattern points.
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
objectPoints[i].size() for each i.

	image_size: Size.
Size of the image used only to initialize the camera intrinsic matrix.

Keyword Arguments
	flags: int.
Different flags that may be zero or a combination of the following values:
	@ref fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
	@ref fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
	@ref fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
	@ref fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
	@ref fisheye::CALIB_FIX_K1,..., @ref fisheye::CALIB_FIX_K4 Selected distortion coefficients
are set to zeros and stay zero.
	@ref fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
	@ref fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization. It is the \f$max(width,height)/\pi\f$ or the provided \f$f_x\f$, \f$f_y\f$ when @ref fisheye::CALIB_USE_INTRINSIC_GUESS is set too.

	criteria: TermCriteria.
Termination criteria for the iterative optimization algorithm.

Return
	retval: double

	k: Evision.Mat.t().
Output 3x3 floating-point camera intrinsic matrix
\f$\cameramatrix{A}\f$. If

	d: Evision.Mat.t().
Output vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	rvecs: [Evision.Mat].
Output vector of rotation vectors (see Rodrigues) estimated for each pattern view.
That is, each k-th rotation vector together with the corresponding k-th translation vector (see
the next output parameter description) brings the calibration pattern from the model coordinate
space (in which object points are specified) to the world coordinate space, that is, a real
position of the calibration pattern in the k-th pattern view (k=0.. M -1).

	tvecs: [Evision.Mat].
Output vector of translation vectors estimated for each pattern view.

@ref fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.
Python prototype (for reference only):
calibrate(objectPoints, imagePoints, image_size, K, D[, rvecs[, tvecs[, flags[, criteria]]]]) -> retval, K, D, rvecs, tvecs

 Link to this function

 distortPoints(undistorted, k, d)

 View Source

 @spec distortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Distorts 2D points using fisheye model.
Positional Arguments
	undistorted: Evision.Mat.t().
Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f>), where N is
the number of points in the view.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	alpha: double.
The skew coefficient.

Return
	distorted: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f> .

Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$.
Python prototype (for reference only):
distortPoints(undistorted, K, D[, distorted[, alpha]]) -> distorted

 Link to this function

 distortPoints(undistorted, k, d, opts)

 View Source

 @spec distortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:alpha, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Distorts 2D points using fisheye model.
Positional Arguments
	undistorted: Evision.Mat.t().
Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f>), where N is
the number of points in the view.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	alpha: double.
The skew coefficient.

Return
	distorted: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f> .

Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
This means if you want to distort image points you have to multiply them with \f$K^{-1}\f$.
Python prototype (for reference only):
distortPoints(undistorted, K, D[, distorted[, alpha]]) -> distorted

 Link to this function

 estimateNewCameraMatrixForUndistortRectify(k, d, image_size, r)

 View Source

 @spec estimateNewCameraMatrixForUndistortRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Estimates new camera intrinsic matrix for undistortion or rectification.
Positional Arguments
	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	image_size: Size.
Size of the image

	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

Keyword Arguments
	balance: double.
Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].

	new_size: Size.
the new size

	fov_scale: double.
Divisor for new focal length.

Return
	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

Python prototype (for reference only):
estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R[, P[, balance[, new_size[, fov_scale]]]]) -> P

 Link to this function

 estimateNewCameraMatrixForUndistortRectify(k, d, image_size, r, opts)

 View Source

 @spec estimateNewCameraMatrixForUndistortRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 [balance: term(), fov_scale: term(), new_size: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Estimates new camera intrinsic matrix for undistortion or rectification.
Positional Arguments
	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	image_size: Size.
Size of the image

	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

Keyword Arguments
	balance: double.
Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].

	new_size: Size.
the new size

	fov_scale: double.
Divisor for new focal length.

Return
	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

Python prototype (for reference only):
estimateNewCameraMatrixForUndistortRectify(K, D, image_size, R[, P[, balance[, new_size[, fov_scale]]]]) -> P

 Link to this function

 initUndistortRectifyMap(k, d, r, p, size, m1type)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
distortion is used, if R or P is empty identity matrixes are used.
Positional Arguments
	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
for details.

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

Python prototype (for reference only):
initUndistortRectifyMap(K, D, R, P, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 initUndistortRectifyMap(k, d, r, p, size, m1type, opts)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
distortion is used, if R or P is empty identity matrixes are used.
Positional Arguments
	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
for details.

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

Python prototype (for reference only):
initUndistortRectifyMap(K, D, R, P, size, m1type[, map1[, map2]]) -> map1, map2

 Link to this function

 projectPoints(objectPoints, rvec, tvec, k, d)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

projectPoints
Positional Arguments
	objectPoints: Evision.Mat.t()
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()
	k: Evision.Mat.t()
	d: Evision.Mat.t()

Keyword Arguments
	alpha: double.

Return
	imagePoints: Evision.Mat.t().
	jacobian: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, K, D[, imagePoints[, alpha[, jacobian]]]) -> imagePoints, jacobian

 Link to this function

 projectPoints(objectPoints, rvec, tvec, k, d, opts)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:alpha, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

projectPoints
Positional Arguments
	objectPoints: Evision.Mat.t()
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()
	k: Evision.Mat.t()
	d: Evision.Mat.t()

Keyword Arguments
	alpha: double.

Return
	imagePoints: Evision.Mat.t().
	jacobian: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, K, D[, imagePoints[, alpha[, jacobian]]]) -> imagePoints, jacobian

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, k1, d1, k2, d2, imageSize)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	k1: Evision.Mat.t()
	d1: Evision.Mat.t()
	k2: Evision.Mat.t()
	d2: Evision.Mat.t()
	r: Evision.Mat.t().
	t: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, K1, D1, K2, D2, imageSize[, R[, T[, flags[, criteria]]]]) -> retval, K1, D1, K2, D2, R, T

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, k1, d1, k2, d2, imageSize, opts)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [flags: term(), criteria: term()] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

stereoCalibrate
Positional Arguments
	objectPoints: [Evision.Mat]
	imagePoints1: [Evision.Mat]
	imagePoints2: [Evision.Mat]
	imageSize: Size

Keyword Arguments
	flags: int.
	criteria: TermCriteria.

Return
	retval: double
	k1: Evision.Mat.t()
	d1: Evision.Mat.t()
	k2: Evision.Mat.t()
	d2: Evision.Mat.t()
	r: Evision.Mat.t().
	t: Evision.Mat.t().

Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, K1, D1, K2, D2, imageSize[, R[, T[, flags[, criteria]]]]) -> retval, K1, D1, K2, D2, R, T

 Link to this function

 stereoRectify(k1, d1, k2, d2, imageSize, r, tvec, flags)

 View Source

 @spec stereoRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

Stereo rectification for fisheye camera model
Positional Arguments
	k1: Evision.Mat.t().
First camera intrinsic matrix.

	d1: Evision.Mat.t().
First camera distortion parameters.

	k2: Evision.Mat.t().
Second camera intrinsic matrix.

	d2: Evision.Mat.t().
Second camera distortion parameters.

	imageSize: Size.
Size of the image used for stereo calibration.

	r: Evision.Mat.t().
Rotation matrix between the coordinate systems of the first and the second
cameras.

	tvec: Evision.Mat.t().
Translation vector between coordinate systems of the cameras.

	flags: int.
Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.

Keyword Arguments
	newImageSize: Size.
New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.

	balance: double.
Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].

	fov_scale: double.
Divisor for new focal length.

Return
	r1: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the first camera.

	r2: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the second camera.

	p1: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.

	p2: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.

	q: Evision.Mat.t().
Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D).

Python prototype (for reference only):
stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, flags[, R1[, R2[, P1[, P2[, Q[, newImageSize[, balance[, fov_scale]]]]]]]]) -> R1, R2, P1, P2, Q

 Link to this function

 stereoRectify(k1, d1, k2, d2, imageSize, r, tvec, flags, opts)

 View Source

 @spec stereoRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [newImageSize: term(), balance: term(), fov_scale: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t()}
 | {:error, String.t()}

Stereo rectification for fisheye camera model
Positional Arguments
	k1: Evision.Mat.t().
First camera intrinsic matrix.

	d1: Evision.Mat.t().
First camera distortion parameters.

	k2: Evision.Mat.t().
Second camera intrinsic matrix.

	d2: Evision.Mat.t().
Second camera distortion parameters.

	imageSize: Size.
Size of the image used for stereo calibration.

	r: Evision.Mat.t().
Rotation matrix between the coordinate systems of the first and the second
cameras.

	tvec: Evision.Mat.t().
Translation vector between coordinate systems of the cameras.

	flags: int.
Operation flags that may be zero or @ref fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.

Keyword Arguments
	newImageSize: Size.
New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.

	balance: double.
Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].

	fov_scale: double.
Divisor for new focal length.

Return
	r1: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the first camera.

	r2: Evision.Mat.t().
Output 3x3 rectification transform (rotation matrix) for the second camera.

	p1: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.

	p2: Evision.Mat.t().
Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.

	q: Evision.Mat.t().
Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see #reprojectImageTo3D).

Python prototype (for reference only):
stereoRectify(K1, D1, K2, D2, imageSize, R, tvec, flags[, R1[, R2[, P1[, P2[, Q[, newImageSize[, balance[, fov_scale]]]]]]]]) -> R1, R2, P1, P2, Q

 Link to this function

 undistortImage(distorted, k, d)

 View Source

 @spec undistortImage(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Transforms an image to compensate for fisheye lens distortion.
Positional Arguments
	distorted: Evision.Mat.t().
image with fisheye lens distortion.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	knew: Evision.Mat.t().
Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
may additionally scale and shift the result by using a different matrix.

	new_size: Size.
the new size

Return
	undistorted: Evision.Mat.t().
Output image with compensated fisheye lens distortion.

The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
See below the results of undistortImage.
	a) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
k_4, k_5, k_6) of distortion were optimized under calibration)

	b) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
k_3, k_4) of fisheye distortion were optimized under calibration)

	c) original image was captured with fisheye lens

Pictures a) and b) almost the same. But if we consider points of image located far from the center
of image, we can notice that on image a) these points are distorted.
[image: image]
Python prototype (for reference only):
undistortImage(distorted, K, D[, undistorted[, Knew[, new_size]]]) -> undistorted

 Link to this function

 undistortImage(distorted, k, d, opts)

 View Source

 @spec undistortImage(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [new_size: term(), knew: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Transforms an image to compensate for fisheye lens distortion.
Positional Arguments
	distorted: Evision.Mat.t().
image with fisheye lens distortion.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	knew: Evision.Mat.t().
Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
may additionally scale and shift the result by using a different matrix.

	new_size: Size.
the new size

Return
	undistorted: Evision.Mat.t().
Output image with compensated fisheye lens distortion.

The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
See below the results of undistortImage.
	a) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
k_4, k_5, k_6) of distortion were optimized under calibration)

	b) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
k_3, k_4) of fisheye distortion were optimized under calibration)

	c) original image was captured with fisheye lens

Pictures a) and b) almost the same. But if we consider points of image located far from the center
of image, we can notice that on image a) these points are distorted.
[image: image]
Python prototype (for reference only):
undistortImage(distorted, K, D[, undistorted[, Knew[, new_size]]]) -> undistorted

 Link to this function

 undistortPoints(distorted, k, d)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Undistorts 2D points using fisheye model
Positional Arguments
	distorted: Evision.Mat.t().
Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f>), where N is the
number of points in the view.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

	criteria: TermCriteria.
Termination criteria

Return
	undistorted: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f> .

Python prototype (for reference only):
undistortPoints(distorted, K, D[, undistorted[, R[, P[, criteria]]]]) -> undistorted

 Link to this function

 undistortPoints(distorted, k, d, opts)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [r: term(), criteria: term(), p: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Undistorts 2D points using fisheye model
Positional Arguments
	distorted: Evision.Mat.t().
Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f>), where N is the
number of points in the view.

	k: Evision.Mat.t().
Camera intrinsic matrix \f$cameramatrix{K}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$\distcoeffsfisheye\f$.

Keyword Arguments
	r: Evision.Mat.t().
Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

	p: Evision.Mat.t().
New camera intrinsic matrix (3x3) or new projection matrix (3x4)

	criteria: TermCriteria.
Termination criteria

Return
	undistorted: Evision.Mat.t().
Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f> .

Python prototype (for reference only):
undistortPoints(distorted, K, D[, undistorted[, R[, P[, criteria]]]]) -> undistorted

 Evision.Flann - Evision v0.1.39

Evision.Flann

 Summary

 Types

 t()

 Type that represents an Flann struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Flann{ref: reference()}

Type that represents an Flann struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Flann.Index - Evision v0.1.39

Evision.Flann.Index

 Summary

 Types

 t()

 Type that represents an Flann.Index struct.

 Functions

 build(self, features, params)

 build

 build(self, features, params, opts)

 build

 getAlgorithm(self)

 getAlgorithm

 getDistance(self)

 getDistance

 index()

 Index

 index(features, params)

 Index

 index(features, params, opts)

 Index

 knnSearch(self, query, knn)

 knnSearch

 knnSearch(self, query, knn, opts)

 knnSearch

 load(self, features, filename)

 load

 radiusSearch(self, query, radius, maxResults)

 radiusSearch

 radiusSearch(self, query, radius, maxResults, opts)

 radiusSearch

 release(self)

 release

 save(self, filename)

 save

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Flann.Index{ref: reference()}

Type that represents an Flann.Index struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 build(self, features, params)

 View Source

 @spec build(t(), Evision.Mat.maybe_mat_in(), map()) :: t() | {:error, String.t()}

build
Positional Arguments
	self: Evision.Flann.Index.t()
	features: Evision.Mat.t()
	params: IndexParams

Keyword Arguments
	distType: cvflann_flann_distance_t.

Python prototype (for reference only):
build(features, params[, distType]) -> None

 Link to this function

 build(self, features, params, opts)

 View Source

 @spec build(t(), Evision.Mat.maybe_mat_in(), map(), [{:distType, term()}] | nil) ::
 t() | {:error, String.t()}

build
Positional Arguments
	self: Evision.Flann.Index.t()
	features: Evision.Mat.t()
	params: IndexParams

Keyword Arguments
	distType: cvflann_flann_distance_t.

Python prototype (for reference only):
build(features, params[, distType]) -> None

 Link to this function

 getAlgorithm(self)

 View Source

 @spec getAlgorithm(t()) :: integer() | {:error, String.t()}

getAlgorithm
Positional Arguments
	self: Evision.Flann.Index.t()

Return
	retval: cvflann::flann_algorithm_t

Python prototype (for reference only):
getAlgorithm() -> retval

 Link to this function

 getDistance(self)

 View Source

 @spec getDistance(t()) :: integer() | {:error, String.t()}

getDistance
Positional Arguments
	self: Evision.Flann.Index.t()

Return
	retval: cvflann::flann_distance_t

Python prototype (for reference only):
getDistance() -> retval

 Link to this function

 index()

 View Source

 @spec index() :: t() | {:error, String.t()}

Index
Return
	self: Evision.Flann.Index.t()

Python prototype (for reference only):
Index() -> <flann_Index object>

 Link to this function

 index(features, params)

 View Source

 @spec index(Evision.Mat.maybe_mat_in(), map()) :: t() | {:error, String.t()}

Index
Positional Arguments
	features: Evision.Mat.t()
	params: IndexParams

Keyword Arguments
	distType: cvflann_flann_distance_t.

Return
	self: Evision.Flann.Index.t()

Python prototype (for reference only):
Index(features, params[, distType]) -> <flann_Index object>

 Link to this function

 index(features, params, opts)

 View Source

 @spec index(Evision.Mat.maybe_mat_in(), map(), [{:distType, term()}] | nil) ::
 t() | {:error, String.t()}

Index
Positional Arguments
	features: Evision.Mat.t()
	params: IndexParams

Keyword Arguments
	distType: cvflann_flann_distance_t.

Return
	self: Evision.Flann.Index.t()

Python prototype (for reference only):
Index(features, params[, distType]) -> <flann_Index object>

 Link to this function

 knnSearch(self, query, knn)

 View Source

 @spec knnSearch(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

knnSearch
Positional Arguments
	self: Evision.Flann.Index.t()
	query: Evision.Mat.t()
	knn: int

Keyword Arguments
	params: SearchParams.

Return
	indices: Evision.Mat.t().
	dists: Evision.Mat.t().

Python prototype (for reference only):
knnSearch(query, knn[, indices[, dists[, params]]]) -> indices, dists

 Link to this function

 knnSearch(self, query, knn, opts)

 View Source

 @spec knnSearch(t(), Evision.Mat.maybe_mat_in(), integer(), [{:params, term()}] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

knnSearch
Positional Arguments
	self: Evision.Flann.Index.t()
	query: Evision.Mat.t()
	knn: int

Keyword Arguments
	params: SearchParams.

Return
	indices: Evision.Mat.t().
	dists: Evision.Mat.t().

Python prototype (for reference only):
knnSearch(query, knn[, indices[, dists[, params]]]) -> indices, dists

 Link to this function

 load(self, features, filename)

 View Source

 @spec load(t(), Evision.Mat.maybe_mat_in(), binary()) ::
 boolean() | {:error, String.t()}

load
Positional Arguments
	self: Evision.Flann.Index.t()
	features: Evision.Mat.t()
	filename: String

Return
	retval: bool

Python prototype (for reference only):
load(features, filename) -> retval

 Link to this function

 radiusSearch(self, query, radius, maxResults)

 View Source

 @spec radiusSearch(t(), Evision.Mat.maybe_mat_in(), number(), integer()) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

radiusSearch
Positional Arguments
	self: Evision.Flann.Index.t()
	query: Evision.Mat.t()
	radius: double
	maxResults: int

Keyword Arguments
	params: SearchParams.

Return
	retval: int
	indices: Evision.Mat.t().
	dists: Evision.Mat.t().

Python prototype (for reference only):
radiusSearch(query, radius, maxResults[, indices[, dists[, params]]]) -> retval, indices, dists

 Link to this function

 radiusSearch(self, query, radius, maxResults, opts)

 View Source

 @spec radiusSearch(
 t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 integer(),
 [{:params, term()}] | nil
) ::
 {integer(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

radiusSearch
Positional Arguments
	self: Evision.Flann.Index.t()
	query: Evision.Mat.t()
	radius: double
	maxResults: int

Keyword Arguments
	params: SearchParams.

Return
	retval: int
	indices: Evision.Mat.t().
	dists: Evision.Mat.t().

Python prototype (for reference only):
radiusSearch(query, radius, maxResults[, indices[, dists[, params]]]) -> retval, indices, dists

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

release
Positional Arguments
	self: Evision.Flann.Index.t()

Python prototype (for reference only):
release() -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(t(), binary()) :: t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Flann.Index.t()
	filename: String

Python prototype (for reference only):
save(filename) -> None

 Evision.FlannBasedMatcher - Evision v0.1.39

Evision.FlannBasedMatcher

 Summary

 Types

 t()

 Type that represents an FlannBasedMatcher struct.

 Functions

 add(self, descriptors)

 Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.

 clear(self)

 Clears the train descriptor collections.

 clone(self)

 Clones the matcher.

 clone(self, opts)

 Clones the matcher.

 create()

 create

 empty(self)

 Returns true if there are no train descriptors in the both collections.

 flannBasedMatcher()

 FlannBasedMatcher

 flannBasedMatcher(opts)

 FlannBasedMatcher

 getDefaultName(self)

 getDefaultName

 getTrainDescriptors(self)

 Returns a constant link to the train descriptor collection trainDescCollection .

 isMaskSupported(self)

 Returns true if the descriptor matcher supports masking permissible matches.

 knnMatch(self, queryDescriptors, k)

 knnMatch

 knnMatch(self, queryDescriptors, k, opts)

 Variant 1:
Finds the k best matches for each descriptor from a query set.

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 Finds the k best matches for each descriptor from a query set.

 match(self, queryDescriptors)

 match

 match(self, queryDescriptors, opts)

 Variant 1:
Finds the best match for each descriptor from a query set.

 match(self, queryDescriptors, trainDescriptors, opts)

 Finds the best match for each descriptor from a query set.

 radiusMatch(self, queryDescriptors, maxDistance)

 radiusMatch

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 For each query descriptor, finds the training descriptors not farther than the specified distance.

 read(self, arg1)

 Variant 1:
read

 save(self, filename)

 save

 train(self)

 Trains a descriptor matcher

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.FlannBasedMatcher{ref: reference()}

Type that represents an FlannBasedMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, descriptors)

 View Source

 @spec add(Evision.DescriptorMatcher.t(), [Evision.Mat.maybe_mat_in()]) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
collection.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	descriptors: [Evision.Mat].
Descriptors to add. Each descriptors[i] is a set of descriptors from the same
train image.

If the collection is not empty, the new descriptors are added to existing train descriptors.
Python prototype (for reference only):
add(descriptors) -> None

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clears the train descriptor collections.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clone(self)

 View Source

 @spec clone(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 clone(self, opts)

 View Source

 @spec clone(Evision.DescriptorMatcher.t(), [{:emptyTrainData, term()}] | nil) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Clones the matcher.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Keyword Arguments
	emptyTrainData: bool.
If emptyTrainData is false, the method creates a deep copy of the object,
that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
object copy with the current parameters but with empty train data.

Return
	retval: Evision.DescriptorMatcher.t()

Python prototype (for reference only):
clone([, emptyTrainData]) -> retval

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.FlannBasedMatcher.t()

Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.DescriptorMatcher.t()) :: boolean() | {:error, String.t()}

Returns true if there are no train descriptors in the both collections.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 flannBasedMatcher()

 View Source

 @spec flannBasedMatcher() :: t() | {:error, String.t()}

FlannBasedMatcher
Keyword Arguments
	indexParams: flann::IndexParams.
	searchParams: flann::SearchParams.

Return
	self: Evision.FlannBasedMatcher.t()

Python prototype (for reference only):
FlannBasedMatcher([, indexParams[, searchParams]]) -> <FlannBasedMatcher object>

 Link to this function

 flannBasedMatcher(opts)

 View Source

 @spec flannBasedMatcher([indexParams: term(), searchParams: term()] | nil) ::
 t() | {:error, String.t()}

FlannBasedMatcher
Keyword Arguments
	indexParams: flann::IndexParams.
	searchParams: flann::SearchParams.

Return
	self: Evision.FlannBasedMatcher.t()

Python prototype (for reference only):
FlannBasedMatcher([, indexParams[, searchParams]]) -> <FlannBasedMatcher object>

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTrainDescriptors(self)

 View Source

 @spec getTrainDescriptors(Evision.DescriptorMatcher.t()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Returns a constant link to the train descriptor collection trainDescCollection .
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Return
	retval: [Evision.Mat]

Python prototype (for reference only):
getTrainDescriptors() -> retval

 Link to this function

 isMaskSupported(self)

 View Source

 @spec isMaskSupported(Evision.DescriptorMatcher.t()) ::
 boolean() | {:error, String.t()}

Returns true if the descriptor matcher supports masking permissible matches.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
isMaskSupported() -> retval

 Link to this function

 knnMatch(self, queryDescriptors, k)

 View Source

 @spec knnMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

knnMatch
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches
Variant 2:
knnMatch
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

Has overloading in C++
Python prototype (for reference only):
knnMatch(queryDescriptors, k[, masks[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Finds the k best matches for each descriptor from a query set.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	k: int.
Count of best matches found per each query descriptor or less if a query descriptor has
less than k possible matches in total.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Matches. Each matches[i] is k or less matches for the same query descriptor.

These extended variants of DescriptorMatcher::match methods find several best matches for each query
descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
for the details about query and train descriptors.
Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 match(self, queryDescriptors)

 View Source

 @spec match(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

match
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 [{:masks, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

Variant 1:
Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches
Variant 2:
match
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

Has overloading in C++
Python prototype (for reference only):
match(queryDescriptors[, masks]) -> matches

 Link to this function

 match(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec match(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) :: [Evision.DMatch.t()] | {:error, String.t()}

Finds the best match for each descriptor from a query set.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

Return
	matches: [Evision.DMatch].
Matches. If a query descriptor is masked out in mask , no match is added for this
descriptor. So, matches size may be smaller than the query descriptors count.

In the first variant of this method, the train descriptors are passed as an input argument. In the
second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
mask.at\<uchar>(i,j) is non-zero.
Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance)

 View Source

 @spec radiusMatch(Evision.DescriptorMatcher.t(), Evision.Mat.maybe_mat_in(), number()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

radiusMatch
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), masks: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

Variant 1:
For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches
Variant 2:
radiusMatch
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	masks: [Evision.Mat].
Set of masks. Each masks[i] specifies permissible matches between the input query
descriptors and stored train descriptors from the i-th image trainDescCollection[i].

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

Has overloading in C++
Python prototype (for reference only):
radiusMatch(queryDescriptors, maxDistance[, masks[, compactResult]]) -> matches

 Link to this function

 radiusMatch(self, queryDescriptors, trainDescriptors, maxDistance, opts)

 View Source

 @spec radiusMatch(
 Evision.DescriptorMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

For each query descriptor, finds the training descriptors not farther than the specified distance.
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

	queryDescriptors: Evision.Mat.t().
Query set of descriptors.

	trainDescriptors: Evision.Mat.t().
Train set of descriptors. This set is not added to the train descriptors
collection stored in the class object.

	maxDistance: float.
Threshold for the distance between matched descriptors. Distance means here
metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
in Pixels)!

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying permissible matches between an input query and train matrices of
descriptors.

	compactResult: bool.
Parameter used when the mask (or masks) is not empty. If compactResult is
false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
the matches vector does not contain matches for fully masked-out query descriptors.

Return
	matches: [[Evision.DMatch]].
Found matches.

For each query descriptor, the methods find such training descriptors that the distance between the
query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
returned in the distance increasing order.
Python prototype (for reference only):
radiusMatch(queryDescriptors, trainDescriptors, maxDistance[, mask[, compactResult]]) -> matches

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.DescriptorMatcher.t(), Evision.FileNode.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

 @spec read(Evision.DescriptorMatcher.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.FlannBasedMatcher.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.FlannBasedMatcher.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.FlannBasedMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self)

 View Source

 @spec train(Evision.DescriptorMatcher.t()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

Trains a descriptor matcher
Positional Arguments
	self: Evision.FlannBasedMatcher.t()

Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
have an empty implementation of this method. Other matchers really train their inner structures (for
example, FlannBasedMatcher trains flann::Index).
Python prototype (for reference only):
train() -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.DescriptorMatcher.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.FlannBasedMatcher.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.DescriptorMatcher.t(), Evision.FileStorage.t(), binary()) ::
 Evision.DescriptorMatcher.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.FlannBasedMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Ft - Evision v0.1.39

Evision.Ft

 Summary

 Types

 t()

 Type that represents an Ft struct.

 Functions

 createKernel1(a, b, chn)

 Creates kernel from basic functions.

 createKernel1(a, b, chn, opts)

 Creates kernel from basic functions.

 createKernel(function, radius, chn)

 Creates kernel from general functions.

 createKernel(function, radius, chn, opts)

 Creates kernel from general functions.

 filter(image, kernel)

 Image filtering

 filter(image, kernel, opts)

 Image filtering

 inpaint(image, mask, radius, function, algorithm)

 Image inpainting

 inpaint(image, mask, radius, function, algorithm, opts)

 Image inpainting

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Ft{ref: reference()}

Type that represents an Ft struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 createKernel1(a, b, chn)

 View Source

 @spec createKernel1(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Creates kernel from basic functions.
Positional Arguments
	a: Evision.Mat.t().
Basic function used in axis x.

	b: Evision.Mat.t().
Basic function used in axis y.

	chn: int.
Number of kernel channels.

Return
	kernel: Evision.Mat.t().
Final 32-bit kernel derived from A and B.

The function creates kernel usable for latter fuzzy image processing.
Python prototype (for reference only):
createKernel1(A, B, chn[, kernel]) -> kernel

 Link to this function

 createKernel1(a, b, chn, opts)

 View Source

 @spec createKernel1(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Creates kernel from basic functions.
Positional Arguments
	a: Evision.Mat.t().
Basic function used in axis x.

	b: Evision.Mat.t().
Basic function used in axis y.

	chn: int.
Number of kernel channels.

Return
	kernel: Evision.Mat.t().
Final 32-bit kernel derived from A and B.

The function creates kernel usable for latter fuzzy image processing.
Python prototype (for reference only):
createKernel1(A, B, chn[, kernel]) -> kernel

 Link to this function

 createKernel(function, radius, chn)

 View Source

 @spec createKernel(integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Creates kernel from general functions.
Positional Arguments
	function: int.
Function type could be one of the following:
	LINEAR Linear basic function.

	radius: int.
Radius of the basic function.

	chn: int.
Number of kernel channels.

Return
	kernel: Evision.Mat.t().
Final 32-bit kernel.

The function creates kernel from predefined functions.
Python prototype (for reference only):
createKernel(function, radius, chn[, kernel]) -> kernel

 Link to this function

 createKernel(function, radius, chn, opts)

 View Source

 @spec createKernel(integer(), integer(), integer(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Creates kernel from general functions.
Positional Arguments
	function: int.
Function type could be one of the following:
	LINEAR Linear basic function.

	radius: int.
Radius of the basic function.

	chn: int.
Number of kernel channels.

Return
	kernel: Evision.Mat.t().
Final 32-bit kernel.

The function creates kernel from predefined functions.
Python prototype (for reference only):
createKernel(function, radius, chn[, kernel]) -> kernel

 Link to this function

 filter(image, kernel)

 View Source

 @spec filter(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Image filtering
Positional Arguments
	image: Evision.Mat.t().
Input image.

	kernel: Evision.Mat.t().
Final 32-bit kernel.

Return
	output: Evision.Mat.t().
Output 32-bit image.

Filtering of the input image by means of F-transform.
Python prototype (for reference only):
filter(image, kernel[, output]) -> output

 Link to this function

 filter(image, kernel, opts)

 View Source

 @spec filter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Image filtering
Positional Arguments
	image: Evision.Mat.t().
Input image.

	kernel: Evision.Mat.t().
Final 32-bit kernel.

Return
	output: Evision.Mat.t().
Output 32-bit image.

Filtering of the input image by means of F-transform.
Python prototype (for reference only):
filter(image, kernel[, output]) -> output

 Link to this function

 inpaint(image, mask, radius, function, algorithm)

 View Source

 @spec inpaint(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 Evision.Mat.t() | {:error, String.t()}

Image inpainting
Positional Arguments
	image: Evision.Mat.t().
Input image.

	mask: Evision.Mat.t().
Mask used for unwanted area marking.

	radius: int.
Radius of the basic function.

	function: int.
Function type could be one of the following:
	ft::LINEAR Linear basic function.

	algorithm: int.
Algorithm could be one of the following:
	ft::ONE_STEP One step algorithm.
	ft::MULTI_STEP This algorithm automaticaly increases radius of the basic function.
	ft::ITERATIVE Iterative algorithm running in more steps using partial computations.

Return
	output: Evision.Mat.t().
Output 32-bit image.

This function provides inpainting technique based on the fuzzy mathematic.
Note:
The algorithms are described in paper @cite Perf:rec.
Python prototype (for reference only):
inpaint(image, mask, radius, function, algorithm[, output]) -> output

 Link to this function

 inpaint(image, mask, radius, function, algorithm, opts)

 View Source

 @spec inpaint(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Image inpainting
Positional Arguments
	image: Evision.Mat.t().
Input image.

	mask: Evision.Mat.t().
Mask used for unwanted area marking.

	radius: int.
Radius of the basic function.

	function: int.
Function type could be one of the following:
	ft::LINEAR Linear basic function.

	algorithm: int.
Algorithm could be one of the following:
	ft::ONE_STEP One step algorithm.
	ft::MULTI_STEP This algorithm automaticaly increases radius of the basic function.
	ft::ITERATIVE Iterative algorithm running in more steps using partial computations.

Return
	output: Evision.Mat.t().
Output 32-bit image.

This function provides inpainting technique based on the fuzzy mathematic.
Note:
The algorithms are described in paper @cite Perf:rec.
Python prototype (for reference only):
inpaint(image, mask, radius, function, algorithm[, output]) -> output

 Evision.GFTTDetector - Evision v0.1.39

Evision.GFTTDetector

 Summary

 Types

 t()

 Type that represents an GFTTDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize)

 create

 create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getBlockSize(self)

 getBlockSize

 getDefaultName(self)

 getDefaultName

 getGradientSize(self)

 getGradientSize

 getHarrisDetector(self)

 getHarrisDetector

 getK(self)

 getK

 getMaxFeatures(self)

 getMaxFeatures

 getMinDistance(self)

 getMinDistance

 getQualityLevel(self)

 getQualityLevel

 read(self, arg1)

 Variant 1:
read

 setBlockSize(self, blockSize)

 setBlockSize

 setGradientSize(self, gradientSize_)

 setGradientSize

 setHarrisDetector(self, val)

 setHarrisDetector

 setK(self, k)

 setK

 setMaxFeatures(self, maxFeatures)

 setMaxFeatures

 setMinDistance(self, minDistance)

 setMinDistance

 setQualityLevel(self, qlevel)

 setQualityLevel

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.GFTTDetector{ref: reference()}

Type that represents an GFTTDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.GFTTDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.GFTTDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.GFTTDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.GFTTDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	maxCorners: int.
	qualityLevel: double.
	minDistance: double.
	blockSize: int.
	useHarrisDetector: bool.
	k: double.

Return
	retval: Evision.GFTTDetector.t()

Python prototype (for reference only):
create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 maxCorners: term(),
 k: term(),
 useHarrisDetector: term(),
 blockSize: term(),
 minDistance: term(),
 qualityLevel: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	maxCorners: int.
	qualityLevel: double.
	minDistance: double.
	blockSize: int.
	useHarrisDetector: bool.
	k: double.

Return
	retval: Evision.GFTTDetector.t()

Python prototype (for reference only):
create([, maxCorners[, qualityLevel[, minDistance[, blockSize[, useHarrisDetector[, k]]]]]]) -> retval

 Link to this function

 create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize)

 View Source

 @spec create(integer(), number(), number(), integer(), integer()) ::
 t() | {:error, String.t()}

create
Positional Arguments
	maxCorners: int
	qualityLevel: double
	minDistance: double
	blockSize: int
	gradiantSize: int

Keyword Arguments
	useHarrisDetector: bool.
	k: double.

Return
	retval: Evision.GFTTDetector.t()

Python prototype (for reference only):
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval

 Link to this function

 create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize, opts)

 View Source

 @spec create(
 integer(),
 number(),
 number(),
 integer(),
 integer(),
 [k: term(), useHarrisDetector: term()] | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	maxCorners: int
	qualityLevel: double
	minDistance: double
	blockSize: int
	gradiantSize: int

Keyword Arguments
	useHarrisDetector: bool.
	k: double.

Return
	retval: Evision.GFTTDetector.t()

Python prototype (for reference only):
create(maxCorners, qualityLevel, minDistance, blockSize, gradiantSize[, useHarrisDetector[, k]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.GFTTDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.GFTTDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.GFTTDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.GFTTDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.GFTTDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.GFTTDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getGradientSize(self)

 View Source

 @spec getGradientSize(t()) :: integer() | {:error, String.t()}

getGradientSize
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
getGradientSize() -> retval

 Link to this function

 getHarrisDetector(self)

 View Source

 @spec getHarrisDetector(t()) :: boolean() | {:error, String.t()}

getHarrisDetector
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getHarrisDetector() -> retval

 Link to this function

 getK(self)

 View Source

 @spec getK(t()) :: number() | {:error, String.t()}

getK
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: double

Python prototype (for reference only):
getK() -> retval

 Link to this function

 getMaxFeatures(self)

 View Source

 @spec getMaxFeatures(t()) :: integer() | {:error, String.t()}

getMaxFeatures
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxFeatures() -> retval

 Link to this function

 getMinDistance(self)

 View Source

 @spec getMinDistance(t()) :: number() | {:error, String.t()}

getMinDistance
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: double

Python prototype (for reference only):
getMinDistance() -> retval

 Link to this function

 getQualityLevel(self)

 View Source

 @spec getQualityLevel(t()) :: number() | {:error, String.t()}

getQualityLevel
Positional Arguments
	self: Evision.GFTTDetector.t()

Return
	retval: double

Python prototype (for reference only):
getQualityLevel() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.GFTTDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.GFTTDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setBlockSize(self, blockSize)

 View Source

 @spec setBlockSize(t(), integer()) :: t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.GFTTDetector.t()
	blockSize: int

Python prototype (for reference only):
setBlockSize(blockSize) -> None

 Link to this function

 setGradientSize(self, gradientSize_)

 View Source

 @spec setGradientSize(t(), integer()) :: t() | {:error, String.t()}

setGradientSize
Positional Arguments
	self: Evision.GFTTDetector.t()
	gradientSize_: int

Python prototype (for reference only):
setGradientSize(gradientSize_) -> None

 Link to this function

 setHarrisDetector(self, val)

 View Source

 @spec setHarrisDetector(t(), boolean()) :: t() | {:error, String.t()}

setHarrisDetector
Positional Arguments
	self: Evision.GFTTDetector.t()
	val: bool

Python prototype (for reference only):
setHarrisDetector(val) -> None

 Link to this function

 setK(self, k)

 View Source

 @spec setK(t(), number()) :: t() | {:error, String.t()}

setK
Positional Arguments
	self: Evision.GFTTDetector.t()
	k: double

Python prototype (for reference only):
setK(k) -> None

 Link to this function

 setMaxFeatures(self, maxFeatures)

 View Source

 @spec setMaxFeatures(t(), integer()) :: t() | {:error, String.t()}

setMaxFeatures
Positional Arguments
	self: Evision.GFTTDetector.t()
	maxFeatures: int

Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None

 Link to this function

 setMinDistance(self, minDistance)

 View Source

 @spec setMinDistance(t(), number()) :: t() | {:error, String.t()}

setMinDistance
Positional Arguments
	self: Evision.GFTTDetector.t()
	minDistance: double

Python prototype (for reference only):
setMinDistance(minDistance) -> None

 Link to this function

 setQualityLevel(self, qlevel)

 View Source

 @spec setQualityLevel(t(), number()) :: t() | {:error, String.t()}

setQualityLevel
Positional Arguments
	self: Evision.GFTTDetector.t()
	qlevel: double

Python prototype (for reference only):
setQualityLevel(qlevel) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.GFTTDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.GFTTDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.GeneralizedHough - Evision v0.1.39

Evision.GeneralizedHough

 Summary

 Types

 t()

 Type that represents an GeneralizedHough struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, image)

 detect

 detect(self, image, opts)

 detect

 detect(self, edges, dx, dy)

 detect

 detect(self, edges, dx, dy, opts)

 detect

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getCannyHighThresh(self)

 getCannyHighThresh

 getCannyLowThresh(self)

 getCannyLowThresh

 getDefaultName(self)

 getDefaultName

 getDp(self)

 getDp

 getMaxBufferSize(self)

 getMaxBufferSize

 getMinDist(self)

 getMinDist

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCannyHighThresh(self, cannyHighThresh)

 setCannyHighThresh

 setCannyLowThresh(self, cannyLowThresh)

 setCannyLowThresh

 setDp(self, dp)

 setDp

 setMaxBufferSize(self, maxBufferSize)

 setMaxBufferSize

 setMinDist(self, minDist)

 setMinDist

 setTemplate(self, templ)

 setTemplate

 setTemplate(self, templ, opts)

 setTemplate

 setTemplate(self, edges, dx, dy)

 setTemplate

 setTemplate(self, edges, dx, dy, opts)

 setTemplate

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.GeneralizedHough{ref: reference()}

Type that represents an GeneralizedHough struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.GeneralizedHough.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

detect
Positional Arguments
	self: Evision.GeneralizedHough.t()
	image: Evision.Mat.t()

Return
	positions: Evision.Mat.t().
	votes: Evision.Mat.t().

Python prototype (for reference only):
detect(image[, positions[, votes]]) -> positions, votes

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

detect
Positional Arguments
	self: Evision.GeneralizedHough.t()
	image: Evision.Mat.t()

Return
	positions: Evision.Mat.t().
	votes: Evision.Mat.t().

Python prototype (for reference only):
detect(image[, positions[, votes]]) -> positions, votes

 Link to this function

 detect(self, edges, dx, dy)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

detect
Positional Arguments
	self: Evision.GeneralizedHough.t()
	edges: Evision.Mat.t()
	dx: Evision.Mat.t()
	dy: Evision.Mat.t()

Return
	positions: Evision.Mat.t().
	votes: Evision.Mat.t().

Python prototype (for reference only):
detect(edges, dx, dy[, positions[, votes]]) -> positions, votes

 Link to this function

 detect(self, edges, dx, dy, opts)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

detect
Positional Arguments
	self: Evision.GeneralizedHough.t()
	edges: Evision.Mat.t()
	dx: Evision.Mat.t()
	dy: Evision.Mat.t()

Return
	positions: Evision.Mat.t().
	votes: Evision.Mat.t().

Python prototype (for reference only):
detect(edges, dx, dy[, positions[, votes]]) -> positions, votes

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCannyHighThresh(self)

 View Source

 @spec getCannyHighThresh(t()) :: integer() | {:error, String.t()}

getCannyHighThresh
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: int

Python prototype (for reference only):
getCannyHighThresh() -> retval

 Link to this function

 getCannyLowThresh(self)

 View Source

 @spec getCannyLowThresh(t()) :: integer() | {:error, String.t()}

getCannyLowThresh
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: int

Python prototype (for reference only):
getCannyLowThresh() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDp(self)

 View Source

 @spec getDp(t()) :: number() | {:error, String.t()}

getDp
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: double

Python prototype (for reference only):
getDp() -> retval

 Link to this function

 getMaxBufferSize(self)

 View Source

 @spec getMaxBufferSize(t()) :: integer() | {:error, String.t()}

getMaxBufferSize
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: int

Python prototype (for reference only):
getMaxBufferSize() -> retval

 Link to this function

 getMinDist(self)

 View Source

 @spec getMinDist(t()) :: number() | {:error, String.t()}

getMinDist
Positional Arguments
	self: Evision.GeneralizedHough.t()

Return
	retval: double

Python prototype (for reference only):
getMinDist() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.GeneralizedHough.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.GeneralizedHough.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCannyHighThresh(self, cannyHighThresh)

 View Source

 @spec setCannyHighThresh(t(), integer()) :: t() | {:error, String.t()}

setCannyHighThresh
Positional Arguments
	self: Evision.GeneralizedHough.t()
	cannyHighThresh: int

Python prototype (for reference only):
setCannyHighThresh(cannyHighThresh) -> None

 Link to this function

 setCannyLowThresh(self, cannyLowThresh)

 View Source

 @spec setCannyLowThresh(t(), integer()) :: t() | {:error, String.t()}

setCannyLowThresh
Positional Arguments
	self: Evision.GeneralizedHough.t()
	cannyLowThresh: int

Python prototype (for reference only):
setCannyLowThresh(cannyLowThresh) -> None

 Link to this function

 setDp(self, dp)

 View Source

 @spec setDp(t(), number()) :: t() | {:error, String.t()}

setDp
Positional Arguments
	self: Evision.GeneralizedHough.t()
	dp: double

Python prototype (for reference only):
setDp(dp) -> None

 Link to this function

 setMaxBufferSize(self, maxBufferSize)

 View Source

 @spec setMaxBufferSize(t(), integer()) :: t() | {:error, String.t()}

setMaxBufferSize
Positional Arguments
	self: Evision.GeneralizedHough.t()
	maxBufferSize: int

Python prototype (for reference only):
setMaxBufferSize(maxBufferSize) -> None

 Link to this function

 setMinDist(self, minDist)

 View Source

 @spec setMinDist(t(), number()) :: t() | {:error, String.t()}

setMinDist
Positional Arguments
	self: Evision.GeneralizedHough.t()
	minDist: double

Python prototype (for reference only):
setMinDist(minDist) -> None

 Link to this function

 setTemplate(self, templ)

 View Source

 @spec setTemplate(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setTemplate
Positional Arguments
	self: Evision.GeneralizedHough.t()
	templ: Evision.Mat.t()

Keyword Arguments
	templCenter: Point.

Python prototype (for reference only):
setTemplate(templ[, templCenter]) -> None

 Link to this function

 setTemplate(self, templ, opts)

 View Source

 @spec setTemplate(t(), Evision.Mat.maybe_mat_in(), [{:templCenter, term()}] | nil) ::
 t() | {:error, String.t()}

setTemplate
Positional Arguments
	self: Evision.GeneralizedHough.t()
	templ: Evision.Mat.t()

Keyword Arguments
	templCenter: Point.

Python prototype (for reference only):
setTemplate(templ[, templCenter]) -> None

 Link to this function

 setTemplate(self, edges, dx, dy)

 View Source

 @spec setTemplate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

setTemplate
Positional Arguments
	self: Evision.GeneralizedHough.t()
	edges: Evision.Mat.t()
	dx: Evision.Mat.t()
	dy: Evision.Mat.t()

Keyword Arguments
	templCenter: Point.

Python prototype (for reference only):
setTemplate(edges, dx, dy[, templCenter]) -> None

 Link to this function

 setTemplate(self, edges, dx, dy, opts)

 View Source

 @spec setTemplate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:templCenter, term()}] | nil
) :: t() | {:error, String.t()}

setTemplate
Positional Arguments
	self: Evision.GeneralizedHough.t()
	edges: Evision.Mat.t()
	dx: Evision.Mat.t()
	dy: Evision.Mat.t()

Keyword Arguments
	templCenter: Point.

Python prototype (for reference only):
setTemplate(edges, dx, dy[, templCenter]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.GeneralizedHough.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.GeneralizedHough.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.GeneralizedHoughBallard - Evision v0.1.39

Evision.GeneralizedHoughBallard

 Summary

 Types

 t()

 Type that represents an GeneralizedHoughBallard struct.

 Functions

 getLevels(self)

 getLevels

 getVotesThreshold(self)

 getVotesThreshold

 setLevels(self, levels)

 setLevels

 setVotesThreshold(self, votesThreshold)

 setVotesThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.GeneralizedHoughBallard{ref: reference()}

Type that represents an GeneralizedHoughBallard struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getLevels(self)

 View Source

 @spec getLevels(t()) :: integer() | {:error, String.t()}

getLevels
Positional Arguments
	self: Evision.GeneralizedHoughBallard.t()

Return
	retval: int

Python prototype (for reference only):
getLevels() -> retval

 Link to this function

 getVotesThreshold(self)

 View Source

 @spec getVotesThreshold(t()) :: integer() | {:error, String.t()}

getVotesThreshold
Positional Arguments
	self: Evision.GeneralizedHoughBallard.t()

Return
	retval: int

Python prototype (for reference only):
getVotesThreshold() -> retval

 Link to this function

 setLevels(self, levels)

 View Source

 @spec setLevels(t(), integer()) :: t() | {:error, String.t()}

setLevels
Positional Arguments
	self: Evision.GeneralizedHoughBallard.t()
	levels: int

Python prototype (for reference only):
setLevels(levels) -> None

 Link to this function

 setVotesThreshold(self, votesThreshold)

 View Source

 @spec setVotesThreshold(t(), integer()) :: t() | {:error, String.t()}

setVotesThreshold
Positional Arguments
	self: Evision.GeneralizedHoughBallard.t()
	votesThreshold: int

Python prototype (for reference only):
setVotesThreshold(votesThreshold) -> None

 Evision.GeneralizedHoughGuil - Evision v0.1.39

Evision.GeneralizedHoughGuil

 Summary

 Types

 t()

 Type that represents an GeneralizedHoughGuil struct.

 Functions

 getAngleEpsilon(self)

 getAngleEpsilon

 getAngleStep(self)

 getAngleStep

 getAngleThresh(self)

 getAngleThresh

 getLevels(self)

 getLevels

 getMaxAngle(self)

 getMaxAngle

 getMaxScale(self)

 getMaxScale

 getMinAngle(self)

 getMinAngle

 getMinScale(self)

 getMinScale

 getPosThresh(self)

 getPosThresh

 getScaleStep(self)

 getScaleStep

 getScaleThresh(self)

 getScaleThresh

 getXi(self)

 getXi

 setAngleEpsilon(self, angleEpsilon)

 setAngleEpsilon

 setAngleStep(self, angleStep)

 setAngleStep

 setAngleThresh(self, angleThresh)

 setAngleThresh

 setLevels(self, levels)

 setLevels

 setMaxAngle(self, maxAngle)

 setMaxAngle

 setMaxScale(self, maxScale)

 setMaxScale

 setMinAngle(self, minAngle)

 setMinAngle

 setMinScale(self, minScale)

 setMinScale

 setPosThresh(self, posThresh)

 setPosThresh

 setScaleStep(self, scaleStep)

 setScaleStep

 setScaleThresh(self, scaleThresh)

 setScaleThresh

 setXi(self, xi)

 setXi

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.GeneralizedHoughGuil{ref: reference()}

Type that represents an GeneralizedHoughGuil struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getAngleEpsilon(self)

 View Source

 @spec getAngleEpsilon(t()) :: number() | {:error, String.t()}

getAngleEpsilon
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getAngleEpsilon() -> retval

 Link to this function

 getAngleStep(self)

 View Source

 @spec getAngleStep(t()) :: number() | {:error, String.t()}

getAngleStep
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getAngleStep() -> retval

 Link to this function

 getAngleThresh(self)

 View Source

 @spec getAngleThresh(t()) :: integer() | {:error, String.t()}

getAngleThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: int

Python prototype (for reference only):
getAngleThresh() -> retval

 Link to this function

 getLevels(self)

 View Source

 @spec getLevels(t()) :: integer() | {:error, String.t()}

getLevels
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: int

Python prototype (for reference only):
getLevels() -> retval

 Link to this function

 getMaxAngle(self)

 View Source

 @spec getMaxAngle(t()) :: number() | {:error, String.t()}

getMaxAngle
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getMaxAngle() -> retval

 Link to this function

 getMaxScale(self)

 View Source

 @spec getMaxScale(t()) :: number() | {:error, String.t()}

getMaxScale
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getMaxScale() -> retval

 Link to this function

 getMinAngle(self)

 View Source

 @spec getMinAngle(t()) :: number() | {:error, String.t()}

getMinAngle
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getMinAngle() -> retval

 Link to this function

 getMinScale(self)

 View Source

 @spec getMinScale(t()) :: number() | {:error, String.t()}

getMinScale
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getMinScale() -> retval

 Link to this function

 getPosThresh(self)

 View Source

 @spec getPosThresh(t()) :: integer() | {:error, String.t()}

getPosThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: int

Python prototype (for reference only):
getPosThresh() -> retval

 Link to this function

 getScaleStep(self)

 View Source

 @spec getScaleStep(t()) :: number() | {:error, String.t()}

getScaleStep
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getScaleStep() -> retval

 Link to this function

 getScaleThresh(self)

 View Source

 @spec getScaleThresh(t()) :: integer() | {:error, String.t()}

getScaleThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: int

Python prototype (for reference only):
getScaleThresh() -> retval

 Link to this function

 getXi(self)

 View Source

 @spec getXi(t()) :: number() | {:error, String.t()}

getXi
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()

Return
	retval: double

Python prototype (for reference only):
getXi() -> retval

 Link to this function

 setAngleEpsilon(self, angleEpsilon)

 View Source

 @spec setAngleEpsilon(t(), number()) :: t() | {:error, String.t()}

setAngleEpsilon
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	angleEpsilon: double

Python prototype (for reference only):
setAngleEpsilon(angleEpsilon) -> None

 Link to this function

 setAngleStep(self, angleStep)

 View Source

 @spec setAngleStep(t(), number()) :: t() | {:error, String.t()}

setAngleStep
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	angleStep: double

Python prototype (for reference only):
setAngleStep(angleStep) -> None

 Link to this function

 setAngleThresh(self, angleThresh)

 View Source

 @spec setAngleThresh(t(), integer()) :: t() | {:error, String.t()}

setAngleThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	angleThresh: int

Python prototype (for reference only):
setAngleThresh(angleThresh) -> None

 Link to this function

 setLevels(self, levels)

 View Source

 @spec setLevels(t(), integer()) :: t() | {:error, String.t()}

setLevels
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	levels: int

Python prototype (for reference only):
setLevels(levels) -> None

 Link to this function

 setMaxAngle(self, maxAngle)

 View Source

 @spec setMaxAngle(t(), number()) :: t() | {:error, String.t()}

setMaxAngle
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	maxAngle: double

Python prototype (for reference only):
setMaxAngle(maxAngle) -> None

 Link to this function

 setMaxScale(self, maxScale)

 View Source

 @spec setMaxScale(t(), number()) :: t() | {:error, String.t()}

setMaxScale
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	maxScale: double

Python prototype (for reference only):
setMaxScale(maxScale) -> None

 Link to this function

 setMinAngle(self, minAngle)

 View Source

 @spec setMinAngle(t(), number()) :: t() | {:error, String.t()}

setMinAngle
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	minAngle: double

Python prototype (for reference only):
setMinAngle(minAngle) -> None

 Link to this function

 setMinScale(self, minScale)

 View Source

 @spec setMinScale(t(), number()) :: t() | {:error, String.t()}

setMinScale
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	minScale: double

Python prototype (for reference only):
setMinScale(minScale) -> None

 Link to this function

 setPosThresh(self, posThresh)

 View Source

 @spec setPosThresh(t(), integer()) :: t() | {:error, String.t()}

setPosThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	posThresh: int

Python prototype (for reference only):
setPosThresh(posThresh) -> None

 Link to this function

 setScaleStep(self, scaleStep)

 View Source

 @spec setScaleStep(t(), number()) :: t() | {:error, String.t()}

setScaleStep
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	scaleStep: double

Python prototype (for reference only):
setScaleStep(scaleStep) -> None

 Link to this function

 setScaleThresh(self, scaleThresh)

 View Source

 @spec setScaleThresh(t(), integer()) :: t() | {:error, String.t()}

setScaleThresh
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	scaleThresh: int

Python prototype (for reference only):
setScaleThresh(scaleThresh) -> None

 Link to this function

 setXi(self, xi)

 View Source

 @spec setXi(t(), number()) :: t() | {:error, String.t()}

setXi
Positional Arguments
	self: Evision.GeneralizedHoughGuil.t()
	xi: double

Python prototype (for reference only):
setXi(xi) -> None

 Evision.GraphicalCodeDetector - Evision v0.1.39

Evision.GraphicalCodeDetector

 Summary

 Types

 t()

 Type that represents an GraphicalCodeDetector struct.

 Functions

 decode(self, img, points)

 Decodes graphical code in image once it's found by the detect() method.

 decode(self, img, points, opts)

 Decodes graphical code in image once it's found by the detect() method.

 decodeMulti(self, img, points)

 Decodes graphical codes in image once it's found by the detect() method.

 decodeMulti(self, img, points, opts)

 Decodes graphical codes in image once it's found by the detect() method.

 detect(self, img)

 Detects graphical code in image and returns the quadrangle containing the code.

 detect(self, img, opts)

 Detects graphical code in image and returns the quadrangle containing the code.

 detectAndDecode(self, img)

 Both detects and decodes graphical code

 detectAndDecode(self, img, opts)

 Both detects and decodes graphical code

 detectAndDecodeMulti(self, img)

 Both detects and decodes graphical codes

 detectAndDecodeMulti(self, img, opts)

 Both detects and decodes graphical codes

 detectMulti(self, img)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 detectMulti(self, img, opts)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.GraphicalCodeDetector{ref: reference()}

Type that represents an GraphicalCodeDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 decode(self, img, points)

 View Source

 @spec decode(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decode(self, img, points, opts)

 View Source

 @spec decode(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decodeMulti(self, img, points)

 View Source

 @spec decodeMulti(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 decodeMulti(self, img, points, opts)

 View Source

 @spec decodeMulti(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 detect(self, img)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detect(self, img, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detectAndDecode(self, img)

 View Source

 @spec detectAndDecode(t(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecode(self, img, opts)

 View Source

 @spec detectAndDecode(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img)

 View Source

 @spec detectAndDecodeMulti(t(), Evision.Mat.maybe_mat_in()) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img, opts)

 View Source

 @spec detectAndDecodeMulti(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectMulti(self, img)

 View Source

 @spec detectMulti(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 detectMulti(self, img, opts)

 View Source

 @spec detectMulti(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.GraphicalCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Evision.HFS - Evision v0.1.39

Evision.HFS

 Summary

 Types

 t()

 Type that represents an HFS struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HFS{ref: reference()}

Type that represents an HFS struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.HFS.HfsSegment - Evision v0.1.39

Evision.HFS.HfsSegment

 Summary

 Types

 t()

 Type that represents an HFS.HfsSegment struct.

 Functions

 clear(self)

 Clears the algorithm state

 create(height, width)

 : create a hfs object

 create(height, width, opts)

 : create a hfs object

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getMinRegionSizeI(self)

 getMinRegionSizeI

 getMinRegionSizeII(self)

 getMinRegionSizeII

 getNumSlicIter(self)

 getNumSlicIter

 getSegEgbThresholdI(self)

 getSegEgbThresholdI

 getSegEgbThresholdII(self)

 getSegEgbThresholdII

 getSlicSpixelSize(self)

 getSlicSpixelSize

 getSpatialWeight(self)

 getSpatialWeight

 performSegmentCpu(self, src)

 do segmentation with cpu
This method is only implemented for reference.
It is highly NOT recommanded to use it.

 performSegmentCpu(self, src, opts)

 do segmentation with cpu
This method is only implemented for reference.
It is highly NOT recommanded to use it.

 performSegmentGpu(self, src)

 do segmentation gpu

 performSegmentGpu(self, src, opts)

 do segmentation gpu

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setMinRegionSizeI(self, n)

 : set and get the parameter minRegionSizeI.
This parameter is used in the second stage
mentioned above. After the EGB segmentation, regions that have fewer
pixels then this parameter will be merged into it's adjacent region.

 setMinRegionSizeII(self, n)

 : set and get the parameter minRegionSizeII.
This parameter is used in the third stage
mentioned above. It serves the same purpose as minRegionSizeI

 setNumSlicIter(self, n)

 : set and get the parameter numSlicIter.
This parameter is used in the first stage. It
describes how many iteration to perform when executing SLIC.

 setSegEgbThresholdI(self, c)

 : set and get the parameter segEgbThresholdI.
This parameter is used in the second stage mentioned above.
It is a constant used to threshold weights of the edge when merging
adjacent nodes when applying EGB algorithm. The segmentation result
tends to have more regions remained if this value is large and vice versa.

 setSegEgbThresholdII(self, c)

 : set and get the parameter segEgbThresholdII.
This parameter is used in the third stage
mentioned above. It serves the same purpose as segEgbThresholdI.
The segmentation result tends to have more regions remained if
this value is large and vice versa.

 setSlicSpixelSize(self, n)

 : set and get the parameter slicSpixelSize.
This parameter is used in the first stage mentioned
above(the SLIC stage). It describes the size of each
superpixel when initializing SLIC. Every superpixel
approximately has \f$slicSpixelSize \times slicSpixelSize\f$
pixels in the beginning.

 setSpatialWeight(self, w)

 : set and get the parameter spatialWeight.
This parameter is used in the first stage
mentioned above(the SLIC stage). It describes how important is the role
of position when calculating the distance between each pixel and it's
center. The exact formula to calculate the distance is
\f$colorDistance + spatialWeight \times spatialDistance\f$.
The segmentation result tends to have more local consistency
if this value is larger.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HFS.HfsSegment{ref: reference()}

Type that represents an HFS.HfsSegment struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(height, width)

 View Source

 @spec create(integer(), integer()) :: t() | {:error, String.t()}

: create a hfs object
Positional Arguments
	height: int.
the height of the input image

	width: int.
the width of the input image

Keyword Arguments
	segEgbThresholdI: float.
parameter segEgbThresholdI

	minRegionSizeI: int.
parameter minRegionSizeI

	segEgbThresholdII: float.
parameter segEgbThresholdII

	minRegionSizeII: int.
parameter minRegionSizeII

	spatialWeight: float.
parameter spatialWeight

	slicSpixelSize: int.
parameter slicSpixelSize

	numSlicIter: int.
parameter numSlicIter

Return
	retval: HfsSegment

Python prototype (for reference only):
create(height, width[, segEgbThresholdI[, minRegionSizeI[, segEgbThresholdII[, minRegionSizeII[, spatialWeight[, slicSpixelSize[, numSlicIter]]]]]]]) -> retval

 Link to this function

 create(height, width, opts)

 View Source

 @spec create(
 integer(),
 integer(),
 [
 spatialWeight: term(),
 minRegionSizeII: term(),
 minRegionSizeI: term(),
 slicSpixelSize: term(),
 numSlicIter: term(),
 segEgbThresholdI: term(),
 segEgbThresholdII: term()
]
 | nil
) :: t() | {:error, String.t()}

: create a hfs object
Positional Arguments
	height: int.
the height of the input image

	width: int.
the width of the input image

Keyword Arguments
	segEgbThresholdI: float.
parameter segEgbThresholdI

	minRegionSizeI: int.
parameter minRegionSizeI

	segEgbThresholdII: float.
parameter segEgbThresholdII

	minRegionSizeII: int.
parameter minRegionSizeII

	spatialWeight: float.
parameter spatialWeight

	slicSpixelSize: int.
parameter slicSpixelSize

	numSlicIter: int.
parameter numSlicIter

Return
	retval: HfsSegment

Python prototype (for reference only):
create(height, width[, segEgbThresholdI[, minRegionSizeI[, segEgbThresholdII[, minRegionSizeII[, spatialWeight[, slicSpixelSize[, numSlicIter]]]]]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMinRegionSizeI(self)

 View Source

 @spec getMinRegionSizeI(t()) :: integer() | {:error, String.t()}

getMinRegionSizeI
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: int

Python prototype (for reference only):
getMinRegionSizeI() -> retval

 Link to this function

 getMinRegionSizeII(self)

 View Source

 @spec getMinRegionSizeII(t()) :: integer() | {:error, String.t()}

getMinRegionSizeII
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: int

Python prototype (for reference only):
getMinRegionSizeII() -> retval

 Link to this function

 getNumSlicIter(self)

 View Source

 @spec getNumSlicIter(t()) :: integer() | {:error, String.t()}

getNumSlicIter
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: int

Python prototype (for reference only):
getNumSlicIter() -> retval

 Link to this function

 getSegEgbThresholdI(self)

 View Source

 @spec getSegEgbThresholdI(t()) :: number() | {:error, String.t()}

getSegEgbThresholdI
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: float

Python prototype (for reference only):
getSegEgbThresholdI() -> retval

 Link to this function

 getSegEgbThresholdII(self)

 View Source

 @spec getSegEgbThresholdII(t()) :: number() | {:error, String.t()}

getSegEgbThresholdII
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: float

Python prototype (for reference only):
getSegEgbThresholdII() -> retval

 Link to this function

 getSlicSpixelSize(self)

 View Source

 @spec getSlicSpixelSize(t()) :: integer() | {:error, String.t()}

getSlicSpixelSize
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: int

Python prototype (for reference only):
getSlicSpixelSize() -> retval

 Link to this function

 getSpatialWeight(self)

 View Source

 @spec getSpatialWeight(t()) :: number() | {:error, String.t()}

getSpatialWeight
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

Return
	retval: float

Python prototype (for reference only):
getSpatialWeight() -> retval

 Link to this function

 performSegmentCpu(self, src)

 View Source

 @spec performSegmentCpu(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

do segmentation with cpu
This method is only implemented for reference.
It is highly NOT recommanded to use it.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	src: Evision.Mat.t()

Keyword Arguments
	ifDraw: bool.

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
performSegmentCpu(src[, ifDraw]) -> retval

 Link to this function

 performSegmentCpu(self, src, opts)

 View Source

 @spec performSegmentCpu(t(), Evision.Mat.maybe_mat_in(), [{:ifDraw, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

do segmentation with cpu
This method is only implemented for reference.
It is highly NOT recommanded to use it.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	src: Evision.Mat.t()

Keyword Arguments
	ifDraw: bool.

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
performSegmentCpu(src[, ifDraw]) -> retval

 Link to this function

 performSegmentGpu(self, src)

 View Source

 @spec performSegmentGpu(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

do segmentation gpu
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

	src: Evision.Mat.t().
the input image

Keyword Arguments
	ifDraw: bool.
if draw the image in the returned Mat. if this parameter is false,
then the content of the returned Mat is a matrix of index, describing the region
each pixel belongs to. And it's data type is CV_16U. If this parameter is true,
then the returned Mat is a segmented picture, and color of each region is the
average color of all pixels in that region. And it's data type is the same as
the input image

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
performSegmentGpu(src[, ifDraw]) -> retval

 Link to this function

 performSegmentGpu(self, src, opts)

 View Source

 @spec performSegmentGpu(t(), Evision.Mat.maybe_mat_in(), [{:ifDraw, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

do segmentation gpu
Positional Arguments
	self: Evision.HFS.HfsSegment.t()

	src: Evision.Mat.t().
the input image

Keyword Arguments
	ifDraw: bool.
if draw the image in the returned Mat. if this parameter is false,
then the content of the returned Mat is a matrix of index, describing the region
each pixel belongs to. And it's data type is CV_16U. If this parameter is true,
then the returned Mat is a segmented picture, and color of each region is the
average color of all pixels in that region. And it's data type is the same as
the input image

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
performSegmentGpu(src[, ifDraw]) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setMinRegionSizeI(self, n)

 View Source

 @spec setMinRegionSizeI(t(), integer()) :: t() | {:error, String.t()}

: set and get the parameter minRegionSizeI.
This parameter is used in the second stage
mentioned above. After the EGB segmentation, regions that have fewer
pixels then this parameter will be merged into it's adjacent region.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	n: int

Python prototype (for reference only):
setMinRegionSizeI(n) -> None

 Link to this function

 setMinRegionSizeII(self, n)

 View Source

 @spec setMinRegionSizeII(t(), integer()) :: t() | {:error, String.t()}

: set and get the parameter minRegionSizeII.
This parameter is used in the third stage
mentioned above. It serves the same purpose as minRegionSizeI
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	n: int

Python prototype (for reference only):
setMinRegionSizeII(n) -> None

 Link to this function

 setNumSlicIter(self, n)

 View Source

 @spec setNumSlicIter(t(), integer()) :: t() | {:error, String.t()}

: set and get the parameter numSlicIter.
This parameter is used in the first stage. It
describes how many iteration to perform when executing SLIC.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	n: int

Python prototype (for reference only):
setNumSlicIter(n) -> None

 Link to this function

 setSegEgbThresholdI(self, c)

 View Source

 @spec setSegEgbThresholdI(t(), number()) :: t() | {:error, String.t()}

: set and get the parameter segEgbThresholdI.
This parameter is used in the second stage mentioned above.
It is a constant used to threshold weights of the edge when merging
adjacent nodes when applying EGB algorithm. The segmentation result
tends to have more regions remained if this value is large and vice versa.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	c: float

Python prototype (for reference only):
setSegEgbThresholdI(c) -> None

 Link to this function

 setSegEgbThresholdII(self, c)

 View Source

 @spec setSegEgbThresholdII(t(), number()) :: t() | {:error, String.t()}

: set and get the parameter segEgbThresholdII.
This parameter is used in the third stage
mentioned above. It serves the same purpose as segEgbThresholdI.
The segmentation result tends to have more regions remained if
this value is large and vice versa.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	c: float

Python prototype (for reference only):
setSegEgbThresholdII(c) -> None

 Link to this function

 setSlicSpixelSize(self, n)

 View Source

 @spec setSlicSpixelSize(t(), integer()) :: t() | {:error, String.t()}

: set and get the parameter slicSpixelSize.
This parameter is used in the first stage mentioned
above(the SLIC stage). It describes the size of each
superpixel when initializing SLIC. Every superpixel
approximately has \f$slicSpixelSize \times slicSpixelSize\f$
pixels in the beginning.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	n: int

Python prototype (for reference only):
setSlicSpixelSize(n) -> None

 Link to this function

 setSpatialWeight(self, w)

 View Source

 @spec setSpatialWeight(t(), number()) :: t() | {:error, String.t()}

: set and get the parameter spatialWeight.
This parameter is used in the first stage
mentioned above(the SLIC stage). It describes how important is the role
of position when calculating the distance between each pixel and it's
center. The exact formula to calculate the distance is
\f$colorDistance + spatialWeight \times spatialDistance\f$.
The segmentation result tends to have more local consistency
if this value is larger.
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	w: float

Python prototype (for reference only):
setSpatialWeight(w) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.HFS.HfsSegment.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.HOGDescriptor - Evision v0.1.39

Evision.HOGDescriptor

 Summary

 Types

 t()

 Type that represents an HOGDescriptor struct.

 Functions

 checkDetectorSize(self)

 Checks if detector size equal to descriptor size.

 compute(self, img)

 Computes HOG descriptors of given image.

 compute(self, img, opts)

 Computes HOG descriptors of given image.

 computeGradient(self, img, grad, angleOfs)

 Computes gradients and quantized gradient orientations.

 computeGradient(self, img, grad, angleOfs, opts)

 Computes gradients and quantized gradient orientations.

 detect(self, img)

 Performs object detection without a multi-scale window.

 detect(self, img, opts)

 Performs object detection without a multi-scale window.

 detectMultiScale(self, img)

 Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.

 detectMultiScale(self, img, opts)

 Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.

 get_blockSize(self)

 get_blockStride(self)

 get_cellSize(self)

 get_derivAperture(self)

 get_gammaCorrection(self)

 get_histogramNormType(self)

 get_L2HysThreshold(self)

 get_nbins(self)

 get_nlevels(self)

 get_signedGradient(self)

 get_svmDetector(self)

 get_winSigma(self)

 get_winSize(self)

 getDaimlerPeopleDetector()

 Returns coefficients of the classifier trained for people detection (for 48x96 windows).

 getDefaultPeopleDetector()

 Returns coefficients of the classifier trained for people detection (for 64x128 windows).

 getDescriptorSize(self)

 Returns the number of coefficients required for the classification.

 getWinSigma(self)

 Returns winSigma value

 hogDescriptor()

 Creates the HOG descriptor and detector with default parameters.

 hogDescriptor(filename)

 HOGDescriptor

 hogDescriptor(winSize, blockSize, blockStride, cellSize, nbins)

 HOGDescriptor

 hogDescriptor(winSize, blockSize, blockStride, cellSize, nbins, opts)

 HOGDescriptor

 load(self, filename)

 loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file

 load(self, filename, opts)

 loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file

 save(self, filename)

 saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file

 save(self, filename, opts)

 saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file

 setSVMDetector(self, svmdetector)

 Sets coefficients for the linear SVM classifier.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HOGDescriptor{ref: reference()}

Type that represents an HOGDescriptor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 checkDetectorSize(self)

 View Source

 @spec checkDetectorSize(t()) :: boolean() | {:error, String.t()}

Checks if detector size equal to descriptor size.
Positional Arguments
	self: Evision.HOGDescriptor.t()

Return
	retval: bool

Python prototype (for reference only):
checkDetectorSize() -> retval

 Link to this function

 compute(self, img)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) :: [number()] | {:error, String.t()}

Computes HOG descriptors of given image.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U containing an image where HOG features will be calculated.

Keyword Arguments
	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	locations: [Point].
Vector of Point

Return
	descriptors: [float].
Matrix of the type CV_32F

Python prototype (for reference only):
compute(img[, winStride[, padding[, locations]]]) -> descriptors

 Link to this function

 compute(self, img, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 [winStride: term(), padding: term(), locations: term()] | nil
) :: [number()] | {:error, String.t()}

Computes HOG descriptors of given image.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U containing an image where HOG features will be calculated.

Keyword Arguments
	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	locations: [Point].
Vector of Point

Return
	descriptors: [float].
Matrix of the type CV_32F

Python prototype (for reference only):
compute(img[, winStride[, padding[, locations]]]) -> descriptors

 Link to this function

 computeGradient(self, img, grad, angleOfs)

 View Source

 @spec computeGradient(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes gradients and quantized gradient orientations.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix contains the image to be computed

Keyword Arguments
	paddingTL: Size.
Padding from top-left

	paddingBR: Size.
Padding from bottom-right

Return
	grad: Evision.Mat.t().
Matrix of type CV_32FC2 contains computed gradients

	angleOfs: Evision.Mat.t().
Matrix of type CV_8UC2 contains quantized gradient orientations

Python prototype (for reference only):
computeGradient(img, grad, angleOfs[, paddingTL[, paddingBR]]) -> grad, angleOfs

 Link to this function

 computeGradient(self, img, grad, angleOfs, opts)

 View Source

 @spec computeGradient(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [paddingBR: term(), paddingTL: term()] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes gradients and quantized gradient orientations.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix contains the image to be computed

Keyword Arguments
	paddingTL: Size.
Padding from top-left

	paddingBR: Size.
Padding from bottom-right

Return
	grad: Evision.Mat.t().
Matrix of type CV_32FC2 contains computed gradients

	angleOfs: Evision.Mat.t().
Matrix of type CV_8UC2 contains quantized gradient orientations

Python prototype (for reference only):
computeGradient(img, grad, angleOfs[, paddingTL[, paddingBR]]) -> grad, angleOfs

 Link to this function

 detect(self, img)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number()}], [number()]} | {:error, String.t()}

Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.

Keyword Arguments
	hitThreshold: double.
Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.

	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	searchLocations: [Point].
Vector of Point includes set of requested locations to be evaluated.

Return
	foundLocations: [Point].
Vector of point where each point contains left-top corner point of detected object boundaries.

	weights: [double].
Vector that will contain confidence values for each detected object.

Python prototype (for reference only):
detect(img[, hitThreshold[, winStride[, padding[, searchLocations]]]]) -> foundLocations, weights

 Link to this function

 detect(self, img, opts)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 [
 hitThreshold: term(),
 winStride: term(),
 padding: term(),
 searchLocations: term()
]
 | nil
) :: {[{number(), number()}], [number()]} | {:error, String.t()}

Performs object detection without a multi-scale window.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.

Keyword Arguments
	hitThreshold: double.
Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.

	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	searchLocations: [Point].
Vector of Point includes set of requested locations to be evaluated.

Return
	foundLocations: [Point].
Vector of point where each point contains left-top corner point of detected object boundaries.

	weights: [double].
Vector that will contain confidence values for each detected object.

Python prototype (for reference only):
detect(img[, hitThreshold[, winStride[, padding[, searchLocations]]]]) -> foundLocations, weights

 Link to this function

 detectMultiScale(self, img)

 View Source

 @spec detectMultiScale(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.

Keyword Arguments
	hitThreshold: double.
Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.

	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	scale: double.
Coefficient of the detection window increase.

	groupThreshold: double.
Coefficient to regulate the similarity threshold. When detected, some objects can be covered
by many rectangles. 0 means not to perform grouping.

	useMeanshiftGrouping: bool.
indicates grouping algorithm

Return
	foundLocations: [Rect].
Vector of rectangles where each rectangle contains the detected object.

	foundWeights: [double].
Vector that will contain confidence values for each detected object.

Python prototype (for reference only):
detectMultiScale(img[, hitThreshold[, winStride[, padding[, scale[, groupThreshold[, useMeanshiftGrouping]]]]]]) -> foundLocations, foundWeights

 Link to this function

 detectMultiScale(self, img, opts)

 View Source

 @spec detectMultiScale(
 t(),
 Evision.Mat.maybe_mat_in(),
 [
 padding: term(),
 scale: term(),
 winStride: term(),
 groupThreshold: term(),
 hitThreshold: term(),
 useMeanshiftGrouping: term()
]
 | nil
) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

Detects objects of different sizes in the input image. The detected objects are returned as a list
of rectangles.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	img: Evision.Mat.t().
Matrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.

Keyword Arguments
	hitThreshold: double.
Threshold for the distance between features and SVM classifying plane.
Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient).
But if the free coefficient is omitted (which is allowed), you can specify it manually here.

	winStride: Size.
Window stride. It must be a multiple of block stride.

	padding: Size.
Padding

	scale: double.
Coefficient of the detection window increase.

	groupThreshold: double.
Coefficient to regulate the similarity threshold. When detected, some objects can be covered
by many rectangles. 0 means not to perform grouping.

	useMeanshiftGrouping: bool.
indicates grouping algorithm

Return
	foundLocations: [Rect].
Vector of rectangles where each rectangle contains the detected object.

	foundWeights: [double].
Vector that will contain confidence values for each detected object.

Python prototype (for reference only):
detectMultiScale(img[, hitThreshold[, winStride[, padding[, scale[, groupThreshold[, useMeanshiftGrouping]]]]]]) -> foundLocations, foundWeights

 Link to this function

 get_blockSize(self)

 View Source

 @spec get_blockSize(t()) :: {number(), number()}

 Link to this function

 get_blockStride(self)

 View Source

 @spec get_blockStride(t()) :: {number(), number()}

 Link to this function

 get_cellSize(self)

 View Source

 @spec get_cellSize(t()) :: {number(), number()}

 Link to this function

 get_derivAperture(self)

 View Source

 @spec get_derivAperture(t()) :: integer()

 Link to this function

 get_gammaCorrection(self)

 View Source

 @spec get_gammaCorrection(t()) :: boolean()

 Link to this function

 get_histogramNormType(self)

 View Source

 @spec get_histogramNormType(t()) :: integer()

 Link to this function

 get_L2HysThreshold(self)

 View Source

 @spec get_L2HysThreshold(t()) :: number()

 Link to this function

 get_nbins(self)

 View Source

 @spec get_nbins(t()) :: integer()

 Link to this function

 get_nlevels(self)

 View Source

 @spec get_nlevels(t()) :: integer()

 Link to this function

 get_signedGradient(self)

 View Source

 @spec get_signedGradient(t()) :: boolean()

 Link to this function

 get_svmDetector(self)

 View Source

 @spec get_svmDetector(t()) :: [number()]

 Link to this function

 get_winSigma(self)

 View Source

 @spec get_winSigma(t()) :: number()

 Link to this function

 get_winSize(self)

 View Source

 @spec get_winSize(t()) :: {number(), number()}

 Link to this function

 getDaimlerPeopleDetector()

 View Source

 @spec getDaimlerPeopleDetector() :: [number()] | {:error, String.t()}

Returns coefficients of the classifier trained for people detection (for 48x96 windows).
Return
	retval: [float]

Python prototype (for reference only):
getDaimlerPeopleDetector() -> retval

 Link to this function

 getDefaultPeopleDetector()

 View Source

 @spec getDefaultPeopleDetector() :: [number()] | {:error, String.t()}

Returns coefficients of the classifier trained for people detection (for 64x128 windows).
Return
	retval: [float]

Python prototype (for reference only):
getDefaultPeopleDetector() -> retval

 Link to this function

 getDescriptorSize(self)

 View Source

 @spec getDescriptorSize(t()) :: integer() | {:error, String.t()}

Returns the number of coefficients required for the classification.
Positional Arguments
	self: Evision.HOGDescriptor.t()

Return
	retval: size_t

Python prototype (for reference only):
getDescriptorSize() -> retval

 Link to this function

 getWinSigma(self)

 View Source

 @spec getWinSigma(t()) :: number() | {:error, String.t()}

Returns winSigma value
Positional Arguments
	self: Evision.HOGDescriptor.t()

Return
	retval: double

Python prototype (for reference only):
getWinSigma() -> retval

 Link to this function

 hogDescriptor()

 View Source

 @spec hogDescriptor() :: t() | {:error, String.t()}

Creates the HOG descriptor and detector with default parameters.
Return
	self: Evision.HOGDescriptor.t()

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9)
Python prototype (for reference only):
HOGDescriptor() -> <HOGDescriptor object>

 Link to this function

 hogDescriptor(filename)

 View Source

 @spec hogDescriptor(binary()) :: t() | {:error, String.t()}

HOGDescriptor
Positional Arguments
	filename: String.
The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.

Return
	self: Evision.HOGDescriptor.t()

Has overloading in C++
Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
Python prototype (for reference only):
HOGDescriptor(filename) -> <HOGDescriptor object>

 Link to this function

 hogDescriptor(winSize, blockSize, blockStride, cellSize, nbins)

 View Source

 @spec hogDescriptor(
 {number(), number()},
 {number(), number()},
 {number(), number()},
 {number(), number()},
 integer()
) :: t() | {:error, String.t()}

HOGDescriptor
Positional Arguments
	winSize: Size.
sets winSize with given value.

	blockSize: Size.
sets blockSize with given value.

	blockStride: Size.
sets blockStride with given value.

	cellSize: Size.
sets cellSize with given value.

	nbins: int.
sets nbins with given value.

Keyword Arguments
	derivAperture: int.
sets derivAperture with given value.

	winSigma: double.
sets winSigma with given value.

	histogramNormType: HOGDescriptor_HistogramNormType.
sets histogramNormType with given value.

	l2HysThreshold: double.
sets L2HysThreshold with given value.

	gammaCorrection: bool.
sets gammaCorrection with given value.

	nlevels: int.
sets nlevels with given value.

	signedGradient: bool.
sets signedGradient with given value.

Return
	self: Evision.HOGDescriptor.t()

Has overloading in C++
Python prototype (for reference only):
HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins[, _derivAperture[, _winSigma[, _histogramNormType[, _L2HysThreshold[, _gammaCorrection[, _nlevels[, _signedGradient]]]]]]]) -> <HOGDescriptor object>

 Link to this function

 hogDescriptor(winSize, blockSize, blockStride, cellSize, nbins, opts)

 View Source

 @spec hogDescriptor(
 {number(), number()},
 {number(), number()},
 {number(), number()},
 {number(), number()},
 integer(),
 [
 histogramNormType: term(),
 gammaCorrection: term(),
 signedGradient: term(),
 l2HysThreshold: term(),
 nlevels: term(),
 winSigma: term(),
 derivAperture: term()
]
 | nil
) :: t() | {:error, String.t()}

HOGDescriptor
Positional Arguments
	winSize: Size.
sets winSize with given value.

	blockSize: Size.
sets blockSize with given value.

	blockStride: Size.
sets blockStride with given value.

	cellSize: Size.
sets cellSize with given value.

	nbins: int.
sets nbins with given value.

Keyword Arguments
	derivAperture: int.
sets derivAperture with given value.

	winSigma: double.
sets winSigma with given value.

	histogramNormType: HOGDescriptor_HistogramNormType.
sets histogramNormType with given value.

	l2HysThreshold: double.
sets L2HysThreshold with given value.

	gammaCorrection: bool.
sets gammaCorrection with given value.

	nlevels: int.
sets nlevels with given value.

	signedGradient: bool.
sets signedGradient with given value.

Return
	self: Evision.HOGDescriptor.t()

Has overloading in C++
Python prototype (for reference only):
HOGDescriptor(_winSize, _blockSize, _blockStride, _cellSize, _nbins[, _derivAperture[, _winSigma[, _histogramNormType[, _L2HysThreshold[, _gammaCorrection[, _nlevels[, _signedGradient]]]]]]]) -> <HOGDescriptor object>

 Link to this function

 load(self, filename)

 View Source

 @spec load(t(), binary()) :: boolean() | {:error, String.t()}

loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
Positional Arguments
	self: Evision.HOGDescriptor.t()

	filename: String.
Name of the file to read.

Keyword Arguments
	objname: String.
The optional name of the node to read (if empty, the first top-level node will be used).

Return
	retval: bool

Python prototype (for reference only):
load(filename[, objname]) -> retval

 Link to this function

 load(self, filename, opts)

 View Source

 @spec load(t(), binary(), [{:objname, term()}] | nil) ::
 boolean() | {:error, String.t()}

loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
Positional Arguments
	self: Evision.HOGDescriptor.t()

	filename: String.
Name of the file to read.

Keyword Arguments
	objname: String.
The optional name of the node to read (if empty, the first top-level node will be used).

Return
	retval: bool

Python prototype (for reference only):
load(filename[, objname]) -> retval

 Link to this function

 save(self, filename)

 View Source

 @spec save(t(), binary()) :: t() | {:error, String.t()}

saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
Positional Arguments
	self: Evision.HOGDescriptor.t()

	filename: String.
File name

Keyword Arguments
	objname: String.
Object name

Python prototype (for reference only):
save(filename[, objname]) -> None

 Link to this function

 save(self, filename, opts)

 View Source

 @spec save(t(), binary(), [{:objname, term()}] | nil) :: t() | {:error, String.t()}

saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
Positional Arguments
	self: Evision.HOGDescriptor.t()

	filename: String.
File name

Keyword Arguments
	objname: String.
Object name

Python prototype (for reference only):
save(filename[, objname]) -> None

 Link to this function

 setSVMDetector(self, svmdetector)

 View Source

 @spec setSVMDetector(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Sets coefficients for the linear SVM classifier.
Positional Arguments
	self: Evision.HOGDescriptor.t()

	svmdetector: Evision.Mat.t().
coefficients for the linear SVM classifier.

Python prototype (for reference only):
setSVMDetector(svmdetector) -> None

 Evision.HausdorffDistanceExtractor - Evision v0.1.39

Evision.HausdorffDistanceExtractor

 Summary

 Types

 t()

 Type that represents an HausdorffDistanceExtractor struct.

 Functions

 getDistanceFlag(self)

 getDistanceFlag

 getRankProportion(self)

 getRankProportion

 setDistanceFlag(self, distanceFlag)

 Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.

 setRankProportion(self, rankProportion)

 This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare
shapes.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HausdorffDistanceExtractor{ref: reference()}

Type that represents an HausdorffDistanceExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getDistanceFlag(self)

 View Source

 @spec getDistanceFlag(t()) :: integer() | {:error, String.t()}

getDistanceFlag
Positional Arguments
	self: Evision.HausdorffDistanceExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getDistanceFlag() -> retval

 Link to this function

 getRankProportion(self)

 View Source

 @spec getRankProportion(t()) :: number() | {:error, String.t()}

getRankProportion
Positional Arguments
	self: Evision.HausdorffDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getRankProportion() -> retval

 Link to this function

 setDistanceFlag(self, distanceFlag)

 View Source

 @spec setDistanceFlag(t(), integer()) :: t() | {:error, String.t()}

Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
Positional Arguments
	self: Evision.HausdorffDistanceExtractor.t()

	distanceFlag: int.
Flag indicating which norm is used to compute the Hausdorff distance
(NORM_L1, NORM_L2).

Python prototype (for reference only):
setDistanceFlag(distanceFlag) -> None

 Link to this function

 setRankProportion(self, rankProportion)

 View Source

 @spec setRankProportion(t(), number()) :: t() | {:error, String.t()}

This method sets the rank proportion (or fractional value) that establish the Kth ranked value of
the partial Hausdorff distance. Experimentally had been shown that 0.6 is a good value to compare
shapes.
Positional Arguments
	self: Evision.HausdorffDistanceExtractor.t()

	rankProportion: float.
fractional value (between 0 and 1).

Python prototype (for reference only):
setRankProportion(rankProportion) -> None

 Evision.HighGui - Evision v0.1.39

Evision.HighGui

High-level Graphical User Interface

 Summary

 Functions

 destroyAllWindows()

 Close all windows

 destroyWindow(winname)

 Close a named window

 imshow(winname, mat)

 Show a mat in a named window

 waitKey(delay)

 Wait for user keyboard event for a delay amount of time (ms)

Functions

 Link to this function

 destroyAllWindows()

 View Source

 @spec destroyAllWindows() :: :ok

Close all windows

 Link to this function

 destroyWindow(winname)

 View Source

 @spec destroyWindow(String.t()) :: :ok | {:error, String.t()}

Close a named window
Positional Arguments
	winname. String
The name of the window.

 Link to this function

 imshow(winname, mat)

 View Source

 @spec imshow(String.t(), Evision.Mat.maybe_mat_in() | Nx.Tensor.t()) ::
 :ok | {:error, String.t()}

Show a mat in a named window
Positional Arguments
	winname. String
The name of the window.

	mat. Evision.Mat
The image.

Example
iex> mat = Evision.imread!("example.jpg")
iex> Evision.imshow("OpenCV", mat)
the following line may be necessary on your system
will try to improve this later
iex> Evision.waitkey(0)

 Link to this function

 waitKey(delay)

 View Source

 @spec waitKey(integer()) :: :ok | {:error, String.t()}

Wait for user keyboard event for a delay amount of time (ms)
Positional Arguments
	delay. int
Wait for delay ms.

 Evision.HistogramCostExtractor - Evision v0.1.39

Evision.HistogramCostExtractor

 Summary

 Types

 t()

 Type that represents an HistogramCostExtractor struct.

 Functions

 buildCostMatrix(self, descriptors1, descriptors2)

 buildCostMatrix

 buildCostMatrix(self, descriptors1, descriptors2, opts)

 buildCostMatrix

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultCost(self)

 getDefaultCost

 getDefaultName(self)

 getDefaultName

 getNDummies(self)

 getNDummies

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setDefaultCost(self, defaultCost)

 setDefaultCost

 setNDummies(self, nDummies)

 setNDummies

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HistogramCostExtractor{ref: reference()}

Type that represents an HistogramCostExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 buildCostMatrix(self, descriptors1, descriptors2)

 View Source

 @spec buildCostMatrix(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

buildCostMatrix
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	descriptors1: Evision.Mat.t()
	descriptors2: Evision.Mat.t()

Return
	costMatrix: Evision.Mat.t().

Python prototype (for reference only):
buildCostMatrix(descriptors1, descriptors2[, costMatrix]) -> costMatrix

 Link to this function

 buildCostMatrix(self, descriptors1, descriptors2, opts)

 View Source

 @spec buildCostMatrix(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

buildCostMatrix
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	descriptors1: Evision.Mat.t()
	descriptors2: Evision.Mat.t()

Return
	costMatrix: Evision.Mat.t().

Python prototype (for reference only):
buildCostMatrix(descriptors1, descriptors2[, costMatrix]) -> costMatrix

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.HistogramCostExtractor.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultCost(self)

 View Source

 @spec getDefaultCost(t()) :: number() | {:error, String.t()}

getDefaultCost
Positional Arguments
	self: Evision.HistogramCostExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getDefaultCost() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.HistogramCostExtractor.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNDummies(self)

 View Source

 @spec getNDummies(t()) :: integer() | {:error, String.t()}

getNDummies
Positional Arguments
	self: Evision.HistogramCostExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getNDummies() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setDefaultCost(self, defaultCost)

 View Source

 @spec setDefaultCost(t(), number()) :: t() | {:error, String.t()}

setDefaultCost
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	defaultCost: float

Python prototype (for reference only):
setDefaultCost(defaultCost) -> None

 Link to this function

 setNDummies(self, nDummies)

 View Source

 @spec setNDummies(t(), integer()) :: t() | {:error, String.t()}

setNDummies
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	nDummies: int

Python prototype (for reference only):
setNDummies(nDummies) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.HistogramCostExtractor.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.HistogramPhaseUnwrapping - Evision v0.1.39

Evision.HistogramPhaseUnwrapping

 Summary

 Types

 t()

 Type that represents an HistogramPhaseUnwrapping struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

 getInverseReliabilityMap(self)

 Get the reliability map computed from the wrapped phase map.

 getInverseReliabilityMap(self, opts)

 Get the reliability map computed from the wrapped phase map.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HistogramPhaseUnwrapping{ref: reference()}

Type that represents an HistogramPhaseUnwrapping struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.HistogramPhaseUnwrapping.Params.t().
HistogramPhaseUnwrapping parameters HistogramPhaseUnwrapping::Params: width,height of the phase map and histogram characteristics.

Return
	retval: Evision.HistogramPhaseUnwrapping.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.HistogramPhaseUnwrapping.Params.t().
HistogramPhaseUnwrapping parameters HistogramPhaseUnwrapping::Params: width,height of the phase map and histogram characteristics.

Return
	retval: Evision.HistogramPhaseUnwrapping.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 getInverseReliabilityMap(self)

 View Source

 @spec getInverseReliabilityMap(t()) :: Evision.Mat.t() | {:error, String.t()}

Get the reliability map computed from the wrapped phase map.
Positional Arguments
	self: Evision.HistogramPhaseUnwrapping.t()

Return
	reliabilityMap: Evision.Mat.t().
Image where the reliability map is stored.

Python prototype (for reference only):
getInverseReliabilityMap([, reliabilityMap]) -> reliabilityMap

 Link to this function

 getInverseReliabilityMap(self, opts)

 View Source

 @spec getInverseReliabilityMap(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Get the reliability map computed from the wrapped phase map.
Positional Arguments
	self: Evision.HistogramPhaseUnwrapping.t()

Return
	reliabilityMap: Evision.Mat.t().
Image where the reliability map is stored.

Python prototype (for reference only):
getInverseReliabilityMap([, reliabilityMap]) -> reliabilityMap

 Evision.HistogramPhaseUnwrapping.Params - Evision v0.1.39

Evision.HistogramPhaseUnwrapping.Params

 Summary

 Types

 t()

 Type that represents an HistogramPhaseUnwrapping.Params struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.HistogramPhaseUnwrapping.Params{ref: reference()}

Type that represents an HistogramPhaseUnwrapping.Params struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.ImgHash - Evision v0.1.39

Evision.ImgHash

 Summary

 Types

 t()

 Type that represents an ImgHash struct.

 Functions

 averageHash(inputArr)

 Calculates img_hash::AverageHash in one call

 averageHash(inputArr, opts)

 Calculates img_hash::AverageHash in one call

 blockMeanHash(inputArr)

 Computes block mean hash of the input image

 blockMeanHash(inputArr, opts)

 Computes block mean hash of the input image

 colorMomentHash(inputArr)

 Computes color moment hash of the input, the algorithm
is come from the paper "Perceptual Hashing for Color Images
Using Invariant Moments"

 colorMomentHash(inputArr, opts)

 Computes color moment hash of the input, the algorithm
is come from the paper "Perceptual Hashing for Color Images
Using Invariant Moments"

 marrHildrethHash(inputArr)

 Computes average hash value of the input image

 marrHildrethHash(inputArr, opts)

 Computes average hash value of the input image

 pHash(inputArr)

 Computes pHash value of the input image

 pHash(inputArr, opts)

 Computes pHash value of the input image

 radialVarianceHash(inputArr)

 Computes radial variance hash of the input image

 radialVarianceHash(inputArr, opts)

 Computes radial variance hash of the input image

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash{ref: reference()}

Type that represents an ImgHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 averageHash(inputArr)

 View Source

 @spec averageHash(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates img_hash::AverageHash in one call
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex decimal number, return type is CV_8U

Python prototype (for reference only):
averageHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 averageHash(inputArr, opts)

 View Source

 @spec averageHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates img_hash::AverageHash in one call
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex decimal number, return type is CV_8U

Python prototype (for reference only):
averageHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 blockMeanHash(inputArr)

 View Source

 @spec blockMeanHash(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes block mean hash of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Keyword Arguments
	mode: int.
the mode

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex decimal number, return type is CV_8U

Python prototype (for reference only):
blockMeanHash(inputArr[, outputArr[, mode]]) -> outputArr

 Link to this function

 blockMeanHash(inputArr, opts)

 View Source

 @spec blockMeanHash(Evision.Mat.maybe_mat_in(), [{:mode, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes block mean hash of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value, type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Keyword Arguments
	mode: int.
the mode

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex decimal number, return type is CV_8U

Python prototype (for reference only):
blockMeanHash(inputArr[, outputArr[, mode]]) -> outputArr

 Link to this function

 colorMomentHash(inputArr)

 View Source

 @spec colorMomentHash(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes color moment hash of the input, the algorithm
is come from the paper "Perceptual Hashing for Color Images
Using Invariant Moments"
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Return
	outputArr: Evision.Mat.t().
42 hash values with type CV_64F(double)

Python prototype (for reference only):
colorMomentHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 colorMomentHash(inputArr, opts)

 View Source

 @spec colorMomentHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes color moment hash of the input, the algorithm
is come from the paper "Perceptual Hashing for Color Images
Using Invariant Moments"
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3 or CV_8UC1.

Return
	outputArr: Evision.Mat.t().
42 hash values with type CV_64F(double)

Python prototype (for reference only):
colorMomentHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 marrHildrethHash(inputArr)

 View Source

 @spec marrHildrethHash(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes average hash value of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Keyword Arguments
	alpha: float.
int scale factor for marr wavelet (default=2).

	scale: float.
int level of scale factor (default = 1)

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex
decimal number, return type is CV_8U

Python prototype (for reference only):
marrHildrethHash(inputArr[, outputArr[, alpha[, scale]]]) -> outputArr

 Link to this function

 marrHildrethHash(inputArr, opts)

 View Source

 @spec marrHildrethHash(
 Evision.Mat.maybe_mat_in(),
 [alpha: term(), scale: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Computes average hash value of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Keyword Arguments
	alpha: float.
int scale factor for marr wavelet (default=2).

	scale: float.
int level of scale factor (default = 1)

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 16 hex
decimal number, return type is CV_8U

Python prototype (for reference only):
marrHildrethHash(inputArr[, outputArr[, alpha[, scale]]]) -> outputArr

 Link to this function

 pHash(inputArr)

 View Source

 @spec pHash(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Computes pHash value of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 8 uchar value

Python prototype (for reference only):
pHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 pHash(inputArr, opts)

 View Source

 @spec pHash(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes pHash value of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Return
	outputArr: Evision.Mat.t().
Hash value of input, it will contain 8 uchar value

Python prototype (for reference only):
pHash(inputArr[, outputArr]) -> outputArr

 Link to this function

 radialVarianceHash(inputArr)

 View Source

 @spec radialVarianceHash(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes radial variance hash of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Keyword Arguments
	sigma: double.
Gaussian kernel standard deviation

	numOfAngleLine: int.
The number of angles to consider

Return
	outputArr: Evision.Mat.t().
Hash value of input

Python prototype (for reference only):
radialVarianceHash(inputArr[, outputArr[, sigma[, numOfAngleLine]]]) -> outputArr

 Link to this function

 radialVarianceHash(inputArr, opts)

 View Source

 @spec radialVarianceHash(
 Evision.Mat.maybe_mat_in(),
 [sigma: term(), numOfAngleLine: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Computes radial variance hash of the input image
Positional Arguments
	inputArr: Evision.Mat.t().
input image want to compute hash value,
type should be CV_8UC4, CV_8UC3, CV_8UC1.

Keyword Arguments
	sigma: double.
Gaussian kernel standard deviation

	numOfAngleLine: int.
The number of angles to consider

Return
	outputArr: Evision.Mat.t().
Hash value of input

Python prototype (for reference only):
radialVarianceHash(inputArr[, outputArr[, sigma[, numOfAngleLine]]]) -> outputArr

 Evision.ImgHash.AverageHash - Evision v0.1.39

Evision.ImgHash.AverageHash

 Summary

 Types

 t()

 Type that represents an ImgHash.AverageHash struct.

 Functions

 create()

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.AverageHash{ref: reference()}

Type that represents an ImgHash.AverageHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: AverageHash

Python prototype (for reference only):
create() -> retval

 Evision.ImgHash.BlockMeanHash - Evision v0.1.39

Evision.ImgHash.BlockMeanHash

 Summary

 Types

 t()

 Type that represents an ImgHash.BlockMeanHash struct.

 Functions

 create()

 create

 create(opts)

 create

 getMean(self)

 getMean

 setMode(self, mode)

 Create BlockMeanHash object

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.BlockMeanHash{ref: reference()}

Type that represents an ImgHash.BlockMeanHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	mode: int.

Return
	retval: BlockMeanHash

Python prototype (for reference only):
create([, mode]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:mode, term()}] | nil) :: t() | {:error, String.t()}

create
Keyword Arguments
	mode: int.

Return
	retval: BlockMeanHash

Python prototype (for reference only):
create([, mode]) -> retval

 Link to this function

 getMean(self)

 View Source

 @spec getMean(t()) :: [number()] | {:error, String.t()}

getMean
Positional Arguments
	self: Evision.ImgHash.BlockMeanHash.t()

Return
	retval: [double]

Python prototype (for reference only):
getMean() -> retval

 Link to this function

 setMode(self, mode)

 View Source

 @spec setMode(t(), integer()) :: t() | {:error, String.t()}

Create BlockMeanHash object
Positional Arguments
	self: Evision.ImgHash.BlockMeanHash.t()

	mode: int.
the mode

Python prototype (for reference only):
setMode(mode) -> None

 Evision.ImgHash.ColorMomentHash - Evision v0.1.39

Evision.ImgHash.ColorMomentHash

 Summary

 Types

 t()

 Type that represents an ImgHash.ColorMomentHash struct.

 Functions

 create()

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.ColorMomentHash{ref: reference()}

Type that represents an ImgHash.ColorMomentHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ImgHash.ColorMomentHash.t()

Python prototype (for reference only):
create() -> retval

 Evision.ImgHash.ImgHashBase - Evision v0.1.39

Evision.ImgHash.ImgHashBase

 Summary

 Types

 t()

 Type that represents an ImgHash.ImgHashBase struct.

 Functions

 clear(self)

 Clears the algorithm state

 compare(self, hashOne, hashTwo)

 Compare the hash value between inOne and inTwo

 compute(self, inputArr)

 Computes hash of the input image

 compute(self, inputArr, opts)

 Computes hash of the input image

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.ImgHashBase{ref: reference()}

Type that represents an ImgHash.ImgHashBase struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compare(self, hashOne, hashTwo)

 View Source

 @spec compare(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Compare the hash value between inOne and inTwo
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

	hashOne: Evision.Mat.t().
Hash value one

	hashTwo: Evision.Mat.t().
Hash value two

Return
	retval: double

@return value indicate similarity between inOne and inTwo, the meaning
of the value vary from algorithms to algorithms
Python prototype (for reference only):
compare(hashOne, hashTwo) -> retval

 Link to this function

 compute(self, inputArr)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes hash of the input image
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

	inputArr: Evision.Mat.t().
input image want to compute hash value

Return
	outputArr: Evision.Mat.t().
hash of the image

Python prototype (for reference only):
compute(inputArr[, outputArr]) -> outputArr

 Link to this function

 compute(self, inputArr, opts)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes hash of the input image
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

	inputArr: Evision.Mat.t().
input image want to compute hash value

Return
	outputArr: Evision.Mat.t().
hash of the image

Python prototype (for reference only):
compute(inputArr[, outputArr]) -> outputArr

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ImgHash.ImgHashBase.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ImgHash.MarrHildrethHash - Evision v0.1.39

Evision.ImgHash.MarrHildrethHash

 Summary

 Types

 t()

 Type that represents an ImgHash.MarrHildrethHash struct.

 Functions

 create()

 create

 create(opts)

 create

 getAlpha(self)

 self explain

 getScale(self)

 self explain

 setKernelParam(self, alpha, scale)

 Set Mh kernel parameters

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.MarrHildrethHash{ref: reference()}

Type that represents an ImgHash.MarrHildrethHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	alpha: float.
int scale factor for marr wavelet (default=2).

	scale: float.
int level of scale factor (default = 1)

Return
	retval: Evision.ImgHash.MarrHildrethHash.t()

Python prototype (for reference only):
create([, alpha[, scale]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([alpha: term(), scale: term()] | nil) :: t() | {:error, String.t()}

create
Keyword Arguments
	alpha: float.
int scale factor for marr wavelet (default=2).

	scale: float.
int level of scale factor (default = 1)

Return
	retval: Evision.ImgHash.MarrHildrethHash.t()

Python prototype (for reference only):
create([, alpha[, scale]]) -> retval

 Link to this function

 getAlpha(self)

 View Source

 @spec getAlpha(t()) :: number() | {:error, String.t()}

self explain
Positional Arguments
	self: Evision.ImgHash.MarrHildrethHash.t()

Return
	retval: float

Python prototype (for reference only):
getAlpha() -> retval

 Link to this function

 getScale(self)

 View Source

 @spec getScale(t()) :: number() | {:error, String.t()}

self explain
Positional Arguments
	self: Evision.ImgHash.MarrHildrethHash.t()

Return
	retval: float

Python prototype (for reference only):
getScale() -> retval

 Link to this function

 setKernelParam(self, alpha, scale)

 View Source

 @spec setKernelParam(t(), number(), number()) :: t() | {:error, String.t()}

Set Mh kernel parameters
Positional Arguments
	self: Evision.ImgHash.MarrHildrethHash.t()

	alpha: float.
int scale factor for marr wavelet (default=2).

	scale: float.
int level of scale factor (default = 1)

Python prototype (for reference only):
setKernelParam(alpha, scale) -> None

 Evision.ImgHash.PHash - Evision v0.1.39

Evision.ImgHash.PHash

 Summary

 Types

 t()

 Type that represents an ImgHash.PHash struct.

 Functions

 create()

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.PHash{ref: reference()}

Type that represents an ImgHash.PHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ImgHash.PHash.t()

Python prototype (for reference only):
create() -> retval

 Evision.ImgHash.RadialVarianceHash - Evision v0.1.39

Evision.ImgHash.RadialVarianceHash

 Summary

 Types

 t()

 Type that represents an ImgHash.RadialVarianceHash struct.

 Functions

 create()

 create

 create(opts)

 create

 getNumOfAngleLine(self)

 getNumOfAngleLine

 getSigma(self)

 getSigma

 setNumOfAngleLine(self, value)

 setNumOfAngleLine

 setSigma(self, value)

 setSigma

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ImgHash.RadialVarianceHash{ref: reference()}

Type that represents an ImgHash.RadialVarianceHash struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	sigma: double.
	numOfAngleLine: int.

Return
	retval: Evision.ImgHash.RadialVarianceHash.t()

Python prototype (for reference only):
create([, sigma[, numOfAngleLine]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([sigma: term(), numOfAngleLine: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	sigma: double.
	numOfAngleLine: int.

Return
	retval: Evision.ImgHash.RadialVarianceHash.t()

Python prototype (for reference only):
create([, sigma[, numOfAngleLine]]) -> retval

 Link to this function

 getNumOfAngleLine(self)

 View Source

 @spec getNumOfAngleLine(t()) :: integer() | {:error, String.t()}

getNumOfAngleLine
Positional Arguments
	self: Evision.ImgHash.RadialVarianceHash.t()

Return
	retval: int

Python prototype (for reference only):
getNumOfAngleLine() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.ImgHash.RadialVarianceHash.t()

Return
	retval: double

Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 setNumOfAngleLine(self, value)

 View Source

 @spec setNumOfAngleLine(t(), integer()) :: t() | {:error, String.t()}

setNumOfAngleLine
Positional Arguments
	self: Evision.ImgHash.RadialVarianceHash.t()
	value: int

Python prototype (for reference only):
setNumOfAngleLine(value) -> None

 Link to this function

 setSigma(self, value)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma
Positional Arguments
	self: Evision.ImgHash.RadialVarianceHash.t()
	value: double

Python prototype (for reference only):
setSigma(value) -> None

 Evision.Intensitytransform - Evision v0.1.39

Evision.Intensitytransform

 Summary

 Types

 t()

 Type that represents an Intensitytransform struct.

 Functions

 autoscaling(input, output)

 Given an input bgr or grayscale image, apply autoscaling on domain [0, 255] to increase
the contrast of the input image and return the resulting image.

 bimef2(input, k, mu, a, b)

 Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).

 bimef2(input, k, mu, a, b, opts)

 Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).

 bimef(input)

 Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).

 bimef(input, opts)

 Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).

 contrastStretching(input, output, r1, s1, r2, s2)

 Given an input bgr or grayscale image, apply linear contrast stretching on domain [0, 255]
and return the resulting image.

 gammaCorrection(input, output, gamma)

 Given an input bgr or grayscale image and constant gamma, apply power-law transformation,
a.k.a. gamma correction to the image on domain [0, 255] and return the resulting image.

 logTransform(input, output)

 Given an input bgr or grayscale image and constant c, apply log transformation to the image
on domain [0, 255] and return the resulting image.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Intensitytransform{ref: reference()}

Type that represents an Intensitytransform struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 autoscaling(input, output)

 View Source

 @spec autoscaling(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 :ok | {:error, String.t()}

Given an input bgr or grayscale image, apply autoscaling on domain [0, 255] to increase
the contrast of the input image and return the resulting image.
Positional Arguments
	input: Evision.Mat.t().
input bgr or grayscale image.

	output: Evision.Mat.t().
resulting image of autoscaling.

Python prototype (for reference only):
autoscaling(input, output) -> None

 Link to this function

 bimef2(input, k, mu, a, b)

 View Source

 @spec bimef2(Evision.Mat.maybe_mat_in(), number(), number(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).
Positional Arguments
	input: Evision.Mat.t().
input color image.

	k: float.
exposure ratio.

	mu: float.
enhancement ratio.

	a: float.
a-parameter in the Camera Response Function (CRF).

	b: float.
b-parameter in the Camera Response Function (CRF).

Return
	output: Evision.Mat.t().
resulting image.

 This is an overloaded function with the exposure ratio given as parameter.
@warning This is a C++ implementation of the original MATLAB algorithm.
 Compared to the original code, this implementation is a little bit slower and does not provide the same results.
 In particular, quality of the image enhancement is degraded for the bright areas in certain conditions.
Python prototype (for reference only):
BIMEF2(input, k, mu, a, b[, output]) -> output

 Link to this function

 bimef2(input, k, mu, a, b, opts)

 View Source

 @spec bimef2(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 number(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).
Positional Arguments
	input: Evision.Mat.t().
input color image.

	k: float.
exposure ratio.

	mu: float.
enhancement ratio.

	a: float.
a-parameter in the Camera Response Function (CRF).

	b: float.
b-parameter in the Camera Response Function (CRF).

Return
	output: Evision.Mat.t().
resulting image.

 This is an overloaded function with the exposure ratio given as parameter.
@warning This is a C++ implementation of the original MATLAB algorithm.
 Compared to the original code, this implementation is a little bit slower and does not provide the same results.
 In particular, quality of the image enhancement is degraded for the bright areas in certain conditions.
Python prototype (for reference only):
BIMEF2(input, k, mu, a, b[, output]) -> output

 Link to this function

 bimef(input)

 View Source

 @spec bimef(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).
Positional Arguments
	input: Evision.Mat.t().
input color image.

Keyword Arguments
	mu: float.
enhancement ratio.

	a: float.
a-parameter in the Camera Response Function (CRF).

	b: float.
b-parameter in the Camera Response Function (CRF).

Return
	output: Evision.Mat.t().
resulting image.

@warning This is a C++ implementation of the original MATLAB algorithm.
 Compared to the original code, this implementation is a little bit slower and does not provide the same results.
 In particular, quality of the image enhancement is degraded for the bright areas in certain conditions.
Python prototype (for reference only):
BIMEF(input[, output[, mu[, a[, b]]]]) -> output

 Link to this function

 bimef(input, opts)

 View Source

 @spec bimef(Evision.Mat.maybe_mat_in(), [b: term(), mu: term(), a: term()] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Given an input color image, enhance low-light images using the BIMEF method (@cite ying2017bio @cite ying2017new).
Positional Arguments
	input: Evision.Mat.t().
input color image.

Keyword Arguments
	mu: float.
enhancement ratio.

	a: float.
a-parameter in the Camera Response Function (CRF).

	b: float.
b-parameter in the Camera Response Function (CRF).

Return
	output: Evision.Mat.t().
resulting image.

@warning This is a C++ implementation of the original MATLAB algorithm.
 Compared to the original code, this implementation is a little bit slower and does not provide the same results.
 In particular, quality of the image enhancement is degraded for the bright areas in certain conditions.
Python prototype (for reference only):
BIMEF(input[, output[, mu[, a[, b]]]]) -> output

 Link to this function

 contrastStretching(input, output, r1, s1, r2, s2)

 View Source

 @spec contrastStretching(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer()
) :: :ok | {:error, String.t()}

Given an input bgr or grayscale image, apply linear contrast stretching on domain [0, 255]
and return the resulting image.
Positional Arguments
	input: Evision.Mat.t().
input bgr or grayscale image.

	output: Evision.Mat.t().
resulting image of contrast stretching.

	r1: int.
x coordinate of first point (r1, s1) in the transformation function.

	s1: int.
y coordinate of first point (r1, s1) in the transformation function.

	r2: int.
x coordinate of second point (r2, s2) in the transformation function.

	s2: int.
y coordinate of second point (r2, s2) in the transformation function.

Python prototype (for reference only):
contrastStretching(input, output, r1, s1, r2, s2) -> None

 Link to this function

 gammaCorrection(input, output, gamma)

 View Source

 @spec gammaCorrection(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number()
) ::
 :ok | {:error, String.t()}

Given an input bgr or grayscale image and constant gamma, apply power-law transformation,
a.k.a. gamma correction to the image on domain [0, 255] and return the resulting image.
Positional Arguments
	input: Evision.Mat.t().
input bgr or grayscale image.

	output: Evision.Mat.t().
resulting image of gamma corrections.

	gamma: float.
constant in c*r^gamma where r is pixel value.

Python prototype (for reference only):
gammaCorrection(input, output, gamma) -> None

 Link to this function

 logTransform(input, output)

 View Source

 @spec logTransform(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 :ok | {:error, String.t()}

Given an input bgr or grayscale image and constant c, apply log transformation to the image
on domain [0, 255] and return the resulting image.
Positional Arguments
	input: Evision.Mat.t().
input bgr or grayscale image.

	output: Evision.Mat.t().
resulting image of log transformations.

Python prototype (for reference only):
logTransform(input, output) -> None

 Evision.Ipp - Evision v0.1.39

Evision.Ipp

 Summary

 Types

 t()

 Type that represents an Ipp struct.

 Functions

 getIppVersion()

 getIppVersion

 setUseIPP(flag)

 setUseIPP

 useIPP()

 useIPP

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Ipp{ref: reference()}

Type that represents an Ipp struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getIppVersion()

 View Source

 @spec getIppVersion() :: binary() | {:error, String.t()}

getIppVersion
Return
	retval: String

Python prototype (for reference only):
getIppVersion() -> retval

 Link to this function

 setUseIPP(flag)

 View Source

 @spec setUseIPP(boolean()) :: :ok | {:error, String.t()}

setUseIPP
Positional Arguments
	flag: bool

Python prototype (for reference only):
setUseIPP(flag) -> None

 Link to this function

 useIPP()

 View Source

 @spec useIPP() :: boolean() | {:error, String.t()}

useIPP
Return
	retval: bool

proxy for hal::Cholesky
Python prototype (for reference only):
useIPP() -> retval

 Evision.KAZE - Evision v0.1.39

Evision.KAZE

 Summary

 Types

 t()

 Type that represents an KAZE struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 The KAZE constructor

 create(opts)

 The KAZE constructor

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getDiffusivity(self)

 getDiffusivity

 getExtended(self)

 getExtended

 getNOctaveLayers(self)

 getNOctaveLayers

 getNOctaves(self)

 getNOctaves

 getThreshold(self)

 getThreshold

 getUpright(self)

 getUpright

 read(self, arg1)

 Variant 1:
read

 setDiffusivity(self, diff)

 setDiffusivity

 setExtended(self, extended)

 setExtended

 setNOctaveLayers(self, octaveLayers)

 setNOctaveLayers

 setNOctaves(self, octaves)

 setNOctaves

 setThreshold(self, threshold)

 setThreshold

 setUpright(self, upright)

 setUpright

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KAZE{ref: reference()}

Type that represents an KAZE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.KAZE.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.KAZE.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.KAZE.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.KAZE.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

The KAZE constructor
Keyword Arguments
	extended: bool.
Set to enable extraction of extended (128-byte) descriptor.

	upright: bool.
Set to enable use of upright descriptors (non rotation-invariant).

	threshold: float.
Detector response threshold to accept point

	nOctaves: int.
Maximum octave evolution of the image

	nOctaveLayers: int.
Default number of sublevels per scale level

	diffusivity: KAZE_DiffusivityType.
Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER

Return
	retval: Evision.KAZE.t()

Python prototype (for reference only):
create([, extended[, upright[, threshold[, nOctaves[, nOctaveLayers[, diffusivity]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 nOctaves: term(),
 extended: term(),
 threshold: term(),
 upright: term(),
 diffusivity: term(),
 nOctaveLayers: term()
]
 | nil
) :: t() | {:error, String.t()}

The KAZE constructor
Keyword Arguments
	extended: bool.
Set to enable extraction of extended (128-byte) descriptor.

	upright: bool.
Set to enable use of upright descriptors (non rotation-invariant).

	threshold: float.
Detector response threshold to accept point

	nOctaves: int.
Maximum octave evolution of the image

	nOctaveLayers: int.
Default number of sublevels per scale level

	diffusivity: KAZE_DiffusivityType.
Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
DIFF_CHARBONNIER

Return
	retval: Evision.KAZE.t()

Python prototype (for reference only):
create([, extended[, upright[, threshold[, nOctaves[, nOctaveLayers[, diffusivity]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.KAZE.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.KAZE.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.KAZE.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.KAZE.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.KAZE.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.KAZE.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDiffusivity(self)

 View Source

 @spec getDiffusivity(t()) :: integer() | {:error, String.t()}

getDiffusivity
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: KAZE::DiffusivityType

Python prototype (for reference only):
getDiffusivity() -> retval

 Link to this function

 getExtended(self)

 View Source

 @spec getExtended(t()) :: boolean() | {:error, String.t()}

getExtended
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: bool

Python prototype (for reference only):
getExtended() -> retval

 Link to this function

 getNOctaveLayers(self)

 View Source

 @spec getNOctaveLayers(t()) :: integer() | {:error, String.t()}

getNOctaveLayers
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaveLayers() -> retval

 Link to this function

 getNOctaves(self)

 View Source

 @spec getNOctaves(t()) :: integer() | {:error, String.t()}

getNOctaves
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaves() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: double

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 getUpright(self)

 View Source

 @spec getUpright(t()) :: boolean() | {:error, String.t()}

getUpright
Positional Arguments
	self: Evision.KAZE.t()

Return
	retval: bool

Python prototype (for reference only):
getUpright() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.KAZE.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.KAZE.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setDiffusivity(self, diff)

 View Source

 @spec setDiffusivity(t(), integer()) :: t() | {:error, String.t()}

setDiffusivity
Positional Arguments
	self: Evision.KAZE.t()
	diff: KAZE_DiffusivityType

Python prototype (for reference only):
setDiffusivity(diff) -> None

 Link to this function

 setExtended(self, extended)

 View Source

 @spec setExtended(t(), boolean()) :: t() | {:error, String.t()}

setExtended
Positional Arguments
	self: Evision.KAZE.t()
	extended: bool

Python prototype (for reference only):
setExtended(extended) -> None

 Link to this function

 setNOctaveLayers(self, octaveLayers)

 View Source

 @spec setNOctaveLayers(t(), integer()) :: t() | {:error, String.t()}

setNOctaveLayers
Positional Arguments
	self: Evision.KAZE.t()
	octaveLayers: int

Python prototype (for reference only):
setNOctaveLayers(octaveLayers) -> None

 Link to this function

 setNOctaves(self, octaves)

 View Source

 @spec setNOctaves(t(), integer()) :: t() | {:error, String.t()}

setNOctaves
Positional Arguments
	self: Evision.KAZE.t()
	octaves: int

Python prototype (for reference only):
setNOctaves(octaves) -> None

 Link to this function

 setThreshold(self, threshold)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.KAZE.t()
	threshold: double

Python prototype (for reference only):
setThreshold(threshold) -> None

 Link to this function

 setUpright(self, upright)

 View Source

 @spec setUpright(t(), boolean()) :: t() | {:error, String.t()}

setUpright
Positional Arguments
	self: Evision.KAZE.t()
	upright: bool

Python prototype (for reference only):
setUpright(upright) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.KAZE.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.KAZE.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.KalmanFilter - Evision v0.1.39

Evision.KalmanFilter

 Summary

 Types

 t()

 Type that represents an KalmanFilter struct.

 Functions

 correct(self, measurement)

 Updates the predicted state from the measurement.

 get_controlMatrix(self)

 get_errorCovPost(self)

 get_errorCovPre(self)

 get_gain(self)

 get_measurementMatrix(self)

 get_measurementNoiseCov(self)

 get_processNoiseCov(self)

 get_statePost(self)

 get_statePre(self)

 get_transitionMatrix(self)

 kalmanFilter()

 KalmanFilter

 kalmanFilter(dynamParams, measureParams)

 KalmanFilter

 kalmanFilter(dynamParams, measureParams, opts)

 KalmanFilter

 predict(self)

 Computes a predicted state.

 predict(self, opts)

 Computes a predicted state.

 set_controlMatrix(self, prop)

 set_errorCovPost(self, prop)

 set_errorCovPre(self, prop)

 set_gain(self, prop)

 set_measurementMatrix(self, prop)

 set_measurementNoiseCov(self, prop)

 set_processNoiseCov(self, prop)

 set_statePost(self, prop)

 set_statePre(self, prop)

 set_transitionMatrix(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KalmanFilter{ref: reference()}

Type that represents an KalmanFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 correct(self, measurement)

 View Source

 @spec correct(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Updates the predicted state from the measurement.
Positional Arguments
	self: Evision.KalmanFilter.t()

	measurement: Evision.Mat.t().
The measured system parameters

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
correct(measurement) -> retval

 Link to this function

 get_controlMatrix(self)

 View Source

 @spec get_controlMatrix(t()) :: Evision.Mat.t()

 Link to this function

 get_errorCovPost(self)

 View Source

 @spec get_errorCovPost(t()) :: Evision.Mat.t()

 Link to this function

 get_errorCovPre(self)

 View Source

 @spec get_errorCovPre(t()) :: Evision.Mat.t()

 Link to this function

 get_gain(self)

 View Source

 @spec get_gain(t()) :: Evision.Mat.t()

 Link to this function

 get_measurementMatrix(self)

 View Source

 @spec get_measurementMatrix(t()) :: Evision.Mat.t()

 Link to this function

 get_measurementNoiseCov(self)

 View Source

 @spec get_measurementNoiseCov(t()) :: Evision.Mat.t()

 Link to this function

 get_processNoiseCov(self)

 View Source

 @spec get_processNoiseCov(t()) :: Evision.Mat.t()

 Link to this function

 get_statePost(self)

 View Source

 @spec get_statePost(t()) :: Evision.Mat.t()

 Link to this function

 get_statePre(self)

 View Source

 @spec get_statePre(t()) :: Evision.Mat.t()

 Link to this function

 get_transitionMatrix(self)

 View Source

 @spec get_transitionMatrix(t()) :: Evision.Mat.t()

 Link to this function

 kalmanFilter()

 View Source

 @spec kalmanFilter() :: t() | {:error, String.t()}

KalmanFilter
Return
	self: Evision.KalmanFilter.t()

Python prototype (for reference only):
KalmanFilter() -> <KalmanFilter object>

 Link to this function

 kalmanFilter(dynamParams, measureParams)

 View Source

 @spec kalmanFilter(integer(), integer()) :: t() | {:error, String.t()}

KalmanFilter
Positional Arguments
	dynamParams: int.
Dimensionality of the state.

	measureParams: int.
Dimensionality of the measurement.

Keyword Arguments
	controlParams: int.
Dimensionality of the control vector.

	type: int.
Type of the created matrices that should be CV_32F or CV_64F.

Return
	self: Evision.KalmanFilter.t()

Has overloading in C++
Python prototype (for reference only):
KalmanFilter(dynamParams, measureParams[, controlParams[, type]]) -> <KalmanFilter object>

 Link to this function

 kalmanFilter(dynamParams, measureParams, opts)

 View Source

 @spec kalmanFilter(integer(), integer(), [type: term(), controlParams: term()] | nil) ::
 t() | {:error, String.t()}

KalmanFilter
Positional Arguments
	dynamParams: int.
Dimensionality of the state.

	measureParams: int.
Dimensionality of the measurement.

Keyword Arguments
	controlParams: int.
Dimensionality of the control vector.

	type: int.
Type of the created matrices that should be CV_32F or CV_64F.

Return
	self: Evision.KalmanFilter.t()

Has overloading in C++
Python prototype (for reference only):
KalmanFilter(dynamParams, measureParams[, controlParams[, type]]) -> <KalmanFilter object>

 Link to this function

 predict(self)

 View Source

 @spec predict(t()) :: Evision.Mat.t() | {:error, String.t()}

Computes a predicted state.
Positional Arguments
	self: Evision.KalmanFilter.t()

Keyword Arguments
	control: Evision.Mat.t().
The optional input control

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
predict([, control]) -> retval

 Link to this function

 predict(self, opts)

 View Source

 @spec predict(t(), [{:control, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes a predicted state.
Positional Arguments
	self: Evision.KalmanFilter.t()

Keyword Arguments
	control: Evision.Mat.t().
The optional input control

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
predict([, control]) -> retval

 Link to this function

 set_controlMatrix(self, prop)

 View Source

 @spec set_controlMatrix(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_errorCovPost(self, prop)

 View Source

 @spec set_errorCovPost(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_errorCovPre(self, prop)

 View Source

 @spec set_errorCovPre(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_gain(self, prop)

 View Source

 @spec set_gain(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_measurementMatrix(self, prop)

 View Source

 @spec set_measurementMatrix(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_measurementNoiseCov(self, prop)

 View Source

 @spec set_measurementNoiseCov(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_processNoiseCov(self, prop)

 View Source

 @spec set_processNoiseCov(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_statePost(self, prop)

 View Source

 @spec set_statePost(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_statePre(self, prop)

 View Source

 @spec set_statePre(t(), Evision.Mat.maybe_mat_in()) :: t()

 Link to this function

 set_transitionMatrix(self, prop)

 View Source

 @spec set_transitionMatrix(t(), Evision.Mat.maybe_mat_in()) :: t()

 Evision.KeyPoint - Evision v0.1.39

Evision.KeyPoint

 Summary

 Types

 t()

 Type that represents an KeyPoint struct.

 Functions

 convert(points2f)

 convert

 convert(points2f, opts)

 convert

 get_angle(self)

 get_class_id(self)

 get_octave(self)

 get_pt(self)

 get_response(self)

 get_size(self)

 keyPoint()

 KeyPoint

 keyPoint(x, y, size)

 KeyPoint

 keyPoint(x, y, size, opts)

 KeyPoint

 overlap(kp1, kp2)

 overlap

 set_angle(self, prop)

 set_class_id(self, prop)

 set_octave(self, prop)

 set_pt(self, prop)

 set_response(self, prop)

 set_size(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KeyPoint{ref: reference()}

Type that represents an KeyPoint struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 convert(points2f)

 View Source

 @spec convert([{number(), number()}]) :: [t()] | {:error, String.t()}

convert
Positional Arguments
	points2f: [Point2f].
Array of (x,y) coordinates of each keypoint

Keyword Arguments
	size: float.
keypoint diameter

	response: float.
keypoint detector response on the keypoint (that is, strength of the keypoint)

	octave: int.
pyramid octave in which the keypoint has been detected

	class_id: int.
object id

Return
	keypoints: [Evision.KeyPoint].
Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB

Has overloading in C++
Python prototype (for reference only):
convert(points2f[, size[, response[, octave[, class_id]]]]) -> keypoints

 Link to this function

 convert(points2f, opts)

 View Source

 @spec convert(
 [{number(), number()}],
 [octave: term(), response: term(), class_id: term(), size: term()] | nil
) :: [t()] | {:error, String.t()}

convert
Positional Arguments
	points2f: [Point2f].
Array of (x,y) coordinates of each keypoint

Keyword Arguments
	size: float.
keypoint diameter

	response: float.
keypoint detector response on the keypoint (that is, strength of the keypoint)

	octave: int.
pyramid octave in which the keypoint has been detected

	class_id: int.
object id

Return
	keypoints: [Evision.KeyPoint].
Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB

Has overloading in C++
Python prototype (for reference only):
convert(points2f[, size[, response[, octave[, class_id]]]]) -> keypoints

 Link to this function

 get_angle(self)

 View Source

 @spec get_angle(t()) :: number()

 Link to this function

 get_class_id(self)

 View Source

 @spec get_class_id(t()) :: integer()

 Link to this function

 get_octave(self)

 View Source

 @spec get_octave(t()) :: integer()

 Link to this function

 get_pt(self)

 View Source

 @spec get_pt(t()) :: {number(), number()}

 Link to this function

 get_response(self)

 View Source

 @spec get_response(t()) :: number()

 Link to this function

 get_size(self)

 View Source

 @spec get_size(t()) :: number()

 Link to this function

 keyPoint()

 View Source

 @spec keyPoint() :: t() | {:error, String.t()}

KeyPoint
Return
	self: Evision.KeyPoint.t()

Python prototype (for reference only):
KeyPoint() -> <KeyPoint object>

 Link to this function

 keyPoint(x, y, size)

 View Source

 @spec keyPoint(number(), number(), number()) :: t() | {:error, String.t()}

KeyPoint
Positional Arguments
	x: float.
x-coordinate of the keypoint

	y: float.
y-coordinate of the keypoint

	size: float.
keypoint diameter

Keyword Arguments
	angle: float.
keypoint orientation

	response: float.
keypoint detector response on the keypoint (that is, strength of the keypoint)

	octave: int.
pyramid octave in which the keypoint has been detected

	class_id: int.
object id

Return
	self: Evision.KeyPoint.t()

Python prototype (for reference only):
KeyPoint(x, y, size[, angle[, response[, octave[, class_id]]]]) -> <KeyPoint object>

 Link to this function

 keyPoint(x, y, size, opts)

 View Source

 @spec keyPoint(
 number(),
 number(),
 number(),
 [octave: term(), angle: term(), class_id: term(), response: term()] | nil
) :: t() | {:error, String.t()}

KeyPoint
Positional Arguments
	x: float.
x-coordinate of the keypoint

	y: float.
y-coordinate of the keypoint

	size: float.
keypoint diameter

Keyword Arguments
	angle: float.
keypoint orientation

	response: float.
keypoint detector response on the keypoint (that is, strength of the keypoint)

	octave: int.
pyramid octave in which the keypoint has been detected

	class_id: int.
object id

Return
	self: Evision.KeyPoint.t()

Python prototype (for reference only):
KeyPoint(x, y, size[, angle[, response[, octave[, class_id]]]]) -> <KeyPoint object>

 Link to this function

 overlap(kp1, kp2)

 View Source

 @spec overlap(t(), t()) :: number() | {:error, String.t()}

overlap
Positional Arguments
	kp1: Evision.KeyPoint.t().
First keypoint

	kp2: Evision.KeyPoint.t().
Second keypoint

Return
	retval: float

This method computes overlap for pair of keypoints. Overlap is the ratio between area of keypoint
regions' intersection and area of keypoint regions' union (considering keypoint region as circle).
If they don't overlap, we get zero. If they coincide at same location with same size, we get 1.
Python prototype (for reference only):
overlap(kp1, kp2) -> retval

 Link to this function

 set_angle(self, prop)

 View Source

 @spec set_angle(t(), number()) :: t()

 Link to this function

 set_class_id(self, prop)

 View Source

 @spec set_class_id(t(), integer()) :: t()

 Link to this function

 set_octave(self, prop)

 View Source

 @spec set_octave(t(), integer()) :: t()

 Link to this function

 set_pt(self, prop)

 View Source

 @spec set_pt(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_response(self, prop)

 View Source

 @spec set_response(t(), number()) :: t()

 Link to this function

 set_size(self, prop)

 View Source

 @spec set_size(t(), number()) :: t()

 Evision.KinFu - Evision v0.1.39

Evision.KinFu

 Summary

 Types

 t()

 Type that represents an KinFu struct.

 Functions

 makeVolume(volumeType, voxelSize, pose, raycastStepFactor, truncDist, maxWeight, truncateThreshold, resolution)

 makeVolume

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu{ref: reference()}

Type that represents an KinFu struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 makeVolume(volumeType, voxelSize, pose, raycastStepFactor, truncDist, maxWeight, truncateThreshold, resolution)

 View Source

 @spec makeVolume(
 integer(),
 number(),
 Evision.Mat.t(),
 number(),
 number(),
 integer(),
 number(),
 {integer(), integer(), integer()}
) :: integer() | {:error, String.t()}

makeVolume
Positional Arguments
	volumeType: VolumeType
	voxelSize: float
	pose: Evision.Mat.t()
	raycastStepFactor: float
	truncDist: float
	maxWeight: int
	truncateThreshold: float
	resolution: Vec3i

Return
	retval: Volume

Python prototype (for reference only):
makeVolume(_volumeType, _voxelSize, _pose, _raycastStepFactor, _truncDist, _maxWeight, _truncateThreshold, _resolution) -> retval

 Evision.KinFu.Detail.PoseGraph - Evision v0.1.39

Evision.KinFu.Detail.PoseGraph

 Summary

 Types

 t()

 Type that represents an KinFu.Detail.PoseGraph struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu.Detail.PoseGraph{ref: reference()}

Type that represents an KinFu.Detail.PoseGraph struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.KinFu.KinFu - Evision v0.1.39

Evision.KinFu.KinFu

 Summary

 Types

 t()

 Type that represents an KinFu.KinFu struct.

 Functions

 create(params)

 create

 getCloud(self)

 Gets points and normals of current 3d mesh

 getCloud(self, opts)

 Gets points and normals of current 3d mesh

 getNormals(self, points)

 Calculates normals for given points

 getNormals(self, points, opts)

 Calculates normals for given points

 getPoints(self)

 Gets points of current 3d mesh

 getPoints(self, opts)

 Gets points of current 3d mesh

 render(self)

 Renders a volume into an image

 render(self, opts)

 Variant 1:
Renders a volume into an image

 render(self, cameraPose, opts)

 Renders a volume into an image

 reset(self)

 Resets the algorithm

 update(self, depth)

 Process next depth frame

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu.KinFu{ref: reference()}

Type that represents an KinFu.KinFu struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(params)

 View Source

 @spec create(Evision.KinFu.Params.t()) :: t() | {:error, String.t()}

create
Positional Arguments
	params: Params

Return
	retval: KinFu

Python prototype (for reference only):
create(_params) -> retval

 Link to this function

 getCloud(self)

 View Source

 @spec getCloud(t()) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points and normals of current 3d mesh
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getCloud(self, opts)

 View Source

 @spec getCloud(t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Gets points and normals of current 3d mesh
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

	normals: Evision.Mat.t().
vector of normals which are 4-float vectors

The order of normals corresponds to order of points.
The order of points is undefined.
Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getNormals(self, points)

 View Source

 @spec getNormals(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.KinFu.KinFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getNormals(self, points, opts)

 View Source

 @spec getNormals(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates normals for given points
Positional Arguments
	self: Evision.KinFu.KinFu.t()

	points: Evision.Mat.t().
input vector of points which are 4-float vectors

Return
	normals: Evision.Mat.t().
output vector of corresponding normals which are 4-float vectors

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getPoints(self)

 View Source

 @spec getPoints(t()) :: Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 getPoints(self, opts)

 View Source

 @spec getPoints(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Gets points of current 3d mesh
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	points: Evision.Mat.t().
vector of points which are 4-float vectors

The order of points is undefined.
Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 render(self)

 View Source

 @spec render(t()) :: Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, opts)

 View Source

 @spec render(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec render(t(), Evision.Mat.t()) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
Renders a volume into an image
Positional Arguments
	self: Evision.KinFu.KinFu.t()

	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render(cameraPose[, image]) -> image
Variant 2:
Renders a volume into an image
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, cameraPose, opts)

 View Source

 @spec render(t(), Evision.Mat.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Renders a volume into an image
Positional Arguments
	self: Evision.KinFu.KinFu.t()

	cameraPose: Evision.Mat.t().
pose of camera to render from. If empty then render from current pose
which is a last frame camera pose.

Return
	image: Evision.Mat.t().
resulting image

Renders a 0-surface of TSDF using Phong shading into a CV_8UC4 Mat.
Light pose is fixed in KinFu params.
Python prototype (for reference only):
render(cameraPose[, image]) -> image

 Link to this function

 reset(self)

 View Source

 @spec reset(t()) :: t() | {:error, String.t()}

Resets the algorithm
Positional Arguments
	self: Evision.KinFu.KinFu.t()

Clears current model and resets a pose.
Python prototype (for reference only):
reset() -> None

 Link to this function

 update(self, depth)

 View Source

 @spec update(t(), Evision.Mat.maybe_mat_in()) :: boolean() | {:error, String.t()}

Process next depth frame
Positional Arguments
	self: Evision.KinFu.KinFu.t()

	depth: Evision.Mat.t().
one-channel image which size and depth scale is described in algorithm's parameters

Return
	retval: bool

Integrates depth into voxel space with respect to its ICP-calculated pose.
Input image is converted to CV_32F internally if has another type.
@return true if succeeded to align new frame with current scene, false if opposite
Python prototype (for reference only):
update(depth) -> retval

 Evision.KinFu.Params - Evision v0.1.39

Evision.KinFu.Params

 Summary

 Types

 t()

 Type that represents an KinFu.Params struct.

 Functions

 coarseParams()

 Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.

 coloredTSDFParams(isCoarse)

 ColoredTSDF parameters
A set of parameters suitable for use with ColoredTSDFVolume

 defaultParams()

 Default parameters
A set of parameters which provides better model quality, can be very slow.

 get_bilateral_kernel_size(self)

 get_bilateral_sigma_depth(self)

 get_bilateral_sigma_spatial(self)

 get_depthFactor(self)

 get_frameSize(self)

 get_icpAngleThresh(self)

 get_icpDistThresh(self)

 get_icpIterations(self)

 get_intr(self)

 get_lightPose(self)

 get_pyramidLevels(self)

 get_raycast_step_factor(self)

 get_rgb_intr(self)

 get_truncateThreshold(self)

 get_tsdf_max_weight(self)

 get_tsdf_min_camera_movement(self)

 get_tsdf_trunc_dist(self)

 get_volumeDims(self)

 get_volumeType(self)

 get_voxelSize(self)

 hashTSDFParams(isCoarse)

 HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume

 params()

 Params

 params(volumeInitialPose)

 Constructor for Params
Sets the initial pose of the TSDF volume.

 params(volumeInitialPoseRot, volumeInitialPoseTransl)

 Constructor for Params
Sets the initial pose of the TSDF volume.

 set_bilateral_kernel_size(self, prop)

 set_bilateral_sigma_depth(self, prop)

 set_bilateral_sigma_spatial(self, prop)

 set_depthFactor(self, prop)

 set_frameSize(self, prop)

 set_icpAngleThresh(self, prop)

 set_icpDistThresh(self, prop)

 set_icpIterations(self, prop)

 set_intr(self, prop)

 set_lightPose(self, prop)

 set_pyramidLevels(self, prop)

 set_raycast_step_factor(self, prop)

 set_rgb_intr(self, prop)

 set_truncateThreshold(self, prop)

 set_tsdf_max_weight(self, prop)

 set_tsdf_min_camera_movement(self, prop)

 set_tsdf_trunc_dist(self, prop)

 set_volumeDims(self, prop)

 set_volumeType(self, prop)

 set_voxelSize(self, prop)

 setInitialVolumePose(self, homogen_tf)

 Set Initial Volume Pose
Sets the initial pose of the TSDF volume.

 setInitialVolumePose(self, r, t)

 Set Initial Volume Pose
Sets the initial pose of the TSDF volume.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu.Params{ref: reference()}

Type that represents an KinFu.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 coarseParams()

 View Source

 @spec coarseParams() :: t() | {:error, String.t()}

Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
Return
	retval: Params

Python prototype (for reference only):
coarseParams() -> retval

 Link to this function

 coloredTSDFParams(isCoarse)

 View Source

 @spec coloredTSDFParams(boolean()) :: t() | {:error, String.t()}

ColoredTSDF parameters
A set of parameters suitable for use with ColoredTSDFVolume
Positional Arguments
	isCoarse: bool

Return
	retval: Params

Python prototype (for reference only):
coloredTSDFParams(isCoarse) -> retval

 Link to this function

 defaultParams()

 View Source

 @spec defaultParams() :: t() | {:error, String.t()}

Default parameters
A set of parameters which provides better model quality, can be very slow.
Return
	retval: Params

Python prototype (for reference only):
defaultParams() -> retval

 Link to this function

 get_bilateral_kernel_size(self)

 View Source

 @spec get_bilateral_kernel_size(t()) :: integer()

 Link to this function

 get_bilateral_sigma_depth(self)

 View Source

 @spec get_bilateral_sigma_depth(t()) :: number()

 Link to this function

 get_bilateral_sigma_spatial(self)

 View Source

 @spec get_bilateral_sigma_spatial(t()) :: number()

 Link to this function

 get_depthFactor(self)

 View Source

 @spec get_depthFactor(t()) :: number()

 Link to this function

 get_frameSize(self)

 View Source

 @spec get_frameSize(t()) :: {number(), number()}

 Link to this function

 get_icpAngleThresh(self)

 View Source

 @spec get_icpAngleThresh(t()) :: number()

 Link to this function

 get_icpDistThresh(self)

 View Source

 @spec get_icpDistThresh(t()) :: number()

 Link to this function

 get_icpIterations(self)

 View Source

 @spec get_icpIterations(t()) :: [integer()]

 Link to this function

 get_intr(self)

 View Source

 @spec get_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_lightPose(self)

 View Source

 @spec get_lightPose(t()) :: {number(), number(), number()}

 Link to this function

 get_pyramidLevels(self)

 View Source

 @spec get_pyramidLevels(t()) :: integer()

 Link to this function

 get_raycast_step_factor(self)

 View Source

 @spec get_raycast_step_factor(t()) :: number()

 Link to this function

 get_rgb_intr(self)

 View Source

 @spec get_rgb_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_truncateThreshold(self)

 View Source

 @spec get_truncateThreshold(t()) :: number()

 Link to this function

 get_tsdf_max_weight(self)

 View Source

 @spec get_tsdf_max_weight(t()) :: integer()

 Link to this function

 get_tsdf_min_camera_movement(self)

 View Source

 @spec get_tsdf_min_camera_movement(t()) :: number()

 Link to this function

 get_tsdf_trunc_dist(self)

 View Source

 @spec get_tsdf_trunc_dist(t()) :: number()

 Link to this function

 get_volumeDims(self)

 View Source

 @spec get_volumeDims(t()) :: {integer(), integer(), integer()}

 Link to this function

 get_volumeType(self)

 View Source

 @spec get_volumeType(t()) :: integer()

 Link to this function

 get_voxelSize(self)

 View Source

 @spec get_voxelSize(t()) :: number()

 Link to this function

 hashTSDFParams(isCoarse)

 View Source

 @spec hashTSDFParams(boolean()) :: t() | {:error, String.t()}

HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume
Positional Arguments
	isCoarse: bool

Return
	retval: Params

Python prototype (for reference only):
hashTSDFParams(isCoarse) -> retval

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

Params
Return
	self: Params

Python prototype (for reference only):
Params() -> <kinfu_Params object>

 Link to this function

 params(volumeInitialPose)

 View Source

 @spec params(Evision.Mat.t()) :: t() | {:error, String.t()}

Constructor for Params
Sets the initial pose of the TSDF volume.
Positional Arguments
	volumeInitialPose: Evision.Mat.t().
4 by 4 Homogeneous Transform matrix to set the intial pose of TSDF volume

Return
	self: Params

Python prototype (for reference only):
Params(volumeInitialPose) -> <kinfu_Params object>

 Link to this function

 params(volumeInitialPoseRot, volumeInitialPoseTransl)

 View Source

 @spec params(Evision.Mat.t(), {number(), number(), number()}) ::
 t() | {:error, String.t()}

Constructor for Params
Sets the initial pose of the TSDF volume.
Positional Arguments
	volumeInitialPoseRot: Evision.Mat.t().
rotation matrix

	volumeInitialPoseTransl: Vec3f.
translation vector

Return
	self: Params

Python prototype (for reference only):
Params(volumeInitialPoseRot, volumeInitialPoseTransl) -> <kinfu_Params object>

 Link to this function

 set_bilateral_kernel_size(self, prop)

 View Source

 @spec set_bilateral_kernel_size(t(), integer()) :: t()

 Link to this function

 set_bilateral_sigma_depth(self, prop)

 View Source

 @spec set_bilateral_sigma_depth(t(), number()) :: t()

 Link to this function

 set_bilateral_sigma_spatial(self, prop)

 View Source

 @spec set_bilateral_sigma_spatial(t(), number()) :: t()

 Link to this function

 set_depthFactor(self, prop)

 View Source

 @spec set_depthFactor(t(), number()) :: t()

 Link to this function

 set_frameSize(self, prop)

 View Source

 @spec set_frameSize(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_icpAngleThresh(self, prop)

 View Source

 @spec set_icpAngleThresh(t(), number()) :: t()

 Link to this function

 set_icpDistThresh(self, prop)

 View Source

 @spec set_icpDistThresh(t(), number()) :: t()

 Link to this function

 set_icpIterations(self, prop)

 View Source

 @spec set_icpIterations(t(), [integer()]) :: t()

 Link to this function

 set_intr(self, prop)

 View Source

 @spec set_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_lightPose(self, prop)

 View Source

 @spec set_lightPose(t(), {number(), number(), number()}) :: t()

 Link to this function

 set_pyramidLevels(self, prop)

 View Source

 @spec set_pyramidLevels(t(), integer()) :: t()

 Link to this function

 set_raycast_step_factor(self, prop)

 View Source

 @spec set_raycast_step_factor(t(), number()) :: t()

 Link to this function

 set_rgb_intr(self, prop)

 View Source

 @spec set_rgb_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_truncateThreshold(self, prop)

 View Source

 @spec set_truncateThreshold(t(), number()) :: t()

 Link to this function

 set_tsdf_max_weight(self, prop)

 View Source

 @spec set_tsdf_max_weight(t(), integer()) :: t()

 Link to this function

 set_tsdf_min_camera_movement(self, prop)

 View Source

 @spec set_tsdf_min_camera_movement(t(), number()) :: t()

 Link to this function

 set_tsdf_trunc_dist(self, prop)

 View Source

 @spec set_tsdf_trunc_dist(t(), number()) :: t()

 Link to this function

 set_volumeDims(self, prop)

 View Source

 @spec set_volumeDims(t(), {integer(), integer(), integer()}) :: t()

 Link to this function

 set_volumeType(self, prop)

 View Source

 @spec set_volumeType(t(), integer()) :: t()

 Link to this function

 set_voxelSize(self, prop)

 View Source

 @spec set_voxelSize(t(), number()) :: t()

 Link to this function

 setInitialVolumePose(self, homogen_tf)

 View Source

 @spec setInitialVolumePose(t(), Evision.Mat.t()) :: t() | {:error, String.t()}

Set Initial Volume Pose
Sets the initial pose of the TSDF volume.
Positional Arguments
	self: Evision.KinFu.Params.t()

	homogen_tf: Evision.Mat.t().
4 by 4 Homogeneous Transform matrix to set the intial pose of TSDF volume

Python prototype (for reference only):
setInitialVolumePose(homogen_tf) -> None

 Link to this function

 setInitialVolumePose(self, r, t)

 View Source

 @spec setInitialVolumePose(t(), Evision.Mat.t(), {number(), number(), number()}) ::
 t() | {:error, String.t()}

Set Initial Volume Pose
Sets the initial pose of the TSDF volume.
Positional Arguments
	self: Evision.KinFu.Params.t()

	r: Evision.Mat.t().
rotation matrix

	t: Vec3f.
translation vector

Python prototype (for reference only):
setInitialVolumePose(R, t) -> None

 Evision.KinFu.Volume - Evision v0.1.39

Evision.KinFu.Volume

 Summary

 Types

 t()

 Type that represents an KinFu.Volume struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu.Volume{ref: reference()}

Type that represents an KinFu.Volume struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.KinFu.VolumeParams - Evision v0.1.39

Evision.KinFu.VolumeParams

 Summary

 Types

 t()

 Type that represents an KinFu.VolumeParams struct.

 Functions

 coarseParams(volumeType)

 Coarse set of parameters that provides relatively higher performance
at the cost of reconstrution quality.

 defaultParams(volumeType)

 Default set of parameters that provide higher quality reconstruction
at the cost of slow performance.

 get_depthTruncThreshold(self)

 get_maxWeight(self)

 get_raycastStepFactor(self)

 get_resolution(self)

 get_tsdfTruncDist(self)

 get_type(self)

 get_voxelSize(self)

 set_depthTruncThreshold(self, prop)

 set_maxWeight(self, prop)

 set_raycastStepFactor(self, prop)

 set_resolution(self, prop)

 set_tsdfTruncDist(self, prop)

 set_type(self, prop)

 set_voxelSize(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.KinFu.VolumeParams{ref: reference()}

Type that represents an KinFu.VolumeParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 coarseParams(volumeType)

 View Source

 @spec coarseParams(integer()) :: t() | {:error, String.t()}

Coarse set of parameters that provides relatively higher performance
at the cost of reconstrution quality.
Positional Arguments
	volumeType: VolumeType

Return
	retval: VolumeParams

Python prototype (for reference only):
coarseParams(_volumeType) -> retval

 Link to this function

 defaultParams(volumeType)

 View Source

 @spec defaultParams(integer()) :: t() | {:error, String.t()}

Default set of parameters that provide higher quality reconstruction
at the cost of slow performance.
Positional Arguments
	volumeType: VolumeType

Return
	retval: VolumeParams

Python prototype (for reference only):
defaultParams(_volumeType) -> retval

 Link to this function

 get_depthTruncThreshold(self)

 View Source

 @spec get_depthTruncThreshold(t()) :: number()

 Link to this function

 get_maxWeight(self)

 View Source

 @spec get_maxWeight(t()) :: integer()

 Link to this function

 get_raycastStepFactor(self)

 View Source

 @spec get_raycastStepFactor(t()) :: number()

 Link to this function

 get_resolution(self)

 View Source

 @spec get_resolution(t()) :: {integer(), integer(), integer()}

 Link to this function

 get_tsdfTruncDist(self)

 View Source

 @spec get_tsdfTruncDist(t()) :: number()

 Link to this function

 get_type(self)

 View Source

 @spec get_type(t()) :: integer()

 Link to this function

 get_voxelSize(self)

 View Source

 @spec get_voxelSize(t()) :: number()

 Link to this function

 set_depthTruncThreshold(self, prop)

 View Source

 @spec set_depthTruncThreshold(t(), number()) :: t()

 Link to this function

 set_maxWeight(self, prop)

 View Source

 @spec set_maxWeight(t(), integer()) :: t()

 Link to this function

 set_raycastStepFactor(self, prop)

 View Source

 @spec set_raycastStepFactor(t(), number()) :: t()

 Link to this function

 set_resolution(self, prop)

 View Source

 @spec set_resolution(t(), {integer(), integer(), integer()}) :: t()

 Link to this function

 set_tsdfTruncDist(self, prop)

 View Source

 @spec set_tsdfTruncDist(t(), number()) :: t()

 Link to this function

 set_type(self, prop)

 View Source

 @spec set_type(t(), integer()) :: t()

 Link to this function

 set_voxelSize(self, prop)

 View Source

 @spec set_voxelSize(t(), number()) :: t()

 Evision.LargeKinfu - Evision v0.1.39

Evision.LargeKinfu

 Summary

 Types

 t()

 Type that represents an LargeKinfu struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LargeKinfu{ref: reference()}

Type that represents an LargeKinfu struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.LargeKinfu.LargeKinfu - Evision v0.1.39

Evision.LargeKinfu.LargeKinfu

 Summary

 Types

 t()

 Type that represents an LargeKinfu.LargeKinfu struct.

 Functions

 create(params)

 create

 getCloud(self)

 getCloud

 getCloud(self, opts)

 getCloud

 getNormals(self, points)

 getNormals

 getNormals(self, points, opts)

 getNormals

 getPoints(self)

 getPoints

 getPoints(self, opts)

 getPoints

 render(self)

 render

 render(self, opts)

 Variant 1:
render

 render(self, cameraPose, opts)

 render

 reset(self)

 reset

 update(self, depth)

 update

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LargeKinfu.LargeKinfu{ref: reference()}

Type that represents an LargeKinfu.LargeKinfu struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(params)

 View Source

 @spec create(Evision.LargeKinfu.Params.t()) ::
 Evision.LargeKinfu.t() | {:error, String.t()}

create
Positional Arguments
	params: Params

Return
	retval: Evision.LargeKinfu.t()

Python prototype (for reference only):
create(_params) -> retval

 Link to this function

 getCloud(self)

 View Source

 @spec getCloud(Evision.LargeKinfu.t()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

getCloud
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	points: Evision.Mat.t().
	normals: Evision.Mat.t().

Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getCloud(self, opts)

 View Source

 @spec getCloud(Evision.LargeKinfu.t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

getCloud
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	points: Evision.Mat.t().
	normals: Evision.Mat.t().

Python prototype (for reference only):
getCloud([, points[, normals]]) -> points, normals

 Link to this function

 getNormals(self, points)

 View Source

 @spec getNormals(Evision.LargeKinfu.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

getNormals
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()
	points: Evision.Mat.t()

Return
	normals: Evision.Mat.t().

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getNormals(self, points, opts)

 View Source

 @spec getNormals(
 Evision.LargeKinfu.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

getNormals
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()
	points: Evision.Mat.t()

Return
	normals: Evision.Mat.t().

Python prototype (for reference only):
getNormals(points[, normals]) -> normals

 Link to this function

 getPoints(self)

 View Source

 @spec getPoints(Evision.LargeKinfu.t()) :: Evision.Mat.t() | {:error, String.t()}

getPoints
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	points: Evision.Mat.t().

Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 getPoints(self, opts)

 View Source

 @spec getPoints(Evision.LargeKinfu.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getPoints
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	points: Evision.Mat.t().

Python prototype (for reference only):
getPoints([, points]) -> points

 Link to this function

 render(self)

 View Source

 @spec render(Evision.LargeKinfu.t()) :: Evision.Mat.t() | {:error, String.t()}

render
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	image: Evision.Mat.t().

Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, opts)

 View Source

 @spec render(Evision.LargeKinfu.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec render(Evision.LargeKinfu.t(), Evision.Mat.t()) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
render
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()
	cameraPose: Evision.Mat.t()

Return
	image: Evision.Mat.t().

Python prototype (for reference only):
render(cameraPose[, image]) -> image
Variant 2:
render
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Return
	image: Evision.Mat.t().

Python prototype (for reference only):
render([, image]) -> image

 Link to this function

 render(self, cameraPose, opts)

 View Source

 @spec render(Evision.LargeKinfu.t(), Evision.Mat.t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

render
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()
	cameraPose: Evision.Mat.t()

Return
	image: Evision.Mat.t().

Python prototype (for reference only):
render(cameraPose[, image]) -> image

 Link to this function

 reset(self)

 View Source

 @spec reset(Evision.LargeKinfu.t()) :: Evision.LargeKinfu.t() | {:error, String.t()}

reset
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()

Python prototype (for reference only):
reset() -> None

 Link to this function

 update(self, depth)

 View Source

 @spec update(Evision.LargeKinfu.t(), Evision.Mat.maybe_mat_in()) ::
 boolean() | {:error, String.t()}

update
Positional Arguments
	self: Evision.LargeKinfu.LargeKinfu.t()
	depth: Evision.Mat.t()

Return
	retval: bool

Python prototype (for reference only):
update(depth) -> retval

 Evision.LargeKinfu.Params - Evision v0.1.39

Evision.LargeKinfu.Params

 Summary

 Types

 t()

 Type that represents an LargeKinfu.Params struct.

 Functions

 coarseParams()

 Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.

 defaultParams()

 Default parameters
A set of parameters which provides better model quality, can be very slow.

 get_bilateral_kernel_size(self)

 get_bilateral_sigma_depth(self)

 get_bilateral_sigma_spatial(self)

 get_depthFactor(self)

 get_frameSize(self)

 get_icpAngleThresh(self)

 get_icpDistThresh(self)

 get_icpIterations(self)

 get_intr(self)

 get_lightPose(self)

 get_pyramidLevels(self)

 get_rgb_intr(self)

 get_truncateThreshold(self)

 get_tsdf_min_camera_movement(self)

 hashTSDFParams(isCoarse)

 HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume

 set_bilateral_kernel_size(self, prop)

 set_bilateral_sigma_depth(self, prop)

 set_bilateral_sigma_spatial(self, prop)

 set_depthFactor(self, prop)

 set_frameSize(self, prop)

 set_icpAngleThresh(self, prop)

 set_icpDistThresh(self, prop)

 set_icpIterations(self, prop)

 set_intr(self, prop)

 set_lightPose(self, prop)

 set_pyramidLevels(self, prop)

 set_rgb_intr(self, prop)

 set_truncateThreshold(self, prop)

 set_tsdf_min_camera_movement(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LargeKinfu.Params{ref: reference()}

Type that represents an LargeKinfu.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 coarseParams()

 View Source

 @spec coarseParams() :: t() | {:error, String.t()}

Coarse parameters
A set of parameters which provides better speed, can fail to match frames
in case of rapid sensor motion.
Return
	retval: Params

Python prototype (for reference only):
coarseParams() -> retval

 Link to this function

 defaultParams()

 View Source

 @spec defaultParams() :: t() | {:error, String.t()}

Default parameters
A set of parameters which provides better model quality, can be very slow.
Return
	retval: Params

Python prototype (for reference only):
defaultParams() -> retval

 Link to this function

 get_bilateral_kernel_size(self)

 View Source

 @spec get_bilateral_kernel_size(t()) :: integer()

 Link to this function

 get_bilateral_sigma_depth(self)

 View Source

 @spec get_bilateral_sigma_depth(t()) :: number()

 Link to this function

 get_bilateral_sigma_spatial(self)

 View Source

 @spec get_bilateral_sigma_spatial(t()) :: number()

 Link to this function

 get_depthFactor(self)

 View Source

 @spec get_depthFactor(t()) :: number()

 Link to this function

 get_frameSize(self)

 View Source

 @spec get_frameSize(t()) :: {number(), number()}

 Link to this function

 get_icpAngleThresh(self)

 View Source

 @spec get_icpAngleThresh(t()) :: number()

 Link to this function

 get_icpDistThresh(self)

 View Source

 @spec get_icpDistThresh(t()) :: number()

 Link to this function

 get_icpIterations(self)

 View Source

 @spec get_icpIterations(t()) :: [integer()]

 Link to this function

 get_intr(self)

 View Source

 @spec get_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_lightPose(self)

 View Source

 @spec get_lightPose(t()) :: {number(), number(), number()}

 Link to this function

 get_pyramidLevels(self)

 View Source

 @spec get_pyramidLevels(t()) :: integer()

 Link to this function

 get_rgb_intr(self)

 View Source

 @spec get_rgb_intr(t()) :: Evision.Mat.t()

 Link to this function

 get_truncateThreshold(self)

 View Source

 @spec get_truncateThreshold(t()) :: number()

 Link to this function

 get_tsdf_min_camera_movement(self)

 View Source

 @spec get_tsdf_min_camera_movement(t()) :: number()

 Link to this function

 hashTSDFParams(isCoarse)

 View Source

 @spec hashTSDFParams(boolean()) :: t() | {:error, String.t()}

HashTSDF parameters
A set of parameters suitable for use with HashTSDFVolume
Positional Arguments
	isCoarse: bool

Return
	retval: Params

Python prototype (for reference only):
hashTSDFParams(isCoarse) -> retval

 Link to this function

 set_bilateral_kernel_size(self, prop)

 View Source

 @spec set_bilateral_kernel_size(t(), integer()) :: t()

 Link to this function

 set_bilateral_sigma_depth(self, prop)

 View Source

 @spec set_bilateral_sigma_depth(t(), number()) :: t()

 Link to this function

 set_bilateral_sigma_spatial(self, prop)

 View Source

 @spec set_bilateral_sigma_spatial(t(), number()) :: t()

 Link to this function

 set_depthFactor(self, prop)

 View Source

 @spec set_depthFactor(t(), number()) :: t()

 Link to this function

 set_frameSize(self, prop)

 View Source

 @spec set_frameSize(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_icpAngleThresh(self, prop)

 View Source

 @spec set_icpAngleThresh(t(), number()) :: t()

 Link to this function

 set_icpDistThresh(self, prop)

 View Source

 @spec set_icpDistThresh(t(), number()) :: t()

 Link to this function

 set_icpIterations(self, prop)

 View Source

 @spec set_icpIterations(t(), [integer()]) :: t()

 Link to this function

 set_intr(self, prop)

 View Source

 @spec set_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_lightPose(self, prop)

 View Source

 @spec set_lightPose(t(), {number(), number(), number()}) :: t()

 Link to this function

 set_pyramidLevels(self, prop)

 View Source

 @spec set_pyramidLevels(t(), integer()) :: t()

 Link to this function

 set_rgb_intr(self, prop)

 View Source

 @spec set_rgb_intr(t(), Evision.Mat.t()) :: t()

 Link to this function

 set_truncateThreshold(self, prop)

 View Source

 @spec set_truncateThreshold(t(), number()) :: t()

 Link to this function

 set_tsdf_min_camera_movement(self, prop)

 View Source

 @spec set_tsdf_min_camera_movement(t(), number()) :: t()

 Evision.Legacy - Evision v0.1.39

Evision.Legacy

 Summary

 Types

 t()

 Type that represents an Legacy struct.

 Functions

 upgradeTrackingAPI(legacy_tracker)

 upgradeTrackingAPI

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy{ref: reference()}

Type that represents an Legacy struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 upgradeTrackingAPI(legacy_tracker)

 View Source

 @spec upgradeTrackingAPI(Evision.Legacy.MultiTracker.t()) ::
 Evision.Tracker.t() | {:error, String.t()}

upgradeTrackingAPI
Positional Arguments
	legacy_tracker: Evision.Legacy.MultiTracker.t()

Return
	retval: Evision.Tracker.t()

Python prototype (for reference only):
upgradeTrackingAPI(legacy_tracker) -> retval

 Evision.Legacy.MultiTracker - Evision v0.1.39

Evision.Legacy.MultiTracker

 Summary

 Types

 t()

 Type that represents an Legacy.MultiTracker struct.

 Functions

 add(self, newTracker, image, boundingBox)

 add

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getObjects(self)

 getObjects

 multiTracker()

 MultiTracker

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 update(self, image)

 update

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.MultiTracker{ref: reference()}

Type that represents an Legacy.MultiTracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 add(self, newTracker, image, boundingBox)

 View Source

 @spec add(
 t(),
 t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()}
) ::
 boolean() | {:error, String.t()}

add
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

	newTracker: Evision.Legacy.MultiTracker.t().
tracking algorithm to be used

	image: Evision.Mat.t().
input image

	boundingBox: Rect2d.
a rectangle represents ROI of the tracked object

Return
	retval: bool

 \brief Add a new object to be tracked.
Python prototype (for reference only):
add(newTracker, image, boundingBox) -> retval

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: MultiTracker

 \brief Returns a pointer to a new instance of MultiTracker
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getObjects(self)

 View Source

 @spec getObjects(t()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

getObjects
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

Return
	retval: [Rect2d]

 \brief Returns a reference to a storage for the tracked objects, each object corresponds to one tracker algorithm
Python prototype (for reference only):
getObjects() -> retval

 Link to this function

 multiTracker()

 View Source

 @spec multiTracker() :: t() | {:error, String.t()}

MultiTracker
Return
	self: MultiTracker

 \brief Constructor.
Python prototype (for reference only):
MultiTracker() -> <legacy_MultiTracker object>

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 update(self, image)

 View Source

 @spec update(t(), Evision.Mat.maybe_mat_in()) ::
 [{number(), number(), number(), number()}] | false | {:error, String.t()}

update
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()

	image: Evision.Mat.t().
input image

Return
	retval: bool

	boundingBox: [Rect2d].
the tracking result, represent a list of ROIs of the tracked objects.

 \brief Update the current tracking status.
Python prototype (for reference only):
update(image) -> retval, boundingBox

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Legacy.MultiTracker.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Legacy.Tracker - Evision v0.1.39

Evision.Legacy.Tracker

 Summary

 Types

 t()

 Type that represents an Legacy.Tracker struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 init(self, image, boundingBox)

 Initialize the tracker with a known bounding box that surrounded the target

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 update(self, image)

 Update the tracker, find the new most likely bounding box for the target

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.Tracker{ref: reference()}

Type that represents an Legacy.Tracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Legacy.Tracker.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Legacy.Tracker.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Legacy.Tracker.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 init(self, image, boundingBox)

 View Source

 @spec init(
 Evision.Tracker.t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()}
) ::
 boolean() | {:error, String.t()}

Initialize the tracker with a known bounding box that surrounded the target
Positional Arguments
	self: Evision.Legacy.Tracker.t()

	image: Evision.Mat.t().
The initial frame

	boundingBox: Rect2d.
The initial bounding box

Return
	retval: bool

@return True if initialization went succesfully, false otherwise
Python prototype (for reference only):
init(image, boundingBox) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Legacy.Tracker.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Legacy.Tracker.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 update(self, image)

 View Source

 @spec update(Evision.Tracker.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), number(), number(), number()} | false | {:error, String.t()}

Update the tracker, find the new most likely bounding box for the target
Positional Arguments
	self: Evision.Legacy.Tracker.t()

	image: Evision.Mat.t().
The current frame

Return
	retval: bool

	boundingBox: Rect2d.
The bounding box that represent the new target location, if true was returned, not
modified otherwise

@return True means that target was located and false means that tracker cannot locate target in
current frame. Note, that latter does not imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
Python prototype (for reference only):
update(image) -> retval, boundingBox

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Legacy.Tracker.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Legacy.Tracker.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Legacy.TrackerBoosting - Evision v0.1.39

Evision.Legacy.TrackerBoosting

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerBoosting struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerBoosting{ref: reference()}

Type that represents an Legacy.TrackerBoosting struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerBoosting

Python prototype (for reference only):
create() -> retval

 Evision.Legacy.TrackerCSRT - Evision v0.1.39

Evision.Legacy.TrackerCSRT

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerCSRT struct.

 Functions

 create()

 Constructor

 setInitialMask(self, mask)

 setInitialMask

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerCSRT{ref: reference()}

Type that represents an Legacy.TrackerCSRT struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerCSRT

Python prototype (for reference only):
create() -> retval

 Link to this function

 setInitialMask(self, mask)

 View Source

 @spec setInitialMask(Evision.TrackerCSRT.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.TrackerCSRT.t() | {:error, String.t()}

setInitialMask
Positional Arguments
	self: Evision.Legacy.TrackerCSRT.t()
	mask: Evision.Mat.t()

Python prototype (for reference only):
setInitialMask(mask) -> None

 Evision.Legacy.TrackerKCF - Evision v0.1.39

Evision.Legacy.TrackerKCF

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerKCF struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerKCF{ref: reference()}

Type that represents an Legacy.TrackerKCF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerKCF

Python prototype (for reference only):
create() -> retval

 Evision.Legacy.TrackerMIL - Evision v0.1.39

Evision.Legacy.TrackerMIL

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerMIL struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerMIL{ref: reference()}

Type that represents an Legacy.TrackerMIL struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerMIL

Python prototype (for reference only):
create() -> retval

 Evision.Legacy.TrackerMOSSE - Evision v0.1.39

Evision.Legacy.TrackerMOSSE

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerMOSSE struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerMOSSE{ref: reference()}

Type that represents an Legacy.TrackerMOSSE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerMOSSE

Python prototype (for reference only):
create() -> retval

 Evision.Legacy.TrackerMedianFlow - Evision v0.1.39

Evision.Legacy.TrackerMedianFlow

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerMedianFlow struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerMedianFlow{ref: reference()}

Type that represents an Legacy.TrackerMedianFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerMedianFlow

Python prototype (for reference only):
create() -> retval

 Evision.Legacy.TrackerTLD - Evision v0.1.39

Evision.Legacy.TrackerTLD

 Summary

 Types

 t()

 Type that represents an Legacy.TrackerTLD struct.

 Functions

 create()

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Legacy.TrackerTLD{ref: reference()}

Type that represents an Legacy.TrackerTLD struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Return
	retval: legacy::TrackerTLD

Python prototype (for reference only):
create() -> retval

 Evision.LineDescriptor - Evision v0.1.39

Evision.LineDescriptor

 Summary

 Types

 t()

 Type that represents an LineDescriptor struct.

 Functions

 drawKeylines(image, keylines)

 Draws keylines.

 drawKeylines(image, keylines, opts)

 Draws keylines.

 drawLineMatches(img1, keylines1, img2, keylines2, matches1to2)

 Draws the found matches of keylines from two images.

 drawLineMatches(img1, keylines1, img2, keylines2, matches1to2, opts)

 Draws the found matches of keylines from two images.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor{ref: reference()}

Type that represents an LineDescriptor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 drawKeylines(image, keylines)

 View Source

 @spec drawKeylines(Evision.Mat.maybe_mat_in(), [Evision.LineDescriptor.KeyLine.t()]) ::
 Evision.Mat.t() | {:error, String.t()}

Draws keylines.
Positional Arguments
	image: Evision.Mat.t().
input image

	keylines: [Evision.LineDescriptor.KeyLine].
keylines to be drawn

Keyword Arguments
	color: Scalar.
color of lines to be drawn (if set to defaul value, color is chosen randomly)

	flags: int.
drawing flags

Return
	outImage: Evision.Mat.t().
output image to draw on

Python prototype (for reference only):
drawKeylines(image, keylines[, outImage[, color[, flags]]]) -> outImage

 Link to this function

 drawKeylines(image, keylines, opts)

 View Source

 @spec drawKeylines(
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 [flags: term(), color: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws keylines.
Positional Arguments
	image: Evision.Mat.t().
input image

	keylines: [Evision.LineDescriptor.KeyLine].
keylines to be drawn

Keyword Arguments
	color: Scalar.
color of lines to be drawn (if set to defaul value, color is chosen randomly)

	flags: int.
drawing flags

Return
	outImage: Evision.Mat.t().
output image to draw on

Python prototype (for reference only):
drawKeylines(image, keylines[, outImage[, color[, flags]]]) -> outImage

 Link to this function

 drawLineMatches(img1, keylines1, img2, keylines2, matches1to2)

 View Source

 @spec drawLineMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 [Evision.DMatch.t()]
) :: Evision.Mat.t() | {:error, String.t()}

Draws the found matches of keylines from two images.
Positional Arguments
	img1: Evision.Mat.t().
first image

	keylines1: [Evision.LineDescriptor.KeyLine].
keylines extracted from first image

	img2: Evision.Mat.t().
second image

	keylines2: [Evision.LineDescriptor.KeyLine].
keylines extracted from second image

	matches1to2: [Evision.DMatch].
vector of matches

Keyword Arguments
	matchColor: Scalar.
drawing color for matches (chosen randomly in case of default value)

	singleLineColor: Scalar.
drawing color for keylines (chosen randomly in case of default value)

	matchesMask: [char].
mask to indicate which matches must be drawn

	flags: int.
drawing flags, see DrawLinesMatchesFlags

Return
	outImg: Evision.Mat.t().
output matrix to draw on

Note: If both matchColor and singleLineColor are set to their default values, function draws
matched lines and line connecting them with same color
Python prototype (for reference only):
drawLineMatches(img1, keylines1, img2, keylines2, matches1to2[, outImg[, matchColor[, singleLineColor[, matchesMask[, flags]]]]]) -> outImg

 Link to this function

 drawLineMatches(img1, keylines1, img2, keylines2, matches1to2, opts)

 View Source

 @spec drawLineMatches(
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 [Evision.DMatch.t()],
 [
 flags: term(),
 matchColor: term(),
 singleLineColor: term(),
 matchesMask: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws the found matches of keylines from two images.
Positional Arguments
	img1: Evision.Mat.t().
first image

	keylines1: [Evision.LineDescriptor.KeyLine].
keylines extracted from first image

	img2: Evision.Mat.t().
second image

	keylines2: [Evision.LineDescriptor.KeyLine].
keylines extracted from second image

	matches1to2: [Evision.DMatch].
vector of matches

Keyword Arguments
	matchColor: Scalar.
drawing color for matches (chosen randomly in case of default value)

	singleLineColor: Scalar.
drawing color for keylines (chosen randomly in case of default value)

	matchesMask: [char].
mask to indicate which matches must be drawn

	flags: int.
drawing flags, see DrawLinesMatchesFlags

Return
	outImg: Evision.Mat.t().
output matrix to draw on

Note: If both matchColor and singleLineColor are set to their default values, function draws
matched lines and line connecting them with same color
Python prototype (for reference only):
drawLineMatches(img1, keylines1, img2, keylines2, matches1to2[, outImg[, matchColor[, singleLineColor[, matchesMask[, flags]]]]]) -> outImg

 Evision.LineDescriptor.BinaryDescriptor - Evision v0.1.39

Evision.LineDescriptor.BinaryDescriptor

 Summary

 Types

 t()

 Type that represents an LineDescriptor.BinaryDescriptor struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, image, keylines)

 Requires descriptors computation

 compute(self, image, keylines, opts)

 Requires descriptors computation

 createBinaryDescriptor()

 Create a BinaryDescriptor object with default parameters (or with the ones provided)
and return a smart pointer to it

 detect(self, image)

 Requires line detection

 detect(self, image, opts)

 Requires line detection

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getNumOfOctaves(self)

 Get current number of octaves

 getReductionRatio(self)

 Get current reduction ratio (used in Gaussian pyramids)

 getWidthOfBand(self)

 Get current width of bands

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setNumOfOctaves(self, octaves)

 Set number of octaves

 setReductionRatio(self, rRatio)

 Set reduction ratio (used in Gaussian pyramids)

 setWidthOfBand(self, width)

 Set width of bands

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.BinaryDescriptor{ref: reference()}

Type that represents an LineDescriptor.BinaryDescriptor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, image, keylines)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), [Evision.LineDescriptor.KeyLine.t()]) ::
 {[Evision.LineDescriptor.KeyLine.t()], Evision.Mat.t()} | {:error, String.t()}

Requires descriptors computation
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	image: Evision.Mat.t().
input image

Keyword Arguments
	returnFloatDescr: bool.
flag (when set to true, original non-binary descriptors are returned)

Return
	keylines: [Evision.LineDescriptor.KeyLine].
vector containing lines for which descriptors must be computed

	descriptors: Evision.Mat.t().

Python prototype (for reference only):
compute(image, keylines[, descriptors[, returnFloatDescr]]) -> keylines, descriptors

 Link to this function

 compute(self, image, keylines, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.LineDescriptor.KeyLine.t()],
 [{:returnFloatDescr, term()}] | nil
) ::
 {[Evision.LineDescriptor.KeyLine.t()], Evision.Mat.t()} | {:error, String.t()}

Requires descriptors computation
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	image: Evision.Mat.t().
input image

Keyword Arguments
	returnFloatDescr: bool.
flag (when set to true, original non-binary descriptors are returned)

Return
	keylines: [Evision.LineDescriptor.KeyLine].
vector containing lines for which descriptors must be computed

	descriptors: Evision.Mat.t().

Python prototype (for reference only):
compute(image, keylines[, descriptors[, returnFloatDescr]]) -> keylines, descriptors

 Link to this function

 createBinaryDescriptor()

 View Source

 @spec createBinaryDescriptor() :: t() | {:error, String.t()}

Create a BinaryDescriptor object with default parameters (or with the ones provided)
and return a smart pointer to it
Return
	retval: Evision.LineDescriptor.BinaryDescriptor.t()

Python prototype (for reference only):
createBinaryDescriptor() -> retval

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.LineDescriptor.KeyLine.t()] | {:error, String.t()}

Requires line detection
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	image: Evision.Mat.t().
input image

Keyword Arguments
	mask: Evision.Mat.t().
mask matrix to detect only KeyLines of interest

Return
	keypoints: [Evision.LineDescriptor.KeyLine].
vector that will store extracted lines for one or more images

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 [Evision.LineDescriptor.KeyLine.t()] | {:error, String.t()}

Requires line detection
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	image: Evision.Mat.t().
input image

Keyword Arguments
	mask: Evision.Mat.t().
mask matrix to detect only KeyLines of interest

Return
	keypoints: [Evision.LineDescriptor.KeyLine].
vector that will store extracted lines for one or more images

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNumOfOctaves(self)

 View Source

 @spec getNumOfOctaves(t()) :: integer() | {:error, String.t()}

Get current number of octaves
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Return
	retval: int

Python prototype (for reference only):
getNumOfOctaves() -> retval

 Link to this function

 getReductionRatio(self)

 View Source

 @spec getReductionRatio(t()) :: integer() | {:error, String.t()}

Get current reduction ratio (used in Gaussian pyramids)
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Return
	retval: int

Python prototype (for reference only):
getReductionRatio() -> retval

 Link to this function

 getWidthOfBand(self)

 View Source

 @spec getWidthOfBand(t()) :: integer() | {:error, String.t()}

Get current width of bands
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

Return
	retval: int

Python prototype (for reference only):
getWidthOfBand() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setNumOfOctaves(self, octaves)

 View Source

 @spec setNumOfOctaves(t(), integer()) :: t() | {:error, String.t()}

Set number of octaves
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	octaves: int.
number of octaves

Python prototype (for reference only):
setNumOfOctaves(octaves) -> None

 Link to this function

 setReductionRatio(self, rRatio)

 View Source

 @spec setReductionRatio(t(), integer()) :: t() | {:error, String.t()}

Set reduction ratio (used in Gaussian pyramids)
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	rRatio: int.
reduction ratio

Python prototype (for reference only):
setReductionRatio(rRatio) -> None

 Link to this function

 setWidthOfBand(self, width)

 View Source

 @spec setWidthOfBand(t(), integer()) :: t() | {:error, String.t()}

Set width of bands
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()

	width: int.
width of bands

Python prototype (for reference only):
setWidthOfBand(width) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptor.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.LineDescriptor.BinaryDescriptorMatcher - Evision v0.1.39

Evision.LineDescriptor.BinaryDescriptorMatcher

 Summary

 Types

 t()

 Type that represents an LineDescriptor.BinaryDescriptorMatcher struct.

 Functions

 binaryDescriptorMatcher()

 Constructor.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 knnMatch(self, queryDescriptors, trainDescriptors, k)

 For every input query descriptor, retrieve the best k matching ones from a dataset provided from
user or from the one internal to class

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 For every input query descriptor, retrieve the best k matching ones from a dataset provided from
user or from the one internal to class

 knnMatchQuery(self, queryDescriptors, matches, k)

 knnMatchQuery

 knnMatchQuery(self, queryDescriptors, matches, k, opts)

 knnMatchQuery

 match(self, queryDescriptors, trainDescriptors)

 For every input query descriptor, retrieve the best matching one from a dataset provided from user
or from the one internal to class

 match(self, queryDescriptors, trainDescriptors, opts)

 For every input query descriptor, retrieve the best matching one from a dataset provided from user
or from the one internal to class

 matchQuery(self, queryDescriptors)

 matchQuery

 matchQuery(self, queryDescriptors, opts)

 matchQuery

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.BinaryDescriptorMatcher{ref: reference()}

Type that represents an LineDescriptor.BinaryDescriptorMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 binaryDescriptorMatcher()

 View Source

 @spec binaryDescriptorMatcher() :: t() | {:error, String.t()}

Constructor.
Return
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

The BinaryDescriptorMatcher constructed is able to store and manage 256-bits long entries.
Python prototype (for reference only):
BinaryDescriptorMatcher() -> <line_descriptor_BinaryDescriptorMatcher object>

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k)

 View Source

 @spec knnMatch(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 [[Evision.DMatch.t()]] | {:error, String.t()}

For every input query descriptor, retrieve the best k matching ones from a dataset provided from
user or from the one internal to class
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	trainDescriptors: Evision.Mat.t().
dataset of descriptors furnished by user

	k: int.
number of the closest descriptors to be returned for every input query

Keyword Arguments
	mask: Evision.Mat.t().
mask to select which input descriptors must be matched to ones in dataset

	compactResult: bool.
flag to obtain a compact result (if true, a vector that doesn't contain any
matches for a given query is not inserted in final result)

Return
	matches: [[Evision.DMatch]].
vector to host retrieved matches

Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 knnMatch(self, queryDescriptors, trainDescriptors, k, opts)

 View Source

 @spec knnMatch(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [compactResult: term(), mask: term()] | nil
) :: [[Evision.DMatch.t()]] | {:error, String.t()}

For every input query descriptor, retrieve the best k matching ones from a dataset provided from
user or from the one internal to class
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	trainDescriptors: Evision.Mat.t().
dataset of descriptors furnished by user

	k: int.
number of the closest descriptors to be returned for every input query

Keyword Arguments
	mask: Evision.Mat.t().
mask to select which input descriptors must be matched to ones in dataset

	compactResult: bool.
flag to obtain a compact result (if true, a vector that doesn't contain any
matches for a given query is not inserted in final result)

Return
	matches: [[Evision.DMatch]].
vector to host retrieved matches

Python prototype (for reference only):
knnMatch(queryDescriptors, trainDescriptors, k[, mask[, compactResult]]) -> matches

 Link to this function

 knnMatchQuery(self, queryDescriptors, matches, k)

 View Source

 @spec knnMatchQuery(
 t(),
 Evision.Mat.maybe_mat_in(),
 [[Evision.DMatch.t()]],
 integer()
) ::
 t() | {:error, String.t()}

knnMatchQuery
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	matches: [[Evision.DMatch]].
vector to host retrieved matches

	k: int.
number of the closest descriptors to be returned for every input query

Keyword Arguments
	masks: [Evision.Mat].
vector of masks to select which input descriptors must be matched to ones in dataset
(the i-th mask in vector indicates whether each input query can be matched with descriptors in
dataset relative to i-th image)

	compactResult: bool.
flag to obtain a compact result (if true, a vector that doesn't contain any
matches for a given query is not inserted in final result)

Has overloading in C++
Python prototype (for reference only):
knnMatchQuery(queryDescriptors, matches, k[, masks[, compactResult]]) -> None

 Link to this function

 knnMatchQuery(self, queryDescriptors, matches, k, opts)

 View Source

 @spec knnMatchQuery(
 t(),
 Evision.Mat.maybe_mat_in(),
 [[Evision.DMatch.t()]],
 integer(),
 [compactResult: term(), masks: term()] | nil
) :: t() | {:error, String.t()}

knnMatchQuery
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	matches: [[Evision.DMatch]].
vector to host retrieved matches

	k: int.
number of the closest descriptors to be returned for every input query

Keyword Arguments
	masks: [Evision.Mat].
vector of masks to select which input descriptors must be matched to ones in dataset
(the i-th mask in vector indicates whether each input query can be matched with descriptors in
dataset relative to i-th image)

	compactResult: bool.
flag to obtain a compact result (if true, a vector that doesn't contain any
matches for a given query is not inserted in final result)

Has overloading in C++
Python prototype (for reference only):
knnMatchQuery(queryDescriptors, matches, k[, masks[, compactResult]]) -> None

 Link to this function

 match(self, queryDescriptors, trainDescriptors)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

For every input query descriptor, retrieve the best matching one from a dataset provided from user
or from the one internal to class
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	trainDescriptors: Evision.Mat.t().
dataset of descriptors furnished by user

Keyword Arguments
	mask: Evision.Mat.t().
mask to select which input descriptors must be matched to one in dataset

Return
	matches: [Evision.DMatch].
vector to host retrieved matches

Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 match(self, queryDescriptors, trainDescriptors, opts)

 View Source

 @spec match(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.DMatch.t()] | {:error, String.t()}

For every input query descriptor, retrieve the best matching one from a dataset provided from user
or from the one internal to class
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

	trainDescriptors: Evision.Mat.t().
dataset of descriptors furnished by user

Keyword Arguments
	mask: Evision.Mat.t().
mask to select which input descriptors must be matched to one in dataset

Return
	matches: [Evision.DMatch].
vector to host retrieved matches

Python prototype (for reference only):
match(queryDescriptors, trainDescriptors[, mask]) -> matches

 Link to this function

 matchQuery(self, queryDescriptors)

 View Source

 @spec matchQuery(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.DMatch.t()] | {:error, String.t()}

matchQuery
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

Keyword Arguments
	masks: [Evision.Mat].
vector of masks to select which input descriptors must be matched to one in dataset
(the i-th mask in vector indicates whether each input query can be matched with descriptors in
dataset relative to i-th image)

Return
	matches: [Evision.DMatch].
vector to host retrieved matches

Has overloading in C++
Python prototype (for reference only):
matchQuery(queryDescriptors[, masks]) -> matches

 Link to this function

 matchQuery(self, queryDescriptors, opts)

 View Source

 @spec matchQuery(t(), Evision.Mat.maybe_mat_in(), [{:masks, term()}] | nil) ::
 [Evision.DMatch.t()] | {:error, String.t()}

matchQuery
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()

	queryDescriptors: Evision.Mat.t().
query descriptors

Keyword Arguments
	masks: [Evision.Mat].
vector of masks to select which input descriptors must be matched to one in dataset
(the i-th mask in vector indicates whether each input query can be matched with descriptors in
dataset relative to i-th image)

Return
	matches: [Evision.DMatch].
vector to host retrieved matches

Has overloading in C++
Python prototype (for reference only):
matchQuery(queryDescriptors[, masks]) -> matches

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.LineDescriptor.BinaryDescriptorMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.LineDescriptor.DrawLinesMatchesFlags - Evision v0.1.39

Evision.LineDescriptor.DrawLinesMatchesFlags

 Summary

 Types

 t()

 Type that represents an LineDescriptor.DrawLinesMatchesFlags struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.DrawLinesMatchesFlags{ref: reference()}

Type that represents an LineDescriptor.DrawLinesMatchesFlags struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.LineDescriptor.KeyLine - Evision v0.1.39

Evision.LineDescriptor.KeyLine

 Summary

 Types

 t()

 Type that represents an LineDescriptor.KeyLine struct.

 Functions

 get_angle(self)

 get_class_id(self)

 get_endPointX(self)

 get_endPointY(self)

 get_ePointInOctaveX(self)

 get_ePointInOctaveY(self)

 get_lineLength(self)

 get_numOfPixels(self)

 get_octave(self)

 get_pt(self)

 get_response(self)

 get_size(self)

 get_sPointInOctaveX(self)

 get_sPointInOctaveY(self)

 get_startPointX(self)

 get_startPointY(self)

 getEndPoint(self)

 getEndPoint

 getEndPointInOctave(self)

 getEndPointInOctave

 getStartPoint(self)

 getStartPoint

 getStartPointInOctave(self)

 getStartPointInOctave

 keyLine()

 KeyLine

 set_angle(self, prop)

 set_class_id(self, prop)

 set_endPointX(self, prop)

 set_endPointY(self, prop)

 set_ePointInOctaveX(self, prop)

 set_ePointInOctaveY(self, prop)

 set_lineLength(self, prop)

 set_numOfPixels(self, prop)

 set_octave(self, prop)

 set_pt(self, prop)

 set_response(self, prop)

 set_size(self, prop)

 set_sPointInOctaveX(self, prop)

 set_sPointInOctaveY(self, prop)

 set_startPointX(self, prop)

 set_startPointY(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.KeyLine{ref: reference()}

Type that represents an LineDescriptor.KeyLine struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_angle(self)

 View Source

 @spec get_angle(t()) :: number()

 Link to this function

 get_class_id(self)

 View Source

 @spec get_class_id(t()) :: integer()

 Link to this function

 get_endPointX(self)

 View Source

 @spec get_endPointX(t()) :: number()

 Link to this function

 get_endPointY(self)

 View Source

 @spec get_endPointY(t()) :: number()

 Link to this function

 get_ePointInOctaveX(self)

 View Source

 @spec get_ePointInOctaveX(t()) :: number()

 Link to this function

 get_ePointInOctaveY(self)

 View Source

 @spec get_ePointInOctaveY(t()) :: number()

 Link to this function

 get_lineLength(self)

 View Source

 @spec get_lineLength(t()) :: number()

 Link to this function

 get_numOfPixels(self)

 View Source

 @spec get_numOfPixels(t()) :: integer()

 Link to this function

 get_octave(self)

 View Source

 @spec get_octave(t()) :: integer()

 Link to this function

 get_pt(self)

 View Source

 @spec get_pt(t()) :: {number(), number()}

 Link to this function

 get_response(self)

 View Source

 @spec get_response(t()) :: number()

 Link to this function

 get_size(self)

 View Source

 @spec get_size(t()) :: number()

 Link to this function

 get_sPointInOctaveX(self)

 View Source

 @spec get_sPointInOctaveX(t()) :: number()

 Link to this function

 get_sPointInOctaveY(self)

 View Source

 @spec get_sPointInOctaveY(t()) :: number()

 Link to this function

 get_startPointX(self)

 View Source

 @spec get_startPointX(t()) :: number()

 Link to this function

 get_startPointY(self)

 View Source

 @spec get_startPointY(t()) :: number()

 Link to this function

 getEndPoint(self)

 View Source

 @spec getEndPoint(t()) :: {number(), number()} | {:error, String.t()}

getEndPoint
Positional Arguments
	self: Evision.LineDescriptor.KeyLine.t()

Return
	retval: Point2f

Returns the end point of the line in the original image
Python prototype (for reference only):
getEndPoint() -> retval

 Link to this function

 getEndPointInOctave(self)

 View Source

 @spec getEndPointInOctave(t()) :: {number(), number()} | {:error, String.t()}

getEndPointInOctave
Positional Arguments
	self: Evision.LineDescriptor.KeyLine.t()

Return
	retval: Point2f

Returns the end point of the line in the octave it was extracted from
Python prototype (for reference only):
getEndPointInOctave() -> retval

 Link to this function

 getStartPoint(self)

 View Source

 @spec getStartPoint(t()) :: {number(), number()} | {:error, String.t()}

getStartPoint
Positional Arguments
	self: Evision.LineDescriptor.KeyLine.t()

Return
	retval: Point2f

Returns the start point of the line in the original image
Python prototype (for reference only):
getStartPoint() -> retval

 Link to this function

 getStartPointInOctave(self)

 View Source

 @spec getStartPointInOctave(t()) :: {number(), number()} | {:error, String.t()}

getStartPointInOctave
Positional Arguments
	self: Evision.LineDescriptor.KeyLine.t()

Return
	retval: Point2f

Returns the start point of the line in the octave it was extracted from
Python prototype (for reference only):
getStartPointInOctave() -> retval

 Link to this function

 keyLine()

 View Source

 @spec keyLine() :: t() | {:error, String.t()}

KeyLine
Return
	self: Evision.LineDescriptor.KeyLine.t()

constructor
Python prototype (for reference only):
KeyLine() -> <line_descriptor_KeyLine object>

 Link to this function

 set_angle(self, prop)

 View Source

 @spec set_angle(t(), number()) :: t()

 Link to this function

 set_class_id(self, prop)

 View Source

 @spec set_class_id(t(), integer()) :: t()

 Link to this function

 set_endPointX(self, prop)

 View Source

 @spec set_endPointX(t(), number()) :: t()

 Link to this function

 set_endPointY(self, prop)

 View Source

 @spec set_endPointY(t(), number()) :: t()

 Link to this function

 set_ePointInOctaveX(self, prop)

 View Source

 @spec set_ePointInOctaveX(t(), number()) :: t()

 Link to this function

 set_ePointInOctaveY(self, prop)

 View Source

 @spec set_ePointInOctaveY(t(), number()) :: t()

 Link to this function

 set_lineLength(self, prop)

 View Source

 @spec set_lineLength(t(), number()) :: t()

 Link to this function

 set_numOfPixels(self, prop)

 View Source

 @spec set_numOfPixels(t(), integer()) :: t()

 Link to this function

 set_octave(self, prop)

 View Source

 @spec set_octave(t(), integer()) :: t()

 Link to this function

 set_pt(self, prop)

 View Source

 @spec set_pt(
 t(),
 {number(), number()}
) :: t()

 Link to this function

 set_response(self, prop)

 View Source

 @spec set_response(t(), number()) :: t()

 Link to this function

 set_size(self, prop)

 View Source

 @spec set_size(t(), number()) :: t()

 Link to this function

 set_sPointInOctaveX(self, prop)

 View Source

 @spec set_sPointInOctaveX(t(), number()) :: t()

 Link to this function

 set_sPointInOctaveY(self, prop)

 View Source

 @spec set_sPointInOctaveY(t(), number()) :: t()

 Link to this function

 set_startPointX(self, prop)

 View Source

 @spec set_startPointX(t(), number()) :: t()

 Link to this function

 set_startPointY(self, prop)

 View Source

 @spec set_startPointY(t(), number()) :: t()

 Evision.LineDescriptor.LSDDetector - Evision v0.1.39

Evision.LineDescriptor.LSDDetector

 Summary

 Types

 t()

 Type that represents an LineDescriptor.LSDDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 createLSDDetector()

 Creates ad LSDDetector object, using smart pointers.

 createLSDDetectorWithParams(params)

 createLSDDetectorWithParams

 detect(self, image, scale, numOctaves)

 Detect lines inside an image.

 detect(self, image, scale, numOctaves, opts)

 Variant 1:
detect

 detect(self, images, keylines, scale, numOctaves, opts)

 detect

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 lSDDetector(params)

 LSDDetectorWithParams

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.LSDDetector{ref: reference()}

Type that represents an LineDescriptor.LSDDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 createLSDDetector()

 View Source

 @spec createLSDDetector() :: t() | {:error, String.t()}

Creates ad LSDDetector object, using smart pointers.
Return
	retval: Evision.LineDescriptor.LSDDetector.t()

Python prototype (for reference only):
createLSDDetector() -> retval

 Link to this function

 createLSDDetectorWithParams(params)

 View Source

 @spec createLSDDetectorWithParams(Evision.LineDescriptor.LSDParam.t()) ::
 t() | {:error, String.t()}

createLSDDetectorWithParams
Positional Arguments
	params: Evision.LineDescriptor.LSDParam.t()

Return
	retval: Evision.LineDescriptor.LSDDetector.t()

Python prototype (for reference only):
createLSDDetectorWithParams(params) -> retval

 Link to this function

 detect(self, image, scale, numOctaves)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 [Evision.LineDescriptor.KeyLine.t()] | {:error, String.t()}

Detect lines inside an image.
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

	image: Evision.Mat.t().
input image

	scale: int.
scale factor used in pyramids generation

	numOctaves: int.
number of octaves inside pyramid

Keyword Arguments
	mask: Evision.Mat.t().
mask matrix to detect only KeyLines of interest

Return
	keypoints: [Evision.LineDescriptor.KeyLine].
vector that will store extracted lines for one or more images

Python prototype (for reference only):
detect(image, scale, numOctaves[, mask]) -> keypoints

 Link to this function

 detect(self, image, scale, numOctaves, opts)

 View Source

 @spec detect(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{:mask, term()}] | nil
) ::
 [Evision.LineDescriptor.KeyLine.t()] | {:error, String.t()}

 @spec detect(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.LineDescriptor.KeyLine.t()]],
 integer(),
 integer()
) :: t() | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

	images: [Evision.Mat].
input images

	keylines: [[Evision.LineDescriptor.KeyLine]].
set of vectors that will store extracted lines for one or more images

	scale: int.
scale factor used in pyramids generation

	numOctaves: int.
number of octaves inside pyramid

Keyword Arguments
	masks: [Evision.Mat].
vector of mask matrices to detect only KeyLines of interest from each input image

Has overloading in C++
Python prototype (for reference only):
detect(images, keylines, scale, numOctaves[, masks]) -> None
Variant 2:
Detect lines inside an image.
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

	image: Evision.Mat.t().
input image

	scale: int.
scale factor used in pyramids generation

	numOctaves: int.
number of octaves inside pyramid

Keyword Arguments
	mask: Evision.Mat.t().
mask matrix to detect only KeyLines of interest

Return
	keypoints: [Evision.LineDescriptor.KeyLine].
vector that will store extracted lines for one or more images

Python prototype (for reference only):
detect(image, scale, numOctaves[, mask]) -> keypoints

 Link to this function

 detect(self, images, keylines, scale, numOctaves, opts)

 View Source

 @spec detect(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.LineDescriptor.KeyLine.t()]],
 integer(),
 integer(),
 [{:masks, term()}] | nil
) :: t() | {:error, String.t()}

detect
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

	images: [Evision.Mat].
input images

	keylines: [[Evision.LineDescriptor.KeyLine]].
set of vectors that will store extracted lines for one or more images

	scale: int.
scale factor used in pyramids generation

	numOctaves: int.
number of octaves inside pyramid

Keyword Arguments
	masks: [Evision.Mat].
vector of mask matrices to detect only KeyLines of interest from each input image

Has overloading in C++
Python prototype (for reference only):
detect(images, keylines, scale, numOctaves[, masks]) -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 lSDDetector(params)

 View Source

 @spec lSDDetector(Evision.LineDescriptor.LSDParam.t()) :: t() | {:error, String.t()}

LSDDetectorWithParams
Positional Arguments
	params: Evision.LineDescriptor.LSDParam.t()

Return
	self: Evision.LineDescriptor.LSDDetector.t()

Python prototype (for reference only):
LSDDetectorWithParams(_params) -> <line_descriptor_LSDDetector object>

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.LineDescriptor.LSDDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.LineDescriptor.LSDParam - Evision v0.1.39

Evision.LineDescriptor.LSDParam

 Summary

 Types

 t()

 Type that represents an LineDescriptor.LSDParam struct.

 Functions

 get_ang_th(self)

 get_density_th(self)

 get_log_eps(self)

 get_n_bins(self)

 get_quant(self)

 get_scale(self)

 get_sigma_scale(self)

 lSDParam()

 LSDParam

 set_ang_th(self, prop)

 set_density_th(self, prop)

 set_log_eps(self, prop)

 set_n_bins(self, prop)

 set_quant(self, prop)

 set_scale(self, prop)

 set_sigma_scale(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineDescriptor.LSDParam{ref: reference()}

Type that represents an LineDescriptor.LSDParam struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_ang_th(self)

 View Source

 @spec get_ang_th(t()) :: number()

 Link to this function

 get_density_th(self)

 View Source

 @spec get_density_th(t()) :: number()

 Link to this function

 get_log_eps(self)

 View Source

 @spec get_log_eps(t()) :: number()

 Link to this function

 get_n_bins(self)

 View Source

 @spec get_n_bins(t()) :: integer()

 Link to this function

 get_quant(self)

 View Source

 @spec get_quant(t()) :: number()

 Link to this function

 get_scale(self)

 View Source

 @spec get_scale(t()) :: number()

 Link to this function

 get_sigma_scale(self)

 View Source

 @spec get_sigma_scale(t()) :: number()

 Link to this function

 lSDParam()

 View Source

 @spec lSDParam() :: t() | {:error, String.t()}

LSDParam
Return
	self: Evision.LineDescriptor.LSDParam.t()

Python prototype (for reference only):
LSDParam() -> <line_descriptor_LSDParam object>

 Link to this function

 set_ang_th(self, prop)

 View Source

 @spec set_ang_th(t(), number()) :: t()

 Link to this function

 set_density_th(self, prop)

 View Source

 @spec set_density_th(t(), number()) :: t()

 Link to this function

 set_log_eps(self, prop)

 View Source

 @spec set_log_eps(t(), number()) :: t()

 Link to this function

 set_n_bins(self, prop)

 View Source

 @spec set_n_bins(t(), integer()) :: t()

 Link to this function

 set_quant(self, prop)

 View Source

 @spec set_quant(t(), number()) :: t()

 Link to this function

 set_scale(self, prop)

 View Source

 @spec set_scale(t(), number()) :: t()

 Link to this function

 set_sigma_scale(self, prop)

 View Source

 @spec set_sigma_scale(t(), number()) :: t()

 Evision.LineMod - Evision v0.1.39

Evision.LineMod

 Summary

 Types

 t()

 Type that represents an LineMod struct.

 Functions

 colormap(quantized)

 colormap

 colormap(quantized, opts)

 colormap

 drawFeatures(img, templates, tl)

 drawFeatures

 drawFeatures(img, templates, tl, opts)

 drawFeatures

 getDefaultLINE()

 getDefaultLINE

 getDefaultLINEMOD()

 getDefaultLINEMOD

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod{ref: reference()}

Type that represents an LineMod struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 colormap(quantized)

 View Source

 @spec colormap(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

colormap
Positional Arguments
	quantized: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

 \brief Debug function to colormap a quantized image for viewing.
Python prototype (for reference only):
colormap(quantized[, dst]) -> dst

 Link to this function

 colormap(quantized, opts)

 View Source

 @spec colormap(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

colormap
Positional Arguments
	quantized: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

 \brief Debug function to colormap a quantized image for viewing.
Python prototype (for reference only):
colormap(quantized[, dst]) -> dst

 Link to this function

 drawFeatures(img, templates, tl)

 View Source

 @spec drawFeatures(
 Evision.Mat.maybe_mat_in(),
 [Evision.LineMod.Template.t()],
 {integer(), integer()}
) ::
 Evision.Mat.t() | {:error, String.t()}

drawFeatures
Positional Arguments
	templates: [Evision.LineMod.Template].
see @ref Detector::addTemplate

	tl: Point2i.
template bbox top-left offset see @ref Detector::addTemplate

Keyword Arguments
	size: int.
marker size see @ref cv::drawMarker

Return
	img: Evision.Mat.t().

 \brief Debug function to draw linemod features
Python prototype (for reference only):
drawFeatures(img, templates, tl[, size]) -> img

 Link to this function

 drawFeatures(img, templates, tl, opts)

 View Source

 @spec drawFeatures(
 Evision.Mat.maybe_mat_in(),
 [Evision.LineMod.Template.t()],
 {integer(), integer()},
 [{:size, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

drawFeatures
Positional Arguments
	templates: [Evision.LineMod.Template].
see @ref Detector::addTemplate

	tl: Point2i.
template bbox top-left offset see @ref Detector::addTemplate

Keyword Arguments
	size: int.
marker size see @ref cv::drawMarker

Return
	img: Evision.Mat.t().

 \brief Debug function to draw linemod features
Python prototype (for reference only):
drawFeatures(img, templates, tl[, size]) -> img

 Link to this function

 getDefaultLINE()

 View Source

 @spec getDefaultLINE() :: Evision.LineMod.Detector.t() | {:error, String.t()}

getDefaultLINE
Return
	retval: Evision.LineMod.Detector.t()

 \brief Factory function for detector using LINE algorithm with color gradients.
 Default parameter settings suitable for VGA images.
Python prototype (for reference only):
getDefaultLINE() -> retval

 Link to this function

 getDefaultLINEMOD()

 View Source

 @spec getDefaultLINEMOD() :: Evision.LineMod.Detector.t() | {:error, String.t()}

getDefaultLINEMOD
Return
	retval: Evision.LineMod.Detector.t()

 \brief Factory function for detector using LINE-MOD algorithm with color gradients
 and depth normals.
 Default parameter settings suitable for VGA images.
Python prototype (for reference only):
getDefaultLINEMOD() -> retval

 Evision.LineMod.ColorGradient - Evision v0.1.39

Evision.LineMod.ColorGradient

 Summary

 Types

 t()

 Type that represents an LineMod.ColorGradient struct.

 Functions

 create(weak_threshold, num_features, strong_threshold)

 create

 get_num_features(self)

 get_strong_threshold(self)

 get_weak_threshold(self)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.ColorGradient{ref: reference()}

Type that represents an LineMod.ColorGradient struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(weak_threshold, num_features, strong_threshold)

 View Source

 @spec create(number(), integer(), number()) :: t() | {:error, String.t()}

create
Positional Arguments
	weak_threshold: float
	num_features: size_t
	strong_threshold: float

Return
	retval: ColorGradient

 \brief Constructor.
 \param weak_threshold When quantizing, discard gradients with magnitude less than this.
 \param num_features How many features a template must contain.
 \param strong_threshold Consider as candidate features only gradients whose norms are
 larger than this.
Python prototype (for reference only):
create(weak_threshold, num_features, strong_threshold) -> retval

 Link to this function

 get_num_features(self)

 View Source

 @spec get_num_features(t()) :: integer()

 Link to this function

 get_strong_threshold(self)

 View Source

 @spec get_strong_threshold(t()) :: number()

 Link to this function

 get_weak_threshold(self)

 View Source

 @spec get_weak_threshold(t()) :: number()

 Evision.LineMod.DepthNormal - Evision v0.1.39

Evision.LineMod.DepthNormal

 Summary

 Types

 t()

 Type that represents an LineMod.DepthNormal struct.

 Functions

 create(distance_threshold, difference_threshold, num_features, extract_threshold)

 create

 get_difference_threshold(self)

 get_distance_threshold(self)

 get_extract_threshold(self)

 get_num_features(self)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.DepthNormal{ref: reference()}

Type that represents an LineMod.DepthNormal struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(distance_threshold, difference_threshold, num_features, extract_threshold)

 View Source

 @spec create(integer(), integer(), integer(), integer()) :: t() | {:error, String.t()}

create
Positional Arguments
	distance_threshold: int
	difference_threshold: int
	num_features: size_t
	extract_threshold: int

Return
	retval: DepthNormal

 \brief Constructor.
 \param distance_threshold Ignore pixels beyond this distance.
 \param difference_threshold When computing normals, ignore contributions of pixels whose
 depth difference with the central pixel is above this threshold.
 \param num_features How many features a template must contain.
 \param extract_threshold Consider as candidate feature only if there are no differing
 orientations within a distance of extract_threshold.
Python prototype (for reference only):
create(distance_threshold, difference_threshold, num_features, extract_threshold) -> retval

 Link to this function

 get_difference_threshold(self)

 View Source

 @spec get_difference_threshold(t()) :: integer()

 Link to this function

 get_distance_threshold(self)

 View Source

 @spec get_distance_threshold(t()) :: integer()

 Link to this function

 get_extract_threshold(self)

 View Source

 @spec get_extract_threshold(t()) :: integer()

 Link to this function

 get_num_features(self)

 View Source

 @spec get_num_features(t()) :: integer()

 Evision.LineMod.Detector - Evision v0.1.39

Evision.LineMod.Detector

 Summary

 Types

 t()

 Type that represents an LineMod.Detector struct.

 Functions

 addSyntheticTemplate(self, templates, class_id)

 addSyntheticTemplate

 addTemplate(self, sources, class_id, object_mask)

 addTemplate

 classIds(self)

 classIds

 detector()

 Detector

 detector(modalities, t_pyramid)

 Detector

 getModalities(self)

 getModalities

 getT(self, pyramid_level)

 getT

 getTemplates(self, class_id, template_id)

 getTemplates

 match(self, sources, threshold)

 match

 match(self, sources, threshold, opts)

 match

 numClasses(self)

 numClasses

 numTemplates(self)

 numTemplates

 numTemplates(self, class_id)

 numTemplates

 pyramidLevels(self)

 pyramidLevels

 read(self, fn_)

 read

 readClasses(self, class_ids)

 readClasses

 readClasses(self, class_ids, opts)

 readClasses

 writeClasses(self)

 writeClasses

 writeClasses(self, opts)

 writeClasses

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.Detector{ref: reference()}

Type that represents an LineMod.Detector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addSyntheticTemplate(self, templates, class_id)

 View Source

 @spec addSyntheticTemplate(t(), [Evision.LineMod.Template.t()], binary()) ::
 integer() | {:error, String.t()}

addSyntheticTemplate
Positional Arguments
	self: Evision.LineMod.Detector.t()
	templates: [Evision.LineMod.Template]
	class_id: String

Return
	retval: int

 \brief Add a new object template computed by external means.
Python prototype (for reference only):
addSyntheticTemplate(templates, class_id) -> retval

 Link to this function

 addTemplate(self, sources, class_id, object_mask)

 View Source

 @spec addTemplate(
 t(),
 [Evision.Mat.maybe_mat_in()],
 binary(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), {number(), number(), number(), number()}} | {:error, String.t()}

addTemplate
Positional Arguments
	self: Evision.LineMod.Detector.t()
	sources: [Evision.Mat]
	class_id: String
	object_mask: Evision.Mat.t()

Return
	retval: int
	bounding_box: Rect*

 \brief Add new object template.
 \param sources Source images, one for each modality.
 \param class_id Object class ID.
 \param object_mask Mask separating object from background.
 \param[out] bounding_box Optionally return bounding box of the extracted features.
 \return Template ID, or -1 if failed to extract a valid template.
Python prototype (for reference only):
addTemplate(sources, class_id, object_mask) -> retval, bounding_box

 Link to this function

 classIds(self)

 View Source

 @spec classIds(t()) :: [binary()] | {:error, String.t()}

classIds
Positional Arguments
	self: Evision.LineMod.Detector.t()

Return
	retval: [String]

Python prototype (for reference only):
classIds() -> retval

 Link to this function

 detector()

 View Source

 @spec detector() :: t() | {:error, String.t()}

Detector
Return
	self: Detector

 \brief Empty constructor, initialize with read().
Python prototype (for reference only):
Detector() -> <linemod_Detector object>

 Link to this function

 detector(modalities, t_pyramid)

 View Source

 @spec detector([Evision.LineMod.Ptr_Modality.t()], [integer()]) ::
 t() | {:error, String.t()}

Detector
Positional Arguments
	modalities: [Ptr_Modality]
	t_pyramid: [int]

Return
	self: Detector

 \brief Constructor.
 \param modalities Modalities to use (color gradients, depth normals, ...).
 \param T_pyramid Value of the sampling step T at each pyramid level. The
 number of pyramid levels is T_pyramid.size().
Python prototype (for reference only):
Detector(modalities, T_pyramid) -> <linemod_Detector object>

 Link to this function

 getModalities(self)

 View Source

 @spec getModalities(t()) :: [Evision.LineMod.Modality.t()] | {:error, String.t()}

getModalities
Positional Arguments
	self: Evision.LineMod.Detector.t()

Return
	retval: [Modality]

 \brief Get the modalities used by this detector.
 You are not permitted to add/remove modalities, but you may dynamic_cast them to
 tweak parameters.
Python prototype (for reference only):
getModalities() -> retval

 Link to this function

 getT(self, pyramid_level)

 View Source

 @spec getT(t(), integer()) :: integer() | {:error, String.t()}

getT
Positional Arguments
	self: Evision.LineMod.Detector.t()
	pyramid_level: int

Return
	retval: int

 \brief Get sampling step T at pyramid_level.
Python prototype (for reference only):
getT(pyramid_level) -> retval

 Link to this function

 getTemplates(self, class_id, template_id)

 View Source

 @spec getTemplates(t(), binary(), integer()) ::
 [Evision.LineMod.Template.t()] | {:error, String.t()}

getTemplates
Positional Arguments
	self: Evision.LineMod.Detector.t()
	class_id: String
	template_id: int

Return
	retval: [Evision.LineMod.Template]

 \brief Get the template pyramid identified by template_id.
 For example, with 2 modalities (Gradient, Normal) and two pyramid levels
 (L0, L1), the order is (GradientL0, NormalL0, GradientL1, NormalL1).
Python prototype (for reference only):
getTemplates(class_id, template_id) -> retval

 Link to this function

 match(self, sources, threshold)

 View Source

 @spec match(t(), [Evision.Mat.maybe_mat_in()], number()) ::
 {[Evision.LineMod.Match.t()], [Evision.Mat.t()]} | {:error, String.t()}

match
Positional Arguments
	self: Evision.LineMod.Detector.t()
	sources: [Evision.Mat]
	threshold: float

Keyword Arguments
	class_ids: [String].
	masks: [Evision.Mat].

Return
	matches: [Match]
	quantized_images: [Evision.Mat].

 \brief Detect objects by template matching.
 Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
 \param sources Source images, one for each modality.
 \param threshold Similarity threshold, a percentage between 0 and 100.
 \param[out] matches Template matches, sorted by similarity score.
 \param class_ids If non-empty, only search for the desired object classes.
 \param[out] quantized_images Optionally return vector<Mat> of quantized images.
 \param masks The masks for consideration during matching. The masks should be CV_8UC1
 where 255 represents a valid pixel. If non-empty, the vector must be
 the same size as sources. Each element must be
 empty or the same size as its corresponding source.
Python prototype (for reference only):
match(sources, threshold[, class_ids[, quantized_images[, masks]]]) -> matches, quantized_images

 Link to this function

 match(self, sources, threshold, opts)

 View Source

 @spec match(
 t(),
 [Evision.Mat.maybe_mat_in()],
 number(),
 [class_ids: term(), masks: term()] | nil
) ::
 {[Evision.LineMod.Match.t()], [Evision.Mat.t()]} | {:error, String.t()}

match
Positional Arguments
	self: Evision.LineMod.Detector.t()
	sources: [Evision.Mat]
	threshold: float

Keyword Arguments
	class_ids: [String].
	masks: [Evision.Mat].

Return
	matches: [Match]
	quantized_images: [Evision.Mat].

 \brief Detect objects by template matching.
 Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
 \param sources Source images, one for each modality.
 \param threshold Similarity threshold, a percentage between 0 and 100.
 \param[out] matches Template matches, sorted by similarity score.
 \param class_ids If non-empty, only search for the desired object classes.
 \param[out] quantized_images Optionally return vector<Mat> of quantized images.
 \param masks The masks for consideration during matching. The masks should be CV_8UC1
 where 255 represents a valid pixel. If non-empty, the vector must be
 the same size as sources. Each element must be
 empty or the same size as its corresponding source.
Python prototype (for reference only):
match(sources, threshold[, class_ids[, quantized_images[, masks]]]) -> matches, quantized_images

 Link to this function

 numClasses(self)

 View Source

 @spec numClasses(t()) :: integer() | {:error, String.t()}

numClasses
Positional Arguments
	self: Evision.LineMod.Detector.t()

Return
	retval: int

Python prototype (for reference only):
numClasses() -> retval

 Link to this function

 numTemplates(self)

 View Source

 @spec numTemplates(t()) :: integer() | {:error, String.t()}

numTemplates
Positional Arguments
	self: Evision.LineMod.Detector.t()

Return
	retval: int

Python prototype (for reference only):
numTemplates() -> retval

 Link to this function

 numTemplates(self, class_id)

 View Source

 @spec numTemplates(t(), binary()) :: integer() | {:error, String.t()}

numTemplates
Positional Arguments
	self: Evision.LineMod.Detector.t()
	class_id: String

Return
	retval: int

Python prototype (for reference only):
numTemplates(class_id) -> retval

 Link to this function

 pyramidLevels(self)

 View Source

 @spec pyramidLevels(t()) :: integer() | {:error, String.t()}

pyramidLevels
Positional Arguments
	self: Evision.LineMod.Detector.t()

Return
	retval: int

 \brief Get number of pyramid levels used by this detector.
Python prototype (for reference only):
pyramidLevels() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

read
Positional Arguments
	self: Evision.LineMod.Detector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 readClasses(self, class_ids)

 View Source

 @spec readClasses(t(), [binary()]) :: t() | {:error, String.t()}

readClasses
Positional Arguments
	self: Evision.LineMod.Detector.t()
	class_ids: [String]

Keyword Arguments
	format: String.

Python prototype (for reference only):
readClasses(class_ids[, format]) -> None

 Link to this function

 readClasses(self, class_ids, opts)

 View Source

 @spec readClasses(t(), [binary()], [{:format, term()}] | nil) ::
 t() | {:error, String.t()}

readClasses
Positional Arguments
	self: Evision.LineMod.Detector.t()
	class_ids: [String]

Keyword Arguments
	format: String.

Python prototype (for reference only):
readClasses(class_ids[, format]) -> None

 Link to this function

 writeClasses(self)

 View Source

 @spec writeClasses(t()) :: t() | {:error, String.t()}

writeClasses
Positional Arguments
	self: Evision.LineMod.Detector.t()

Keyword Arguments
	format: String.

Python prototype (for reference only):
writeClasses([, format]) -> None

 Link to this function

 writeClasses(self, opts)

 View Source

 @spec writeClasses(t(), [{:format, term()}] | nil) :: t() | {:error, String.t()}

writeClasses
Positional Arguments
	self: Evision.LineMod.Detector.t()

Keyword Arguments
	format: String.

Python prototype (for reference only):
writeClasses([, format]) -> None

 Evision.LineMod.Feature - Evision v0.1.39

Evision.LineMod.Feature

 Summary

 Types

 t()

 Type that represents an LineMod.Feature struct.

 Functions

 feature()

 Feature

 feature(x, y, label)

 Feature

 get_label(self)

 get_x(self)

 get_y(self)

 set_label(self, prop)

 set_x(self, prop)

 set_y(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.Feature{ref: reference()}

Type that represents an LineMod.Feature struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 feature()

 View Source

 @spec feature() :: t() | {:error, String.t()}

Feature
Return
	self: Feature

Python prototype (for reference only):
Feature() -> <linemod_Feature object>

 Link to this function

 feature(x, y, label)

 View Source

 @spec feature(integer(), integer(), integer()) :: t() | {:error, String.t()}

Feature
Positional Arguments
	x: int
	y: int
	label: int

Return
	self: Feature

Python prototype (for reference only):
Feature(x, y, label) -> <linemod_Feature object>

 Link to this function

 get_label(self)

 View Source

 @spec get_label(t()) :: integer()

 Link to this function

 get_x(self)

 View Source

 @spec get_x(t()) :: integer()

 Link to this function

 get_y(self)

 View Source

 @spec get_y(t()) :: integer()

 Link to this function

 set_label(self, prop)

 View Source

 @spec set_label(t(), integer()) :: t()

 Link to this function

 set_x(self, prop)

 View Source

 @spec set_x(t(), integer()) :: t()

 Link to this function

 set_y(self, prop)

 View Source

 @spec set_y(t(), integer()) :: t()

 Evision.LineMod.Match - Evision v0.1.39

Evision.LineMod.Match

 Summary

 Types

 t()

 Type that represents an LineMod.Match struct.

 Functions

 get_class_id(self)

 get_similarity(self)

 get_template_id(self)

 get_x(self)

 get_y(self)

 match()

 Match

 match(x, y, similarity, class_id, template_id)

 Match

 set_class_id(self, prop)

 set_similarity(self, prop)

 set_template_id(self, prop)

 set_x(self, prop)

 set_y(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.Match{ref: reference()}

Type that represents an LineMod.Match struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_class_id(self)

 View Source

 @spec get_class_id(t()) :: binary()

 Link to this function

 get_similarity(self)

 View Source

 @spec get_similarity(t()) :: number()

 Link to this function

 get_template_id(self)

 View Source

 @spec get_template_id(t()) :: integer()

 Link to this function

 get_x(self)

 View Source

 @spec get_x(t()) :: integer()

 Link to this function

 get_y(self)

 View Source

 @spec get_y(t()) :: integer()

 Link to this function

 match()

 View Source

 @spec match() :: t() | {:error, String.t()}

Match
Return
	self: Match

Python prototype (for reference only):
Match() -> <linemod_Match object>

 Link to this function

 match(x, y, similarity, class_id, template_id)

 View Source

 @spec match(integer(), integer(), number(), binary(), integer()) ::
 t() | {:error, String.t()}

Match
Positional Arguments
	x: int
	y: int
	similarity: float
	class_id: String
	template_id: int

Return
	self: Match

Python prototype (for reference only):
Match(x, y, similarity, class_id, template_id) -> <linemod_Match object>

 Link to this function

 set_class_id(self, prop)

 View Source

 @spec set_class_id(t(), binary()) :: t()

 Link to this function

 set_similarity(self, prop)

 View Source

 @spec set_similarity(t(), number()) :: t()

 Link to this function

 set_template_id(self, prop)

 View Source

 @spec set_template_id(t(), integer()) :: t()

 Link to this function

 set_x(self, prop)

 View Source

 @spec set_x(t(), integer()) :: t()

 Link to this function

 set_y(self, prop)

 View Source

 @spec set_y(t(), integer()) :: t()

 Evision.LineMod.Modality - Evision v0.1.39

Evision.LineMod.Modality

 Summary

 Types

 t()

 Type that represents an LineMod.Modality struct.

 Functions

 create(fn_)

 Variant 1:
create

 name(self)

 name

 process(self, src)

 process

 process(self, src, opts)

 process

 read(self, fn_)

 read

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.Modality{ref: reference()}

Type that represents an LineMod.Modality struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(fn_)

 View Source

 @spec create(Evision.FileNode.t()) :: t() | {:error, String.t()}

 @spec create(binary()) :: t() | {:error, String.t()}

Variant 1:
create
Positional Arguments
	fn_: Evision.FileNode.t()

Return
	retval: Modality

 \brief Load a modality from file.
Python prototype (for reference only):
create(fn_) -> retval
Variant 2:
create
Positional Arguments
	modality_type: String

Return
	retval: Modality

 \brief Create modality by name.
 The following modality types are supported:
	"ColorGradient"
	"DepthNormal"

Python prototype (for reference only):
create(modality_type) -> retval

 Link to this function

 name(self)

 View Source

 @spec name(t()) :: binary() | {:error, String.t()}

name
Positional Arguments
	self: Evision.LineMod.Modality.t()

Return
	retval: String

Python prototype (for reference only):
name() -> retval

 Link to this function

 process(self, src)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.LineMod.QuantizedPyramid.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.LineMod.Modality.t()
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().

Return
	retval: QuantizedPyramid

 \brief Form a quantized image pyramid from a source image.
 \param[in] src The source image. Type depends on the modality.
 \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
 in quantized image and cannot be extracted as features.
Python prototype (for reference only):
process(src[, mask]) -> retval

 Link to this function

 process(self, src, opts)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in(), [{:mask, term()}] | nil) ::
 Evision.LineMod.QuantizedPyramid.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.LineMod.Modality.t()
	src: Evision.Mat.t()

Keyword Arguments
	mask: Evision.Mat.t().

Return
	retval: QuantizedPyramid

 \brief Form a quantized image pyramid from a source image.
 \param[in] src The source image. Type depends on the modality.
 \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
 in quantized image and cannot be extracted as features.
Python prototype (for reference only):
process(src[, mask]) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

read
Positional Arguments
	self: Evision.LineMod.Modality.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Evision.LineMod.QuantizedPyramid - Evision v0.1.39

Evision.LineMod.QuantizedPyramid

 Summary

 Types

 t()

 Type that represents an LineMod.QuantizedPyramid struct.

 Functions

 extractTemplate(self)

 extractTemplate

 pyrDown(self)

 pyrDown

 quantize(self)

 quantize

 quantize(self, opts)

 quantize

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.QuantizedPyramid{ref: reference()}

Type that represents an LineMod.QuantizedPyramid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 extractTemplate(self)

 View Source

 @spec extractTemplate(t()) ::
 Evision.LineMod.Template.t() | false | {:error, String.t()}

extractTemplate
Positional Arguments
	self: Evision.LineMod.QuantizedPyramid.t()

Return
	retval: bool
	templ: Evision.LineMod.Template.t()

 \brief Extract most discriminant features at current pyramid level to form a new template.
 \param[out] templ The new template.
Python prototype (for reference only):
extractTemplate() -> retval, templ

 Link to this function

 pyrDown(self)

 View Source

 @spec pyrDown(t()) :: t() | {:error, String.t()}

pyrDown
Positional Arguments
	self: Evision.LineMod.QuantizedPyramid.t()

 \brief Go to the next pyramid level.
 \todo Allow pyramid scale factor other than 2
Python prototype (for reference only):
pyrDown() -> None

 Link to this function

 quantize(self)

 View Source

 @spec quantize(t()) :: Evision.Mat.t() | {:error, String.t()}

quantize
Positional Arguments
	self: Evision.LineMod.QuantizedPyramid.t()

Return
	dst: Evision.Mat.t().

 \brief Compute quantized image at current pyramid level for online detection.
 \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
 representing its classification.
Python prototype (for reference only):
quantize([, dst]) -> dst

 Link to this function

 quantize(self, opts)

 View Source

 @spec quantize(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

quantize
Positional Arguments
	self: Evision.LineMod.QuantizedPyramid.t()

Return
	dst: Evision.Mat.t().

 \brief Compute quantized image at current pyramid level for online detection.
 \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
 representing its classification.
Python prototype (for reference only):
quantize([, dst]) -> dst

 Evision.LineMod.Template - Evision v0.1.39

Evision.LineMod.Template

 Summary

 Types

 t()

 Type that represents an LineMod.Template struct.

 Functions

 get_features(self)

 get_height(self)

 get_pyramid_level(self)

 get_width(self)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineMod.Template{ref: reference()}

Type that represents an LineMod.Template struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_features(self)

 View Source

 @spec get_features(t()) :: [Evision.LineMod.Feature.t()]

 Link to this function

 get_height(self)

 View Source

 @spec get_height(t()) :: integer()

 Link to this function

 get_pyramid_level(self)

 View Source

 @spec get_pyramid_level(t()) :: integer()

 Link to this function

 get_width(self)

 View Source

 @spec get_width(t()) :: integer()

 Evision.LineSegmentDetector - Evision v0.1.39

Evision.LineSegmentDetector

 Summary

 Types

 t()

 Type that represents an LineSegmentDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 compareSegments(self, size, lines1, lines2)

 Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.

 compareSegments(self, size, lines1, lines2, opts)

 Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.

 detect(self, image)

 Finds lines in the input image.

 detect(self, image, opts)

 Finds lines in the input image.

 drawSegments(self, image, lines)

 Draws the line segments on a given image.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.LineSegmentDetector{ref: reference()}

Type that represents an LineSegmentDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.LineSegmentDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compareSegments(self, size, lines1, lines2)

 View Source

 @spec compareSegments(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
Positional Arguments
	self: Evision.LineSegmentDetector.t()

	size: Size.
The size of the image, where lines1 and lines2 were found.

	lines1: Evision.Mat.t().
The first group of lines that needs to be drawn. It is visualized in blue color.

	lines2: Evision.Mat.t().
The second group of lines. They visualized in red color.

Return
	retval: int

	image: Evision.Mat.t().
Optional image, where the lines will be drawn. The image should be color(3-channel)
in order for lines1 and lines2 to be drawn in the above mentioned colors.

Python prototype (for reference only):
compareSegments(size, lines1, lines2[, image]) -> retval, image

 Link to this function

 compareSegments(self, size, lines1, lines2, opts)

 View Source

 @spec compareSegments(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
Positional Arguments
	self: Evision.LineSegmentDetector.t()

	size: Size.
The size of the image, where lines1 and lines2 were found.

	lines1: Evision.Mat.t().
The first group of lines that needs to be drawn. It is visualized in blue color.

	lines2: Evision.Mat.t().
The second group of lines. They visualized in red color.

Return
	retval: int

	image: Evision.Mat.t().
Optional image, where the lines will be drawn. The image should be color(3-channel)
in order for lines1 and lines2 to be drawn in the above mentioned colors.

Python prototype (for reference only):
compareSegments(size, lines1, lines2[, image]) -> retval, image

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds lines in the input image.
Positional Arguments
	self: Evision.LineSegmentDetector.t()

	image: Evision.Mat.t().
A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);

Return
	lines: Evision.Mat.t().
A vector of Vec4f elements specifying the beginning and ending point of a line. Where
Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
oriented depending on the gradient.

	width: Evision.Mat.t().
Vector of widths of the regions, where the lines are found. E.g. Width of line.

	prec: Evision.Mat.t().
Vector of precisions with which the lines are found.

	nfa: Evision.Mat.t().
Vector containing number of false alarms in the line region, with precision of 10%. The
bigger the value, logarithmically better the detection.
	-1 corresponds to 10 mean false alarms
	0 corresponds to 1 mean false alarm
	1 corresponds to 0.1 mean false alarms
This vector will be calculated only when the objects type is #LSD_REFINE_ADV.

This is the output of the default parameters of the algorithm on the above shown image.
[image: image]
Python prototype (for reference only):
detect(image[, lines[, width[, prec[, nfa]]]]) -> lines, width, prec, nfa

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds lines in the input image.
Positional Arguments
	self: Evision.LineSegmentDetector.t()

	image: Evision.Mat.t().
A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);

Return
	lines: Evision.Mat.t().
A vector of Vec4f elements specifying the beginning and ending point of a line. Where
Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
oriented depending on the gradient.

	width: Evision.Mat.t().
Vector of widths of the regions, where the lines are found. E.g. Width of line.

	prec: Evision.Mat.t().
Vector of precisions with which the lines are found.

	nfa: Evision.Mat.t().
Vector containing number of false alarms in the line region, with precision of 10%. The
bigger the value, logarithmically better the detection.
	-1 corresponds to 10 mean false alarms
	0 corresponds to 1 mean false alarm
	1 corresponds to 0.1 mean false alarms
This vector will be calculated only when the objects type is #LSD_REFINE_ADV.

This is the output of the default parameters of the algorithm on the above shown image.
[image: image]
Python prototype (for reference only):
detect(image[, lines[, width[, prec[, nfa]]]]) -> lines, width, prec, nfa

 Link to this function

 drawSegments(self, image, lines)

 View Source

 @spec drawSegments(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Draws the line segments on a given image.
Positional Arguments
	self: Evision.LineSegmentDetector.t()

	lines: Evision.Mat.t().
A vector of the lines that needed to be drawn.

Return
	image: Evision.Mat.t().
The image, where the lines will be drawn. Should be bigger or equal to the image,
where the lines were found.

Python prototype (for reference only):
drawSegments(image, lines) -> image

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.LineSegmentDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.LineSegmentDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.LineSegmentDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.LineSegmentDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.LineSegmentDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.LineSegmentDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.MCC - Evision v0.1.39

Evision.MCC

 Summary

 Types

 t()

 Type that represents an MCC struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MCC{ref: reference()}

Type that represents an MCC struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.MCC.CChecker - Evision v0.1.39

Evision.MCC.CChecker

 Summary

 Types

 t()

 Type that represents an MCC.CChecker struct.

 Functions

 create()

 create

 getBox(self)

 getBox

 getCenter(self)

 getCenter

 getChartsRGB(self)

 getChartsRGB

 getChartsYCbCr(self)

 getChartsYCbCr

 getCost(self)

 getCost

 getTarget(self)

 getTarget

 setBox(self, box)

 setBox

 setCenter(self, center)

 setCenter

 setChartsRGB(self, chartsRGB)

 setChartsRGB

 setChartsYCbCr(self, chartsYCbCr)

 setChartsYCbCr

 setCost(self, cost)

 setCost

 setTarget(self, target)

 setTarget

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MCC.CChecker{ref: reference()}

Type that represents an MCC.CChecker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: CChecker

\brief Create a new CChecker object.
 \return A pointer to the implementation of the CChecker
Python prototype (for reference only):
create() -> retval

 Link to this function

 getBox(self)

 View Source

 @spec getBox(t()) :: [{number(), number()}] | {:error, String.t()}

getBox
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: [Point2f]

Python prototype (for reference only):
getBox() -> retval

 Link to this function

 getCenter(self)

 View Source

 @spec getCenter(t()) :: {number(), number()} | {:error, String.t()}

getCenter
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: Point2f

Python prototype (for reference only):
getCenter() -> retval

 Link to this function

 getChartsRGB(self)

 View Source

 @spec getChartsRGB(t()) :: Evision.Mat.t() | {:error, String.t()}

getChartsRGB
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getChartsRGB() -> retval

 Link to this function

 getChartsYCbCr(self)

 View Source

 @spec getChartsYCbCr(t()) :: Evision.Mat.t() | {:error, String.t()}

getChartsYCbCr
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getChartsYCbCr() -> retval

 Link to this function

 getCost(self)

 View Source

 @spec getCost(t()) :: number() | {:error, String.t()}

getCost
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: float

Python prototype (for reference only):
getCost() -> retval

 Link to this function

 getTarget(self)

 View Source

 @spec getTarget(t()) :: integer() | {:error, String.t()}

getTarget
Positional Arguments
	self: Evision.MCC.CChecker.t()

Return
	retval: TYPECHART

Python prototype (for reference only):
getTarget() -> retval

 Link to this function

 setBox(self, box)

 View Source

 @spec setBox(t(), [{number(), number()}]) :: t() | {:error, String.t()}

setBox
Positional Arguments
	self: Evision.MCC.CChecker.t()
	box: [Point2f]

Python prototype (for reference only):
setBox(_box) -> None

 Link to this function

 setCenter(self, center)

 View Source

 @spec setCenter(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

setCenter
Positional Arguments
	self: Evision.MCC.CChecker.t()
	center: Point2f

Python prototype (for reference only):
setCenter(_center) -> None

 Link to this function

 setChartsRGB(self, chartsRGB)

 View Source

 @spec setChartsRGB(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setChartsRGB
Positional Arguments
	self: Evision.MCC.CChecker.t()
	chartsRGB: Evision.Mat.t()

Python prototype (for reference only):
setChartsRGB(_chartsRGB) -> None

 Link to this function

 setChartsYCbCr(self, chartsYCbCr)

 View Source

 @spec setChartsYCbCr(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setChartsYCbCr
Positional Arguments
	self: Evision.MCC.CChecker.t()
	chartsYCbCr: Evision.Mat.t()

Python prototype (for reference only):
setChartsYCbCr(_chartsYCbCr) -> None

 Link to this function

 setCost(self, cost)

 View Source

 @spec setCost(t(), number()) :: t() | {:error, String.t()}

setCost
Positional Arguments
	self: Evision.MCC.CChecker.t()
	cost: float

Python prototype (for reference only):
setCost(_cost) -> None

 Link to this function

 setTarget(self, target)

 View Source

 @spec setTarget(t(), integer()) :: t() | {:error, String.t()}

setTarget
Positional Arguments
	self: Evision.MCC.CChecker.t()
	target: TYPECHART

Python prototype (for reference only):
setTarget(_target) -> None

 Evision.MCC.CCheckerDetector - Evision v0.1.39

Evision.MCC.CCheckerDetector

 Summary

 Types

 t()

 Type that represents an MCC.CCheckerDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBestColorChecker(self)

 getBestColorChecker

 getDefaultName(self)

 getDefaultName

 getListColorChecker(self)

 getListColorChecker

 process(self, image, chartType)

 process

 process(self, image, chartType, opts)

 process

 processWithROI(self, image, chartType, regionsOfInterest)

 processWithROI

 processWithROI(self, image, chartType, regionsOfInterest, opts)

 processWithROI

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setNet(self, net)

 setNet

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MCC.CCheckerDetector{ref: reference()}

Type that represents an MCC.CCheckerDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: CCheckerDetector

\brief Returns the implementation of the CCheckerDetector.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBestColorChecker(self)

 View Source

 @spec getBestColorChecker(t()) :: t() | {:error, String.t()}

getBestColorChecker
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()

Return
	retval: Evision.MCC.CCheckerDetector.t()

\brief Get the best color checker. By the best it means the one
 detected with the highest confidence.
 \return checker A single colorchecker, if atleast one colorchecker
 was detected, 'nullptr' otherwise.
Python prototype (for reference only):
getBestColorChecker() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getListColorChecker(self)

 View Source

 @spec getListColorChecker(t()) :: [Evision.MCC.CChecker.t()] | {:error, String.t()}

getListColorChecker
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()

Return
	retval: [CChecker]

\brief Get the list of all detected colorcheckers
 \return checkers vector of colorcheckers
Python prototype (for reference only):
getListColorChecker() -> retval

 Link to this function

 process(self, image, chartType)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 boolean() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	image: Evision.Mat.t()
	chartType: TYPECHART

Keyword Arguments
	nc: int.
	useNet: bool.
	params: DetectorParameters.

Return
	retval: bool

\brief Find the ColorCharts in the given image.
 Differs from the above one only in the arguments.
 This version searches for the chart in the full image.
 The found charts are not returned but instead stored in the
 detector, these can be accessed later on using getBestColorChecker()
 and getListColorChecker()
 \param image image in color space BGR
 \param chartType type of the chart to detect
 \param nc number of charts in the image, if you don't know the exact
 then keeping this number high helps.
 \param useNet if it is true the network provided using the setNet()
 is used for preliminary search for regions where chart
 could be present, inside the regionsOfInterest provied.
 \param params parameters of the detection system. More information
 about them can be found in the struct DetectorParameters.
 \return true if atleast one chart is detected otherwise false
Python prototype (for reference only):
process(image, chartType[, nc[, useNet[, params]]]) -> retval

 Link to this function

 process(self, image, chartType, opts)

 View Source

 @spec process(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [params: term(), nc: term(), useNet: term()] | nil
) :: boolean() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	image: Evision.Mat.t()
	chartType: TYPECHART

Keyword Arguments
	nc: int.
	useNet: bool.
	params: DetectorParameters.

Return
	retval: bool

\brief Find the ColorCharts in the given image.
 Differs from the above one only in the arguments.
 This version searches for the chart in the full image.
 The found charts are not returned but instead stored in the
 detector, these can be accessed later on using getBestColorChecker()
 and getListColorChecker()
 \param image image in color space BGR
 \param chartType type of the chart to detect
 \param nc number of charts in the image, if you don't know the exact
 then keeping this number high helps.
 \param useNet if it is true the network provided using the setNet()
 is used for preliminary search for regions where chart
 could be present, inside the regionsOfInterest provied.
 \param params parameters of the detection system. More information
 about them can be found in the struct DetectorParameters.
 \return true if atleast one chart is detected otherwise false
Python prototype (for reference only):
process(image, chartType[, nc[, useNet[, params]]]) -> retval

 Link to this function

 processWithROI(self, image, chartType, regionsOfInterest)

 View Source

 @spec processWithROI(t(), Evision.Mat.maybe_mat_in(), integer(), [
 {number(), number(), number(), number()}
]) :: boolean() | {:error, String.t()}

processWithROI
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	image: Evision.Mat.t()
	chartType: TYPECHART
	regionsOfInterest: [Rect]

Keyword Arguments
	nc: int.
	useNet: bool.
	params: DetectorParameters.

Return
	retval: bool

\brief Find the ColorCharts in the given image.
 The found charts are not returned but instead stored in the
 detector, these can be accessed later on using getBestColorChecker()
 and getListColorChecker()
 \param image image in color space BGR
 \param chartType type of the chart to detect
 \param regionsOfInterest regions of image to look for the chart, if
 it is empty, charts are looked for in the
 entire image
 \param nc number of charts in the image, if you don't know the exact
 then keeping this number high helps.
 \param useNet if it is true the network provided using the setNet()
 is used for preliminary search for regions where chart
 could be present, inside the regionsOfInterest provied.
 \param params parameters of the detection system. More information
 about them can be found in the struct DetectorParameters.
 \return true if atleast one chart is detected otherwise false
Python prototype (for reference only):
processWithROI(image, chartType, regionsOfInterest[, nc[, useNet[, params]]]) -> retval

 Link to this function

 processWithROI(self, image, chartType, regionsOfInterest, opts)

 View Source

 @spec processWithROI(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{number(), number(), number(), number()}],
 [params: term(), nc: term(), useNet: term()] | nil
) :: boolean() | {:error, String.t()}

processWithROI
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	image: Evision.Mat.t()
	chartType: TYPECHART
	regionsOfInterest: [Rect]

Keyword Arguments
	nc: int.
	useNet: bool.
	params: DetectorParameters.

Return
	retval: bool

\brief Find the ColorCharts in the given image.
 The found charts are not returned but instead stored in the
 detector, these can be accessed later on using getBestColorChecker()
 and getListColorChecker()
 \param image image in color space BGR
 \param chartType type of the chart to detect
 \param regionsOfInterest regions of image to look for the chart, if
 it is empty, charts are looked for in the
 entire image
 \param nc number of charts in the image, if you don't know the exact
 then keeping this number high helps.
 \param useNet if it is true the network provided using the setNet()
 is used for preliminary search for regions where chart
 could be present, inside the regionsOfInterest provied.
 \param params parameters of the detection system. More information
 about them can be found in the struct DetectorParameters.
 \return true if atleast one chart is detected otherwise false
Python prototype (for reference only):
processWithROI(image, chartType, regionsOfInterest[, nc[, useNet[, params]]]) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setNet(self, net)

 View Source

 @spec setNet(t(), Evision.DNN.Net.t()) :: boolean() | {:error, String.t()}

setNet
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	net: Evision.DNN.Net.t()

Return
	retval: bool

\brief Set the net which will be used to find the approximate
 bounding boxes for the color charts.
 It is not necessary to use this, but this usually results in
 better detection rate.
 \param net the neural network, if the network in empty, then
 the function will return false.
 \return true if it was able to set the detector's network,
 false otherwise.
Python prototype (for reference only):
setNet(net) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.MCC.CCheckerDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.MCC.CCheckerDraw - Evision v0.1.39

Evision.MCC.CCheckerDraw

 Summary

 Types

 t()

 Type that represents an MCC.CCheckerDraw struct.

 Functions

 create(pChecker)

 create

 create(pChecker, opts)

 create

 draw(self, img)

 draw

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MCC.CCheckerDraw{ref: reference()}

Type that represents an MCC.CCheckerDraw struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(pChecker)

 View Source

 @spec create(Evision.MCC.CChecker.t()) :: t() | {:error, String.t()}

create
Positional Arguments
	pChecker: CChecker

Keyword Arguments
	color: Scalar.
	thickness: int.

Return
	retval: CCheckerDraw

\brief Create a new CCheckerDraw object.
 \param pChecker The checker which will be drawn by this object.
 \param color The color by with which the squares of the checker
 will be drawn
 \param thickness The thickness with which the sqaures will be
 drawn
 \return A pointer to the implementation of the CCheckerDraw
Python prototype (for reference only):
create(pChecker[, color[, thickness]]) -> retval

 Link to this function

 create(pChecker, opts)

 View Source

 @spec create(Evision.MCC.CChecker.t(), [thickness: term(), color: term()] | nil) ::
 t() | {:error, String.t()}

create
Positional Arguments
	pChecker: CChecker

Keyword Arguments
	color: Scalar.
	thickness: int.

Return
	retval: CCheckerDraw

\brief Create a new CCheckerDraw object.
 \param pChecker The checker which will be drawn by this object.
 \param color The color by with which the squares of the checker
 will be drawn
 \param thickness The thickness with which the sqaures will be
 drawn
 \return A pointer to the implementation of the CCheckerDraw
Python prototype (for reference only):
create(pChecker[, color[, thickness]]) -> retval

 Link to this function

 draw(self, img)

 View Source

 @spec draw(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

draw
Positional Arguments
	self: Evision.MCC.CCheckerDraw.t()

Return
	img: Evision.Mat.t()

\brief Draws the checker to the given image.
 \param img image in color space BGR
 \return void
Python prototype (for reference only):
draw(img) -> img

 Evision.MCC.DetectorParameters - Evision v0.1.39

Evision.MCC.DetectorParameters

 Summary

 Types

 t()

 Type that represents an MCC.DetectorParameters struct.

 Functions

 create()

 create

 get_adaptiveThreshConstant(self)

 get_adaptiveThreshWinSizeMax(self)

 get_adaptiveThreshWinSizeMin(self)

 get_adaptiveThreshWinSizeStep(self)

 get_B0factor(self)

 get_borderWidth(self)

 get_confidenceThreshold(self)

 get_findCandidatesApproxPolyDPEpsMultiplier(self)

 get_maxError(self)

 get_minContourLengthAllowed(self)

 get_minContourPointsAllowed(self)

 get_minContourSolidity(self)

 get_minContoursArea(self)

 get_minContoursAreaRate(self)

 get_minGroupSize(self)

 get_minImageSize(self)

 get_minInterCheckerDistance(self)

 get_minInterContourDistance(self)

 set_adaptiveThreshConstant(self, prop)

 set_adaptiveThreshWinSizeMax(self, prop)

 set_adaptiveThreshWinSizeMin(self, prop)

 set_adaptiveThreshWinSizeStep(self, prop)

 set_B0factor(self, prop)

 set_borderWidth(self, prop)

 set_confidenceThreshold(self, prop)

 set_findCandidatesApproxPolyDPEpsMultiplier(self, prop)

 set_maxError(self, prop)

 set_minContourLengthAllowed(self, prop)

 set_minContourPointsAllowed(self, prop)

 set_minContourSolidity(self, prop)

 set_minContoursArea(self, prop)

 set_minContoursAreaRate(self, prop)

 set_minGroupSize(self, prop)

 set_minImageSize(self, prop)

 set_minInterCheckerDistance(self, prop)

 set_minInterContourDistance(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MCC.DetectorParameters{ref: reference()}

Type that represents an MCC.DetectorParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: DetectorParameters

Python prototype (for reference only):
create() -> retval

 Link to this function

 get_adaptiveThreshConstant(self)

 View Source

 @spec get_adaptiveThreshConstant(t()) :: number()

 Link to this function

 get_adaptiveThreshWinSizeMax(self)

 View Source

 @spec get_adaptiveThreshWinSizeMax(t()) :: integer()

 Link to this function

 get_adaptiveThreshWinSizeMin(self)

 View Source

 @spec get_adaptiveThreshWinSizeMin(t()) :: integer()

 Link to this function

 get_adaptiveThreshWinSizeStep(self)

 View Source

 @spec get_adaptiveThreshWinSizeStep(t()) :: integer()

 Link to this function

 get_B0factor(self)

 View Source

 @spec get_B0factor(t()) :: number()

 Link to this function

 get_borderWidth(self)

 View Source

 @spec get_borderWidth(t()) :: integer()

 Link to this function

 get_confidenceThreshold(self)

 View Source

 @spec get_confidenceThreshold(t()) :: number()

 Link to this function

 get_findCandidatesApproxPolyDPEpsMultiplier(self)

 View Source

 @spec get_findCandidatesApproxPolyDPEpsMultiplier(t()) :: number()

 Link to this function

 get_maxError(self)

 View Source

 @spec get_maxError(t()) :: number()

 Link to this function

 get_minContourLengthAllowed(self)

 View Source

 @spec get_minContourLengthAllowed(t()) :: integer()

 Link to this function

 get_minContourPointsAllowed(self)

 View Source

 @spec get_minContourPointsAllowed(t()) :: integer()

 Link to this function

 get_minContourSolidity(self)

 View Source

 @spec get_minContourSolidity(t()) :: number()

 Link to this function

 get_minContoursArea(self)

 View Source

 @spec get_minContoursArea(t()) :: number()

 Link to this function

 get_minContoursAreaRate(self)

 View Source

 @spec get_minContoursAreaRate(t()) :: number()

 Link to this function

 get_minGroupSize(self)

 View Source

 @spec get_minGroupSize(t()) :: integer()

 Link to this function

 get_minImageSize(self)

 View Source

 @spec get_minImageSize(t()) :: integer()

 Link to this function

 get_minInterCheckerDistance(self)

 View Source

 @spec get_minInterCheckerDistance(t()) :: integer()

 Link to this function

 get_minInterContourDistance(self)

 View Source

 @spec get_minInterContourDistance(t()) :: integer()

 Link to this function

 set_adaptiveThreshConstant(self, prop)

 View Source

 @spec set_adaptiveThreshConstant(t(), number()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeMax(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeMax(t(), integer()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeMin(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeMin(t(), integer()) :: t()

 Link to this function

 set_adaptiveThreshWinSizeStep(self, prop)

 View Source

 @spec set_adaptiveThreshWinSizeStep(t(), integer()) :: t()

 Link to this function

 set_B0factor(self, prop)

 View Source

 @spec set_B0factor(t(), number()) :: t()

 Link to this function

 set_borderWidth(self, prop)

 View Source

 @spec set_borderWidth(t(), integer()) :: t()

 Link to this function

 set_confidenceThreshold(self, prop)

 View Source

 @spec set_confidenceThreshold(t(), number()) :: t()

 Link to this function

 set_findCandidatesApproxPolyDPEpsMultiplier(self, prop)

 View Source

 @spec set_findCandidatesApproxPolyDPEpsMultiplier(t(), number()) :: t()

 Link to this function

 set_maxError(self, prop)

 View Source

 @spec set_maxError(t(), number()) :: t()

 Link to this function

 set_minContourLengthAllowed(self, prop)

 View Source

 @spec set_minContourLengthAllowed(t(), integer()) :: t()

 Link to this function

 set_minContourPointsAllowed(self, prop)

 View Source

 @spec set_minContourPointsAllowed(t(), integer()) :: t()

 Link to this function

 set_minContourSolidity(self, prop)

 View Source

 @spec set_minContourSolidity(t(), number()) :: t()

 Link to this function

 set_minContoursArea(self, prop)

 View Source

 @spec set_minContoursArea(t(), number()) :: t()

 Link to this function

 set_minContoursAreaRate(self, prop)

 View Source

 @spec set_minContoursAreaRate(t(), number()) :: t()

 Link to this function

 set_minGroupSize(self, prop)

 View Source

 @spec set_minGroupSize(t(), integer()) :: t()

 Link to this function

 set_minImageSize(self, prop)

 View Source

 @spec set_minImageSize(t(), integer()) :: t()

 Link to this function

 set_minInterCheckerDistance(self, prop)

 View Source

 @spec set_minInterCheckerDistance(t(), integer()) :: t()

 Link to this function

 set_minInterContourDistance(self, prop)

 View Source

 @spec set_minInterContourDistance(t(), integer()) :: t()

 Evision.ML - Evision v0.1.39

Evision.ML

 Summary

 Types

 t()

 Type that represents an ML struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML{ref: reference()}

Type that represents an ML struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.ML.ANNMLP - Evision v0.1.39

Evision.ML.ANNMLP

 Summary

 Types

 t()

 Type that represents an ML.ANNMLP struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 Creates empty model

 empty(self)

 empty

 getAnnealCoolingRatio(self)

 getAnnealCoolingRatio

 getAnnealFinalT(self)

 getAnnealFinalT

 getAnnealInitialT(self)

 getAnnealInitialT

 getAnnealItePerStep(self)

 getAnnealItePerStep

 getBackpropMomentumScale(self)

 getBackpropMomentumScale

 getBackpropWeightScale(self)

 getBackpropWeightScale

 getDefaultName(self)

 getDefaultName

 getLayerSizes(self)

 getLayerSizes

 getRpropDW0(self)

 getRpropDW0

 getRpropDWMax(self)

 getRpropDWMax

 getRpropDWMin(self)

 getRpropDWMin

 getRpropDWMinus(self)

 getRpropDWMinus

 getRpropDWPlus(self)

 getRpropDWPlus

 getTermCriteria(self)

 getTermCriteria

 getTrainMethod(self)

 getTrainMethod

 getVarCount(self)

 Returns the number of variables in training samples

 getWeights(self, layerIdx)

 getWeights

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized ANN from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setActivationFunction(self, type)

 setActivationFunction

 setActivationFunction(self, type, opts)

 setActivationFunction

 setAnnealCoolingRatio(self, val)

 setAnnealCoolingRatio

 setAnnealFinalT(self, val)

 setAnnealFinalT

 setAnnealInitialT(self, val)

 setAnnealInitialT

 setAnnealItePerStep(self, val)

 setAnnealItePerStep

 setBackpropMomentumScale(self, val)

 setBackpropMomentumScale

 setBackpropWeightScale(self, val)

 setBackpropWeightScale

 setLayerSizes(self, layer_sizes)

 setLayerSizes

 setRpropDW0(self, val)

 setRpropDW0

 setRpropDWMax(self, val)

 setRpropDWMax

 setRpropDWMin(self, val)

 setRpropDWMin

 setRpropDWMinus(self, val)

 setRpropDWMinus

 setRpropDWPlus(self, val)

 setRpropDWPlus

 setTermCriteria(self, val)

 setTermCriteria

 setTrainMethod(self, method)

 setTrainMethod

 setTrainMethod(self, method, opts)

 setTrainMethod

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.ANNMLP{ref: reference()}

Type that represents an ML.ANNMLP struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates empty model
Return
	retval: Evision.ML.ANNMLP.t()

Use StatModel::train to train the model, Algorithm::load\<ANN_MLP>(filename) to load the pre-trained model.
Note that the train method has optional flags: ANN_MLP::TrainFlags.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getAnnealCoolingRatio(self)

 View Source

 @spec getAnnealCoolingRatio(t()) :: number() | {:error, String.t()}

getAnnealCoolingRatio
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setAnnealCoolingRatio/2
Python prototype (for reference only):
getAnnealCoolingRatio() -> retval

 Link to this function

 getAnnealFinalT(self)

 View Source

 @spec getAnnealFinalT(t()) :: number() | {:error, String.t()}

getAnnealFinalT
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setAnnealFinalT/2
Python prototype (for reference only):
getAnnealFinalT() -> retval

 Link to this function

 getAnnealInitialT(self)

 View Source

 @spec getAnnealInitialT(t()) :: number() | {:error, String.t()}

getAnnealInitialT
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setAnnealInitialT/2
Python prototype (for reference only):
getAnnealInitialT() -> retval

 Link to this function

 getAnnealItePerStep(self)

 View Source

 @spec getAnnealItePerStep(t()) :: integer() | {:error, String.t()}

getAnnealItePerStep
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: int

@see setAnnealItePerStep/2
Python prototype (for reference only):
getAnnealItePerStep() -> retval

 Link to this function

 getBackpropMomentumScale(self)

 View Source

 @spec getBackpropMomentumScale(t()) :: number() | {:error, String.t()}

getBackpropMomentumScale
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setBackpropMomentumScale/2
Python prototype (for reference only):
getBackpropMomentumScale() -> retval

 Link to this function

 getBackpropWeightScale(self)

 View Source

 @spec getBackpropWeightScale(t()) :: number() | {:error, String.t()}

getBackpropWeightScale
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setBackpropWeightScale/2
Python prototype (for reference only):
getBackpropWeightScale() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLayerSizes(self)

 View Source

 @spec getLayerSizes(t()) :: Evision.Mat.t() | {:error, String.t()}

getLayerSizes
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: Evision.Mat.t()

Integer vector specifying the number of neurons in each layer including the input and output layers.
The very first element specifies the number of elements in the input layer.
The last element - number of elements in the output layer.
@sa setLayerSizes
Python prototype (for reference only):
getLayerSizes() -> retval

 Link to this function

 getRpropDW0(self)

 View Source

 @spec getRpropDW0(t()) :: number() | {:error, String.t()}

getRpropDW0
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setRpropDW0/2
Python prototype (for reference only):
getRpropDW0() -> retval

 Link to this function

 getRpropDWMax(self)

 View Source

 @spec getRpropDWMax(t()) :: number() | {:error, String.t()}

getRpropDWMax
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setRpropDWMax/2
Python prototype (for reference only):
getRpropDWMax() -> retval

 Link to this function

 getRpropDWMin(self)

 View Source

 @spec getRpropDWMin(t()) :: number() | {:error, String.t()}

getRpropDWMin
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setRpropDWMin/2
Python prototype (for reference only):
getRpropDWMin() -> retval

 Link to this function

 getRpropDWMinus(self)

 View Source

 @spec getRpropDWMinus(t()) :: number() | {:error, String.t()}

getRpropDWMinus
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setRpropDWMinus/2
Python prototype (for reference only):
getRpropDWMinus() -> retval

 Link to this function

 getRpropDWPlus(self)

 View Source

 @spec getRpropDWPlus(t()) :: number() | {:error, String.t()}

getRpropDWPlus
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: double

@see setRpropDWPlus/2
Python prototype (for reference only):
getRpropDWPlus() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getTrainMethod(self)

 View Source

 @spec getTrainMethod(t()) :: integer() | {:error, String.t()}

getTrainMethod
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: int

Returns current training method
Python prototype (for reference only):
getTrainMethod() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 getWeights(self, layerIdx)

 View Source

 @spec getWeights(t(), integer()) :: Evision.Mat.t() | {:error, String.t()}

getWeights
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	layerIdx: int

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getWeights(layerIdx) -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.ANNMLP.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized ANN from a file
Positional Arguments
	filepath: String.
path to serialized ANN

Return
	retval: Evision.ML.ANNMLP.t()

 Use ANN::save to serialize and store an ANN to disk.
 Load the ANN from this file again, by calling this function with the path to the file.
Python prototype (for reference only):
load(filepath) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setActivationFunction(self, type)

 View Source

 @spec setActivationFunction(t(), integer()) :: t() | {:error, String.t()}

setActivationFunction
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	type: int.
The type of activation function. See ANN_MLP::ActivationFunctions.

Keyword Arguments
	param1: double.
The first parameter of the activation function, \f$\alpha\f$. Default value is 0.

	param2: double.
The second parameter of the activation function, \f$\beta\f$. Default value is 0.

Initialize the activation function for each neuron.
Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
Python prototype (for reference only):
setActivationFunction(type[, param1[, param2]]) -> None

 Link to this function

 setActivationFunction(self, type, opts)

 View Source

 @spec setActivationFunction(t(), integer(), [param2: term(), param1: term()] | nil) ::
 t() | {:error, String.t()}

setActivationFunction
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	type: int.
The type of activation function. See ANN_MLP::ActivationFunctions.

Keyword Arguments
	param1: double.
The first parameter of the activation function, \f$\alpha\f$. Default value is 0.

	param2: double.
The second parameter of the activation function, \f$\beta\f$. Default value is 0.

Initialize the activation function for each neuron.
Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.
Python prototype (for reference only):
setActivationFunction(type[, param1[, param2]]) -> None

 Link to this function

 setAnnealCoolingRatio(self, val)

 View Source

 @spec setAnnealCoolingRatio(t(), number()) :: t() | {:error, String.t()}

setAnnealCoolingRatio
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getAnnealCoolingRatio/1
Python prototype (for reference only):
setAnnealCoolingRatio(val) -> None

 Link to this function

 setAnnealFinalT(self, val)

 View Source

 @spec setAnnealFinalT(t(), number()) :: t() | {:error, String.t()}

setAnnealFinalT
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getAnnealFinalT/1
Python prototype (for reference only):
setAnnealFinalT(val) -> None

 Link to this function

 setAnnealInitialT(self, val)

 View Source

 @spec setAnnealInitialT(t(), number()) :: t() | {:error, String.t()}

setAnnealInitialT
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getAnnealInitialT/1
Python prototype (for reference only):
setAnnealInitialT(val) -> None

 Link to this function

 setAnnealItePerStep(self, val)

 View Source

 @spec setAnnealItePerStep(t(), integer()) :: t() | {:error, String.t()}

setAnnealItePerStep
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: int

@see getAnnealItePerStep/1
Python prototype (for reference only):
setAnnealItePerStep(val) -> None

 Link to this function

 setBackpropMomentumScale(self, val)

 View Source

 @spec setBackpropMomentumScale(t(), number()) :: t() | {:error, String.t()}

setBackpropMomentumScale
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getBackpropMomentumScale/1
Python prototype (for reference only):
setBackpropMomentumScale(val) -> None

 Link to this function

 setBackpropWeightScale(self, val)

 View Source

 @spec setBackpropWeightScale(t(), number()) :: t() | {:error, String.t()}

setBackpropWeightScale
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getBackpropWeightScale/1
Python prototype (for reference only):
setBackpropWeightScale(val) -> None

 Link to this function

 setLayerSizes(self, layer_sizes)

 View Source

 @spec setLayerSizes(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setLayerSizes
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	layer_sizes: Evision.Mat.t()

Integer vector specifying the number of neurons in each layer including the input and output layers.
The very first element specifies the number of elements in the input layer.
The last element - number of elements in the output layer. Default value is empty Mat.
@sa getLayerSizes
Python prototype (for reference only):
setLayerSizes(_layer_sizes) -> None

 Link to this function

 setRpropDW0(self, val)

 View Source

 @spec setRpropDW0(t(), number()) :: t() | {:error, String.t()}

setRpropDW0
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getRpropDW0/1
Python prototype (for reference only):
setRpropDW0(val) -> None

 Link to this function

 setRpropDWMax(self, val)

 View Source

 @spec setRpropDWMax(t(), number()) :: t() | {:error, String.t()}

setRpropDWMax
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getRpropDWMax/1
Python prototype (for reference only):
setRpropDWMax(val) -> None

 Link to this function

 setRpropDWMin(self, val)

 View Source

 @spec setRpropDWMin(t(), number()) :: t() | {:error, String.t()}

setRpropDWMin
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getRpropDWMin/1
Python prototype (for reference only):
setRpropDWMin(val) -> None

 Link to this function

 setRpropDWMinus(self, val)

 View Source

 @spec setRpropDWMinus(t(), number()) :: t() | {:error, String.t()}

setRpropDWMinus
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getRpropDWMinus/1
Python prototype (for reference only):
setRpropDWMinus(val) -> None

 Link to this function

 setRpropDWPlus(self, val)

 View Source

 @spec setRpropDWPlus(t(), number()) :: t() | {:error, String.t()}

setRpropDWPlus
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: double

@see getRpropDWPlus/1
Python prototype (for reference only):
setRpropDWPlus(val) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 setTrainMethod(self, method)

 View Source

 @spec setTrainMethod(t(), integer()) :: t() | {:error, String.t()}

setTrainMethod
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	method: int.
Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.

Keyword Arguments
	param1: double.
passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.

	param2: double.
passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.

Sets training method and common parameters.
Python prototype (for reference only):
setTrainMethod(method[, param1[, param2]]) -> None

 Link to this function

 setTrainMethod(self, method, opts)

 View Source

 @spec setTrainMethod(t(), integer(), [param2: term(), param1: term()] | nil) ::
 t() | {:error, String.t()}

setTrainMethod
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	method: int.
Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.

Keyword Arguments
	param1: double.
passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.

	param2: double.
passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.

Sets training method and common parameters.
Python prototype (for reference only):
setTrainMethod(method[, param1[, param2]]) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.ANNMLP.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.ANNMLP.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.Boost - Evision v0.1.39

Evision.ML.Boost

 Summary

 Types

 t()

 Type that represents an ML.Boost struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 empty

 getBoostType(self)

 getBoostType

 getCVFolds(self)

 getCVFolds

 getDefaultName(self)

 getDefaultName

 getMaxCategories(self)

 getMaxCategories

 getMaxDepth(self)

 getMaxDepth

 getMinSampleCount(self)

 getMinSampleCount

 getPriors(self)

 getPriors

 getRegressionAccuracy(self)

 getRegressionAccuracy

 getTruncatePrunedTree(self)

 getTruncatePrunedTree

 getUse1SERule(self)

 getUse1SERule

 getUseSurrogates(self)

 getUseSurrogates

 getVarCount(self)

 Returns the number of variables in training samples

 getWeakCount(self)

 getWeakCount

 getWeightTrimRate(self)

 getWeightTrimRate

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized Boost from a file

 load(filepath, opts)

 Loads and creates a serialized Boost from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBoostType(self, val)

 setBoostType

 setCVFolds(self, val)

 setCVFolds

 setMaxCategories(self, val)

 setMaxCategories

 setMaxDepth(self, val)

 setMaxDepth

 setMinSampleCount(self, val)

 setMinSampleCount

 setPriors(self, val)

 setPriors

 setRegressionAccuracy(self, val)

 setRegressionAccuracy

 setTruncatePrunedTree(self, val)

 setTruncatePrunedTree

 setUse1SERule(self, val)

 setUse1SERule

 setUseSurrogates(self, val)

 setUseSurrogates

 setWeakCount(self, val)

 setWeakCount

 setWeightTrimRate(self, val)

 setWeightTrimRate

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.Boost{ref: reference()}

Type that represents an ML.Boost struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.Boost.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.Boost.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.Boost.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ML.Boost.t()

Creates the empty model.
Use StatModel::train to train the model, Algorithm::load\<Boost>(filename) to load the pre-trained model.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBoostType(self)

 View Source

 @spec getBoostType(t()) :: integer() | {:error, String.t()}

getBoostType
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setBoostType/2
Python prototype (for reference only):
getBoostType() -> retval

 Link to this function

 getCVFolds(self)

 View Source

 @spec getCVFolds(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getCVFolds
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setCVFolds/2
Python prototype (for reference only):
getCVFolds() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxCategories(self)

 View Source

 @spec getMaxCategories(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMaxCategories
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setMaxCategories/2
Python prototype (for reference only):
getMaxCategories() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setMaxDepth/2
Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMinSampleCount(self)

 View Source

 @spec getMinSampleCount(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMinSampleCount
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setMinSampleCount/2
Python prototype (for reference only):
getMinSampleCount() -> retval

 Link to this function

 getPriors(self)

 View Source

 @spec getPriors(Evision.ML.DTrees.t()) :: Evision.Mat.t() | {:error, String.t()}

getPriors
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: Evision.Mat.t()

@see setPriors/2
Python prototype (for reference only):
getPriors() -> retval

 Link to this function

 getRegressionAccuracy(self)

 View Source

 @spec getRegressionAccuracy(Evision.ML.DTrees.t()) :: number() | {:error, String.t()}

getRegressionAccuracy
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: float

@see setRegressionAccuracy/2
Python prototype (for reference only):
getRegressionAccuracy() -> retval

 Link to this function

 getTruncatePrunedTree(self)

 View Source

 @spec getTruncatePrunedTree(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getTruncatePrunedTree
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

@see setTruncatePrunedTree/2
Python prototype (for reference only):
getTruncatePrunedTree() -> retval

 Link to this function

 getUse1SERule(self)

 View Source

 @spec getUse1SERule(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getUse1SERule
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

@see setUse1SERule/2
Python prototype (for reference only):
getUse1SERule() -> retval

 Link to this function

 getUseSurrogates(self)

 View Source

 @spec getUseSurrogates(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getUseSurrogates
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

@see setUseSurrogates/2
Python prototype (for reference only):
getUseSurrogates() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 getWeakCount(self)

 View Source

 @spec getWeakCount(t()) :: integer() | {:error, String.t()}

getWeakCount
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: int

@see setWeakCount/2
Python prototype (for reference only):
getWeakCount() -> retval

 Link to this function

 getWeightTrimRate(self)

 View Source

 @spec getWeightTrimRate(t()) :: number() | {:error, String.t()}

getWeightTrimRate
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: double

@see setWeightTrimRate/2
Python prototype (for reference only):
getWeightTrimRate() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.Boost.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized Boost from a file
Positional Arguments
	filepath: String.
path to serialized Boost

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.Boost.t()

 Use Boost::save to serialize and store an RTree to disk.
 Load the Boost from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized Boost from a file
Positional Arguments
	filepath: String.
path to serialized Boost

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.Boost.t()

 Use Boost::save to serialize and store an RTree to disk.
 Load the Boost from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.Boost.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.Boost.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.Boost.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.Boost.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBoostType(self, val)

 View Source

 @spec setBoostType(t(), integer()) :: t() | {:error, String.t()}

setBoostType
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getBoostType/1
Python prototype (for reference only):
setBoostType(val) -> None

 Link to this function

 setCVFolds(self, val)

 View Source

 @spec setCVFolds(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setCVFolds
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getCVFolds/1
Python prototype (for reference only):
setCVFolds(val) -> None

 Link to this function

 setMaxCategories(self, val)

 View Source

 @spec setMaxCategories(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMaxCategories
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getMaxCategories/1
Python prototype (for reference only):
setMaxCategories(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getMaxDepth/1
Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMinSampleCount(self, val)

 View Source

 @spec setMinSampleCount(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMinSampleCount
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getMinSampleCount/1
Python prototype (for reference only):
setMinSampleCount(val) -> None

 Link to this function

 setPriors(self, val)

 View Source

 @spec setPriors(Evision.ML.DTrees.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setPriors
Positional Arguments
	self: Evision.ML.Boost.t()
	val: Evision.Mat.t()

@see getPriors/1
Python prototype (for reference only):
setPriors(val) -> None

 Link to this function

 setRegressionAccuracy(self, val)

 View Source

 @spec setRegressionAccuracy(Evision.ML.DTrees.t(), number()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setRegressionAccuracy
Positional Arguments
	self: Evision.ML.Boost.t()
	val: float

@see getRegressionAccuracy/1
Python prototype (for reference only):
setRegressionAccuracy(val) -> None

 Link to this function

 setTruncatePrunedTree(self, val)

 View Source

 @spec setTruncatePrunedTree(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setTruncatePrunedTree
Positional Arguments
	self: Evision.ML.Boost.t()
	val: bool

@see getTruncatePrunedTree/1
Python prototype (for reference only):
setTruncatePrunedTree(val) -> None

 Link to this function

 setUse1SERule(self, val)

 View Source

 @spec setUse1SERule(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setUse1SERule
Positional Arguments
	self: Evision.ML.Boost.t()
	val: bool

@see getUse1SERule/1
Python prototype (for reference only):
setUse1SERule(val) -> None

 Link to this function

 setUseSurrogates(self, val)

 View Source

 @spec setUseSurrogates(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setUseSurrogates
Positional Arguments
	self: Evision.ML.Boost.t()
	val: bool

@see getUseSurrogates/1
Python prototype (for reference only):
setUseSurrogates(val) -> None

 Link to this function

 setWeakCount(self, val)

 View Source

 @spec setWeakCount(t(), integer()) :: t() | {:error, String.t()}

setWeakCount
Positional Arguments
	self: Evision.ML.Boost.t()
	val: int

@see getWeakCount/1
Python prototype (for reference only):
setWeakCount(val) -> None

 Link to this function

 setWeightTrimRate(self, val)

 View Source

 @spec setWeightTrimRate(t(), number()) :: t() | {:error, String.t()}

setWeightTrimRate
Positional Arguments
	self: Evision.ML.Boost.t()
	val: double

@see getWeightTrimRate/1
Python prototype (for reference only):
setWeightTrimRate(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.Boost.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.Boost.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.Boost.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.Boost.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.Boost.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.DTrees - Evision v0.1.39

Evision.ML.DTrees

 Summary

 Types

 t()

 Type that represents an ML.DTrees struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 Creates the empty model

 empty(self)

 empty

 getCVFolds(self)

 getCVFolds

 getDefaultName(self)

 getDefaultName

 getMaxCategories(self)

 getMaxCategories

 getMaxDepth(self)

 getMaxDepth

 getMinSampleCount(self)

 getMinSampleCount

 getPriors(self)

 getPriors

 getRegressionAccuracy(self)

 getRegressionAccuracy

 getTruncatePrunedTree(self)

 getTruncatePrunedTree

 getUse1SERule(self)

 getUse1SERule

 getUseSurrogates(self)

 getUseSurrogates

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized DTrees from a file

 load(filepath, opts)

 Loads and creates a serialized DTrees from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCVFolds(self, val)

 setCVFolds

 setMaxCategories(self, val)

 setMaxCategories

 setMaxDepth(self, val)

 setMaxDepth

 setMinSampleCount(self, val)

 setMinSampleCount

 setPriors(self, val)

 setPriors

 setRegressionAccuracy(self, val)

 setRegressionAccuracy

 setTruncatePrunedTree(self, val)

 setTruncatePrunedTree

 setUse1SERule(self, val)

 setUse1SERule

 setUseSurrogates(self, val)

 setUseSurrogates

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.DTrees{ref: reference()}

Type that represents an ML.DTrees struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.DTrees.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.DTrees.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.DTrees.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates the empty model
Return
	retval: Evision.ML.DTrees.t()

The static method creates empty decision tree with the specified parameters. It should be then
trained using train method (see StatModel::train). Alternatively, you can load the model from
file using Algorithm::load\<DTrees>(filename).
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCVFolds(self)

 View Source

 @spec getCVFolds(t()) :: integer() | {:error, String.t()}

getCVFolds
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: int

@see setCVFolds/2
Python prototype (for reference only):
getCVFolds() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxCategories(self)

 View Source

 @spec getMaxCategories(t()) :: integer() | {:error, String.t()}

getMaxCategories
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: int

@see setMaxCategories/2
Python prototype (for reference only):
getMaxCategories() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(t()) :: integer() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: int

@see setMaxDepth/2
Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMinSampleCount(self)

 View Source

 @spec getMinSampleCount(t()) :: integer() | {:error, String.t()}

getMinSampleCount
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: int

@see setMinSampleCount/2
Python prototype (for reference only):
getMinSampleCount() -> retval

 Link to this function

 getPriors(self)

 View Source

 @spec getPriors(t()) :: Evision.Mat.t() | {:error, String.t()}

getPriors
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: Evision.Mat.t()

@see setPriors/2
Python prototype (for reference only):
getPriors() -> retval

 Link to this function

 getRegressionAccuracy(self)

 View Source

 @spec getRegressionAccuracy(t()) :: number() | {:error, String.t()}

getRegressionAccuracy
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: float

@see setRegressionAccuracy/2
Python prototype (for reference only):
getRegressionAccuracy() -> retval

 Link to this function

 getTruncatePrunedTree(self)

 View Source

 @spec getTruncatePrunedTree(t()) :: boolean() | {:error, String.t()}

getTruncatePrunedTree
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

@see setTruncatePrunedTree/2
Python prototype (for reference only):
getTruncatePrunedTree() -> retval

 Link to this function

 getUse1SERule(self)

 View Source

 @spec getUse1SERule(t()) :: boolean() | {:error, String.t()}

getUse1SERule
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

@see setUse1SERule/2
Python prototype (for reference only):
getUse1SERule() -> retval

 Link to this function

 getUseSurrogates(self)

 View Source

 @spec getUseSurrogates(t()) :: boolean() | {:error, String.t()}

getUseSurrogates
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

@see setUseSurrogates/2
Python prototype (for reference only):
getUseSurrogates() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.DTrees.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized DTrees from a file
Positional Arguments
	filepath: String.
path to serialized DTree

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.DTrees.t()

 Use DTree::save to serialize and store an DTree to disk.
 Load the DTree from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized DTrees from a file
Positional Arguments
	filepath: String.
path to serialized DTree

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.DTrees.t()

 Use DTree::save to serialize and store an DTree to disk.
 Load the DTree from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.DTrees.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.DTrees.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.DTrees.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.DTrees.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCVFolds(self, val)

 View Source

 @spec setCVFolds(t(), integer()) :: t() | {:error, String.t()}

setCVFolds
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: int

@see getCVFolds/1
Python prototype (for reference only):
setCVFolds(val) -> None

 Link to this function

 setMaxCategories(self, val)

 View Source

 @spec setMaxCategories(t(), integer()) :: t() | {:error, String.t()}

setMaxCategories
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: int

@see getMaxCategories/1
Python prototype (for reference only):
setMaxCategories(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(t(), integer()) :: t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: int

@see getMaxDepth/1
Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMinSampleCount(self, val)

 View Source

 @spec setMinSampleCount(t(), integer()) :: t() | {:error, String.t()}

setMinSampleCount
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: int

@see getMinSampleCount/1
Python prototype (for reference only):
setMinSampleCount(val) -> None

 Link to this function

 setPriors(self, val)

 View Source

 @spec setPriors(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setPriors
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: Evision.Mat.t()

@see getPriors/1
Python prototype (for reference only):
setPriors(val) -> None

 Link to this function

 setRegressionAccuracy(self, val)

 View Source

 @spec setRegressionAccuracy(t(), number()) :: t() | {:error, String.t()}

setRegressionAccuracy
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: float

@see getRegressionAccuracy/1
Python prototype (for reference only):
setRegressionAccuracy(val) -> None

 Link to this function

 setTruncatePrunedTree(self, val)

 View Source

 @spec setTruncatePrunedTree(t(), boolean()) :: t() | {:error, String.t()}

setTruncatePrunedTree
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: bool

@see getTruncatePrunedTree/1
Python prototype (for reference only):
setTruncatePrunedTree(val) -> None

 Link to this function

 setUse1SERule(self, val)

 View Source

 @spec setUse1SERule(t(), boolean()) :: t() | {:error, String.t()}

setUse1SERule
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: bool

@see getUse1SERule/1
Python prototype (for reference only):
setUse1SERule(val) -> None

 Link to this function

 setUseSurrogates(self, val)

 View Source

 @spec setUseSurrogates(t(), boolean()) :: t() | {:error, String.t()}

setUseSurrogates
Positional Arguments
	self: Evision.ML.DTrees.t()
	val: bool

@see getUseSurrogates/1
Python prototype (for reference only):
setUseSurrogates(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.DTrees.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.DTrees.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.DTrees.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.DTrees.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.DTrees.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.EM - Evision v0.1.39

Evision.ML.EM

 Summary

 Types

 t()

 Type that represents an ML.EM struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 empty

 getClustersNumber(self)

 getClustersNumber

 getCovarianceMatrixType(self)

 getCovarianceMatrixType

 getCovs(self)

 Returns covariation matrices

 getCovs(self, opts)

 Returns covariation matrices

 getDefaultName(self)

 getDefaultName

 getMeans(self)

 Returns the cluster centers (means of the Gaussian mixture)

 getTermCriteria(self)

 getTermCriteria

 getVarCount(self)

 Returns the number of variables in training samples

 getWeights(self)

 Returns weights of the mixtures

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized EM from a file

 load(filepath, opts)

 Loads and creates a serialized EM from a file

 predict2(self, sample)

 Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample.

 predict2(self, sample, opts)

 Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample.

 predict(self, samples)

 Returns posterior probabilities for the provided samples

 predict(self, samples, opts)

 Returns posterior probabilities for the provided samples

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setClustersNumber(self, val)

 setClustersNumber

 setCovarianceMatrixType(self, val)

 setCovarianceMatrixType

 setTermCriteria(self, val)

 setTermCriteria

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 trainE(self, samples, means0)

 Estimate the Gaussian mixture parameters from a samples set.

 trainE(self, samples, means0, opts)

 Estimate the Gaussian mixture parameters from a samples set.

 trainEM(self, samples)

 Estimate the Gaussian mixture parameters from a samples set.

 trainEM(self, samples, opts)

 Estimate the Gaussian mixture parameters from a samples set.

 trainM(self, samples, probs0)

 Estimate the Gaussian mixture parameters from a samples set.

 trainM(self, samples, probs0, opts)

 Estimate the Gaussian mixture parameters from a samples set.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.EM{ref: reference()}

Type that represents an ML.EM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.EM.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.EM.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.EM.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ML.EM.t()

Creates empty %EM model.
The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you
can use one of the EM::train* methods or load it from file using Algorithm::load\(filename).
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getClustersNumber(self)

 View Source

 @spec getClustersNumber(t()) :: integer() | {:error, String.t()}

getClustersNumber
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: int

@see setClustersNumber/2
Python prototype (for reference only):
getClustersNumber() -> retval

 Link to this function

 getCovarianceMatrixType(self)

 View Source

 @spec getCovarianceMatrixType(t()) :: integer() | {:error, String.t()}

getCovarianceMatrixType
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: int

@see setCovarianceMatrixType/2
Python prototype (for reference only):
getCovarianceMatrixType() -> retval

 Link to this function

 getCovs(self)

 View Source

 @spec getCovs(t()) :: [Evision.Mat.t()] | {:error, String.t()}

Returns covariation matrices
Positional Arguments
	self: Evision.ML.EM.t()

Return
	covs: [Evision.Mat].

Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
Python prototype (for reference only):
getCovs([, covs]) -> covs

 Link to this function

 getCovs(self, opts)

 View Source

 @spec getCovs(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Returns covariation matrices
Positional Arguments
	self: Evision.ML.EM.t()

Return
	covs: [Evision.Mat].

Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures,
each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
Python prototype (for reference only):
getCovs([, covs]) -> covs

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMeans(self)

 View Source

 @spec getMeans(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the cluster centers (means of the Gaussian mixture)
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: Evision.Mat.t()

Returns matrix with the number of rows equal to the number of mixtures and number of columns
equal to the space dimensionality.
Python prototype (for reference only):
getMeans() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 getWeights(self)

 View Source

 @spec getWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns weights of the mixtures
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: Evision.Mat.t()

Returns vector with the number of elements equal to the number of mixtures.
Python prototype (for reference only):
getWeights() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.EM.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized EM from a file
Positional Arguments
	filepath: String.
path to serialized EM

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.EM.t()

 Use EM::save to serialize and store an EM to disk.
 Load the EM from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized EM from a file
Positional Arguments
	filepath: String.
path to serialized EM

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.EM.t()

 Use EM::save to serialize and store an EM to disk.
 Load the EM from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict2(self, sample)

 View Source

 @spec predict2(t(), Evision.Mat.maybe_mat_in()) ::
 {{number(), number()}, Evision.Mat.t()} | {:error, String.t()}

Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample.
Positional Arguments
	self: Evision.ML.EM.t()

	sample: Evision.Mat.t().
A sample for classification. It should be a one-channel matrix of
\f$1 \times dims\f$ or \f$dims \times 1\f$ size.

Return
	retval: Vec2d

	probs: Evision.Mat.t().
Optional output matrix that contains posterior probabilities of each component
given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.

The method returns a two-element double vector. Zero element is a likelihood logarithm value for
the sample. First element is an index of the most probable mixture component for the given
sample.
Python prototype (for reference only):
predict2(sample[, probs]) -> retval, probs

 Link to this function

 predict2(self, sample, opts)

 View Source

 @spec predict2(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {{number(), number()}, Evision.Mat.t()} | {:error, String.t()}

Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample.
Positional Arguments
	self: Evision.ML.EM.t()

	sample: Evision.Mat.t().
A sample for classification. It should be a one-channel matrix of
\f$1 \times dims\f$ or \f$dims \times 1\f$ size.

Return
	retval: Vec2d

	probs: Evision.Mat.t().
Optional output matrix that contains posterior probabilities of each component
given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.

The method returns a two-element double vector. Zero element is a likelihood logarithm value for
the sample. First element is an index of the most probable mixture component for the given
sample.
Python prototype (for reference only):
predict2(sample[, probs]) -> retval, probs

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Returns posterior probabilities for the provided samples
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
This parameter will be ignored

Return
	retval: float

	results: Evision.Mat.t().
The optional output \f$ nSamples \times nClusters\f$ matrix of results. It contains
posterior probabilities for each sample from the input

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Returns posterior probabilities for the provided samples
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
This parameter will be ignored

Return
	retval: float

	results: Evision.Mat.t().
The optional output \f$ nSamples \times nClusters\f$ matrix of results. It contains
posterior probabilities for each sample from the input

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.EM.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.EM.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setClustersNumber(self, val)

 View Source

 @spec setClustersNumber(t(), integer()) :: t() | {:error, String.t()}

setClustersNumber
Positional Arguments
	self: Evision.ML.EM.t()
	val: int

@see getClustersNumber/1
Python prototype (for reference only):
setClustersNumber(val) -> None

 Link to this function

 setCovarianceMatrixType(self, val)

 View Source

 @spec setCovarianceMatrixType(t(), integer()) :: t() | {:error, String.t()}

setCovarianceMatrixType
Positional Arguments
	self: Evision.ML.EM.t()
	val: int

@see getCovarianceMatrixType/1
Python prototype (for reference only):
setCovarianceMatrixType(val) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.EM.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.EM.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.EM.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 trainE(self, samples, means0)

 View Source

 @spec trainE(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

	means0: Evision.Mat.t().
Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be
converted to the inner matrix of such type for the further computing.

Keyword Arguments
	covs0: Evision.Mat.t().
The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices
do not have CV_64F type they will be converted to the inner matrices of such type for the
further computing.

	weights0: Evision.Mat.t().
Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of
mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
\f$S_k\f$ of mixture components.
Python prototype (for reference only):
trainE(samples, means0[, covs0[, weights0[, logLikelihoods[, labels[, probs]]]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 trainE(self, samples, means0, opts)

 View Source

 @spec trainE(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [weights0: term(), covs0: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

	means0: Evision.Mat.t().
Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be
converted to the inner matrix of such type for the further computing.

Keyword Arguments
	covs0: Evision.Mat.t().
The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices
do not have CV_64F type they will be converted to the inner matrices of such type for the
further computing.

	weights0: Evision.Mat.t().
Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of
mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices
\f$S_k\f$ of mixture components.
Python prototype (for reference only):
trainE(samples, means0[, covs0[, weights0[, logLikelihoods[, labels[, probs]]]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 trainEM(self, samples)

 View Source

 @spec trainEM(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Expectation step. Initial values of the model parameters will be
estimated by the k-means algorithm.
Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
responses (class labels or function values) as input. Instead, it computes the Maximum
Likelihood Estimate of the Gaussian mixture parameters from an input sample set, stores all the
parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in
covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each
sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most
probable mixture component for each sample).
The trained model can be used further for prediction, just like any other classifier. The
trained model is similar to the NormalBayesClassifier.
Python prototype (for reference only):
trainEM(samples[, logLikelihoods[, labels[, probs]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 trainEM(self, samples, opts)

 View Source

 @spec trainEM(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Expectation step. Initial values of the model parameters will be
estimated by the k-means algorithm.
Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take
responses (class labels or function values) as input. Instead, it computes the Maximum
Likelihood Estimate of the Gaussian mixture parameters from an input sample set, stores all the
parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in
covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each
sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most
probable mixture component for each sample).
The trained model can be used further for prediction, just like any other classifier. The
trained model is similar to the NormalBayesClassifier.
Python prototype (for reference only):
trainEM(samples[, logLikelihoods[, labels[, probs]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 trainM(self, samples, probs0)

 View Source

 @spec trainM(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

	probs0: Evision.Mat.t().
the probabilities

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Maximization step. You need to provide initial probabilities
\f$p_{i,k}\f$ to use this option.
Python prototype (for reference only):
trainM(samples, probs0[, logLikelihoods[, labels[, probs]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 trainM(self, samples, probs0, opts)

 View Source

 @spec trainM(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | false
 | {:error, String.t()}

Estimate the Gaussian mixture parameters from a samples set.
Positional Arguments
	self: Evision.ML.EM.t()

	samples: Evision.Mat.t().
Samples from which the Gaussian mixture model will be estimated. It should be a
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type
it will be converted to the inner matrix of such type for the further computing.

	probs0: Evision.Mat.t().
the probabilities

Return
	retval: bool

	logLikelihoods: Evision.Mat.t().
The optional output matrix that contains a likelihood logarithm value for
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.

	labels: Evision.Mat.t().
The optional output "class label" for each sample:
\f$\texttt{labels}i=\texttt{arg max}_k(p{i,k}), i=1..N\f$ (indices of the most probable
mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.

	probs: Evision.Mat.t().
The optional output matrix that contains posterior probabilities of each Gaussian
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and
CV_64FC1 type.

This variation starts with Maximization step. You need to provide initial probabilities
\f$p_{i,k}\f$ to use this option.
Python prototype (for reference only):
trainM(samples, probs0[, logLikelihoods[, labels[, probs]]]) -> retval, logLikelihoods, labels, probs

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.EM.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.EM.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.KNearest - Evision v0.1.39

Evision.ML.KNearest

 Summary

 Types

 t()

 Type that represents an ML.KNearest struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 Creates the empty model

 empty(self)

 empty

 findNearest(self, samples, k)

 Finds the neighbors and predicts responses for input vectors.

 findNearest(self, samples, k, opts)

 Finds the neighbors and predicts responses for input vectors.

 getAlgorithmType(self)

 getAlgorithmType

 getDefaultK(self)

 getDefaultK

 getDefaultName(self)

 getDefaultName

 getEmax(self)

 getEmax

 getIsClassifier(self)

 getIsClassifier

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized knearest from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setAlgorithmType(self, val)

 setAlgorithmType

 setDefaultK(self, val)

 setDefaultK

 setEmax(self, val)

 setEmax

 setIsClassifier(self, val)

 setIsClassifier

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.KNearest{ref: reference()}

Type that represents an ML.KNearest struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.KNearest.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.KNearest.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.KNearest.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates the empty model
Return
	retval: Evision.ML.KNearest.t()

The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 findNearest(self, samples, k)

 View Source

 @spec findNearest(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the neighbors and predicts responses for input vectors.
Positional Arguments
	self: Evision.ML.KNearest.t()

	samples: Evision.Mat.t().
Input samples stored by rows. It is a single-precision floating-point matrix of
<number_of_samples> * k size.

	k: int.
Number of used nearest neighbors. Should be greater than 1.

Return
	retval: float

	results: Evision.Mat.t().
Vector with results of prediction (regression or classification) for each input
sample. It is a single-precision floating-point vector with <number_of_samples> elements.

	neighborResponses: Evision.Mat.t().
Optional output values for corresponding neighbors. It is a single-
precision floating-point matrix of <number_of_samples> * k size.

	dist: Evision.Mat.t().
Optional output distances from the input vectors to the corresponding neighbors. It
is a single-precision floating-point matrix of <number_of_samples> * k size.

For each input vector (a row of the matrix samples), the method finds the k nearest neighbors.
In case of regression, the predicted result is a mean value of the particular vector's neighbor
responses. In case of classification, the class is determined by voting.
For each input vector, the neighbors are sorted by their distances to the vector.
In case of C++ interface you can use output pointers to empty matrices and the function will
allocate memory itself.
If only a single input vector is passed, all output matrices are optional and the predicted
value is returned by the method.
The function is parallelized with the TBB library.
Python prototype (for reference only):
findNearest(samples, k[, results[, neighborResponses[, dist]]]) -> retval, results, neighborResponses, dist

 Link to this function

 findNearest(self, samples, k, opts)

 View Source

 @spec findNearest(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Finds the neighbors and predicts responses for input vectors.
Positional Arguments
	self: Evision.ML.KNearest.t()

	samples: Evision.Mat.t().
Input samples stored by rows. It is a single-precision floating-point matrix of
<number_of_samples> * k size.

	k: int.
Number of used nearest neighbors. Should be greater than 1.

Return
	retval: float

	results: Evision.Mat.t().
Vector with results of prediction (regression or classification) for each input
sample. It is a single-precision floating-point vector with <number_of_samples> elements.

	neighborResponses: Evision.Mat.t().
Optional output values for corresponding neighbors. It is a single-
precision floating-point matrix of <number_of_samples> * k size.

	dist: Evision.Mat.t().
Optional output distances from the input vectors to the corresponding neighbors. It
is a single-precision floating-point matrix of <number_of_samples> * k size.

For each input vector (a row of the matrix samples), the method finds the k nearest neighbors.
In case of regression, the predicted result is a mean value of the particular vector's neighbor
responses. In case of classification, the class is determined by voting.
For each input vector, the neighbors are sorted by their distances to the vector.
In case of C++ interface you can use output pointers to empty matrices and the function will
allocate memory itself.
If only a single input vector is passed, all output matrices are optional and the predicted
value is returned by the method.
The function is parallelized with the TBB library.
Python prototype (for reference only):
findNearest(samples, k[, results[, neighborResponses[, dist]]]) -> retval, results, neighborResponses, dist

 Link to this function

 getAlgorithmType(self)

 View Source

 @spec getAlgorithmType(t()) :: integer() | {:error, String.t()}

getAlgorithmType
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: int

@see setAlgorithmType/2
Python prototype (for reference only):
getAlgorithmType() -> retval

 Link to this function

 getDefaultK(self)

 View Source

 @spec getDefaultK(t()) :: integer() | {:error, String.t()}

getDefaultK
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: int

@see setDefaultK/2
Python prototype (for reference only):
getDefaultK() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEmax(self)

 View Source

 @spec getEmax(t()) :: integer() | {:error, String.t()}

getEmax
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: int

@see setEmax/2
Python prototype (for reference only):
getEmax() -> retval

 Link to this function

 getIsClassifier(self)

 View Source

 @spec getIsClassifier(t()) :: boolean() | {:error, String.t()}

getIsClassifier
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: bool

@see setIsClassifier/2
Python prototype (for reference only):
getIsClassifier() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.KNearest.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized knearest from a file
Positional Arguments
	filepath: String.
path to serialized KNearest

Return
	retval: Evision.ML.KNearest.t()

 Use KNearest::save to serialize and store an KNearest to disk.
 Load the KNearest from this file again, by calling this function with the path to the file.
Python prototype (for reference only):
load(filepath) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.KNearest.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.KNearest.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.KNearest.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.KNearest.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setAlgorithmType(self, val)

 View Source

 @spec setAlgorithmType(t(), integer()) :: t() | {:error, String.t()}

setAlgorithmType
Positional Arguments
	self: Evision.ML.KNearest.t()
	val: int

@see getAlgorithmType/1
Python prototype (for reference only):
setAlgorithmType(val) -> None

 Link to this function

 setDefaultK(self, val)

 View Source

 @spec setDefaultK(t(), integer()) :: t() | {:error, String.t()}

setDefaultK
Positional Arguments
	self: Evision.ML.KNearest.t()
	val: int

@see getDefaultK/1
Python prototype (for reference only):
setDefaultK(val) -> None

 Link to this function

 setEmax(self, val)

 View Source

 @spec setEmax(t(), integer()) :: t() | {:error, String.t()}

setEmax
Positional Arguments
	self: Evision.ML.KNearest.t()
	val: int

@see getEmax/1
Python prototype (for reference only):
setEmax(val) -> None

 Link to this function

 setIsClassifier(self, val)

 View Source

 @spec setIsClassifier(t(), boolean()) :: t() | {:error, String.t()}

setIsClassifier
Positional Arguments
	self: Evision.ML.KNearest.t()
	val: bool

@see getIsClassifier/1
Python prototype (for reference only):
setIsClassifier(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.KNearest.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.KNearest.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.KNearest.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.KNearest.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.KNearest.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.LogisticRegression - Evision v0.1.39

Evision.ML.LogisticRegression

 Summary

 Types

 t()

 Type that represents an ML.LogisticRegression struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 Creates empty model.

 empty(self)

 empty

 get_learnt_thetas(self)

 This function returns the trained parameters arranged across rows.

 getDefaultName(self)

 getDefaultName

 getIterations(self)

 getIterations

 getLearningRate(self)

 getLearningRate

 getMiniBatchSize(self)

 getMiniBatchSize

 getRegularization(self)

 getRegularization

 getTermCriteria(self)

 getTermCriteria

 getTrainMethod(self)

 getTrainMethod

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized LogisticRegression from a file

 load(filepath, opts)

 Loads and creates a serialized LogisticRegression from a file

 predict(self, samples)

 Predicts responses for input samples and returns a float type.

 predict(self, samples, opts)

 Predicts responses for input samples and returns a float type.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setIterations(self, val)

 setIterations

 setLearningRate(self, val)

 setLearningRate

 setMiniBatchSize(self, val)

 setMiniBatchSize

 setRegularization(self, val)

 setRegularization

 setTermCriteria(self, val)

 setTermCriteria

 setTrainMethod(self, val)

 setTrainMethod

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.LogisticRegression{ref: reference()}

Type that represents an ML.LogisticRegression struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates empty model.
Return
	retval: Evision.ML.LogisticRegression.t()

Creates Logistic Regression model with parameters given.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 get_learnt_thetas(self)

 View Source

 @spec get_learnt_thetas(t()) :: Evision.Mat.t() | {:error, String.t()}

This function returns the trained parameters arranged across rows.
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: Evision.Mat.t()

For a two class classification problem, it returns a row matrix. It returns learnt parameters of
the Logistic Regression as a matrix of type CV_32F.
Python prototype (for reference only):
get_learnt_thetas() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getIterations(self)

 View Source

 @spec getIterations(t()) :: integer() | {:error, String.t()}

getIterations
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: int

@see setIterations/2
Python prototype (for reference only):
getIterations() -> retval

 Link to this function

 getLearningRate(self)

 View Source

 @spec getLearningRate(t()) :: number() | {:error, String.t()}

getLearningRate
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: double

@see setLearningRate/2
Python prototype (for reference only):
getLearningRate() -> retval

 Link to this function

 getMiniBatchSize(self)

 View Source

 @spec getMiniBatchSize(t()) :: integer() | {:error, String.t()}

getMiniBatchSize
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: int

@see setMiniBatchSize/2
Python prototype (for reference only):
getMiniBatchSize() -> retval

 Link to this function

 getRegularization(self)

 View Source

 @spec getRegularization(t()) :: integer() | {:error, String.t()}

getRegularization
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: int

@see setRegularization/2
Python prototype (for reference only):
getRegularization() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getTrainMethod(self)

 View Source

 @spec getTrainMethod(t()) :: integer() | {:error, String.t()}

getTrainMethod
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: int

@see setTrainMethod/2
Python prototype (for reference only):
getTrainMethod() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized LogisticRegression from a file
Positional Arguments
	filepath: String.
path to serialized LogisticRegression

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.LogisticRegression.t()

 Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
 Load the LogisticRegression from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized LogisticRegression from a file
Positional Arguments
	filepath: String.
path to serialized LogisticRegression

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.LogisticRegression.t()

 Use LogisticRegression::save to serialize and store an LogisticRegression to disk.
 Load the LogisticRegression from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts responses for input samples and returns a float type.
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	samples: Evision.Mat.t().
The input data for the prediction algorithm. Matrix [m x n], where each row
contains variables (features) of one object being classified. Should have data type CV_32F.

Keyword Arguments
	flags: int.
Not used.

Return
	retval: float

	results: Evision.Mat.t().
Predicted labels as a column matrix of type CV_32S.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts responses for input samples and returns a float type.
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	samples: Evision.Mat.t().
The input data for the prediction algorithm. Matrix [m x n], where each row
contains variables (features) of one object being classified. Should have data type CV_32F.

Keyword Arguments
	flags: int.
Not used.

Return
	retval: float

	results: Evision.Mat.t().
Predicted labels as a column matrix of type CV_32S.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setIterations(self, val)

 View Source

 @spec setIterations(t(), integer()) :: t() | {:error, String.t()}

setIterations
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: int

@see getIterations/1
Python prototype (for reference only):
setIterations(val) -> None

 Link to this function

 setLearningRate(self, val)

 View Source

 @spec setLearningRate(t(), number()) :: t() | {:error, String.t()}

setLearningRate
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: double

@see getLearningRate/1
Python prototype (for reference only):
setLearningRate(val) -> None

 Link to this function

 setMiniBatchSize(self, val)

 View Source

 @spec setMiniBatchSize(t(), integer()) :: t() | {:error, String.t()}

setMiniBatchSize
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: int

@see getMiniBatchSize/1
Python prototype (for reference only):
setMiniBatchSize(val) -> None

 Link to this function

 setRegularization(self, val)

 View Source

 @spec setRegularization(t(), integer()) :: t() | {:error, String.t()}

setRegularization
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: int

@see getRegularization/1
Python prototype (for reference only):
setRegularization(val) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 setTrainMethod(self, val)

 View Source

 @spec setTrainMethod(t(), integer()) :: t() | {:error, String.t()}

setTrainMethod
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	val: int

@see getTrainMethod/1
Python prototype (for reference only):
setTrainMethod(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.LogisticRegression.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.LogisticRegression.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.NormalBayesClassifier - Evision v0.1.39

Evision.ML.NormalBayesClassifier

 Summary

 Types

 t()

 Type that represents an ML.NormalBayesClassifier struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized NormalBayesClassifier from a file

 load(filepath, opts)

 Loads and creates a serialized NormalBayesClassifier from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 predictProb(self, inputs)

 Predicts the response for sample(s).

 predictProb(self, inputs, opts)

 Predicts the response for sample(s).

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.NormalBayesClassifier{ref: reference()}

Type that represents an ML.NormalBayesClassifier struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ML.NormalBayesClassifier.t()

Creates empty model
Use StatModel::train to train the model after creation.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized NormalBayesClassifier from a file
Positional Arguments
	filepath: String.
path to serialized NormalBayesClassifier

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.NormalBayesClassifier.t()

 Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
 Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized NormalBayesClassifier from a file
Positional Arguments
	filepath: String.
path to serialized NormalBayesClassifier

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.NormalBayesClassifier.t()

 Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
 Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predictProb(self, inputs)

 View Source

 @spec predictProb(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Predicts the response for sample(s).
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	inputs: Evision.Mat.t()

Keyword Arguments
	flags: int.

Return
	retval: float
	outputs: Evision.Mat.t().
	outputProbs: Evision.Mat.t().

The method estimates the most probable classes for input vectors. Input vectors (one or more)
are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
output vector outputs. The predicted class for a single input vector is returned by the method.
The vector outputProbs contains the output probabilities corresponding to each element of
result.
Python prototype (for reference only):
predictProb(inputs[, outputs[, outputProbs[, flags]]]) -> retval, outputs, outputProbs

 Link to this function

 predictProb(self, inputs, opts)

 View Source

 @spec predictProb(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Predicts the response for sample(s).
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	inputs: Evision.Mat.t()

Keyword Arguments
	flags: int.

Return
	retval: float
	outputs: Evision.Mat.t().
	outputProbs: Evision.Mat.t().

The method estimates the most probable classes for input vectors. Input vectors (one or more)
are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
output vector outputs. The predicted class for a single input vector is returned by the method.
The vector outputProbs contains the output probabilities corresponding to each element of
result.
Python prototype (for reference only):
predictProb(inputs[, outputs[, outputProbs[, flags]]]) -> retval, outputs, outputProbs

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.NormalBayesClassifier.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.ParamGrid - Evision v0.1.39

Evision.ML.ParamGrid

 Summary

 Types

 t()

 Type that represents an ML.ParamGrid struct.

 Functions

 create()

 Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method

 create(opts)

 Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method

 get_logStep(self)

 get_maxVal(self)

 get_minVal(self)

 set_logStep(self, prop)

 set_maxVal(self, prop)

 set_minVal(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.ParamGrid{ref: reference()}

Type that represents an ML.ParamGrid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
Keyword Arguments
	minVal: double.
minimum value of the parameter grid

	maxVal: double.
maximum value of the parameter grid

	logstep: double.
Logarithmic step for iterating the statmodel parameter

Return
	retval: Evision.ML.ParamGrid.t()

Python prototype (for reference only):
create([, minVal[, maxVal[, logstep]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([minVal: term(), logstep: term(), maxVal: term()] | nil) ::
 t() | {:error, String.t()}

Creates a ParamGrid Ptr that can be given to the %SVM::trainAuto method
Keyword Arguments
	minVal: double.
minimum value of the parameter grid

	maxVal: double.
maximum value of the parameter grid

	logstep: double.
Logarithmic step for iterating the statmodel parameter

Return
	retval: Evision.ML.ParamGrid.t()

Python prototype (for reference only):
create([, minVal[, maxVal[, logstep]]]) -> retval

 Link to this function

 get_logStep(self)

 View Source

 @spec get_logStep(t()) :: number()

 Link to this function

 get_maxVal(self)

 View Source

 @spec get_maxVal(t()) :: number()

 Link to this function

 get_minVal(self)

 View Source

 @spec get_minVal(t()) :: number()

 Link to this function

 set_logStep(self, prop)

 View Source

 @spec set_logStep(t(), number()) :: t()

 Link to this function

 set_maxVal(self, prop)

 View Source

 @spec set_maxVal(t(), number()) :: t()

 Link to this function

 set_minVal(self, prop)

 View Source

 @spec set_minVal(t(), number()) :: t()

 Evision.ML.RTrees - Evision v0.1.39

Evision.ML.RTrees

 Summary

 Types

 t()

 Type that represents an ML.RTrees struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 empty

 getActiveVarCount(self)

 getActiveVarCount

 getCalculateVarImportance(self)

 getCalculateVarImportance

 getCVFolds(self)

 getCVFolds

 getDefaultName(self)

 getDefaultName

 getMaxCategories(self)

 getMaxCategories

 getMaxDepth(self)

 getMaxDepth

 getMinSampleCount(self)

 getMinSampleCount

 getOOBError(self)

 getOOBError

 getPriors(self)

 getPriors

 getRegressionAccuracy(self)

 getRegressionAccuracy

 getTermCriteria(self)

 getTermCriteria

 getTruncatePrunedTree(self)

 getTruncatePrunedTree

 getUse1SERule(self)

 getUse1SERule

 getUseSurrogates(self)

 getUseSurrogates

 getVarCount(self)

 Returns the number of variables in training samples

 getVarImportance(self)

 getVarImportance

 getVotes(self, samples, flags)

 getVotes

 getVotes(self, samples, flags, opts)

 getVotes

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized RTree from a file

 load(filepath, opts)

 Loads and creates a serialized RTree from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setActiveVarCount(self, val)

 setActiveVarCount

 setCalculateVarImportance(self, val)

 setCalculateVarImportance

 setCVFolds(self, val)

 setCVFolds

 setMaxCategories(self, val)

 setMaxCategories

 setMaxDepth(self, val)

 setMaxDepth

 setMinSampleCount(self, val)

 setMinSampleCount

 setPriors(self, val)

 setPriors

 setRegressionAccuracy(self, val)

 setRegressionAccuracy

 setTermCriteria(self, val)

 setTermCriteria

 setTruncatePrunedTree(self, val)

 setTruncatePrunedTree

 setUse1SERule(self, val)

 setUse1SERule

 setUseSurrogates(self, val)

 setUseSurrogates

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.RTrees{ref: reference()}

Type that represents an ML.RTrees struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.RTrees.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.RTrees.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.RTrees.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ML.RTrees.t()

Creates the empty model.
Use StatModel::train to train the model, StatModel::train to create and train the model,
Algorithm::load to load the pre-trained model.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getActiveVarCount(self)

 View Source

 @spec getActiveVarCount(t()) :: integer() | {:error, String.t()}

getActiveVarCount
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

@see setActiveVarCount/2
Python prototype (for reference only):
getActiveVarCount() -> retval

 Link to this function

 getCalculateVarImportance(self)

 View Source

 @spec getCalculateVarImportance(t()) :: boolean() | {:error, String.t()}

getCalculateVarImportance
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

@see setCalculateVarImportance/2
Python prototype (for reference only):
getCalculateVarImportance() -> retval

 Link to this function

 getCVFolds(self)

 View Source

 @spec getCVFolds(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getCVFolds
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

@see setCVFolds/2
Python prototype (for reference only):
getCVFolds() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxCategories(self)

 View Source

 @spec getMaxCategories(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMaxCategories
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

@see setMaxCategories/2
Python prototype (for reference only):
getMaxCategories() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

@see setMaxDepth/2
Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMinSampleCount(self)

 View Source

 @spec getMinSampleCount(Evision.ML.DTrees.t()) :: integer() | {:error, String.t()}

getMinSampleCount
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

@see setMinSampleCount/2
Python prototype (for reference only):
getMinSampleCount() -> retval

 Link to this function

 getOOBError(self)

 View Source

 @spec getOOBError(t()) :: number() | {:error, String.t()}

getOOBError
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: double

Returns the OOB error value, computed at the training stage when calcOOBError is set to true.
 If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.
Python prototype (for reference only):
getOOBError() -> retval

 Link to this function

 getPriors(self)

 View Source

 @spec getPriors(Evision.ML.DTrees.t()) :: Evision.Mat.t() | {:error, String.t()}

getPriors
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: Evision.Mat.t()

@see setPriors/2
Python prototype (for reference only):
getPriors() -> retval

 Link to this function

 getRegressionAccuracy(self)

 View Source

 @spec getRegressionAccuracy(Evision.ML.DTrees.t()) :: number() | {:error, String.t()}

getRegressionAccuracy
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: float

@see setRegressionAccuracy/2
Python prototype (for reference only):
getRegressionAccuracy() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getTruncatePrunedTree(self)

 View Source

 @spec getTruncatePrunedTree(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getTruncatePrunedTree
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

@see setTruncatePrunedTree/2
Python prototype (for reference only):
getTruncatePrunedTree() -> retval

 Link to this function

 getUse1SERule(self)

 View Source

 @spec getUse1SERule(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getUse1SERule
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

@see setUse1SERule/2
Python prototype (for reference only):
getUse1SERule() -> retval

 Link to this function

 getUseSurrogates(self)

 View Source

 @spec getUseSurrogates(Evision.ML.DTrees.t()) :: boolean() | {:error, String.t()}

getUseSurrogates
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

@see setUseSurrogates/2
Python prototype (for reference only):
getUseSurrogates() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 getVarImportance(self)

 View Source

 @spec getVarImportance(t()) :: Evision.Mat.t() | {:error, String.t()}

getVarImportance
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: Evision.Mat.t()

Returns the variable importance array.
The method returns the variable importance vector, computed at the training stage when
CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
returned.
Python prototype (for reference only):
getVarImportance() -> retval

 Link to this function

 getVotes(self, samples, flags)

 View Source

 @spec getVotes(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

getVotes
Positional Arguments
	self: Evision.ML.RTrees.t()

	samples: Evision.Mat.t().
Array containing the samples for which votes will be calculated.

	flags: int.
Flags for defining the type of RTrees.

Return
	results: Evision.Mat.t().
Array where the result of the calculation will be written.

Returns the result of each individual tree in the forest.
In case the model is a regression problem, the method will return each of the trees'
results for each of the sample cases. If the model is a classifier, it will return
a Mat with samples + 1 rows, where the first row gives the class number and the
following rows return the votes each class had for each sample.
Python prototype (for reference only):
getVotes(samples, flags[, results]) -> results

 Link to this function

 getVotes(self, samples, flags, opts)

 View Source

 @spec getVotes(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

getVotes
Positional Arguments
	self: Evision.ML.RTrees.t()

	samples: Evision.Mat.t().
Array containing the samples for which votes will be calculated.

	flags: int.
Flags for defining the type of RTrees.

Return
	results: Evision.Mat.t().
Array where the result of the calculation will be written.

Returns the result of each individual tree in the forest.
In case the model is a regression problem, the method will return each of the trees'
results for each of the sample cases. If the model is a classifier, it will return
a Mat with samples + 1 rows, where the first row gives the class number and the
following rows return the votes each class had for each sample.
Python prototype (for reference only):
getVotes(samples, flags[, results]) -> results

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.RTrees.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized RTree from a file
Positional Arguments
	filepath: String.
path to serialized RTree

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.RTrees.t()

 Use RTree::save to serialize and store an RTree to disk.
 Load the RTree from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized RTree from a file
Positional Arguments
	filepath: String.
path to serialized RTree

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.RTrees.t()

 Use RTree::save to serialize and store an RTree to disk.
 Load the RTree from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.RTrees.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.RTrees.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.RTrees.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.RTrees.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setActiveVarCount(self, val)

 View Source

 @spec setActiveVarCount(t(), integer()) :: t() | {:error, String.t()}

setActiveVarCount
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: int

@see getActiveVarCount/1
Python prototype (for reference only):
setActiveVarCount(val) -> None

 Link to this function

 setCalculateVarImportance(self, val)

 View Source

 @spec setCalculateVarImportance(t(), boolean()) :: t() | {:error, String.t()}

setCalculateVarImportance
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: bool

@see getCalculateVarImportance/1
Python prototype (for reference only):
setCalculateVarImportance(val) -> None

 Link to this function

 setCVFolds(self, val)

 View Source

 @spec setCVFolds(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setCVFolds
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: int

@see getCVFolds/1
Python prototype (for reference only):
setCVFolds(val) -> None

 Link to this function

 setMaxCategories(self, val)

 View Source

 @spec setMaxCategories(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMaxCategories
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: int

@see getMaxCategories/1
Python prototype (for reference only):
setMaxCategories(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: int

@see getMaxDepth/1
Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMinSampleCount(self, val)

 View Source

 @spec setMinSampleCount(Evision.ML.DTrees.t(), integer()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setMinSampleCount
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: int

@see getMinSampleCount/1
Python prototype (for reference only):
setMinSampleCount(val) -> None

 Link to this function

 setPriors(self, val)

 View Source

 @spec setPriors(Evision.ML.DTrees.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setPriors
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: Evision.Mat.t()

@see getPriors/1
Python prototype (for reference only):
setPriors(val) -> None

 Link to this function

 setRegressionAccuracy(self, val)

 View Source

 @spec setRegressionAccuracy(Evision.ML.DTrees.t(), number()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setRegressionAccuracy
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: float

@see getRegressionAccuracy/1
Python prototype (for reference only):
setRegressionAccuracy(val) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 setTruncatePrunedTree(self, val)

 View Source

 @spec setTruncatePrunedTree(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setTruncatePrunedTree
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: bool

@see getTruncatePrunedTree/1
Python prototype (for reference only):
setTruncatePrunedTree(val) -> None

 Link to this function

 setUse1SERule(self, val)

 View Source

 @spec setUse1SERule(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setUse1SERule
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: bool

@see getUse1SERule/1
Python prototype (for reference only):
setUse1SERule(val) -> None

 Link to this function

 setUseSurrogates(self, val)

 View Source

 @spec setUseSurrogates(Evision.ML.DTrees.t(), boolean()) ::
 Evision.ML.DTrees.t() | {:error, String.t()}

setUseSurrogates
Positional Arguments
	self: Evision.ML.RTrees.t()
	val: bool

@see getUseSurrogates/1
Python prototype (for reference only):
setUseSurrogates(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.RTrees.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.RTrees.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.RTrees.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.RTrees.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.RTrees.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.SVM - Evision v0.1.39

Evision.ML.SVM

 Summary

 Types

 t()

 Type that represents an ML.SVM struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 create

 empty(self)

 empty

 getC(self)

 getC

 getClassWeights(self)

 getClassWeights

 getCoef0(self)

 getCoef0

 getDecisionFunction(self, i)

 Retrieves the decision function

 getDecisionFunction(self, i, opts)

 Retrieves the decision function

 getDefaultGridPtr(param_id)

 Generates a grid for %SVM parameters.

 getDefaultName(self)

 getDefaultName

 getDegree(self)

 getDegree

 getGamma(self)

 getGamma

 getKernelType(self)

 getKernelType

 getNu(self)

 getNu

 getP(self)

 getP

 getSupportVectors(self)

 Retrieves all the support vectors

 getTermCriteria(self)

 getTermCriteria

 getType(self)

 getType

 getUncompressedSupportVectors(self)

 Retrieves all the uncompressed support vectors of a linear %SVM

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized svm from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setC(self, val)

 setC

 setClassWeights(self, val)

 setClassWeights

 setCoef0(self, val)

 setCoef0

 setDegree(self, val)

 setDegree

 setGamma(self, val)

 setGamma

 setKernel(self, kernelType)

 setKernel

 setNu(self, val)

 setNu

 setP(self, val)

 setP

 setTermCriteria(self, val)

 setTermCriteria

 setType(self, val)

 setType

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 trainAuto(self, samples, layout, responses)

 Trains an %SVM with optimal parameters

 trainAuto(self, samples, layout, responses, opts)

 Trains an %SVM with optimal parameters

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.SVM{ref: reference()}

Type that represents an ML.SVM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.SVM.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.SVM.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.SVM.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.ML.SVM.t()

Creates empty model.
Use StatModel::train to train the model. Since %SVM has several parameters, you may want to
find the best parameters for your problem, it can be done with SVM::trainAuto.
Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getC(self)

 View Source

 @spec getC(t()) :: number() | {:error, String.t()}

getC
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setC/2
Python prototype (for reference only):
getC() -> retval

 Link to this function

 getClassWeights(self)

 View Source

 @spec getClassWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getClassWeights
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: Evision.Mat.t()

@see setClassWeights/2
Python prototype (for reference only):
getClassWeights() -> retval

 Link to this function

 getCoef0(self)

 View Source

 @spec getCoef0(t()) :: number() | {:error, String.t()}

getCoef0
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setCoef0/2
Python prototype (for reference only):
getCoef0() -> retval

 Link to this function

 getDecisionFunction(self, i)

 View Source

 @spec getDecisionFunction(t(), integer()) ::
 {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Retrieves the decision function
Positional Arguments
	self: Evision.ML.SVM.t()

	i: int.
the index of the decision function. If the problem solved is regression, 1-class or
2-class classification, then there will be just one decision function and the index should
always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$
decision functions.

Return
	retval: double

	alpha: Evision.Mat.t().
the optional output vector for weights, corresponding to different support vectors.
In the case of linear %SVM all the alpha's will be 1's.

	svidx: Evision.Mat.t().
the optional output vector of indices of support vectors within the matrix of
support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
%SVM each decision function consists of a single "compressed" support vector.

The method returns rho parameter of the decision function, a scalar subtracted from the weighted
sum of kernel responses.
Python prototype (for reference only):
getDecisionFunction(i[, alpha[, svidx]]) -> retval, alpha, svidx

 Link to this function

 getDecisionFunction(self, i, opts)

 View Source

 @spec getDecisionFunction(t(), integer(), [{atom(), term()}, ...] | nil) ::
 {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Retrieves the decision function
Positional Arguments
	self: Evision.ML.SVM.t()

	i: int.
the index of the decision function. If the problem solved is regression, 1-class or
2-class classification, then there will be just one decision function and the index should
always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$
decision functions.

Return
	retval: double

	alpha: Evision.Mat.t().
the optional output vector for weights, corresponding to different support vectors.
In the case of linear %SVM all the alpha's will be 1's.

	svidx: Evision.Mat.t().
the optional output vector of indices of support vectors within the matrix of
support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear
%SVM each decision function consists of a single "compressed" support vector.

The method returns rho parameter of the decision function, a scalar subtracted from the weighted
sum of kernel responses.
Python prototype (for reference only):
getDecisionFunction(i[, alpha[, svidx]]) -> retval, alpha, svidx

 Link to this function

 getDefaultGridPtr(param_id)

 View Source

 @spec getDefaultGridPtr(integer()) :: Evision.ML.ParamGrid.t() | {:error, String.t()}

Generates a grid for %SVM parameters.
Positional Arguments
	param_id: int.
%SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is
generated for the parameter with this ID.

Return
	retval: Evision.ML.ParamGrid.t()

The function generates a grid pointer for the specified parameter of the %SVM algorithm.
The grid may be passed to the function SVM::trainAuto.
Python prototype (for reference only):
getDefaultGridPtr(param_id) -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDegree(self)

 View Source

 @spec getDegree(t()) :: number() | {:error, String.t()}

getDegree
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setDegree/2
Python prototype (for reference only):
getDegree() -> retval

 Link to this function

 getGamma(self)

 View Source

 @spec getGamma(t()) :: number() | {:error, String.t()}

getGamma
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setGamma/2
Python prototype (for reference only):
getGamma() -> retval

 Link to this function

 getKernelType(self)

 View Source

 @spec getKernelType(t()) :: integer() | {:error, String.t()}

getKernelType
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: int

Type of a %SVM kernel.
See SVM::KernelTypes. Default value is SVM::RBF.
Python prototype (for reference only):
getKernelType() -> retval

 Link to this function

 getNu(self)

 View Source

 @spec getNu(t()) :: number() | {:error, String.t()}

getNu
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setNu/2
Python prototype (for reference only):
getNu() -> retval

 Link to this function

 getP(self)

 View Source

 @spec getP(t()) :: number() | {:error, String.t()}

getP
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: double

@see setP/2
Python prototype (for reference only):
getP() -> retval

 Link to this function

 getSupportVectors(self)

 View Source

 @spec getSupportVectors(t()) :: Evision.Mat.t() | {:error, String.t()}

Retrieves all the support vectors
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: Evision.Mat.t()

The method returns all the support vectors as a floating-point matrix, where support vectors are
stored as matrix rows.
Python prototype (for reference only):
getSupportVectors() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: cv::TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getType(self)

 View Source

 @spec getType(t()) :: integer() | {:error, String.t()}

getType
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: int

@see setType/2
Python prototype (for reference only):
getType() -> retval

 Link to this function

 getUncompressedSupportVectors(self)

 View Source

 @spec getUncompressedSupportVectors(t()) :: Evision.Mat.t() | {:error, String.t()}

Retrieves all the uncompressed support vectors of a linear %SVM
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: Evision.Mat.t()

The method returns all the uncompressed support vectors of a linear %SVM that the compressed
support vector, used for prediction, was derived from. They are returned in a floating-point
matrix, where the support vectors are stored as matrix rows.
Python prototype (for reference only):
getUncompressedSupportVectors() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.SVM.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized svm from a file
Positional Arguments
	filepath: String.
path to serialized svm

Return
	retval: Evision.ML.SVM.t()

 Use SVM::save to serialize and store an SVM to disk.
 Load the SVM from this file again, by calling this function with the path to the file.
Python prototype (for reference only):
load(filepath) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.SVM.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.SVM.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.SVM.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.SVM.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setC(self, val)

 View Source

 @spec setC(t(), number()) :: t() | {:error, String.t()}

setC
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getC/1
Python prototype (for reference only):
setC(val) -> None

 Link to this function

 setClassWeights(self, val)

 View Source

 @spec setClassWeights(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setClassWeights
Positional Arguments
	self: Evision.ML.SVM.t()
	val: Evision.Mat.t()

@see getClassWeights/1
Python prototype (for reference only):
setClassWeights(val) -> None

 Link to this function

 setCoef0(self, val)

 View Source

 @spec setCoef0(t(), number()) :: t() | {:error, String.t()}

setCoef0
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getCoef0/1
Python prototype (for reference only):
setCoef0(val) -> None

 Link to this function

 setDegree(self, val)

 View Source

 @spec setDegree(t(), number()) :: t() | {:error, String.t()}

setDegree
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getDegree/1
Python prototype (for reference only):
setDegree(val) -> None

 Link to this function

 setGamma(self, val)

 View Source

 @spec setGamma(t(), number()) :: t() | {:error, String.t()}

setGamma
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getGamma/1
Python prototype (for reference only):
setGamma(val) -> None

 Link to this function

 setKernel(self, kernelType)

 View Source

 @spec setKernel(t(), integer()) :: t() | {:error, String.t()}

setKernel
Positional Arguments
	self: Evision.ML.SVM.t()
	kernelType: int

Initialize with one of predefined kernels.
See SVM::KernelTypes.
Python prototype (for reference only):
setKernel(kernelType) -> None

 Link to this function

 setNu(self, val)

 View Source

 @spec setNu(t(), number()) :: t() | {:error, String.t()}

setNu
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getNu/1
Python prototype (for reference only):
setNu(val) -> None

 Link to this function

 setP(self, val)

 View Source

 @spec setP(t(), number()) :: t() | {:error, String.t()}

setP
Positional Arguments
	self: Evision.ML.SVM.t()
	val: double

@see getP/1
Python prototype (for reference only):
setP(val) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.SVM.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 setType(self, val)

 View Source

 @spec setType(t(), integer()) :: t() | {:error, String.t()}

setType
Positional Arguments
	self: Evision.ML.SVM.t()
	val: int

@see getType/1
Python prototype (for reference only):
setType(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVM.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVM.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVM.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 trainAuto(self, samples, layout, responses)

 View Source

 @spec trainAuto(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains an %SVM with optimal parameters
Positional Arguments
	self: Evision.ML.SVM.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Keyword Arguments
	kFold: int.
Cross-validation parameter. The training set is divided into kFold subsets. One
subset is used to test the model, the others form the train set. So, the %SVM algorithm is

	cgrid: Evision.ML.ParamGrid.t().

	gammaGrid: Evision.ML.ParamGrid.t().
grid for gamma

	pGrid: Evision.ML.ParamGrid.t().

	nuGrid: Evision.ML.ParamGrid.t().

	coeffGrid: Evision.ML.ParamGrid.t().
grid for coeff

	degreeGrid: Evision.ML.ParamGrid.t().
grid for degree

	balanced: bool.
If true and the problem is 2-class classification then the method creates more
balanced cross-validation subsets that is proportions between classes in subsets are close
to such proportion in the whole train dataset.

Return
	retval: bool

The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
nu, coef0, degree. Parameters are considered optimal when the cross-validation
estimate of the test set error is minimal.
This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
offers rudimentary parameter options.
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
the usual %SVM with parameters specified in params is executed.
Python prototype (for reference only):
trainAuto(samples, layout, responses[, kFold[, Cgrid[, gammaGrid[, pGrid[, nuGrid[, coeffGrid[, degreeGrid[, balanced]]]]]]]]) -> retval

 Link to this function

 trainAuto(self, samples, layout, responses, opts)

 View Source

 @spec trainAuto(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [
 nuGrid: term(),
 pGrid: term(),
 degreeGrid: term(),
 balanced: term(),
 gammaGrid: term(),
 kFold: term(),
 coeffGrid: term(),
 cgrid: term()
]
 | nil
) :: boolean() | {:error, String.t()}

Trains an %SVM with optimal parameters
Positional Arguments
	self: Evision.ML.SVM.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Keyword Arguments
	kFold: int.
Cross-validation parameter. The training set is divided into kFold subsets. One
subset is used to test the model, the others form the train set. So, the %SVM algorithm is

	cgrid: Evision.ML.ParamGrid.t().

	gammaGrid: Evision.ML.ParamGrid.t().
grid for gamma

	pGrid: Evision.ML.ParamGrid.t().

	nuGrid: Evision.ML.ParamGrid.t().

	coeffGrid: Evision.ML.ParamGrid.t().
grid for coeff

	degreeGrid: Evision.ML.ParamGrid.t().
grid for degree

	balanced: bool.
If true and the problem is 2-class classification then the method creates more
balanced cross-validation subsets that is proportions between classes in subsets are close
to such proportion in the whole train dataset.

Return
	retval: bool

The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p,
nu, coef0, degree. Parameters are considered optimal when the cross-validation
estimate of the test set error is minimal.
This function only makes use of SVM::getDefaultGrid for parameter optimization and thus only
offers rudimentary parameter options.
This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the
regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and
the usual %SVM with parameters specified in params is executed.
Python prototype (for reference only):
trainAuto(samples, layout, responses[, kFold[, Cgrid[, gammaGrid[, pGrid[, nuGrid[, coeffGrid[, degreeGrid[, balanced]]]]]]]]) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.SVM.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.SVM.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.SVMSGD - Evision v0.1.39

Evision.ML.SVMSGD

 Summary

 Types

 t()

 Type that represents an ML.SVMSGD struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 create()

 Creates empty model.
Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to
find the best parameters for your problem or use setOptimalParameters() to set some default parameters.

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getInitialStepSize(self)

 getInitialStepSize

 getMarginRegularization(self)

 getMarginRegularization

 getMarginType(self)

 getMarginType

 getShift(self)

 getShift

 getStepDecreasingPower(self)

 getStepDecreasingPower

 getSvmsgdType(self)

 getSvmsgdType

 getTermCriteria(self)

 getTermCriteria

 getVarCount(self)

 Returns the number of variables in training samples

 getWeights(self)

 getWeights

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 load(filepath)

 Loads and creates a serialized SVMSGD from a file

 load(filepath, opts)

 Loads and creates a serialized SVMSGD from a file

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setInitialStepSize(self, initialStepSize)

 setInitialStepSize

 setMarginRegularization(self, marginRegularization)

 setMarginRegularization

 setMarginType(self, marginType)

 setMarginType

 setOptimalParameters(self)

 Function sets optimal parameters values for chosen SVM SGD model.

 setOptimalParameters(self, opts)

 Function sets optimal parameters values for chosen SVM SGD model.

 setStepDecreasingPower(self, stepDecreasingPower)

 setStepDecreasingPower

 setSvmsgdType(self, svmsgdType)

 setSvmsgdType

 setTermCriteria(self, val)

 setTermCriteria

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.SVMSGD{ref: reference()}

Type that represents an ML.SVMSGD struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(Evision.ML.StatModel.t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) :: {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates empty model.
Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to
find the best parameters for your problem or use setOptimalParameters() to set some default parameters.
Return
	retval: Evision.ML.SVMSGD.t()

Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getInitialStepSize(self)

 View Source

 @spec getInitialStepSize(t()) :: number() | {:error, String.t()}

getInitialStepSize
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: float

@see setInitialStepSize/2
Python prototype (for reference only):
getInitialStepSize() -> retval

 Link to this function

 getMarginRegularization(self)

 View Source

 @spec getMarginRegularization(t()) :: number() | {:error, String.t()}

getMarginRegularization
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: float

@see setMarginRegularization/2
Python prototype (for reference only):
getMarginRegularization() -> retval

 Link to this function

 getMarginType(self)

 View Source

 @spec getMarginType(t()) :: integer() | {:error, String.t()}

getMarginType
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: int

@see setMarginType/2
Python prototype (for reference only):
getMarginType() -> retval

 Link to this function

 getShift(self)

 View Source

 @spec getShift(t()) :: number() | {:error, String.t()}

getShift
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: float

@return the shift of the trained model (decision function f(x) = weights * x + shift).
Python prototype (for reference only):
getShift() -> retval

 Link to this function

 getStepDecreasingPower(self)

 View Source

 @spec getStepDecreasingPower(t()) :: number() | {:error, String.t()}

getStepDecreasingPower
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: float

@see setStepDecreasingPower/2
Python prototype (for reference only):
getStepDecreasingPower() -> retval

 Link to this function

 getSvmsgdType(self)

 View Source

 @spec getSvmsgdType(t()) :: integer() | {:error, String.t()}

getSvmsgdType
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: int

@see setSvmsgdType/2
Python prototype (for reference only):
getSvmsgdType() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: TermCriteria

@see setTermCriteria/2
Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(Evision.ML.StatModel.t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 getWeights(self)

 View Source

 @spec getWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getWeights
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: Evision.Mat.t()

@return the weights of the trained model (decision function f(x) = weights * x + shift).
Python prototype (for reference only):
getWeights() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(Evision.ML.StatModel.t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 load(filepath)

 View Source

 @spec load(binary()) :: t() | {:error, String.t()}

Loads and creates a serialized SVMSGD from a file
Positional Arguments
	filepath: String.
path to serialized SVMSGD

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.SVMSGD.t()

 Use SVMSGD::save to serialize and store an SVMSGD to disk.
 Load the SVMSGD from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 load(filepath, opts)

 View Source

 @spec load(binary(), [{:nodeName, term()}] | nil) :: t() | {:error, String.t()}

Loads and creates a serialized SVMSGD from a file
Positional Arguments
	filepath: String.
path to serialized SVMSGD

Keyword Arguments
	nodeName: String.
name of node containing the classifier

Return
	retval: Evision.ML.SVMSGD.t()

 Use SVMSGD::save to serialize and store an SVMSGD to disk.
 Load the SVMSGD from this file again, by calling this function with the path to the file.
 Optionally specify the node for the file containing the classifier
Python prototype (for reference only):
load(filepath[, nodeName]) -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(Evision.ML.StatModel.t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 [{:flags, term()}] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setInitialStepSize(self, initialStepSize)

 View Source

 @spec setInitialStepSize(t(), number()) :: t() | {:error, String.t()}

setInitialStepSize
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	initialStepSize: float

@see getInitialStepSize/1
Python prototype (for reference only):
setInitialStepSize(InitialStepSize) -> None

 Link to this function

 setMarginRegularization(self, marginRegularization)

 View Source

 @spec setMarginRegularization(t(), number()) :: t() | {:error, String.t()}

setMarginRegularization
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	marginRegularization: float

@see getMarginRegularization/1
Python prototype (for reference only):
setMarginRegularization(marginRegularization) -> None

 Link to this function

 setMarginType(self, marginType)

 View Source

 @spec setMarginType(t(), integer()) :: t() | {:error, String.t()}

setMarginType
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	marginType: int

@see getMarginType/1
Python prototype (for reference only):
setMarginType(marginType) -> None

 Link to this function

 setOptimalParameters(self)

 View Source

 @spec setOptimalParameters(t()) :: t() | {:error, String.t()}

Function sets optimal parameters values for chosen SVM SGD model.
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Keyword Arguments
	svmsgdType: int.
is the type of SVMSGD classifier.

	marginType: int.
is the type of margin constraint.

Python prototype (for reference only):
setOptimalParameters([, svmsgdType[, marginType]]) -> None

 Link to this function

 setOptimalParameters(self, opts)

 View Source

 @spec setOptimalParameters(t(), [svmsgdType: term(), marginType: term()] | nil) ::
 t() | {:error, String.t()}

Function sets optimal parameters values for chosen SVM SGD model.
Positional Arguments
	self: Evision.ML.SVMSGD.t()

Keyword Arguments
	svmsgdType: int.
is the type of SVMSGD classifier.

	marginType: int.
is the type of margin constraint.

Python prototype (for reference only):
setOptimalParameters([, svmsgdType[, marginType]]) -> None

 Link to this function

 setStepDecreasingPower(self, stepDecreasingPower)

 View Source

 @spec setStepDecreasingPower(t(), number()) :: t() | {:error, String.t()}

setStepDecreasingPower
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	stepDecreasingPower: float

@see getStepDecreasingPower/1
Python prototype (for reference only):
setStepDecreasingPower(stepDecreasingPower) -> None

 Link to this function

 setSvmsgdType(self, svmsgdType)

 View Source

 @spec setSvmsgdType(t(), integer()) :: t() | {:error, String.t()}

setSvmsgdType
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	svmsgdType: int

@see getSvmsgdType/1
Python prototype (for reference only):
setSvmsgdType(svmsgdType) -> None

 Link to this function

 setTermCriteria(self, val)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	val: TermCriteria

@see getTermCriteria/1
Python prototype (for reference only):
setTermCriteria(val) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(Evision.ML.StatModel.t(), Evision.ML.TrainData.t()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.ML.TrainData.t(),
 [{:flags, term()}] | nil
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(
 Evision.ML.StatModel.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in()
) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.SVMSGD.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.SVMSGD.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.StatModel - Evision v0.1.39

Evision.ML.StatModel

 Summary

 Types

 t()

 Type that represents an ML.StatModel struct.

 Functions

 calcError(self, data, test)

 Computes error on the training or test dataset

 calcError(self, data, test, opts)

 Computes error on the training or test dataset

 clear(self)

 Clears the algorithm state

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getVarCount(self)

 Returns the number of variables in training samples

 isClassifier(self)

 Returns true if the model is classifier

 isTrained(self)

 Returns true if the model is trained

 predict(self, samples)

 Predicts response(s) for the provided sample(s)

 predict(self, samples, opts)

 Predicts response(s) for the provided sample(s)

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 train(self, trainData)

 Trains the statistical model

 train(self, trainData, opts)

 Trains the statistical model

 train(self, samples, layout, responses)

 Trains the statistical model

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.StatModel{ref: reference()}

Type that represents an ML.StatModel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcError(self, data, test)

 View Source

 @spec calcError(t(), Evision.ML.TrainData.t(), boolean()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.StatModel.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 calcError(self, data, test, opts)

 View Source

 @spec calcError(
 t(),
 Evision.ML.TrainData.t(),
 boolean(),
 [{atom(), term()}, ...] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Computes error on the training or test dataset
Positional Arguments
	self: Evision.ML.StatModel.t()

	data: Evision.ML.TrainData.t().
the training data

	test: bool.
if true, the error is computed over the test subset of the data, otherwise it's
computed over the training subset of the data. Please note that if you loaded a completely
different dataset to evaluate already trained classifier, you will probably want not to set
the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
that the error is computed for the whole new set. Yes, this sounds a bit confusing.

Return
	retval: float

	resp: Evision.Mat.t().
the optional output responses.

The method uses StatModel::predict to compute the error. For regression models the error is
computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
Python prototype (for reference only):
calcError(data, test[, resp]) -> retval, resp

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ML.StatModel.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ML.StatModel.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ML.StatModel.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getVarCount(self)

 View Source

 @spec getVarCount(t()) :: integer() | {:error, String.t()}

Returns the number of variables in training samples
Positional Arguments
	self: Evision.ML.StatModel.t()

Return
	retval: int

Python prototype (for reference only):
getVarCount() -> retval

 Link to this function

 isClassifier(self)

 View Source

 @spec isClassifier(t()) :: boolean() | {:error, String.t()}

Returns true if the model is classifier
Positional Arguments
	self: Evision.ML.StatModel.t()

Return
	retval: bool

Python prototype (for reference only):
isClassifier() -> retval

 Link to this function

 isTrained(self)

 View Source

 @spec isTrained(t()) :: boolean() | {:error, String.t()}

Returns true if the model is trained
Positional Arguments
	self: Evision.ML.StatModel.t()

Return
	retval: bool

Python prototype (for reference only):
isTrained() -> retval

 Link to this function

 predict(self, samples)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.StatModel.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 predict(self, samples, opts)

 View Source

 @spec predict(t(), Evision.Mat.maybe_mat_in(), [{:flags, term()}] | nil) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Predicts response(s) for the provided sample(s)
Positional Arguments
	self: Evision.ML.StatModel.t()

	samples: Evision.Mat.t().
The input samples, floating-point matrix

Keyword Arguments
	flags: int.
The optional flags, model-dependent. See cv::ml::StatModel::Flags.

Return
	retval: float

	results: Evision.Mat.t().
The optional output matrix of results.

Python prototype (for reference only):
predict(samples[, results[, flags]]) -> retval, results

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ML.StatModel.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ML.StatModel.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 train(self, trainData)

 View Source

 @spec train(t(), Evision.ML.TrainData.t()) :: boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.StatModel.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, trainData, opts)

 View Source

 @spec train(t(), Evision.ML.TrainData.t(), [{:flags, term()}] | nil) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.StatModel.t()

	trainData: Evision.ML.TrainData.t().
training data that can be loaded from file using TrainData::loadFromCSV or
created with TrainData::create.

Keyword Arguments
	flags: int.
optional flags, depending on the model. Some of the models can be updated with the
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).

Return
	retval: bool

Python prototype (for reference only):
train(trainData[, flags]) -> retval

 Link to this function

 train(self, samples, layout, responses)

 View Source

 @spec train(t(), Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) ::
 boolean() | {:error, String.t()}

Trains the statistical model
Positional Arguments
	self: Evision.ML.StatModel.t()

	samples: Evision.Mat.t().
training samples

	layout: int.
See ml::SampleTypes.

	responses: Evision.Mat.t().
vector of responses associated with the training samples.

Return
	retval: bool

Python prototype (for reference only):
train(samples, layout, responses) -> retval

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ML.StatModel.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ML.StatModel.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ML.TrainData - Evision v0.1.39

Evision.ML.TrainData

 Summary

 Types

 t()

 Type that represents an ML.TrainData struct.

 Functions

 create(samples, layout, responses)

 Creates training data from in-memory arrays.

 create(samples, layout, responses, opts)

 Creates training data from in-memory arrays.

 getCatCount(self, vi)

 getCatCount

 getCatMap(self)

 getCatMap

 getCatOfs(self)

 getCatOfs

 getClassLabels(self)

 Returns the vector of class labels

 getDefaultSubstValues(self)

 getDefaultSubstValues

 getLayout(self)

 getLayout

 getMissing(self)

 getMissing

 getNAllVars(self)

 getNAllVars

 getNames(self, names)

 Returns vector of symbolic names captured in loadFromCSV()

 getNormCatResponses(self)

 getNormCatResponses

 getNSamples(self)

 getNSamples

 getNTestSamples(self)

 getNTestSamples

 getNTrainSamples(self)

 getNTrainSamples

 getNVars(self)

 getNVars

 getResponses(self)

 getResponses

 getResponseType(self)

 getResponseType

 getSample(self, varIdx, sidx, buf)

 getSample

 getSamples(self)

 getSamples

 getSampleWeights(self)

 getSampleWeights

 getSubMatrix(matrix, idx, layout)

 Extract from matrix rows/cols specified by passed indexes.

 getSubVector(vec, idx)

 Extract from 1D vector elements specified by passed indexes.

 getTestNormCatResponses(self)

 getTestNormCatResponses

 getTestResponses(self)

 getTestResponses

 getTestSampleIdx(self)

 getTestSampleIdx

 getTestSamples(self)

 Returns matrix of test samples

 getTestSampleWeights(self)

 getTestSampleWeights

 getTrainNormCatResponses(self)

 Returns the vector of normalized categorical responses

 getTrainResponses(self)

 Returns the vector of responses

 getTrainSampleIdx(self)

 getTrainSampleIdx

 getTrainSamples(self)

 Returns matrix of train samples

 getTrainSamples(self, opts)

 Returns matrix of train samples

 getTrainSampleWeights(self)

 getTrainSampleWeights

 getValues(self, vi, sidx, values)

 getValues

 getVarIdx(self)

 getVarIdx

 getVarSymbolFlags(self)

 getVarSymbolFlags

 getVarType(self)

 getVarType

 setTrainTestSplit(self, count)

 Splits the training data into the training and test parts

 setTrainTestSplit(self, count, opts)

 Splits the training data into the training and test parts

 setTrainTestSplitRatio(self, ratio)

 Splits the training data into the training and test parts

 setTrainTestSplitRatio(self, ratio, opts)

 Splits the training data into the training and test parts

 shuffleTrainTest(self)

 shuffleTrainTest

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ML.TrainData{ref: reference()}

Type that represents an ML.TrainData struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(samples, layout, responses)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), integer(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Creates training data from in-memory arrays.
Positional Arguments
	samples: Evision.Mat.t().
matrix of samples. It should have CV_32F type.

	layout: int.
see ml::SampleTypes.

	responses: Evision.Mat.t().
matrix of responses. If the responses are scalar, they should be stored as a
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
former case the responses are considered as ordered by default; in the latter case - as
categorical)

Keyword Arguments
	varIdx: Evision.Mat.t().
vector specifying which variables to use for training. It can be an integer vector
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
active variables.

	sampleIdx: Evision.Mat.t().
vector specifying which samples to use for training. It can be an integer
vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
of training samples.

	sampleWeights: Evision.Mat.t().
optional vector with weights for each sample. It should have CV_32F type.

	varType: Evision.Mat.t().
optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses>, containing types of each input and output variable. See
ml::VariableTypes.

Return
	retval: Evision.ML.TrainData.t()

Python prototype (for reference only):
create(samples, layout, responses[, varIdx[, sampleIdx[, sampleWeights[, varType]]]]) -> retval

 Link to this function

 create(samples, layout, responses, opts)

 View Source

 @spec create(
 Evision.Mat.maybe_mat_in(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [sampleIdx: term(), varIdx: term(), sampleWeights: term(), varType: term()]
 | nil
) :: t() | {:error, String.t()}

Creates training data from in-memory arrays.
Positional Arguments
	samples: Evision.Mat.t().
matrix of samples. It should have CV_32F type.

	layout: int.
see ml::SampleTypes.

	responses: Evision.Mat.t().
matrix of responses. If the responses are scalar, they should be stored as a
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the
former case the responses are considered as ordered by default; in the latter case - as
categorical)

Keyword Arguments
	varIdx: Evision.Mat.t().
vector specifying which variables to use for training. It can be an integer vector
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of
active variables.

	sampleIdx: Evision.Mat.t().
vector specifying which samples to use for training. It can be an integer
vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask
of training samples.

	sampleWeights: Evision.Mat.t().
optional vector with weights for each sample. It should have CV_32F type.

	varType: Evision.Mat.t().
optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses>, containing types of each input and output variable. See
ml::VariableTypes.

Return
	retval: Evision.ML.TrainData.t()

Python prototype (for reference only):
create(samples, layout, responses[, varIdx[, sampleIdx[, sampleWeights[, varType]]]]) -> retval

 Link to this function

 getCatCount(self, vi)

 View Source

 @spec getCatCount(t(), integer()) :: integer() | {:error, String.t()}

getCatCount
Positional Arguments
	self: Evision.ML.TrainData.t()
	vi: int

Return
	retval: int

Python prototype (for reference only):
getCatCount(vi) -> retval

 Link to this function

 getCatMap(self)

 View Source

 @spec getCatMap(t()) :: Evision.Mat.t() | {:error, String.t()}

getCatMap
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCatMap() -> retval

 Link to this function

 getCatOfs(self)

 View Source

 @spec getCatOfs(t()) :: Evision.Mat.t() | {:error, String.t()}

getCatOfs
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCatOfs() -> retval

 Link to this function

 getClassLabels(self)

 View Source

 @spec getClassLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the vector of class labels
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

The function returns vector of unique labels occurred in the responses.
Python prototype (for reference only):
getClassLabels() -> retval

 Link to this function

 getDefaultSubstValues(self)

 View Source

 @spec getDefaultSubstValues(t()) :: Evision.Mat.t() | {:error, String.t()}

getDefaultSubstValues
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getDefaultSubstValues() -> retval

 Link to this function

 getLayout(self)

 View Source

 @spec getLayout(t()) :: integer() | {:error, String.t()}

getLayout
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getLayout() -> retval

 Link to this function

 getMissing(self)

 View Source

 @spec getMissing(t()) :: Evision.Mat.t() | {:error, String.t()}

getMissing
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getMissing() -> retval

 Link to this function

 getNAllVars(self)

 View Source

 @spec getNAllVars(t()) :: integer() | {:error, String.t()}

getNAllVars
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getNAllVars() -> retval

 Link to this function

 getNames(self, names)

 View Source

 @spec getNames(t(), [binary()]) :: t() | {:error, String.t()}

Returns vector of symbolic names captured in loadFromCSV()
Positional Arguments
	self: Evision.ML.TrainData.t()
	names: [String]

Python prototype (for reference only):
getNames(names) -> None

 Link to this function

 getNormCatResponses(self)

 View Source

 @spec getNormCatResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

getNormCatResponses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getNormCatResponses() -> retval

 Link to this function

 getNSamples(self)

 View Source

 @spec getNSamples(t()) :: integer() | {:error, String.t()}

getNSamples
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getNSamples() -> retval

 Link to this function

 getNTestSamples(self)

 View Source

 @spec getNTestSamples(t()) :: integer() | {:error, String.t()}

getNTestSamples
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getNTestSamples() -> retval

 Link to this function

 getNTrainSamples(self)

 View Source

 @spec getNTrainSamples(t()) :: integer() | {:error, String.t()}

getNTrainSamples
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getNTrainSamples() -> retval

 Link to this function

 getNVars(self)

 View Source

 @spec getNVars(t()) :: integer() | {:error, String.t()}

getNVars
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getNVars() -> retval

 Link to this function

 getResponses(self)

 View Source

 @spec getResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

getResponses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getResponses() -> retval

 Link to this function

 getResponseType(self)

 View Source

 @spec getResponseType(t()) :: integer() | {:error, String.t()}

getResponseType
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: int

Python prototype (for reference only):
getResponseType() -> retval

 Link to this function

 getSample(self, varIdx, sidx, buf)

 View Source

 @spec getSample(t(), Evision.Mat.maybe_mat_in(), integer(), number()) ::
 t() | {:error, String.t()}

getSample
Positional Arguments
	self: Evision.ML.TrainData.t()
	varIdx: Evision.Mat.t()
	sidx: int
	buf: float*

Python prototype (for reference only):
getSample(varIdx, sidx, buf) -> None

 Link to this function

 getSamples(self)

 View Source

 @spec getSamples(t()) :: Evision.Mat.t() | {:error, String.t()}

getSamples
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getSamples() -> retval

 Link to this function

 getSampleWeights(self)

 View Source

 @spec getSampleWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getSampleWeights
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getSampleWeights() -> retval

 Link to this function

 getSubMatrix(matrix, idx, layout)

 View Source

 @spec getSubMatrix(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Extract from matrix rows/cols specified by passed indexes.
Positional Arguments
	matrix: Evision.Mat.t().
input matrix (supported types: CV_32S, CV_32F, CV_64F)

	idx: Evision.Mat.t().
1D index vector

	layout: int.
specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES)

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getSubMatrix(matrix, idx, layout) -> retval

 Link to this function

 getSubVector(vec, idx)

 View Source

 @spec getSubVector(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Extract from 1D vector elements specified by passed indexes.
Positional Arguments
	vec: Evision.Mat.t().
input vector (supported types: CV_32S, CV_32F, CV_64F)

	idx: Evision.Mat.t().
1D index vector

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getSubVector(vec, idx) -> retval

 Link to this function

 getTestNormCatResponses(self)

 View Source

 @spec getTestNormCatResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

getTestNormCatResponses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTestNormCatResponses() -> retval

 Link to this function

 getTestResponses(self)

 View Source

 @spec getTestResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

getTestResponses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTestResponses() -> retval

 Link to this function

 getTestSampleIdx(self)

 View Source

 @spec getTestSampleIdx(t()) :: Evision.Mat.t() | {:error, String.t()}

getTestSampleIdx
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTestSampleIdx() -> retval

 Link to this function

 getTestSamples(self)

 View Source

 @spec getTestSamples(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns matrix of test samples
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTestSamples() -> retval

 Link to this function

 getTestSampleWeights(self)

 View Source

 @spec getTestSampleWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getTestSampleWeights
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTestSampleWeights() -> retval

 Link to this function

 getTrainNormCatResponses(self)

 View Source

 @spec getTrainNormCatResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the vector of normalized categorical responses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

The function returns vector of responses. Each response is integer from 0 to <number of classes>-1. The actual label value can be retrieved then from the class label vector, see
TrainData::getClassLabels.
Python prototype (for reference only):
getTrainNormCatResponses() -> retval

 Link to this function

 getTrainResponses(self)

 View Source

 @spec getTrainResponses(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the vector of responses
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

The function returns ordered or the original categorical responses. Usually it's used in
regression algorithms.
Python prototype (for reference only):
getTrainResponses() -> retval

 Link to this function

 getTrainSampleIdx(self)

 View Source

 @spec getTrainSampleIdx(t()) :: Evision.Mat.t() | {:error, String.t()}

getTrainSampleIdx
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTrainSampleIdx() -> retval

 Link to this function

 getTrainSamples(self)

 View Source

 @spec getTrainSamples(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns matrix of train samples
Positional Arguments
	self: Evision.ML.TrainData.t()

Keyword Arguments
	layout: int.
The requested layout. If it's different from the initial one, the matrix is
transposed. See ml::SampleTypes.

	compressSamples: bool.
if true, the function returns only the training samples (specified by
sampleIdx)

	compressVars: bool.
if true, the function returns the shorter training samples, containing only
the active variables.

Return
	retval: Evision.Mat.t()

In current implementation the function tries to avoid physical data copying and returns the
matrix stored inside TrainData (unless the transposition or compression is needed).
Python prototype (for reference only):
getTrainSamples([, layout[, compressSamples[, compressVars]]]) -> retval

 Link to this function

 getTrainSamples(self, opts)

 View Source

 @spec getTrainSamples(
 t(),
 [compressVars: term(), compressSamples: term(), layout: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Returns matrix of train samples
Positional Arguments
	self: Evision.ML.TrainData.t()

Keyword Arguments
	layout: int.
The requested layout. If it's different from the initial one, the matrix is
transposed. See ml::SampleTypes.

	compressSamples: bool.
if true, the function returns only the training samples (specified by
sampleIdx)

	compressVars: bool.
if true, the function returns the shorter training samples, containing only
the active variables.

Return
	retval: Evision.Mat.t()

In current implementation the function tries to avoid physical data copying and returns the
matrix stored inside TrainData (unless the transposition or compression is needed).
Python prototype (for reference only):
getTrainSamples([, layout[, compressSamples[, compressVars]]]) -> retval

 Link to this function

 getTrainSampleWeights(self)

 View Source

 @spec getTrainSampleWeights(t()) :: Evision.Mat.t() | {:error, String.t()}

getTrainSampleWeights
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getTrainSampleWeights() -> retval

 Link to this function

 getValues(self, vi, sidx, values)

 View Source

 @spec getValues(t(), integer(), Evision.Mat.maybe_mat_in(), number()) ::
 t() | {:error, String.t()}

getValues
Positional Arguments
	self: Evision.ML.TrainData.t()
	vi: int
	sidx: Evision.Mat.t()
	values: float*

Python prototype (for reference only):
getValues(vi, sidx, values) -> None

 Link to this function

 getVarIdx(self)

 View Source

 @spec getVarIdx(t()) :: Evision.Mat.t() | {:error, String.t()}

getVarIdx
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getVarIdx() -> retval

 Link to this function

 getVarSymbolFlags(self)

 View Source

 @spec getVarSymbolFlags(t()) :: Evision.Mat.t() | {:error, String.t()}

getVarSymbolFlags
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getVarSymbolFlags() -> retval

 Link to this function

 getVarType(self)

 View Source

 @spec getVarType(t()) :: Evision.Mat.t() | {:error, String.t()}

getVarType
Positional Arguments
	self: Evision.ML.TrainData.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getVarType() -> retval

 Link to this function

 setTrainTestSplit(self, count)

 View Source

 @spec setTrainTestSplit(t(), integer()) :: t() | {:error, String.t()}

Splits the training data into the training and test parts
Positional Arguments
	self: Evision.ML.TrainData.t()
	count: int

Keyword Arguments
	shuffle: bool.

@sa TrainData::setTrainTestSplitRatio
Python prototype (for reference only):
setTrainTestSplit(count[, shuffle]) -> None

 Link to this function

 setTrainTestSplit(self, count, opts)

 View Source

 @spec setTrainTestSplit(t(), integer(), [{:shuffle, term()}] | nil) ::
 t() | {:error, String.t()}

Splits the training data into the training and test parts
Positional Arguments
	self: Evision.ML.TrainData.t()
	count: int

Keyword Arguments
	shuffle: bool.

@sa TrainData::setTrainTestSplitRatio
Python prototype (for reference only):
setTrainTestSplit(count[, shuffle]) -> None

 Link to this function

 setTrainTestSplitRatio(self, ratio)

 View Source

 @spec setTrainTestSplitRatio(t(), number()) :: t() | {:error, String.t()}

Splits the training data into the training and test parts
Positional Arguments
	self: Evision.ML.TrainData.t()
	ratio: double

Keyword Arguments
	shuffle: bool.

The function selects a subset of specified relative size and then returns it as the training
set. If the function is not called, all the data is used for training. Please, note that for
each of TrainData::getTrain* there is corresponding TrainData::getTest*, so that the test
subset can be retrieved and processed as well.
@sa TrainData::setTrainTestSplit
Python prototype (for reference only):
setTrainTestSplitRatio(ratio[, shuffle]) -> None

 Link to this function

 setTrainTestSplitRatio(self, ratio, opts)

 View Source

 @spec setTrainTestSplitRatio(t(), number(), [{:shuffle, term()}] | nil) ::
 t() | {:error, String.t()}

Splits the training data into the training and test parts
Positional Arguments
	self: Evision.ML.TrainData.t()
	ratio: double

Keyword Arguments
	shuffle: bool.

The function selects a subset of specified relative size and then returns it as the training
set. If the function is not called, all the data is used for training. Please, note that for
each of TrainData::getTrain* there is corresponding TrainData::getTest*, so that the test
subset can be retrieved and processed as well.
@sa TrainData::setTrainTestSplit
Python prototype (for reference only):
setTrainTestSplitRatio(ratio[, shuffle]) -> None

 Link to this function

 shuffleTrainTest(self)

 View Source

 @spec shuffleTrainTest(t()) :: t() | {:error, String.t()}

shuffleTrainTest
Positional Arguments
	self: Evision.ML.TrainData.t()

Python prototype (for reference only):
shuffleTrainTest() -> None

 Evision.MSER - Evision v0.1.39

Evision.MSER

 Summary

 Types

 t()

 Type that represents an MSER struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 Full constructor for %MSER detector

 create(opts)

 Full constructor for %MSER detector

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 detectRegions(self, image)

 Detect %MSER regions

 empty(self)

 empty

 getAreaThreshold(self)

 getAreaThreshold

 getDefaultName(self)

 getDefaultName

 getDelta(self)

 getDelta

 getEdgeBlurSize(self)

 getEdgeBlurSize

 getMaxArea(self)

 getMaxArea

 getMaxEvolution(self)

 getMaxEvolution

 getMaxVariation(self)

 getMaxVariation

 getMinArea(self)

 getMinArea

 getMinDiversity(self)

 getMinDiversity

 getMinMargin(self)

 getMinMargin

 getPass2Only(self)

 getPass2Only

 read(self, arg1)

 Variant 1:
read

 setAreaThreshold(self, areaThreshold)

 setAreaThreshold

 setDelta(self, delta)

 setDelta

 setEdgeBlurSize(self, edge_blur_size)

 setEdgeBlurSize

 setMaxArea(self, maxArea)

 setMaxArea

 setMaxEvolution(self, maxEvolution)

 setMaxEvolution

 setMaxVariation(self, maxVariation)

 setMaxVariation

 setMinArea(self, minArea)

 setMinArea

 setMinDiversity(self, minDiversity)

 setMinDiversity

 setMinMargin(self, min_margin)

 setMinMargin

 setPass2Only(self, f)

 setPass2Only

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MSER{ref: reference()}

Type that represents an MSER struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.MSER.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.MSER.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.MSER.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.MSER.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Full constructor for %MSER detector
Keyword Arguments
	delta: int.
it compares \f$(size{i}-size{i-delta})/size_{i-delta}\f$

	min_area: int.
prune the area which smaller than minArea

	max_area: int.
prune the area which bigger than maxArea

	max_variation: double.
prune the area have similar size to its children

	min_diversity: double.
for color image, trace back to cut off mser with diversity less than min_diversity

	max_evolution: int.
for color image, the evolution steps

	area_threshold: double.
for color image, the area threshold to cause re-initialize

	min_margin: double.
for color image, ignore too small margin

	edge_blur_size: int.
for color image, the aperture size for edge blur

Return
	retval: Evision.MSER.t()

Python prototype (for reference only):
create([, delta[, min_area[, max_area[, max_variation[, min_diversity[, max_evolution[, area_threshold[, min_margin[, edge_blur_size]]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 min_margin: term(),
 edge_blur_size: term(),
 max_evolution: term(),
 min_diversity: term(),
 max_area: term(),
 min_area: term(),
 area_threshold: term(),
 delta: term(),
 max_variation: term()
]
 | nil
) :: t() | {:error, String.t()}

Full constructor for %MSER detector
Keyword Arguments
	delta: int.
it compares \f$(size{i}-size{i-delta})/size_{i-delta}\f$

	min_area: int.
prune the area which smaller than minArea

	max_area: int.
prune the area which bigger than maxArea

	max_variation: double.
prune the area have similar size to its children

	min_diversity: double.
for color image, trace back to cut off mser with diversity less than min_diversity

	max_evolution: int.
for color image, the evolution steps

	area_threshold: double.
for color image, the area threshold to cause re-initialize

	min_margin: double.
for color image, ignore too small margin

	edge_blur_size: int.
for color image, the aperture size for edge blur

Return
	retval: Evision.MSER.t()

Python prototype (for reference only):
create([, delta[, min_area[, max_area[, max_variation[, min_diversity[, max_evolution[, area_threshold[, min_margin[, edge_blur_size]]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.MSER.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.MSER.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.MSER.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.MSER.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.MSER.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.MSER.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectRegions(self, image)

 View Source

 @spec detectRegions(t(), Evision.Mat.maybe_mat_in()) ::
 {[[{number(), number()}]], [{number(), number(), number(), number()}]}
 | {:error, String.t()}

Detect %MSER regions
Positional Arguments
	self: Evision.MSER.t()

	image: Evision.Mat.t().
input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)

Return
	msers: [[Point]].
resulting list of point sets

	bboxes: [Rect].
resulting bounding boxes

Python prototype (for reference only):
detectRegions(image) -> msers, bboxes

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getAreaThreshold(self)

 View Source

 @spec getAreaThreshold(t()) :: number() | {:error, String.t()}

getAreaThreshold
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: double

Python prototype (for reference only):
getAreaThreshold() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDelta(self)

 View Source

 @spec getDelta(t()) :: integer() | {:error, String.t()}

getDelta
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
getDelta() -> retval

 Link to this function

 getEdgeBlurSize(self)

 View Source

 @spec getEdgeBlurSize(t()) :: integer() | {:error, String.t()}

getEdgeBlurSize
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
getEdgeBlurSize() -> retval

 Link to this function

 getMaxArea(self)

 View Source

 @spec getMaxArea(t()) :: integer() | {:error, String.t()}

getMaxArea
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
getMaxArea() -> retval

 Link to this function

 getMaxEvolution(self)

 View Source

 @spec getMaxEvolution(t()) :: integer() | {:error, String.t()}

getMaxEvolution
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
getMaxEvolution() -> retval

 Link to this function

 getMaxVariation(self)

 View Source

 @spec getMaxVariation(t()) :: number() | {:error, String.t()}

getMaxVariation
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: double

Python prototype (for reference only):
getMaxVariation() -> retval

 Link to this function

 getMinArea(self)

 View Source

 @spec getMinArea(t()) :: integer() | {:error, String.t()}

getMinArea
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: int

Python prototype (for reference only):
getMinArea() -> retval

 Link to this function

 getMinDiversity(self)

 View Source

 @spec getMinDiversity(t()) :: number() | {:error, String.t()}

getMinDiversity
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: double

Python prototype (for reference only):
getMinDiversity() -> retval

 Link to this function

 getMinMargin(self)

 View Source

 @spec getMinMargin(t()) :: number() | {:error, String.t()}

getMinMargin
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: double

Python prototype (for reference only):
getMinMargin() -> retval

 Link to this function

 getPass2Only(self)

 View Source

 @spec getPass2Only(t()) :: boolean() | {:error, String.t()}

getPass2Only
Positional Arguments
	self: Evision.MSER.t()

Return
	retval: bool

Python prototype (for reference only):
getPass2Only() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.MSER.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.MSER.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setAreaThreshold(self, areaThreshold)

 View Source

 @spec setAreaThreshold(t(), number()) :: t() | {:error, String.t()}

setAreaThreshold
Positional Arguments
	self: Evision.MSER.t()
	areaThreshold: double

Python prototype (for reference only):
setAreaThreshold(areaThreshold) -> None

 Link to this function

 setDelta(self, delta)

 View Source

 @spec setDelta(t(), integer()) :: t() | {:error, String.t()}

setDelta
Positional Arguments
	self: Evision.MSER.t()
	delta: int

Python prototype (for reference only):
setDelta(delta) -> None

 Link to this function

 setEdgeBlurSize(self, edge_blur_size)

 View Source

 @spec setEdgeBlurSize(t(), integer()) :: t() | {:error, String.t()}

setEdgeBlurSize
Positional Arguments
	self: Evision.MSER.t()
	edge_blur_size: int

Python prototype (for reference only):
setEdgeBlurSize(edge_blur_size) -> None

 Link to this function

 setMaxArea(self, maxArea)

 View Source

 @spec setMaxArea(t(), integer()) :: t() | {:error, String.t()}

setMaxArea
Positional Arguments
	self: Evision.MSER.t()
	maxArea: int

Python prototype (for reference only):
setMaxArea(maxArea) -> None

 Link to this function

 setMaxEvolution(self, maxEvolution)

 View Source

 @spec setMaxEvolution(t(), integer()) :: t() | {:error, String.t()}

setMaxEvolution
Positional Arguments
	self: Evision.MSER.t()
	maxEvolution: int

Python prototype (for reference only):
setMaxEvolution(maxEvolution) -> None

 Link to this function

 setMaxVariation(self, maxVariation)

 View Source

 @spec setMaxVariation(t(), number()) :: t() | {:error, String.t()}

setMaxVariation
Positional Arguments
	self: Evision.MSER.t()
	maxVariation: double

Python prototype (for reference only):
setMaxVariation(maxVariation) -> None

 Link to this function

 setMinArea(self, minArea)

 View Source

 @spec setMinArea(t(), integer()) :: t() | {:error, String.t()}

setMinArea
Positional Arguments
	self: Evision.MSER.t()
	minArea: int

Python prototype (for reference only):
setMinArea(minArea) -> None

 Link to this function

 setMinDiversity(self, minDiversity)

 View Source

 @spec setMinDiversity(t(), number()) :: t() | {:error, String.t()}

setMinDiversity
Positional Arguments
	self: Evision.MSER.t()
	minDiversity: double

Python prototype (for reference only):
setMinDiversity(minDiversity) -> None

 Link to this function

 setMinMargin(self, min_margin)

 View Source

 @spec setMinMargin(t(), number()) :: t() | {:error, String.t()}

setMinMargin
Positional Arguments
	self: Evision.MSER.t()
	min_margin: double

Python prototype (for reference only):
setMinMargin(min_margin) -> None

 Link to this function

 setPass2Only(self, f)

 View Source

 @spec setPass2Only(t(), boolean()) :: t() | {:error, String.t()}

setPass2Only
Positional Arguments
	self: Evision.MSER.t()
	f: bool

Python prototype (for reference only):
setPass2Only(f) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.MSER.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.MSER.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Mat - Evision v0.1.39

Evision.Mat

Evision Mat

 Summary

 Types

 mat_type()

 Types for Evision.Mat

 mat_type_tuple_form()

 maybe_mat_in()

 Input argument, Evision.Mat, Nx.Tensor or #reference.

 maybe_mat_out()

 The resulting ok-error tuple when a NIF function can return Evision.Mat.

 t()

 Type that represents an Evision.Mat struct.

 Functions

 abs(mat)

 add(lhs, rhs)

 add(lhs, rhs, type)

 arange(from, to, step, type)

 Generate a Mat with shape {1, length}, where length is the amount of
numbers starting from from to to with step size step

 arange(from, to, step, type, shape)

 Generate a Mat with a list of number starting from from to to with step size step.
The generated Mat will then be reshaped to the requested shape if applicable.

 as_shape(mat, as_shape)

 This method does not change the underlying data. It only changes the steps when accessing the matrix.

 as_type(mat, type)

 at(mat, position)

 bitwise_and(lhs, rhs)

 bitwise_not(mat)

 bitwise_or(lhs, rhs)

 bitwise_xor(lhs, rhs)

 broadcast_to(mat, to_shape)

 broadcast_to(mat, to_shape, force_src_shape)

 ceil(mat)

 channel_as_last_dim(mat)

 This function does the opposite as to Evision.Mat.last_dim_as_channel/1.

 channels(mat)

 The method returns the number of matrix channels.

 clip(mat, lower, upper)

 clone(mat)

 Get a clone an Evision.Mat.
Data will be copied to the resulting Evision.Mat.

 cmp(lhs, rhs, op)

 depth(mat)

 Returns the depth of a matrix element.

 divide(lhs, rhs)

 divide(lhs, rhs, type)

 dot(mat_a, mat_b)

 elemSize1(mat)

 Returns the size of each matrix element channel in bytes.

 elemSize(mat)

 Returns the matrix element size in bytes.

 empty()

 Create an empty Evision.Mat.
This function is the Elixir equvilent of calling cv::Mat() in C++.

 expm1(mat)

 eye(n, type)

 fetch(mat, key)

 Access.fetch implementation for Evision.Mat.

 floor(mat)

 from_binary(binary, type, rows, cols, channels)

 Create Mat from binary (pixel) data

 from_binary_by_shape(binary, type, shape)

 from_nx(t)

 Converts a tensor from Nx.Tensor to Evision.Mat.

 from_nx(t, as_shape)

 Converts a tensor from Nx.Tensor to Evision.Mat.

 from_nx_2d(t)

 Converts a tensor from Nx.Tensor to a 2D Evision.Mat.

 full(shape, number, type)

 Generate a Mat with all of its elements equal to number.

 get_and_update(mat, key, function)

 Access.get_and_update/3 implementation for Evision.Mat

 isContinuous(mat)

 isSubmatrix(mat)

 kino_render_image_encoding()

 Get preferred image encoding when rendering in Kino.

 kino_render_image_max_size()

 Get the maximum allowed image size to render in Kino.

 kino_render_tab_order()

 Get preferred order of Kino.Layout tabs for Evision.Mat in Livebook.

 last_dim_as_channel(mat)

 This function would convert the input tensor with dims [height, width, dims] to a dims-channel image with dims [height, width].

 literal(list)

 Create an Evision.Mat from list literals.

 literal(literal, type, opts \\ [])

 logical_and(lhs, rhs)

 logical_or(lhs, rhs)

 logical_xor(lhs, rhs)

 matrix_multiply(lhs, rhs, out_type \\ nil)

 multiply(lhs, rhs)

 multiply(lhs, rhs, type)

 negate(mat)

 number(number, type)

 ones(shape, type)

 pop(mat, key)

 Access.pop/2 is not implemented yet

 quicklook(tensor)

 Display inline image in terminal for iTerm2 users.

 raw_type(mat)

 Returns the type of a matrix.

 reshape(mat, shape)

 roi(mat, rect)

 Extracts a rectangular submatrix.

 roi(mat, rowRange, colRange)

 Extracts a rectangular submatrix.

 round(mat)

 set_kino_render_image_encoding(encoding)

 Set preferred image encoding when rendering in Kino.

 set_kino_render_image_max_size(size)

 Set the maximum allowed image size to render in Kino.

 set_kino_render_tab_order(order)

 Set preferred order of Kino.Layout tabs for Evision.Mat in Livebook.

 setTo(mat, value, mask)

 shape(mat)

 sign(mat)

 size(mat)

 Returns the cv::MatSize of the matrix.

 squeeze(mat)

 subtract(lhs, rhs)

 subtract(lhs, rhs, type)

 to_batched(mat, batch_size, opts)

 to_batched(mat, batch_size, as_shape, opts)

 to_binary(mat, limit \\ 0)

 to_nx(mat, backend \\ Evision.Backend)

 Transform an Evision.Mat to Nx.tensor.

 total(mat)

 Returns the total number of array elements.

 total(mat, start_dim, end_dim \\ 4_294_967_295)

 Returns the total number of array elements.

 transpose(mat)

 Transpose a matrix

 transpose(mat, axes, opts \\ [])

 Transpose a matrix

 type(mat)

 This method returns the type-tuple used by Nx. To get the raw value of cv::Mat.type(), please use
Evision.Mat.raw_type/1.

 update_roi(mat, ranges, with_mat)

 zeros(shape, type)

Types

 Link to this type

 mat_type()

 View Source

 @type mat_type() ::
 {:u, 8 | 16}
 | {:s, 8 | 16 | 32}
 | {:f, 32 | 64 | 16}
 | :u8
 | :u16
 | :s8
 | :s16
 | :s32
 | :f32
 | :f64
 | :f16

Types for Evision.Mat
Shorthand
	:u8
	:u16
	:s16
	:s32
	:f32
	:f64
	:f16

Tuple Form
	{:u, 8}
	{:u, 16}
	{:s, 8}
	{:s, 16}
	{:s, 32}
	{:f, 32}
	{:f, 64}
	{:f, 16}

 Link to this type

 mat_type_tuple_form()

 View Source

 @type mat_type_tuple_form() :: {:u, 8 | 16} | {:s, 8 | 16 | 32} | {:f, 32 | 64 | 16}

 Link to this type

 maybe_mat_in()

 View Source

 @type maybe_mat_in() :: reference() | t() | Nx.Tensor.t()

Input argument, Evision.Mat, Nx.Tensor or #reference.
	Evision.Mat, recommended to use.

	Nx.Tensor
Accepting this type so that it's easier to interact with a Nx.Tensor.

	reference(), not recommended.
Only some internal functions will pass the raw reference variables around.

 Link to this type

 maybe_mat_out()

 View Source

 @type maybe_mat_out() :: t() | {:error, String.t()}

The resulting ok-error tuple when a NIF function can return Evision.Mat.

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Mat{
 channels: integer(),
 dims: integer(),
 raw_type: integer(),
 ref: reference(),
 shape: tuple(),
 type: mat_type()
}

Type that represents an Evision.Mat struct.
	channels: int.
The number of matrix channels.

	dims: int.
Matrix dimensionality.

	type: mat_type.
Type of the matrix elements, following :nx's convention.

	raw_type: int.
The raw value returned from int cv::Mat::type().

	shape: tuple.
The shape of the matrix.

	ref: reference.
The underlying erlang resource variable.

Functions

 Link to this function

 abs(mat)

 View Source

 @spec abs(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 add(lhs, rhs)

 View Source

 @spec add(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 add(lhs, rhs, type)

 View Source

 @spec add(maybe_mat_in(), maybe_mat_in(), mat_type()) :: maybe_mat_out()

 Link to this function

 arange(from, to, step, type)

 View Source

 @spec arange(integer(), integer(), integer(), mat_type()) :: maybe_mat_out()

Generate a Mat with shape {1, length}, where length is the amount of
numbers starting from from to to with step size step

 Link to this function

 arange(from, to, step, type, shape)

 View Source

 @spec arange(integer(), integer(), integer(), mat_type(), tuple()) :: maybe_mat_out()

Generate a Mat with a list of number starting from from to to with step size step.
The generated Mat will then be reshaped to the requested shape if applicable.

 Link to this function

 as_shape(mat, as_shape)

 View Source

 @spec as_shape(maybe_mat_in(), tuple() | list()) :: maybe_mat_out()

This method does not change the underlying data. It only changes the steps when accessing the matrix.
If intended to change the underlying data to the new shape, please use Evision.Mat.reshape/2.

 Link to this function

 as_type(mat, type)

 View Source

 @spec as_type(maybe_mat_in(), mat_type()) :: maybe_mat_out()

 Link to this function

 at(mat, position)

 View Source

 @spec at(maybe_mat_in(), integer()) :: number() | {:error, String.t()}

 Link to this function

 bitwise_and(lhs, rhs)

 View Source

 @spec bitwise_and(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 bitwise_not(mat)

 View Source

 @spec bitwise_not(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 bitwise_or(lhs, rhs)

 View Source

 @spec bitwise_or(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 bitwise_xor(lhs, rhs)

 View Source

 @spec bitwise_xor(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 broadcast_to(mat, to_shape)

 View Source

 @spec broadcast_to(maybe_mat_in(), tuple()) :: maybe_mat_out()

 Link to this function

 broadcast_to(mat, to_shape, force_src_shape)

 View Source

 @spec broadcast_to(maybe_mat_in(), tuple(), tuple()) :: maybe_mat_out()

 Link to this function

 ceil(mat)

 View Source

 @spec ceil(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 channel_as_last_dim(mat)

 View Source

 @spec channel_as_last_dim(maybe_mat_in()) :: maybe_mat_out()

This function does the opposite as to Evision.Mat.last_dim_as_channel/1.
If the number of channels of the input Evision.Mat is greater than 1,
then this function would convert the input Evision.Mat with dims dims=list(int()) to a 1-channel Evision.Mat with dims [dims | channels].
If the number of channels of the input Evision.Mat is equal to 1,
	if dims == shape, then nothing happens
	otherwise, a new Evision.Mat that has dims=[dims | channels] will be returned

 Link to this function

 channels(mat)

 View Source

 @spec channels(maybe_mat_in()) :: non_neg_integer() | {:error, String.t()}

The method returns the number of matrix channels.

 Link to this function

 clip(mat, lower, upper)

 View Source

 @spec clip(maybe_mat_in(), number(), number()) :: maybe_mat_out()

 Link to this function

 clone(mat)

 View Source

 @spec clone(maybe_mat_in()) :: maybe_mat_out()

Get a clone an Evision.Mat.
Data will be copied to the resulting Evision.Mat.

 Link to this function

 cmp(lhs, rhs, op)

 View Source

 @spec cmp(maybe_mat_in(), maybe_mat_in(), :eq | :gt | :ge | :lt | :le | :ne) ::
 maybe_mat_out()

 Link to this function

 depth(mat)

 View Source

 @spec depth(maybe_mat_in()) :: maybe_mat_out()

Returns the depth of a matrix element.
The method returns the identifier of the matrix element depth (the type of each individual channel).
For example, for a 16-bit signed element array, the method returns CV_16S. A complete list of
matrix types contains the following values:
	 CV_8U - 8-bit unsigned integers (0..255)
	 CV_8S - 8-bit signed integers (-128..127)
	 CV_16U - 16-bit unsigned integers (0..65535)
	 CV_16S - 16-bit signed integers (-32768..32767)
	 CV_32S - 32-bit signed integers (-2147483648..2147483647)
	 CV_32F - 32-bit floating-point numbers (-FLT_MAX..FLT_MAX, INF, NAN)
	 CV_64F - 64-bit floating-point numbers (-DBL_MAX..DBL_MAX, INF, NAN)

 Link to this function

 divide(lhs, rhs)

 View Source

 @spec divide(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 divide(lhs, rhs, type)

 View Source

 @spec divide(maybe_mat_in(), maybe_mat_in(), mat_type()) :: maybe_mat_out()

 Link to this function

 dot(mat_a, mat_b)

 View Source

 @spec dot(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 elemSize1(mat)

 View Source

 @spec elemSize1(maybe_mat_in()) :: integer()

Returns the size of each matrix element channel in bytes.
The method returns the matrix element channel size in bytes, that is, it ignores the number of
channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2.

 Link to this function

 elemSize(mat)

 View Source

 @spec elemSize(maybe_mat_in()) :: integer()

Returns the matrix element size in bytes.
The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3,
the method returns 3*sizeof(short) or 6.

 Link to this function

 empty()

 View Source

 @spec empty() :: maybe_mat_out()

Create an empty Evision.Mat.
This function is the Elixir equvilent of calling cv::Mat() in C++.

 Link to this function

 expm1(mat)

 View Source

 @spec expm1(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 eye(n, type)

 View Source

 @spec eye(non_neg_integer(), mat_type()) :: maybe_mat_out()

 Link to this function

 fetch(mat, key)

 View Source

 @spec fetch(t(), list() | integer()) :: {:ok, maybe_mat_out() | nil}

Access.fetch implementation for Evision.Mat.
iex> img = Evision.imread("test/qr_detector_test.png")
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {300, 300, 3},
 ref: #Reference<0.809884129.802291734.78316>
}

Same behaviour as Nx.
Also, img[0] gives the same result as img[[0]]
For this example, they are both equvilent of img[[0, :all, :all]]
iex> img[[0]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 300, 3},
 ref: #Reference<0.809884129.802291731.77296>
}

same as img[[0..100, 50..200, :all]]
however, currently we only support ranges with step size 1
#
IMPORTANT NOTE
#
also, please note that we are using Elixir.Range here
and Elixir.Range is **inclusive**, i.e, [start, end]
while cv::Range `{integer(), integer()}` is `[start, end)`
the difference can be observed in the `shape` field
iex> img[[0..100, 50..200]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {101, 151, 3},
 ref: #Reference<0.809884129.802291731.77297>
}
iex> img[[{0, 100}, {50, 200}]]
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {100, 150, 3},
 ref: #Reference<0.809884129.802291731.77297>
}

for this example, the result is the same as `Evision.extractChannel(img, 0)`
iex> img[[:all, :all, 0]]
%Evision.Mat{
 channels: 1,
 dims: 2,
 type: {:u, 8},
 raw_type: 0,
 shape: {300, 300},
 ref: #Reference<0.809884129.802291731.77298>
}
iex> img[[:all, :all, 0..1]]
%Evision.Mat{
 channels: 2,
 dims: 2,
 type: {:u, 8},
 raw_type: 8,
 shape: {300, 300, 2},
 ref: #Reference<0.809884129.802291731.77299>
}

when index is out of bounds
iex> img[[:all, :all, 42]]
{:error, "index 42 is out of bounds for axis 2 with size 3"}

it works the same way for any dimensional Evision.Mat
iex> mat = Evision.Mat.ones({10, 10, 10, 10, 10}, :u8)
iex> mat[[1..7, :all, 2..6, 3..9, :all]]
%Evision.Mat{
 channels: 1,
 dims: 5,
 type: {:u, 8},
 raw_type: 0,
 shape: {7, 10, 5, 7, 10},
 ref: #Reference<0.3015448455.3766878228.259075>
}

 Link to this function

 floor(mat)

 View Source

 @spec floor(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 from_binary(binary, type, rows, cols, channels)

 View Source

 @spec from_binary(
 binary(),
 mat_type(),
 pos_integer(),
 pos_integer(),
 non_neg_integer()
) ::
 maybe_mat_out()

Create Mat from binary (pixel) data
	binary.
The binary pixel data

	type.
one of [{:u, 8}, {:s, 8}, {:u, 16}, {:s, 16}, {:s, 32}, {:f, 32}, {:f, 64}] and their corresponding shorthands.

	rows. int
Number of rows (i.e., the height of the image)

	cols. int
Number of cols (i.e., the width of the image)

	channels. int
Number of channels.

 Link to this function

 from_binary_by_shape(binary, type, shape)

 View Source

 @spec from_binary_by_shape(binary(), mat_type(), tuple()) :: maybe_mat_out()

 Link to this function

 from_nx(t)

 View Source

 @spec from_nx(Nx.t()) :: t() | {:error, String.t()}

Converts a tensor from Nx.Tensor to Evision.Mat.
Positional Arguments
	t. Nx.Tensor

Return
An Evision.Mat that has the same shape and type.
(except for :s64, :u32 and :u64, please see more details at https://github.com/cocoa-xu/evision/issues/48).

 Link to this function

 from_nx(t, as_shape)

 View Source

 @spec from_nx(Nx.Tensor.t(), tuple()) :: t() | {:error, String.t()}

Converts a tensor from Nx.Tensor to Evision.Mat.
Positional Arguments
	t. Nx.Tensor
	as_shape. tuple.

Return
An Evision.Mat that has the specified shape (if the number of elements matches) and the same type as the given tensor.
(except for :s64, :u32 and :u64, please see more details at https://github.com/cocoa-xu/evision/issues/48).

 Link to this function

 from_nx_2d(t)

 View Source

 @spec from_nx_2d(Nx.t()) :: t() | {:error, String.t()}

Converts a tensor from Nx.Tensor to a 2D Evision.Mat.
If the tuple size of the shape is 3, the resulting Evision.Mat will be a c-channel 2D image,
where c is the last number in the shape tuple.
If the tuple size of the shape is 2, the resulting Evision.Mat will be a 1-channel 2D image.
Otherwise, it's not possible to convert the tensor to a 2D image.

 Link to this function

 full(shape, number, type)

 View Source

 @spec full(tuple(), number(), mat_type()) :: maybe_mat_out()

Generate a Mat with all of its elements equal to number.
Positional Arguments
	shape. tuple
The expected shape of the resulting Evision.Mat

	number. number
Element value.

	type.
Value type.

 Link to this function

 get_and_update(mat, key, function)

 View Source

 @spec get_and_update(t(), term(), (t() -> t())) :: {t(), t()}

Access.get_and_update/3 implementation for Evision.Mat
iex> mat = Evision.Mat.zeros({5, 5}, :u8)
iex> Evision.Mat.to_nx(mat)
#Nx.Tensor<
 u8[5][5]
 Evision.Backend
 [
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]
]
>
iex> {old, new} = Evision.Mat.get_and_update(mat, [1..3, 1..3], fn roi ->
 {roi, Nx.broadcast(Nx.tensor(255, type: roi.type), roi.shape)}
end)
iex> Evision.Mat.to_nx(new)
#Nx.Tensor<
 u8[5][5]
 Evision.Backend
 [
 [0, 0, 0, 0, 0],
 [0, 255, 255, 255, 0],
 [0, 255, 255, 255, 0],
 [0, 255, 255, 255, 0],
 [0, 0, 0, 0, 0]
]
>

 Link to this function

 isContinuous(mat)

 View Source

 @spec isContinuous(maybe_mat_in()) :: true | false

 Link to this function

 isSubmatrix(mat)

 View Source

 @spec isSubmatrix(maybe_mat_in()) :: true | false

 Link to this function

 kino_render_image_encoding()

 View Source

 @spec kino_render_image_encoding() :: term()

Get preferred image encoding when rendering in Kino.
Default value is Application.compile_env(:evision, :kino_render_image_encoding, :png).

 Link to this function

 kino_render_image_max_size()

 View Source

 @spec kino_render_image_max_size() :: term()

Get the maximum allowed image size to render in Kino.
Default value is Application.compile_env(:evision, :kino_render_image_max_size, {8192, 8192}).

 Link to this function

 kino_render_tab_order()

 View Source

 @spec kino_render_tab_order() :: term()

Get preferred order of Kino.Layout tabs for Evision.Mat in Livebook.
Default value is Enum.uniq(Application.compile_env(:evision, :kino_render_tab_order, [:image, :raw, :numerical])).

 Link to this function

 last_dim_as_channel(mat)

 View Source

 @spec last_dim_as_channel(maybe_mat_in()) :: maybe_mat_out()

This function would convert the input tensor with dims [height, width, dims] to a dims-channel image with dims [height, width].
Note that OpenCV has limitation on the number of channels. Currently the maximum number of channels is 512.

 Link to this function

 literal(list)

 View Source

Create an Evision.Mat from list literals.

 Example

Creating Evision.Mat from empty list literal ([]) is the same as calling Evision.Mat.empty().
iex> Evision.Mat.literal!([])
%Evision.Mat{
 channels: 1,
 dims: 0,
 type: {:u, 8},
 raw_type: 0,
 shape: {},
 ref: #Reference<0.1204050731.2031747092.46781>
}
By default, the shape of the Mat will stay as is.
iex> Evision.Mat.literal!([[[1,1,1],[2,2,2],[3,3,3]]], :u8)
%Evision.Mat{
 channels: 1,
 dims: 3,
 type: {:u, 8},
 raw_type: 0,
 shape: {1, 3, 3},
 ref: #Reference<0.512519210.691404819.106300>
}
Evision.Mat.literal/3 will return a valid 2D image
if the keyword argument, as_2d, is set to true
and if the list literal can be represented as a 2D image.
iex> Evision.Mat.literal!([[[1,1,1],[2,2,2],[3,3,3]]], :u8, as_2d: true)
%Evision.Mat{
 channels: 3,
 dims: 2,
 type: {:u, 8},
 raw_type: 16,
 shape: {1, 3, 3},
 ref: #Reference<0.512519210.691404820.106293>
}

 Link to this function

 literal(literal, type, opts \\ [])

 View Source

 @spec literal(list(), mat_type(), Keyword.t()) :: maybe_mat_out()

 Link to this function

 logical_and(lhs, rhs)

 View Source

 @spec logical_and(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 logical_or(lhs, rhs)

 View Source

 @spec logical_or(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 logical_xor(lhs, rhs)

 View Source

 @spec logical_xor(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 matrix_multiply(lhs, rhs, out_type \\ nil)

 View Source

 @spec matrix_multiply(maybe_mat_in(), maybe_mat_in(), mat_type() | nil) ::
 maybe_mat_out()

 Link to this function

 multiply(lhs, rhs)

 View Source

 @spec multiply(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 multiply(lhs, rhs, type)

 View Source

 @spec multiply(maybe_mat_in(), maybe_mat_in(), mat_type()) :: maybe_mat_out()

 Link to this function

 negate(mat)

 View Source

 @spec negate(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 number(number, type)

 View Source

 @spec number(number(), mat_type()) :: maybe_mat_out()

 Link to this function

 ones(shape, type)

 View Source

 @spec ones(tuple(), mat_type()) :: maybe_mat_out()

 Link to this function

 pop(mat, key)

 View Source

 @spec pop(any(), any()) :: none()

Access.pop/2 is not implemented yet

 Link to this function

 quicklook(tensor)

 View Source

 @spec quicklook(Nx.Tensor.t()) :: Nx.Tensor.t()

 @spec quicklook(t()) :: t()

 @spec quicklook(term()) :: term()

Display inline image in terminal for iTerm2 users.
This function will check the value of :display_inline_image_iterm2 in the application config.
If is true, then it will detect if current session is running in iTerm2 (by checking the environment variable LC_TERMINAL).
If both are true, we next check if the image is a 2D image, also if its size is within the limits.
The maximum size can be set in the application config, for example,
config :evision, display_inline_image_iterm2: true
config :evision, display_inline_image_max_size: {8192, 8192}
If it passes all the checks, then it will be displayed as an inline image in iTerm2.

 Link to this function

 raw_type(mat)

 View Source

 @spec raw_type(maybe_mat_in()) :: integer() | {:error, String.t()}

Returns the type of a matrix.
As Evision.Mat.type/1 returns the type used by Nx, this method gives the raw value of
cv::Mat.type()

 Link to this function

 reshape(mat, shape)

 View Source

 @spec reshape(maybe_mat_in(), tuple() | list()) :: maybe_mat_out()

 Link to this function

 roi(mat, rect)

 View Source

 @spec roi(maybe_mat_in(), {integer(), integer(), integer(), integer()}) ::
 maybe_mat_out()

 @spec roi(maybe_mat_in(), [{integer(), integer()} | Range.t() | :all]) ::
 maybe_mat_out()

Extracts a rectangular submatrix.
Variant 1
Positional Arguments
	mat. maybe_mat_in()
The matrix.

	rect. {int, int, int, int}
The rect that specifies {x, y, width, height}.

Return
Extracted submatrix specified as a rectangle. (data is copied)
Variant 2
Positional Arguments
	mat. maybe_mat_in()
The matrix.

	ranges. [{int, int} | :all]
Array of selected ranges along each array dimension.

Return
Extracted submatrix. (data is copied)

 Link to this function

 roi(mat, rowRange, colRange)

 View Source

 @spec roi(
 maybe_mat_in(),
 {integer(), integer()} | :all,
 {integer(), integer()} | :all
) ::
 maybe_mat_out()

 @spec roi(maybe_mat_in(), Range.t(), Range.t()) :: maybe_mat_out()

Extracts a rectangular submatrix.
The submatrix data is copied.
Variant 1
Positional Arguments
	mat. maybe_mat_in()
The matrix.

	rowRange. {int, int} | :all.
Start and end row of the extracted submatrix. The upper boundary is not included.

	colRange. {int, int} | :all.
Start and end column of the extracted submatrix. The upper boundary is not included.

Return
Extracted submatrix (data is copied).
Variant 2
Positional Arguments
	mat. maybe_mat_in()
The matrix.

	rowRange. Range.t(step: 1).
Start and end row of the extracted submatrix. The upper boundary is not included.

	colRange. Range.t(step: 1).
Start and end column of the extracted submatrix. The upper boundary is not included.

Return
Extracted submatrix (data is copied).

 Link to this function

 round(mat)

 View Source

 @spec round(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 set_kino_render_image_encoding(encoding)

 View Source

 @spec set_kino_render_image_encoding(:png | :jpeg | term()) :: term()

Set preferred image encoding when rendering in Kino.
Only valid when :kino >= 0.7 and using in livebook
Positional Arguments
	encoding. :png | :jpeg.
When rendering a 2D image with Kino in Livebook
the image will first be encoded into either :png or :jpeg	:png usually has better quality because it is lossless compression,
however, it uses more bandwidth to transfer

	:jpeg require less bandwidth to pass from the backend to the livebook frontend,
but it is lossy compression

 Link to this function

 set_kino_render_image_max_size(size)

 View Source

 @spec set_kino_render_image_max_size({pos_integer(), pos_integer()}) :: term()

Set the maximum allowed image size to render in Kino.
Only valid when :kino >= 0.7 and using in livebook
Positional Arguments
	size. {height, width}.

 Link to this function

 set_kino_render_tab_order(order)

 View Source

 @spec set_kino_render_tab_order([atom()] | term()) :: term()

Set preferred order of Kino.Layout tabs for Evision.Mat in Livebook.
Only valid when :kino >= 0.7 and using in Livebook.
Positional Arguments
	order: [atom()]
Default order is [:image, :raw, :numerical], and the corresponding tabs will be:
 Image | Raw | Numerical
Note that the :image tab will not show if the Evision.Mat is not a 2D image.
Also, it's possible to specify any combination (any subset) of these tabs,
including the empty one, [], and in that case, the output content in the livebook
cell will be the same as :raw but without any tabs.
Simply put, [] means to only do the basic inspect and not use Kino.Layout.tabs
It's worth noting that [] != nil, because nil is default return value when kino_render_tab_order
is not configured -- hence evision will use the default order, [:image, :raw, :numerical] in such case
When only specifying one type, i.e., [:image], [:raw] or [:numerical], only one tab will be shown.
Furthermore, when kino_render_tab_order is configured to [:image] and when the Evision.Mat is not a 2D image,
it will automatically fallback to :raw.
Simply put, [:image] in this case (when only specifying one type) means:
displaying the Evision.Mat as an image whenever possible, and fallback to :raw
if it's not a 2D image

 Link to this function

 setTo(mat, value, mask)

 View Source

 @spec setTo(maybe_mat_in(), number(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 shape(mat)

 View Source

 @spec shape(maybe_mat_in()) :: tuple() | {:error, String.t()}

 Link to this function

 sign(mat)

 View Source

 @spec sign(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 size(mat)

 View Source

 @spec size(maybe_mat_in()) ::
 {non_neg_integer(), [non_neg_integer()]} | {:error, String.t()}

Returns the cv::MatSize of the matrix.
The method returns a tuple {dims, p} where dims is the number of dimensions, and p is a list with dims elements.

 Link to this function

 squeeze(mat)

 View Source

 @spec squeeze(maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 subtract(lhs, rhs)

 View Source

 @spec subtract(maybe_mat_in(), maybe_mat_in()) :: maybe_mat_out()

 Link to this function

 subtract(lhs, rhs, type)

 View Source

 @spec subtract(maybe_mat_in(), maybe_mat_in(), mat_type()) :: maybe_mat_out()

 Link to this function

 to_batched(mat, batch_size, opts)

 View Source

 @spec to_batched(maybe_mat_in(), non_neg_integer(), Keyword.t()) :: maybe_mat_out()

 Link to this function

 to_batched(mat, batch_size, as_shape, opts)

 View Source

 @spec to_batched(maybe_mat_in(), non_neg_integer(), tuple(), Keyword.t()) ::
 maybe_mat_out()

 Link to this function

 to_binary(mat, limit \\ 0)

 View Source

 @spec to_binary(maybe_mat_in(), non_neg_integer()) :: binary() | {:error, String.t()}

 Link to this function

 to_nx(mat, backend \\ Evision.Backend)

 View Source

 @spec to_nx(maybe_mat_in(), module()) :: Nx.Tensor.t() | {:error, String.t()}

Transform an Evision.Mat to Nx.tensor.
Positional Arguments
	mat: maybe_mat_in()
Evision.Mat

	backend: module()
Nx backend.

Return
If the input Evision.Mat represents a 2D image, the resulting tensor
will have shape {height, width, channels}.

 Example

iex> %Evision.Mat{} = mat = Evision.imread("/path/to/exist/img.png")
iex> nx_tensor = Evision.Mat.to_nx(mat)
#Nx.Tensor<
 u8[1080][1920][3]
 [[... pixel data ...]]
>

 Link to this function

 total(mat)

 View Source

 @spec total(maybe_mat_in()) :: non_neg_integer() | {:error, String.t()}

Returns the total number of array elements.
The method returns the number of array elements (a number of pixels if the array represents an image).

 Link to this function

 total(mat, start_dim, end_dim \\ 4_294_967_295)

 View Source

 @spec total(maybe_mat_in(), non_neg_integer(), non_neg_integer()) ::
 non_neg_integer() | {:error, String.t()}

Returns the total number of array elements.
The method returns the number of elements within a certain sub-array slice with start_dim <= dim < end_dim

 Link to this function

 transpose(mat)

 View Source

 @spec transpose(maybe_mat_in()) :: maybe_mat_out()

Transpose a matrix

 Parameters

	mat. The matrix.
by default it reverses the order of the axes.

 Link to this function

 transpose(mat, axes, opts \\ [])

 View Source

 @spec transpose(maybe_mat_in(), [integer()], Keyword.t()) :: maybe_mat_out()

Transpose a matrix

 Parameters

	mat. Evision.Mat

	axes. [int]
 It must be a list which contains a permutation of [0,1,..,N-1]
 where N is the number of axes of mat. The i’th axis of the returned array will correspond to the
 axis numbered axes[i] of the input.

	opts. Keyword options.
	as_shape. A tuple or list which overwrites the shape of the matrix (the total number of elements
must be equal to the one as in its original shape). For example, a 4x4 matrix can be treated as a
2x2x2x2 matrix and transposed with axes=[2,1,3,0] in a single call.
When specified, it combines the reshape and transpose operation in a single NIF call.

 Link to this function

 type(mat)

 View Source

 @spec type(maybe_mat_in()) :: mat_type() | {:error, String.t()}

This method returns the type-tuple used by Nx. To get the raw value of cv::Mat.type(), please use
Evision.Mat.raw_type/1.

 Link to this function

 update_roi(mat, ranges, with_mat)

 View Source

 @spec update_roi(
 maybe_mat_in(),
 [{integer(), integer()} | Range.t() | :all],
 maybe_mat_in()
) ::
 maybe_mat_out()

 Link to this function

 zeros(shape, type)

 View Source

 @spec zeros(tuple(), mat_type()) :: maybe_mat_out()

 Evision.MergeDebevec - Evision v0.1.39

Evision.MergeDebevec

 Summary

 Types

 t()

 Type that represents an MergeDebevec struct.

 Functions

 process(self, src, times)

 process

 process(self, src, times, opts)

 Variant 1:
process

 process(self, src, times, response, opts)

 process

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MergeDebevec{ref: reference()}

Type that represents an MergeDebevec struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 process(self, src, times)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()], Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeDebevec.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
process
Positional Arguments
	self: Evision.MergeDebevec.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst
Variant 2:
process
Positional Arguments
	self: Evision.MergeDebevec.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, response, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeDebevec.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Evision.MergeExposures - Evision v0.1.39

Evision.MergeExposures

 Summary

 Types

 t()

 Type that represents an MergeExposures struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 process(self, src, times, response)

 Merges images.

 process(self, src, times, response, opts)

 Merges images.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MergeExposures{ref: reference()}

Type that represents an MergeExposures struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.MergeExposures.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.MergeExposures.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.MergeExposures.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 process(self, src, times, response)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Merges images.
Positional Arguments
	self: Evision.MergeExposures.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

	response: Evision.Mat.t().
256x1 matrix with inverse camera response function for each pixel value, it should
have the same number of channels as images.

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Link to this function

 process(self, src, times, response, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Merges images.
Positional Arguments
	self: Evision.MergeExposures.t()

	src: [Evision.Mat].
vector of input images

	times: Evision.Mat.t().
vector of exposure time values for each image

	response: Evision.Mat.t().
256x1 matrix with inverse camera response function for each pixel value, it should
have the same number of channels as images.

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.MergeExposures.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.MergeExposures.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.MergeExposures.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.MergeExposures.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.MergeMertens - Evision v0.1.39

Evision.MergeMertens

 Summary

 Types

 t()

 Type that represents an MergeMertens struct.

 Functions

 getContrastWeight(self)

 getContrastWeight

 getExposureWeight(self)

 getExposureWeight

 getSaturationWeight(self)

 getSaturationWeight

 process(self, src)

 Short version of process, that doesn't take extra arguments.

 process(self, src, opts)

 Short version of process, that doesn't take extra arguments.

 process(self, src, times, response)

 process

 process(self, src, times, response, opts)

 process

 setContrastWeight(self, contrast_weiht)

 setContrastWeight

 setExposureWeight(self, exposure_weight)

 setExposureWeight

 setSaturationWeight(self, saturation_weight)

 setSaturationWeight

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MergeMertens{ref: reference()}

Type that represents an MergeMertens struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getContrastWeight(self)

 View Source

 @spec getContrastWeight(t()) :: number() | {:error, String.t()}

getContrastWeight
Positional Arguments
	self: Evision.MergeMertens.t()

Return
	retval: float

Python prototype (for reference only):
getContrastWeight() -> retval

 Link to this function

 getExposureWeight(self)

 View Source

 @spec getExposureWeight(t()) :: number() | {:error, String.t()}

getExposureWeight
Positional Arguments
	self: Evision.MergeMertens.t()

Return
	retval: float

Python prototype (for reference only):
getExposureWeight() -> retval

 Link to this function

 getSaturationWeight(self)

 View Source

 @spec getSaturationWeight(t()) :: number() | {:error, String.t()}

getSaturationWeight
Positional Arguments
	self: Evision.MergeMertens.t()

Return
	retval: float

Python prototype (for reference only):
getSaturationWeight() -> retval

 Link to this function

 process(self, src)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()]) ::
 Evision.Mat.t() | {:error, String.t()}

Short version of process, that doesn't take extra arguments.
Positional Arguments
	self: Evision.MergeMertens.t()

	src: [Evision.Mat].
vector of input images

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
process(src[, dst]) -> dst

 Link to this function

 process(self, src, opts)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Short version of process, that doesn't take extra arguments.
Positional Arguments
	self: Evision.MergeMertens.t()

	src: [Evision.Mat].
vector of input images

Return
	dst: Evision.Mat.t().
result image

Python prototype (for reference only):
process(src[, dst]) -> dst

 Link to this function

 process(self, src, times, response)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeMertens.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Link to this function

 process(self, src, times, response, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeMertens.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Link to this function

 setContrastWeight(self, contrast_weiht)

 View Source

 @spec setContrastWeight(t(), number()) :: t() | {:error, String.t()}

setContrastWeight
Positional Arguments
	self: Evision.MergeMertens.t()
	contrast_weiht: float

Python prototype (for reference only):
setContrastWeight(contrast_weiht) -> None

 Link to this function

 setExposureWeight(self, exposure_weight)

 View Source

 @spec setExposureWeight(t(), number()) :: t() | {:error, String.t()}

setExposureWeight
Positional Arguments
	self: Evision.MergeMertens.t()
	exposure_weight: float

Python prototype (for reference only):
setExposureWeight(exposure_weight) -> None

 Link to this function

 setSaturationWeight(self, saturation_weight)

 View Source

 @spec setSaturationWeight(t(), number()) :: t() | {:error, String.t()}

setSaturationWeight
Positional Arguments
	self: Evision.MergeMertens.t()
	saturation_weight: float

Python prototype (for reference only):
setSaturationWeight(saturation_weight) -> None

 Evision.MergeRobertson - Evision v0.1.39

Evision.MergeRobertson

 Summary

 Types

 t()

 Type that represents an MergeRobertson struct.

 Functions

 process(self, src, times)

 process

 process(self, src, times, opts)

 Variant 1:
process

 process(self, src, times, response, opts)

 process

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.MergeRobertson{ref: reference()}

Type that represents an MergeRobertson struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 process(self, src, times)

 View Source

 @spec process(t(), [Evision.Mat.maybe_mat_in()], Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeRobertson.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
process
Positional Arguments
	self: Evision.MergeRobertson.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst
Variant 2:
process
Positional Arguments
	self: Evision.MergeRobertson.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times[, dst]) -> dst

 Link to this function

 process(self, src, times, response, opts)

 View Source

 @spec process(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

process
Positional Arguments
	self: Evision.MergeRobertson.t()
	src: [Evision.Mat]
	times: Evision.Mat.t()
	response: Evision.Mat.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
process(src, times, response[, dst]) -> dst

 Evision.NormHistogramCostExtractor - Evision v0.1.39

Evision.NormHistogramCostExtractor

 Summary

 Types

 t()

 Type that represents an NormHistogramCostExtractor struct.

 Functions

 getNormFlag(self)

 getNormFlag

 setNormFlag(self, flag)

 setNormFlag

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.NormHistogramCostExtractor{ref: reference()}

Type that represents an NormHistogramCostExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getNormFlag(self)

 View Source

 @spec getNormFlag(t()) :: integer() | {:error, String.t()}

getNormFlag
Positional Arguments
	self: Evision.NormHistogramCostExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getNormFlag() -> retval

 Link to this function

 setNormFlag(self, flag)

 View Source

 @spec setNormFlag(t(), integer()) :: t() | {:error, String.t()}

setNormFlag
Positional Arguments
	self: Evision.NormHistogramCostExtractor.t()
	flag: int

Python prototype (for reference only):
setNormFlag(flag) -> None

 Evision.OCL - Evision v0.1.39

Evision.OCL

 Summary

 Types

 t()

 Type that represents an OCL struct.

 Functions

 finish()

 finish

 haveAmdBlas()

 haveAmdBlas

 haveAmdFft()

 haveAmdFft

 haveOpenCL()

 haveOpenCL

 setUseOpenCL(flag)

 setUseOpenCL

 useOpenCL()

 useOpenCL

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.OCL{ref: reference()}

Type that represents an OCL struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 finish()

 View Source

 @spec finish() :: :ok | {:error, String.t()}

finish
Python prototype (for reference only):
finish() -> None

 Link to this function

 haveAmdBlas()

 View Source

 @spec haveAmdBlas() :: boolean() | {:error, String.t()}

haveAmdBlas
Return
	retval: bool

Python prototype (for reference only):
haveAmdBlas() -> retval

 Link to this function

 haveAmdFft()

 View Source

 @spec haveAmdFft() :: boolean() | {:error, String.t()}

haveAmdFft
Return
	retval: bool

Python prototype (for reference only):
haveAmdFft() -> retval

 Link to this function

 haveOpenCL()

 View Source

 @spec haveOpenCL() :: boolean() | {:error, String.t()}

haveOpenCL
Return
	retval: bool

Python prototype (for reference only):
haveOpenCL() -> retval

 Link to this function

 setUseOpenCL(flag)

 View Source

 @spec setUseOpenCL(boolean()) :: :ok | {:error, String.t()}

setUseOpenCL
Positional Arguments
	flag: bool

Python prototype (for reference only):
setUseOpenCL(flag) -> None

 Link to this function

 useOpenCL()

 View Source

 @spec useOpenCL() :: boolean() | {:error, String.t()}

useOpenCL
Return
	retval: bool

Python prototype (for reference only):
useOpenCL() -> retval

 Evision.OCL.Device - Evision v0.1.39

Evision.OCL.Device

 Summary

 Types

 t()

 Type that represents an OCL.Device struct.

 Functions

 addressBits(self)

 addressBits

 available(self)

 available

 compilerAvailable(self)

 compilerAvailable

 device()

 Device

 deviceVersionMajor(self)

 deviceVersionMajor

 deviceVersionMinor(self)

 deviceVersionMinor

 doubleFPConfig(self)

 doubleFPConfig

 driverVersion(self)

 driverVersion

 endianLittle(self)

 endianLittle

 errorCorrectionSupport(self)

 errorCorrectionSupport

 executionCapabilities(self)

 executionCapabilities

 extensions(self)

 extensions

 getDefault()

 getDefault

 globalMemCacheLineSize(self)

 globalMemCacheLineSize

 globalMemCacheSize(self)

 globalMemCacheSize

 globalMemCacheType(self)

 globalMemCacheType

 globalMemSize(self)

 globalMemSize

 halfFPConfig(self)

 halfFPConfig

 hostUnifiedMemory(self)

 hostUnifiedMemory

 image2DMaxHeight(self)

 image2DMaxHeight

 image2DMaxWidth(self)

 image2DMaxWidth

 image3DMaxDepth(self)

 image3DMaxDepth

 image3DMaxHeight(self)

 image3DMaxHeight

 image3DMaxWidth(self)

 image3DMaxWidth

 imageFromBufferSupport(self)

 imageFromBufferSupport

 imageMaxArraySize(self)

 imageMaxArraySize

 imageMaxBufferSize(self)

 imageMaxBufferSize

 imageSupport(self)

 imageSupport

 intelSubgroupsSupport(self)

 intelSubgroupsSupport

 isAMD(self)

 isAMD

 isExtensionSupported(self, extensionName)

 isExtensionSupported

 isIntel(self)

 isIntel

 isNVidia(self)

 isNVidia

 linkerAvailable(self)

 linkerAvailable

 localMemSize(self)

 localMemSize

 localMemType(self)

 localMemType

 maxClockFrequency(self)

 maxClockFrequency

 maxComputeUnits(self)

 maxComputeUnits

 maxConstantArgs(self)

 maxConstantArgs

 maxConstantBufferSize(self)

 maxConstantBufferSize

 maxMemAllocSize(self)

 maxMemAllocSize

 maxParameterSize(self)

 maxParameterSize

 maxReadImageArgs(self)

 maxReadImageArgs

 maxSamplers(self)

 maxSamplers

 maxWorkGroupSize(self)

 maxWorkGroupSize

 maxWorkItemDims(self)

 maxWorkItemDims

 maxWriteImageArgs(self)

 maxWriteImageArgs

 memBaseAddrAlign(self)

 memBaseAddrAlign

 name(self)

 name

 nativeVectorWidthChar(self)

 nativeVectorWidthChar

 nativeVectorWidthDouble(self)

 nativeVectorWidthDouble

 nativeVectorWidthFloat(self)

 nativeVectorWidthFloat

 nativeVectorWidthHalf(self)

 nativeVectorWidthHalf

 nativeVectorWidthInt(self)

 nativeVectorWidthInt

 nativeVectorWidthLong(self)

 nativeVectorWidthLong

 nativeVectorWidthShort(self)

 nativeVectorWidthShort

 openCL_C_Version(self)

 OpenCL_C_Version

 openCLVersion(self)

 OpenCLVersion

 preferredVectorWidthChar(self)

 preferredVectorWidthChar

 preferredVectorWidthDouble(self)

 preferredVectorWidthDouble

 preferredVectorWidthFloat(self)

 preferredVectorWidthFloat

 preferredVectorWidthHalf(self)

 preferredVectorWidthHalf

 preferredVectorWidthInt(self)

 preferredVectorWidthInt

 preferredVectorWidthLong(self)

 preferredVectorWidthLong

 preferredVectorWidthShort(self)

 preferredVectorWidthShort

 printfBufferSize(self)

 printfBufferSize

 profilingTimerResolution(self)

 profilingTimerResolution

 singleFPConfig(self)

 singleFPConfig

 type(self)

 type

 vendorID(self)

 vendorID

 vendorName(self)

 vendorName

 version(self)

 version

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.OCL.Device{ref: reference()}

Type that represents an OCL.Device struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addressBits(self)

 View Source

 @spec addressBits(t()) :: integer() | {:error, String.t()}

addressBits
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
addressBits() -> retval

 Link to this function

 available(self)

 View Source

 @spec available(t()) :: boolean() | {:error, String.t()}

available
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
available() -> retval

 Link to this function

 compilerAvailable(self)

 View Source

 @spec compilerAvailable(t()) :: boolean() | {:error, String.t()}

compilerAvailable
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
compilerAvailable() -> retval

 Link to this function

 device()

 View Source

 @spec device() :: t() | {:error, String.t()}

Device
Return
	self: Evision.OCL.Device.t()

Python prototype (for reference only):
Device() -> <ocl_Device object>

 Link to this function

 deviceVersionMajor(self)

 View Source

 @spec deviceVersionMajor(t()) :: integer() | {:error, String.t()}

deviceVersionMajor
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
deviceVersionMajor() -> retval

 Link to this function

 deviceVersionMinor(self)

 View Source

 @spec deviceVersionMinor(t()) :: integer() | {:error, String.t()}

deviceVersionMinor
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
deviceVersionMinor() -> retval

 Link to this function

 doubleFPConfig(self)

 View Source

 @spec doubleFPConfig(t()) :: integer() | {:error, String.t()}

doubleFPConfig
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
doubleFPConfig() -> retval

 Link to this function

 driverVersion(self)

 View Source

 @spec driverVersion(t()) :: binary() | {:error, String.t()}

driverVersion
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
driverVersion() -> retval

 Link to this function

 endianLittle(self)

 View Source

 @spec endianLittle(t()) :: boolean() | {:error, String.t()}

endianLittle
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
endianLittle() -> retval

 Link to this function

 errorCorrectionSupport(self)

 View Source

 @spec errorCorrectionSupport(t()) :: boolean() | {:error, String.t()}

errorCorrectionSupport
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
errorCorrectionSupport() -> retval

 Link to this function

 executionCapabilities(self)

 View Source

 @spec executionCapabilities(t()) :: integer() | {:error, String.t()}

executionCapabilities
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
executionCapabilities() -> retval

 Link to this function

 extensions(self)

 View Source

 @spec extensions(t()) :: binary() | {:error, String.t()}

extensions
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
extensions() -> retval

 Link to this function

 getDefault()

 View Source

 @spec getDefault() :: t() | {:error, String.t()}

getDefault
Return
	retval: Evision.OCL.Device.t()

Python prototype (for reference only):
getDefault() -> retval

 Link to this function

 globalMemCacheLineSize(self)

 View Source

 @spec globalMemCacheLineSize(t()) :: integer() | {:error, String.t()}

globalMemCacheLineSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
globalMemCacheLineSize() -> retval

 Link to this function

 globalMemCacheSize(self)

 View Source

 @spec globalMemCacheSize(t()) :: integer() | {:error, String.t()}

globalMemCacheSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
globalMemCacheSize() -> retval

 Link to this function

 globalMemCacheType(self)

 View Source

 @spec globalMemCacheType(t()) :: integer() | {:error, String.t()}

globalMemCacheType
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
globalMemCacheType() -> retval

 Link to this function

 globalMemSize(self)

 View Source

 @spec globalMemSize(t()) :: integer() | {:error, String.t()}

globalMemSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
globalMemSize() -> retval

 Link to this function

 halfFPConfig(self)

 View Source

 @spec halfFPConfig(t()) :: integer() | {:error, String.t()}

halfFPConfig
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
halfFPConfig() -> retval

 Link to this function

 hostUnifiedMemory(self)

 View Source

 @spec hostUnifiedMemory(t()) :: boolean() | {:error, String.t()}

hostUnifiedMemory
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
hostUnifiedMemory() -> retval

 Link to this function

 image2DMaxHeight(self)

 View Source

 @spec image2DMaxHeight(t()) :: integer() | {:error, String.t()}

image2DMaxHeight
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
image2DMaxHeight() -> retval

 Link to this function

 image2DMaxWidth(self)

 View Source

 @spec image2DMaxWidth(t()) :: integer() | {:error, String.t()}

image2DMaxWidth
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
image2DMaxWidth() -> retval

 Link to this function

 image3DMaxDepth(self)

 View Source

 @spec image3DMaxDepth(t()) :: integer() | {:error, String.t()}

image3DMaxDepth
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
image3DMaxDepth() -> retval

 Link to this function

 image3DMaxHeight(self)

 View Source

 @spec image3DMaxHeight(t()) :: integer() | {:error, String.t()}

image3DMaxHeight
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
image3DMaxHeight() -> retval

 Link to this function

 image3DMaxWidth(self)

 View Source

 @spec image3DMaxWidth(t()) :: integer() | {:error, String.t()}

image3DMaxWidth
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
image3DMaxWidth() -> retval

 Link to this function

 imageFromBufferSupport(self)

 View Source

 @spec imageFromBufferSupport(t()) :: boolean() | {:error, String.t()}

imageFromBufferSupport
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
imageFromBufferSupport() -> retval

 Link to this function

 imageMaxArraySize(self)

 View Source

 @spec imageMaxArraySize(t()) :: integer() | {:error, String.t()}

imageMaxArraySize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
imageMaxArraySize() -> retval

 Link to this function

 imageMaxBufferSize(self)

 View Source

 @spec imageMaxBufferSize(t()) :: integer() | {:error, String.t()}

imageMaxBufferSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
imageMaxBufferSize() -> retval

 Link to this function

 imageSupport(self)

 View Source

 @spec imageSupport(t()) :: boolean() | {:error, String.t()}

imageSupport
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
imageSupport() -> retval

 Link to this function

 intelSubgroupsSupport(self)

 View Source

 @spec intelSubgroupsSupport(t()) :: boolean() | {:error, String.t()}

intelSubgroupsSupport
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
intelSubgroupsSupport() -> retval

 Link to this function

 isAMD(self)

 View Source

 @spec isAMD(t()) :: boolean() | {:error, String.t()}

isAMD
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
isAMD() -> retval

 Link to this function

 isExtensionSupported(self, extensionName)

 View Source

 @spec isExtensionSupported(t(), binary()) :: boolean() | {:error, String.t()}

isExtensionSupported
Positional Arguments
	self: Evision.OCL.Device.t()
	extensionName: String

Return
	retval: bool

Python prototype (for reference only):
isExtensionSupported(extensionName) -> retval

 Link to this function

 isIntel(self)

 View Source

 @spec isIntel(t()) :: boolean() | {:error, String.t()}

isIntel
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
isIntel() -> retval

 Link to this function

 isNVidia(self)

 View Source

 @spec isNVidia(t()) :: boolean() | {:error, String.t()}

isNVidia
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
isNVidia() -> retval

 Link to this function

 linkerAvailable(self)

 View Source

 @spec linkerAvailable(t()) :: boolean() | {:error, String.t()}

linkerAvailable
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: bool

Python prototype (for reference only):
linkerAvailable() -> retval

 Link to this function

 localMemSize(self)

 View Source

 @spec localMemSize(t()) :: integer() | {:error, String.t()}

localMemSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
localMemSize() -> retval

 Link to this function

 localMemType(self)

 View Source

 @spec localMemType(t()) :: integer() | {:error, String.t()}

localMemType
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
localMemType() -> retval

 Link to this function

 maxClockFrequency(self)

 View Source

 @spec maxClockFrequency(t()) :: integer() | {:error, String.t()}

maxClockFrequency
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxClockFrequency() -> retval

 Link to this function

 maxComputeUnits(self)

 View Source

 @spec maxComputeUnits(t()) :: integer() | {:error, String.t()}

maxComputeUnits
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxComputeUnits() -> retval

 Link to this function

 maxConstantArgs(self)

 View Source

 @spec maxConstantArgs(t()) :: integer() | {:error, String.t()}

maxConstantArgs
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxConstantArgs() -> retval

 Link to this function

 maxConstantBufferSize(self)

 View Source

 @spec maxConstantBufferSize(t()) :: integer() | {:error, String.t()}

maxConstantBufferSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
maxConstantBufferSize() -> retval

 Link to this function

 maxMemAllocSize(self)

 View Source

 @spec maxMemAllocSize(t()) :: integer() | {:error, String.t()}

maxMemAllocSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
maxMemAllocSize() -> retval

 Link to this function

 maxParameterSize(self)

 View Source

 @spec maxParameterSize(t()) :: integer() | {:error, String.t()}

maxParameterSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
maxParameterSize() -> retval

 Link to this function

 maxReadImageArgs(self)

 View Source

 @spec maxReadImageArgs(t()) :: integer() | {:error, String.t()}

maxReadImageArgs
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxReadImageArgs() -> retval

 Link to this function

 maxSamplers(self)

 View Source

 @spec maxSamplers(t()) :: integer() | {:error, String.t()}

maxSamplers
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxSamplers() -> retval

 Link to this function

 maxWorkGroupSize(self)

 View Source

 @spec maxWorkGroupSize(t()) :: integer() | {:error, String.t()}

maxWorkGroupSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
maxWorkGroupSize() -> retval

 Link to this function

 maxWorkItemDims(self)

 View Source

 @spec maxWorkItemDims(t()) :: integer() | {:error, String.t()}

maxWorkItemDims
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxWorkItemDims() -> retval

 Link to this function

 maxWriteImageArgs(self)

 View Source

 @spec maxWriteImageArgs(t()) :: integer() | {:error, String.t()}

maxWriteImageArgs
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
maxWriteImageArgs() -> retval

 Link to this function

 memBaseAddrAlign(self)

 View Source

 @spec memBaseAddrAlign(t()) :: integer() | {:error, String.t()}

memBaseAddrAlign
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
memBaseAddrAlign() -> retval

 Link to this function

 name(self)

 View Source

 @spec name(t()) :: binary() | {:error, String.t()}

name
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
name() -> retval

 Link to this function

 nativeVectorWidthChar(self)

 View Source

 @spec nativeVectorWidthChar(t()) :: integer() | {:error, String.t()}

nativeVectorWidthChar
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthChar() -> retval

 Link to this function

 nativeVectorWidthDouble(self)

 View Source

 @spec nativeVectorWidthDouble(t()) :: integer() | {:error, String.t()}

nativeVectorWidthDouble
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthDouble() -> retval

 Link to this function

 nativeVectorWidthFloat(self)

 View Source

 @spec nativeVectorWidthFloat(t()) :: integer() | {:error, String.t()}

nativeVectorWidthFloat
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthFloat() -> retval

 Link to this function

 nativeVectorWidthHalf(self)

 View Source

 @spec nativeVectorWidthHalf(t()) :: integer() | {:error, String.t()}

nativeVectorWidthHalf
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthHalf() -> retval

 Link to this function

 nativeVectorWidthInt(self)

 View Source

 @spec nativeVectorWidthInt(t()) :: integer() | {:error, String.t()}

nativeVectorWidthInt
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthInt() -> retval

 Link to this function

 nativeVectorWidthLong(self)

 View Source

 @spec nativeVectorWidthLong(t()) :: integer() | {:error, String.t()}

nativeVectorWidthLong
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthLong() -> retval

 Link to this function

 nativeVectorWidthShort(self)

 View Source

 @spec nativeVectorWidthShort(t()) :: integer() | {:error, String.t()}

nativeVectorWidthShort
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
nativeVectorWidthShort() -> retval

 Link to this function

 openCL_C_Version(self)

 View Source

 @spec openCL_C_Version(t()) :: binary() | {:error, String.t()}

OpenCL_C_Version
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
OpenCL_C_Version() -> retval

 Link to this function

 openCLVersion(self)

 View Source

 @spec openCLVersion(t()) :: binary() | {:error, String.t()}

OpenCLVersion
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
OpenCLVersion() -> retval

 Link to this function

 preferredVectorWidthChar(self)

 View Source

 @spec preferredVectorWidthChar(t()) :: integer() | {:error, String.t()}

preferredVectorWidthChar
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthChar() -> retval

 Link to this function

 preferredVectorWidthDouble(self)

 View Source

 @spec preferredVectorWidthDouble(t()) :: integer() | {:error, String.t()}

preferredVectorWidthDouble
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthDouble() -> retval

 Link to this function

 preferredVectorWidthFloat(self)

 View Source

 @spec preferredVectorWidthFloat(t()) :: integer() | {:error, String.t()}

preferredVectorWidthFloat
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthFloat() -> retval

 Link to this function

 preferredVectorWidthHalf(self)

 View Source

 @spec preferredVectorWidthHalf(t()) :: integer() | {:error, String.t()}

preferredVectorWidthHalf
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthHalf() -> retval

 Link to this function

 preferredVectorWidthInt(self)

 View Source

 @spec preferredVectorWidthInt(t()) :: integer() | {:error, String.t()}

preferredVectorWidthInt
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthInt() -> retval

 Link to this function

 preferredVectorWidthLong(self)

 View Source

 @spec preferredVectorWidthLong(t()) :: integer() | {:error, String.t()}

preferredVectorWidthLong
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthLong() -> retval

 Link to this function

 preferredVectorWidthShort(self)

 View Source

 @spec preferredVectorWidthShort(t()) :: integer() | {:error, String.t()}

preferredVectorWidthShort
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
preferredVectorWidthShort() -> retval

 Link to this function

 printfBufferSize(self)

 View Source

 @spec printfBufferSize(t()) :: integer() | {:error, String.t()}

printfBufferSize
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
printfBufferSize() -> retval

 Link to this function

 profilingTimerResolution(self)

 View Source

 @spec profilingTimerResolution(t()) :: integer() | {:error, String.t()}

profilingTimerResolution
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: size_t

Python prototype (for reference only):
profilingTimerResolution() -> retval

 Link to this function

 singleFPConfig(self)

 View Source

 @spec singleFPConfig(t()) :: integer() | {:error, String.t()}

singleFPConfig
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
singleFPConfig() -> retval

 Link to this function

 type(self)

 View Source

 @spec type(t()) :: integer() | {:error, String.t()}

type
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
type() -> retval

 Link to this function

 vendorID(self)

 View Source

 @spec vendorID(t()) :: integer() | {:error, String.t()}

vendorID
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: int

Python prototype (for reference only):
vendorID() -> retval

 Link to this function

 vendorName(self)

 View Source

 @spec vendorName(t()) :: binary() | {:error, String.t()}

vendorName
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
vendorName() -> retval

 Link to this function

 version(self)

 View Source

 @spec version(t()) :: binary() | {:error, String.t()}

version
Positional Arguments
	self: Evision.OCL.Device.t()

Return
	retval: String

Python prototype (for reference only):
version() -> retval

 Evision.OCL.OpenCLExecutionContext - Evision v0.1.39

Evision.OCL.OpenCLExecutionContext

 Summary

 Types

 t()

 Type that represents an OCL.OpenCLExecutionContext struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.OCL.OpenCLExecutionContext{ref: reference()}

Type that represents an OCL.OpenCLExecutionContext struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.ORB - Evision v0.1.39

Evision.ORB

 Summary

 Types

 t()

 Type that represents an ORB struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 The ORB constructor

 create(opts)

 The ORB constructor

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getEdgeThreshold(self)

 getEdgeThreshold

 getFastThreshold(self)

 getFastThreshold

 getFirstLevel(self)

 getFirstLevel

 getMaxFeatures(self)

 getMaxFeatures

 getNLevels(self)

 getNLevels

 getPatchSize(self)

 getPatchSize

 getScaleFactor(self)

 getScaleFactor

 getScoreType(self)

 getScoreType

 getWTA_K(self)

 getWTA_K

 read(self, arg1)

 Variant 1:
read

 setEdgeThreshold(self, edgeThreshold)

 setEdgeThreshold

 setFastThreshold(self, fastThreshold)

 setFastThreshold

 setFirstLevel(self, firstLevel)

 setFirstLevel

 setMaxFeatures(self, maxFeatures)

 setMaxFeatures

 setNLevels(self, nlevels)

 setNLevels

 setPatchSize(self, patchSize)

 setPatchSize

 setScaleFactor(self, scaleFactor)

 setScaleFactor

 setScoreType(self, scoreType)

 setScoreType

 setWTA_K(self, wta_k)

 setWTA_K

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ORB{ref: reference()}

Type that represents an ORB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.ORB.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.ORB.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.ORB.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.ORB.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

The ORB constructor
Keyword Arguments
	nfeatures: int.
The maximum number of features to retain.

	scaleFactor: float.
Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
will mean that to cover certain scale range you will need more pyramid levels and so the speed
will suffer.

	nlevels: int.
The number of pyramid levels. The smallest level will have linear size equal to
input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).

	edgeThreshold: int.
This is size of the border where the features are not detected. It should
roughly match the patchSize parameter.

	firstLevel: int.
The level of pyramid to put source image to. Previous layers are filled
with upscaled source image.

	wTA_K: int.
The number of points that produce each element of the oriented BRIEF descriptor. The
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
random points (of course, those point coordinates are random, but they are generated from the
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).

	scoreType: ORB_ScoreType.
The default HARRIS_SCORE means that Harris algorithm is used to rank features
(the score is written to KeyPoint::score and is used to retain best nfeatures features);
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
but it is a little faster to compute.

	patchSize: int.
size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
pyramid layers the perceived image area covered by a feature will be larger.

	fastThreshold: int.
the fast threshold

Return
	retval: Evision.ORB.t()

Python prototype (for reference only):
create([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize[, fastThreshold]]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 scaleFactor: term(),
 nfeatures: term(),
 patchSize: term(),
 wTA_K: term(),
 nlevels: term(),
 firstLevel: term(),
 fastThreshold: term(),
 scoreType: term(),
 edgeThreshold: term()
]
 | nil
) :: t() | {:error, String.t()}

The ORB constructor
Keyword Arguments
	nfeatures: int.
The maximum number of features to retain.

	scaleFactor: float.
Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
will mean that to cover certain scale range you will need more pyramid levels and so the speed
will suffer.

	nlevels: int.
The number of pyramid levels. The smallest level will have linear size equal to
input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).

	edgeThreshold: int.
This is size of the border where the features are not detected. It should
roughly match the patchSize parameter.

	firstLevel: int.
The level of pyramid to put source image to. Previous layers are filled
with upscaled source image.

	wTA_K: int.
The number of points that produce each element of the oriented BRIEF descriptor. The
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
random points (of course, those point coordinates are random, but they are generated from the
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).

	scoreType: ORB_ScoreType.
The default HARRIS_SCORE means that Harris algorithm is used to rank features
(the score is written to KeyPoint::score and is used to retain best nfeatures features);
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
but it is a little faster to compute.

	patchSize: int.
size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
pyramid layers the perceived image area covered by a feature will be larger.

	fastThreshold: int.
the fast threshold

Return
	retval: Evision.ORB.t()

Python prototype (for reference only):
create([, nfeatures[, scaleFactor[, nlevels[, edgeThreshold[, firstLevel[, WTA_K[, scoreType[, patchSize[, fastThreshold]]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.ORB.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.ORB.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.ORB.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.ORB.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeThreshold(self)

 View Source

 @spec getEdgeThreshold(t()) :: integer() | {:error, String.t()}

getEdgeThreshold
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getEdgeThreshold() -> retval

 Link to this function

 getFastThreshold(self)

 View Source

 @spec getFastThreshold(t()) :: integer() | {:error, String.t()}

getFastThreshold
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getFastThreshold() -> retval

 Link to this function

 getFirstLevel(self)

 View Source

 @spec getFirstLevel(t()) :: integer() | {:error, String.t()}

getFirstLevel
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getFirstLevel() -> retval

 Link to this function

 getMaxFeatures(self)

 View Source

 @spec getMaxFeatures(t()) :: integer() | {:error, String.t()}

getMaxFeatures
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getMaxFeatures() -> retval

 Link to this function

 getNLevels(self)

 View Source

 @spec getNLevels(t()) :: integer() | {:error, String.t()}

getNLevels
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getNLevels() -> retval

 Link to this function

 getPatchSize(self)

 View Source

 @spec getPatchSize(t()) :: integer() | {:error, String.t()}

getPatchSize
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getPatchSize() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: double

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getScoreType(self)

 View Source

 @spec getScoreType(t()) :: integer() | {:error, String.t()}

getScoreType
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: ORB::ScoreType

Python prototype (for reference only):
getScoreType() -> retval

 Link to this function

 getWTA_K(self)

 View Source

 @spec getWTA_K(t()) :: integer() | {:error, String.t()}

getWTA_K
Positional Arguments
	self: Evision.ORB.t()

Return
	retval: int

Python prototype (for reference only):
getWTA_K() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.ORB.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.ORB.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setEdgeThreshold(self, edgeThreshold)

 View Source

 @spec setEdgeThreshold(t(), integer()) :: t() | {:error, String.t()}

setEdgeThreshold
Positional Arguments
	self: Evision.ORB.t()
	edgeThreshold: int

Python prototype (for reference only):
setEdgeThreshold(edgeThreshold) -> None

 Link to this function

 setFastThreshold(self, fastThreshold)

 View Source

 @spec setFastThreshold(t(), integer()) :: t() | {:error, String.t()}

setFastThreshold
Positional Arguments
	self: Evision.ORB.t()
	fastThreshold: int

Python prototype (for reference only):
setFastThreshold(fastThreshold) -> None

 Link to this function

 setFirstLevel(self, firstLevel)

 View Source

 @spec setFirstLevel(t(), integer()) :: t() | {:error, String.t()}

setFirstLevel
Positional Arguments
	self: Evision.ORB.t()
	firstLevel: int

Python prototype (for reference only):
setFirstLevel(firstLevel) -> None

 Link to this function

 setMaxFeatures(self, maxFeatures)

 View Source

 @spec setMaxFeatures(t(), integer()) :: t() | {:error, String.t()}

setMaxFeatures
Positional Arguments
	self: Evision.ORB.t()
	maxFeatures: int

Python prototype (for reference only):
setMaxFeatures(maxFeatures) -> None

 Link to this function

 setNLevels(self, nlevels)

 View Source

 @spec setNLevels(t(), integer()) :: t() | {:error, String.t()}

setNLevels
Positional Arguments
	self: Evision.ORB.t()
	nlevels: int

Python prototype (for reference only):
setNLevels(nlevels) -> None

 Link to this function

 setPatchSize(self, patchSize)

 View Source

 @spec setPatchSize(t(), integer()) :: t() | {:error, String.t()}

setPatchSize
Positional Arguments
	self: Evision.ORB.t()
	patchSize: int

Python prototype (for reference only):
setPatchSize(patchSize) -> None

 Link to this function

 setScaleFactor(self, scaleFactor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.ORB.t()
	scaleFactor: double

Python prototype (for reference only):
setScaleFactor(scaleFactor) -> None

 Link to this function

 setScoreType(self, scoreType)

 View Source

 @spec setScoreType(t(), integer()) :: t() | {:error, String.t()}

setScoreType
Positional Arguments
	self: Evision.ORB.t()
	scoreType: ORB_ScoreType

Python prototype (for reference only):
setScoreType(scoreType) -> None

 Link to this function

 setWTA_K(self, wta_k)

 View Source

 @spec setWTA_K(t(), integer()) :: t() | {:error, String.t()}

setWTA_K
Positional Arguments
	self: Evision.ORB.t()
	wta_k: int

Python prototype (for reference only):
setWTA_K(wta_k) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ORB.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ORB.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Omnidir - Evision v0.1.39

Evision.Omnidir

 Summary

 Types

 t()

 Type that represents an Omnidir struct.

 Functions

 calibrate(objectPoints, imagePoints, size, k, xi, d, flags, criteria)

 Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.

 calibrate(objectPoints, imagePoints, size, k, xi, d, flags, criteria, opts)

 Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.

 initUndistortRectifyMap(k, d, xi, r, p, size, m1type, flags)

 Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
if R or P is empty then identity matrices are used.

 initUndistortRectifyMap(k, d, xi, r, p, size, m1type, flags, opts)

 Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
if R or P is empty then identity matrices are used.

 projectPoints(objectPoints, rvec, tvec, k, xi, d)

 Projects points for omnidirectional camera using CMei's model

 projectPoints(objectPoints, rvec, tvec, k, xi, d, opts)

 Projects points for omnidirectional camera using CMei's model

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, k1, xi1, d1, k2, xi2, d2, flags, criteria)

 Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, k1, xi1, d1, k2, xi2, d2, flags, criteria, opts)

 Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.

 stereoReconstruct(image1, image2, k1, d1, xi1, k2, d2, xi2, r, t, flag, numDisparities, sADWindowSize)

 Stereo 3D reconstruction from a pair of images

 stereoReconstruct(image1, image2, k1, d1, xi1, k2, d2, xi2, r, t, flag, numDisparities, sADWindowSize, opts)

 Stereo 3D reconstruction from a pair of images

 stereoRectify(r, t)

 Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras

 stereoRectify(r, t, opts)

 Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras

 undistortImage(distorted, k, d, xi, flags)

 Undistort omnidirectional images to perspective images

 undistortImage(distorted, k, d, xi, flags, opts)

 Undistort omnidirectional images to perspective images

 undistortPoints(distorted, k, d, xi, r)

 Undistort 2D image points for omnidirectional camera using CMei's model

 undistortPoints(distorted, k, d, xi, r, opts)

 Undistort 2D image points for omnidirectional camera using CMei's model

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Omnidir{ref: reference()}

Type that represents an Omnidir struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calibrate(objectPoints, imagePoints, size, k, xi, d, flags, criteria)

 View Source

 @spec calibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 {integer(), integer(), number()}
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vector of Vec3f object points in world (pattern) coordinate.
It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.

	imagePoints: [Evision.Mat].
Vector of vector of Vec2f corresponding image points of objectPoints. It must be the same
size and the same type with objectPoints.

	size: Size.
Image size of calibration images.

	flags: int.
The flags that control calibrate

	criteria: TermCriteria.
Termination criteria for optimization

Return
	retval: double

	k: Evision.Mat.t().
Output calibrated camera matrix.

	xi: Evision.Mat.t().
Output parameter xi for CMei's model

	d: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$

	rvecs: [Evision.Mat].
Output rotations for each calibration images

	tvecs: [Evision.Mat].
Output translation for each calibration images

	idx: Evision.Mat.t().
Indices of images that pass initialization, which are really used in calibration. So the size of rvecs is the
same as idx.total().

Python prototype (for reference only):
calibrate(objectPoints, imagePoints, size, K, xi, D, flags, criteria[, rvecs[, tvecs[, idx]]]) -> retval, K, xi, D, rvecs, tvecs, idx

 Link to this function

 calibrate(objectPoints, imagePoints, size, k, xi, d, flags, criteria, opts)

 View Source

 @spec calibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 {integer(), integer(), number()},
 [{atom(), term()}, ...] | nil
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.
Positional Arguments
	objectPoints: [Evision.Mat].
Vector of vector of Vec3f object points in world (pattern) coordinate.
It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.

	imagePoints: [Evision.Mat].
Vector of vector of Vec2f corresponding image points of objectPoints. It must be the same
size and the same type with objectPoints.

	size: Size.
Image size of calibration images.

	flags: int.
The flags that control calibrate

	criteria: TermCriteria.
Termination criteria for optimization

Return
	retval: double

	k: Evision.Mat.t().
Output calibrated camera matrix.

	xi: Evision.Mat.t().
Output parameter xi for CMei's model

	d: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$

	rvecs: [Evision.Mat].
Output rotations for each calibration images

	tvecs: [Evision.Mat].
Output translation for each calibration images

	idx: Evision.Mat.t().
Indices of images that pass initialization, which are really used in calibration. So the size of rvecs is the
same as idx.total().

Python prototype (for reference only):
calibrate(objectPoints, imagePoints, size, K, xi, D, flags, criteria[, rvecs[, tvecs[, idx]]]) -> retval, K, xi, D, rvecs, tvecs, idx

 Link to this function

 initUndistortRectifyMap(k, d, xi, r, p, size, m1type, flags)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 integer()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
if R or P is empty then identity matrices are used.
Positional Arguments
	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$, with depth CV_32F or CV_64F

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$, with depth CV_32F or CV_64F

	xi: Evision.Mat.t().
The parameter xi for CMei's model

	r: Evision.Mat.t().
Rotation transform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3, with depth CV_32F or CV_64F

	p: Evision.Mat.t().
New camera matrix (3x3) or new projection matrix (3x4)

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
for details.

	flags: int.
Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
are supported.

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

Python prototype (for reference only):
initUndistortRectifyMap(K, D, xi, R, P, size, m1type, flags[, map1[, map2]]) -> map1, map2

 Link to this function

 initUndistortRectifyMap(k, d, xi, r, p, size, m1type, flags, opts)

 View Source

 @spec initUndistortRectifyMap(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
if R or P is empty then identity matrices are used.
Positional Arguments
	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$, with depth CV_32F or CV_64F

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$, with depth CV_32F or CV_64F

	xi: Evision.Mat.t().
The parameter xi for CMei's model

	r: Evision.Mat.t().
Rotation transform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3, with depth CV_32F or CV_64F

	p: Evision.Mat.t().
New camera matrix (3x3) or new projection matrix (3x4)

	size: Size.
Undistorted image size.

	m1type: int.
Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
for details.

	flags: int.
Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
are supported.

Return
	map1: Evision.Mat.t().
The first output map.

	map2: Evision.Mat.t().
The second output map.

Python prototype (for reference only):
initUndistortRectifyMap(K, D, xi, R, P, size, m1type, flags[, map1[, map2]]) -> map1, map2

 Link to this function

 projectPoints(objectPoints, rvec, tvec, k, xi, d)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Projects points for omnidirectional camera using CMei's model
Positional Arguments
	objectPoints: Evision.Mat.t().
Object points in world coordinate, vector of vector of Vec3f or Mat of
1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable.

	rvec: Evision.Mat.t().
vector of rotation between world coordinate and camera coordinate, i.e., om

	tvec: Evision.Mat.t().
vector of translation between pattern coordinate and camera coordinate

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	xi: double.
The parameter xi for CMei's model

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

Return
	imagePoints: Evision.Mat.t().
Output array of image points, vector of vector of Vec2f or
1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable.

	jacobian: Evision.Mat.t().
Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of
image pixel points wrt parameters including \f$om, T, f_x, f_y, s, c_x, c_y, xi, k_1, k_2, p_1, p_2\f$.
This matrix will be used in calibration by optimization.

The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic
and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing
contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters.
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, K, xi, D[, imagePoints[, jacobian]]) -> imagePoints, jacobian

 Link to this function

 projectPoints(objectPoints, rvec, tvec, k, xi, d, opts)

 View Source

 @spec projectPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Projects points for omnidirectional camera using CMei's model
Positional Arguments
	objectPoints: Evision.Mat.t().
Object points in world coordinate, vector of vector of Vec3f or Mat of
1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable.

	rvec: Evision.Mat.t().
vector of rotation between world coordinate and camera coordinate, i.e., om

	tvec: Evision.Mat.t().
vector of translation between pattern coordinate and camera coordinate

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	xi: double.
The parameter xi for CMei's model

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

Return
	imagePoints: Evision.Mat.t().
Output array of image points, vector of vector of Vec2f or
1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable.

	jacobian: Evision.Mat.t().
Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of
image pixel points wrt parameters including \f$om, T, f_x, f_y, s, c_x, c_y, xi, k_1, k_2, p_1, p_2\f$.
This matrix will be used in calibration by optimization.

The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic
and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing
contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters.
Python prototype (for reference only):
projectPoints(objectPoints, rvec, tvec, K, xi, D[, imagePoints[, jacobian]]) -> imagePoints, jacobian

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, k1, xi1, d1, k2, xi2, d2, flags, criteria)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 {integer(), integer(), number()}
) ::
 {number(), [Evision.Mat.t()], [Evision.Mat.t()], [Evision.Mat.t()],
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.
Positional Arguments
	imageSize1: Size.
Image size of calibration images of the first camera.

	imageSize2: Size.
Image size of calibration images of the second camera.

	flags: int.
The flags that control stereoCalibrate

	criteria: TermCriteria.
Termination criteria for optimization

Return
	retval: double

	objectPoints: [Evision.Mat].
Object points in world (pattern) coordinate. Its type is vector<vector<Vec3f> >.
It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.

	imagePoints1: [Evision.Mat].
The corresponding image points of the first camera, with type vector<vector<Vec2f> >.
It must be the same size and the same type as objectPoints.

	imagePoints2: [Evision.Mat].
The corresponding image points of the second camera, with type vector<vector<Vec2f> >.
It must be the same size and the same type as objectPoints.

	k1: Evision.Mat.t().
Output camera matrix for the first camera.

	xi1: Evision.Mat.t().
Output parameter xi of Mei's model for the first camera

	d1: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera

	k2: Evision.Mat.t().
Output camera matrix for the first camera.

	xi2: Evision.Mat.t().
Output parameter xi of CMei's model for the second camera

	d2: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera

	rvec: Evision.Mat.t().
Output rotation between the first and second camera

	tvec: Evision.Mat.t().
Output translation between the first and second camera

	rvecsL: [Evision.Mat].
Output rotation for each image of the first camera

	tvecsL: [Evision.Mat].
Output translation for each image of the first camera

	idx: Evision.Mat.t().
Indices of image pairs that pass initialization, which are really used in calibration. So the size of rvecs is the
same as idx.total().

@
Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, K1, xi1, D1, K2, xi2, D2, flags, criteria[, rvec[, tvec[, rvecsL[, tvecsL[, idx]]]]]) -> retval, objectPoints, imagePoints1, imagePoints2, K1, xi1, D1, K2, xi2, D2, rvec, tvec, rvecsL, tvecsL, idx

 Link to this function

 stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, k1, xi1, d1, k2, xi2, d2, flags, criteria, opts)

 View Source

 @spec stereoCalibrate(
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 {number(), number()},
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 {integer(), integer(), number()},
 [{atom(), term()}, ...] | nil
) ::
 {number(), [Evision.Mat.t()], [Evision.Mat.t()], [Evision.Mat.t()],
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(),
 [Evision.Mat.t()], [Evision.Mat.t()], Evision.Mat.t()}
 | {:error, String.t()}

Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.
Positional Arguments
	imageSize1: Size.
Image size of calibration images of the first camera.

	imageSize2: Size.
Image size of calibration images of the second camera.

	flags: int.
The flags that control stereoCalibrate

	criteria: TermCriteria.
Termination criteria for optimization

Return
	retval: double

	objectPoints: [Evision.Mat].
Object points in world (pattern) coordinate. Its type is vector<vector<Vec3f> >.
It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.

	imagePoints1: [Evision.Mat].
The corresponding image points of the first camera, with type vector<vector<Vec2f> >.
It must be the same size and the same type as objectPoints.

	imagePoints2: [Evision.Mat].
The corresponding image points of the second camera, with type vector<vector<Vec2f> >.
It must be the same size and the same type as objectPoints.

	k1: Evision.Mat.t().
Output camera matrix for the first camera.

	xi1: Evision.Mat.t().
Output parameter xi of Mei's model for the first camera

	d1: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera

	k2: Evision.Mat.t().
Output camera matrix for the first camera.

	xi2: Evision.Mat.t().
Output parameter xi of CMei's model for the second camera

	d2: Evision.Mat.t().
Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera

	rvec: Evision.Mat.t().
Output rotation between the first and second camera

	tvec: Evision.Mat.t().
Output translation between the first and second camera

	rvecsL: [Evision.Mat].
Output rotation for each image of the first camera

	tvecsL: [Evision.Mat].
Output translation for each image of the first camera

	idx: Evision.Mat.t().
Indices of image pairs that pass initialization, which are really used in calibration. So the size of rvecs is the
same as idx.total().

@
Python prototype (for reference only):
stereoCalibrate(objectPoints, imagePoints1, imagePoints2, imageSize1, imageSize2, K1, xi1, D1, K2, xi2, D2, flags, criteria[, rvec[, tvec[, rvecsL[, tvecsL[, idx]]]]]) -> retval, objectPoints, imagePoints1, imagePoints2, K1, xi1, D1, K2, xi2, D2, rvec, tvec, rvecsL, tvecsL, idx

 Link to this function

 stereoReconstruct(image1, image2, k1, d1, xi1, k2, d2, xi2, r, t, flag, numDisparities, sADWindowSize)

 View Source

 @spec stereoReconstruct(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer()
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Stereo 3D reconstruction from a pair of images
Positional Arguments
	image1: Evision.Mat.t().
The first input image

	image2: Evision.Mat.t().
The second input image

	k1: Evision.Mat.t().
Input camera matrix of the first camera

	d1: Evision.Mat.t().
Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera

	xi1: Evision.Mat.t().
Input parameter xi for the first camera for CMei's model

	k2: Evision.Mat.t().
Input camera matrix of the second camera

	d2: Evision.Mat.t().
Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera

	xi2: Evision.Mat.t().
Input parameter xi for the second camera for CMei's model

	r: Evision.Mat.t().
Rotation between the first and second camera

	t: Evision.Mat.t().
Translation between the first and second camera

	flag: int.
Flag of rectification type, RECTIFY_PERSPECTIVE or RECTIFY_LONGLATI

	numDisparities: int.
The parameter 'numDisparities' in StereoSGBM, see StereoSGBM for details.

	sADWindowSize: int.
The parameter 'SADWindowSize' in StereoSGBM, see StereoSGBM for details.

Keyword Arguments
	newSize: Size.
Image size of rectified image, see omnidir::undistortImage

	knew: Evision.Mat.t().
New camera matrix of rectified image, see omnidir::undistortImage

	pointType: int.
Point cloud type, it can be XYZRGB or XYZ

Return
	disparity: Evision.Mat.t().
Disparity map generated by stereo matching

	image1Rec: Evision.Mat.t().
Rectified image of the first image

	image2Rec: Evision.Mat.t().
rectified image of the second image

	pointCloud: Evision.Mat.t().
Point cloud of 3D reconstruction, with type CV_64FC3

Python prototype (for reference only):
stereoReconstruct(image1, image2, K1, D1, xi1, K2, D2, xi2, R, T, flag, numDisparities, SADWindowSize[, disparity[, image1Rec[, image2Rec[, newSize[, Knew[, pointCloud[, pointType]]]]]]]) -> disparity, image1Rec, image2Rec, pointCloud

 Link to this function

 stereoReconstruct(image1, image2, k1, d1, xi1, k2, d2, xi2, r, t, flag, numDisparities, sADWindowSize, opts)

 View Source

 @spec stereoReconstruct(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [newSize: term(), pointType: term(), knew: term()] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Stereo 3D reconstruction from a pair of images
Positional Arguments
	image1: Evision.Mat.t().
The first input image

	image2: Evision.Mat.t().
The second input image

	k1: Evision.Mat.t().
Input camera matrix of the first camera

	d1: Evision.Mat.t().
Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera

	xi1: Evision.Mat.t().
Input parameter xi for the first camera for CMei's model

	k2: Evision.Mat.t().
Input camera matrix of the second camera

	d2: Evision.Mat.t().
Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera

	xi2: Evision.Mat.t().
Input parameter xi for the second camera for CMei's model

	r: Evision.Mat.t().
Rotation between the first and second camera

	t: Evision.Mat.t().
Translation between the first and second camera

	flag: int.
Flag of rectification type, RECTIFY_PERSPECTIVE or RECTIFY_LONGLATI

	numDisparities: int.
The parameter 'numDisparities' in StereoSGBM, see StereoSGBM for details.

	sADWindowSize: int.
The parameter 'SADWindowSize' in StereoSGBM, see StereoSGBM for details.

Keyword Arguments
	newSize: Size.
Image size of rectified image, see omnidir::undistortImage

	knew: Evision.Mat.t().
New camera matrix of rectified image, see omnidir::undistortImage

	pointType: int.
Point cloud type, it can be XYZRGB or XYZ

Return
	disparity: Evision.Mat.t().
Disparity map generated by stereo matching

	image1Rec: Evision.Mat.t().
Rectified image of the first image

	image2Rec: Evision.Mat.t().
rectified image of the second image

	pointCloud: Evision.Mat.t().
Point cloud of 3D reconstruction, with type CV_64FC3

Python prototype (for reference only):
stereoReconstruct(image1, image2, K1, D1, xi1, K2, D2, xi2, R, T, flag, numDisparities, SADWindowSize[, disparity[, image1Rec[, image2Rec[, newSize[, Knew[, pointCloud[, pointType]]]]]]]) -> disparity, image1Rec, image2Rec, pointCloud

 Link to this function

 stereoRectify(r, t)

 View Source

 @spec stereoRectify(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras
Positional Arguments
	r: Evision.Mat.t().
Rotation between the first and second camera

	t: Evision.Mat.t().
Translation between the first and second camera

Return
	r1: Evision.Mat.t().
Output 3x3 rotation matrix for the first camera

	r2: Evision.Mat.t().
Output 3x3 rotation matrix for the second camera

Python prototype (for reference only):
stereoRectify(R, T[, R1[, R2]]) -> R1, R2

 Link to this function

 stereoRectify(r, t, opts)

 View Source

 @spec stereoRectify(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras
Positional Arguments
	r: Evision.Mat.t().
Rotation between the first and second camera

	t: Evision.Mat.t().
Translation between the first and second camera

Return
	r1: Evision.Mat.t().
Output 3x3 rotation matrix for the first camera

	r2: Evision.Mat.t().
Output 3x3 rotation matrix for the second camera

Python prototype (for reference only):
stereoRectify(R, T[, R1[, R2]]) -> R1, R2

 Link to this function

 undistortImage(distorted, k, d, xi, flags)

 View Source

 @spec undistortImage(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Undistort omnidirectional images to perspective images
Positional Arguments
	distorted: Evision.Mat.t().
The input omnidirectional image.

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

	xi: Evision.Mat.t().
The parameter xi for CMei's model.

	flags: int.
Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC

Keyword Arguments
	knew: Evision.Mat.t().
Camera matrix of the distorted image. If it is not assigned, it is just K.

	new_size: Size.
The new image size. By default, it is the size of distorted.

	r: Evision.Mat.t().
Rotation matrix between the input and output images. By default, it is identity matrix.

Return
	undistorted: Evision.Mat.t().
The output undistorted image.

Python prototype (for reference only):
undistortImage(distorted, K, D, xi, flags[, undistorted[, Knew[, new_size[, R]]]]) -> undistorted

 Link to this function

 undistortImage(distorted, k, d, xi, flags, opts)

 View Source

 @spec undistortImage(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [r: term(), new_size: term(), knew: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Undistort omnidirectional images to perspective images
Positional Arguments
	distorted: Evision.Mat.t().
The input omnidirectional image.

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	d: Evision.Mat.t().
Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

	xi: Evision.Mat.t().
The parameter xi for CMei's model.

	flags: int.
Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC

Keyword Arguments
	knew: Evision.Mat.t().
Camera matrix of the distorted image. If it is not assigned, it is just K.

	new_size: Size.
The new image size. By default, it is the size of distorted.

	r: Evision.Mat.t().
Rotation matrix between the input and output images. By default, it is identity matrix.

Return
	undistorted: Evision.Mat.t().
The output undistorted image.

Python prototype (for reference only):
undistortImage(distorted, K, D, xi, flags[, undistorted[, Knew[, new_size[, R]]]]) -> undistorted

 Link to this function

 undistortPoints(distorted, k, d, xi, r)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Undistort 2D image points for omnidirectional camera using CMei's model
Positional Arguments
	distorted: Evision.Mat.t().
Array of distorted image points, vector of Vec2f
or 1xN/Nx1 2-channel Mat of type CV_32F, 64F depth is also acceptable

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	d: Evision.Mat.t().
Distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

	xi: Evision.Mat.t().
The parameter xi for CMei's model

	r: Evision.Mat.t().
Rotation trainsform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

Return
	undistorted: Evision.Mat.t().
array of normalized object points, vector of Vec2f/Vec2d or 1xN/Nx1 2-channel Mat with the same
depth of distorted points.

Python prototype (for reference only):
undistortPoints(distorted, K, D, xi, R[, undistorted]) -> undistorted

 Link to this function

 undistortPoints(distorted, k, d, xi, r, opts)

 View Source

 @spec undistortPoints(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Undistort 2D image points for omnidirectional camera using CMei's model
Positional Arguments
	distorted: Evision.Mat.t().
Array of distorted image points, vector of Vec2f
or 1xN/Nx1 2-channel Mat of type CV_32F, 64F depth is also acceptable

	k: Evision.Mat.t().
Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.

	d: Evision.Mat.t().
Distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$.

	xi: Evision.Mat.t().
The parameter xi for CMei's model

	r: Evision.Mat.t().
Rotation trainsform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel

Return
	undistorted: Evision.Mat.t().
array of normalized object points, vector of Vec2f/Vec2d or 1xN/Nx1 2-channel Mat with the same
depth of distorted points.

Python prototype (for reference only):
undistortPoints(distorted, K, D, xi, R[, undistorted]) -> undistorted

 Evision.PPFMatch3D - Evision v0.1.39

Evision.PPFMatch3D

 Summary

 Types

 t()

 Type that represents an PPFMatch3D struct.

 Functions

 addNoisePC(pc, scale)

 addNoisePC

 computeNormalsPC3d(pC, numNeighbors, flipViewpoint, viewpoint)

 Compute the normals of an arbitrary point cloud
computeNormalsPC3d uses a plane fitting approach to smoothly compute
local normals. Normals are obtained through the eigenvector of the covariance
matrix, corresponding to the smallest eigen value.
If PCNormals is provided to be an Nx6 matrix, then no new allocation
is made, instead the existing memory is overwritten.

 computeNormalsPC3d(pC, numNeighbors, flipViewpoint, viewpoint, opts)

 Compute the normals of an arbitrary point cloud
computeNormalsPC3d uses a plane fitting approach to smoothly compute
local normals. Normals are obtained through the eigenvector of the covariance
matrix, corresponding to the smallest eigen value.
If PCNormals is provided to be an Nx6 matrix, then no new allocation
is made, instead the existing memory is overwritten.

 getRandomPose(pose)

 getRandomPose

 loadPLYSimple(fileName)

 Load a PLY file

 loadPLYSimple(fileName, opts)

 Load a PLY file

 samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative)

 samplePCByQuantization

 samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative, opts)

 samplePCByQuantization

 transformPCPose(pc, pose)

 transformPCPose

 writePLY(pC, fileName)

 Write a point cloud to PLY file

 writePLYVisibleNormals(pC, fileName)

 Used for debbuging pruposes, writes a point cloud to a PLY file with the tip
of the normal vectors as visible red points

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PPFMatch3D{ref: reference()}

Type that represents an PPFMatch3D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addNoisePC(pc, scale)

 View Source

 @spec addNoisePC(Evision.Mat.maybe_mat_in(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

addNoisePC
Positional Arguments
	pc: Evision.Mat.t()
	scale: double

Return
	retval: Evision.Mat.t()
Adds a uniform noise in the given scale to the input point cloud

Python prototype (for reference only):
addNoisePC(pc, scale) -> retval

 Link to this function

 computeNormalsPC3d(pC, numNeighbors, flipViewpoint, viewpoint)

 View Source

 @spec computeNormalsPC3d(
 Evision.Mat.maybe_mat_in(),
 integer(),
 boolean(),
 {number(), number(), number()}
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Compute the normals of an arbitrary point cloud
computeNormalsPC3d uses a plane fitting approach to smoothly compute
local normals. Normals are obtained through the eigenvector of the covariance
matrix, corresponding to the smallest eigen value.
If PCNormals is provided to be an Nx6 matrix, then no new allocation
is made, instead the existing memory is overwritten.
Positional Arguments
	pC: Evision.Mat.t()
	numNeighbors: int
	flipViewpoint: bool
	viewpoint: Vec3f

Return
	retval: int
	pCNormals: Evision.Mat.t().

@return Returns 0 on success
Python prototype (for reference only):
computeNormalsPC3d(PC, NumNeighbors, FlipViewpoint, viewpoint[, PCNormals]) -> retval, PCNormals

 Link to this function

 computeNormalsPC3d(pC, numNeighbors, flipViewpoint, viewpoint, opts)

 View Source

 @spec computeNormalsPC3d(
 Evision.Mat.maybe_mat_in(),
 integer(),
 boolean(),
 {number(), number(), number()},
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

Compute the normals of an arbitrary point cloud
computeNormalsPC3d uses a plane fitting approach to smoothly compute
local normals. Normals are obtained through the eigenvector of the covariance
matrix, corresponding to the smallest eigen value.
If PCNormals is provided to be an Nx6 matrix, then no new allocation
is made, instead the existing memory is overwritten.
Positional Arguments
	pC: Evision.Mat.t()
	numNeighbors: int
	flipViewpoint: bool
	viewpoint: Vec3f

Return
	retval: int
	pCNormals: Evision.Mat.t().

@return Returns 0 on success
Python prototype (for reference only):
computeNormalsPC3d(PC, NumNeighbors, FlipViewpoint, viewpoint[, PCNormals]) -> retval, PCNormals

 Link to this function

 getRandomPose(pose)

 View Source

 @spec getRandomPose(Evision.Mat.t()) :: :ok | {:error, String.t()}

getRandomPose
Positional Arguments
	pose: Evision.Mat.t()
Generate a random 4x4 pose matrix

Python prototype (for reference only):
getRandomPose(Pose) -> None

 Link to this function

 loadPLYSimple(fileName)

 View Source

 @spec loadPLYSimple(binary()) :: Evision.Mat.t() | {:error, String.t()}

Load a PLY file
Positional Arguments
	fileName: c_string

Keyword Arguments
	withNormals: int.

Return
	retval: Evision.Mat.t()

@return Returns the matrix on successful load
Python prototype (for reference only):
loadPLYSimple(fileName[, withNormals]) -> retval

 Link to this function

 loadPLYSimple(fileName, opts)

 View Source

 @spec loadPLYSimple(binary(), [{:withNormals, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Load a PLY file
Positional Arguments
	fileName: c_string

Keyword Arguments
	withNormals: int.

Return
	retval: Evision.Mat.t()

@return Returns the matrix on successful load
Python prototype (for reference only):
loadPLYSimple(fileName[, withNormals]) -> retval

 Link to this function

 samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative)

 View Source

 @spec samplePCByQuantization(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number(), number()},
 number()
) :: Evision.Mat.t() | {:error, String.t()}

samplePCByQuantization
Positional Arguments
	pc: Evision.Mat.t()
	xrange: Vec2f
	yrange: Vec2f
	zrange: Vec2f
	sample_step_relative: float

Keyword Arguments
	weightByCenter: int.

Return
	retval: Evision.Mat.t()
Sample a point cloud using uniform steps

@return Sampled point cloud
Python prototype (for reference only):
samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative[, weightByCenter]) -> retval

 Link to this function

 samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative, opts)

 View Source

 @spec samplePCByQuantization(
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 {number(), number()},
 {number(), number()},
 number(),
 [{:weightByCenter, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

samplePCByQuantization
Positional Arguments
	pc: Evision.Mat.t()
	xrange: Vec2f
	yrange: Vec2f
	zrange: Vec2f
	sample_step_relative: float

Keyword Arguments
	weightByCenter: int.

Return
	retval: Evision.Mat.t()
Sample a point cloud using uniform steps

@return Sampled point cloud
Python prototype (for reference only):
samplePCByQuantization(pc, xrange, yrange, zrange, sample_step_relative[, weightByCenter]) -> retval

 Link to this function

 transformPCPose(pc, pose)

 View Source

 @spec transformPCPose(Evision.Mat.maybe_mat_in(), Evision.Mat.t()) ::
 Evision.Mat.t() | {:error, String.t()}

transformPCPose
Positional Arguments
	pc: Evision.Mat.t()
	pose: Evision.Mat.t()

Return
	retval: Evision.Mat.t()
Transforms the point cloud with a given a homogeneous 4x4 pose matrix (in double precision)

@return Transformed point cloud
Python prototype (for reference only):
transformPCPose(pc, Pose) -> retval

 Link to this function

 writePLY(pC, fileName)

 View Source

 @spec writePLY(Evision.Mat.maybe_mat_in(), binary()) :: :ok | {:error, String.t()}

Write a point cloud to PLY file
Positional Arguments
	pC: Evision.Mat.t()
	fileName: c_string

Python prototype (for reference only):
writePLY(PC, fileName) -> None

 Link to this function

 writePLYVisibleNormals(pC, fileName)

 View Source

 @spec writePLYVisibleNormals(Evision.Mat.maybe_mat_in(), binary()) ::
 :ok | {:error, String.t()}

Used for debbuging pruposes, writes a point cloud to a PLY file with the tip
of the normal vectors as visible red points
Positional Arguments
	pC: Evision.Mat.t()
	fileName: c_string

Python prototype (for reference only):
writePLYVisibleNormals(PC, fileName) -> None

 Evision.PPFMatch3D.ICP - Evision v0.1.39

Evision.PPFMatch3D.ICP

 Summary

 Types

 t()

 Type that represents an PPFMatch3D.ICP struct.

 Functions

 iCP()

 ICP

 iCP(iterations)

 ICP

 iCP(iterations, opts)

 ICP

 registerModelToScene(self, srcPC, dstPC)

 registerModelToScene

 registerModelToScene(self, srcPC, dstPC, poses)

 registerModelToScene

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PPFMatch3D.ICP{ref: reference()}

Type that represents an PPFMatch3D.ICP struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 iCP()

 View Source

 @spec iCP() :: t() | {:error, String.t()}

ICP
Return
	self: ICP

Python prototype (for reference only):
ICP() -> <ppf_match_3d_ICP object>

 Link to this function

 iCP(iterations)

 View Source

 @spec iCP(integer()) :: t() | {:error, String.t()}

ICP
Positional Arguments
	iterations: int

Keyword Arguments
	tolerence: float.
	rejectionScale: float.
	numLevels: int.
	sampleType: int.
	numMaxCorr: int.

Return
	self: ICP
\brief ICP constructor with default arguments.

Python prototype (for reference only):
ICP(iterations[, tolerence[, rejectionScale[, numLevels[, sampleType[, numMaxCorr]]]]]) -> <ppf_match_3d_ICP object>

 Link to this function

 iCP(iterations, opts)

 View Source

 @spec iCP(
 integer(),
 [
 tolerence: term(),
 sampleType: term(),
 numLevels: term(),
 rejectionScale: term(),
 numMaxCorr: term()
]
 | nil
) :: t() | {:error, String.t()}

ICP
Positional Arguments
	iterations: int

Keyword Arguments
	tolerence: float.
	rejectionScale: float.
	numLevels: int.
	sampleType: int.
	numMaxCorr: int.

Return
	self: ICP
\brief ICP constructor with default arguments.

Python prototype (for reference only):
ICP(iterations[, tolerence[, rejectionScale[, numLevels[, sampleType[, numMaxCorr]]]]]) -> <ppf_match_3d_ICP object>

 Link to this function

 registerModelToScene(self, srcPC, dstPC)

 View Source

 @spec registerModelToScene(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {integer(), number(), Evision.Mat.t()} | {:error, String.t()}

registerModelToScene
Positional Arguments
	self: Evision.PPFMatch3D.ICP.t()
	srcPC: Evision.Mat.t()
	dstPC: Evision.Mat.t()

Return
	retval: int

	residual: double

	pose: Evision.Mat.t()
\brief Perform registration
\details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).

Python prototype (for reference only):
registerModelToScene(srcPC, dstPC) -> retval, residual, pose

 Link to this function

 registerModelToScene(self, srcPC, dstPC, poses)

 View Source

 @spec registerModelToScene(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 Evision.PPFMatch3D.Pose3D.t()
]
) :: {integer(), [Evision.PPFMatch3D.Pose3D.t()]} | {:error, String.t()}

registerModelToScene
Positional Arguments
	self: Evision.PPFMatch3D.ICP.t()
	srcPC: Evision.Mat.t()
	dstPC: Evision.Mat.t()

Return
	retval: int

	poses: [Evision.PPFMatch3D.Pose3D]
\brief Perform registration with multiple initial poses
\details It is assumed that the model is registered on the scene. Scene remains static, while the model transforms. The output poses transform the models onto the scene. Because of the point to plane minimization, the scene is expected to have the normals available. Expected to have the normals (Nx6).

Python prototype (for reference only):
registerModelToScene(srcPC, dstPC, poses) -> retval, poses

 Evision.PPFMatch3D.PPF3DDetector - Evision v0.1.39

Evision.PPFMatch3D.PPF3DDetector

 Summary

 Types

 t()

 Type that represents an PPFMatch3D.PPF3DDetector struct.

 Functions

 match(self, scene)

 match

 match(self, scene, opts)

 match

 pPF3DDetector()

 PPF3DDetector

 pPF3DDetector(relativeSamplingStep)

 PPF3DDetector

 pPF3DDetector(relativeSamplingStep, opts)

 PPF3DDetector

 trainModel(self, model)

 trainModel

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PPFMatch3D.PPF3DDetector{ref: reference()}

Type that represents an PPFMatch3D.PPF3DDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 match(self, scene)

 View Source

 @spec match(t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.PPFMatch3D.Pose3D.t()] | {:error, String.t()}

match
Positional Arguments
	self: Evision.PPFMatch3D.PPF3DDetector.t()
	scene: Evision.Mat.t()

Keyword Arguments
	relativeSceneSampleStep: double.
	relativeSceneDistance: double.

Return
	results: [Evision.PPFMatch3D.Pose3D]
\brief Matches a trained model across a provided scene.

Python prototype (for reference only):
match(scene[, relativeSceneSampleStep[, relativeSceneDistance]]) -> results

 Link to this function

 match(self, scene, opts)

 View Source

 @spec match(
 t(),
 Evision.Mat.maybe_mat_in(),
 [relativeSceneDistance: term(), relativeSceneSampleStep: term()] | nil
) :: [Evision.PPFMatch3D.Pose3D.t()] | {:error, String.t()}

match
Positional Arguments
	self: Evision.PPFMatch3D.PPF3DDetector.t()
	scene: Evision.Mat.t()

Keyword Arguments
	relativeSceneSampleStep: double.
	relativeSceneDistance: double.

Return
	results: [Evision.PPFMatch3D.Pose3D]
\brief Matches a trained model across a provided scene.

Python prototype (for reference only):
match(scene[, relativeSceneSampleStep[, relativeSceneDistance]]) -> results

 Link to this function

 pPF3DDetector()

 View Source

 @spec pPF3DDetector() :: t() | {:error, String.t()}

PPF3DDetector
Return
	self: Evision.PPFMatch3D.PPF3DDetector.t()

 \brief Empty constructor. Sets default arguments
Python prototype (for reference only):
PPF3DDetector() -> <ppf_match_3d_PPF3DDetector object>

 Link to this function

 pPF3DDetector(relativeSamplingStep)

 View Source

 @spec pPF3DDetector(number()) :: t() | {:error, String.t()}

PPF3DDetector
Positional Arguments
	relativeSamplingStep: double

Keyword Arguments
	relativeDistanceStep: double.
	numAngles: double.

Return
	self: Evision.PPFMatch3D.PPF3DDetector.t()

 Constructor with arguments
Python prototype (for reference only):
PPF3DDetector(relativeSamplingStep[, relativeDistanceStep[, numAngles]]) -> <ppf_match_3d_PPF3DDetector object>

 Link to this function

 pPF3DDetector(relativeSamplingStep, opts)

 View Source

 @spec pPF3DDetector(number(), [numAngles: term(), relativeDistanceStep: term()] | nil) ::
 t() | {:error, String.t()}

PPF3DDetector
Positional Arguments
	relativeSamplingStep: double

Keyword Arguments
	relativeDistanceStep: double.
	numAngles: double.

Return
	self: Evision.PPFMatch3D.PPF3DDetector.t()

 Constructor with arguments
Python prototype (for reference only):
PPF3DDetector(relativeSamplingStep[, relativeDistanceStep[, numAngles]]) -> <ppf_match_3d_PPF3DDetector object>

 Link to this function

 trainModel(self, model)

 View Source

 @spec trainModel(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

trainModel
Positional Arguments
	self: Evision.PPFMatch3D.PPF3DDetector.t()

	model: Evision.Mat.t()
\brief Trains a new model.
\details Uses the parameters set in the constructor to downsample and learn a new model. When the model is learnt, the instance gets ready for calling "match".

Python prototype (for reference only):
trainModel(Model) -> None

 Evision.PPFMatch3D.Pose3D - Evision v0.1.39

Evision.PPFMatch3D.Pose3D

 Summary

 Types

 t()

 Type that represents an PPFMatch3D.Pose3D struct.

 Functions

 appendPose(self, incrementalPose)

 appendPose

 get_alpha(self)

 get_angle(self)

 get_modelIndex(self)

 get_numVotes(self)

 get_pose(self)

 get_q(self)

 get_residual(self)

 get_t(self)

 pose3D()

 Pose3D

 pose3D(alpha)

 Pose3D

 pose3D(alpha, opts)

 Pose3D

 printPose(self)

 printPose

 updatePose(self, newPose)

 updatePose

 updatePose(self, newR, newT)

 updatePose

 updatePoseQuat(self, q, newT)

 updatePoseQuat

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PPFMatch3D.Pose3D{ref: reference()}

Type that represents an PPFMatch3D.Pose3D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 appendPose(self, incrementalPose)

 View Source

 @spec appendPose(t(), Evision.Mat.t()) :: t() | {:error, String.t()}

appendPose
Positional Arguments
	self: Evision.PPFMatch3D.Pose3D.t()

	incrementalPose: Evision.Mat.t()
\brief Left multiplies the existing pose in order to update the transformation
\param [in] IncrementalPose New pose to apply

Python prototype (for reference only):
appendPose(IncrementalPose) -> None

 Link to this function

 get_alpha(self)

 View Source

 @spec get_alpha(t()) :: number()

 Link to this function

 get_angle(self)

 View Source

 @spec get_angle(t()) :: number()

 Link to this function

 get_modelIndex(self)

 View Source

 @spec get_modelIndex(t()) :: integer()

 Link to this function

 get_numVotes(self)

 View Source

 @spec get_numVotes(t()) :: integer()

 Link to this function

 get_pose(self)

 View Source

 @spec get_pose(t()) :: Evision.Mat.t()

 Link to this function

 get_q(self)

 View Source

 @spec get_q(t()) :: {number(), number(), number(), number()}

 Link to this function

 get_residual(self)

 View Source

 @spec get_residual(t()) :: number()

 Link to this function

 get_t(self)

 View Source

 @spec get_t(t()) :: {number(), number(), number()}

 Link to this function

 pose3D()

 View Source

 @spec pose3D() :: t() | {:error, String.t()}

Pose3D
Return
	self: Evision.PPFMatch3D.Pose3D.t()

Python prototype (for reference only):
Pose3D() -> <ppf_match_3d_Pose3D object>

 Link to this function

 pose3D(alpha)

 View Source

 @spec pose3D(number()) :: t() | {:error, String.t()}

Pose3D
Positional Arguments
	alpha: double

Keyword Arguments
	modelIndex: size_t.
	numVotes: size_t.

Return
	self: Evision.PPFMatch3D.Pose3D.t()

Python prototype (for reference only):
Pose3D(Alpha[, ModelIndex[, NumVotes]]) -> <ppf_match_3d_Pose3D object>

 Link to this function

 pose3D(alpha, opts)

 View Source

 @spec pose3D(number(), [modelIndex: term(), numVotes: term()] | nil) ::
 t() | {:error, String.t()}

Pose3D
Positional Arguments
	alpha: double

Keyword Arguments
	modelIndex: size_t.
	numVotes: size_t.

Return
	self: Evision.PPFMatch3D.Pose3D.t()

Python prototype (for reference only):
Pose3D(Alpha[, ModelIndex[, NumVotes]]) -> <ppf_match_3d_Pose3D object>

 Link to this function

 printPose(self)

 View Source

 @spec printPose(t()) :: t() | {:error, String.t()}

printPose
Positional Arguments
	self: Evision.PPFMatch3D.Pose3D.t()

Python prototype (for reference only):
printPose() -> None

 Link to this function

 updatePose(self, newPose)

 View Source

 @spec updatePose(t(), Evision.Mat.t()) :: t() | {:error, String.t()}

updatePose
Positional Arguments
	self: Evision.PPFMatch3D.Pose3D.t()

	newPose: Evision.Mat.t()
\brief Updates the pose with the new one
\param [in] NewPose New pose to overwrite

Python prototype (for reference only):
updatePose(NewPose) -> None

 Link to this function

 updatePose(self, newR, newT)

 View Source

 @spec updatePose(t(), Evision.Mat.t(), {number(), number(), number()}) ::
 t() | {:error, String.t()}

updatePose
Positional Arguments
	self: Evision.PPFMatch3D.Pose3D.t()

	newR: Evision.Mat.t()

	newT: Vec3d
\brief Updates the pose with the new one

Python prototype (for reference only):
updatePose(NewR, NewT) -> None

 Link to this function

 updatePoseQuat(self, q, newT)

 View Source

 @spec updatePoseQuat(
 t(),
 {number(), number(), number(), number()},
 {number(), number(), number()}
) ::
 t() | {:error, String.t()}

updatePoseQuat
Positional Arguments
	self: Evision.PPFMatch3D.Pose3D.t()

	q: Vec4d

	newT: Vec3d
\brief Updates the pose with the new one, but this time using quaternions to represent rotation

Python prototype (for reference only):
updatePoseQuat(Q, NewT) -> None

 Evision.PPFMatch3D.PoseCluster3D - Evision v0.1.39

Evision.PPFMatch3D.PoseCluster3D

 Summary

 Types

 t()

 Type that represents an PPFMatch3D.PoseCluster3D struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PPFMatch3D.PoseCluster3D{ref: reference()}

Type that represents an PPFMatch3D.PoseCluster3D struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Parallel - Evision v0.1.39

Evision.Parallel

 Summary

 Types

 t()

 Type that represents an Parallel struct.

 Functions

 setParallelForBackend(backendName)

 Change OpenCV parallel_for backend

 setParallelForBackend(backendName, opts)

 Change OpenCV parallel_for backend

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Parallel{ref: reference()}

Type that represents an Parallel struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 setParallelForBackend(backendName)

 View Source

 @spec setParallelForBackend(binary()) :: boolean() | {:error, String.t()}

Change OpenCV parallel_for backend
Positional Arguments
	backendName: string

Keyword Arguments
	propagateNumThreads: bool.

Return
	retval: bool

Note: This call is not thread-safe. Consider calling this function from the main() before any other OpenCV processing functions (and without any other created threads).
Python prototype (for reference only):
setParallelForBackend(backendName[, propagateNumThreads]) -> retval

 Link to this function

 setParallelForBackend(backendName, opts)

 View Source

 @spec setParallelForBackend(binary(), [{:propagateNumThreads, term()}] | nil) ::
 boolean() | {:error, String.t()}

Change OpenCV parallel_for backend
Positional Arguments
	backendName: string

Keyword Arguments
	propagateNumThreads: bool.

Return
	retval: bool

Note: This call is not thread-safe. Consider calling this function from the main() before any other OpenCV processing functions (and without any other created threads).
Python prototype (for reference only):
setParallelForBackend(backendName[, propagateNumThreads]) -> retval

 Evision.PhaseUnwrapping - Evision v0.1.39

Evision.PhaseUnwrapping

 Summary

 Types

 t()

 Type that represents an PhaseUnwrapping struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PhaseUnwrapping{ref: reference()}

Type that represents an PhaseUnwrapping struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.PhaseUnwrapping.HistogramPhaseUnwrapping.Params - Evision v0.1.39

Evision.PhaseUnwrapping.HistogramPhaseUnwrapping.Params

 Summary

 Types

 t()

 Type that represents an PhaseUnwrapping.HistogramPhaseUnwrapping.Params struct.

 Functions

 get_height(self)

 get_histThresh(self)

 get_nbrOfLargeBins(self)

 get_nbrOfSmallBins(self)

 get_width(self)

 phase_unwrapping_HistogramPhaseUnwrapping_Params()

 HistogramPhaseUnwrapping_Params

 set_height(self, prop)

 set_histThresh(self, prop)

 set_nbrOfLargeBins(self, prop)

 set_nbrOfSmallBins(self, prop)

 set_width(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PhaseUnwrapping.HistogramPhaseUnwrapping.Params{
 ref: reference()
}

Type that represents an PhaseUnwrapping.HistogramPhaseUnwrapping.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_height(self)

 View Source

 @spec get_height(Evision.HistogramPhaseUnwrapping.Params.t()) :: integer()

 Link to this function

 get_histThresh(self)

 View Source

 @spec get_histThresh(Evision.HistogramPhaseUnwrapping.Params.t()) :: number()

 Link to this function

 get_nbrOfLargeBins(self)

 View Source

 @spec get_nbrOfLargeBins(Evision.HistogramPhaseUnwrapping.Params.t()) :: integer()

 Link to this function

 get_nbrOfSmallBins(self)

 View Source

 @spec get_nbrOfSmallBins(Evision.HistogramPhaseUnwrapping.Params.t()) :: integer()

 Link to this function

 get_width(self)

 View Source

 @spec get_width(Evision.HistogramPhaseUnwrapping.Params.t()) :: integer()

 Link to this function

 phase_unwrapping_HistogramPhaseUnwrapping_Params()

 View Source

 @spec phase_unwrapping_HistogramPhaseUnwrapping_Params() ::
 Evision.HistogramPhaseUnwrapping.Params.t() | {:error, String.t()}

HistogramPhaseUnwrapping_Params
Return
	self: Evision.HistogramPhaseUnwrapping.Params.t()

Python prototype (for reference only):
HistogramPhaseUnwrapping_Params() -> <phase_unwrapping_HistogramPhaseUnwrapping_Params object>

 Link to this function

 set_height(self, prop)

 View Source

 @spec set_height(Evision.HistogramPhaseUnwrapping.Params.t(), integer()) ::
 Evision.HistogramPhaseUnwrapping.Params.t()

 Link to this function

 set_histThresh(self, prop)

 View Source

 @spec set_histThresh(Evision.HistogramPhaseUnwrapping.Params.t(), number()) ::
 Evision.HistogramPhaseUnwrapping.Params.t()

 Link to this function

 set_nbrOfLargeBins(self, prop)

 View Source

 @spec set_nbrOfLargeBins(Evision.HistogramPhaseUnwrapping.Params.t(), integer()) ::
 Evision.HistogramPhaseUnwrapping.Params.t()

 Link to this function

 set_nbrOfSmallBins(self, prop)

 View Source

 @spec set_nbrOfSmallBins(Evision.HistogramPhaseUnwrapping.Params.t(), integer()) ::
 Evision.HistogramPhaseUnwrapping.Params.t()

 Link to this function

 set_width(self, prop)

 View Source

 @spec set_width(Evision.HistogramPhaseUnwrapping.Params.t(), integer()) ::
 Evision.HistogramPhaseUnwrapping.Params.t()

 Evision.PhaseUnwrapping.PhaseUnwrapping - Evision v0.1.39

Evision.PhaseUnwrapping.PhaseUnwrapping

 Summary

 Types

 t()

 Type that represents an PhaseUnwrapping.PhaseUnwrapping struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 unwrapPhaseMap(self, wrappedPhaseMap)

 Unwraps a 2D phase map.

 unwrapPhaseMap(self, wrappedPhaseMap, opts)

 Unwraps a 2D phase map.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PhaseUnwrapping.PhaseUnwrapping{ref: reference()}

Type that represents an PhaseUnwrapping.PhaseUnwrapping struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 unwrapPhaseMap(self, wrappedPhaseMap)

 View Source

 @spec unwrapPhaseMap(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Unwraps a 2D phase map.
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()

	wrappedPhaseMap: Evision.Mat.t().
The wrapped phase map of type CV_32FC1 that needs to be unwrapped.

Keyword Arguments
	shadowMask: Evision.Mat.t().
Optional CV_8UC1 mask image used when some pixels do not hold any phase information in the wrapped phase map.

Return
	unwrappedPhaseMap: Evision.Mat.t().
The unwrapped phase map.

Python prototype (for reference only):
unwrapPhaseMap(wrappedPhaseMap[, unwrappedPhaseMap[, shadowMask]]) -> unwrappedPhaseMap

 Link to this function

 unwrapPhaseMap(self, wrappedPhaseMap, opts)

 View Source

 @spec unwrapPhaseMap(t(), Evision.Mat.maybe_mat_in(), [{:shadowMask, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Unwraps a 2D phase map.
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()

	wrappedPhaseMap: Evision.Mat.t().
The wrapped phase map of type CV_32FC1 that needs to be unwrapped.

Keyword Arguments
	shadowMask: Evision.Mat.t().
Optional CV_8UC1 mask image used when some pixels do not hold any phase information in the wrapped phase map.

Return
	unwrappedPhaseMap: Evision.Mat.t().
The unwrapped phase map.

Python prototype (for reference only):
unwrapPhaseMap(wrappedPhaseMap[, unwrappedPhaseMap[, shadowMask]]) -> unwrappedPhaseMap

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.PhaseUnwrapping.PhaseUnwrapping.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Plot - Evision v0.1.39

Evision.Plot

 Summary

 Types

 t()

 Type that represents an Plot struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Plot{ref: reference()}

Type that represents an Plot struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Plot.Plot2d - Evision v0.1.39

Evision.Plot.Plot2d

 Summary

 Types

 t()

 Type that represents an Plot.Plot2d struct.

 Functions

 clear(self)

 Clears the algorithm state

 create(data)

 Creates Plot2d object

 create(dataX, dataY)

 Creates Plot2d object

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 render(self)

 render

 render(self, opts)

 render

 save(self, filename)

 save

 setGridLinesNumber(self, gridLinesNumber)

 setGridLinesNumber

 setInvertOrientation(self, invertOrientation)

 setInvertOrientation

 setMaxX(self, plotMaxX)

 setMaxX

 setMaxY(self, plotMaxY)

 setMaxY

 setMinX(self, plotMinX)

 setMinX

 setMinY(self, plotMinY)

 setMinY

 setNeedPlotLine(self, needPlotLine)

 Switches data visualization mode

 setPlotAxisColor(self, plotAxisColor)

 setPlotAxisColor

 setPlotBackgroundColor(self, plotBackgroundColor)

 setPlotBackgroundColor

 setPlotGridColor(self, plotGridColor)

 setPlotGridColor

 setPlotLineColor(self, plotLineColor)

 setPlotLineColor

 setPlotLineWidth(self, plotLineWidth)

 setPlotLineWidth

 setPlotSize(self, plotSizeWidth, plotSizeHeight)

 setPlotSize

 setPlotTextColor(self, plotTextColor)

 setPlotTextColor

 setPointIdxToPrint(self, pointIdx)

 Sets the index of a point which coordinates will be printed on the top left corner of the plot (if ShowText flag is true).

 setShowGrid(self, needShowGrid)

 setShowGrid

 setShowText(self, needShowText)

 setShowText

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Plot.Plot2d{ref: reference()}

Type that represents an Plot.Plot2d struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Plot.Plot2d.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(data)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Creates Plot2d object
Positional Arguments
	data: Evision.Mat.t().
\f$1xN\f$ or \f$Nx1\f$ matrix containing \f$Y\f$ values of points to plot. \f$X\f$ values
will be equal to indexes of correspondind elements in data matrix.

Return
	retval: Plot2d

Python prototype (for reference only):
create(data) -> retval

 Link to this function

 create(dataX, dataY)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Creates Plot2d object
Positional Arguments
	dataX: Evision.Mat.t().
\f$1xN\f$ or \f$Nx1\f$ matrix \f$X\f$ values of points to plot.

	dataY: Evision.Mat.t().
\f$1xN\f$ or \f$Nx1\f$ matrix containing \f$Y\f$ values of points to plot.

Return
	retval: Plot2d

Python prototype (for reference only):
create(dataX, dataY) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Plot.Plot2d.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Plot.Plot2d.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 render(self)

 View Source

 @spec render(t()) :: Evision.Mat.t() | {:error, String.t()}

render
Positional Arguments
	self: Evision.Plot.Plot2d.t()

Return
	plotResult: Evision.Mat.t().

Python prototype (for reference only):
render([, _plotResult]) -> _plotResult

 Link to this function

 render(self, opts)

 View Source

 @spec render(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

render
Positional Arguments
	self: Evision.Plot.Plot2d.t()

Return
	plotResult: Evision.Mat.t().

Python prototype (for reference only):
render([, _plotResult]) -> _plotResult

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setGridLinesNumber(self, gridLinesNumber)

 View Source

 @spec setGridLinesNumber(t(), integer()) :: t() | {:error, String.t()}

setGridLinesNumber
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	gridLinesNumber: int

Python prototype (for reference only):
setGridLinesNumber(gridLinesNumber) -> None

 Link to this function

 setInvertOrientation(self, invertOrientation)

 View Source

 @spec setInvertOrientation(t(), boolean()) :: t() | {:error, String.t()}

setInvertOrientation
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	invertOrientation: bool

Python prototype (for reference only):
setInvertOrientation(_invertOrientation) -> None

 Link to this function

 setMaxX(self, plotMaxX)

 View Source

 @spec setMaxX(t(), number()) :: t() | {:error, String.t()}

setMaxX
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotMaxX: double

Python prototype (for reference only):
setMaxX(_plotMaxX) -> None

 Link to this function

 setMaxY(self, plotMaxY)

 View Source

 @spec setMaxY(t(), number()) :: t() | {:error, String.t()}

setMaxY
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotMaxY: double

Python prototype (for reference only):
setMaxY(_plotMaxY) -> None

 Link to this function

 setMinX(self, plotMinX)

 View Source

 @spec setMinX(t(), number()) :: t() | {:error, String.t()}

setMinX
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotMinX: double

Python prototype (for reference only):
setMinX(_plotMinX) -> None

 Link to this function

 setMinY(self, plotMinY)

 View Source

 @spec setMinY(t(), number()) :: t() | {:error, String.t()}

setMinY
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotMinY: double

Python prototype (for reference only):
setMinY(_plotMinY) -> None

 Link to this function

 setNeedPlotLine(self, needPlotLine)

 View Source

 @spec setNeedPlotLine(t(), boolean()) :: t() | {:error, String.t()}

Switches data visualization mode
Positional Arguments
	self: Evision.Plot.Plot2d.t()

	needPlotLine: bool.
if true then neighbour plot points will be connected by lines.
In other case data will be plotted as a set of standalone points.

Python prototype (for reference only):
setNeedPlotLine(_needPlotLine) -> None

 Link to this function

 setPlotAxisColor(self, plotAxisColor)

 View Source

 @spec setPlotAxisColor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setPlotAxisColor
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotAxisColor: Scalar

Python prototype (for reference only):
setPlotAxisColor(_plotAxisColor) -> None

 Link to this function

 setPlotBackgroundColor(self, plotBackgroundColor)

 View Source

 @spec setPlotBackgroundColor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setPlotBackgroundColor
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotBackgroundColor: Scalar

Python prototype (for reference only):
setPlotBackgroundColor(_plotBackgroundColor) -> None

 Link to this function

 setPlotGridColor(self, plotGridColor)

 View Source

 @spec setPlotGridColor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setPlotGridColor
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotGridColor: Scalar

Python prototype (for reference only):
setPlotGridColor(_plotGridColor) -> None

 Link to this function

 setPlotLineColor(self, plotLineColor)

 View Source

 @spec setPlotLineColor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setPlotLineColor
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotLineColor: Scalar

Python prototype (for reference only):
setPlotLineColor(_plotLineColor) -> None

 Link to this function

 setPlotLineWidth(self, plotLineWidth)

 View Source

 @spec setPlotLineWidth(t(), integer()) :: t() | {:error, String.t()}

setPlotLineWidth
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotLineWidth: int

Python prototype (for reference only):
setPlotLineWidth(_plotLineWidth) -> None

 Link to this function

 setPlotSize(self, plotSizeWidth, plotSizeHeight)

 View Source

 @spec setPlotSize(t(), integer(), integer()) :: t() | {:error, String.t()}

setPlotSize
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotSizeWidth: int
	plotSizeHeight: int

Python prototype (for reference only):
setPlotSize(_plotSizeWidth, _plotSizeHeight) -> None

 Link to this function

 setPlotTextColor(self, plotTextColor)

 View Source

 @spec setPlotTextColor(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t() | {:error, String.t()}

setPlotTextColor
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	plotTextColor: Scalar

Python prototype (for reference only):
setPlotTextColor(_plotTextColor) -> None

 Link to this function

 setPointIdxToPrint(self, pointIdx)

 View Source

 @spec setPointIdxToPrint(t(), integer()) :: t() | {:error, String.t()}

Sets the index of a point which coordinates will be printed on the top left corner of the plot (if ShowText flag is true).
Positional Arguments
	self: Evision.Plot.Plot2d.t()

	pointIdx: int.
index of the required point in data array.

Python prototype (for reference only):
setPointIdxToPrint(pointIdx) -> None

 Link to this function

 setShowGrid(self, needShowGrid)

 View Source

 @spec setShowGrid(t(), boolean()) :: t() | {:error, String.t()}

setShowGrid
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	needShowGrid: bool

Python prototype (for reference only):
setShowGrid(needShowGrid) -> None

 Link to this function

 setShowText(self, needShowText)

 View Source

 @spec setShowText(t(), boolean()) :: t() | {:error, String.t()}

setShowText
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	needShowText: bool

Python prototype (for reference only):
setShowText(needShowText) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Plot.Plot2d.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.PyRotationWarper - Evision v0.1.39

Evision.PyRotationWarper

 Summary

 Types

 t()

 Type that represents an PyRotationWarper struct.

 Functions

 buildMaps(self, src_size, k, r)

 Builds the projection maps according to the given camera data.

 buildMaps(self, src_size, k, r, opts)

 Builds the projection maps according to the given camera data.

 getScale(self)

 getScale

 pyRotationWarper()

 PyRotationWarper

 pyRotationWarper(type, scale)

 PyRotationWarper

 setScale(self, arg1)

 setScale

 warp(self, src, k, r, interp_mode, border_mode)

 Projects the image.

 warp(self, src, k, r, interp_mode, border_mode, opts)

 Projects the image.

 warpBackward(self, src, k, r, interp_mode, border_mode, dst_size)

 Projects the image backward.

 warpBackward(self, src, k, r, interp_mode, border_mode, dst_size, opts)

 Projects the image backward.

 warpPoint(self, pt, k, r)

 Projects the image point.

 warpPointBackward(self, pt, k, r)

 warpPointBackward

 warpRoi(self, src_size, k, r)

 warpRoi

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.PyRotationWarper{ref: reference()}

Type that represents an PyRotationWarper struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 buildMaps(self, src_size, k, r)

 View Source

 @spec buildMaps(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {{number(), number(), number(), number()}, Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Builds the projection maps according to the given camera data.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src_size: Size.
Source image size

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

Return
	retval: Rect

	xmap: Evision.Mat.t().
Projection map for the x axis

	ymap: Evision.Mat.t().
Projection map for the y axis

@return Projected image minimum bounding box
Python prototype (for reference only):
buildMaps(src_size, K, R[, xmap[, ymap]]) -> retval, xmap, ymap

 Link to this function

 buildMaps(self, src_size, k, r, opts)

 View Source

 @spec buildMaps(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {{number(), number(), number(), number()}, Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Builds the projection maps according to the given camera data.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src_size: Size.
Source image size

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

Return
	retval: Rect

	xmap: Evision.Mat.t().
Projection map for the x axis

	ymap: Evision.Mat.t().
Projection map for the y axis

@return Projected image minimum bounding box
Python prototype (for reference only):
buildMaps(src_size, K, R[, xmap[, ymap]]) -> retval, xmap, ymap

 Link to this function

 getScale(self)

 View Source

 @spec getScale(t()) :: number() | {:error, String.t()}

getScale
Positional Arguments
	self: Evision.PyRotationWarper.t()

Return
	retval: float

Python prototype (for reference only):
getScale() -> retval

 Link to this function

 pyRotationWarper()

 View Source

 @spec pyRotationWarper() :: t() | {:error, String.t()}

PyRotationWarper
Return
	self: Evision.PyRotationWarper.t()

Python prototype (for reference only):
PyRotationWarper() -> <PyRotationWarper object>

 Link to this function

 pyRotationWarper(type, scale)

 View Source

 @spec pyRotationWarper(binary(), number()) :: t() | {:error, String.t()}

PyRotationWarper
Positional Arguments
	type: String
	scale: float

Return
	self: Evision.PyRotationWarper.t()

Python prototype (for reference only):
PyRotationWarper(type, scale) -> <PyRotationWarper object>

 Link to this function

 setScale(self, arg1)

 View Source

 @spec setScale(t(), number()) :: t() | {:error, String.t()}

setScale
Positional Arguments
	self: Evision.PyRotationWarper.t()
	arg1: float

Python prototype (for reference only):
setScale(arg1) -> None

 Link to this function

 warp(self, src, k, r, interp_mode, border_mode)

 View Source

 @spec warp(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer()
) :: {{number(), number()}, Evision.Mat.t()} | {:error, String.t()}

Projects the image.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src: Evision.Mat.t().
Source image

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

	interp_mode: int.
Interpolation mode

	border_mode: int.
Border extrapolation mode

Return
	retval: Point

	dst: Evision.Mat.t().
Projected image

@return Project image top-left corner
Python prototype (for reference only):
warp(src, K, R, interp_mode, border_mode[, dst]) -> retval, dst

 Link to this function

 warp(self, src, k, r, interp_mode, border_mode, opts)

 View Source

 @spec warp(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: {{number(), number()}, Evision.Mat.t()} | {:error, String.t()}

Projects the image.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src: Evision.Mat.t().
Source image

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

	interp_mode: int.
Interpolation mode

	border_mode: int.
Border extrapolation mode

Return
	retval: Point

	dst: Evision.Mat.t().
Projected image

@return Project image top-left corner
Python prototype (for reference only):
warp(src, K, R, interp_mode, border_mode[, dst]) -> retval, dst

 Link to this function

 warpBackward(self, src, k, r, interp_mode, border_mode, dst_size)

 View Source

 @spec warpBackward(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Projects the image backward.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src: Evision.Mat.t().
Projected image

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

	interp_mode: int.
Interpolation mode

	border_mode: int.
Border extrapolation mode

	dst_size: Size.
Backward-projected image size

Return
	dst: Evision.Mat.t().
Backward-projected image

Python prototype (for reference only):
warpBackward(src, K, R, interp_mode, border_mode, dst_size[, dst]) -> dst

 Link to this function

 warpBackward(self, src, k, r, interp_mode, border_mode, dst_size, opts)

 View Source

 @spec warpBackward(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 {number(), number()},
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Projects the image backward.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src: Evision.Mat.t().
Projected image

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

	interp_mode: int.
Interpolation mode

	border_mode: int.
Border extrapolation mode

	dst_size: Size.
Backward-projected image size

Return
	dst: Evision.Mat.t().
Backward-projected image

Python prototype (for reference only):
warpBackward(src, K, R, interp_mode, border_mode, dst_size[, dst]) -> dst

 Link to this function

 warpPoint(self, pt, k, r)

 View Source

 @spec warpPoint(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), number()} | {:error, String.t()}

Projects the image point.
Positional Arguments
	self: Evision.PyRotationWarper.t()

	pt: Point2f.
Source point

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

Return
	retval: Point2f

@return Projected point
Python prototype (for reference only):
warpPoint(pt, K, R) -> retval

 Link to this function

 warpPointBackward(self, pt, k, r)

 View Source

 @spec warpPointBackward(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {number(), number()} | {:error, String.t()}

warpPointBackward
Positional Arguments
	self: Evision.PyRotationWarper.t()
	pt: Point2f
	k: Evision.Mat.t()
	r: Evision.Mat.t()

Return
	retval: Point2f

Python prototype (for reference only):
warpPointBackward(pt, K, R) -> retval

 Link to this function

 warpRoi(self, src_size, k, r)

 View Source

 @spec warpRoi(
 t(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), number(), number(), number()} | {:error, String.t()}

warpRoi
Positional Arguments
	self: Evision.PyRotationWarper.t()

	src_size: Size.
Source image bounding box

	k: Evision.Mat.t().
Camera intrinsic parameters

	r: Evision.Mat.t().
Camera rotation matrix

Return
	retval: Rect

@return Projected image minimum bounding box
Python prototype (for reference only):
warpRoi(src_size, K, R) -> retval

 Evision.QRCodeDetector - Evision v0.1.39

Evision.QRCodeDetector

 Summary

 Types

 t()

 Type that represents an QRCodeDetector struct.

 Functions

 decode(self, img, points)

 Decodes graphical code in image once it's found by the detect() method.

 decode(self, img, points, opts)

 Decodes graphical code in image once it's found by the detect() method.

 decodeCurved(self, img, points)

 Decodes QR code on a curved surface in image once it's found by the detect() method.

 decodeCurved(self, img, points, opts)

 Decodes QR code on a curved surface in image once it's found by the detect() method.

 decodeMulti(self, img, points)

 Decodes graphical codes in image once it's found by the detect() method.

 decodeMulti(self, img, points, opts)

 Decodes graphical codes in image once it's found by the detect() method.

 detect(self, img)

 Detects graphical code in image and returns the quadrangle containing the code.

 detect(self, img, opts)

 Detects graphical code in image and returns the quadrangle containing the code.

 detectAndDecode(self, img)

 Both detects and decodes graphical code

 detectAndDecode(self, img, opts)

 Both detects and decodes graphical code

 detectAndDecodeCurved(self, img)

 Both detects and decodes QR code on a curved surface

 detectAndDecodeCurved(self, img, opts)

 Both detects and decodes QR code on a curved surface

 detectAndDecodeMulti(self, img)

 Both detects and decodes graphical codes

 detectAndDecodeMulti(self, img, opts)

 Both detects and decodes graphical codes

 detectMulti(self, img)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 detectMulti(self, img, opts)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 qrCodeDetector()

 QRCodeDetector

 setEpsX(self, epsX)

 sets the epsilon used during the horizontal scan of QR code stop marker detection.

 setEpsY(self, epsY)

 sets the epsilon used during the vertical scan of QR code stop marker detection.

 setUseAlignmentMarkers(self, useAlignmentMarkers)

 use markers to improve the position of the corners of the QR code

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.QRCodeDetector{ref: reference()}

Type that represents an QRCodeDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 decode(self, img, points)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decode(self, img, points, opts)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decodeCurved(self, img, points)

 View Source

 @spec decodeCurved(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes QR code on a curved surface in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing QR code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: String

	straight_qrcode: Evision.Mat.t().
The optional output image containing rectified and binarized QR code

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decodeCurved(img, points[, straight_qrcode]) -> retval, straight_qrcode

 Link to this function

 decodeCurved(self, img, points, opts)

 View Source

 @spec decodeCurved(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes QR code on a curved surface in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing QR code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: String

	straight_qrcode: Evision.Mat.t().
The optional output image containing rectified and binarized QR code

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decodeCurved(img, points[, straight_qrcode]) -> retval, straight_qrcode

 Link to this function

 decodeMulti(self, img, points)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 decodeMulti(self, img, points, opts)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 detect(self, img)

 View Source

 @spec detect(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detect(self, img, opts)

 View Source

 @spec detect(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detectAndDecode(self, img)

 View Source

 @spec detectAndDecode(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecode(self, img, opts)

 View Source

 @spec detectAndDecode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecodeCurved(self, img)

 View Source

 @spec detectAndDecodeCurved(t(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes QR code on a curved surface
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing QR code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found QR code quadrangle. Will be empty if not found.

	straight_qrcode: Evision.Mat.t().
The optional output image containing rectified and binarized QR code

Python prototype (for reference only):
detectAndDecodeCurved(img[, points[, straight_qrcode]]) -> retval, points, straight_qrcode

 Link to this function

 detectAndDecodeCurved(self, img, opts)

 View Source

 @spec detectAndDecodeCurved(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes QR code on a curved surface
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing QR code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found QR code quadrangle. Will be empty if not found.

	straight_qrcode: Evision.Mat.t().
The optional output image containing rectified and binarized QR code

Python prototype (for reference only):
detectAndDecodeCurved(img[, points[, straight_qrcode]]) -> retval, points, straight_qrcode

 Link to this function

 detectAndDecodeMulti(self, img)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in()
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img, opts)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectMulti(self, img)

 View Source

 @spec detectMulti(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 detectMulti(self, img, opts)

 View Source

 @spec detectMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 qrCodeDetector()

 View Source

 @spec qrCodeDetector() :: t() | {:error, String.t()}

QRCodeDetector
Return
	self: Evision.QRCodeDetector.t()

Python prototype (for reference only):
QRCodeDetector() -> <QRCodeDetector object>

 Link to this function

 setEpsX(self, epsX)

 View Source

 @spec setEpsX(t(), number()) :: t() | {:error, String.t()}

sets the epsilon used during the horizontal scan of QR code stop marker detection.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	epsX: double.
Epsilon neighborhood, which allows you to determine the horizontal pattern
of the scheme 1:1:3:1:1 according to QR code standard.

Return
	retval: Evision.QRCodeDetector.t()

Python prototype (for reference only):
setEpsX(epsX) -> retval

 Link to this function

 setEpsY(self, epsY)

 View Source

 @spec setEpsY(t(), number()) :: t() | {:error, String.t()}

sets the epsilon used during the vertical scan of QR code stop marker detection.
Positional Arguments
	self: Evision.QRCodeDetector.t()

	epsY: double.
Epsilon neighborhood, which allows you to determine the vertical pattern
of the scheme 1:1:3:1:1 according to QR code standard.

Return
	retval: Evision.QRCodeDetector.t()

Python prototype (for reference only):
setEpsY(epsY) -> retval

 Link to this function

 setUseAlignmentMarkers(self, useAlignmentMarkers)

 View Source

 @spec setUseAlignmentMarkers(t(), boolean()) :: t() | {:error, String.t()}

use markers to improve the position of the corners of the QR code
Positional Arguments
	self: Evision.QRCodeDetector.t()
	useAlignmentMarkers: bool

Return
	retval: Evision.QRCodeDetector.t()

 alignmentMarkers using by default
Python prototype (for reference only):
setUseAlignmentMarkers(useAlignmentMarkers) -> retval

 Evision.QRCodeDetectorAruco - Evision v0.1.39

Evision.QRCodeDetectorAruco

 Summary

 Types

 t()

 Type that represents an QRCodeDetectorAruco struct.

 Functions

 decode(self, img, points)

 Decodes graphical code in image once it's found by the detect() method.

 decode(self, img, points, opts)

 Decodes graphical code in image once it's found by the detect() method.

 decodeMulti(self, img, points)

 Decodes graphical codes in image once it's found by the detect() method.

 decodeMulti(self, img, points, opts)

 Decodes graphical codes in image once it's found by the detect() method.

 detect(self, img)

 Detects graphical code in image and returns the quadrangle containing the code.

 detect(self, img, opts)

 Detects graphical code in image and returns the quadrangle containing the code.

 detectAndDecode(self, img)

 Both detects and decodes graphical code

 detectAndDecode(self, img, opts)

 Both detects and decodes graphical code

 detectAndDecodeMulti(self, img)

 Both detects and decodes graphical codes

 detectAndDecodeMulti(self, img, opts)

 Both detects and decodes graphical codes

 detectMulti(self, img)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 detectMulti(self, img, opts)

 Detects graphical codes in image and returns the vector of the quadrangles containing the codes.

 getArucoParameters(self)

 Aruco detector parameters are used to search for the finder patterns.

 getDetectorParameters(self)

 Detector parameters getter. See cv::QRCodeDetectorAruco::Params

 qrcodedetectoraruco()

 QRCodeDetectorAruco

 qrcodedetectoraruco(params)

 QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params

 setArucoParameters(self, params)

 Aruco detector parameters are used to search for the finder patterns.

 setDetectorParameters(self, params)

 Detector parameters setter. See cv::QRCodeDetectorAruco::Params

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.QRCodeDetectorAruco{ref: reference()}

Type that represents an QRCodeDetectorAruco struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 decode(self, img, points)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decode(self, img, points, opts)

 View Source

 @spec decode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t()} | {:error, String.t()}

Decodes graphical code in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

	points: Evision.Mat.t().
Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: string

	straight_code: Evision.Mat.t().
The optional output image containing binarized code, will be empty if not found.

Returns UTF8-encoded output string or empty string if the code cannot be decoded.
Python prototype (for reference only):
decode(img, points[, straight_code]) -> retval, straight_code

 Link to this function

 decodeMulti(self, img, points)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 decodeMulti(self, img, points, opts)

 View Source

 @spec decodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {[binary()], [Evision.Mat.t()]} | false | {:error, String.t()}

Decodes graphical codes in image once it's found by the detect() method.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

	points: Evision.Mat.t().
vector of Quadrangle vertices found by detect() method (or some other algorithm).

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	straight_code: [Evision.Mat].
The optional output vector of images containing binarized codes

Python prototype (for reference only):
decodeMulti(img, points[, straight_code]) -> retval, decoded_info, straight_code

 Link to this function

 detect(self, img)

 View Source

 @spec detect(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detect(self, img, opts)

 View Source

 @spec detect(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical code in image and returns the quadrangle containing the code.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical code.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vertices of the minimum-area quadrangle containing the code.

Python prototype (for reference only):
detect(img[, points]) -> retval, points

 Link to this function

 detectAndDecode(self, img)

 View Source

 @spec detectAndDecode(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecode(self, img, opts)

 View Source

 @spec detectAndDecode(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {binary(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Both detects and decodes graphical code
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical code.

Return
	retval: string

	points: Evision.Mat.t().
optional output array of vertices of the found graphical code quadrangle, will be empty if not found.

	straight_code: Evision.Mat.t().
The optional output image containing binarized code

Python prototype (for reference only):
detectAndDecode(img[, points[, straight_code]]) -> retval, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in()
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectAndDecodeMulti(self, img, opts)

 View Source

 @spec detectAndDecodeMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[binary()], Evision.Mat.t(), [Evision.Mat.t()]}
 | false
 | {:error, String.t()}

Both detects and decodes graphical codes
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing graphical codes.

Return
	retval: bool

	decoded_info: [string].
UTF8-encoded output vector of string or empty vector of string if the codes cannot be decoded.

	points: Evision.Mat.t().
optional output vector of vertices of the found graphical code quadrangles. Will be empty if not found.

	straight_code: [Evision.Mat].
The optional vector of images containing binarized codes

Python prototype (for reference only):
detectAndDecodeMulti(img[, points[, straight_code]]) -> retval, decoded_info, points, straight_code

 Link to this function

 detectMulti(self, img)

 View Source

 @spec detectMulti(Evision.GraphicalCodeDetector.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 detectMulti(self, img, opts)

 View Source

 @spec detectMulti(
 Evision.GraphicalCodeDetector.t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Detects graphical codes in image and returns the vector of the quadrangles containing the codes.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

	img: Evision.Mat.t().
grayscale or color (BGR) image containing (or not) graphical codes.

Return
	retval: bool

	points: Evision.Mat.t().
Output vector of vector of vertices of the minimum-area quadrangle containing the codes.

Python prototype (for reference only):
detectMulti(img[, points]) -> retval, points

 Link to this function

 getArucoParameters(self)

 View Source

 @spec getArucoParameters(t()) ::
 Evision.Aruco.DetectorParameters | {:error, String.t()}

Aruco detector parameters are used to search for the finder patterns.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

Return
	retval: aruco::DetectorParameters

Python prototype (for reference only):
getArucoParameters() -> retval

 Link to this function

 getDetectorParameters(self)

 View Source

 @spec getDetectorParameters(t()) ::
 Evision.QRCodeDetectorAruco.Params | {:error, String.t()}

Detector parameters getter. See cv::QRCodeDetectorAruco::Params
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()

Return
	retval: QRCodeDetectorAruco::Params

Python prototype (for reference only):
getDetectorParameters() -> retval

 Link to this function

 qrcodedetectoraruco()

 View Source

 @spec qrcodedetectoraruco() :: Evision.QRCodeDetectorAruco | {:error, String.t()}

QRCodeDetectorAruco
Return
	self: Evision.QRCodeDetectorAruco.t()

Python prototype (for reference only):
QRCodeDetectorAruco() -> <QRCodeDetectorAruco object>

 Link to this function

 qrcodedetectoraruco(params)

 View Source

 @spec qrcodedetectoraruco(Evision.QRCodeDetectorAruco.Params.t()) ::
 Evision.QRCodeDetectorAruco | {:error, String.t()}

QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params
Positional Arguments
	params: QRCodeDetectorAruco_Params

Return
	self: Evision.QRCodeDetectorAruco.t()

Python prototype (for reference only):
QRCodeDetectorAruco(params) -> <QRCodeDetectorAruco object>

 Link to this function

 setArucoParameters(self, params)

 View Source

 @spec setArucoParameters(t(), Evision.Aruco.DetectorParameters) ::
 Evision.QRCodeDetectorAruco | {:error, String.t()}

Aruco detector parameters are used to search for the finder patterns.
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()
	params: aruco_DetectorParameters

Python prototype (for reference only):
setArucoParameters(params) -> None

 Link to this function

 setDetectorParameters(self, params)

 View Source

 @spec setDetectorParameters(t(), Evision.QRCodeDetectorAruco.Params.t()) ::
 Evision.QRCodeDetectorAruco | {:error, String.t()}

Detector parameters setter. See cv::QRCodeDetectorAruco::Params
Positional Arguments
	self: Evision.QRCodeDetectorAruco.t()
	params: QRCodeDetectorAruco_Params

Return
	retval: Evision.QRCodeDetectorAruco.t()

Python prototype (for reference only):
setDetectorParameters(params) -> retval

 Evision.QRCodeDetectorAruco.Params - Evision v0.1.39

Evision.QRCodeDetectorAruco.Params

 Summary

 Types

 t()

 Type that represents an QRCodeDetectorAruco.Params struct.

 Functions

 get_maxColorsMismatch(self)

 get_maxModuleSizeMismatch(self)

 get_maxPenalties(self)

 get_maxRotation(self)

 get_maxTimingPatternMismatch(self)

 get_minModuleSizeInPyramid(self)

 get_scaleTimingPatternScore(self)

 qrcodedetectoraruco_params()

 QRCodeDetectorAruco_Params

 set_maxColorsMismatch(self, prop)

 set_maxModuleSizeMismatch(self, prop)

 set_maxPenalties(self, prop)

 set_maxRotation(self, prop)

 set_maxTimingPatternMismatch(self, prop)

 set_minModuleSizeInPyramid(self, prop)

 set_scaleTimingPatternScore(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.QRCodeDetectorAruco.Params{ref: reference()}

Type that represents an QRCodeDetectorAruco.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_maxColorsMismatch(self)

 View Source

 @spec get_maxColorsMismatch(t()) :: number()

 Link to this function

 get_maxModuleSizeMismatch(self)

 View Source

 @spec get_maxModuleSizeMismatch(t()) :: number()

 Link to this function

 get_maxPenalties(self)

 View Source

 @spec get_maxPenalties(t()) :: number()

 Link to this function

 get_maxRotation(self)

 View Source

 @spec get_maxRotation(t()) :: number()

 Link to this function

 get_maxTimingPatternMismatch(self)

 View Source

 @spec get_maxTimingPatternMismatch(t()) :: number()

 Link to this function

 get_minModuleSizeInPyramid(self)

 View Source

 @spec get_minModuleSizeInPyramid(t()) :: number()

 Link to this function

 get_scaleTimingPatternScore(self)

 View Source

 @spec get_scaleTimingPatternScore(t()) :: number()

 Link to this function

 qrcodedetectoraruco_params()

 View Source

 @spec qrcodedetectoraruco_params() :: t() | {:error, String.t()}

QRCodeDetectorAruco_Params
Return
	self: QRCodeDetectorAruco_Params

Python prototype (for reference only):
QRCodeDetectorAruco_Params() -> <QRCodeDetectorAruco_Params object>

 Link to this function

 set_maxColorsMismatch(self, prop)

 View Source

 @spec set_maxColorsMismatch(t(), number()) :: t()

 Link to this function

 set_maxModuleSizeMismatch(self, prop)

 View Source

 @spec set_maxModuleSizeMismatch(t(), number()) :: t()

 Link to this function

 set_maxPenalties(self, prop)

 View Source

 @spec set_maxPenalties(t(), number()) :: t()

 Link to this function

 set_maxRotation(self, prop)

 View Source

 @spec set_maxRotation(t(), number()) :: t()

 Link to this function

 set_maxTimingPatternMismatch(self, prop)

 View Source

 @spec set_maxTimingPatternMismatch(t(), number()) :: t()

 Link to this function

 set_minModuleSizeInPyramid(self, prop)

 View Source

 @spec set_minModuleSizeInPyramid(t(), number()) :: t()

 Link to this function

 set_scaleTimingPatternScore(self, prop)

 View Source

 @spec set_scaleTimingPatternScore(t(), number()) :: t()

 Evision.QRCodeEncoder - Evision v0.1.39

Evision.QRCodeEncoder

 Summary

 Types

 t()

 Type that represents an QRCodeEncoder struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

 encode(self, encoded_info)

 Generates QR code from input string.

 encode(self, encoded_info, opts)

 Generates QR code from input string.

 encodeStructuredAppend(self, encoded_info)

 Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.

 encodeStructuredAppend(self, encoded_info, opts)

 Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.QRCodeEncoder{ref: reference()}

Type that represents an QRCodeEncoder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.QRCodeEncoder.Params.t().
QR code encoder parameters QRCodeEncoder::Params

Return
	retval: Evision.QRCodeEncoder.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.QRCodeEncoder.Params.t().
QR code encoder parameters QRCodeEncoder::Params

Return
	retval: Evision.QRCodeEncoder.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 encode(self, encoded_info)

 View Source

 @spec encode(t(), binary()) :: Evision.Mat.t() | {:error, String.t()}

Generates QR code from input string.
Positional Arguments
	self: Evision.QRCodeEncoder.t()

	encoded_info: String.
Input string to encode.

Return
	qrcode: Evision.Mat.t().
Generated QR code.

Python prototype (for reference only):
encode(encoded_info[, qrcode]) -> qrcode

 Link to this function

 encode(self, encoded_info, opts)

 View Source

 @spec encode(t(), binary(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Generates QR code from input string.
Positional Arguments
	self: Evision.QRCodeEncoder.t()

	encoded_info: String.
Input string to encode.

Return
	qrcode: Evision.Mat.t().
Generated QR code.

Python prototype (for reference only):
encode(encoded_info[, qrcode]) -> qrcode

 Link to this function

 encodeStructuredAppend(self, encoded_info)

 View Source

 @spec encodeStructuredAppend(t(), binary()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.
Positional Arguments
	self: Evision.QRCodeEncoder.t()

	encoded_info: String.
Input string to encode.

Return
	qrcodes: [Evision.Mat].
Vector of generated QR codes.

Python prototype (for reference only):
encodeStructuredAppend(encoded_info[, qrcodes]) -> qrcodes

 Link to this function

 encodeStructuredAppend(self, encoded_info, opts)

 View Source

 @spec encodeStructuredAppend(t(), binary(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Generates QR code from input string in Structured Append mode. The encoded message is splitting over a number of QR codes.
Positional Arguments
	self: Evision.QRCodeEncoder.t()

	encoded_info: String.
Input string to encode.

Return
	qrcodes: [Evision.Mat].
Vector of generated QR codes.

Python prototype (for reference only):
encodeStructuredAppend(encoded_info[, qrcodes]) -> qrcodes

 Evision.QRCodeEncoder.Params - Evision v0.1.39

Evision.QRCodeEncoder.Params

 Summary

 Types

 t()

 Type that represents an QRCodeEncoder.Params struct.

 Functions

 get_correction_level(self)

 get_mode(self)

 get_structure_number(self)

 get_version(self)

 params()

 QRCodeEncoder_Params

 set_correction_level(self, prop)

 set_mode(self, prop)

 set_structure_number(self, prop)

 set_version(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.QRCodeEncoder.Params{ref: reference()}

Type that represents an QRCodeEncoder.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_correction_level(self)

 View Source

 @spec get_correction_level(t()) :: integer()

 Link to this function

 get_mode(self)

 View Source

 @spec get_mode(t()) :: integer()

 Link to this function

 get_structure_number(self)

 View Source

 @spec get_structure_number(t()) :: integer()

 Link to this function

 get_version(self)

 View Source

 @spec get_version(t()) :: integer()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

QRCodeEncoder_Params
Return
	self: Evision.QRCodeEncoder.Params.t()

Python prototype (for reference only):
QRCodeEncoder_Params() -> <QRCodeEncoder_Params object>

 Link to this function

 set_correction_level(self, prop)

 View Source

 @spec set_correction_level(t(), integer()) :: t()

 Link to this function

 set_mode(self, prop)

 View Source

 @spec set_mode(t(), integer()) :: t()

 Link to this function

 set_structure_number(self, prop)

 View Source

 @spec set_structure_number(t(), integer()) :: t()

 Link to this function

 set_version(self, prop)

 View Source

 @spec set_version(t(), integer()) :: t()

 Evision.Quality - Evision v0.1.39

Evision.Quality

 Summary

 Types

 t()

 Type that represents an Quality struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality{ref: reference()}

Type that represents an Quality struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Quality.QualityBRISQUE - Evision v0.1.39

Evision.Quality.QualityBRISQUE

 Summary

 Types

 t()

 Type that represents an Quality.QualityBRISQUE struct.

 Functions

 compute(self, img)

 Computes BRISQUE quality score for input image

 compute(self, img, model_file_path, range_file_path)

 static method for computing quality

 computeFeatures(img)

 static method for computing image features used by the BRISQUE algorithm

 computeFeatures(img, opts)

 static method for computing image features used by the BRISQUE algorithm

 create(model, range)

 Variant 1:
Create an object which calculates quality

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualityBRISQUE{ref: reference()}

Type that represents an Quality.QualityBRISQUE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, img)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Computes BRISQUE quality score for input image
Positional Arguments
	self: Evision.Quality.QualityBRISQUE.t()

	img: Evision.Mat.t().
Image for which to compute quality

Return
	retval: cv::Scalar

@returns cv::Scalar with the score in the first element. The score ranges from 0 (best quality) to 100 (worst quality)
Python prototype (for reference only):
compute(img) -> retval

 Link to this function

 compute(self, img, model_file_path, range_file_path)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), binary(), binary()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityBRISQUE.t()

	img: Evision.Mat.t().
image for which to compute quality

	model_file_path: String.
cv::String which contains a path to the BRISQUE model data, eg. /path/to/brisque_model_live.yml

	range_file_path: String.
cv::String which contains a path to the BRISQUE range data, eg. /path/to/brisque_range_live.yml

Return
	retval: cv::Scalar

@returns cv::Scalar with the score in the first element. The score ranges from 0 (best quality) to 100 (worst quality)
Python prototype (for reference only):
compute(img, model_file_path, range_file_path) -> retval

 Link to this function

 computeFeatures(img)

 View Source

 @spec computeFeatures(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

static method for computing image features used by the BRISQUE algorithm
Positional Arguments
	img: Evision.Mat.t().
image (BGR(A) or grayscale) for which to compute features

Return
	features: Evision.Mat.t().
output row vector of features to cv::Mat or cv::UMat

Python prototype (for reference only):
computeFeatures(img[, features]) -> features

 Link to this function

 computeFeatures(img, opts)

 View Source

 @spec computeFeatures(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

static method for computing image features used by the BRISQUE algorithm
Positional Arguments
	img: Evision.Mat.t().
image (BGR(A) or grayscale) for which to compute features

Return
	features: Evision.Mat.t().
output row vector of features to cv::Mat or cv::UMat

Python prototype (for reference only):
computeFeatures(img[, features]) -> features

 Link to this function

 create(model, range)

 View Source

 @spec create(Evision.ML.SVM.t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

 @spec create(binary(), binary()) :: t() | {:error, String.t()}

Variant 1:
Create an object which calculates quality
Positional Arguments
	model: ml::SVM.
cv::Ptr<cv::ml::SVM> which contains a loaded BRISQUE model

	range: Evision.Mat.t().
cv::Mat which contains BRISQUE range data

Return
	retval: QualityBRISQUE

Python prototype (for reference only):
create(model, range) -> retval
Variant 2:
Create an object which calculates quality
Positional Arguments
	model_file_path: String.
cv::String which contains a path to the BRISQUE model data, eg. /path/to/brisque_model_live.yml

	range_file_path: String.
cv::String which contains a path to the BRISQUE range data, eg. /path/to/brisque_range_live.yml

Return
	retval: QualityBRISQUE

Python prototype (for reference only):
create(model_file_path, range_file_path) -> retval

 Evision.Quality.QualityBase - Evision v0.1.39

Evision.Quality.QualityBase

 Summary

 Types

 t()

 Type that represents an Quality.QualityBase struct.

 Functions

 clear(self)

 Implements Algorithm::clear()

 compute(self, img)

 Compute quality score per channel with the per-channel score in each element of the resulting cv::Scalar. See specific algorithm for interpreting result scores

 empty(self)

 Implements Algorithm::empty()

 getDefaultName(self)

 getDefaultName

 getQualityMap(self)

 Returns output quality map that was generated during computation, if supported by the algorithm

 getQualityMap(self, opts)

 Returns output quality map that was generated during computation, if supported by the algorithm

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualityBase{ref: reference()}

Type that represents an Quality.QualityBase struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Implements Algorithm::clear()
Positional Arguments
	self: Evision.Quality.QualityBase.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, img)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Compute quality score per channel with the per-channel score in each element of the resulting cv::Scalar. See specific algorithm for interpreting result scores
Positional Arguments
	self: Evision.Quality.QualityBase.t()

	img: Evision.Mat.t().
comparison image, or image to evalute for no-reference quality algorithms

Return
	retval: cv::Scalar

Python prototype (for reference only):
compute(img) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Implements Algorithm::empty()
Positional Arguments
	self: Evision.Quality.QualityBase.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Quality.QualityBase.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getQualityMap(self)

 View Source

 @spec getQualityMap(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns output quality map that was generated during computation, if supported by the algorithm
Positional Arguments
	self: Evision.Quality.QualityBase.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
getQualityMap([, dst]) -> dst

 Link to this function

 getQualityMap(self, opts)

 View Source

 @spec getQualityMap(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns output quality map that was generated during computation, if supported by the algorithm
Positional Arguments
	self: Evision.Quality.QualityBase.t()

Return
	dst: Evision.Mat.t().

Python prototype (for reference only):
getQualityMap([, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Quality.QualityBase.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Quality.QualityBase.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Quality.QualityBase.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Quality.QualityBase.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Quality.QualityGMSD - Evision v0.1.39

Evision.Quality.QualityGMSD

 Summary

 Types

 t()

 Type that represents an Quality.QualityGMSD struct.

 Functions

 clear(self)

 Implements Algorithm::clear()

 compute(self, cmp)

 Compute GMSD

 compute(self, ref, cmp)

 static method for computing quality

 compute(self, ref, cmp, opts)

 static method for computing quality

 create(ref)

 Create an object which calculates image quality

 empty(self)

 Implements Algorithm::empty()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualityGMSD{ref: reference()}

Type that represents an Quality.QualityGMSD struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Implements Algorithm::clear()
Positional Arguments
	self: Evision.Quality.QualityGMSD.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Compute GMSD
Positional Arguments
	self: Evision.Quality.QualityGMSD.t()

	cmp: Evision.Mat.t().
comparison image

Return
	retval: cv::Scalar

@returns cv::Scalar with per-channel quality value. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(cmp) -> retval

 Link to this function

 compute(self, ref, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityGMSD.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality value. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 compute(self, ref, cmp, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityGMSD.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality value. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 create(ref)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Create an object which calculates image quality
Positional Arguments
	ref: Evision.Mat.t().
reference image

Return
	retval: QualityGMSD

Python prototype (for reference only):
create(ref) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Implements Algorithm::empty()
Positional Arguments
	self: Evision.Quality.QualityGMSD.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Evision.Quality.QualityMSE - Evision v0.1.39

Evision.Quality.QualityMSE

 Summary

 Types

 t()

 Type that represents an Quality.QualityMSE struct.

 Functions

 clear(self)

 Implements Algorithm::clear()

 compute(self, cmpImgs)

 Computes MSE for reference images supplied in class constructor and provided comparison images

 compute(self, ref, cmp)

 static method for computing quality

 compute(self, ref, cmp, opts)

 static method for computing quality

 create(ref)

 Create an object which calculates quality

 empty(self)

 Implements Algorithm::empty()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualityMSE{ref: reference()}

Type that represents an Quality.QualityMSE struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Implements Algorithm::clear()
Positional Arguments
	self: Evision.Quality.QualityMSE.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, cmpImgs)

 View Source

 @spec compute(t(), [Evision.Mat.maybe_mat_in()]) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Computes MSE for reference images supplied in class constructor and provided comparison images
Positional Arguments
	self: Evision.Quality.QualityMSE.t()

	cmpImgs: [Evision.Mat].
Comparison image(s)

Return
	retval: cv::Scalar

@returns cv::Scalar with per-channel quality values. Values range from 0 (best) to potentially max float (worst)
Python prototype (for reference only):
compute(cmpImgs) -> retval

 Link to this function

 compute(self, ref, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityMSE.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image=

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality values. Values range from 0 (best) to max float (worst)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 compute(self, ref, cmp, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityMSE.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image=

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality values. Values range from 0 (best) to max float (worst)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 create(ref)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Create an object which calculates quality
Positional Arguments
	ref: Evision.Mat.t().
input image to use as the reference for comparison

Return
	retval: QualityMSE

Python prototype (for reference only):
create(ref) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Implements Algorithm::empty()
Positional Arguments
	self: Evision.Quality.QualityMSE.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Evision.Quality.QualityPSNR - Evision v0.1.39

Evision.Quality.QualityPSNR

 Summary

 Types

 t()

 Type that represents an Quality.QualityPSNR struct.

 Functions

 clear(self)

 Implements Algorithm::clear()

 compute(self, cmp)

 Compute the PSNR

 compute(self, ref, cmp)

 static method for computing quality

 compute(self, ref, cmp, opts)

 static method for computing quality

 create(ref)

 Create an object which calculates quality

 create(ref, opts)

 Create an object which calculates quality

 empty(self)

 Implements Algorithm::empty()

 getMaxPixelValue(self)

 return the maximum pixel value used for PSNR computation

 setMaxPixelValue(self, val)

 sets the maximum pixel value used for PSNR computation

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualityPSNR{ref: reference()}

Type that represents an Quality.QualityPSNR struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Implements Algorithm::clear()
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Compute the PSNR
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

	cmp: Evision.Mat.t().
Comparison image

Return
	retval: cv::Scalar

@returns Per-channel PSNR value, or std::numeric_limits<double>::infinity() if the MSE between the two images == 0
Python prototype (for reference only):
compute(cmp) -> retval

 Link to this function

 compute(self, ref, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Keyword Arguments
	maxPixelValue: double.
maximum per-channel value for any individual pixel; eg 255 for uint8 image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns PSNR value, or std::numeric_limits<double>::infinity() if the MSE between the two images == 0
Python prototype (for reference only):
compute(ref, cmp[, qualityMap[, maxPixelValue]]) -> retval, qualityMap

 Link to this function

 compute(self, ref, cmp, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:maxPixelValue, term()}] | nil
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Keyword Arguments
	maxPixelValue: double.
maximum per-channel value for any individual pixel; eg 255 for uint8 image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns PSNR value, or std::numeric_limits<double>::infinity() if the MSE between the two images == 0
Python prototype (for reference only):
compute(ref, cmp[, qualityMap[, maxPixelValue]]) -> retval, qualityMap

 Link to this function

 create(ref)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Create an object which calculates quality
Positional Arguments
	ref: Evision.Mat.t().
input image to use as the source for comparison

Keyword Arguments
	maxPixelValue: double.
maximum per-channel value for any individual pixel; eg 255 for uint8 image

Return
	retval: QualityPSNR

Python prototype (for reference only):
create(ref[, maxPixelValue]) -> retval

 Link to this function

 create(ref, opts)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), [{:maxPixelValue, term()}] | nil) ::
 t() | {:error, String.t()}

Create an object which calculates quality
Positional Arguments
	ref: Evision.Mat.t().
input image to use as the source for comparison

Keyword Arguments
	maxPixelValue: double.
maximum per-channel value for any individual pixel; eg 255 for uint8 image

Return
	retval: QualityPSNR

Python prototype (for reference only):
create(ref[, maxPixelValue]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Implements Algorithm::empty()
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getMaxPixelValue(self)

 View Source

 @spec getMaxPixelValue(t()) :: number() | {:error, String.t()}

return the maximum pixel value used for PSNR computation
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

Return
	retval: double

Python prototype (for reference only):
getMaxPixelValue() -> retval

 Link to this function

 setMaxPixelValue(self, val)

 View Source

 @spec setMaxPixelValue(t(), number()) :: t() | {:error, String.t()}

sets the maximum pixel value used for PSNR computation
Positional Arguments
	self: Evision.Quality.QualityPSNR.t()

	val: double.
Maximum pixel value

Python prototype (for reference only):
setMaxPixelValue(val) -> None

 Evision.Quality.QualitySSIM - Evision v0.1.39

Evision.Quality.QualitySSIM

 Summary

 Types

 t()

 Type that represents an Quality.QualitySSIM struct.

 Functions

 clear(self)

 Implements Algorithm::clear()

 compute(self, cmp)

 Computes SSIM

 compute(self, ref, cmp)

 static method for computing quality

 compute(self, ref, cmp, opts)

 static method for computing quality

 create(ref)

 Create an object which calculates quality

 empty(self)

 Implements Algorithm::empty()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Quality.QualitySSIM{ref: reference()}

Type that represents an Quality.QualitySSIM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(t()) :: t() | {:error, String.t()}

Implements Algorithm::clear()
Positional Arguments
	self: Evision.Quality.QualitySSIM.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
 | {:error, String.t()}

Computes SSIM
Positional Arguments
	self: Evision.Quality.QualitySSIM.t()

	cmp: Evision.Mat.t().
Comparison image

Return
	retval: cv::Scalar

@returns cv::Scalar with per-channel quality values. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(cmp) -> retval

 Link to this function

 compute(self, ref, cmp)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualitySSIM.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality values. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 compute(self, ref, cmp, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {{number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}, Evision.Mat.t()}
 | {:error, String.t()}

static method for computing quality
Positional Arguments
	self: Evision.Quality.QualitySSIM.t()

	ref: Evision.Mat.t().
reference image

	cmp: Evision.Mat.t().
comparison image

Return
	retval: cv::Scalar

	qualityMap: Evision.Mat.t().
output quality map, or cv::noArray()

@returns cv::Scalar with per-channel quality values. Values range from 0 (worst) to 1 (best)
Python prototype (for reference only):
compute(ref, cmp[, qualityMap]) -> retval, qualityMap

 Link to this function

 create(ref)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Create an object which calculates quality
Positional Arguments
	ref: Evision.Mat.t().
input image to use as the reference image for comparison

Return
	retval: QualitySSIM

Python prototype (for reference only):
create(ref) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(t()) :: boolean() | {:error, String.t()}

Implements Algorithm::empty()
Positional Arguments
	self: Evision.Quality.QualitySSIM.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Evision.RGBD - Evision v0.1.39

Evision.RGBD

 Summary

 Types

 t()

 Type that represents an RGBD struct.

 Functions

 depthTo3d(depth, k)

 depthTo3d

 depthTo3d(depth, k, opts)

 depthTo3d

 depthTo3dSparse(depth, in_K, in_points)

 depthTo3dSparse

 depthTo3dSparse(depth, in_K, in_points, opts)

 depthTo3dSparse

 registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, rt, unregisteredDepth, outputImagePlaneSize)

 registerDepth

 registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, rt, unregisteredDepth, outputImagePlaneSize, opts)

 registerDepth

 rescaleDepth(in_, depth)

 rescaleDepth

 rescaleDepth(in_, depth, opts)

 rescaleDepth

 warpFrame(image, depth, mask, rt, cameraMatrix, distCoeff)

 warpFrame

 warpFrame(image, depth, mask, rt, cameraMatrix, distCoeff, opts)

 warpFrame

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD{ref: reference()}

Type that represents an RGBD struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 depthTo3d(depth, k)

 View Source

 @spec depthTo3d(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

depthTo3d
Positional Arguments
	depth: Evision.Mat.t().
the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
(as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)

	k: Evision.Mat.t().
The calibration matrix

Keyword Arguments
	mask: Evision.Mat.t().
the mask of the points to consider (can be empty)

Return
	points3d: Evision.Mat.t().
the resulting 3d points. They are of depth the same as depth if it is CV_32F or CV_64F, and the
depth of K if depth is of depth CV_U

Converts a depth image to an organized set of 3d points.
 The coordinate system is x pointing left, y down and z away from the camera
Python prototype (for reference only):
depthTo3d(depth, K[, points3d[, mask]]) -> points3d

 Link to this function

 depthTo3d(depth, k, opts)

 View Source

 @spec depthTo3d(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

depthTo3d
Positional Arguments
	depth: Evision.Mat.t().
the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters
(as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters)

	k: Evision.Mat.t().
The calibration matrix

Keyword Arguments
	mask: Evision.Mat.t().
the mask of the points to consider (can be empty)

Return
	points3d: Evision.Mat.t().
the resulting 3d points. They are of depth the same as depth if it is CV_32F or CV_64F, and the
depth of K if depth is of depth CV_U

Converts a depth image to an organized set of 3d points.
 The coordinate system is x pointing left, y down and z away from the camera
Python prototype (for reference only):
depthTo3d(depth, K[, points3d[, mask]]) -> points3d

 Link to this function

 depthTo3dSparse(depth, in_K, in_points)

 View Source

 @spec depthTo3dSparse(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

depthTo3dSparse
Positional Arguments
	depth: Evision.Mat.t().
the depth image

	in_K: Evision.Mat.t().

	in_points: Evision.Mat.t().
the list of xy coordinates

Return
	points3d: Evision.Mat.t().
the resulting 3d points

Python prototype (for reference only):
depthTo3dSparse(depth, in_K, in_points[, points3d]) -> points3d

 Link to this function

 depthTo3dSparse(depth, in_K, in_points, opts)

 View Source

 @spec depthTo3dSparse(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

depthTo3dSparse
Positional Arguments
	depth: Evision.Mat.t().
the depth image

	in_K: Evision.Mat.t().

	in_points: Evision.Mat.t().
the list of xy coordinates

Return
	points3d: Evision.Mat.t().
the resulting 3d points

Python prototype (for reference only):
depthTo3dSparse(depth, in_K, in_points[, points3d]) -> points3d

 Link to this function

 registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, rt, unregisteredDepth, outputImagePlaneSize)

 View Source

 @spec registerDepth(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

registerDepth
Positional Arguments
	unregisteredCameraMatrix: Evision.Mat.t().
the camera matrix of the depth camera

	registeredCameraMatrix: Evision.Mat.t().
the camera matrix of the external camera

	registeredDistCoeffs: Evision.Mat.t().
the distortion coefficients of the external camera

	rt: Evision.Mat.t().
the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.

	unregisteredDepth: Evision.Mat.t().
the input depth data

	outputImagePlaneSize: Size.
the image plane dimensions of the external camera (width, height)

Keyword Arguments
	depthDilation: bool.
whether or not the depth is dilated to avoid holes and occlusion errors (optional)

Return
	registeredDepth: Evision.Mat.t().
the result of transforming the depth into the external camera

Registers depth data to an external camera
 Registration is performed by creating a depth cloud, transforming the cloud by
 the rigid body transformation between the cameras, and then projecting the
 transformed points into the RGB camera.
 uv_rgb = K_rgb [R | t] z inv(K_ir) uv_ir
 Currently does not check for negative depth values.
Python prototype (for reference only):
registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, Rt, unregisteredDepth, outputImagePlaneSize[, registeredDepth[, depthDilation]]) -> registeredDepth

 Link to this function

 registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, rt, unregisteredDepth, outputImagePlaneSize, opts)

 View Source

 @spec registerDepth(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{:depthDilation, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

registerDepth
Positional Arguments
	unregisteredCameraMatrix: Evision.Mat.t().
the camera matrix of the depth camera

	registeredCameraMatrix: Evision.Mat.t().
the camera matrix of the external camera

	registeredDistCoeffs: Evision.Mat.t().
the distortion coefficients of the external camera

	rt: Evision.Mat.t().
the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame.

	unregisteredDepth: Evision.Mat.t().
the input depth data

	outputImagePlaneSize: Size.
the image plane dimensions of the external camera (width, height)

Keyword Arguments
	depthDilation: bool.
whether or not the depth is dilated to avoid holes and occlusion errors (optional)

Return
	registeredDepth: Evision.Mat.t().
the result of transforming the depth into the external camera

Registers depth data to an external camera
 Registration is performed by creating a depth cloud, transforming the cloud by
 the rigid body transformation between the cameras, and then projecting the
 transformed points into the RGB camera.
 uv_rgb = K_rgb [R | t] z inv(K_ir) uv_ir
 Currently does not check for negative depth values.
Python prototype (for reference only):
registerDepth(unregisteredCameraMatrix, registeredCameraMatrix, registeredDistCoeffs, Rt, unregisteredDepth, outputImagePlaneSize[, registeredDepth[, depthDilation]]) -> registeredDepth

 Link to this function

 rescaleDepth(in_, depth)

 View Source

 @spec rescaleDepth(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

rescaleDepth
Positional Arguments
	in_: Evision.Mat.t()

	depth: int.
the desired output depth (floats or double)

Keyword Arguments
	depth_factor: double.
(optional) factor by which depth is converted to distance (by default = 1000.0 for Kinect sensor)

Return
	out: Evision.Mat.t().
The rescaled float depth image

If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
 by depth_factor to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
 Otherwise, the image is simply converted to floats
Python prototype (for reference only):
rescaleDepth(in_, depth[, out[, depth_factor]]) -> out

 Link to this function

 rescaleDepth(in_, depth, opts)

 View Source

 @spec rescaleDepth(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:depth_factor, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

rescaleDepth
Positional Arguments
	in_: Evision.Mat.t()

	depth: int.
the desired output depth (floats or double)

Keyword Arguments
	depth_factor: double.
(optional) factor by which depth is converted to distance (by default = 1000.0 for Kinect sensor)

Return
	out: Evision.Mat.t().
The rescaled float depth image

If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided
 by depth_factor to get a depth in meters, and the values 0 are converted to std::numeric_limits<float>::quiet_NaN()
 Otherwise, the image is simply converted to floats
Python prototype (for reference only):
rescaleDepth(in_, depth[, out[, depth_factor]]) -> out

 Link to this function

 warpFrame(image, depth, mask, rt, cameraMatrix, distCoeff)

 View Source

 @spec warpFrame(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

warpFrame
Positional Arguments
	image: Evision.Mat.t().
The image (of CV_8UC1 or CV_8UC3 type)

	depth: Evision.Mat.t().
The depth (of type used in depthTo3d fuction)

	mask: Evision.Mat.t().
The mask of used pixels (of CV_8UC1), it can be empty

	rt: Evision.Mat.t().
The transformation that will be applied to the 3d points computed from the depth

	cameraMatrix: Evision.Mat.t().
Camera matrix

	distCoeff: Evision.Mat.t().
Distortion coefficients

Return
	warpedImage: Evision.Mat.t().
The warped image.

	warpedDepth: Evision.Mat.t().
The warped depth.

	warpedMask: Evision.Mat.t().
The warped mask.

Warp the image: compute 3d points from the depth, transform them using given transformation,
 then project color point cloud to an image plane.
 This function can be used to visualize results of the Odometry algorithm.
Python prototype (for reference only):
warpFrame(image, depth, mask, Rt, cameraMatrix, distCoeff[, warpedImage[, warpedDepth[, warpedMask]]]) -> warpedImage, warpedDepth, warpedMask

 Link to this function

 warpFrame(image, depth, mask, rt, cameraMatrix, distCoeff, opts)

 View Source

 @spec warpFrame(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

warpFrame
Positional Arguments
	image: Evision.Mat.t().
The image (of CV_8UC1 or CV_8UC3 type)

	depth: Evision.Mat.t().
The depth (of type used in depthTo3d fuction)

	mask: Evision.Mat.t().
The mask of used pixels (of CV_8UC1), it can be empty

	rt: Evision.Mat.t().
The transformation that will be applied to the 3d points computed from the depth

	cameraMatrix: Evision.Mat.t().
Camera matrix

	distCoeff: Evision.Mat.t().
Distortion coefficients

Return
	warpedImage: Evision.Mat.t().
The warped image.

	warpedDepth: Evision.Mat.t().
The warped depth.

	warpedMask: Evision.Mat.t().
The warped mask.

Warp the image: compute 3d points from the depth, transform them using given transformation,
 then project color point cloud to an image plane.
 This function can be used to visualize results of the Odometry algorithm.
Python prototype (for reference only):
warpFrame(image, depth, mask, Rt, cameraMatrix, distCoeff[, warpedImage[, warpedDepth[, warpedMask]]]) -> warpedImage, warpedDepth, warpedMask

 Evision.RGBD.DepthCleaner - Evision v0.1.39

Evision.RGBD.DepthCleaner

 Summary

 Types

 t()

 Type that represents an RGBD.DepthCleaner struct.

 Functions

 apply(self, points)

 apply

 apply(self, points, opts)

 apply

 clear(self)

 Clears the algorithm state

 create(depth)

 create

 create(depth, opts)

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getDepth(self)

 getDepth

 getMethod(self)

 getMethod

 getWindowSize(self)

 getWindowSize

 initialize(self)

 initialize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setDepth(self, val)

 setDepth

 setMethod(self, val)

 setMethod

 setWindowSize(self, val)

 setWindowSize

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.DepthCleaner{ref: reference()}

Type that represents an RGBD.DepthCleaner struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, points)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

	points: Evision.Mat.t().
a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S

Return
	depth: Evision.Mat.t().
a rows x cols matrix of the cleaned up depth

Given a set of 3d points in a depth image, compute the normals at each point.
Python prototype (for reference only):
apply(points[, depth]) -> depth

 Link to this function

 apply(self, points, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

	points: Evision.Mat.t().
a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S

Return
	depth: Evision.Mat.t().
a rows x cols matrix of the cleaned up depth

Given a set of 3d points in a depth image, compute the normals at each point.
Python prototype (for reference only):
apply(points[, depth]) -> depth

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(depth)

 View Source

 @spec create(integer()) :: t() | {:error, String.t()}

create
Positional Arguments
	depth: int.
the depth of the normals (only CV_32F or CV_64F)

Keyword Arguments
	window_size: int.
the window size to compute the normals: can only be 1,3,5 or 7

	method: int.
one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS

Return
	retval: DepthCleaner

Constructor
Python prototype (for reference only):
create(depth[, window_size[, method]]) -> retval

 Link to this function

 create(depth, opts)

 View Source

 @spec create(integer(), [window_size: term(), method: term()] | nil) ::
 t() | {:error, String.t()}

create
Positional Arguments
	depth: int.
the depth of the normals (only CV_32F or CV_64F)

Keyword Arguments
	window_size: int.
the window size to compute the normals: can only be 1,3,5 or 7

	method: int.
one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS

Return
	retval: DepthCleaner

Constructor
Python prototype (for reference only):
create(depth[, window_size[, method]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDepth(self)

 View Source

 @spec getDepth(t()) :: integer() | {:error, String.t()}

getDepth
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Return
	retval: int

Python prototype (for reference only):
getDepth() -> retval

 Link to this function

 getMethod(self)

 View Source

 @spec getMethod(t()) :: integer() | {:error, String.t()}

getMethod
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Return
	retval: int

Python prototype (for reference only):
getMethod() -> retval

 Link to this function

 getWindowSize(self)

 View Source

 @spec getWindowSize(t()) :: integer() | {:error, String.t()}

getWindowSize
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Return
	retval: int

Python prototype (for reference only):
getWindowSize() -> retval

 Link to this function

 initialize(self)

 View Source

 @spec initialize(t()) :: t() | {:error, String.t()}

initialize
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()

Initializes some data that is cached for later computation
 If that function is not called, it will be called the first time normals are computed
Python prototype (for reference only):
initialize() -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setDepth(self, val)

 View Source

 @spec setDepth(t(), integer()) :: t() | {:error, String.t()}

setDepth
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	val: int

Python prototype (for reference only):
setDepth(val) -> None

 Link to this function

 setMethod(self, val)

 View Source

 @spec setMethod(t(), integer()) :: t() | {:error, String.t()}

setMethod
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	val: int

Python prototype (for reference only):
setMethod(val) -> None

 Link to this function

 setWindowSize(self, val)

 View Source

 @spec setWindowSize(t(), integer()) :: t() | {:error, String.t()}

setWindowSize
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	val: int

Python prototype (for reference only):
setWindowSize(val) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.RGBD.DepthCleaner.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.RGBD.FastICPOdometry - Evision v0.1.39

Evision.RGBD.FastICPOdometry

 Summary

 Types

 t()

 Type that represents an RGBD.FastICPOdometry struct.

 Functions

 create(cameraMatrix)

 create

 create(cameraMatrix, opts)

 create

 getAngleThreshold(self)

 getAngleThreshold

 getCameraMatrix(self)

 getCameraMatrix

 getIterationCounts(self)

 getIterationCounts

 getKernelSize(self)

 getKernelSize

 getMaxDistDiff(self)

 getMaxDistDiff

 getSigmaDepth(self)

 getSigmaDepth

 getSigmaSpatial(self)

 getSigmaSpatial

 getTransformType(self)

 getTransformType

 prepareFrameCache(self, frame, cacheType)

 prepareFrameCache

 setAngleThreshold(self, f)

 setAngleThreshold

 setCameraMatrix(self, val)

 setCameraMatrix

 setIterationCounts(self, val)

 setIterationCounts

 setKernelSize(self, f)

 setKernelSize

 setMaxDistDiff(self, val)

 setMaxDistDiff

 setSigmaDepth(self, f)

 setSigmaDepth

 setSigmaSpatial(self, f)

 setSigmaSpatial

 setTransformType(self, val)

 setTransformType

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.FastICPOdometry{ref: reference()}

Type that represents an RGBD.FastICPOdometry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(cameraMatrix)

 View Source

 @spec create(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

create
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

Keyword Arguments
	maxDistDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	angleThreshold: float.
Correspondence will be filtered out
if an angle between their normals is bigger than threshold

	sigmaDepth: float.
Depth sigma in meters for bilateral smooth

	sigmaSpatial: float.
Spatial sigma in pixels for bilateral smooth

	kernelSize: int.
Kernel size in pixels for bilateral smooth

	iterCounts: [int].
Count of iterations on each pyramid level

Return
	retval: FastICPOdometry

Constructor.
Python prototype (for reference only):
create(cameraMatrix[, maxDistDiff[, angleThreshold[, sigmaDepth[, sigmaSpatial[, kernelSize[, iterCounts]]]]]]) -> retval

 Link to this function

 create(cameraMatrix, opts)

 View Source

 @spec create(
 Evision.Mat.maybe_mat_in(),
 [
 iterCounts: term(),
 sigmaSpatial: term(),
 sigmaDepth: term(),
 angleThreshold: term(),
 maxDistDiff: term(),
 kernelSize: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

Keyword Arguments
	maxDistDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	angleThreshold: float.
Correspondence will be filtered out
if an angle between their normals is bigger than threshold

	sigmaDepth: float.
Depth sigma in meters for bilateral smooth

	sigmaSpatial: float.
Spatial sigma in pixels for bilateral smooth

	kernelSize: int.
Kernel size in pixels for bilateral smooth

	iterCounts: [int].
Count of iterations on each pyramid level

Return
	retval: FastICPOdometry

Constructor.
Python prototype (for reference only):
create(cameraMatrix[, maxDistDiff[, angleThreshold[, sigmaDepth[, sigmaSpatial[, kernelSize[, iterCounts]]]]]]) -> retval

 Link to this function

 getAngleThreshold(self)

 View Source

 @spec getAngleThreshold(t()) :: number() | {:error, String.t()}

getAngleThreshold
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: float

Python prototype (for reference only):
getAngleThreshold() -> retval

 Link to this function

 getCameraMatrix(self)

 View Source

 @spec getCameraMatrix(t()) :: Evision.Mat.t() | {:error, String.t()}

getCameraMatrix
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCameraMatrix() -> retval

 Link to this function

 getIterationCounts(self)

 View Source

 @spec getIterationCounts(t()) :: Evision.Mat.t() | {:error, String.t()}

getIterationCounts
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getIterationCounts() -> retval

 Link to this function

 getKernelSize(self)

 View Source

 @spec getKernelSize(t()) :: integer() | {:error, String.t()}

getKernelSize
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: int

Python prototype (for reference only):
getKernelSize() -> retval

 Link to this function

 getMaxDistDiff(self)

 View Source

 @spec getMaxDistDiff(t()) :: number() | {:error, String.t()}

getMaxDistDiff
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDistDiff() -> retval

 Link to this function

 getSigmaDepth(self)

 View Source

 @spec getSigmaDepth(t()) :: number() | {:error, String.t()}

getSigmaDepth
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: float

Python prototype (for reference only):
getSigmaDepth() -> retval

 Link to this function

 getSigmaSpatial(self)

 View Source

 @spec getSigmaSpatial(t()) :: number() | {:error, String.t()}

getSigmaSpatial
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: float

Python prototype (for reference only):
getSigmaSpatial() -> retval

 Link to this function

 getTransformType(self)

 View Source

 @spec getTransformType(t()) :: integer() | {:error, String.t()}

getTransformType
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()

Return
	retval: int

Python prototype (for reference only):
getTransformType() -> retval

 Link to this function

 prepareFrameCache(self, frame, cacheType)

 View Source

 @spec prepareFrameCache(t(), Evision.RGBD.OdometryFrame.t(), integer()) ::
 {number(), number()} | {:error, String.t()}

prepareFrameCache
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	frame: OdometryFrame
	cacheType: int

Return
	retval: Size

Python prototype (for reference only):
prepareFrameCache(frame, cacheType) -> retval

 Link to this function

 setAngleThreshold(self, f)

 View Source

 @spec setAngleThreshold(t(), number()) :: t() | {:error, String.t()}

setAngleThreshold
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	f: float

Python prototype (for reference only):
setAngleThreshold(f) -> None

 Link to this function

 setCameraMatrix(self, val)

 View Source

 @spec setCameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setCameraMatrix
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setCameraMatrix(val) -> None

 Link to this function

 setIterationCounts(self, val)

 View Source

 @spec setIterationCounts(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setIterationCounts
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setIterationCounts(val) -> None

 Link to this function

 setKernelSize(self, f)

 View Source

 @spec setKernelSize(t(), integer()) :: t() | {:error, String.t()}

setKernelSize
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	f: int

Python prototype (for reference only):
setKernelSize(f) -> None

 Link to this function

 setMaxDistDiff(self, val)

 View Source

 @spec setMaxDistDiff(t(), number()) :: t() | {:error, String.t()}

setMaxDistDiff
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	val: float

Python prototype (for reference only):
setMaxDistDiff(val) -> None

 Link to this function

 setSigmaDepth(self, f)

 View Source

 @spec setSigmaDepth(t(), number()) :: t() | {:error, String.t()}

setSigmaDepth
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	f: float

Python prototype (for reference only):
setSigmaDepth(f) -> None

 Link to this function

 setSigmaSpatial(self, f)

 View Source

 @spec setSigmaSpatial(t(), number()) :: t() | {:error, String.t()}

setSigmaSpatial
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	f: float

Python prototype (for reference only):
setSigmaSpatial(f) -> None

 Link to this function

 setTransformType(self, val)

 View Source

 @spec setTransformType(t(), integer()) :: t() | {:error, String.t()}

setTransformType
Positional Arguments
	self: Evision.RGBD.FastICPOdometry.t()
	val: int

Python prototype (for reference only):
setTransformType(val) -> None

 Evision.RGBD.ICPOdometry - Evision v0.1.39

Evision.RGBD.ICPOdometry

 Summary

 Types

 t()

 Type that represents an RGBD.ICPOdometry struct.

 Functions

 create()

 create

 create(opts)

 create

 getCameraMatrix(self)

 getCameraMatrix

 getIterationCounts(self)

 getIterationCounts

 getMaxDepth(self)

 getMaxDepth

 getMaxDepthDiff(self)

 getMaxDepthDiff

 getMaxPointsPart(self)

 getMaxPointsPart

 getMaxRotation(self)

 getMaxRotation

 getMaxTranslation(self)

 getMaxTranslation

 getMinDepth(self)

 getMinDepth

 getNormalsComputer(self)

 getNormalsComputer

 getTransformType(self)

 getTransformType

 prepareFrameCache(self, frame, cacheType)

 prepareFrameCache

 setCameraMatrix(self, val)

 setCameraMatrix

 setIterationCounts(self, val)

 setIterationCounts

 setMaxDepth(self, val)

 setMaxDepth

 setMaxDepthDiff(self, val)

 setMaxDepthDiff

 setMaxPointsPart(self, val)

 setMaxPointsPart

 setMaxRotation(self, val)

 setMaxRotation

 setMaxTranslation(self, val)

 setMaxTranslation

 setMinDepth(self, val)

 setMinDepth

 setTransformType(self, val)

 setTransformType

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.ICPOdometry{ref: reference()}

Type that represents an RGBD.ICPOdometry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	iterCounts: [int].
Count of iterations on each pyramid level.

	transformType: int.
Class of trasformation

Return
	retval: ICPOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, maxPointsPart[, iterCounts[, transformType]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 minDepth: term(),
 iterCounts: term(),
 maxDepthDiff: term(),
 transformType: term(),
 maxPointsPart: term(),
 cameraMatrix: term(),
 maxDepth: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	iterCounts: [int].
Count of iterations on each pyramid level.

	transformType: int.
Class of trasformation

Return
	retval: ICPOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, maxPointsPart[, iterCounts[, transformType]]]]]]]) -> retval

 Link to this function

 getCameraMatrix(self)

 View Source

 @spec getCameraMatrix(t()) :: Evision.Mat.t() | {:error, String.t()}

getCameraMatrix
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCameraMatrix() -> retval

 Link to this function

 getIterationCounts(self)

 View Source

 @spec getIterationCounts(t()) :: Evision.Mat.t() | {:error, String.t()}

getIterationCounts
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getIterationCounts() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(t()) :: number() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMaxDepthDiff(self)

 View Source

 @spec getMaxDepthDiff(t()) :: number() | {:error, String.t()}

getMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepthDiff() -> retval

 Link to this function

 getMaxPointsPart(self)

 View Source

 @spec getMaxPointsPart(t()) :: number() | {:error, String.t()}

getMaxPointsPart
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxPointsPart() -> retval

 Link to this function

 getMaxRotation(self)

 View Source

 @spec getMaxRotation(t()) :: number() | {:error, String.t()}

getMaxRotation
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxRotation() -> retval

 Link to this function

 getMaxTranslation(self)

 View Source

 @spec getMaxTranslation(t()) :: number() | {:error, String.t()}

getMaxTranslation
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxTranslation() -> retval

 Link to this function

 getMinDepth(self)

 View Source

 @spec getMinDepth(t()) :: number() | {:error, String.t()}

getMinDepth
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMinDepth() -> retval

 Link to this function

 getNormalsComputer(self)

 View Source

 @spec getNormalsComputer(t()) :: Evision.RGBD.RgbdNormals.t() | {:error, String.t()}

getNormalsComputer
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: RgbdNormals

Python prototype (for reference only):
getNormalsComputer() -> retval

 Link to this function

 getTransformType(self)

 View Source

 @spec getTransformType(t()) :: integer() | {:error, String.t()}

getTransformType
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()

Return
	retval: int

Python prototype (for reference only):
getTransformType() -> retval

 Link to this function

 prepareFrameCache(self, frame, cacheType)

 View Source

 @spec prepareFrameCache(t(), Evision.RGBD.OdometryFrame.t(), integer()) ::
 {number(), number()} | {:error, String.t()}

prepareFrameCache
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	frame: OdometryFrame
	cacheType: int

Return
	retval: Size

Python prototype (for reference only):
prepareFrameCache(frame, cacheType) -> retval

 Link to this function

 setCameraMatrix(self, val)

 View Source

 @spec setCameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setCameraMatrix
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setCameraMatrix(val) -> None

 Link to this function

 setIterationCounts(self, val)

 View Source

 @spec setIterationCounts(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setIterationCounts
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setIterationCounts(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(t(), number()) :: t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMaxDepthDiff(self, val)

 View Source

 @spec setMaxDepthDiff(t(), number()) :: t() | {:error, String.t()}

setMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepthDiff(val) -> None

 Link to this function

 setMaxPointsPart(self, val)

 View Source

 @spec setMaxPointsPart(t(), number()) :: t() | {:error, String.t()}

setMaxPointsPart
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxPointsPart(val) -> None

 Link to this function

 setMaxRotation(self, val)

 View Source

 @spec setMaxRotation(t(), number()) :: t() | {:error, String.t()}

setMaxRotation
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxRotation(val) -> None

 Link to this function

 setMaxTranslation(self, val)

 View Source

 @spec setMaxTranslation(t(), number()) :: t() | {:error, String.t()}

setMaxTranslation
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxTranslation(val) -> None

 Link to this function

 setMinDepth(self, val)

 View Source

 @spec setMinDepth(t(), number()) :: t() | {:error, String.t()}

setMinDepth
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: double

Python prototype (for reference only):
setMinDepth(val) -> None

 Link to this function

 setTransformType(self, val)

 View Source

 @spec setTransformType(t(), integer()) :: t() | {:error, String.t()}

setTransformType
Positional Arguments
	self: Evision.RGBD.ICPOdometry.t()
	val: int

Python prototype (for reference only):
setTransformType(val) -> None

 Evision.RGBD.Odometry - Evision v0.1.39

Evision.RGBD.Odometry

 Summary

 Types

 t()

 Type that represents an RGBD.Odometry struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute2(self, srcFrame, dstFrame)

 compute2

 compute2(self, srcFrame, dstFrame, opts)

 compute2

 compute(self, srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask)

 compute

 compute(self, srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask, opts)

 compute

 create(odometryType)

 create

 default_max_depth(self)

 DEFAULT_MAX_DEPTH

 default_max_depth_diff(self)

 DEFAULT_MAX_DEPTH_DIFF

 default_max_points_part(self)

 DEFAULT_MAX_POINTS_PART

 default_max_rotation(self)

 DEFAULT_MAX_ROTATION

 default_max_translation(self)

 DEFAULT_MAX_TRANSLATION

 default_min_depth(self)

 DEFAULT_MIN_DEPTH

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getCameraMatrix(self)

 getCameraMatrix

 getDefaultName(self)

 getDefaultName

 getTransformType(self)

 getTransformType

 prepareFrameCache(self, frame, cacheType)

 prepareFrameCache

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCameraMatrix(self, val)

 setCameraMatrix

 setTransformType(self, val)

 setTransformType

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.Odometry{ref: reference()}

Type that represents an RGBD.Odometry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute2(self, srcFrame, dstFrame)

 View Source

 @spec compute2(t(), Evision.RGBD.OdometryFrame.t(), Evision.RGBD.OdometryFrame.t()) ::
 Evision.Mat.t() | false | {:error, String.t()}

compute2
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	srcFrame: OdometryFrame
	dstFrame: OdometryFrame

Keyword Arguments
	initRt: Evision.Mat.t().

Return
	retval: bool
	rt: Evision.Mat.t().

One more method to compute a transformation from the source frame to the destination one.
 It is designed to save on computing the frame data (image pyramids, normals, etc.).
Python prototype (for reference only):
compute2(srcFrame, dstFrame[, Rt[, initRt]]) -> retval, Rt

 Link to this function

 compute2(self, srcFrame, dstFrame, opts)

 View Source

 @spec compute2(
 t(),
 Evision.RGBD.OdometryFrame.t(),
 Evision.RGBD.OdometryFrame.t(),
 [{:initRt, term()}] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

compute2
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	srcFrame: OdometryFrame
	dstFrame: OdometryFrame

Keyword Arguments
	initRt: Evision.Mat.t().

Return
	retval: bool
	rt: Evision.Mat.t().

One more method to compute a transformation from the source frame to the destination one.
 It is designed to save on computing the frame data (image pyramids, normals, etc.).
Python prototype (for reference only):
compute2(srcFrame, dstFrame[, Rt[, initRt]]) -> retval, Rt

 Link to this function

 compute(self, srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | false | {:error, String.t()}

compute
Positional Arguments
	self: Evision.RGBD.Odometry.t()

	srcImage: Evision.Mat.t().
Image data of the source frame (CV_8UC1)

	srcDepth: Evision.Mat.t().
Depth data of the source frame (CV_32FC1, in meters)

	srcMask: Evision.Mat.t().
Mask that sets which pixels have to be used from the source frame (CV_8UC1)

	dstImage: Evision.Mat.t().
Image data of the destination frame (CV_8UC1)

	dstDepth: Evision.Mat.t().
Depth data of the destination frame (CV_32FC1, in meters)

	dstMask: Evision.Mat.t().
Mask that sets which pixels have to be used from the destination frame (CV_8UC1)

Keyword Arguments
	initRt: Evision.Mat.t().
Initial transformation from the source frame to the destination one (optional)

Return
	retval: bool

	rt: Evision.Mat.t().
Resulting transformation from the source frame to the destination one (rigid body motion):
dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
homogeneous point in the source frame,
Rt is 4x4 matrix of CV_64FC1 type.

Method to compute a transformation from the source frame to the destination one.
 Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
 In such case corresponding arguments can be set as empty Mat.
 The method returns true if all internal computations were possible (e.g. there were enough correspondences,
 system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
 by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
Python prototype (for reference only):
compute(srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask[, Rt[, initRt]]) -> retval, Rt

 Link to this function

 compute(self, srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:initRt, term()}] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

compute
Positional Arguments
	self: Evision.RGBD.Odometry.t()

	srcImage: Evision.Mat.t().
Image data of the source frame (CV_8UC1)

	srcDepth: Evision.Mat.t().
Depth data of the source frame (CV_32FC1, in meters)

	srcMask: Evision.Mat.t().
Mask that sets which pixels have to be used from the source frame (CV_8UC1)

	dstImage: Evision.Mat.t().
Image data of the destination frame (CV_8UC1)

	dstDepth: Evision.Mat.t().
Depth data of the destination frame (CV_32FC1, in meters)

	dstMask: Evision.Mat.t().
Mask that sets which pixels have to be used from the destination frame (CV_8UC1)

Keyword Arguments
	initRt: Evision.Mat.t().
Initial transformation from the source frame to the destination one (optional)

Return
	retval: bool

	rt: Evision.Mat.t().
Resulting transformation from the source frame to the destination one (rigid body motion):
dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is
homogeneous point in the source frame,
Rt is 4x4 matrix of CV_64FC1 type.

Method to compute a transformation from the source frame to the destination one.
 Some odometry algorithms do not used some data of frames (eg. ICP does not use images).
 In such case corresponding arguments can be set as empty Mat.
 The method returns true if all internal computations were possible (e.g. there were enough correspondences,
 system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided
 by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation).
Python prototype (for reference only):
compute(srcImage, srcDepth, srcMask, dstImage, dstDepth, dstMask[, Rt[, initRt]]) -> retval, Rt

 Link to this function

 create(odometryType)

 View Source

 @spec create(binary()) :: t() | {:error, String.t()}

create
Positional Arguments
	odometryType: String

Return
	retval: Odometry

Python prototype (for reference only):
create(odometryType) -> retval

 Link to this function

 default_max_depth(self)

 View Source

 @spec default_max_depth(t()) :: number() | {:error, String.t()}

DEFAULT_MAX_DEPTH
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MAX_DEPTH() -> retval

 Link to this function

 default_max_depth_diff(self)

 View Source

 @spec default_max_depth_diff(t()) :: number() | {:error, String.t()}

DEFAULT_MAX_DEPTH_DIFF
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MAX_DEPTH_DIFF() -> retval

 Link to this function

 default_max_points_part(self)

 View Source

 @spec default_max_points_part(t()) :: number() | {:error, String.t()}

DEFAULT_MAX_POINTS_PART
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MAX_POINTS_PART() -> retval

 Link to this function

 default_max_rotation(self)

 View Source

 @spec default_max_rotation(t()) :: number() | {:error, String.t()}

DEFAULT_MAX_ROTATION
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MAX_ROTATION() -> retval

 Link to this function

 default_max_translation(self)

 View Source

 @spec default_max_translation(t()) :: number() | {:error, String.t()}

DEFAULT_MAX_TRANSLATION
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MAX_TRANSLATION() -> retval

 Link to this function

 default_min_depth(self)

 View Source

 @spec default_min_depth(t()) :: number() | {:error, String.t()}

DEFAULT_MIN_DEPTH
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: float

Python prototype (for reference only):
DEFAULT_MIN_DEPTH() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCameraMatrix(self)

 View Source

 @spec getCameraMatrix(t()) :: Evision.Mat.t() | {:error, String.t()}

getCameraMatrix
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: Evision.Mat.t()

@see setCameraMatrix/2
Python prototype (for reference only):
getCameraMatrix() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getTransformType(self)

 View Source

 @spec getTransformType(t()) :: integer() | {:error, String.t()}

getTransformType
Positional Arguments
	self: Evision.RGBD.Odometry.t()

Return
	retval: int

@see setTransformType/2
Python prototype (for reference only):
getTransformType() -> retval

 Link to this function

 prepareFrameCache(self, frame, cacheType)

 View Source

 @spec prepareFrameCache(t(), Evision.RGBD.OdometryFrame.t(), integer()) ::
 {number(), number()} | {:error, String.t()}

prepareFrameCache
Positional Arguments
	self: Evision.RGBD.Odometry.t()

	frame: OdometryFrame.
The odometry which will process the frame.

	cacheType: int.
The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL.

Return
	retval: Size

Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data
 does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution
 of the prepared frame.
Python prototype (for reference only):
prepareFrameCache(frame, cacheType) -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCameraMatrix(self, val)

 View Source

 @spec setCameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setCameraMatrix
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	val: Evision.Mat.t()

@see getCameraMatrix/1
Python prototype (for reference only):
setCameraMatrix(val) -> None

 Link to this function

 setTransformType(self, val)

 View Source

 @spec setTransformType(t(), integer()) :: t() | {:error, String.t()}

setTransformType
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	val: int

@see getTransformType/1
Python prototype (for reference only):
setTransformType(val) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.RGBD.Odometry.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.RGBD.OdometryFrame - Evision v0.1.39

Evision.RGBD.OdometryFrame

 Summary

 Types

 t()

 Type that represents an RGBD.OdometryFrame struct.

 Functions

 create()

 create

 create(opts)

 create

 get_pyramid_dI_dx(self)

 get_pyramid_dI_dy(self)

 get_pyramidCloud(self)

 get_pyramidDepth(self)

 get_pyramidImage(self)

 get_pyramidMask(self)

 get_pyramidNormals(self)

 get_pyramidNormalsMask(self)

 get_pyramidTexturedMask(self)

 release(self)

 release

 releasePyramids(self)

 releasePyramids

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.OdometryFrame{ref: reference()}

Type that represents an RGBD.OdometryFrame struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	image: Evision.Mat.t().
	depth: Evision.Mat.t().
	mask: Evision.Mat.t().
	normals: Evision.Mat.t().
	iD: int.

Return
	retval: OdometryFrame

Python prototype (for reference only):
create([, image[, depth[, mask[, normals[, ID]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [normals: term(), image: term(), depth: term(), mask: term(), iD: term()]
 | nil
) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	image: Evision.Mat.t().
	depth: Evision.Mat.t().
	mask: Evision.Mat.t().
	normals: Evision.Mat.t().
	iD: int.

Return
	retval: OdometryFrame

Python prototype (for reference only):
create([, image[, depth[, mask[, normals[, ID]]]]]) -> retval

 Link to this function

 get_pyramid_dI_dx(self)

 View Source

 @spec get_pyramid_dI_dx(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramid_dI_dy(self)

 View Source

 @spec get_pyramid_dI_dy(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidCloud(self)

 View Source

 @spec get_pyramidCloud(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidDepth(self)

 View Source

 @spec get_pyramidDepth(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidImage(self)

 View Source

 @spec get_pyramidImage(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidMask(self)

 View Source

 @spec get_pyramidMask(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidNormals(self)

 View Source

 @spec get_pyramidNormals(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidNormalsMask(self)

 View Source

 @spec get_pyramidNormalsMask(t()) :: [Evision.Mat.t()]

 Link to this function

 get_pyramidTexturedMask(self)

 View Source

 @spec get_pyramidTexturedMask(t()) :: [Evision.Mat.t()]

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

release
Positional Arguments
	self: Evision.RGBD.OdometryFrame.t()

Python prototype (for reference only):
release() -> None

 Link to this function

 releasePyramids(self)

 View Source

 @spec releasePyramids(t()) :: t() | {:error, String.t()}

releasePyramids
Positional Arguments
	self: Evision.RGBD.OdometryFrame.t()

Python prototype (for reference only):
releasePyramids() -> None

 Evision.RGBD.RgbdFrame - Evision v0.1.39

Evision.RGBD.RgbdFrame

 Summary

 Types

 t()

 Type that represents an RGBD.RgbdFrame struct.

 Functions

 create()

 create

 create(opts)

 create

 get_depth(self)

 get_ID(self)

 get_image(self)

 get_mask(self)

 get_normals(self)

 release(self)

 release

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.RgbdFrame{ref: reference()}

Type that represents an RGBD.RgbdFrame struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	image: Evision.Mat.t().
	depth: Evision.Mat.t().
	mask: Evision.Mat.t().
	normals: Evision.Mat.t().
	iD: int.

Return
	retval: RgbdFrame

Python prototype (for reference only):
create([, image[, depth[, mask[, normals[, ID]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [normals: term(), image: term(), depth: term(), mask: term(), iD: term()]
 | nil
) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	image: Evision.Mat.t().
	depth: Evision.Mat.t().
	mask: Evision.Mat.t().
	normals: Evision.Mat.t().
	iD: int.

Return
	retval: RgbdFrame

Python prototype (for reference only):
create([, image[, depth[, mask[, normals[, ID]]]]]) -> retval

 Link to this function

 get_depth(self)

 View Source

 @spec get_depth(t()) :: Evision.Mat.t()

 Link to this function

 get_ID(self)

 View Source

 @spec get_ID(t()) :: integer()

 Link to this function

 get_image(self)

 View Source

 @spec get_image(t()) :: Evision.Mat.t()

 Link to this function

 get_mask(self)

 View Source

 @spec get_mask(t()) :: Evision.Mat.t()

 Link to this function

 get_normals(self)

 View Source

 @spec get_normals(t()) :: Evision.Mat.t()

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

release
Positional Arguments
	self: Evision.RGBD.RgbdFrame.t()

Python prototype (for reference only):
release() -> None

 Evision.RGBD.RgbdICPOdometry - Evision v0.1.39

Evision.RGBD.RgbdICPOdometry

 Summary

 Types

 t()

 Type that represents an RGBD.RgbdICPOdometry struct.

 Functions

 create()

 create

 create(opts)

 create

 getCameraMatrix(self)

 getCameraMatrix

 getIterationCounts(self)

 getIterationCounts

 getMaxDepth(self)

 getMaxDepth

 getMaxDepthDiff(self)

 getMaxDepthDiff

 getMaxPointsPart(self)

 getMaxPointsPart

 getMaxRotation(self)

 getMaxRotation

 getMaxTranslation(self)

 getMaxTranslation

 getMinDepth(self)

 getMinDepth

 getMinGradientMagnitudes(self)

 getMinGradientMagnitudes

 getNormalsComputer(self)

 getNormalsComputer

 getTransformType(self)

 getTransformType

 prepareFrameCache(self, frame, cacheType)

 prepareFrameCache

 setCameraMatrix(self, val)

 setCameraMatrix

 setIterationCounts(self, val)

 setIterationCounts

 setMaxDepth(self, val)

 setMaxDepth

 setMaxDepthDiff(self, val)

 setMaxDepthDiff

 setMaxPointsPart(self, val)

 setMaxPointsPart

 setMaxRotation(self, val)

 setMaxRotation

 setMaxTranslation(self, val)

 setMaxTranslation

 setMinDepth(self, val)

 setMinDepth

 setMinGradientMagnitudes(self, val)

 setMinGradientMagnitudes

 setTransformType(self, val)

 setTransformType

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.RgbdICPOdometry{ref: reference()}

Type that represents an RGBD.RgbdICPOdometry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	iterCounts: [int].
Count of iterations on each pyramid level.

	minGradientMagnitudes: [float].
For each pyramid level the pixels will be filtered out
if they have gradient magnitude less than minGradientMagnitudes[level].

	transformType: int.
Class of trasformation

Return
	retval: RgbdICPOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, maxPointsPart[, iterCounts[, minGradientMagnitudes[, transformType]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 minDepth: term(),
 iterCounts: term(),
 maxDepthDiff: term(),
 transformType: term(),
 minGradientMagnitudes: term(),
 maxPointsPart: term(),
 cameraMatrix: term(),
 maxDepth: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	iterCounts: [int].
Count of iterations on each pyramid level.

	minGradientMagnitudes: [float].
For each pyramid level the pixels will be filtered out
if they have gradient magnitude less than minGradientMagnitudes[level].

	transformType: int.
Class of trasformation

Return
	retval: RgbdICPOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, maxPointsPart[, iterCounts[, minGradientMagnitudes[, transformType]]]]]]]]) -> retval

 Link to this function

 getCameraMatrix(self)

 View Source

 @spec getCameraMatrix(t()) :: Evision.Mat.t() | {:error, String.t()}

getCameraMatrix
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCameraMatrix() -> retval

 Link to this function

 getIterationCounts(self)

 View Source

 @spec getIterationCounts(t()) :: Evision.Mat.t() | {:error, String.t()}

getIterationCounts
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getIterationCounts() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(t()) :: number() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMaxDepthDiff(self)

 View Source

 @spec getMaxDepthDiff(t()) :: number() | {:error, String.t()}

getMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepthDiff() -> retval

 Link to this function

 getMaxPointsPart(self)

 View Source

 @spec getMaxPointsPart(t()) :: number() | {:error, String.t()}

getMaxPointsPart
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxPointsPart() -> retval

 Link to this function

 getMaxRotation(self)

 View Source

 @spec getMaxRotation(t()) :: number() | {:error, String.t()}

getMaxRotation
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxRotation() -> retval

 Link to this function

 getMaxTranslation(self)

 View Source

 @spec getMaxTranslation(t()) :: number() | {:error, String.t()}

getMaxTranslation
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxTranslation() -> retval

 Link to this function

 getMinDepth(self)

 View Source

 @spec getMinDepth(t()) :: number() | {:error, String.t()}

getMinDepth
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMinDepth() -> retval

 Link to this function

 getMinGradientMagnitudes(self)

 View Source

 @spec getMinGradientMagnitudes(t()) :: Evision.Mat.t() | {:error, String.t()}

getMinGradientMagnitudes
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getMinGradientMagnitudes() -> retval

 Link to this function

 getNormalsComputer(self)

 View Source

 @spec getNormalsComputer(t()) :: Evision.RGBD.RgbdNormals.t() | {:error, String.t()}

getNormalsComputer
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: RgbdNormals

Python prototype (for reference only):
getNormalsComputer() -> retval

 Link to this function

 getTransformType(self)

 View Source

 @spec getTransformType(t()) :: integer() | {:error, String.t()}

getTransformType
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()

Return
	retval: int

Python prototype (for reference only):
getTransformType() -> retval

 Link to this function

 prepareFrameCache(self, frame, cacheType)

 View Source

 @spec prepareFrameCache(t(), Evision.RGBD.OdometryFrame.t(), integer()) ::
 {number(), number()} | {:error, String.t()}

prepareFrameCache
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	frame: OdometryFrame
	cacheType: int

Return
	retval: Size

Python prototype (for reference only):
prepareFrameCache(frame, cacheType) -> retval

 Link to this function

 setCameraMatrix(self, val)

 View Source

 @spec setCameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setCameraMatrix
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setCameraMatrix(val) -> None

 Link to this function

 setIterationCounts(self, val)

 View Source

 @spec setIterationCounts(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setIterationCounts
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setIterationCounts(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(t(), number()) :: t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMaxDepthDiff(self, val)

 View Source

 @spec setMaxDepthDiff(t(), number()) :: t() | {:error, String.t()}

setMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepthDiff(val) -> None

 Link to this function

 setMaxPointsPart(self, val)

 View Source

 @spec setMaxPointsPart(t(), number()) :: t() | {:error, String.t()}

setMaxPointsPart
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxPointsPart(val) -> None

 Link to this function

 setMaxRotation(self, val)

 View Source

 @spec setMaxRotation(t(), number()) :: t() | {:error, String.t()}

setMaxRotation
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxRotation(val) -> None

 Link to this function

 setMaxTranslation(self, val)

 View Source

 @spec setMaxTranslation(t(), number()) :: t() | {:error, String.t()}

setMaxTranslation
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMaxTranslation(val) -> None

 Link to this function

 setMinDepth(self, val)

 View Source

 @spec setMinDepth(t(), number()) :: t() | {:error, String.t()}

setMinDepth
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: double

Python prototype (for reference only):
setMinDepth(val) -> None

 Link to this function

 setMinGradientMagnitudes(self, val)

 View Source

 @spec setMinGradientMagnitudes(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setMinGradientMagnitudes
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setMinGradientMagnitudes(val) -> None

 Link to this function

 setTransformType(self, val)

 View Source

 @spec setTransformType(t(), integer()) :: t() | {:error, String.t()}

setTransformType
Positional Arguments
	self: Evision.RGBD.RgbdICPOdometry.t()
	val: int

Python prototype (for reference only):
setTransformType(val) -> None

 Evision.RGBD.RgbdNormals - Evision v0.1.39

Evision.RGBD.RgbdNormals

 Summary

 Types

 t()

 Type that represents an RGBD.RgbdNormals struct.

 Functions

 apply(self, points)

 apply

 apply(self, points, opts)

 apply

 clear(self)

 Clears the algorithm state

 create(rows, cols, depth, k)

 create

 create(rows, cols, depth, k, opts)

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getCols(self)

 getCols

 getDefaultName(self)

 getDefaultName

 getDepth(self)

 getDepth

 getK(self)

 getK

 getMethod(self)

 getMethod

 getRows(self)

 getRows

 getWindowSize(self)

 getWindowSize

 initialize(self)

 initialize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCols(self, val)

 setCols

 setDepth(self, val)

 setDepth

 setK(self, val)

 setK

 setMethod(self, val)

 setMethod

 setRows(self, val)

 setRows

 setWindowSize(self, val)

 setWindowSize

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.RgbdNormals{ref: reference()}

Type that represents an RGBD.RgbdNormals struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, points)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

	points: Evision.Mat.t().
a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S

Return
	normals: Evision.Mat.t().
a rows x cols x 3 matrix

Given a set of 3d points in a depth image, compute the normals at each point.
Python prototype (for reference only):
apply(points[, normals]) -> normals

 Link to this function

 apply(self, points, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

	points: Evision.Mat.t().
a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S

Return
	normals: Evision.Mat.t().
a rows x cols x 3 matrix

Given a set of 3d points in a depth image, compute the normals at each point.
Python prototype (for reference only):
apply(points[, normals]) -> normals

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(rows, cols, depth, k)

 View Source

 @spec create(integer(), integer(), integer(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

create
Positional Arguments
	rows: int.
the number of rows of the depth image normals will be computed on

	cols: int.
the number of cols of the depth image normals will be computed on

	depth: int.
the depth of the normals (only CV_32F or CV_64F)

	k: Evision.Mat.t().
the calibration matrix to use

Keyword Arguments
	window_size: int.
the window size to compute the normals: can only be 1,3,5 or 7

	method: int.
one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS

Return
	retval: RgbdNormals

Constructor
Python prototype (for reference only):
create(rows, cols, depth, K[, window_size[, method]]) -> retval

 Link to this function

 create(rows, cols, depth, k, opts)

 View Source

 @spec create(
 integer(),
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 [window_size: term(), method: term()] | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	rows: int.
the number of rows of the depth image normals will be computed on

	cols: int.
the number of cols of the depth image normals will be computed on

	depth: int.
the depth of the normals (only CV_32F or CV_64F)

	k: Evision.Mat.t().
the calibration matrix to use

Keyword Arguments
	window_size: int.
the window size to compute the normals: can only be 1,3,5 or 7

	method: int.
one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS

Return
	retval: RgbdNormals

Constructor
Python prototype (for reference only):
create(rows, cols, depth, K[, window_size[, method]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCols(self)

 View Source

 @spec getCols(t()) :: integer() | {:error, String.t()}

getCols
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: int

Python prototype (for reference only):
getCols() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDepth(self)

 View Source

 @spec getDepth(t()) :: integer() | {:error, String.t()}

getDepth
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: int

Python prototype (for reference only):
getDepth() -> retval

 Link to this function

 getK(self)

 View Source

 @spec getK(t()) :: Evision.Mat.t() | {:error, String.t()}

getK
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getK() -> retval

 Link to this function

 getMethod(self)

 View Source

 @spec getMethod(t()) :: integer() | {:error, String.t()}

getMethod
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: int

Python prototype (for reference only):
getMethod() -> retval

 Link to this function

 getRows(self)

 View Source

 @spec getRows(t()) :: integer() | {:error, String.t()}

getRows
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: int

Python prototype (for reference only):
getRows() -> retval

 Link to this function

 getWindowSize(self)

 View Source

 @spec getWindowSize(t()) :: integer() | {:error, String.t()}

getWindowSize
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Return
	retval: int

Python prototype (for reference only):
getWindowSize() -> retval

 Link to this function

 initialize(self)

 View Source

 @spec initialize(t()) :: t() | {:error, String.t()}

initialize
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()

Initializes some data that is cached for later computation
 If that function is not called, it will be called the first time normals are computed
Python prototype (for reference only):
initialize() -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCols(self, val)

 View Source

 @spec setCols(t(), integer()) :: t() | {:error, String.t()}

setCols
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: int

Python prototype (for reference only):
setCols(val) -> None

 Link to this function

 setDepth(self, val)

 View Source

 @spec setDepth(t(), integer()) :: t() | {:error, String.t()}

setDepth
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: int

Python prototype (for reference only):
setDepth(val) -> None

 Link to this function

 setK(self, val)

 View Source

 @spec setK(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setK
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setK(val) -> None

 Link to this function

 setMethod(self, val)

 View Source

 @spec setMethod(t(), integer()) :: t() | {:error, String.t()}

setMethod
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: int

Python prototype (for reference only):
setMethod(val) -> None

 Link to this function

 setRows(self, val)

 View Source

 @spec setRows(t(), integer()) :: t() | {:error, String.t()}

setRows
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: int

Python prototype (for reference only):
setRows(val) -> None

 Link to this function

 setWindowSize(self, val)

 View Source

 @spec setWindowSize(t(), integer()) :: t() | {:error, String.t()}

setWindowSize
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	val: int

Python prototype (for reference only):
setWindowSize(val) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.RGBD.RgbdNormals.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.RGBD.RgbdOdometry - Evision v0.1.39

Evision.RGBD.RgbdOdometry

 Summary

 Types

 t()

 Type that represents an RGBD.RgbdOdometry struct.

 Functions

 create()

 create

 create(opts)

 create

 getCameraMatrix(self)

 getCameraMatrix

 getIterationCounts(self)

 getIterationCounts

 getMaxDepth(self)

 getMaxDepth

 getMaxDepthDiff(self)

 getMaxDepthDiff

 getMaxPointsPart(self)

 getMaxPointsPart

 getMaxRotation(self)

 getMaxRotation

 getMaxTranslation(self)

 getMaxTranslation

 getMinDepth(self)

 getMinDepth

 getMinGradientMagnitudes(self)

 getMinGradientMagnitudes

 getTransformType(self)

 getTransformType

 prepareFrameCache(self, frame, cacheType)

 prepareFrameCache

 setCameraMatrix(self, val)

 setCameraMatrix

 setIterationCounts(self, val)

 setIterationCounts

 setMaxDepth(self, val)

 setMaxDepth

 setMaxDepthDiff(self, val)

 setMaxDepthDiff

 setMaxPointsPart(self, val)

 setMaxPointsPart

 setMaxRotation(self, val)

 setMaxRotation

 setMaxTranslation(self, val)

 setMaxTranslation

 setMinDepth(self, val)

 setMinDepth

 setMinGradientMagnitudes(self, val)

 setMinGradientMagnitudes

 setTransformType(self, val)

 setTransformType

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.RgbdOdometry{ref: reference()}

Type that represents an RGBD.RgbdOdometry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used (in meters)

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used (in meters)

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff (in meters)

	iterCounts: [int].
Count of iterations on each pyramid level.

	minGradientMagnitudes: [float].
For each pyramid level the pixels will be filtered out
if they have gradient magnitude less than minGradientMagnitudes[level].

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	transformType: int.
Class of transformation

Return
	retval: RgbdOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, iterCounts[, minGradientMagnitudes[, maxPointsPart[, transformType]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 minDepth: term(),
 iterCounts: term(),
 maxPointsPart: term(),
 maxDepthDiff: term(),
 transformType: term(),
 minGradientMagnitudes: term(),
 cameraMatrix: term(),
 maxDepth: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	cameraMatrix: Evision.Mat.t().
Camera matrix

	minDepth: float.
Pixels with depth less than minDepth will not be used (in meters)

	maxDepth: float.
Pixels with depth larger than maxDepth will not be used (in meters)

	maxDepthDiff: float.
Correspondences between pixels of two given frames will be filtered out
if their depth difference is larger than maxDepthDiff (in meters)

	iterCounts: [int].
Count of iterations on each pyramid level.

	minGradientMagnitudes: [float].
For each pyramid level the pixels will be filtered out
if they have gradient magnitude less than minGradientMagnitudes[level].

	maxPointsPart: float.
The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart

	transformType: int.
Class of transformation

Return
	retval: RgbdOdometry

Constructor.
Python prototype (for reference only):
create([, cameraMatrix[, minDepth[, maxDepth[, maxDepthDiff[, iterCounts[, minGradientMagnitudes[, maxPointsPart[, transformType]]]]]]]]) -> retval

 Link to this function

 getCameraMatrix(self)

 View Source

 @spec getCameraMatrix(t()) :: Evision.Mat.t() | {:error, String.t()}

getCameraMatrix
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getCameraMatrix() -> retval

 Link to this function

 getIterationCounts(self)

 View Source

 @spec getIterationCounts(t()) :: Evision.Mat.t() | {:error, String.t()}

getIterationCounts
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getIterationCounts() -> retval

 Link to this function

 getMaxDepth(self)

 View Source

 @spec getMaxDepth(t()) :: number() | {:error, String.t()}

getMaxDepth
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepth() -> retval

 Link to this function

 getMaxDepthDiff(self)

 View Source

 @spec getMaxDepthDiff(t()) :: number() | {:error, String.t()}

getMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxDepthDiff() -> retval

 Link to this function

 getMaxPointsPart(self)

 View Source

 @spec getMaxPointsPart(t()) :: number() | {:error, String.t()}

getMaxPointsPart
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxPointsPart() -> retval

 Link to this function

 getMaxRotation(self)

 View Source

 @spec getMaxRotation(t()) :: number() | {:error, String.t()}

getMaxRotation
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxRotation() -> retval

 Link to this function

 getMaxTranslation(self)

 View Source

 @spec getMaxTranslation(t()) :: number() | {:error, String.t()}

getMaxTranslation
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMaxTranslation() -> retval

 Link to this function

 getMinDepth(self)

 View Source

 @spec getMinDepth(t()) :: number() | {:error, String.t()}

getMinDepth
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: double

Python prototype (for reference only):
getMinDepth() -> retval

 Link to this function

 getMinGradientMagnitudes(self)

 View Source

 @spec getMinGradientMagnitudes(t()) :: Evision.Mat.t() | {:error, String.t()}

getMinGradientMagnitudes
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getMinGradientMagnitudes() -> retval

 Link to this function

 getTransformType(self)

 View Source

 @spec getTransformType(t()) :: integer() | {:error, String.t()}

getTransformType
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()

Return
	retval: int

Python prototype (for reference only):
getTransformType() -> retval

 Link to this function

 prepareFrameCache(self, frame, cacheType)

 View Source

 @spec prepareFrameCache(t(), Evision.RGBD.OdometryFrame.t(), integer()) ::
 {number(), number()} | {:error, String.t()}

prepareFrameCache
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	frame: OdometryFrame
	cacheType: int

Return
	retval: Size

Python prototype (for reference only):
prepareFrameCache(frame, cacheType) -> retval

 Link to this function

 setCameraMatrix(self, val)

 View Source

 @spec setCameraMatrix(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setCameraMatrix
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setCameraMatrix(val) -> None

 Link to this function

 setIterationCounts(self, val)

 View Source

 @spec setIterationCounts(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setIterationCounts
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setIterationCounts(val) -> None

 Link to this function

 setMaxDepth(self, val)

 View Source

 @spec setMaxDepth(t(), number()) :: t() | {:error, String.t()}

setMaxDepth
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepth(val) -> None

 Link to this function

 setMaxDepthDiff(self, val)

 View Source

 @spec setMaxDepthDiff(t(), number()) :: t() | {:error, String.t()}

setMaxDepthDiff
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMaxDepthDiff(val) -> None

 Link to this function

 setMaxPointsPart(self, val)

 View Source

 @spec setMaxPointsPart(t(), number()) :: t() | {:error, String.t()}

setMaxPointsPart
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMaxPointsPart(val) -> None

 Link to this function

 setMaxRotation(self, val)

 View Source

 @spec setMaxRotation(t(), number()) :: t() | {:error, String.t()}

setMaxRotation
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMaxRotation(val) -> None

 Link to this function

 setMaxTranslation(self, val)

 View Source

 @spec setMaxTranslation(t(), number()) :: t() | {:error, String.t()}

setMaxTranslation
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMaxTranslation(val) -> None

 Link to this function

 setMinDepth(self, val)

 View Source

 @spec setMinDepth(t(), number()) :: t() | {:error, String.t()}

setMinDepth
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: double

Python prototype (for reference only):
setMinDepth(val) -> None

 Link to this function

 setMinGradientMagnitudes(self, val)

 View Source

 @spec setMinGradientMagnitudes(t(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

setMinGradientMagnitudes
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: Evision.Mat.t()

Python prototype (for reference only):
setMinGradientMagnitudes(val) -> None

 Link to this function

 setTransformType(self, val)

 View Source

 @spec setTransformType(t(), integer()) :: t() | {:error, String.t()}

setTransformType
Positional Arguments
	self: Evision.RGBD.RgbdOdometry.t()
	val: int

Python prototype (for reference only):
setTransformType(val) -> None

 Evision.RGBD.RgbdPlane - Evision v0.1.39

Evision.RGBD.RgbdPlane

 Summary

 Types

 t()

 Type that represents an RGBD.RgbdPlane struct.

 Functions

 apply(self, points3d)

 apply

 apply(self, points3d, opts)

 Variant 1:
apply

 apply(self, points3d, normals, opts)

 apply

 clear(self)

 Clears the algorithm state

 create(method, block_size, min_size, threshold)

 create

 create(method, block_size, min_size, threshold, opts)

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBlockSize(self)

 getBlockSize

 getDefaultName(self)

 getDefaultName

 getMethod(self)

 getMethod

 getMinSize(self)

 getMinSize

 getSensorErrorA(self)

 getSensorErrorA

 getSensorErrorB(self)

 getSensorErrorB

 getSensorErrorC(self)

 getSensorErrorC

 getThreshold(self)

 getThreshold

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBlockSize(self, val)

 setBlockSize

 setMethod(self, val)

 setMethod

 setMinSize(self, val)

 setMinSize

 setSensorErrorA(self, val)

 setSensorErrorA

 setSensorErrorB(self, val)

 setSensorErrorB

 setSensorErrorC(self, val)

 setSensorErrorC

 setThreshold(self, val)

 setThreshold

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RGBD.RgbdPlane{ref: reference()}

Type that represents an RGBD.RgbdPlane struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, points3d)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

	points3d: Evision.Mat.t().
the 3d points organized like the depth image: rows x cols with 3 channels

Return
	mask: Evision.Mat.t().
An image where each pixel is labeled with the plane it belongs to
and 255 if it does not belong to any plane

	plane_coefficients: Evision.Mat.t().
the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0

Find The planes in a depth image but without doing a normal check, which is faster but less accurate
Python prototype (for reference only):
apply(points3d[, mask[, plane_coefficients]]) -> mask, plane_coefficients

 Link to this function

 apply(self, points3d, opts)

 View Source

 @spec apply(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

 @spec apply(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
apply
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

	points3d: Evision.Mat.t().
the 3d points organized like the depth image: rows x cols with 3 channels

	normals: Evision.Mat.t().
the normals for every point in the depth image

Return
	mask: Evision.Mat.t().
An image where each pixel is labeled with the plane it belongs to
and 255 if it does not belong to any plane

	plane_coefficients: Evision.Mat.t().
the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
and c < 0 (so that the normal points towards the camera)

Find The planes in a depth image
Python prototype (for reference only):
apply(points3d, normals[, mask[, plane_coefficients]]) -> mask, plane_coefficients
Variant 2:
apply
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

	points3d: Evision.Mat.t().
the 3d points organized like the depth image: rows x cols with 3 channels

Return
	mask: Evision.Mat.t().
An image where each pixel is labeled with the plane it belongs to
and 255 if it does not belong to any plane

	plane_coefficients: Evision.Mat.t().
the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0

Find The planes in a depth image but without doing a normal check, which is faster but less accurate
Python prototype (for reference only):
apply(points3d[, mask[, plane_coefficients]]) -> mask, plane_coefficients

 Link to this function

 apply(self, points3d, normals, opts)

 View Source

 @spec apply(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

apply
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

	points3d: Evision.Mat.t().
the 3d points organized like the depth image: rows x cols with 3 channels

	normals: Evision.Mat.t().
the normals for every point in the depth image

Return
	mask: Evision.Mat.t().
An image where each pixel is labeled with the plane it belongs to
and 255 if it does not belong to any plane

	plane_coefficients: Evision.Mat.t().
the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1
and c < 0 (so that the normal points towards the camera)

Find The planes in a depth image
Python prototype (for reference only):
apply(points3d, normals[, mask[, plane_coefficients]]) -> mask, plane_coefficients

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create(method, block_size, min_size, threshold)

 View Source

 @spec create(integer(), integer(), integer(), number()) :: t() | {:error, String.t()}

create
Positional Arguments
	method: int.
The method to use to compute the planes.

	block_size: int.
The size of the blocks to look at for a stable MSE

	min_size: int.
The minimum size of a cluster to be considered a plane

	threshold: double.
The maximum distance of a point from a plane to belong to it (in meters)

Keyword Arguments
	sensor_error_a: double.
coefficient of the sensor error. 0 by default, 0.0075 for a Kinect

	sensor_error_b: double.
coefficient of the sensor error. 0 by default

	sensor_error_c: double.
coefficient of the sensor error. 0 by default

Return
	retval: RgbdPlane

Constructor
Python prototype (for reference only):
create(method, block_size, min_size, threshold[, sensor_error_a[, sensor_error_b[, sensor_error_c]]]) -> retval

 Link to this function

 create(method, block_size, min_size, threshold, opts)

 View Source

 @spec create(
 integer(),
 integer(),
 integer(),
 number(),
 [sensor_error_b: term(), sensor_error_c: term(), sensor_error_a: term()] | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	method: int.
The method to use to compute the planes.

	block_size: int.
The size of the blocks to look at for a stable MSE

	min_size: int.
The minimum size of a cluster to be considered a plane

	threshold: double.
The maximum distance of a point from a plane to belong to it (in meters)

Keyword Arguments
	sensor_error_a: double.
coefficient of the sensor error. 0 by default, 0.0075 for a Kinect

	sensor_error_b: double.
coefficient of the sensor error. 0 by default

	sensor_error_c: double.
coefficient of the sensor error. 0 by default

Return
	retval: RgbdPlane

Constructor
Python prototype (for reference only):
create(method, block_size, min_size, threshold[, sensor_error_a[, sensor_error_b[, sensor_error_c]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMethod(self)

 View Source

 @spec getMethod(t()) :: integer() | {:error, String.t()}

getMethod
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: int

Python prototype (for reference only):
getMethod() -> retval

 Link to this function

 getMinSize(self)

 View Source

 @spec getMinSize(t()) :: integer() | {:error, String.t()}

getMinSize
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: int

Python prototype (for reference only):
getMinSize() -> retval

 Link to this function

 getSensorErrorA(self)

 View Source

 @spec getSensorErrorA(t()) :: number() | {:error, String.t()}

getSensorErrorA
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: double

Python prototype (for reference only):
getSensorErrorA() -> retval

 Link to this function

 getSensorErrorB(self)

 View Source

 @spec getSensorErrorB(t()) :: number() | {:error, String.t()}

getSensorErrorB
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: double

Python prototype (for reference only):
getSensorErrorB() -> retval

 Link to this function

 getSensorErrorC(self)

 View Source

 @spec getSensorErrorC(t()) :: number() | {:error, String.t()}

getSensorErrorC
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: double

Python prototype (for reference only):
getSensorErrorC() -> retval

 Link to this function

 getThreshold(self)

 View Source

 @spec getThreshold(t()) :: number() | {:error, String.t()}

getThreshold
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()

Return
	retval: double

Python prototype (for reference only):
getThreshold() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBlockSize(self, val)

 View Source

 @spec setBlockSize(t(), integer()) :: t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: int

Python prototype (for reference only):
setBlockSize(val) -> None

 Link to this function

 setMethod(self, val)

 View Source

 @spec setMethod(t(), integer()) :: t() | {:error, String.t()}

setMethod
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: int

Python prototype (for reference only):
setMethod(val) -> None

 Link to this function

 setMinSize(self, val)

 View Source

 @spec setMinSize(t(), integer()) :: t() | {:error, String.t()}

setMinSize
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: int

Python prototype (for reference only):
setMinSize(val) -> None

 Link to this function

 setSensorErrorA(self, val)

 View Source

 @spec setSensorErrorA(t(), number()) :: t() | {:error, String.t()}

setSensorErrorA
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: double

Python prototype (for reference only):
setSensorErrorA(val) -> None

 Link to this function

 setSensorErrorB(self, val)

 View Source

 @spec setSensorErrorB(t(), number()) :: t() | {:error, String.t()}

setSensorErrorB
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: double

Python prototype (for reference only):
setSensorErrorB(val) -> None

 Link to this function

 setSensorErrorC(self, val)

 View Source

 @spec setSensorErrorC(t(), number()) :: t() | {:error, String.t()}

setSensorErrorC
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: double

Python prototype (for reference only):
setSensorErrorC(val) -> None

 Link to this function

 setThreshold(self, val)

 View Source

 @spec setThreshold(t(), number()) :: t() | {:error, String.t()}

setThreshold
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	val: double

Python prototype (for reference only):
setThreshold(val) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.RGBD.RgbdPlane.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Rapid - Evision v0.1.39

Evision.Rapid

 Summary

 Types

 t()

 Type that represents an Rapid struct.

 Functions

 convertCorrespondencies(cols, srcLocations)

 convertCorrespondencies

 convertCorrespondencies(cols, srcLocations, opts)

 convertCorrespondencies

 drawCorrespondencies(bundle, cols)

 drawCorrespondencies

 drawCorrespondencies(bundle, cols, opts)

 drawCorrespondencies

 drawSearchLines(img, locations, color)

 drawSearchLines

 drawWireframe(img, pts2d, tris, color)

 drawWireframe

 drawWireframe(img, pts2d, tris, color, opts)

 drawWireframe

 extractControlPoints(num, len, pts3d, rvec, tvec, k, imsize, tris)

 extractControlPoints

 extractControlPoints(num, len, pts3d, rvec, tvec, k, imsize, tris, opts)

 extractControlPoints

 extractLineBundle(len, ctl2d, img)

 extractLineBundle

 extractLineBundle(len, ctl2d, img, opts)

 extractLineBundle

 findCorrespondencies(bundle)

 findCorrespondencies

 findCorrespondencies(bundle, opts)

 findCorrespondencies

 rapid(img, num, len, pts3d, tris, k, rvec, tvec)

 rapid

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Rapid{ref: reference()}

Type that represents an Rapid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 convertCorrespondencies(cols, srcLocations)

 View Source

 @spec convertCorrespondencies(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

convertCorrespondencies
Positional Arguments
	cols: Evision.Mat.t().
correspondence-position per line in line-bundle-space

	srcLocations: Evision.Mat.t().
the source image location

Keyword Arguments
	mask: Evision.Mat.t().
mask containing non-zero values for the elements to be retained

Return
	pts2d: Evision.Mat.t().
2d points

	pts3d: Evision.Mat.t().
3d points

 Collect corresponding 2d and 3d points based on correspondencies and mask
Python prototype (for reference only):
convertCorrespondencies(cols, srcLocations[, pts2d[, pts3d[, mask]]]) -> pts2d, pts3d

 Link to this function

 convertCorrespondencies(cols, srcLocations, opts)

 View Source

 @spec convertCorrespondencies(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

convertCorrespondencies
Positional Arguments
	cols: Evision.Mat.t().
correspondence-position per line in line-bundle-space

	srcLocations: Evision.Mat.t().
the source image location

Keyword Arguments
	mask: Evision.Mat.t().
mask containing non-zero values for the elements to be retained

Return
	pts2d: Evision.Mat.t().
2d points

	pts3d: Evision.Mat.t().
3d points

 Collect corresponding 2d and 3d points based on correspondencies and mask
Python prototype (for reference only):
convertCorrespondencies(cols, srcLocations[, pts2d[, pts3d[, mask]]]) -> pts2d, pts3d

 Link to this function

 drawCorrespondencies(bundle, cols)

 View Source

 @spec drawCorrespondencies(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

drawCorrespondencies
Positional Arguments
	cols: Evision.Mat.t().
column coordinates in the line bundle

Keyword Arguments
	colors: Evision.Mat.t().
colors for the markers. Defaults to white.

Return
	bundle: Evision.Mat.t().
the lineBundle

 Debug draw markers of matched correspondences onto a lineBundle
Python prototype (for reference only):
drawCorrespondencies(bundle, cols[, colors]) -> bundle

 Link to this function

 drawCorrespondencies(bundle, cols, opts)

 View Source

 @spec drawCorrespondencies(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:colors, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

drawCorrespondencies
Positional Arguments
	cols: Evision.Mat.t().
column coordinates in the line bundle

Keyword Arguments
	colors: Evision.Mat.t().
colors for the markers. Defaults to white.

Return
	bundle: Evision.Mat.t().
the lineBundle

 Debug draw markers of matched correspondences onto a lineBundle
Python prototype (for reference only):
drawCorrespondencies(bundle, cols[, colors]) -> bundle

 Link to this function

 drawSearchLines(img, locations, color)

 View Source

 @spec drawSearchLines(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

drawSearchLines
Positional Arguments
	locations: Evision.Mat.t().
the source locations of a line bundle

	color: Scalar.
the line color

Return
	img: Evision.Mat.t().
the output image

 Debug draw search lines onto an image
Python prototype (for reference only):
drawSearchLines(img, locations, color) -> img

 Link to this function

 drawWireframe(img, pts2d, tris, color)

 View Source

 @spec drawWireframe(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

drawWireframe
Positional Arguments
	pts2d: Evision.Mat.t().
the 2d points obtained by @ref projectPoints

	tris: Evision.Mat.t().
triangle face connectivity

	color: Scalar.
line color

Keyword Arguments
	type: int.
line type. See @ref LineTypes.

	cullBackface: bool.
enable back-face culling based on CCW order

Return
	img: Evision.Mat.t().
the output image

 Draw a wireframe of a triangle mesh
Python prototype (for reference only):
drawWireframe(img, pts2d, tris, color[, type[, cullBackface]]) -> img

 Link to this function

 drawWireframe(img, pts2d, tris, color, opts)

 View Source

 @spec drawWireframe(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [cullBackface: term(), type: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

drawWireframe
Positional Arguments
	pts2d: Evision.Mat.t().
the 2d points obtained by @ref projectPoints

	tris: Evision.Mat.t().
triangle face connectivity

	color: Scalar.
line color

Keyword Arguments
	type: int.
line type. See @ref LineTypes.

	cullBackface: bool.
enable back-face culling based on CCW order

Return
	img: Evision.Mat.t().
the output image

 Draw a wireframe of a triangle mesh
Python prototype (for reference only):
drawWireframe(img, pts2d, tris, color[, type[, cullBackface]]) -> img

 Link to this function

 extractControlPoints(num, len, pts3d, rvec, tvec, k, imsize, tris)

 View Source

 @spec extractControlPoints(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

extractControlPoints
Positional Arguments
	num: int.
number of control points

	len: int.
search radius (used to restrict the ROI)

	pts3d: Evision.Mat.t().
the 3D points of the mesh

	rvec: Evision.Mat.t().
rotation between mesh and camera

	tvec: Evision.Mat.t().
translation between mesh and camera

	k: Evision.Mat.t().
camera intrinsic

	imsize: Size.
size of the video frame

	tris: Evision.Mat.t().
triangle face connectivity

Return
	ctl2d: Evision.Mat.t().
the 2D locations of the control points

	ctl3d: Evision.Mat.t().
matching 3D points of the mesh

 Extract control points from the projected silhouette of a mesh
 see @cite drummond2002real Sec 2.1, Step b
Python prototype (for reference only):
extractControlPoints(num, len, pts3d, rvec, tvec, K, imsize, tris[, ctl2d[, ctl3d]]) -> ctl2d, ctl3d

 Link to this function

 extractControlPoints(num, len, pts3d, rvec, tvec, k, imsize, tris, opts)

 View Source

 @spec extractControlPoints(
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

extractControlPoints
Positional Arguments
	num: int.
number of control points

	len: int.
search radius (used to restrict the ROI)

	pts3d: Evision.Mat.t().
the 3D points of the mesh

	rvec: Evision.Mat.t().
rotation between mesh and camera

	tvec: Evision.Mat.t().
translation between mesh and camera

	k: Evision.Mat.t().
camera intrinsic

	imsize: Size.
size of the video frame

	tris: Evision.Mat.t().
triangle face connectivity

Return
	ctl2d: Evision.Mat.t().
the 2D locations of the control points

	ctl3d: Evision.Mat.t().
matching 3D points of the mesh

 Extract control points from the projected silhouette of a mesh
 see @cite drummond2002real Sec 2.1, Step b
Python prototype (for reference only):
extractControlPoints(num, len, pts3d, rvec, tvec, K, imsize, tris[, ctl2d[, ctl3d]]) -> ctl2d, ctl3d

 Link to this function

 extractLineBundle(len, ctl2d, img)

 View Source

 @spec extractLineBundle(
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

extractLineBundle
Positional Arguments
	len: int.
the search radius. The bundle will have 2*len + 1 columns.

	ctl2d: Evision.Mat.t().
the search lines will be centered at this points and orthogonal to the contour defined by
them. The bundle will have as many rows.

	img: Evision.Mat.t().
the image to read the pixel intensities values from

Return
	bundle: Evision.Mat.t().
line bundle image with size ctl2d.rows() x (2 * len + 1) and the same type as @p img

	srcLocations: Evision.Mat.t().
the source pixel locations of @p bundle in @p img as CV_16SC2

 Extract the line bundle from an image
Python prototype (for reference only):
extractLineBundle(len, ctl2d, img[, bundle[, srcLocations]]) -> bundle, srcLocations

 Link to this function

 extractLineBundle(len, ctl2d, img, opts)

 View Source

 @spec extractLineBundle(
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

extractLineBundle
Positional Arguments
	len: int.
the search radius. The bundle will have 2*len + 1 columns.

	ctl2d: Evision.Mat.t().
the search lines will be centered at this points and orthogonal to the contour defined by
them. The bundle will have as many rows.

	img: Evision.Mat.t().
the image to read the pixel intensities values from

Return
	bundle: Evision.Mat.t().
line bundle image with size ctl2d.rows() x (2 * len + 1) and the same type as @p img

	srcLocations: Evision.Mat.t().
the source pixel locations of @p bundle in @p img as CV_16SC2

 Extract the line bundle from an image
Python prototype (for reference only):
extractLineBundle(len, ctl2d, img[, bundle[, srcLocations]]) -> bundle, srcLocations

 Link to this function

 findCorrespondencies(bundle)

 View Source

 @spec findCorrespondencies(Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findCorrespondencies
Positional Arguments
	bundle: Evision.Mat.t().
the line bundle

Return
	cols: Evision.Mat.t().
correspondence-position per line in line-bundle-space

	response: Evision.Mat.t().
the sobel response for the selected point

 Find corresponding image locations by searching for a maximal sobel edge along the search line (a single
 row in the bundle)
Python prototype (for reference only):
findCorrespondencies(bundle[, cols[, response]]) -> cols, response

 Link to this function

 findCorrespondencies(bundle, opts)

 View Source

 @spec findCorrespondencies(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

findCorrespondencies
Positional Arguments
	bundle: Evision.Mat.t().
the line bundle

Return
	cols: Evision.Mat.t().
correspondence-position per line in line-bundle-space

	response: Evision.Mat.t().
the sobel response for the selected point

 Find corresponding image locations by searching for a maximal sobel edge along the search line (a single
 row in the bundle)
Python prototype (for reference only):
findCorrespondencies(bundle[, cols[, response]]) -> cols, response

 Link to this function

 rapid(img, num, len, pts3d, tris, k, rvec, tvec)

 View Source

 @spec rapid(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {number(), Evision.Mat.t(), Evision.Mat.t(), number()} | {:error, String.t()}

rapid
Positional Arguments
	img: Evision.Mat.t().
the video frame

	num: int.
number of search lines

	len: int.
search line radius

	pts3d: Evision.Mat.t().
the 3D points of the mesh

	tris: Evision.Mat.t().
triangle face connectivity

	k: Evision.Mat.t().
camera matrix

Return
	retval: float

	rvec: Evision.Mat.t().
rotation between mesh and camera. Input values are used as an initial solution.

	tvec: Evision.Mat.t().
translation between mesh and camera. Input values are used as an initial solution.

	rmsd: double*.
the 2d reprojection difference

 High level function to execute a single rapid @cite harris1990rapid iteration
	@ref extractControlPoints
	@ref extractLineBundle
	@ref findCorrespondencies
	@ref convertCorrespondencies
	@ref solvePnPRefineLM
@return ratio of search lines that could be extracted and matched

Python prototype (for reference only):
rapid(img, num, len, pts3d, tris, K, rvec, tvec) -> retval, rvec, tvec, rmsd

 Evision.Rapid.GOSTracker - Evision v0.1.39

Evision.Rapid.GOSTracker

 Summary

 Types

 t()

 Type that represents an Rapid.GOSTracker struct.

 Functions

 create(pts3d, tris)

 create

 create(pts3d, tris, opts)

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Rapid.GOSTracker{ref: reference()}

Type that represents an Rapid.GOSTracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(pts3d, tris)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Rapid.OLSTracker.t() | {:error, String.t()}

create
Positional Arguments
	pts3d: Evision.Mat.t()
	tris: Evision.Mat.t()

Keyword Arguments
	histBins: int.
	sobelThesh: uchar.

Return
	retval: OLSTracker

Python prototype (for reference only):
create(pts3d, tris[, histBins[, sobelThesh]]) -> retval

 Link to this function

 create(pts3d, tris, opts)

 View Source

 @spec create(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [sobelThesh: term(), histBins: term()] | nil
) :: Evision.Rapid.OLSTracker.t() | {:error, String.t()}

create
Positional Arguments
	pts3d: Evision.Mat.t()
	tris: Evision.Mat.t()

Keyword Arguments
	histBins: int.
	sobelThesh: uchar.

Return
	retval: OLSTracker

Python prototype (for reference only):
create(pts3d, tris[, histBins[, sobelThesh]]) -> retval

 Evision.Rapid.OLSTracker - Evision v0.1.39

Evision.Rapid.OLSTracker

 Summary

 Types

 t()

 Type that represents an Rapid.OLSTracker struct.

 Functions

 create(pts3d, tris)

 create

 create(pts3d, tris, opts)

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Rapid.OLSTracker{ref: reference()}

Type that represents an Rapid.OLSTracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(pts3d, tris)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

create
Positional Arguments
	pts3d: Evision.Mat.t()
	tris: Evision.Mat.t()

Keyword Arguments
	histBins: int.
	sobelThesh: uchar.

Return
	retval: OLSTracker

Python prototype (for reference only):
create(pts3d, tris[, histBins[, sobelThesh]]) -> retval

 Link to this function

 create(pts3d, tris, opts)

 View Source

 @spec create(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [sobelThesh: term(), histBins: term()] | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	pts3d: Evision.Mat.t()
	tris: Evision.Mat.t()

Keyword Arguments
	histBins: int.
	sobelThesh: uchar.

Return
	retval: OLSTracker

Python prototype (for reference only):
create(pts3d, tris[, histBins[, sobelThesh]]) -> retval

 Evision.Rapid.Rapid - Evision v0.1.39

Evision.Rapid.Rapid

 Summary

 Types

 t()

 Type that represents an Rapid.Rapid struct.

 Functions

 create(pts3d, tris)

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Rapid.Rapid{ref: reference()}

Type that represents an Rapid.Rapid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(pts3d, tris)

 View Source

 @spec create(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

create
Positional Arguments
	pts3d: Evision.Mat.t()
	tris: Evision.Mat.t()

Return
	retval: Rapid

Python prototype (for reference only):
create(pts3d, tris) -> retval

 Evision.Rapid.Tracker - Evision v0.1.39

Evision.Rapid.Tracker

 Summary

 Types

 t()

 Type that represents an Rapid.Tracker struct.

 Functions

 clear(self)

 Clears the algorithm state

 clearState(self)

 clearState

 compute(self, img, num, len, k, rvec, tvec)

 compute

 compute(self, img, num, len, k, rvec, tvec, opts)

 compute

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Rapid.Tracker{ref: reference()}

Type that represents an Rapid.Tracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Rapid.Tracker.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clearState(self)

 View Source

 @spec clearState(Evision.Tracker.t()) :: Evision.Tracker.t() | {:error, String.t()}

clearState
Positional Arguments
	self: Evision.Rapid.Tracker.t()

Python prototype (for reference only):
clearState() -> None

 Link to this function

 compute(self, img, num, len, k, rvec, tvec)

 View Source

 @spec compute(
 Evision.Tracker.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

compute
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	img: Evision.Mat.t()
	num: int
	len: int
	k: Evision.Mat.t()

Keyword Arguments
	termcrit: TermCriteria.

Return
	retval: float
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()

Python prototype (for reference only):
compute(img, num, len, K, rvec, tvec[, termcrit]) -> retval, rvec, tvec

 Link to this function

 compute(self, img, num, len, k, rvec, tvec, opts)

 View Source

 @spec compute(
 Evision.Tracker.t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:termcrit, term()}] | nil
) :: {number(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

compute
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	img: Evision.Mat.t()
	num: int
	len: int
	k: Evision.Mat.t()

Keyword Arguments
	termcrit: TermCriteria.

Return
	retval: float
	rvec: Evision.Mat.t()
	tvec: Evision.Mat.t()

Python prototype (for reference only):
compute(img, num, len, K, rvec, tvec[, termcrit]) -> retval, rvec, tvec

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Rapid.Tracker.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Rapid.Tracker.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Rapid.Tracker.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Reg - Evision v0.1.39

Evision.Reg

 Summary

 Types

 t()

 Type that represents an Reg struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg{ref: reference()}

Type that represents an Reg struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Reg.Map - Evision v0.1.39

Evision.Reg.Map

 Summary

 Types

 t()

 Type that represents an Reg.Map struct.

 Functions

 compose(self, map)

 compose

 inverseMap(self)

 inverseMap

 inverseWarp(self, img1)

 inverseWarp

 inverseWarp(self, img1, opts)

 inverseWarp

 scale(self, factor)

 scale

 warp(self, img1)

 warp

 warp(self, img1, opts)

 warp

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.Map{ref: reference()}

Type that represents an Reg.Map struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compose(self, map)

 View Source

 @spec compose(t(), t()) :: t() | {:error, String.t()}

compose
Positional Arguments
	self: Evision.Reg.Map.t()
	map: Map

Python prototype (for reference only):
compose(map) -> None

 Link to this function

 inverseMap(self)

 View Source

 @spec inverseMap(t()) :: t() | {:error, String.t()}

inverseMap
Positional Arguments
	self: Evision.Reg.Map.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
inverseMap() -> retval

 Link to this function

 inverseWarp(self, img1)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.Map.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 inverseWarp(self, img1, opts)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.Map.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 scale(self, factor)

 View Source

 @spec scale(t(), number()) :: t() | {:error, String.t()}

scale
Positional Arguments
	self: Evision.Reg.Map.t()
	factor: double

Python prototype (for reference only):
scale(factor) -> None

 Link to this function

 warp(self, img1)

 View Source

 @spec warp(t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

warp
Positional Arguments
	self: Evision.Reg.Map.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
warp(img1[, img2]) -> img2

 Link to this function

 warp(self, img1, opts)

 View Source

 @spec warp(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

warp
Positional Arguments
	self: Evision.Reg.Map.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
warp(img1[, img2]) -> img2

 Evision.Reg.MapAffine - Evision v0.1.39

Evision.Reg.MapAffine

 Summary

 Types

 t()

 Type that represents an Reg.MapAffine struct.

 Functions

 compose(self, map)

 compose

 getLinTr(self)

 getLinTr

 getLinTr(self, opts)

 getLinTr

 getShift(self)

 getShift

 getShift(self, opts)

 getShift

 inverseMap(self)

 inverseMap

 inverseWarp(self, img1)

 inverseWarp

 inverseWarp(self, img1, opts)

 inverseWarp

 mapAffine()

 MapAffine

 mapAffine(linTr, shift)

 MapAffine

 scale(self, factor)

 scale

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapAffine{ref: reference()}

Type that represents an Reg.MapAffine struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compose(self, map)

 View Source

 @spec compose(t(), Evision.Reg.Map.t()) :: t() | {:error, String.t()}

compose
Positional Arguments
	self: Evision.Reg.MapAffine.t()
	map: Map

Python prototype (for reference only):
compose(map) -> None

 Link to this function

 getLinTr(self)

 View Source

 @spec getLinTr(t()) :: Evision.Mat.t() | {:error, String.t()}

getLinTr
Positional Arguments
	self: Evision.Reg.MapAffine.t()

Return
	linTr: Evision.Mat.t().

Python prototype (for reference only):
getLinTr([, linTr]) -> linTr

 Link to this function

 getLinTr(self, opts)

 View Source

 @spec getLinTr(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getLinTr
Positional Arguments
	self: Evision.Reg.MapAffine.t()

Return
	linTr: Evision.Mat.t().

Python prototype (for reference only):
getLinTr([, linTr]) -> linTr

 Link to this function

 getShift(self)

 View Source

 @spec getShift(t()) :: Evision.Mat.t() | {:error, String.t()}

getShift
Positional Arguments
	self: Evision.Reg.MapAffine.t()

Return
	shift: Evision.Mat.t().

Python prototype (for reference only):
getShift([, shift]) -> shift

 Link to this function

 getShift(self, opts)

 View Source

 @spec getShift(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getShift
Positional Arguments
	self: Evision.Reg.MapAffine.t()

Return
	shift: Evision.Mat.t().

Python prototype (for reference only):
getShift([, shift]) -> shift

 Link to this function

 inverseMap(self)

 View Source

 @spec inverseMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

inverseMap
Positional Arguments
	self: Evision.Reg.MapAffine.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
inverseMap() -> retval

 Link to this function

 inverseWarp(self, img1)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapAffine.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 inverseWarp(self, img1, opts)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapAffine.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 mapAffine()

 View Source

 @spec mapAffine() :: t() | {:error, String.t()}

MapAffine
Return
	self: MapAffine

Python prototype (for reference only):
MapAffine() -> <reg_MapAffine object>

 Link to this function

 mapAffine(linTr, shift)

 View Source

 @spec mapAffine(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

MapAffine
Positional Arguments
	linTr: Evision.Mat.t()
	shift: Evision.Mat.t()

Return
	self: MapAffine

Python prototype (for reference only):
MapAffine(linTr, shift) -> <reg_MapAffine object>

 Link to this function

 scale(self, factor)

 View Source

 @spec scale(t(), number()) :: t() | {:error, String.t()}

scale
Positional Arguments
	self: Evision.Reg.MapAffine.t()
	factor: double

Python prototype (for reference only):
scale(factor) -> None

 Evision.Reg.MapProjec - Evision v0.1.39

Evision.Reg.MapProjec

 Summary

 Types

 t()

 Type that represents an Reg.MapProjec struct.

 Functions

 compose(self, map)

 compose

 getProjTr(self)

 getProjTr

 getProjTr(self, opts)

 getProjTr

 inverseMap(self)

 inverseMap

 inverseWarp(self, img1)

 inverseWarp

 inverseWarp(self, img1, opts)

 inverseWarp

 mapProjec()

 MapProjec

 mapProjec(projTr)

 MapProjec

 normalize(self)

 normalize

 scale(self, factor)

 scale

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapProjec{ref: reference()}

Type that represents an Reg.MapProjec struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compose(self, map)

 View Source

 @spec compose(t(), Evision.Reg.Map.t()) :: t() | {:error, String.t()}

compose
Positional Arguments
	self: Evision.Reg.MapProjec.t()
	map: Map

Python prototype (for reference only):
compose(map) -> None

 Link to this function

 getProjTr(self)

 View Source

 @spec getProjTr(t()) :: Evision.Mat.t() | {:error, String.t()}

getProjTr
Positional Arguments
	self: Evision.Reg.MapProjec.t()

Return
	projTr: Evision.Mat.t().

Python prototype (for reference only):
getProjTr([, projTr]) -> projTr

 Link to this function

 getProjTr(self, opts)

 View Source

 @spec getProjTr(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getProjTr
Positional Arguments
	self: Evision.Reg.MapProjec.t()

Return
	projTr: Evision.Mat.t().

Python prototype (for reference only):
getProjTr([, projTr]) -> projTr

 Link to this function

 inverseMap(self)

 View Source

 @spec inverseMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

inverseMap
Positional Arguments
	self: Evision.Reg.MapProjec.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
inverseMap() -> retval

 Link to this function

 inverseWarp(self, img1)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapProjec.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 inverseWarp(self, img1, opts)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapProjec.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 mapProjec()

 View Source

 @spec mapProjec() :: t() | {:error, String.t()}

MapProjec
Return
	self: MapProjec

Python prototype (for reference only):
MapProjec() -> <reg_MapProjec object>

 Link to this function

 mapProjec(projTr)

 View Source

 @spec mapProjec(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

MapProjec
Positional Arguments
	projTr: Evision.Mat.t()

Return
	self: MapProjec

Python prototype (for reference only):
MapProjec(projTr) -> <reg_MapProjec object>

 Link to this function

 normalize(self)

 View Source

 @spec normalize(t()) :: t() | {:error, String.t()}

normalize
Positional Arguments
	self: Evision.Reg.MapProjec.t()

Python prototype (for reference only):
normalize() -> None

 Link to this function

 scale(self, factor)

 View Source

 @spec scale(t(), number()) :: t() | {:error, String.t()}

scale
Positional Arguments
	self: Evision.Reg.MapProjec.t()
	factor: double

Python prototype (for reference only):
scale(factor) -> None

 Evision.Reg.MapShift - Evision v0.1.39

Evision.Reg.MapShift

 Summary

 Types

 t()

 Type that represents an Reg.MapShift struct.

 Functions

 compose(self, map)

 compose

 getShift(self)

 getShift

 getShift(self, opts)

 getShift

 inverseMap(self)

 inverseMap

 inverseWarp(self, img1)

 inverseWarp

 inverseWarp(self, img1, opts)

 inverseWarp

 mapShift()

 MapShift

 mapShift(shift)

 MapShift

 scale(self, factor)

 scale

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapShift{ref: reference()}

Type that represents an Reg.MapShift struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compose(self, map)

 View Source

 @spec compose(t(), Evision.Reg.Map.t()) :: t() | {:error, String.t()}

compose
Positional Arguments
	self: Evision.Reg.MapShift.t()
	map: Map

Python prototype (for reference only):
compose(map) -> None

 Link to this function

 getShift(self)

 View Source

 @spec getShift(t()) :: Evision.Mat.t() | {:error, String.t()}

getShift
Positional Arguments
	self: Evision.Reg.MapShift.t()

Return
	shift: Evision.Mat.t().

Python prototype (for reference only):
getShift([, shift]) -> shift

 Link to this function

 getShift(self, opts)

 View Source

 @spec getShift(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

getShift
Positional Arguments
	self: Evision.Reg.MapShift.t()

Return
	shift: Evision.Mat.t().

Python prototype (for reference only):
getShift([, shift]) -> shift

 Link to this function

 inverseMap(self)

 View Source

 @spec inverseMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

inverseMap
Positional Arguments
	self: Evision.Reg.MapShift.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
inverseMap() -> retval

 Link to this function

 inverseWarp(self, img1)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapShift.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 inverseWarp(self, img1, opts)

 View Source

 @spec inverseWarp(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

inverseWarp
Positional Arguments
	self: Evision.Reg.MapShift.t()
	img1: Evision.Mat.t()

Return
	img2: Evision.Mat.t().

Python prototype (for reference only):
inverseWarp(img1[, img2]) -> img2

 Link to this function

 mapShift()

 View Source

 @spec mapShift() :: t() | {:error, String.t()}

MapShift
Return
	self: MapShift

Python prototype (for reference only):
MapShift() -> <reg_MapShift object>

 Link to this function

 mapShift(shift)

 View Source

 @spec mapShift(Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

MapShift
Positional Arguments
	shift: Evision.Mat.t()

Return
	self: MapShift

Python prototype (for reference only):
MapShift(shift) -> <reg_MapShift object>

 Link to this function

 scale(self, factor)

 View Source

 @spec scale(t(), number()) :: t() | {:error, String.t()}

scale
Positional Arguments
	self: Evision.Reg.MapShift.t()
	factor: double

Python prototype (for reference only):
scale(factor) -> None

 Evision.Reg.MapTypeCaster - Evision v0.1.39

Evision.Reg.MapTypeCaster

 Summary

 Types

 t()

 Type that represents an Reg.MapTypeCaster struct.

 Functions

 toAffine(sourceMap)

 toAffine

 toProjec(sourceMap)

 toProjec

 toShift(sourceMap)

 toShift

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapTypeCaster{ref: reference()}

Type that represents an Reg.MapTypeCaster struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 toAffine(sourceMap)

 View Source

 @spec toAffine(Evision.Reg.Map.t()) ::
 Evision.Reg.MapAffine.t() | {:error, String.t()}

toAffine
Positional Arguments
	sourceMap: Map

Return
	retval: MapAffine

Python prototype (for reference only):
toAffine(sourceMap) -> retval

 Link to this function

 toProjec(sourceMap)

 View Source

 @spec toProjec(Evision.Reg.Map.t()) ::
 Evision.Reg.MapProjec.t() | {:error, String.t()}

toProjec
Positional Arguments
	sourceMap: Map

Return
	retval: MapProjec

Python prototype (for reference only):
toProjec(sourceMap) -> retval

 Link to this function

 toShift(sourceMap)

 View Source

 @spec toShift(Evision.Reg.Map.t()) :: Evision.Reg.MapShift.t() | {:error, String.t()}

toShift
Positional Arguments
	sourceMap: Map

Return
	retval: MapShift

Python prototype (for reference only):
toShift(sourceMap) -> retval

 Evision.Reg.Mapper - Evision v0.1.39

Evision.Reg.Mapper

 Summary

 Types

 t()

 Type that represents an Reg.Mapper struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.Mapper{ref: reference()}

Type that represents an Reg.Mapper struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.Mapper.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.Mapper.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.Mapper.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Evision.Reg.MapperGradAffine - Evision v0.1.39

Evision.Reg.MapperGradAffine

 Summary

 Types

 t()

 Type that represents an Reg.MapperGradAffine struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

 mapperGradAffine()

 MapperGradAffine

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperGradAffine{ref: reference()}

Type that represents an Reg.MapperGradAffine struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradAffine.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradAffine.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperGradAffine.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperGradAffine()

 View Source

 @spec mapperGradAffine() :: t() | {:error, String.t()}

MapperGradAffine
Return
	self: MapperGradAffine

Python prototype (for reference only):
MapperGradAffine() -> <reg_MapperGradAffine object>

 Evision.Reg.MapperGradEuclid - Evision v0.1.39

Evision.Reg.MapperGradEuclid

 Summary

 Types

 t()

 Type that represents an Reg.MapperGradEuclid struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

 mapperGradEuclid()

 MapperGradEuclid

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperGradEuclid{ref: reference()}

Type that represents an Reg.MapperGradEuclid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradEuclid.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradEuclid.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperGradEuclid.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperGradEuclid()

 View Source

 @spec mapperGradEuclid() :: t() | {:error, String.t()}

MapperGradEuclid
Return
	self: MapperGradEuclid

Python prototype (for reference only):
MapperGradEuclid() -> <reg_MapperGradEuclid object>

 Evision.Reg.MapperGradProj - Evision v0.1.39

Evision.Reg.MapperGradProj

 Summary

 Types

 t()

 Type that represents an Reg.MapperGradProj struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

 mapperGradProj()

 MapperGradProj

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperGradProj{ref: reference()}

Type that represents an Reg.MapperGradProj struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradProj.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradProj.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperGradProj.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperGradProj()

 View Source

 @spec mapperGradProj() :: t() | {:error, String.t()}

MapperGradProj
Return
	self: MapperGradProj

Python prototype (for reference only):
MapperGradProj() -> <reg_MapperGradProj object>

 Evision.Reg.MapperGradShift - Evision v0.1.39

Evision.Reg.MapperGradShift

 Summary

 Types

 t()

 Type that represents an Reg.MapperGradShift struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

 mapperGradShift()

 MapperGradShift

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperGradShift{ref: reference()}

Type that represents an Reg.MapperGradShift struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradShift.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradShift.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperGradShift.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperGradShift()

 View Source

 @spec mapperGradShift() :: t() | {:error, String.t()}

MapperGradShift
Return
	self: MapperGradShift

Python prototype (for reference only):
MapperGradShift() -> <reg_MapperGradShift object>

 Evision.Reg.MapperGradSimilar - Evision v0.1.39

Evision.Reg.MapperGradSimilar

 Summary

 Types

 t()

 Type that represents an Reg.MapperGradSimilar struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 getMap(self)

 getMap

 mapperGradSimilar()

 MapperGradSimilar

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperGradSimilar{ref: reference()}

Type that represents an Reg.MapperGradSimilar struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradSimilar.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperGradSimilar.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperGradSimilar.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperGradSimilar()

 View Source

 @spec mapperGradSimilar() :: t() | {:error, String.t()}

MapperGradSimilar
Return
	self: MapperGradSimilar

Python prototype (for reference only):
MapperGradSimilar() -> <reg_MapperGradSimilar object>

 Evision.Reg.MapperPyramid - Evision v0.1.39

Evision.Reg.MapperPyramid

 Summary

 Types

 t()

 Type that represents an Reg.MapperPyramid struct.

 Functions

 calculate(self, img1, img2)

 calculate

 calculate(self, img1, img2, opts)

 calculate

 get_numIterPerScale_(self)

 get_numLev_(self)

 getMap(self)

 getMap

 mapperPyramid(baseMapper)

 MapperPyramid

 set_numIterPerScale_(self, prop)

 set_numLev_(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Reg.MapperPyramid{ref: reference()}

Type that represents an Reg.MapperPyramid struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calculate(self, img1, img2)

 View Source

 @spec calculate(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperPyramid.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 calculate(self, img1, img2, opts)

 View Source

 @spec calculate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:init, term()}] | nil
) ::
 Evision.Reg.Map.t() | {:error, String.t()}

calculate
Positional Arguments
	self: Evision.Reg.MapperPyramid.t()
	img1: Evision.Mat.t()
	img2: Evision.Mat.t()

Keyword Arguments
	init: Map.

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
calculate(img1, img2[, init]) -> retval

 Link to this function

 get_numIterPerScale_(self)

 View Source

 @spec get_numIterPerScale_(t()) :: integer()

 Link to this function

 get_numLev_(self)

 View Source

 @spec get_numLev_(t()) :: integer()

 Link to this function

 getMap(self)

 View Source

 @spec getMap(t()) :: Evision.Reg.Map.t() | {:error, String.t()}

getMap
Positional Arguments
	self: Evision.Reg.MapperPyramid.t()

Return
	retval: cv::Ptr<Map>

Python prototype (for reference only):
getMap() -> retval

 Link to this function

 mapperPyramid(baseMapper)

 View Source

 @spec mapperPyramid(Evision.Reg.Mapper.t()) :: t() | {:error, String.t()}

MapperPyramid
Positional Arguments
	baseMapper: Mapper

Return
	self: MapperPyramid

Python prototype (for reference only):
MapperPyramid(baseMapper) -> <reg_MapperPyramid object>

 Link to this function

 set_numIterPerScale_(self, prop)

 View Source

 @spec set_numIterPerScale_(t(), integer()) :: t()

 Link to this function

 set_numLev_(self, prop)

 View Source

 @spec set_numLev_(t(), integer()) :: t()

 Evision.RotatedRect - Evision v0.1.39

Evision.RotatedRect

 Summary

 Types

 t()

 Type that represents an RotatedRect struct.

 Functions

 boundingRect(self)

 boundingRect

 get_angle(self)

 get_center(self)

 get_size(self)

 points(self)

 points

 rotatedRect()

 RotatedRect

 rotatedRect(point1, point2, point3)

 Variant 1:
RotatedRect

 set_angle(self, prop)

 set_center(self, prop)

 set_size(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.RotatedRect{ref: reference()}

Type that represents an RotatedRect struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 boundingRect(self)

 View Source

 @spec boundingRect(t()) ::
 {number(), number(), number(), number()} | {:error, String.t()}

boundingRect
Positional Arguments
	self: Evision.RotatedRect.t()

Return
	retval: Rect

Python prototype (for reference only):
boundingRect() -> retval

 Link to this function

 get_angle(self)

 View Source

 @spec get_angle({{number(), number()}, {number(), number()}, number()}) :: number()

 Link to this function

 get_center(self)

 View Source

 @spec get_center({{number(), number()}, {number(), number()}, number()}) ::
 {number(), number()}

 Link to this function

 get_size(self)

 View Source

 @spec get_size({{number(), number()}, {number(), number()}, number()}) ::
 {number(), number()}

 Link to this function

 points(self)

 View Source

 @spec points(t()) :: [{number(), number()}] | {:error, String.t()}

points
Positional Arguments
	self: Evision.RotatedRect.t()

Return
	pts: [Point2f].
The points array for storing rectangle vertices. The order is bottomLeft, topLeft, topRight, bottomRight.

returns 4 vertices of the rotated rectangle
Note: Bottom, Top, Left and Right sides refer to the original rectangle (angle is 0),
so after 180 degree rotation bottomLeft point will be located at the top right corner of the
rectangle.
Python prototype (for reference only):
points() -> pts

 Link to this function

 rotatedRect()

 View Source

 @spec rotatedRect() ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

RotatedRect
Return
	self: {centre={x, y}, size={s1, s2}, angle}

Python prototype (for reference only):
RotatedRect() -> <RotatedRect object>

 Link to this function

 rotatedRect(point1, point2, point3)

 View Source

 @spec rotatedRect({number(), number()}, {number(), number()}, {number(), number()}) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

 @spec rotatedRect({number(), number()}, {number(), number()}, number()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

Variant 1:
RotatedRect
Positional Arguments
	point1: Point2f
	point2: Point2f
	point3: Point2f

Return
	self: {centre={x, y}, size={s1, s2}, angle}

Any 3 end points of the RotatedRect. They must be given in order (either clockwise or
anticlockwise).
Python prototype (for reference only):
RotatedRect(point1, point2, point3) -> <RotatedRect object>
Variant 2:
RotatedRect
Positional Arguments
	center: Point2f.
The rectangle mass center.

	size: Size2f.
Width and height of the rectangle.

	angle: float.
The rotation angle in a clockwise direction. When the angle is 0, 90, 180, 270 etc.,
the rectangle becomes an up-right rectangle.

Return
	self: {centre={x, y}, size={s1, s2}, angle}

full constructor
Python prototype (for reference only):
RotatedRect(center, size, angle) -> <RotatedRect object>

 Link to this function

 set_angle(self, prop)

 View Source

 @spec set_angle({{number(), number()}, {number(), number()}, number()}, number()) ::
 {{number(), number()}, {number(), number()}, number()}

 Link to this function

 set_center(self, prop)

 View Source

 @spec set_center(
 {{number(), number()}, {number(), number()}, number()},
 {number(), number()}
) :: {{number(), number()}, {number(), number()}, number()}

 Link to this function

 set_size(self, prop)

 View Source

 @spec set_size(
 {{number(), number()}, {number(), number()}, number()},
 {number(), number()}
) :: {{number(), number()}, {number(), number()}, number()}

 Evision.SIFT - Evision v0.1.39

Evision.SIFT

 Summary

 Types

 t()

 Type that represents an SIFT struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType)

 Create SIFT with specified descriptorType.

 create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType, opts)

 Create SIFT with specified descriptorType.

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getContrastThreshold(self)

 getContrastThreshold

 getDefaultName(self)

 getDefaultName

 getEdgeThreshold(self)

 getEdgeThreshold

 getNFeatures(self)

 getNFeatures

 getNOctaveLayers(self)

 getNOctaveLayers

 getSigma(self)

 getSigma

 read(self, arg1)

 Variant 1:
read

 setContrastThreshold(self, contrastThreshold)

 setContrastThreshold

 setEdgeThreshold(self, edgeThreshold)

 setEdgeThreshold

 setNFeatures(self, maxFeatures)

 setNFeatures

 setNOctaveLayers(self, nOctaveLayers)

 setNOctaveLayers

 setSigma(self, sigma)

 setSigma

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.SIFT{ref: reference()}

Type that represents an SIFT struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.SIFT.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.SIFT.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.SIFT.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.SIFT.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	nfeatures: int.
The number of best features to retain. The features are ranked by their scores
(measured in SIFT algorithm as the local contrast)

	nOctaveLayers: int.
The number of layers in each octave. 3 is the value used in D. Lowe paper. The
number of octaves is computed automatically from the image resolution.

	contrastThreshold: double.
The contrast threshold used to filter out weak features in semi-uniform
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.

	edgeThreshold: double.
The threshold used to filter out edge-like features. Note that the its meaning
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
filtered out (more features are retained).

	sigma: double.
The sigma of the Gaussian applied to the input image at the octave #0. If your image
is captured with a weak camera with soft lenses, you might want to reduce the number.

	enable_precise_upscale: bool.
Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
is disabled by default.

Return
	retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
this argument to 0.09.
Python prototype (for reference only):
create([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma[, enable_precise_upscale]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 contrastThreshold: term(),
 nfeatures: term(),
 enable_precise_upscale: term(),
 sigma: term(),
 edgeThreshold: term(),
 nOctaveLayers: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	nfeatures: int.
The number of best features to retain. The features are ranked by their scores
(measured in SIFT algorithm as the local contrast)

	nOctaveLayers: int.
The number of layers in each octave. 3 is the value used in D. Lowe paper. The
number of octaves is computed automatically from the image resolution.

	contrastThreshold: double.
The contrast threshold used to filter out weak features in semi-uniform
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.

	edgeThreshold: double.
The threshold used to filter out edge-like features. Note that the its meaning
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
filtered out (more features are retained).

	sigma: double.
The sigma of the Gaussian applied to the input image at the octave #0. If your image
is captured with a weak camera with soft lenses, you might want to reduce the number.

	enable_precise_upscale: bool.
Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
is disabled by default.

Return
	retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
this argument to 0.09.
Python prototype (for reference only):
create([, nfeatures[, nOctaveLayers[, contrastThreshold[, edgeThreshold[, sigma[, enable_precise_upscale]]]]]]) -> retval

 Link to this function

 create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType)

 View Source

 @spec create(integer(), integer(), number(), number(), number(), integer()) ::
 t() | {:error, String.t()}

Create SIFT with specified descriptorType.
Positional Arguments
	nfeatures: int.
The number of best features to retain. The features are ranked by their scores
(measured in SIFT algorithm as the local contrast)

	nOctaveLayers: int.
The number of layers in each octave. 3 is the value used in D. Lowe paper. The
number of octaves is computed automatically from the image resolution.

	contrastThreshold: double.
The contrast threshold used to filter out weak features in semi-uniform
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.

	edgeThreshold: double.
The threshold used to filter out edge-like features. Note that the its meaning
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
filtered out (more features are retained).

	sigma: double.
The sigma of the Gaussian applied to the input image at the octave #0. If your image
is captured with a weak camera with soft lenses, you might want to reduce the number.

	descriptorType: int.
The type of descriptors. Only CV_32F and CV_8U are supported.

Keyword Arguments
	enable_precise_upscale: bool.
Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
is disabled by default.

Return
	retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
this argument to 0.09.
Python prototype (for reference only):
create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType[, enable_precise_upscale]) -> retval

 Link to this function

 create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType, opts)

 View Source

 @spec create(
 integer(),
 integer(),
 number(),
 number(),
 number(),
 integer(),
 [{:enable_precise_upscale, term()}] | nil
) :: t() | {:error, String.t()}

Create SIFT with specified descriptorType.
Positional Arguments
	nfeatures: int.
The number of best features to retain. The features are ranked by their scores
(measured in SIFT algorithm as the local contrast)

	nOctaveLayers: int.
The number of layers in each octave. 3 is the value used in D. Lowe paper. The
number of octaves is computed automatically from the image resolution.

	contrastThreshold: double.
The contrast threshold used to filter out weak features in semi-uniform
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.

	edgeThreshold: double.
The threshold used to filter out edge-like features. Note that the its meaning
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
filtered out (more features are retained).

	sigma: double.
The sigma of the Gaussian applied to the input image at the octave #0. If your image
is captured with a weak camera with soft lenses, you might want to reduce the number.

	descriptorType: int.
The type of descriptors. Only CV_32F and CV_8U are supported.

Keyword Arguments
	enable_precise_upscale: bool.
Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
is disabled by default.

Return
	retval: Evision.SIFT.t()

Note: The contrast threshold will be divided by nOctaveLayers when the filtering is applied. When
nOctaveLayers is set to default and if you want to use the value used in D. Lowe paper, 0.03, set
this argument to 0.09.
Python prototype (for reference only):
create(nfeatures, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, descriptorType[, enable_precise_upscale]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.SIFT.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.SIFT.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.SIFT.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.SIFT.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.SIFT.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.SIFT.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getContrastThreshold(self)

 View Source

 @spec getContrastThreshold(t()) :: number() | {:error, String.t()}

getContrastThreshold
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: double

Python prototype (for reference only):
getContrastThreshold() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeThreshold(self)

 View Source

 @spec getEdgeThreshold(t()) :: number() | {:error, String.t()}

getEdgeThreshold
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: double

Python prototype (for reference only):
getEdgeThreshold() -> retval

 Link to this function

 getNFeatures(self)

 View Source

 @spec getNFeatures(t()) :: integer() | {:error, String.t()}

getNFeatures
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: int

Python prototype (for reference only):
getNFeatures() -> retval

 Link to this function

 getNOctaveLayers(self)

 View Source

 @spec getNOctaveLayers(t()) :: integer() | {:error, String.t()}

getNOctaveLayers
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaveLayers() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.SIFT.t()

Return
	retval: double

Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.SIFT.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.SIFT.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setContrastThreshold(self, contrastThreshold)

 View Source

 @spec setContrastThreshold(t(), number()) :: t() | {:error, String.t()}

setContrastThreshold
Positional Arguments
	self: Evision.SIFT.t()
	contrastThreshold: double

Python prototype (for reference only):
setContrastThreshold(contrastThreshold) -> None

 Link to this function

 setEdgeThreshold(self, edgeThreshold)

 View Source

 @spec setEdgeThreshold(t(), number()) :: t() | {:error, String.t()}

setEdgeThreshold
Positional Arguments
	self: Evision.SIFT.t()
	edgeThreshold: double

Python prototype (for reference only):
setEdgeThreshold(edgeThreshold) -> None

 Link to this function

 setNFeatures(self, maxFeatures)

 View Source

 @spec setNFeatures(t(), integer()) :: t() | {:error, String.t()}

setNFeatures
Positional Arguments
	self: Evision.SIFT.t()
	maxFeatures: int

Python prototype (for reference only):
setNFeatures(maxFeatures) -> None

 Link to this function

 setNOctaveLayers(self, nOctaveLayers)

 View Source

 @spec setNOctaveLayers(t(), integer()) :: t() | {:error, String.t()}

setNOctaveLayers
Positional Arguments
	self: Evision.SIFT.t()
	nOctaveLayers: int

Python prototype (for reference only):
setNOctaveLayers(nOctaveLayers) -> None

 Link to this function

 setSigma(self, sigma)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma
Positional Arguments
	self: Evision.SIFT.t()
	sigma: double

Python prototype (for reference only):
setSigma(sigma) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.SIFT.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.SIFT.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.Saliency - Evision v0.1.39

Evision.Saliency

 Summary

 Types

 t()

 Type that represents an Saliency struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency{ref: reference()}

Type that represents an Saliency struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Saliency.MotionSaliency - Evision v0.1.39

Evision.Saliency.MotionSaliency

 Summary

 Types

 t()

 Type that represents an Saliency.MotionSaliency struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.MotionSaliency{ref: reference()}

Type that represents an Saliency.MotionSaliency struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Saliency.MotionSaliencyBinWangApr2014 - Evision v0.1.39

Evision.Saliency.MotionSaliencyBinWangApr2014

 Summary

 Types

 t()

 Type that represents an Saliency.MotionSaliencyBinWangApr2014 struct.

 Functions

 computeSaliency(self, image)

 computeSaliency

 computeSaliency(self, image, opts)

 computeSaliency

 create()

 create

 getImageHeight(self)

 getImageHeight

 getImageWidth(self)

 getImageWidth

 init(self)

 This function allows the correct initialization of all data structures that will be used by the
algorithm.

 setImageHeight(self, val)

 setImageHeight

 setImagesize(self, w, h)

 This is a utility function that allows to set the correct size (taken from the input image) in the
corresponding variables that will be used to size the data structures of the algorithm.

 setImageWidth(self, val)

 setImageWidth

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.MotionSaliencyBinWangApr2014{ref: reference()}

Type that represents an Saliency.MotionSaliencyBinWangApr2014 struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeSaliency(self, image)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 computeSaliency(self, image, opts)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: MotionSaliencyBinWangApr2014

Python prototype (for reference only):
create() -> retval

 Link to this function

 getImageHeight(self)

 View Source

 @spec getImageHeight(t()) :: integer() | {:error, String.t()}

getImageHeight
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()

Return
	retval: int

Python prototype (for reference only):
getImageHeight() -> retval

 Link to this function

 getImageWidth(self)

 View Source

 @spec getImageWidth(t()) :: integer() | {:error, String.t()}

getImageWidth
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()

Return
	retval: int

Python prototype (for reference only):
getImageWidth() -> retval

 Link to this function

 init(self)

 View Source

 @spec init(t()) :: boolean() | {:error, String.t()}

This function allows the correct initialization of all data structures that will be used by the
algorithm.
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()

Return
	retval: bool

Python prototype (for reference only):
init() -> retval

 Link to this function

 setImageHeight(self, val)

 View Source

 @spec setImageHeight(t(), integer()) :: t() | {:error, String.t()}

setImageHeight
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()
	val: int

Python prototype (for reference only):
setImageHeight(val) -> None

 Link to this function

 setImagesize(self, w, h)

 View Source

 @spec setImagesize(t(), integer(), integer()) :: t() | {:error, String.t()}

This is a utility function that allows to set the correct size (taken from the input image) in the
corresponding variables that will be used to size the data structures of the algorithm.
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()

	w: int.
width of input image

	h: int.
height of input image

Python prototype (for reference only):
setImagesize(W, H) -> None

 Link to this function

 setImageWidth(self, val)

 View Source

 @spec setImageWidth(t(), integer()) :: t() | {:error, String.t()}

setImageWidth
Positional Arguments
	self: Evision.Saliency.MotionSaliencyBinWangApr2014.t()
	val: int

Python prototype (for reference only):
setImageWidth(val) -> None

 Evision.Saliency.Objectness - Evision v0.1.39

Evision.Saliency.Objectness

 Summary

 Types

 t()

 Type that represents an Saliency.Objectness struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.Objectness{ref: reference()}

Type that represents an Saliency.Objectness struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Saliency.ObjectnessBING - Evision v0.1.39

Evision.Saliency.ObjectnessBING

 Summary

 Types

 t()

 Type that represents an Saliency.ObjectnessBING struct.

 Functions

 computeSaliency(self, image)

 computeSaliency

 computeSaliency(self, image, opts)

 computeSaliency

 create()

 create

 getBase(self)

 getBase

 getNSS(self)

 getNSS

 getobjectnessValues(self)

 Return the list of the rectangles' objectness value,

 getW(self)

 getW

 read(self)

 read

 setBase(self, val)

 setBase

 setBBResDir(self, resultsDir)

 This is a utility function that allows to set an arbitrary path in which the algorithm will save the
optional results

 setNSS(self, val)

 setNSS

 setTrainingPath(self, trainingPath)

 This is a utility function that allows to set the correct path from which the algorithm will load
the trained model.

 setW(self, val)

 setW

 write(self)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.ObjectnessBING{ref: reference()}

Type that represents an Saliency.ObjectnessBING struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeSaliency(self, image)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 computeSaliency(self, image, opts)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: ObjectnessBING

Python prototype (for reference only):
create() -> retval

 Link to this function

 getBase(self)

 View Source

 @spec getBase(t()) :: number() | {:error, String.t()}

getBase
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Return
	retval: double

Python prototype (for reference only):
getBase() -> retval

 Link to this function

 getNSS(self)

 View Source

 @spec getNSS(t()) :: integer() | {:error, String.t()}

getNSS
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Return
	retval: int

Python prototype (for reference only):
getNSS() -> retval

 Link to this function

 getobjectnessValues(self)

 View Source

 @spec getobjectnessValues(t()) :: [number()] | {:error, String.t()}

Return the list of the rectangles' objectness value,
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Return
	retval: [float]

in the same order as the vector\<Vec4i> objectnessBoundingBox returned by the algorithm (in
computeSaliencyImpl function). The bigger value these scores are, it is more likely to be an
object window.
Python prototype (for reference only):
getobjectnessValues() -> retval

 Link to this function

 getW(self)

 View Source

 @spec getW(t()) :: integer() | {:error, String.t()}

getW
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Return
	retval: int

Python prototype (for reference only):
getW() -> retval

 Link to this function

 read(self)

 View Source

 @spec read(t()) :: t() | {:error, String.t()}

read
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Python prototype (for reference only):
read() -> None

 Link to this function

 setBase(self, val)

 View Source

 @spec setBase(t(), number()) :: t() | {:error, String.t()}

setBase
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()
	val: double

Python prototype (for reference only):
setBase(val) -> None

 Link to this function

 setBBResDir(self, resultsDir)

 View Source

 @spec setBBResDir(t(), binary()) :: t() | {:error, String.t()}

This is a utility function that allows to set an arbitrary path in which the algorithm will save the
optional results
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

	resultsDir: String.
results' folder path

(ie writing on file the total number and the list of rectangles returned by objectess, one for
each row).
Python prototype (for reference only):
setBBResDir(resultsDir) -> None

 Link to this function

 setNSS(self, val)

 View Source

 @spec setNSS(t(), integer()) :: t() | {:error, String.t()}

setNSS
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()
	val: int

Python prototype (for reference only):
setNSS(val) -> None

 Link to this function

 setTrainingPath(self, trainingPath)

 View Source

 @spec setTrainingPath(t(), binary()) :: t() | {:error, String.t()}

This is a utility function that allows to set the correct path from which the algorithm will load
the trained model.
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

	trainingPath: String.
trained model path

Python prototype (for reference only):
setTrainingPath(trainingPath) -> None

 Link to this function

 setW(self, val)

 View Source

 @spec setW(t(), integer()) :: t() | {:error, String.t()}

setW
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()
	val: int

Python prototype (for reference only):
setW(val) -> None

 Link to this function

 write(self)

 View Source

 @spec write(t()) :: t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Saliency.ObjectnessBING.t()

Python prototype (for reference only):
write() -> None

 Evision.Saliency.Saliency - Evision v0.1.39

Evision.Saliency.Saliency

 Summary

 Types

 t()

 Type that represents an Saliency.Saliency struct.

 Functions

 clear(self)

 Clears the algorithm state

 computeSaliency(self, image)

 computeSaliency

 computeSaliency(self, image, opts)

 computeSaliency

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.Saliency{ref: reference()}

Type that represents an Saliency.Saliency struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Saliency.Saliency.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 computeSaliency(self, image)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

 \brief Compute the saliency
 \param image The image.
 \param saliencyMap The computed saliency map.
 \return true if the saliency map is computed, false otherwise
Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 computeSaliency(self, image, opts)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

 \brief Compute the saliency
 \param image The image.
 \param saliencyMap The computed saliency map.
 \return true if the saliency map is computed, false otherwise
Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Saliency.Saliency.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Saliency.Saliency.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Saliency.Saliency.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Saliency.StaticSaliency - Evision v0.1.39

Evision.Saliency.StaticSaliency

 Summary

 Types

 t()

 Type that represents an Saliency.StaticSaliency struct.

 Functions

 computeBinaryMap(self, saliencyMap)

 This function perform a binary map of given saliency map. This is obtained in this
way

 computeBinaryMap(self, saliencyMap, opts)

 This function perform a binary map of given saliency map. This is obtained in this
way

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.StaticSaliency{ref: reference()}

Type that represents an Saliency.StaticSaliency struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeBinaryMap(self, saliencyMap)

 View Source

 @spec computeBinaryMap(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

This function perform a binary map of given saliency map. This is obtained in this
way:
Positional Arguments
	self: Evision.Saliency.StaticSaliency.t()

	saliencyMap: Evision.Mat.t().
the saliency map obtained through one of the specialized algorithms

Return
	retval: bool

	binaryMap: Evision.Mat.t().
the binary map

In a first step, to improve the definition of interest areas and facilitate identification of
targets, a segmentation by clustering is performed, using K-means algorithm. Then, to gain a
binary representation of clustered saliency map, since values of the map can vary according to
the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,
Otsu's algorithm* is used, which assumes that the image to be thresholded contains two classes
of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the
algorithm calculates the optimal threshold separating those two classes, so that their
intra-class variance is minimal.
Python prototype (for reference only):
computeBinaryMap(_saliencyMap[, _binaryMap]) -> retval, _binaryMap

 Link to this function

 computeBinaryMap(self, saliencyMap, opts)

 View Source

 @spec computeBinaryMap(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

This function perform a binary map of given saliency map. This is obtained in this
way:
Positional Arguments
	self: Evision.Saliency.StaticSaliency.t()

	saliencyMap: Evision.Mat.t().
the saliency map obtained through one of the specialized algorithms

Return
	retval: bool

	binaryMap: Evision.Mat.t().
the binary map

In a first step, to improve the definition of interest areas and facilitate identification of
targets, a segmentation by clustering is performed, using K-means algorithm. Then, to gain a
binary representation of clustered saliency map, since values of the map can vary according to
the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,
Otsu's algorithm* is used, which assumes that the image to be thresholded contains two classes
of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the
algorithm calculates the optimal threshold separating those two classes, so that their
intra-class variance is minimal.
Python prototype (for reference only):
computeBinaryMap(_saliencyMap[, _binaryMap]) -> retval, _binaryMap

 Evision.Saliency.StaticSaliencyFineGrained - Evision v0.1.39

Evision.Saliency.StaticSaliencyFineGrained

 Summary

 Types

 t()

 Type that represents an Saliency.StaticSaliencyFineGrained struct.

 Functions

 computeSaliency(self, image)

 computeSaliency

 computeSaliency(self, image, opts)

 computeSaliency

 create()

 create

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.StaticSaliencyFineGrained{ref: reference()}

Type that represents an Saliency.StaticSaliencyFineGrained struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeSaliency(self, image)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.StaticSaliencyFineGrained.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 computeSaliency(self, image, opts)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.StaticSaliencyFineGrained.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: StaticSaliencyFineGrained

Python prototype (for reference only):
create() -> retval

 Evision.Saliency.StaticSaliencySpectralResidual - Evision v0.1.39

Evision.Saliency.StaticSaliencySpectralResidual

 Summary

 Types

 t()

 Type that represents an Saliency.StaticSaliencySpectralResidual struct.

 Functions

 computeSaliency(self, image)

 computeSaliency

 computeSaliency(self, image, opts)

 computeSaliency

 create()

 create

 getImageHeight(self)

 getImageHeight

 getImageWidth(self)

 getImageWidth

 read(self, fn_)

 read

 setImageHeight(self, val)

 setImageHeight

 setImageWidth(self, val)

 setImageWidth

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Saliency.StaticSaliencySpectralResidual{ref: reference()}

Type that represents an Saliency.StaticSaliencySpectralResidual struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeSaliency(self, image)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 computeSaliency(self, image, opts)

 View Source

 @spec computeSaliency(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

computeSaliency
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()
	image: Evision.Mat.t()

Return
	retval: bool
	saliencyMap: Evision.Mat.t().

Python prototype (for reference only):
computeSaliency(image[, saliencyMap]) -> retval, saliencyMap

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: StaticSaliencySpectralResidual

Python prototype (for reference only):
create() -> retval

 Link to this function

 getImageHeight(self)

 View Source

 @spec getImageHeight(t()) :: integer() | {:error, String.t()}

getImageHeight
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()

Return
	retval: int

Python prototype (for reference only):
getImageHeight() -> retval

 Link to this function

 getImageWidth(self)

 View Source

 @spec getImageWidth(t()) :: integer() | {:error, String.t()}

getImageWidth
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()

Return
	retval: int

Python prototype (for reference only):
getImageWidth() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}

read
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 setImageHeight(self, val)

 View Source

 @spec setImageHeight(t(), integer()) :: t() | {:error, String.t()}

setImageHeight
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()
	val: int

Python prototype (for reference only):
setImageHeight(val) -> None

 Link to this function

 setImageWidth(self, val)

 View Source

 @spec setImageWidth(t(), integer()) :: t() | {:error, String.t()}

setImageWidth
Positional Arguments
	self: Evision.Saliency.StaticSaliencySpectralResidual.t()
	val: int

Python prototype (for reference only):
setImageWidth(val) -> None

 Evision.Samples - Evision v0.1.39

Evision.Samples

 Summary

 Types

 t()

 Type that represents an Samples struct.

 Functions

 addSamplesDataSearchPath(path)

 Override search data path by adding new search location

 addSamplesDataSearchSubDirectory(subdir)

 Append samples search data sub directory

 findFile(relative_path)

 Try to find requested data file

 findFile(relative_path, opts)

 Try to find requested data file

 findFileOrKeep(relative_path)

 findFileOrKeep

 findFileOrKeep(relative_path, opts)

 findFileOrKeep

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Samples{ref: reference()}

Type that represents an Samples struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addSamplesDataSearchPath(path)

 View Source

 @spec addSamplesDataSearchPath(binary()) :: :ok | {:error, String.t()}

Override search data path by adding new search location
Positional Arguments
	path: String.
Path to used samples data

Use this only to override default behavior
Passed paths are used in LIFO order.
Python prototype (for reference only):
addSamplesDataSearchPath(path) -> None

 Link to this function

 addSamplesDataSearchSubDirectory(subdir)

 View Source

 @spec addSamplesDataSearchSubDirectory(binary()) :: :ok | {:error, String.t()}

Append samples search data sub directory
Positional Arguments
	subdir: String.
samples data sub directory

General usage is to add OpenCV modules name (<opencv_contrib>/modules/<name>/samples/data -> <name>/samples/data + modules/<name>/samples/data).
Passed subdirectories are used in LIFO order.
Python prototype (for reference only):
addSamplesDataSearchSubDirectory(subdir) -> None

 Link to this function

 findFile(relative_path)

 View Source

 @spec findFile(binary()) :: binary() | {:error, String.t()}

Try to find requested data file
Positional Arguments
	relative_path: String.
Relative path to data file

Keyword Arguments
	required: bool.
Specify "file not found" handling.
If true, function prints information message and raises cv::Exception.
If false, function returns empty result

	silentMode: bool.
Disables messages

Return
	retval: String

Search directories:
	Directories passed via addSamplesDataSearchPath()
	OPENCV_SAMPLES_DATA_PATH_HINT environment variable
	OPENCV_SAMPLES_DATA_PATH environment variable
If parameter value is not empty and nothing is found then stop searching.
	Detects build/install path based on:
a. current working directory (CWD)
b. and/or binary module location (opencv_core/opencv_world, doesn't work with static linkage)
	Scan <source>/{,data,samples/data} directories if build directory is detected or the current directory is in source tree.
	Scan <install>/share/OpenCV directory if install directory is detected.
@see cv::utils::findDataFile
@return Returns path (absolute or relative to the current directory) or empty string if file is not found

Python prototype (for reference only):
findFile(relative_path[, required[, silentMode]]) -> retval

 Link to this function

 findFile(relative_path, opts)

 View Source

 @spec findFile(binary(), [silentMode: term(), required: term()] | nil) ::
 binary() | {:error, String.t()}

Try to find requested data file
Positional Arguments
	relative_path: String.
Relative path to data file

Keyword Arguments
	required: bool.
Specify "file not found" handling.
If true, function prints information message and raises cv::Exception.
If false, function returns empty result

	silentMode: bool.
Disables messages

Return
	retval: String

Search directories:
	Directories passed via addSamplesDataSearchPath()
	OPENCV_SAMPLES_DATA_PATH_HINT environment variable
	OPENCV_SAMPLES_DATA_PATH environment variable
If parameter value is not empty and nothing is found then stop searching.
	Detects build/install path based on:
a. current working directory (CWD)
b. and/or binary module location (opencv_core/opencv_world, doesn't work with static linkage)
	Scan <source>/{,data,samples/data} directories if build directory is detected or the current directory is in source tree.
	Scan <install>/share/OpenCV directory if install directory is detected.
@see cv::utils::findDataFile
@return Returns path (absolute or relative to the current directory) or empty string if file is not found

Python prototype (for reference only):
findFile(relative_path[, required[, silentMode]]) -> retval

 Link to this function

 findFileOrKeep(relative_path)

 View Source

 @spec findFileOrKeep(binary()) :: binary() | {:error, String.t()}

findFileOrKeep
Positional Arguments
	relative_path: String

Keyword Arguments
	silentMode: bool.

Return
	retval: String

Python prototype (for reference only):
findFileOrKeep(relative_path[, silentMode]) -> retval

 Link to this function

 findFileOrKeep(relative_path, opts)

 View Source

 @spec findFileOrKeep(binary(), [{:silentMode, term()}] | nil) ::
 binary() | {:error, String.t()}

findFileOrKeep
Positional Arguments
	relative_path: String

Keyword Arguments
	silentMode: bool.

Return
	retval: String

Python prototype (for reference only):
findFileOrKeep(relative_path[, silentMode]) -> retval

 Evision.Segmentation - Evision v0.1.39

Evision.Segmentation

 Summary

 Types

 t()

 Type that represents an Segmentation struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Segmentation{ref: reference()}

Type that represents an Segmentation struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Segmentation.IntelligentScissorsMB - Evision v0.1.39

Evision.Segmentation.IntelligentScissorsMB

 Summary

 Types

 t()

 Type that represents an Segmentation.IntelligentScissorsMB struct.

 Functions

 applyImage(self, image)

 Specify input image and extract image features

 applyImageFeatures(self, non_edge, gradient_direction, gradient_magnitude)

 Specify custom features of input image

 applyImageFeatures(self, non_edge, gradient_direction, gradient_magnitude, opts)

 Specify custom features of input image

 buildMap(self, sourcePt)

 Prepares a map of optimal paths for the given source point on the image

 getContour(self, targetPt)

 Extracts optimal contour for the given target point on the image

 getContour(self, targetPt, opts)

 Extracts optimal contour for the given target point on the image

 intelligentScissorsMB()

 IntelligentScissorsMB

 setEdgeFeatureCannyParameters(self, threshold1, threshold2)

 Switch edge feature extractor to use Canny edge detector

 setEdgeFeatureCannyParameters(self, threshold1, threshold2, opts)

 Switch edge feature extractor to use Canny edge detector

 setEdgeFeatureZeroCrossingParameters(self)

 Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters

 setEdgeFeatureZeroCrossingParameters(self, opts)

 Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters

 setGradientMagnitudeMaxLimit(self)

 Specify gradient magnitude max value threshold

 setGradientMagnitudeMaxLimit(self, opts)

 Specify gradient magnitude max value threshold

 setWeights(self, weight_non_edge, weight_gradient_direction, weight_gradient_magnitude)

 Specify weights of feature functions

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Segmentation.IntelligentScissorsMB{ref: reference()}

Type that represents an Segmentation.IntelligentScissorsMB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 applyImage(self, image)

 View Source

 @spec applyImage(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Specify input image and extract image features
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	image: Evision.Mat.t().
input image. Type is #CV_8UC1 / #CV_8UC3

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

Python prototype (for reference only):
applyImage(image) -> retval

 Link to this function

 applyImageFeatures(self, non_edge, gradient_direction, gradient_magnitude)

 View Source

 @spec applyImageFeatures(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: t() | {:error, String.t()}

Specify custom features of input image
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	non_edge: Evision.Mat.t().
Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are {0, 1}.

	gradient_direction: Evision.Mat.t().
Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: x^2 + y^2 == 1

	gradient_magnitude: Evision.Mat.t().
Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range [0, 1].

Keyword Arguments
	image: Evision.Mat.t().
Optional parameter. Must be specified if subset of features is specified (non-specified features are calculated internally)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 Customized advanced variant of applyImage() call.
Python prototype (for reference only):
applyImageFeatures(non_edge, gradient_direction, gradient_magnitude[, image]) -> retval

 Link to this function

 applyImageFeatures(self, non_edge, gradient_direction, gradient_magnitude, opts)

 View Source

 @spec applyImageFeatures(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:image, term()}] | nil
) :: t() | {:error, String.t()}

Specify custom features of input image
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	non_edge: Evision.Mat.t().
Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are {0, 1}.

	gradient_direction: Evision.Mat.t().
Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: x^2 + y^2 == 1

	gradient_magnitude: Evision.Mat.t().
Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range [0, 1].

Keyword Arguments
	image: Evision.Mat.t().
Optional parameter. Must be specified if subset of features is specified (non-specified features are calculated internally)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 Customized advanced variant of applyImage() call.
Python prototype (for reference only):
applyImageFeatures(non_edge, gradient_direction, gradient_magnitude[, image]) -> retval

 Link to this function

 buildMap(self, sourcePt)

 View Source

 @spec buildMap(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

Prepares a map of optimal paths for the given source point on the image
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	sourcePt: Point.
The source point used to find the paths

Note: applyImage() / applyImageFeatures() must be called before this call
Python prototype (for reference only):
buildMap(sourcePt) -> None

 Link to this function

 getContour(self, targetPt)

 View Source

 @spec getContour(
 t(),
 {number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Extracts optimal contour for the given target point on the image
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	targetPt: Point.
The target point

Keyword Arguments
	backward: bool.
Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)

Return
	contour: Evision.Mat.t().
The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with std::vector<Point>)

Note: buildMap() must be called before this call
Python prototype (for reference only):
getContour(targetPt[, contour[, backward]]) -> contour

 Link to this function

 getContour(self, targetPt, opts)

 View Source

 @spec getContour(t(), {number(), number()}, [{:backward, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Extracts optimal contour for the given target point on the image
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	targetPt: Point.
The target point

Keyword Arguments
	backward: bool.
Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)

Return
	contour: Evision.Mat.t().
The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with std::vector<Point>)

Note: buildMap() must be called before this call
Python prototype (for reference only):
getContour(targetPt[, contour[, backward]]) -> contour

 Link to this function

 intelligentScissorsMB()

 View Source

 @spec intelligentScissorsMB() :: t() | {:error, String.t()}

IntelligentScissorsMB
Return
	self: Evision.Segmentation.IntelligentScissorsMB.t()

Python prototype (for reference only):
IntelligentScissorsMB() -> <segmentation_IntelligentScissorsMB object>

 Link to this function

 setEdgeFeatureCannyParameters(self, threshold1, threshold2)

 View Source

 @spec setEdgeFeatureCannyParameters(t(), number(), number()) ::
 t() | {:error, String.t()}

Switch edge feature extractor to use Canny edge detector
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()
	threshold1: double
	threshold2: double

Keyword Arguments
	apertureSize: int.
	l2gradient: bool.

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

Note: "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
@sa Canny
Python prototype (for reference only):
setEdgeFeatureCannyParameters(threshold1, threshold2[, apertureSize[, L2gradient]]) -> retval

 Link to this function

 setEdgeFeatureCannyParameters(self, threshold1, threshold2, opts)

 View Source

 @spec setEdgeFeatureCannyParameters(
 t(),
 number(),
 number(),
 [l2gradient: term(), apertureSize: term()] | nil
) :: t() | {:error, String.t()}

Switch edge feature extractor to use Canny edge detector
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()
	threshold1: double
	threshold2: double

Keyword Arguments
	apertureSize: int.
	l2gradient: bool.

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

Note: "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
@sa Canny
Python prototype (for reference only):
setEdgeFeatureCannyParameters(threshold1, threshold2[, apertureSize[, L2gradient]]) -> retval

 Link to this function

 setEdgeFeatureZeroCrossingParameters(self)

 View Source

 @spec setEdgeFeatureZeroCrossingParameters(t()) :: t() | {:error, String.t()}

Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

Keyword Arguments
	gradient_magnitude_min_value: float.
Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 This feature extractor is used by default according to article.
 Implementation has additional filtering for regions with low-amplitude noise.
 This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
Note: Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
Note: Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
Python prototype (for reference only):
setEdgeFeatureZeroCrossingParameters([, gradient_magnitude_min_value]) -> retval

 Link to this function

 setEdgeFeatureZeroCrossingParameters(self, opts)

 View Source

 @spec setEdgeFeatureZeroCrossingParameters(
 t(),
 [{:gradient_magnitude_min_value, term()}] | nil
) ::
 t() | {:error, String.t()}

Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

Keyword Arguments
	gradient_magnitude_min_value: float.
Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 This feature extractor is used by default according to article.
 Implementation has additional filtering for regions with low-amplitude noise.
 This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
Note: Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
Note: Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
Python prototype (for reference only):
setEdgeFeatureZeroCrossingParameters([, gradient_magnitude_min_value]) -> retval

 Link to this function

 setGradientMagnitudeMaxLimit(self)

 View Source

 @spec setGradientMagnitudeMaxLimit(t()) :: t() | {:error, String.t()}

Specify gradient magnitude max value threshold
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

Keyword Arguments
	gradient_magnitude_threshold_max: float.
Specify gradient magnitude max value threshold (default: 0, disabled)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
 Otherwize pixels with gradient magnitude >= threshold have zero cost.
Note: Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
Python prototype (for reference only):
setGradientMagnitudeMaxLimit([, gradient_magnitude_threshold_max]) -> retval

 Link to this function

 setGradientMagnitudeMaxLimit(self, opts)

 View Source

 @spec setGradientMagnitudeMaxLimit(
 t(),
 [{:gradient_magnitude_threshold_max, term()}] | nil
) ::
 t() | {:error, String.t()}

Specify gradient magnitude max value threshold
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

Keyword Arguments
	gradient_magnitude_threshold_max: float.
Specify gradient magnitude max value threshold (default: 0, disabled)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
 Otherwize pixels with gradient magnitude >= threshold have zero cost.
Note: Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
Python prototype (for reference only):
setGradientMagnitudeMaxLimit([, gradient_magnitude_threshold_max]) -> retval

 Link to this function

 setWeights(self, weight_non_edge, weight_gradient_direction, weight_gradient_magnitude)

 View Source

 @spec setWeights(t(), number(), number(), number()) :: t() | {:error, String.t()}

Specify weights of feature functions
Positional Arguments
	self: Evision.Segmentation.IntelligentScissorsMB.t()

	weight_non_edge: float.
Specify cost of non-edge pixels (default: 0.43f)

	weight_gradient_direction: float.
Specify cost of gradient direction function (default: 0.43f)

	weight_gradient_magnitude: float.
Specify cost of gradient magnitude function (default: 0.14f)

Return
	retval: Evision.Segmentation.IntelligentScissorsMB.t()

 Consider keeping weights normalized (sum of weights equals to 1.0)
 Discrete dynamic programming (DP) goal is minimization of costs between pixels.
Python prototype (for reference only):
setWeights(weight_non_edge, weight_gradient_direction, weight_gradient_magnitude) -> retval

 Evision.ShapeContextDistanceExtractor - Evision v0.1.39

Evision.ShapeContextDistanceExtractor

 Summary

 Types

 t()

 Type that represents an ShapeContextDistanceExtractor struct.

 Functions

 getAngularBins(self)

 getAngularBins

 getBendingEnergyWeight(self)

 getBendingEnergyWeight

 getCostExtractor(self)

 getCostExtractor

 getImageAppearanceWeight(self)

 getImageAppearanceWeight

 getImages(self)

 getImages

 getImages(self, opts)

 getImages

 getInnerRadius(self)

 getInnerRadius

 getIterations(self)

 getIterations

 getOuterRadius(self)

 getOuterRadius

 getRadialBins(self)

 getRadialBins

 getRotationInvariant(self)

 getRotationInvariant

 getShapeContextWeight(self)

 getShapeContextWeight

 getStdDev(self)

 getStdDev

 getTransformAlgorithm(self)

 getTransformAlgorithm

 setAngularBins(self, nAngularBins)

 Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
pipeline.

 setBendingEnergyWeight(self, bendingEnergyWeight)

 Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
definition depends on what transformation is being used to align the shapes. The final value of the
shape distance is a user-defined linear combination of the shape context distance, an image
appearance distance, and a bending energy.

 setCostExtractor(self, comparer)

 Set the algorithm used for building the shape context descriptor cost matrix.

 setImageAppearanceWeight(self, imageAppearanceWeight)

 Set the weight of the Image Appearance cost in the final value of the shape distance. The image
appearance cost is defined as the sum of squared brightness differences in Gaussian windows around
corresponding image points. The final value of the shape distance is a user-defined linear
combination of the shape context distance, an image appearance distance, and a bending energy. If
this value is set to a number different from 0, is mandatory to set the images that correspond to
each shape.

 setImages(self, image1, image2)

 Set the images that correspond to each shape. This images are used in the calculation of the Image
Appearance cost.

 setInnerRadius(self, innerRadius)

 Set the inner radius of the shape context descriptor.

 setIterations(self, iterations)

 setIterations

 setOuterRadius(self, outerRadius)

 Set the outer radius of the shape context descriptor.

 setRadialBins(self, nRadialBins)

 Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
pipeline.

 setRotationInvariant(self, rotationInvariant)

 setRotationInvariant

 setShapeContextWeight(self, shapeContextWeight)

 Set the weight of the shape context distance in the final value of the shape distance. The shape
context distance between two shapes is defined as the symmetric sum of shape context matching costs
over best matching points. The final value of the shape distance is a user-defined linear
combination of the shape context distance, an image appearance distance, and a bending energy.

 setStdDev(self, sigma)

 Set the value of the standard deviation for the Gaussian window for the image appearance cost.

 setTransformAlgorithm(self, transformer)

 Set the algorithm used for aligning the shapes.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ShapeContextDistanceExtractor{ref: reference()}

Type that represents an ShapeContextDistanceExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getAngularBins(self)

 View Source

 @spec getAngularBins(t()) :: integer() | {:error, String.t()}

getAngularBins
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getAngularBins() -> retval

 Link to this function

 getBendingEnergyWeight(self)

 View Source

 @spec getBendingEnergyWeight(t()) :: number() | {:error, String.t()}

getBendingEnergyWeight
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getBendingEnergyWeight() -> retval

 Link to this function

 getCostExtractor(self)

 View Source

 @spec getCostExtractor(t()) ::
 Evision.HistogramCostExtractor.t() | {:error, String.t()}

getCostExtractor
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: Evision.HistogramCostExtractor.t()

Python prototype (for reference only):
getCostExtractor() -> retval

 Link to this function

 getImageAppearanceWeight(self)

 View Source

 @spec getImageAppearanceWeight(t()) :: number() | {:error, String.t()}

getImageAppearanceWeight
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getImageAppearanceWeight() -> retval

 Link to this function

 getImages(self)

 View Source

 @spec getImages(t()) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

getImages
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	image1: Evision.Mat.t().
	image2: Evision.Mat.t().

Python prototype (for reference only):
getImages([, image1[, image2]]) -> image1, image2

 Link to this function

 getImages(self, opts)

 View Source

 @spec getImages(t(), [{atom(), term()}, ...] | nil) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

getImages
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	image1: Evision.Mat.t().
	image2: Evision.Mat.t().

Python prototype (for reference only):
getImages([, image1[, image2]]) -> image1, image2

 Link to this function

 getInnerRadius(self)

 View Source

 @spec getInnerRadius(t()) :: number() | {:error, String.t()}

getInnerRadius
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getInnerRadius() -> retval

 Link to this function

 getIterations(self)

 View Source

 @spec getIterations(t()) :: integer() | {:error, String.t()}

getIterations
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getIterations() -> retval

 Link to this function

 getOuterRadius(self)

 View Source

 @spec getOuterRadius(t()) :: number() | {:error, String.t()}

getOuterRadius
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getOuterRadius() -> retval

 Link to this function

 getRadialBins(self)

 View Source

 @spec getRadialBins(t()) :: integer() | {:error, String.t()}

getRadialBins
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getRadialBins() -> retval

 Link to this function

 getRotationInvariant(self)

 View Source

 @spec getRotationInvariant(t()) :: boolean() | {:error, String.t()}

getRotationInvariant
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: bool

Python prototype (for reference only):
getRotationInvariant() -> retval

 Link to this function

 getShapeContextWeight(self)

 View Source

 @spec getShapeContextWeight(t()) :: number() | {:error, String.t()}

getShapeContextWeight
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getShapeContextWeight() -> retval

 Link to this function

 getStdDev(self)

 View Source

 @spec getStdDev(t()) :: number() | {:error, String.t()}

getStdDev
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: float

Python prototype (for reference only):
getStdDev() -> retval

 Link to this function

 getTransformAlgorithm(self)

 View Source

 @spec getTransformAlgorithm(t()) ::
 Evision.ShapeTransformer.t() | {:error, String.t()}

getTransformAlgorithm
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

Return
	retval: Evision.ShapeTransformer.t()

Python prototype (for reference only):
getTransformAlgorithm() -> retval

 Link to this function

 setAngularBins(self, nAngularBins)

 View Source

 @spec setAngularBins(t(), integer()) :: t() | {:error, String.t()}

Establish the number of angular bins for the Shape Context Descriptor used in the shape matching
pipeline.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	nAngularBins: int.
The number of angular bins in the shape context descriptor.

Python prototype (for reference only):
setAngularBins(nAngularBins) -> None

 Link to this function

 setBendingEnergyWeight(self, bendingEnergyWeight)

 View Source

 @spec setBendingEnergyWeight(t(), number()) :: t() | {:error, String.t()}

Set the weight of the Bending Energy in the final value of the shape distance. The bending energy
definition depends on what transformation is being used to align the shapes. The final value of the
shape distance is a user-defined linear combination of the shape context distance, an image
appearance distance, and a bending energy.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	bendingEnergyWeight: float.
The weight of the Bending Energy in the final distance value.

Python prototype (for reference only):
setBendingEnergyWeight(bendingEnergyWeight) -> None

 Link to this function

 setCostExtractor(self, comparer)

 View Source

 @spec setCostExtractor(t(), Evision.HistogramCostExtractor.t()) ::
 t() | {:error, String.t()}

Set the algorithm used for building the shape context descriptor cost matrix.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	comparer: Evision.HistogramCostExtractor.t().
Smart pointer to a HistogramCostExtractor, an algorithm that defines the cost
matrix between descriptors.

Python prototype (for reference only):
setCostExtractor(comparer) -> None

 Link to this function

 setImageAppearanceWeight(self, imageAppearanceWeight)

 View Source

 @spec setImageAppearanceWeight(t(), number()) :: t() | {:error, String.t()}

Set the weight of the Image Appearance cost in the final value of the shape distance. The image
appearance cost is defined as the sum of squared brightness differences in Gaussian windows around
corresponding image points. The final value of the shape distance is a user-defined linear
combination of the shape context distance, an image appearance distance, and a bending energy. If
this value is set to a number different from 0, is mandatory to set the images that correspond to
each shape.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	imageAppearanceWeight: float.
The weight of the appearance cost in the final distance value.

Python prototype (for reference only):
setImageAppearanceWeight(imageAppearanceWeight) -> None

 Link to this function

 setImages(self, image1, image2)

 View Source

 @spec setImages(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Set the images that correspond to each shape. This images are used in the calculation of the Image
Appearance cost.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	image1: Evision.Mat.t().
Image corresponding to the shape defined by contours1.

	image2: Evision.Mat.t().
Image corresponding to the shape defined by contours2.

Python prototype (for reference only):
setImages(image1, image2) -> None

 Link to this function

 setInnerRadius(self, innerRadius)

 View Source

 @spec setInnerRadius(t(), number()) :: t() | {:error, String.t()}

Set the inner radius of the shape context descriptor.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	innerRadius: float.
The value of the inner radius.

Python prototype (for reference only):
setInnerRadius(innerRadius) -> None

 Link to this function

 setIterations(self, iterations)

 View Source

 @spec setIterations(t(), integer()) :: t() | {:error, String.t()}

setIterations
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()
	iterations: int

Python prototype (for reference only):
setIterations(iterations) -> None

 Link to this function

 setOuterRadius(self, outerRadius)

 View Source

 @spec setOuterRadius(t(), number()) :: t() | {:error, String.t()}

Set the outer radius of the shape context descriptor.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	outerRadius: float.
The value of the outer radius.

Python prototype (for reference only):
setOuterRadius(outerRadius) -> None

 Link to this function

 setRadialBins(self, nRadialBins)

 View Source

 @spec setRadialBins(t(), integer()) :: t() | {:error, String.t()}

Establish the number of radial bins for the Shape Context Descriptor used in the shape matching
pipeline.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	nRadialBins: int.
The number of radial bins in the shape context descriptor.

Python prototype (for reference only):
setRadialBins(nRadialBins) -> None

 Link to this function

 setRotationInvariant(self, rotationInvariant)

 View Source

 @spec setRotationInvariant(t(), boolean()) :: t() | {:error, String.t()}

setRotationInvariant
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()
	rotationInvariant: bool

Python prototype (for reference only):
setRotationInvariant(rotationInvariant) -> None

 Link to this function

 setShapeContextWeight(self, shapeContextWeight)

 View Source

 @spec setShapeContextWeight(t(), number()) :: t() | {:error, String.t()}

Set the weight of the shape context distance in the final value of the shape distance. The shape
context distance between two shapes is defined as the symmetric sum of shape context matching costs
over best matching points. The final value of the shape distance is a user-defined linear
combination of the shape context distance, an image appearance distance, and a bending energy.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	shapeContextWeight: float.
The weight of the shape context distance in the final distance value.

Python prototype (for reference only):
setShapeContextWeight(shapeContextWeight) -> None

 Link to this function

 setStdDev(self, sigma)

 View Source

 @spec setStdDev(t(), number()) :: t() | {:error, String.t()}

Set the value of the standard deviation for the Gaussian window for the image appearance cost.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	sigma: float.
Standard Deviation.

Python prototype (for reference only):
setStdDev(sigma) -> None

 Link to this function

 setTransformAlgorithm(self, transformer)

 View Source

 @spec setTransformAlgorithm(t(), Evision.ShapeTransformer.t()) ::
 t() | {:error, String.t()}

Set the algorithm used for aligning the shapes.
Positional Arguments
	self: Evision.ShapeContextDistanceExtractor.t()

	transformer: Evision.ShapeTransformer.t().
Smart pointer to a ShapeTransformer, an algorithm that defines the aligning
transformation.

Python prototype (for reference only):
setTransformAlgorithm(transformer) -> None

 Evision.ShapeDistanceExtractor - Evision v0.1.39

Evision.ShapeDistanceExtractor

 Summary

 Types

 t()

 Type that represents an ShapeDistanceExtractor struct.

 Functions

 clear(self)

 Clears the algorithm state

 computeDistance(self, contour1, contour2)

 Compute the shape distance between two shapes defined by its contours.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ShapeDistanceExtractor{ref: reference()}

Type that represents an ShapeDistanceExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 computeDistance(self, contour1, contour2)

 View Source

 @spec computeDistance(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 number() | {:error, String.t()}

Compute the shape distance between two shapes defined by its contours.
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()

	contour1: Evision.Mat.t().
Contour defining first shape.

	contour2: Evision.Mat.t().
Contour defining second shape.

Return
	retval: float

Python prototype (for reference only):
computeDistance(contour1, contour2) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ShapeDistanceExtractor.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.ShapeTransformer - Evision v0.1.39

Evision.ShapeTransformer

 Summary

 Types

 t()

 Type that represents an ShapeTransformer struct.

 Functions

 applyTransformation(self, input)

 Apply a transformation, given a pre-estimated transformation parameters.

 applyTransformation(self, input, opts)

 Apply a transformation, given a pre-estimated transformation parameters.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 estimateTransformation(self, transformingShape, targetShape, matches)

 Estimate the transformation parameters of the current transformer algorithm, based on point matches.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 warpImage(self, transformingImage)

 Apply a transformation, given a pre-estimated transformation parameters, to an Image.

 warpImage(self, transformingImage, opts)

 Apply a transformation, given a pre-estimated transformation parameters, to an Image.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ShapeTransformer{ref: reference()}

Type that represents an ShapeTransformer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 applyTransformation(self, input)

 View Source

 @spec applyTransformation(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Apply a transformation, given a pre-estimated transformation parameters.
Positional Arguments
	self: Evision.ShapeTransformer.t()

	input: Evision.Mat.t().
Contour (set of points) to apply the transformation.

Return
	retval: float

	output: Evision.Mat.t().
Output contour.

Python prototype (for reference only):
applyTransformation(input[, output]) -> retval, output

 Link to this function

 applyTransformation(self, input, opts)

 View Source

 @spec applyTransformation(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {number(), Evision.Mat.t()} | {:error, String.t()}

Apply a transformation, given a pre-estimated transformation parameters.
Positional Arguments
	self: Evision.ShapeTransformer.t()

	input: Evision.Mat.t().
Contour (set of points) to apply the transformation.

Return
	retval: float

	output: Evision.Mat.t().
Output contour.

Python prototype (for reference only):
applyTransformation(input[, output]) -> retval, output

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.ShapeTransformer.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.ShapeTransformer.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 estimateTransformation(self, transformingShape, targetShape, matches)

 View Source

 @spec estimateTransformation(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 Evision.DMatch.t()
]
) :: t() | {:error, String.t()}

Estimate the transformation parameters of the current transformer algorithm, based on point matches.
Positional Arguments
	self: Evision.ShapeTransformer.t()

	transformingShape: Evision.Mat.t().
Contour defining first shape.

	targetShape: Evision.Mat.t().
Contour defining second shape (Target).

	matches: [Evision.DMatch].
Standard vector of Matches between points.

Python prototype (for reference only):
estimateTransformation(transformingShape, targetShape, matches) -> None

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.ShapeTransformer.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.ShapeTransformer.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.ShapeTransformer.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 warpImage(self, transformingImage)

 View Source

 @spec warpImage(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply a transformation, given a pre-estimated transformation parameters, to an Image.
Positional Arguments
	self: Evision.ShapeTransformer.t()

	transformingImage: Evision.Mat.t().
Input image.

Keyword Arguments
	flags: int.
Image interpolation method.

	borderMode: int.
border style.

	borderValue: Scalar.
border value.

Return
	output: Evision.Mat.t().
Output image.

Python prototype (for reference only):
warpImage(transformingImage[, output[, flags[, borderMode[, borderValue]]]]) -> output

 Link to this function

 warpImage(self, transformingImage, opts)

 View Source

 @spec warpImage(
 t(),
 Evision.Mat.maybe_mat_in(),
 [borderMode: term(), flags: term(), borderValue: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Apply a transformation, given a pre-estimated transformation parameters, to an Image.
Positional Arguments
	self: Evision.ShapeTransformer.t()

	transformingImage: Evision.Mat.t().
Input image.

Keyword Arguments
	flags: int.
Image interpolation method.

	borderMode: int.
border style.

	borderValue: Scalar.
border value.

Return
	output: Evision.Mat.t().
Output image.

Python prototype (for reference only):
warpImage(transformingImage[, output[, flags[, borderMode[, borderValue]]]]) -> output

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.ShapeTransformer.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.ShapeTransformer.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.SimpleBlobDetector - Evision v0.1.39

Evision.SimpleBlobDetector

 Summary

 Types

 t()

 Type that represents an SimpleBlobDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getBlobContours(self)

 getBlobContours

 getDefaultName(self)

 getDefaultName

 getParams(self)

 getParams

 read(self, arg1)

 Variant 1:
read

 setParams(self, params)

 setParams

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.SimpleBlobDetector{ref: reference()}

Type that represents an SimpleBlobDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	parameters: Evision.SimpleBlobDetector.Params.t().

Return
	retval: Evision.SimpleBlobDetector.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

create
Keyword Arguments
	parameters: Evision.SimpleBlobDetector.Params.t().

Return
	retval: Evision.SimpleBlobDetector.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlobContours(self)

 View Source

 @spec getBlobContours(t()) :: [[{number(), number()}]] | {:error, String.t()}

getBlobContours
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: [[cv::Point]]

Python prototype (for reference only):
getBlobContours() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getParams(self)

 View Source

 @spec getParams(t()) :: Evision.SimpleBlobDetector.Params.t() | {:error, String.t()}

getParams
Positional Arguments
	self: Evision.SimpleBlobDetector.t()

Return
	retval: Evision.SimpleBlobDetector.Params.t()

Python prototype (for reference only):
getParams() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setParams(self, params)

 View Source

 @spec setParams(t(), Evision.SimpleBlobDetector.Params.t()) ::
 t() | {:error, String.t()}

setParams
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	params: Evision.SimpleBlobDetector.Params.t()

Python prototype (for reference only):
setParams(params) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.SimpleBlobDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.SimpleBlobDetector.Params - Evision v0.1.39

Evision.SimpleBlobDetector.Params

 Summary

 Types

 t()

 Type that represents an SimpleBlobDetector.Params struct.

 Functions

 get_blobColor(self)

 get_collectContours(self)

 get_filterByArea(self)

 get_filterByCircularity(self)

 get_filterByColor(self)

 get_filterByConvexity(self)

 get_filterByInertia(self)

 get_maxArea(self)

 get_maxCircularity(self)

 get_maxConvexity(self)

 get_maxInertiaRatio(self)

 get_maxThreshold(self)

 get_minArea(self)

 get_minCircularity(self)

 get_minConvexity(self)

 get_minDistBetweenBlobs(self)

 get_minInertiaRatio(self)

 get_minRepeatability(self)

 get_minThreshold(self)

 get_thresholdStep(self)

 params()

 SimpleBlobDetector_Params

 set_blobColor(self, prop)

 set_collectContours(self, prop)

 set_filterByArea(self, prop)

 set_filterByCircularity(self, prop)

 set_filterByColor(self, prop)

 set_filterByConvexity(self, prop)

 set_filterByInertia(self, prop)

 set_maxArea(self, prop)

 set_maxCircularity(self, prop)

 set_maxConvexity(self, prop)

 set_maxInertiaRatio(self, prop)

 set_maxThreshold(self, prop)

 set_minArea(self, prop)

 set_minCircularity(self, prop)

 set_minConvexity(self, prop)

 set_minDistBetweenBlobs(self, prop)

 set_minInertiaRatio(self, prop)

 set_minRepeatability(self, prop)

 set_minThreshold(self, prop)

 set_thresholdStep(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.SimpleBlobDetector.Params{ref: reference()}

Type that represents an SimpleBlobDetector.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_blobColor(self)

 View Source

 @spec get_blobColor(t()) :: integer()

 Link to this function

 get_collectContours(self)

 View Source

 @spec get_collectContours(t()) :: boolean()

 Link to this function

 get_filterByArea(self)

 View Source

 @spec get_filterByArea(t()) :: boolean()

 Link to this function

 get_filterByCircularity(self)

 View Source

 @spec get_filterByCircularity(t()) :: boolean()

 Link to this function

 get_filterByColor(self)

 View Source

 @spec get_filterByColor(t()) :: boolean()

 Link to this function

 get_filterByConvexity(self)

 View Source

 @spec get_filterByConvexity(t()) :: boolean()

 Link to this function

 get_filterByInertia(self)

 View Source

 @spec get_filterByInertia(t()) :: boolean()

 Link to this function

 get_maxArea(self)

 View Source

 @spec get_maxArea(t()) :: number()

 Link to this function

 get_maxCircularity(self)

 View Source

 @spec get_maxCircularity(t()) :: number()

 Link to this function

 get_maxConvexity(self)

 View Source

 @spec get_maxConvexity(t()) :: number()

 Link to this function

 get_maxInertiaRatio(self)

 View Source

 @spec get_maxInertiaRatio(t()) :: number()

 Link to this function

 get_maxThreshold(self)

 View Source

 @spec get_maxThreshold(t()) :: number()

 Link to this function

 get_minArea(self)

 View Source

 @spec get_minArea(t()) :: number()

 Link to this function

 get_minCircularity(self)

 View Source

 @spec get_minCircularity(t()) :: number()

 Link to this function

 get_minConvexity(self)

 View Source

 @spec get_minConvexity(t()) :: number()

 Link to this function

 get_minDistBetweenBlobs(self)

 View Source

 @spec get_minDistBetweenBlobs(t()) :: number()

 Link to this function

 get_minInertiaRatio(self)

 View Source

 @spec get_minInertiaRatio(t()) :: number()

 Link to this function

 get_minRepeatability(self)

 View Source

 @spec get_minRepeatability(t()) :: integer()

 Link to this function

 get_minThreshold(self)

 View Source

 @spec get_minThreshold(t()) :: number()

 Link to this function

 get_thresholdStep(self)

 View Source

 @spec get_thresholdStep(t()) :: number()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

SimpleBlobDetector_Params
Return
	self: Evision.SimpleBlobDetector.Params.t()

Python prototype (for reference only):
SimpleBlobDetector_Params() -> <SimpleBlobDetector_Params object>

 Link to this function

 set_blobColor(self, prop)

 View Source

 @spec set_blobColor(t(), integer()) :: t()

 Link to this function

 set_collectContours(self, prop)

 View Source

 @spec set_collectContours(t(), boolean()) :: t()

 Link to this function

 set_filterByArea(self, prop)

 View Source

 @spec set_filterByArea(t(), boolean()) :: t()

 Link to this function

 set_filterByCircularity(self, prop)

 View Source

 @spec set_filterByCircularity(t(), boolean()) :: t()

 Link to this function

 set_filterByColor(self, prop)

 View Source

 @spec set_filterByColor(t(), boolean()) :: t()

 Link to this function

 set_filterByConvexity(self, prop)

 View Source

 @spec set_filterByConvexity(t(), boolean()) :: t()

 Link to this function

 set_filterByInertia(self, prop)

 View Source

 @spec set_filterByInertia(t(), boolean()) :: t()

 Link to this function

 set_maxArea(self, prop)

 View Source

 @spec set_maxArea(t(), number()) :: t()

 Link to this function

 set_maxCircularity(self, prop)

 View Source

 @spec set_maxCircularity(t(), number()) :: t()

 Link to this function

 set_maxConvexity(self, prop)

 View Source

 @spec set_maxConvexity(t(), number()) :: t()

 Link to this function

 set_maxInertiaRatio(self, prop)

 View Source

 @spec set_maxInertiaRatio(t(), number()) :: t()

 Link to this function

 set_maxThreshold(self, prop)

 View Source

 @spec set_maxThreshold(t(), number()) :: t()

 Link to this function

 set_minArea(self, prop)

 View Source

 @spec set_minArea(t(), number()) :: t()

 Link to this function

 set_minCircularity(self, prop)

 View Source

 @spec set_minCircularity(t(), number()) :: t()

 Link to this function

 set_minConvexity(self, prop)

 View Source

 @spec set_minConvexity(t(), number()) :: t()

 Link to this function

 set_minDistBetweenBlobs(self, prop)

 View Source

 @spec set_minDistBetweenBlobs(t(), number()) :: t()

 Link to this function

 set_minInertiaRatio(self, prop)

 View Source

 @spec set_minInertiaRatio(t(), number()) :: t()

 Link to this function

 set_minRepeatability(self, prop)

 View Source

 @spec set_minRepeatability(t(), integer()) :: t()

 Link to this function

 set_minThreshold(self, prop)

 View Source

 @spec set_minThreshold(t(), number()) :: t()

 Link to this function

 set_thresholdStep(self, prop)

 View Source

 @spec set_thresholdStep(t(), number()) :: t()

 Evision.SmartCell - Evision v0.1.39

Evision.SmartCell

Evision SmartCell Collection
To use smartcell in Livebook, :kino >= 0.7 is required
defp deps do
 [
 # ...
 {:kino, "~> 0.7"},
 # ...
]
end

 Summary

 Functions

 available_smartcells()

 Get all available smartcells.

 register_smartcells(smartcells \\ available_smartcells())

 Register Smartcells

Functions

 Link to this function

 available_smartcells()

 View Source

 @spec available_smartcells() :: [module()]

Get all available smartcells.
To register smartcells to :kino, please use Evision.SmartCell.register_smartcells/1.

 Link to this function

 register_smartcells(smartcells \\ available_smartcells())

 View Source

 @spec register_smartcells([module()] | module()) :: :ok

Register Smartcells
It will register all available smartcells by default.
To see all available smartcells, please use Evision.SmartCell.available_smartcells/0.

 Evision.SmartCell.ML.DTrees - Evision v0.1.39

Evision.SmartCell.ML.DTrees

 Summary

 Functions

 child_spec(map)

 defaults()

 get_quoted_code(attrs)

 id()

 properties()

 to_updates(fields, name, value)

Functions

 Link to this function

 child_spec(map)

 View Source

 Link to this function

 defaults()

 View Source

 @spec defaults() :: map()

 Link to this function

 get_quoted_code(attrs)

 View Source

 Link to this function

 id()

 View Source

 @spec id() :: String.t()

 Link to this function

 properties()

 View Source

 @spec properties() :: map()

 Link to this function

 to_updates(fields, name, value)

 View Source

 Evision.SmartCell.ML.RTrees - Evision v0.1.39

Evision.SmartCell.ML.RTrees

 Summary

 Functions

 child_spec(map)

 defaults()

 get_quoted_code(attrs)

 id()

 properties()

 to_updates(fields, name, key)

Functions

 Link to this function

 child_spec(map)

 View Source

 Link to this function

 defaults()

 View Source

 @spec defaults() :: map()

 Link to this function

 get_quoted_code(attrs)

 View Source

 Link to this function

 id()

 View Source

 @spec id() :: String.t()

 Link to this function

 properties()

 View Source

 @spec properties() :: map()

 Link to this function

 to_updates(fields, name, key)

 View Source

 Evision.SmartCell.ML.SVM - Evision v0.1.39

Evision.SmartCell.ML.SVM

 Summary

 Functions

 child_spec(map)

 defaults()

 get_quoted_code(attrs)

 id()

 properties()

 to_updates(fields, name, value)

Functions

 Link to this function

 child_spec(map)

 View Source

 Link to this function

 defaults()

 View Source

 @spec defaults() :: map()

 Link to this function

 get_quoted_code(attrs)

 View Source

 Link to this function

 id()

 View Source

 @spec id() :: String.t()

 Link to this function

 properties()

 View Source

 @spec properties() :: map()

 Link to this function

 to_updates(fields, name, value)

 View Source

 Evision.SmartCell.ML.TrainData - Evision v0.1.39

Evision.SmartCell.ML.TrainData

 Summary

 Functions

 child_spec(map)

 data_layout(binary)

 defaults()

 get_calc_error(module, traindata_var, to_variable)

 get_quoted_code(attrs)

 id()

 properties()

 to_updates(fields, name, value)

Functions

 Link to this function

 child_spec(map)

 View Source

 Link to this function

 data_layout(binary)

 View Source

 Link to this function

 defaults()

 View Source

 @spec defaults() :: map()

 Link to this function

 get_calc_error(module, traindata_var, to_variable)

 View Source

 Link to this function

 get_quoted_code(attrs)

 View Source

 Link to this function

 id()

 View Source

 @spec id() :: String.t()

 Link to this function

 properties()

 View Source

 @spec properties() :: map()

 Link to this function

 to_updates(fields, name, value)

 View Source

 Evision.SmartCell.SimpleList - Evision v0.1.39

Evision.SmartCell.SimpleList

A kino for displaying a list of labels.
This kino is primarily used to present top classification predictions.
Examples
predictions = [
 "malamute",
 "Siberian husky",
 "Eskimo dog",
 "Tibetan mastiff",
 "German shepherd"
]
Evision.SmartCell.SimpleList.new(predictions)

 Summary

 Types

 t()

 Functions

 new(items)

 Creates a new kino displaying the given list of items.
Expects a list of tuples, each element being the label and its score.

Types

 Link to this type

 t()

 View Source

 @type t() :: Kino.JS.t()

Functions

 Link to this function

 new(items)

 View Source

 @spec new([{String.t(), number()}]) :: t()

Creates a new kino displaying the given list of items.
Expects a list of tuples, each element being the label and its score.

 Evision.SparseOpticalFlow - Evision v0.1.39

Evision.SparseOpticalFlow

 Summary

 Types

 t()

 Type that represents an SparseOpticalFlow struct.

 Functions

 calc(self, prevImg, nextImg, prevPts, nextPts)

 Calculates a sparse optical flow.

 calc(self, prevImg, nextImg, prevPts, nextPts, opts)

 Calculates a sparse optical flow.

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.SparseOpticalFlow{ref: reference()}

Type that represents an SparseOpticalFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calc(self, prevImg, nextImg, prevPts, nextPts)

 View Source

 @spec calc(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates a sparse optical flow.
Positional Arguments
	self: Evision.SparseOpticalFlow.t()

	prevImg: Evision.Mat.t().
First input image.

	nextImg: Evision.Mat.t().
Second input image of the same size and the same type as prevImg.

	prevPts: Evision.Mat.t().
Vector of 2D points for which the flow needs to be found.

Return
	nextPts: Evision.Mat.t().
Output vector of 2D points containing the calculated new positions of input features in the second image.

	status: Evision.Mat.t().
Output status vector. Each element of the vector is set to 1 if the
flow for the corresponding features has been found. Otherwise, it is set to 0.

	err: Evision.Mat.t().
Optional output vector that contains error response for each point (inverse confidence).

Python prototype (for reference only):
calc(prevImg, nextImg, prevPts, nextPts[, status[, err]]) -> nextPts, status, err

 Link to this function

 calc(self, prevImg, nextImg, prevPts, nextPts, opts)

 View Source

 @spec calc(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: {Evision.Mat.t(), Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Calculates a sparse optical flow.
Positional Arguments
	self: Evision.SparseOpticalFlow.t()

	prevImg: Evision.Mat.t().
First input image.

	nextImg: Evision.Mat.t().
Second input image of the same size and the same type as prevImg.

	prevPts: Evision.Mat.t().
Vector of 2D points for which the flow needs to be found.

Return
	nextPts: Evision.Mat.t().
Output vector of 2D points containing the calculated new positions of input features in the second image.

	status: Evision.Mat.t().
Output status vector. Each element of the vector is set to 1 if the
flow for the corresponding features has been found. Otherwise, it is set to 0.

	err: Evision.Mat.t().
Optional output vector that contains error response for each point (inverse confidence).

Python prototype (for reference only):
calc(prevImg, nextImg, prevPts, nextPts[, status[, err]]) -> nextPts, status, err

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.SparseOpticalFlow.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.SparseOpticalFlow.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.SparseOpticalFlow.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.SparseOpticalFlow.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.SparseOpticalFlow.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.SparseOpticalFlow.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.SparseOpticalFlow.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.SparsePyrLKOpticalFlow - Evision v0.1.39

Evision.SparsePyrLKOpticalFlow

 Summary

 Types

 t()

 Type that represents an SparsePyrLKOpticalFlow struct.

 Functions

 create()

 create

 create(opts)

 create

 getFlags(self)

 getFlags

 getMaxLevel(self)

 getMaxLevel

 getMinEigThreshold(self)

 getMinEigThreshold

 getTermCriteria(self)

 getTermCriteria

 getWinSize(self)

 getWinSize

 setFlags(self, flags)

 setFlags

 setMaxLevel(self, maxLevel)

 setMaxLevel

 setMinEigThreshold(self, minEigThreshold)

 setMinEigThreshold

 setTermCriteria(self, crit)

 setTermCriteria

 setWinSize(self, winSize)

 setWinSize

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.SparsePyrLKOpticalFlow{ref: reference()}

Type that represents an SparsePyrLKOpticalFlow struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	winSize: Size.
	maxLevel: int.
	crit: TermCriteria.
	flags: int.
	minEigThreshold: double.

Return
	retval: Evision.SparsePyrLKOpticalFlow.t()

Python prototype (for reference only):
create([, winSize[, maxLevel[, crit[, flags[, minEigThreshold]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 flags: term(),
 winSize: term(),
 minEigThreshold: term(),
 crit: term(),
 maxLevel: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	winSize: Size.
	maxLevel: int.
	crit: TermCriteria.
	flags: int.
	minEigThreshold: double.

Return
	retval: Evision.SparsePyrLKOpticalFlow.t()

Python prototype (for reference only):
create([, winSize[, maxLevel[, crit[, flags[, minEigThreshold]]]]]) -> retval

 Link to this function

 getFlags(self)

 View Source

 @spec getFlags(t()) :: integer() | {:error, String.t()}

getFlags
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getFlags() -> retval

 Link to this function

 getMaxLevel(self)

 View Source

 @spec getMaxLevel(t()) :: integer() | {:error, String.t()}

getMaxLevel
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()

Return
	retval: int

Python prototype (for reference only):
getMaxLevel() -> retval

 Link to this function

 getMinEigThreshold(self)

 View Source

 @spec getMinEigThreshold(t()) :: number() | {:error, String.t()}

getMinEigThreshold
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()

Return
	retval: double

Python prototype (for reference only):
getMinEigThreshold() -> retval

 Link to this function

 getTermCriteria(self)

 View Source

 @spec getTermCriteria(t()) :: {integer(), integer(), number()} | {:error, String.t()}

getTermCriteria
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()

Return
	retval: TermCriteria

Python prototype (for reference only):
getTermCriteria() -> retval

 Link to this function

 getWinSize(self)

 View Source

 @spec getWinSize(t()) :: {number(), number()} | {:error, String.t()}

getWinSize
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()

Return
	retval: Size

Python prototype (for reference only):
getWinSize() -> retval

 Link to this function

 setFlags(self, flags)

 View Source

 @spec setFlags(t(), integer()) :: t() | {:error, String.t()}

setFlags
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()
	flags: int

Python prototype (for reference only):
setFlags(flags) -> None

 Link to this function

 setMaxLevel(self, maxLevel)

 View Source

 @spec setMaxLevel(t(), integer()) :: t() | {:error, String.t()}

setMaxLevel
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()
	maxLevel: int

Python prototype (for reference only):
setMaxLevel(maxLevel) -> None

 Link to this function

 setMinEigThreshold(self, minEigThreshold)

 View Source

 @spec setMinEigThreshold(t(), number()) :: t() | {:error, String.t()}

setMinEigThreshold
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()
	minEigThreshold: double

Python prototype (for reference only):
setMinEigThreshold(minEigThreshold) -> None

 Link to this function

 setTermCriteria(self, crit)

 View Source

 @spec setTermCriteria(t(), {integer(), integer(), number()}) ::
 t() | {:error, String.t()}

setTermCriteria
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()
	crit: TermCriteria

Python prototype (for reference only):
setTermCriteria(crit) -> None

 Link to this function

 setWinSize(self, winSize)

 View Source

 @spec setWinSize(
 t(),
 {number(), number()}
) :: t() | {:error, String.t()}

setWinSize
Positional Arguments
	self: Evision.SparsePyrLKOpticalFlow.t()
	winSize: Size

Python prototype (for reference only):
setWinSize(winSize) -> None

 Evision.Stereo - Evision v0.1.39

Evision.Stereo

 Summary

 Types

 t()

 Type that represents an Stereo struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Stereo{ref: reference()}

Type that represents an Stereo struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Stereo.MatchQuasiDense - Evision v0.1.39

Evision.Stereo.MatchQuasiDense

 Summary

 Types

 t()

 Type that represents an Stereo.MatchQuasiDense struct.

 Functions

 apply(self, rhs)

 apply

 get_corr(self)

 get_p0(self)

 get_p1(self)

 matchQuasiDense()

 MatchQuasiDense

 set_corr(self, prop)

 set_p0(self, prop)

 set_p1(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Stereo.MatchQuasiDense{ref: reference()}

Type that represents an Stereo.MatchQuasiDense struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 apply(self, rhs)

 View Source

 @spec apply(t(), t()) :: boolean() | {:error, String.t()}

apply
Positional Arguments
	self: Evision.Stereo.MatchQuasiDense.t()
	rhs: MatchQuasiDense

Return
	retval: bool

Python prototype (for reference only):
apply(rhs) -> retval

 Link to this function

 get_corr(self)

 View Source

 @spec get_corr(t()) :: number()

 Link to this function

 get_p0(self)

 View Source

 @spec get_p0(t()) :: {integer(), integer()}

 Link to this function

 get_p1(self)

 View Source

 @spec get_p1(t()) :: {integer(), integer()}

 Link to this function

 matchQuasiDense()

 View Source

 @spec matchQuasiDense() :: t() | {:error, String.t()}

MatchQuasiDense
Return
	self: MatchQuasiDense

Python prototype (for reference only):
MatchQuasiDense() -> <stereo_MatchQuasiDense object>

 Link to this function

 set_corr(self, prop)

 View Source

 @spec set_corr(t(), number()) :: t()

 Link to this function

 set_p0(self, prop)

 View Source

 @spec set_p0(
 t(),
 {integer(), integer()}
) :: t()

 Link to this function

 set_p1(self, prop)

 View Source

 @spec set_p1(
 t(),
 {integer(), integer()}
) :: t()

 Evision.Stereo.PropagationParameters - Evision v0.1.39

Evision.Stereo.PropagationParameters

 Summary

 Types

 t()

 Type that represents an Stereo.PropagationParameters struct.

 Functions

 get_borderX(self)

 get_borderY(self)

 get_correlationThreshold(self)

 get_corrWinSizeX(self)

 get_corrWinSizeY(self)

 get_disparityGradient(self)

 get_gftMaxNumFeatures(self)

 get_gftMinSeperationDist(self)

 get_gftQualityThres(self)

 get_lkPyrLvl(self)

 get_lkTemplateSize(self)

 get_lkTermParam1(self)

 get_lkTermParam2(self)

 get_neighborhoodSize(self)

 get_textrureThreshold(self)

 set_borderX(self, prop)

 set_borderY(self, prop)

 set_correlationThreshold(self, prop)

 set_corrWinSizeX(self, prop)

 set_corrWinSizeY(self, prop)

 set_disparityGradient(self, prop)

 set_gftMaxNumFeatures(self, prop)

 set_gftMinSeperationDist(self, prop)

 set_gftQualityThres(self, prop)

 set_lkPyrLvl(self, prop)

 set_lkTemplateSize(self, prop)

 set_lkTermParam1(self, prop)

 set_lkTermParam2(self, prop)

 set_neighborhoodSize(self, prop)

 set_textrureThreshold(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Stereo.PropagationParameters{ref: reference()}

Type that represents an Stereo.PropagationParameters struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_borderX(self)

 View Source

 @spec get_borderX(t()) :: integer()

 Link to this function

 get_borderY(self)

 View Source

 @spec get_borderY(t()) :: integer()

 Link to this function

 get_correlationThreshold(self)

 View Source

 @spec get_correlationThreshold(t()) :: number()

 Link to this function

 get_corrWinSizeX(self)

 View Source

 @spec get_corrWinSizeX(t()) :: integer()

 Link to this function

 get_corrWinSizeY(self)

 View Source

 @spec get_corrWinSizeY(t()) :: integer()

 Link to this function

 get_disparityGradient(self)

 View Source

 @spec get_disparityGradient(t()) :: integer()

 Link to this function

 get_gftMaxNumFeatures(self)

 View Source

 @spec get_gftMaxNumFeatures(t()) :: integer()

 Link to this function

 get_gftMinSeperationDist(self)

 View Source

 @spec get_gftMinSeperationDist(t()) :: integer()

 Link to this function

 get_gftQualityThres(self)

 View Source

 @spec get_gftQualityThres(t()) :: number()

 Link to this function

 get_lkPyrLvl(self)

 View Source

 @spec get_lkPyrLvl(t()) :: integer()

 Link to this function

 get_lkTemplateSize(self)

 View Source

 @spec get_lkTemplateSize(t()) :: integer()

 Link to this function

 get_lkTermParam1(self)

 View Source

 @spec get_lkTermParam1(t()) :: integer()

 Link to this function

 get_lkTermParam2(self)

 View Source

 @spec get_lkTermParam2(t()) :: number()

 Link to this function

 get_neighborhoodSize(self)

 View Source

 @spec get_neighborhoodSize(t()) :: integer()

 Link to this function

 get_textrureThreshold(self)

 View Source

 @spec get_textrureThreshold(t()) :: number()

 Link to this function

 set_borderX(self, prop)

 View Source

 @spec set_borderX(t(), integer()) :: t()

 Link to this function

 set_borderY(self, prop)

 View Source

 @spec set_borderY(t(), integer()) :: t()

 Link to this function

 set_correlationThreshold(self, prop)

 View Source

 @spec set_correlationThreshold(t(), number()) :: t()

 Link to this function

 set_corrWinSizeX(self, prop)

 View Source

 @spec set_corrWinSizeX(t(), integer()) :: t()

 Link to this function

 set_corrWinSizeY(self, prop)

 View Source

 @spec set_corrWinSizeY(t(), integer()) :: t()

 Link to this function

 set_disparityGradient(self, prop)

 View Source

 @spec set_disparityGradient(t(), integer()) :: t()

 Link to this function

 set_gftMaxNumFeatures(self, prop)

 View Source

 @spec set_gftMaxNumFeatures(t(), integer()) :: t()

 Link to this function

 set_gftMinSeperationDist(self, prop)

 View Source

 @spec set_gftMinSeperationDist(t(), integer()) :: t()

 Link to this function

 set_gftQualityThres(self, prop)

 View Source

 @spec set_gftQualityThres(t(), number()) :: t()

 Link to this function

 set_lkPyrLvl(self, prop)

 View Source

 @spec set_lkPyrLvl(t(), integer()) :: t()

 Link to this function

 set_lkTemplateSize(self, prop)

 View Source

 @spec set_lkTemplateSize(t(), integer()) :: t()

 Link to this function

 set_lkTermParam1(self, prop)

 View Source

 @spec set_lkTermParam1(t(), integer()) :: t()

 Link to this function

 set_lkTermParam2(self, prop)

 View Source

 @spec set_lkTermParam2(t(), number()) :: t()

 Link to this function

 set_neighborhoodSize(self, prop)

 View Source

 @spec set_neighborhoodSize(t(), integer()) :: t()

 Link to this function

 set_textrureThreshold(self, prop)

 View Source

 @spec set_textrureThreshold(t(), number()) :: t()

 Evision.Stereo.QuasiDenseStereo - Evision v0.1.39

Evision.Stereo.QuasiDenseStereo

 Summary

 Types

 t()

 Type that represents an Stereo.QuasiDenseStereo struct.

 Functions

 create(monoImgSize)

 create

 create(monoImgSize, opts)

 create

 get_Param(self)

 getDenseMatches(self)

 Get The dense corresponding points.

 getDisparity(self)

 Compute and return the disparity map based on the correspondences found in the "process" method.

 getMatch(self, x, y)

 Specify pixel coordinates in the left image and get its corresponding location in the right image.

 getSparseMatches(self)

 Get The sparse corresponding points.

 loadParameters(self, filepath)

 Load a file containing the configuration parameters of the class.

 process(self, imgLeft, imgRight)

 Main process of the algorithm. This method computes the sparse seeds and then densifies them.

 saveParameters(self, filepath)

 Save a file containing all the configuration parameters the class is currently set to.

 set_Param(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Stereo.QuasiDenseStereo{ref: reference()}

Type that represents an Stereo.QuasiDenseStereo struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(monoImgSize)

 View Source

 @spec create({number(), number()}) :: t() | {:error, String.t()}

create
Positional Arguments
	monoImgSize: Size

Keyword Arguments
	paramFilepath: String.

Return
	retval: cv::Ptr<QuasiDenseStereo>

Python prototype (for reference only):
create(monoImgSize[, paramFilepath]) -> retval

 Link to this function

 create(monoImgSize, opts)

 View Source

 @spec create(
 {number(), number()},
 [{:paramFilepath, term()}] | nil
) :: t() | {:error, String.t()}

create
Positional Arguments
	monoImgSize: Size

Keyword Arguments
	paramFilepath: String.

Return
	retval: cv::Ptr<QuasiDenseStereo>

Python prototype (for reference only):
create(monoImgSize[, paramFilepath]) -> retval

 Link to this function

 get_Param(self)

 View Source

 @spec get_Param(t()) :: Evision.Stereo.PropagationParameters.t()

 Link to this function

 getDenseMatches(self)

 View Source

 @spec getDenseMatches(t()) ::
 [Evision.Stereo.MatchQuasiDense.t()] | {:error, String.t()}

Get The dense corresponding points.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

Return
	denseMatches: [MatchQuasiDense].
A vector containing all dense matches.

Note: The method clears the denseMatches vector.
Note: The returned Match elements inside the sMatches vector, do not use corr member.
Python prototype (for reference only):
getDenseMatches() -> denseMatches

 Link to this function

 getDisparity(self)

 View Source

 @spec getDisparity(t()) :: Evision.Mat.t() | {:error, String.t()}

Compute and return the disparity map based on the correspondences found in the "process" method.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

Return
	retval: Evision.Mat.t()

Note: Default level is 50
@return cv::Mat containing a the disparity image in grayscale.
@sa computeDisparity
@sa quantizeDisparity
Python prototype (for reference only):
getDisparity() -> retval

 Link to this function

 getMatch(self, x, y)

 View Source

 @spec getMatch(t(), integer(), integer()) ::
 {number(), number()} | {:error, String.t()}

Specify pixel coordinates in the left image and get its corresponding location in the right image.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

	x: int.
The x pixel coordinate in the left image channel.

	y: int.
The y pixel coordinate in the left image channel.

Return
	retval: cv::Point2f

@retval cv::Point(x, y) The location of the corresponding pixel in the right image.
@retval cv::Point(0, 0) (NO_MATCH) if no match is found in the right image for the specified pixel location in the left image.
Note: This method should be always called after process, otherwise the matches will not be correct.
Python prototype (for reference only):
getMatch(x, y) -> retval

 Link to this function

 getSparseMatches(self)

 View Source

 @spec getSparseMatches(t()) ::
 [Evision.Stereo.MatchQuasiDense.t()] | {:error, String.t()}

Get The sparse corresponding points.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

Return
	sMatches: [MatchQuasiDense].
A vector containing all sparse correspondences.

Note: The method clears the sMatches vector.
Note: The returned Match elements inside the sMatches vector, do not use corr member.
Python prototype (for reference only):
getSparseMatches() -> sMatches

 Link to this function

 loadParameters(self, filepath)

 View Source

 @spec loadParameters(t(), binary()) :: integer() | {:error, String.t()}

Load a file containing the configuration parameters of the class.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

	filepath: String.
The location of the .YAML file containing the configuration parameters.

Return
	retval: int

Note: default value is an empty string in which case the default parameters will be loaded.
@retval 1: If the path is not empty and the program loaded the parameters successfully.
@retval 0: If the path is empty and the program loaded default parameters.
@retval -1: If the file location is not valid or the program could not open the file and
 loaded default parameters from defaults.hpp.
Note: The method is automatically called in the constructor and configures the class.
Note: Loading different parameters will have an effect on the output. This is useful for tuning
 in case of video processing.
@sa loadParameters
Python prototype (for reference only):
loadParameters(filepath) -> retval

 Link to this function

 process(self, imgLeft, imgRight)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Main process of the algorithm. This method computes the sparse seeds and then densifies them.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

	imgLeft: Evision.Mat.t().
The left Channel of a stereo image pair.

	imgRight: Evision.Mat.t().
The right Channel of a stereo image pair.

 Initially input images are converted to gray-scale and then the sparseMatching method
 is called to obtain the sparse stereo. Finally quasiDenseMatching is called to densify the corresponding
 points.
Note: If input images are in color, the method assumes that are BGR and converts them to grayscale.
@sa sparseMatching
@sa quasiDenseMatching
Python prototype (for reference only):
process(imgLeft, imgRight) -> None

 Link to this function

 saveParameters(self, filepath)

 View Source

 @spec saveParameters(t(), binary()) :: integer() | {:error, String.t()}

Save a file containing all the configuration parameters the class is currently set to.
Positional Arguments
	self: Evision.Stereo.QuasiDenseStereo.t()

	filepath: String.
The location to store the parameters file.

Return
	retval: int

Note: Calling this method with no arguments will result in storing class parameters to a file
 names "qds_parameters.yaml" in the root project folder.
Note: This method can be used to generate a template file for tuning the class.
@sa loadParameters
Python prototype (for reference only):
saveParameters(filepath) -> retval

 Link to this function

 set_Param(self, prop)

 View Source

 @spec set_Param(t(), Evision.Stereo.PropagationParameters.t()) :: t()

 Evision.StereoBM - Evision v0.1.39

Evision.StereoBM

 Summary

 Types

 t()

 Type that represents an StereoBM struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, left, right)

 Computes disparity map for the specified stereo pair

 compute(self, left, right, opts)

 Computes disparity map for the specified stereo pair

 create()

 Creates StereoBM object

 create(opts)

 Creates StereoBM object

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBlockSize(self)

 getBlockSize

 getDefaultName(self)

 getDefaultName

 getDisp12MaxDiff(self)

 getDisp12MaxDiff

 getMinDisparity(self)

 getMinDisparity

 getNumDisparities(self)

 getNumDisparities

 getPreFilterCap(self)

 getPreFilterCap

 getPreFilterSize(self)

 getPreFilterSize

 getPreFilterType(self)

 getPreFilterType

 getROI1(self)

 getROI1

 getROI2(self)

 getROI2

 getSmallerBlockSize(self)

 getSmallerBlockSize

 getSpeckleRange(self)

 getSpeckleRange

 getSpeckleWindowSize(self)

 getSpeckleWindowSize

 getTextureThreshold(self)

 getTextureThreshold

 getUniquenessRatio(self)

 getUniquenessRatio

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBlockSize(self, blockSize)

 setBlockSize

 setDisp12MaxDiff(self, disp12MaxDiff)

 setDisp12MaxDiff

 setMinDisparity(self, minDisparity)

 setMinDisparity

 setNumDisparities(self, numDisparities)

 setNumDisparities

 setPreFilterCap(self, preFilterCap)

 setPreFilterCap

 setPreFilterSize(self, preFilterSize)

 setPreFilterSize

 setPreFilterType(self, preFilterType)

 setPreFilterType

 setROI1(self, roi1)

 setROI1

 setROI2(self, roi2)

 setROI2

 setSmallerBlockSize(self, blockSize)

 setSmallerBlockSize

 setSpeckleRange(self, speckleRange)

 setSpeckleRange

 setSpeckleWindowSize(self, speckleWindowSize)

 setSpeckleWindowSize

 setTextureThreshold(self, textureThreshold)

 setTextureThreshold

 setUniquenessRatio(self, uniquenessRatio)

 setUniquenessRatio

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StereoBM{ref: reference()}

Type that represents an StereoBM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.StereoBM.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, left, right)

 View Source

 @spec compute(
 Evision.StereoMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoBM.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, opts)

 View Source

 @spec compute(
 Evision.StereoMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoBM.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates StereoBM object
Keyword Arguments
	numDisparities: int.
the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.

	blockSize: int.
the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.

Return
	retval: Evision.StereoBM.t()

The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
Python prototype (for reference only):
create([, numDisparities[, blockSize]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([numDisparities: term(), blockSize: term()] | nil) ::
 t() | {:error, String.t()}

Creates StereoBM object
Keyword Arguments
	numDisparities: int.
the disparity search range. For each pixel algorithm will find the best
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
shifted by changing the minimum disparity.

	blockSize: int.
the linear size of the blocks compared by the algorithm. The size should be odd
(as the block is centered at the current pixel). Larger block size implies smoother, though less
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
chance for algorithm to find a wrong correspondence.

Return
	retval: Evision.StereoBM.t()

The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
a specific stereo pair.
Python prototype (for reference only):
create([, numDisparities[, blockSize]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDisp12MaxDiff(self)

 View Source

 @spec getDisp12MaxDiff(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getDisp12MaxDiff
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getDisp12MaxDiff() -> retval

 Link to this function

 getMinDisparity(self)

 View Source

 @spec getMinDisparity(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getMinDisparity
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getMinDisparity() -> retval

 Link to this function

 getNumDisparities(self)

 View Source

 @spec getNumDisparities(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getNumDisparities
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getNumDisparities() -> retval

 Link to this function

 getPreFilterCap(self)

 View Source

 @spec getPreFilterCap(t()) :: integer() | {:error, String.t()}

getPreFilterCap
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getPreFilterCap() -> retval

 Link to this function

 getPreFilterSize(self)

 View Source

 @spec getPreFilterSize(t()) :: integer() | {:error, String.t()}

getPreFilterSize
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getPreFilterSize() -> retval

 Link to this function

 getPreFilterType(self)

 View Source

 @spec getPreFilterType(t()) :: integer() | {:error, String.t()}

getPreFilterType
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getPreFilterType() -> retval

 Link to this function

 getROI1(self)

 View Source

 @spec getROI1(t()) :: {number(), number(), number(), number()} | {:error, String.t()}

getROI1
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: Rect

Python prototype (for reference only):
getROI1() -> retval

 Link to this function

 getROI2(self)

 View Source

 @spec getROI2(t()) :: {number(), number(), number(), number()} | {:error, String.t()}

getROI2
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: Rect

Python prototype (for reference only):
getROI2() -> retval

 Link to this function

 getSmallerBlockSize(self)

 View Source

 @spec getSmallerBlockSize(t()) :: integer() | {:error, String.t()}

getSmallerBlockSize
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getSmallerBlockSize() -> retval

 Link to this function

 getSpeckleRange(self)

 View Source

 @spec getSpeckleRange(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getSpeckleRange
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleRange() -> retval

 Link to this function

 getSpeckleWindowSize(self)

 View Source

 @spec getSpeckleWindowSize(Evision.StereoMatcher.t()) ::
 integer() | {:error, String.t()}

getSpeckleWindowSize
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleWindowSize() -> retval

 Link to this function

 getTextureThreshold(self)

 View Source

 @spec getTextureThreshold(t()) :: integer() | {:error, String.t()}

getTextureThreshold
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getTextureThreshold() -> retval

 Link to this function

 getUniquenessRatio(self)

 View Source

 @spec getUniquenessRatio(t()) :: integer() | {:error, String.t()}

getUniquenessRatio
Positional Arguments
	self: Evision.StereoBM.t()

Return
	retval: int

Python prototype (for reference only):
getUniquenessRatio() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.StereoBM.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.StereoBM.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBlockSize(self, blockSize)

 View Source

 @spec setBlockSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.StereoBM.t()
	blockSize: int

Python prototype (for reference only):
setBlockSize(blockSize) -> None

 Link to this function

 setDisp12MaxDiff(self, disp12MaxDiff)

 View Source

 @spec setDisp12MaxDiff(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setDisp12MaxDiff
Positional Arguments
	self: Evision.StereoBM.t()
	disp12MaxDiff: int

Python prototype (for reference only):
setDisp12MaxDiff(disp12MaxDiff) -> None

 Link to this function

 setMinDisparity(self, minDisparity)

 View Source

 @spec setMinDisparity(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setMinDisparity
Positional Arguments
	self: Evision.StereoBM.t()
	minDisparity: int

Python prototype (for reference only):
setMinDisparity(minDisparity) -> None

 Link to this function

 setNumDisparities(self, numDisparities)

 View Source

 @spec setNumDisparities(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setNumDisparities
Positional Arguments
	self: Evision.StereoBM.t()
	numDisparities: int

Python prototype (for reference only):
setNumDisparities(numDisparities) -> None

 Link to this function

 setPreFilterCap(self, preFilterCap)

 View Source

 @spec setPreFilterCap(t(), integer()) :: t() | {:error, String.t()}

setPreFilterCap
Positional Arguments
	self: Evision.StereoBM.t()
	preFilterCap: int

Python prototype (for reference only):
setPreFilterCap(preFilterCap) -> None

 Link to this function

 setPreFilterSize(self, preFilterSize)

 View Source

 @spec setPreFilterSize(t(), integer()) :: t() | {:error, String.t()}

setPreFilterSize
Positional Arguments
	self: Evision.StereoBM.t()
	preFilterSize: int

Python prototype (for reference only):
setPreFilterSize(preFilterSize) -> None

 Link to this function

 setPreFilterType(self, preFilterType)

 View Source

 @spec setPreFilterType(t(), integer()) :: t() | {:error, String.t()}

setPreFilterType
Positional Arguments
	self: Evision.StereoBM.t()
	preFilterType: int

Python prototype (for reference only):
setPreFilterType(preFilterType) -> None

 Link to this function

 setROI1(self, roi1)

 View Source

 @spec setROI1(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

setROI1
Positional Arguments
	self: Evision.StereoBM.t()
	roi1: Rect

Python prototype (for reference only):
setROI1(roi1) -> None

 Link to this function

 setROI2(self, roi2)

 View Source

 @spec setROI2(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

setROI2
Positional Arguments
	self: Evision.StereoBM.t()
	roi2: Rect

Python prototype (for reference only):
setROI2(roi2) -> None

 Link to this function

 setSmallerBlockSize(self, blockSize)

 View Source

 @spec setSmallerBlockSize(t(), integer()) :: t() | {:error, String.t()}

setSmallerBlockSize
Positional Arguments
	self: Evision.StereoBM.t()
	blockSize: int

Python prototype (for reference only):
setSmallerBlockSize(blockSize) -> None

 Link to this function

 setSpeckleRange(self, speckleRange)

 View Source

 @spec setSpeckleRange(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleRange
Positional Arguments
	self: Evision.StereoBM.t()
	speckleRange: int

Python prototype (for reference only):
setSpeckleRange(speckleRange) -> None

 Link to this function

 setSpeckleWindowSize(self, speckleWindowSize)

 View Source

 @spec setSpeckleWindowSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleWindowSize
Positional Arguments
	self: Evision.StereoBM.t()
	speckleWindowSize: int

Python prototype (for reference only):
setSpeckleWindowSize(speckleWindowSize) -> None

 Link to this function

 setTextureThreshold(self, textureThreshold)

 View Source

 @spec setTextureThreshold(t(), integer()) :: t() | {:error, String.t()}

setTextureThreshold
Positional Arguments
	self: Evision.StereoBM.t()
	textureThreshold: int

Python prototype (for reference only):
setTextureThreshold(textureThreshold) -> None

 Link to this function

 setUniquenessRatio(self, uniquenessRatio)

 View Source

 @spec setUniquenessRatio(t(), integer()) :: t() | {:error, String.t()}

setUniquenessRatio
Positional Arguments
	self: Evision.StereoBM.t()
	uniquenessRatio: int

Python prototype (for reference only):
setUniquenessRatio(uniquenessRatio) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.StereoBM.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.StereoBM.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.StereoMatcher - Evision v0.1.39

Evision.StereoMatcher

 Summary

 Types

 t()

 Type that represents an StereoMatcher struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, left, right)

 Computes disparity map for the specified stereo pair

 compute(self, left, right, opts)

 Computes disparity map for the specified stereo pair

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBlockSize(self)

 getBlockSize

 getDefaultName(self)

 getDefaultName

 getDisp12MaxDiff(self)

 getDisp12MaxDiff

 getMinDisparity(self)

 getMinDisparity

 getNumDisparities(self)

 getNumDisparities

 getSpeckleRange(self)

 getSpeckleRange

 getSpeckleWindowSize(self)

 getSpeckleWindowSize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBlockSize(self, blockSize)

 setBlockSize

 setDisp12MaxDiff(self, disp12MaxDiff)

 setDisp12MaxDiff

 setMinDisparity(self, minDisparity)

 setMinDisparity

 setNumDisparities(self, numDisparities)

 setNumDisparities

 setSpeckleRange(self, speckleRange)

 setSpeckleRange

 setSpeckleWindowSize(self, speckleWindowSize)

 setSpeckleWindowSize

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StereoMatcher{ref: reference()}

Type that represents an StereoMatcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.StereoMatcher.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, left, right)

 View Source

 @spec compute(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoMatcher.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, opts)

 View Source

 @spec compute(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoMatcher.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDisp12MaxDiff(self)

 View Source

 @spec getDisp12MaxDiff(t()) :: integer() | {:error, String.t()}

getDisp12MaxDiff
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getDisp12MaxDiff() -> retval

 Link to this function

 getMinDisparity(self)

 View Source

 @spec getMinDisparity(t()) :: integer() | {:error, String.t()}

getMinDisparity
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getMinDisparity() -> retval

 Link to this function

 getNumDisparities(self)

 View Source

 @spec getNumDisparities(t()) :: integer() | {:error, String.t()}

getNumDisparities
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getNumDisparities() -> retval

 Link to this function

 getSpeckleRange(self)

 View Source

 @spec getSpeckleRange(t()) :: integer() | {:error, String.t()}

getSpeckleRange
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleRange() -> retval

 Link to this function

 getSpeckleWindowSize(self)

 View Source

 @spec getSpeckleWindowSize(t()) :: integer() | {:error, String.t()}

getSpeckleWindowSize
Positional Arguments
	self: Evision.StereoMatcher.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleWindowSize() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.StereoMatcher.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.StereoMatcher.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBlockSize(self, blockSize)

 View Source

 @spec setBlockSize(t(), integer()) :: t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.StereoMatcher.t()
	blockSize: int

Python prototype (for reference only):
setBlockSize(blockSize) -> None

 Link to this function

 setDisp12MaxDiff(self, disp12MaxDiff)

 View Source

 @spec setDisp12MaxDiff(t(), integer()) :: t() | {:error, String.t()}

setDisp12MaxDiff
Positional Arguments
	self: Evision.StereoMatcher.t()
	disp12MaxDiff: int

Python prototype (for reference only):
setDisp12MaxDiff(disp12MaxDiff) -> None

 Link to this function

 setMinDisparity(self, minDisparity)

 View Source

 @spec setMinDisparity(t(), integer()) :: t() | {:error, String.t()}

setMinDisparity
Positional Arguments
	self: Evision.StereoMatcher.t()
	minDisparity: int

Python prototype (for reference only):
setMinDisparity(minDisparity) -> None

 Link to this function

 setNumDisparities(self, numDisparities)

 View Source

 @spec setNumDisparities(t(), integer()) :: t() | {:error, String.t()}

setNumDisparities
Positional Arguments
	self: Evision.StereoMatcher.t()
	numDisparities: int

Python prototype (for reference only):
setNumDisparities(numDisparities) -> None

 Link to this function

 setSpeckleRange(self, speckleRange)

 View Source

 @spec setSpeckleRange(t(), integer()) :: t() | {:error, String.t()}

setSpeckleRange
Positional Arguments
	self: Evision.StereoMatcher.t()
	speckleRange: int

Python prototype (for reference only):
setSpeckleRange(speckleRange) -> None

 Link to this function

 setSpeckleWindowSize(self, speckleWindowSize)

 View Source

 @spec setSpeckleWindowSize(t(), integer()) :: t() | {:error, String.t()}

setSpeckleWindowSize
Positional Arguments
	self: Evision.StereoMatcher.t()
	speckleWindowSize: int

Python prototype (for reference only):
setSpeckleWindowSize(speckleWindowSize) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.StereoMatcher.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.StereoMatcher.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.StereoSGBM - Evision v0.1.39

Evision.StereoSGBM

 Summary

 Types

 t()

 Type that represents an StereoSGBM struct.

 Functions

 clear(self)

 Clears the algorithm state

 compute(self, left, right)

 Computes disparity map for the specified stereo pair

 compute(self, left, right, opts)

 Computes disparity map for the specified stereo pair

 create()

 Creates StereoSGBM object

 create(opts)

 Creates StereoSGBM object

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getBlockSize(self)

 getBlockSize

 getDefaultName(self)

 getDefaultName

 getDisp12MaxDiff(self)

 getDisp12MaxDiff

 getMinDisparity(self)

 getMinDisparity

 getMode(self)

 getMode

 getNumDisparities(self)

 getNumDisparities

 getP1(self)

 getP1

 getP2(self)

 getP2

 getPreFilterCap(self)

 getPreFilterCap

 getSpeckleRange(self)

 getSpeckleRange

 getSpeckleWindowSize(self)

 getSpeckleWindowSize

 getUniquenessRatio(self)

 getUniquenessRatio

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBlockSize(self, blockSize)

 setBlockSize

 setDisp12MaxDiff(self, disp12MaxDiff)

 setDisp12MaxDiff

 setMinDisparity(self, minDisparity)

 setMinDisparity

 setMode(self, mode)

 setMode

 setNumDisparities(self, numDisparities)

 setNumDisparities

 setP1(self, p1)

 setP1

 setP2(self, p2)

 setP2

 setPreFilterCap(self, preFilterCap)

 setPreFilterCap

 setSpeckleRange(self, speckleRange)

 setSpeckleRange

 setSpeckleWindowSize(self, speckleWindowSize)

 setSpeckleWindowSize

 setUniquenessRatio(self, uniquenessRatio)

 setUniquenessRatio

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StereoSGBM{ref: reference()}

Type that represents an StereoSGBM struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.StereoSGBM.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 compute(self, left, right)

 View Source

 @spec compute(
 Evision.StereoMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoSGBM.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 compute(self, left, right, opts)

 View Source

 @spec compute(
 Evision.StereoMatcher.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Computes disparity map for the specified stereo pair
Positional Arguments
	self: Evision.StereoSGBM.t()

	left: Evision.Mat.t().
Left 8-bit single-channel image.

	right: Evision.Mat.t().
Right image of the same size and the same type as the left one.

Return
	disparity: Evision.Mat.t().
Output disparity map. It has the same size as the input images. Some algorithms,
like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.

Python prototype (for reference only):
compute(left, right[, disparity]) -> disparity

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates StereoSGBM object
Keyword Arguments
	minDisparity: int.
Minimum possible disparity value. Normally, it is zero but sometimes
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.

	numDisparities: int.
Maximum disparity minus minimum disparity. The value is always greater than
zero. In the current implementation, this parameter must be divisible by 16.

	blockSize: int.
Matched block size. It must be an odd number >=1 . Normally, it should be
somewhere in the 3..11 range.

	p1: int.
The first parameter controlling the disparity smoothness. See below.

	p2: int.
The second parameter controlling the disparity smoothness. The larger the values are,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 > P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8*number_of_image_channels*blockSize*blockSize and
32*number_of_image_channels*blockSize*blockSize , respectively).

	disp12MaxDiff: int.
Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.

	preFilterCap: int.
Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
The result values are passed to the Birchfield-Tomasi pixel cost function.

	uniquenessRatio: int.
Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.

	speckleWindowSize: int.
Maximum size of smooth disparity regions to consider their noise speckles
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
50-200 range.

	speckleRange: int.
Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
Normally, 1 or 2 is good enough.

	mode: int.
Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
algorithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false .

Return
	retval: Evision.StereoSGBM.t()

The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
Python prototype (for reference only):
create([, minDisparity[, numDisparities[, blockSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, mode]]]]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 speckleRange: term(),
 p2: term(),
 minDisparity: term(),
 preFilterCap: term(),
 p1: term(),
 blockSize: term(),
 disp12MaxDiff: term(),
 mode: term(),
 speckleWindowSize: term(),
 numDisparities: term(),
 uniquenessRatio: term()
]
 | nil
) :: t() | {:error, String.t()}

Creates StereoSGBM object
Keyword Arguments
	minDisparity: int.
Minimum possible disparity value. Normally, it is zero but sometimes
rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.

	numDisparities: int.
Maximum disparity minus minimum disparity. The value is always greater than
zero. In the current implementation, this parameter must be divisible by 16.

	blockSize: int.
Matched block size. It must be an odd number >=1 . Normally, it should be
somewhere in the 3..11 range.

	p1: int.
The first parameter controlling the disparity smoothness. See below.

	p2: int.
The second parameter controlling the disparity smoothness. The larger the values are,
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 > P1 . See stereo_match.cpp sample where some reasonably good
P1 and P2 values are shown (like 8*number_of_image_channels*blockSize*blockSize and
32*number_of_image_channels*blockSize*blockSize , respectively).

	disp12MaxDiff: int.
Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.

	preFilterCap: int.
Truncation value for the prefiltered image pixels. The algorithm first
computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
The result values are passed to the Birchfield-Tomasi pixel cost function.

	uniquenessRatio: int.
Margin in percentage by which the best (minimum) computed cost function
value should "win" the second best value to consider the found match correct. Normally, a value
within the 5-15 range is good enough.

	speckleWindowSize: int.
Maximum size of smooth disparity regions to consider their noise speckles
and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
50-200 range.

	speckleRange: int.
Maximum disparity variation within each connected component. If you do speckle
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
Normally, 1 or 2 is good enough.

	mode: int.
Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
algorithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false .

Return
	retval: Evision.StereoSGBM.t()

The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
to a custom value.
Python prototype (for reference only):
create([, minDisparity[, numDisparities[, blockSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, mode]]]]]]]]]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlockSize(self)

 View Source

 @spec getBlockSize(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getBlockSize
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getBlockSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDisp12MaxDiff(self)

 View Source

 @spec getDisp12MaxDiff(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getDisp12MaxDiff
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getDisp12MaxDiff() -> retval

 Link to this function

 getMinDisparity(self)

 View Source

 @spec getMinDisparity(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getMinDisparity
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getMinDisparity() -> retval

 Link to this function

 getMode(self)

 View Source

 @spec getMode(t()) :: integer() | {:error, String.t()}

getMode
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getMode() -> retval

 Link to this function

 getNumDisparities(self)

 View Source

 @spec getNumDisparities(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getNumDisparities
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getNumDisparities() -> retval

 Link to this function

 getP1(self)

 View Source

 @spec getP1(t()) :: integer() | {:error, String.t()}

getP1
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getP1() -> retval

 Link to this function

 getP2(self)

 View Source

 @spec getP2(t()) :: integer() | {:error, String.t()}

getP2
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getP2() -> retval

 Link to this function

 getPreFilterCap(self)

 View Source

 @spec getPreFilterCap(t()) :: integer() | {:error, String.t()}

getPreFilterCap
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getPreFilterCap() -> retval

 Link to this function

 getSpeckleRange(self)

 View Source

 @spec getSpeckleRange(Evision.StereoMatcher.t()) :: integer() | {:error, String.t()}

getSpeckleRange
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleRange() -> retval

 Link to this function

 getSpeckleWindowSize(self)

 View Source

 @spec getSpeckleWindowSize(Evision.StereoMatcher.t()) ::
 integer() | {:error, String.t()}

getSpeckleWindowSize
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getSpeckleWindowSize() -> retval

 Link to this function

 getUniquenessRatio(self)

 View Source

 @spec getUniquenessRatio(t()) :: integer() | {:error, String.t()}

getUniquenessRatio
Positional Arguments
	self: Evision.StereoSGBM.t()

Return
	retval: int

Python prototype (for reference only):
getUniquenessRatio() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.StereoSGBM.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.StereoSGBM.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBlockSize(self, blockSize)

 View Source

 @spec setBlockSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setBlockSize
Positional Arguments
	self: Evision.StereoSGBM.t()
	blockSize: int

Python prototype (for reference only):
setBlockSize(blockSize) -> None

 Link to this function

 setDisp12MaxDiff(self, disp12MaxDiff)

 View Source

 @spec setDisp12MaxDiff(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setDisp12MaxDiff
Positional Arguments
	self: Evision.StereoSGBM.t()
	disp12MaxDiff: int

Python prototype (for reference only):
setDisp12MaxDiff(disp12MaxDiff) -> None

 Link to this function

 setMinDisparity(self, minDisparity)

 View Source

 @spec setMinDisparity(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setMinDisparity
Positional Arguments
	self: Evision.StereoSGBM.t()
	minDisparity: int

Python prototype (for reference only):
setMinDisparity(minDisparity) -> None

 Link to this function

 setMode(self, mode)

 View Source

 @spec setMode(t(), integer()) :: t() | {:error, String.t()}

setMode
Positional Arguments
	self: Evision.StereoSGBM.t()
	mode: int

Python prototype (for reference only):
setMode(mode) -> None

 Link to this function

 setNumDisparities(self, numDisparities)

 View Source

 @spec setNumDisparities(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setNumDisparities
Positional Arguments
	self: Evision.StereoSGBM.t()
	numDisparities: int

Python prototype (for reference only):
setNumDisparities(numDisparities) -> None

 Link to this function

 setP1(self, p1)

 View Source

 @spec setP1(t(), integer()) :: t() | {:error, String.t()}

setP1
Positional Arguments
	self: Evision.StereoSGBM.t()
	p1: int

Python prototype (for reference only):
setP1(P1) -> None

 Link to this function

 setP2(self, p2)

 View Source

 @spec setP2(t(), integer()) :: t() | {:error, String.t()}

setP2
Positional Arguments
	self: Evision.StereoSGBM.t()
	p2: int

Python prototype (for reference only):
setP2(P2) -> None

 Link to this function

 setPreFilterCap(self, preFilterCap)

 View Source

 @spec setPreFilterCap(t(), integer()) :: t() | {:error, String.t()}

setPreFilterCap
Positional Arguments
	self: Evision.StereoSGBM.t()
	preFilterCap: int

Python prototype (for reference only):
setPreFilterCap(preFilterCap) -> None

 Link to this function

 setSpeckleRange(self, speckleRange)

 View Source

 @spec setSpeckleRange(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleRange
Positional Arguments
	self: Evision.StereoSGBM.t()
	speckleRange: int

Python prototype (for reference only):
setSpeckleRange(speckleRange) -> None

 Link to this function

 setSpeckleWindowSize(self, speckleWindowSize)

 View Source

 @spec setSpeckleWindowSize(Evision.StereoMatcher.t(), integer()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

setSpeckleWindowSize
Positional Arguments
	self: Evision.StereoSGBM.t()
	speckleWindowSize: int

Python prototype (for reference only):
setSpeckleWindowSize(speckleWindowSize) -> None

 Link to this function

 setUniquenessRatio(self, uniquenessRatio)

 View Source

 @spec setUniquenessRatio(t(), integer()) :: t() | {:error, String.t()}

setUniquenessRatio
Positional Arguments
	self: Evision.StereoSGBM.t()
	uniquenessRatio: int

Python prototype (for reference only):
setUniquenessRatio(uniquenessRatio) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.StereoSGBM.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.StereoSGBM.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Stitcher - Evision v0.1.39

Evision.Stitcher

 Summary

 Types

 t()

 Type that represents an Stitcher struct.

 Functions

 composePanorama(self)

 composePanorama

 composePanorama(self, opts)

 Variant 1:
These functions try to compose the given images (or images stored internally from the other function
calls) into the final pano under the assumption that the image transformations were estimated
before.

 composePanorama(self, images, opts)

 These functions try to compose the given images (or images stored internally from the other function
calls) into the final pano under the assumption that the image transformations were estimated
before.

 compositingResol(self)

 compositingResol

 create()

 Creates a Stitcher configured in one of the stitching modes.

 create(opts)

 Creates a Stitcher configured in one of the stitching modes.

 estimateTransform(self, images)

 These functions try to match the given images and to estimate rotations of each camera.

 estimateTransform(self, images, opts)

 These functions try to match the given images and to estimate rotations of each camera.

 interpolationFlags(self)

 interpolationFlags

 panoConfidenceThresh(self)

 panoConfidenceThresh

 registrationResol(self)

 registrationResol

 seamEstimationResol(self)

 seamEstimationResol

 setCompositingResol(self, resol_mpx)

 setCompositingResol

 setInterpolationFlags(self, interp_flags)

 setInterpolationFlags

 setPanoConfidenceThresh(self, conf_thresh)

 setPanoConfidenceThresh

 setRegistrationResol(self, resol_mpx)

 setRegistrationResol

 setSeamEstimationResol(self, resol_mpx)

 setSeamEstimationResol

 setWaveCorrection(self, flag)

 setWaveCorrection

 stitch(self, images)

 stitch

 stitch(self, images, opts)

 Variant 1:
These functions try to stitch the given images.

 stitch(self, images, masks, opts)

 These functions try to stitch the given images.

 waveCorrection(self)

 waveCorrection

 workScale(self)

 workScale

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Stitcher{ref: reference()}

Type that represents an Stitcher struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 composePanorama(self)

 View Source

 @spec composePanorama(t()) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

composePanorama
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: Status
	pano: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
composePanorama([, pano]) -> retval, pano

 Link to this function

 composePanorama(self, opts)

 View Source

 @spec composePanorama(t(), [{atom(), term()}, ...] | nil) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

 @spec composePanorama(t(), [Evision.Mat.maybe_mat_in()]) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
These functions try to compose the given images (or images stored internally from the other function
calls) into the final pano under the assumption that the image transformations were estimated
before.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

Return
	retval: Status

	pano: Evision.Mat.t().
Final pano.

Note: Use the functions only if you're aware of the stitching pipeline, otherwise use
Stitcher::stitch.
@return Status code.
Python prototype (for reference only):
composePanorama(images[, pano]) -> retval, pano
Variant 2:
composePanorama
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: Status
	pano: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
composePanorama([, pano]) -> retval, pano

 Link to this function

 composePanorama(self, images, opts)

 View Source

 @spec composePanorama(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [{atom(), term()}, ...] | nil
) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

These functions try to compose the given images (or images stored internally from the other function
calls) into the final pano under the assumption that the image transformations were estimated
before.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

Return
	retval: Status

	pano: Evision.Mat.t().
Final pano.

Note: Use the functions only if you're aware of the stitching pipeline, otherwise use
Stitcher::stitch.
@return Status code.
Python prototype (for reference only):
composePanorama(images[, pano]) -> retval, pano

 Link to this function

 compositingResol(self)

 View Source

 @spec compositingResol(t()) :: number() | {:error, String.t()}

compositingResol
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: double

Python prototype (for reference only):
compositingResol() -> retval

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates a Stitcher configured in one of the stitching modes.
Keyword Arguments
	mode: Mode.
Scenario for stitcher operation. This is usually determined by source of images
to stitch and their transformation. Default parameters will be chosen for operation in given
scenario.

Return
	retval: Evision.Stitcher.t()

@return Stitcher class instance.
Python prototype (for reference only):
create([, mode]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:mode, term()}] | nil) :: t() | {:error, String.t()}

Creates a Stitcher configured in one of the stitching modes.
Keyword Arguments
	mode: Mode.
Scenario for stitcher operation. This is usually determined by source of images
to stitch and their transformation. Default parameters will be chosen for operation in given
scenario.

Return
	retval: Evision.Stitcher.t()

@return Stitcher class instance.
Python prototype (for reference only):
create([, mode]) -> retval

 Link to this function

 estimateTransform(self, images)

 View Source

 @spec estimateTransform(t(), [Evision.Mat.maybe_mat_in()]) ::
 integer() | {:error, String.t()}

These functions try to match the given images and to estimate rotations of each camera.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).

Return
	retval: Status

Note: Use the functions only if you're aware of the stitching pipeline, otherwise use
Stitcher::stitch.
@return Status code.
Python prototype (for reference only):
estimateTransform(images[, masks]) -> retval

 Link to this function

 estimateTransform(self, images, opts)

 View Source

 @spec estimateTransform(t(), [Evision.Mat.maybe_mat_in()], [{:masks, term()}] | nil) ::
 integer() | {:error, String.t()}

These functions try to match the given images and to estimate rotations of each camera.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).

Return
	retval: Status

Note: Use the functions only if you're aware of the stitching pipeline, otherwise use
Stitcher::stitch.
@return Status code.
Python prototype (for reference only):
estimateTransform(images[, masks]) -> retval

 Link to this function

 interpolationFlags(self)

 View Source

 @spec interpolationFlags(t()) :: integer() | {:error, String.t()}

interpolationFlags
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: InterpolationFlags

Python prototype (for reference only):
interpolationFlags() -> retval

 Link to this function

 panoConfidenceThresh(self)

 View Source

 @spec panoConfidenceThresh(t()) :: number() | {:error, String.t()}

panoConfidenceThresh
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: double

Python prototype (for reference only):
panoConfidenceThresh() -> retval

 Link to this function

 registrationResol(self)

 View Source

 @spec registrationResol(t()) :: number() | {:error, String.t()}

registrationResol
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: double

Python prototype (for reference only):
registrationResol() -> retval

 Link to this function

 seamEstimationResol(self)

 View Source

 @spec seamEstimationResol(t()) :: number() | {:error, String.t()}

seamEstimationResol
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: double

Python prototype (for reference only):
seamEstimationResol() -> retval

 Link to this function

 setCompositingResol(self, resol_mpx)

 View Source

 @spec setCompositingResol(t(), number()) :: t() | {:error, String.t()}

setCompositingResol
Positional Arguments
	self: Evision.Stitcher.t()
	resol_mpx: double

Python prototype (for reference only):
setCompositingResol(resol_mpx) -> None

 Link to this function

 setInterpolationFlags(self, interp_flags)

 View Source

 @spec setInterpolationFlags(t(), integer()) :: t() | {:error, String.t()}

setInterpolationFlags
Positional Arguments
	self: Evision.Stitcher.t()
	interp_flags: InterpolationFlags

Python prototype (for reference only):
setInterpolationFlags(interp_flags) -> None

 Link to this function

 setPanoConfidenceThresh(self, conf_thresh)

 View Source

 @spec setPanoConfidenceThresh(t(), number()) :: t() | {:error, String.t()}

setPanoConfidenceThresh
Positional Arguments
	self: Evision.Stitcher.t()
	conf_thresh: double

Python prototype (for reference only):
setPanoConfidenceThresh(conf_thresh) -> None

 Link to this function

 setRegistrationResol(self, resol_mpx)

 View Source

 @spec setRegistrationResol(t(), number()) :: t() | {:error, String.t()}

setRegistrationResol
Positional Arguments
	self: Evision.Stitcher.t()
	resol_mpx: double

Python prototype (for reference only):
setRegistrationResol(resol_mpx) -> None

 Link to this function

 setSeamEstimationResol(self, resol_mpx)

 View Source

 @spec setSeamEstimationResol(t(), number()) :: t() | {:error, String.t()}

setSeamEstimationResol
Positional Arguments
	self: Evision.Stitcher.t()
	resol_mpx: double

Python prototype (for reference only):
setSeamEstimationResol(resol_mpx) -> None

 Link to this function

 setWaveCorrection(self, flag)

 View Source

 @spec setWaveCorrection(t(), boolean()) :: t() | {:error, String.t()}

setWaveCorrection
Positional Arguments
	self: Evision.Stitcher.t()
	flag: bool

Python prototype (for reference only):
setWaveCorrection(flag) -> None

 Link to this function

 stitch(self, images)

 View Source

 @spec stitch(t(), [Evision.Mat.maybe_mat_in()]) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

stitch
Positional Arguments
	self: Evision.Stitcher.t()
	images: [Evision.Mat]

Return
	retval: Status
	pano: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
stitch(images[, pano]) -> retval, pano

 Link to this function

 stitch(self, images, opts)

 View Source

 @spec stitch(t(), [Evision.Mat.maybe_mat_in()], [{atom(), term()}, ...] | nil) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

 @spec stitch(t(), [Evision.Mat.maybe_mat_in()], [Evision.Mat.maybe_mat_in()]) ::
 {integer(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
These functions try to stitch the given images.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).

Return
	retval: Status

	pano: Evision.Mat.t().
Final pano.

@return Status code.
Python prototype (for reference only):
stitch(images, masks[, pano]) -> retval, pano
Variant 2:
stitch
Positional Arguments
	self: Evision.Stitcher.t()
	images: [Evision.Mat]

Return
	retval: Status
	pano: Evision.Mat.t().

Has overloading in C++
Python prototype (for reference only):
stitch(images[, pano]) -> retval, pano

 Link to this function

 stitch(self, images, masks, opts)

 View Source

 @spec stitch(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [Evision.Mat.maybe_mat_in()],
 [{atom(), term()}, ...] | nil
) :: {integer(), Evision.Mat.t()} | {:error, String.t()}

These functions try to stitch the given images.
Positional Arguments
	self: Evision.Stitcher.t()

	images: [Evision.Mat].
Input images.

	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).

Return
	retval: Status

	pano: Evision.Mat.t().
Final pano.

@return Status code.
Python prototype (for reference only):
stitch(images, masks[, pano]) -> retval, pano

 Link to this function

 waveCorrection(self)

 View Source

 @spec waveCorrection(t()) :: boolean() | {:error, String.t()}

waveCorrection
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: bool

Python prototype (for reference only):
waveCorrection() -> retval

 Link to this function

 workScale(self)

 View Source

 @spec workScale(t()) :: number() | {:error, String.t()}

workScale
Positional Arguments
	self: Evision.Stitcher.t()

Return
	retval: double

Python prototype (for reference only):
workScale() -> retval

 Evision.StructuredLight - Evision v0.1.39

Evision.StructuredLight

 Summary

 Types

 t()

 Type that represents an StructuredLight struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StructuredLight{ref: reference()}

Type that represents an StructuredLight struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.StructuredLight.GrayCodePattern - Evision v0.1.39

Evision.StructuredLight.GrayCodePattern

 Summary

 Types

 t()

 Type that represents an StructuredLight.GrayCodePattern struct.

 Functions

 create(width, height)

 Constructor

 getImagesForShadowMasks(self, blackImage, whiteImage)

 Generates the all-black and all-white images needed for shadowMasks computation.

 getNumberOfPatternImages(self)

 Get the number of pattern images needed for the graycode pattern.

 getProjPixel(self, patternImages, x, y)

 For a (x,y) pixel of a camera returns the corresponding projector pixel.

 setBlackThreshold(self, value)

 Sets the value for black threshold, needed for decoding (shadowsmasks computation).

 setWhiteThreshold(self, value)

 Sets the value for white threshold, needed for decoding.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StructuredLight.GrayCodePattern{ref: reference()}

Type that represents an StructuredLight.GrayCodePattern struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(width, height)

 View Source

 @spec create(integer(), integer()) :: t() | {:error, String.t()}

Constructor
Positional Arguments
	width: int
	height: int

Return
	retval: Evision.StructuredLight.GrayCodePattern.t()

Python prototype (for reference only):
create(width, height) -> retval

 Link to this function

 getImagesForShadowMasks(self, blackImage, whiteImage)

 View Source

 @spec getImagesForShadowMasks(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Generates the all-black and all-white images needed for shadowMasks computation.
Positional Arguments
	self: Evision.StructuredLight.GrayCodePattern.t()

Return
	blackImage: Evision.Mat.t().
The generated all-black CV_8U image, at projector's resolution.

	whiteImage: Evision.Mat.t().
The generated all-white CV_8U image, at projector's resolution.
To identify shadow regions, the regions of two images where the pixels are not lit by projector's light and thus where there is not coded information,
the 3DUNDERWORLD algorithm computes a shadow mask for the two cameras views, starting from a white and a black images captured by each camera.
This method generates these two additional images to project.

Python prototype (for reference only):
getImagesForShadowMasks(blackImage, whiteImage) -> blackImage, whiteImage

 Link to this function

 getNumberOfPatternImages(self)

 View Source

 @spec getNumberOfPatternImages(t()) :: integer() | {:error, String.t()}

Get the number of pattern images needed for the graycode pattern.
Positional Arguments
	self: Evision.StructuredLight.GrayCodePattern.t()

Return
	retval: size_t

@return The number of pattern images needed for the graycode pattern.
Python prototype (for reference only):
getNumberOfPatternImages() -> retval

 Link to this function

 getProjPixel(self, patternImages, x, y)

 View Source

 @spec getProjPixel(t(), [Evision.Mat.maybe_mat_in()], integer(), integer()) ::
 {number(), number()} | false | {:error, String.t()}

For a (x,y) pixel of a camera returns the corresponding projector pixel.
Positional Arguments
	self: Evision.StructuredLight.GrayCodePattern.t()

	patternImages: [Evision.Mat].
The pattern images acquired by the camera, stored in a grayscale vector < Mat >.

	x: int.
x coordinate of the image pixel.

	y: int.
y coordinate of the image pixel.

Return
	retval: bool

	projPix: Point.
Projector's pixel corresponding to the camera's pixel: projPix.x and projPix.y are the image coordinates of the projector's pixel corresponding to the pixel being decoded in a camera.
The function decodes each pixel in the pattern images acquired by a camera into their corresponding decimal numbers representing the projector's column and row,
providing a mapping between camera's and projector's pixel.

Python prototype (for reference only):
getProjPixel(patternImages, x, y) -> retval, projPix

 Link to this function

 setBlackThreshold(self, value)

 View Source

 @spec setBlackThreshold(t(), integer()) :: t() | {:error, String.t()}

Sets the value for black threshold, needed for decoding (shadowsmasks computation).
Positional Arguments
	self: Evision.StructuredLight.GrayCodePattern.t()

	value: size_t.
The desired black threshold value.
Black threshold is a number between 0-255 that represents the minimum brightness difference required for valid pixels, between the fully illuminated (white) and the not illuminated images (black); used in computeShadowMasks method.

Python prototype (for reference only):
setBlackThreshold(value) -> None

 Link to this function

 setWhiteThreshold(self, value)

 View Source

 @spec setWhiteThreshold(t(), integer()) :: t() | {:error, String.t()}

Sets the value for white threshold, needed for decoding.
Positional Arguments
	self: Evision.StructuredLight.GrayCodePattern.t()

	value: size_t.
The desired white threshold value.
White threshold is a number between 0-255 that represents the minimum brightness difference required for valid pixels, between the graycode pattern and its inverse images; used in getProjPixel method.

Python prototype (for reference only):
setWhiteThreshold(value) -> None

 Evision.StructuredLight.SinusoidalPattern - Evision v0.1.39

Evision.StructuredLight.SinusoidalPattern

 Summary

 Types

 t()

 Type that represents an StructuredLight.SinusoidalPattern struct.

 Functions

 computeDataModulationTerm(self, patternImages, shadowMask)

 compute the data modulation term.

 computeDataModulationTerm(self, patternImages, shadowMask, opts)

 compute the data modulation term.

 computePhaseMap(self, patternImages)

 Compute a wrapped phase map from sinusoidal patterns.

 computePhaseMap(self, patternImages, opts)

 Compute a wrapped phase map from sinusoidal patterns.

 create()

 Constructor.

 create(opts)

 Constructor.

 findProCamMatches(self, projUnwrappedPhaseMap, camUnwrappedPhaseMap)

 Find correspondences between the two devices thanks to unwrapped phase maps.

 findProCamMatches(self, projUnwrappedPhaseMap, camUnwrappedPhaseMap, opts)

 Find correspondences between the two devices thanks to unwrapped phase maps.

 unwrapPhaseMap(self, wrappedPhaseMap, camSize)

 Unwrap the wrapped phase map to remove phase ambiguities.

 unwrapPhaseMap(self, wrappedPhaseMap, camSize, opts)

 Unwrap the wrapped phase map to remove phase ambiguities.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StructuredLight.SinusoidalPattern{ref: reference()}

Type that represents an StructuredLight.SinusoidalPattern struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeDataModulationTerm(self, patternImages, shadowMask)

 View Source

 @spec computeDataModulationTerm(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in()
) ::
 Evision.Mat.t() | {:error, String.t()}

compute the data modulation term.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	patternImages: [Evision.Mat].
captured images with projected patterns.

	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Return
	dataModulationTerm: Evision.Mat.t().
Mat where the data modulation term is saved.

Python prototype (for reference only):
computeDataModulationTerm(patternImages, shadowMask[, dataModulationTerm]) -> dataModulationTerm

 Link to this function

 computeDataModulationTerm(self, patternImages, shadowMask, opts)

 View Source

 @spec computeDataModulationTerm(
 t(),
 [Evision.Mat.maybe_mat_in()],
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

compute the data modulation term.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	patternImages: [Evision.Mat].
captured images with projected patterns.

	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Return
	dataModulationTerm: Evision.Mat.t().
Mat where the data modulation term is saved.

Python prototype (for reference only):
computeDataModulationTerm(patternImages, shadowMask[, dataModulationTerm]) -> dataModulationTerm

 Link to this function

 computePhaseMap(self, patternImages)

 View Source

 @spec computePhaseMap(t(), [Evision.Mat.maybe_mat_in()]) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Compute a wrapped phase map from sinusoidal patterns.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	patternImages: [Evision.Mat].
Input data to compute the wrapped phase map.

Keyword Arguments
	fundamental: Evision.Mat.t().
Fundamental matrix used to compute epipolar lines and ease the matching step.

Return
	wrappedPhaseMap: Evision.Mat.t().
Wrapped phase map obtained through one of the three methods.

	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Python prototype (for reference only):
computePhaseMap(patternImages[, wrappedPhaseMap[, shadowMask[, fundamental]]]) -> wrappedPhaseMap, shadowMask

 Link to this function

 computePhaseMap(self, patternImages, opts)

 View Source

 @spec computePhaseMap(
 t(),
 [Evision.Mat.maybe_mat_in()],
 [{:fundamental, term()}] | nil
) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Compute a wrapped phase map from sinusoidal patterns.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	patternImages: [Evision.Mat].
Input data to compute the wrapped phase map.

Keyword Arguments
	fundamental: Evision.Mat.t().
Fundamental matrix used to compute epipolar lines and ease the matching step.

Return
	wrappedPhaseMap: Evision.Mat.t().
Wrapped phase map obtained through one of the three methods.

	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Python prototype (for reference only):
computePhaseMap(patternImages[, wrappedPhaseMap[, shadowMask[, fundamental]]]) -> wrappedPhaseMap, shadowMask

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor.
Keyword Arguments
	parameters: Evision.StructuredLight.SinusoidalPattern.Params.t().
SinusoidalPattern parameters SinusoidalPattern::Params: width, height of the projector and patterns parameters.

Return
	retval: Evision.StructuredLight.SinusoidalPattern.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor.
Keyword Arguments
	parameters: Evision.StructuredLight.SinusoidalPattern.Params.t().
SinusoidalPattern parameters SinusoidalPattern::Params: width, height of the projector and patterns parameters.

Return
	retval: Evision.StructuredLight.SinusoidalPattern.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 findProCamMatches(self, projUnwrappedPhaseMap, camUnwrappedPhaseMap)

 View Source

 @spec findProCamMatches(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Find correspondences between the two devices thanks to unwrapped phase maps.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	projUnwrappedPhaseMap: Evision.Mat.t().
Projector's unwrapped phase map.

	camUnwrappedPhaseMap: Evision.Mat.t().
Camera's unwrapped phase map.

Return
	matches: [Evision.Mat].
Images used to display correspondences map.

Python prototype (for reference only):
findProCamMatches(projUnwrappedPhaseMap, camUnwrappedPhaseMap[, matches]) -> matches

 Link to this function

 findProCamMatches(self, projUnwrappedPhaseMap, camUnwrappedPhaseMap, opts)

 View Source

 @spec findProCamMatches(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: [Evision.Mat.t()] | {:error, String.t()}

Find correspondences between the two devices thanks to unwrapped phase maps.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	projUnwrappedPhaseMap: Evision.Mat.t().
Projector's unwrapped phase map.

	camUnwrappedPhaseMap: Evision.Mat.t().
Camera's unwrapped phase map.

Return
	matches: [Evision.Mat].
Images used to display correspondences map.

Python prototype (for reference only):
findProCamMatches(projUnwrappedPhaseMap, camUnwrappedPhaseMap[, matches]) -> matches

 Link to this function

 unwrapPhaseMap(self, wrappedPhaseMap, camSize)

 View Source

 @spec unwrapPhaseMap(t(), Evision.Mat.maybe_mat_in(), {number(), number()}) ::
 Evision.Mat.t() | {:error, String.t()}

Unwrap the wrapped phase map to remove phase ambiguities.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	wrappedPhaseMap: Evision.Mat.t().
The wrapped phase map computed from the pattern.

	camSize: Size.
Resolution of the camera.

Keyword Arguments
	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Return
	unwrappedPhaseMap: Evision.Mat.t().
The unwrapped phase map used to find correspondences between the two devices.

Python prototype (for reference only):
unwrapPhaseMap(wrappedPhaseMap, camSize[, unwrappedPhaseMap[, shadowMask]]) -> unwrappedPhaseMap

 Link to this function

 unwrapPhaseMap(self, wrappedPhaseMap, camSize, opts)

 View Source

 @spec unwrapPhaseMap(
 t(),
 Evision.Mat.maybe_mat_in(),
 {number(), number()},
 [{:shadowMask, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Unwrap the wrapped phase map to remove phase ambiguities.
Positional Arguments
	self: Evision.StructuredLight.SinusoidalPattern.t()

	wrappedPhaseMap: Evision.Mat.t().
The wrapped phase map computed from the pattern.

	camSize: Size.
Resolution of the camera.

Keyword Arguments
	shadowMask: Evision.Mat.t().
Mask used to discard shadow regions.

Return
	unwrappedPhaseMap: Evision.Mat.t().
The unwrapped phase map used to find correspondences between the two devices.

Python prototype (for reference only):
unwrapPhaseMap(wrappedPhaseMap, camSize[, unwrappedPhaseMap[, shadowMask]]) -> unwrappedPhaseMap

 Evision.StructuredLight.SinusoidalPattern.Params - Evision v0.1.39

Evision.StructuredLight.SinusoidalPattern.Params

 Summary

 Types

 t()

 Type that represents an StructuredLight.SinusoidalPattern.Params struct.

 Functions

 get_height(self)

 get_horizontal(self)

 get_methodId(self)

 get_nbrOfPeriods(self)

 get_nbrOfPixelsBetweenMarkers(self)

 get_setMarkers(self)

 get_shiftValue(self)

 get_width(self)

 set_height(self, prop)

 set_horizontal(self, prop)

 set_methodId(self, prop)

 set_nbrOfPeriods(self, prop)

 set_nbrOfPixelsBetweenMarkers(self, prop)

 set_setMarkers(self, prop)

 set_shiftValue(self, prop)

 set_width(self, prop)

 structured_light_SinusoidalPattern_Params()

 SinusoidalPattern_Params

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StructuredLight.SinusoidalPattern.Params{ref: reference()}

Type that represents an StructuredLight.SinusoidalPattern.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_height(self)

 View Source

 @spec get_height(t()) :: integer()

 Link to this function

 get_horizontal(self)

 View Source

 @spec get_horizontal(t()) :: boolean()

 Link to this function

 get_methodId(self)

 View Source

 @spec get_methodId(t()) :: integer()

 Link to this function

 get_nbrOfPeriods(self)

 View Source

 @spec get_nbrOfPeriods(t()) :: integer()

 Link to this function

 get_nbrOfPixelsBetweenMarkers(self)

 View Source

 @spec get_nbrOfPixelsBetweenMarkers(t()) :: integer()

 Link to this function

 get_setMarkers(self)

 View Source

 @spec get_setMarkers(t()) :: boolean()

 Link to this function

 get_shiftValue(self)

 View Source

 @spec get_shiftValue(t()) :: number()

 Link to this function

 get_width(self)

 View Source

 @spec get_width(t()) :: integer()

 Link to this function

 set_height(self, prop)

 View Source

 @spec set_height(t(), integer()) :: t()

 Link to this function

 set_horizontal(self, prop)

 View Source

 @spec set_horizontal(t(), boolean()) :: t()

 Link to this function

 set_methodId(self, prop)

 View Source

 @spec set_methodId(t(), integer()) :: t()

 Link to this function

 set_nbrOfPeriods(self, prop)

 View Source

 @spec set_nbrOfPeriods(t(), integer()) :: t()

 Link to this function

 set_nbrOfPixelsBetweenMarkers(self, prop)

 View Source

 @spec set_nbrOfPixelsBetweenMarkers(t(), integer()) :: t()

 Link to this function

 set_setMarkers(self, prop)

 View Source

 @spec set_setMarkers(t(), boolean()) :: t()

 Link to this function

 set_shiftValue(self, prop)

 View Source

 @spec set_shiftValue(t(), number()) :: t()

 Link to this function

 set_width(self, prop)

 View Source

 @spec set_width(t(), integer()) :: t()

 Link to this function

 structured_light_SinusoidalPattern_Params()

 View Source

 @spec structured_light_SinusoidalPattern_Params() :: t() | {:error, String.t()}

SinusoidalPattern_Params
Return
	self: Evision.StructuredLight.SinusoidalPattern.Params.t()

Python prototype (for reference only):
SinusoidalPattern_Params() -> <structured_light_SinusoidalPattern_Params object>

 Evision.StructuredLight.StructuredLightPattern - Evision v0.1.39

Evision.StructuredLight.StructuredLightPattern

 Summary

 Types

 t()

 Type that represents an StructuredLight.StructuredLightPattern struct.

 Functions

 clear(self)

 Clears the algorithm state

 decode(self, patternImages)

 Decodes the structured light pattern, generating a disparity map

 decode(self, patternImages, opts)

 Decodes the structured light pattern, generating a disparity map

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 generate(self)

 Generates the structured light pattern to project.

 generate(self, opts)

 Generates the structured light pattern to project.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.StructuredLight.StructuredLightPattern{ref: reference()}

Type that represents an StructuredLight.StructuredLightPattern struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 decode(self, patternImages)

 View Source

 @spec decode(t(), [[Evision.Mat.maybe_mat_in()]]) ::
 Evision.Mat.t() | false | {:error, String.t()}

Decodes the structured light pattern, generating a disparity map
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

	patternImages: [[Evision.Mat]].
The acquired pattern images to decode (vector<vector<Mat>>), loaded as grayscale and previously rectified.

Keyword Arguments
	blackImages: [Evision.Mat].
The all-black images needed for shadowMasks computation.

	whiteImages: [Evision.Mat].
The all-white images needed for shadowMasks computation.

	flags: int.
Flags setting decoding algorithms. Default: DECODE_3D_UNDERWORLD.

Return
	retval: bool

	disparityMap: Evision.Mat.t().
The decoding result: a CV_64F Mat at image resolution, storing the computed disparity map.

Note: All the images must be at the same resolution.
Python prototype (for reference only):
decode(patternImages[, disparityMap[, blackImages[, whiteImages[, flags]]]]) -> retval, disparityMap

 Link to this function

 decode(self, patternImages, opts)

 View Source

 @spec decode(
 t(),
 [[Evision.Mat.maybe_mat_in()]],
 [flags: term(), whiteImages: term(), blackImages: term()] | nil
) :: Evision.Mat.t() | false | {:error, String.t()}

Decodes the structured light pattern, generating a disparity map
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

	patternImages: [[Evision.Mat]].
The acquired pattern images to decode (vector<vector<Mat>>), loaded as grayscale and previously rectified.

Keyword Arguments
	blackImages: [Evision.Mat].
The all-black images needed for shadowMasks computation.

	whiteImages: [Evision.Mat].
The all-white images needed for shadowMasks computation.

	flags: int.
Flags setting decoding algorithms. Default: DECODE_3D_UNDERWORLD.

Return
	retval: bool

	disparityMap: Evision.Mat.t().
The decoding result: a CV_64F Mat at image resolution, storing the computed disparity map.

Note: All the images must be at the same resolution.
Python prototype (for reference only):
decode(patternImages[, disparityMap[, blackImages[, whiteImages[, flags]]]]) -> retval, disparityMap

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 generate(self)

 View Source

 @spec generate(t()) :: [Evision.Mat.t()] | false | {:error, String.t()}

Generates the structured light pattern to project.
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

Return
	retval: bool

	patternImages: [Evision.Mat].
The generated pattern: a vector<Mat>, in which each image is a CV_8U Mat at projector's resolution.

Python prototype (for reference only):
generate([, patternImages]) -> retval, patternImages

 Link to this function

 generate(self, opts)

 View Source

 @spec generate(t(), [{atom(), term()}, ...] | nil) ::
 [Evision.Mat.t()] | false | {:error, String.t()}

Generates the structured light pattern to project.
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

Return
	retval: bool

	patternImages: [Evision.Mat].
The generated pattern: a vector<Mat>, in which each image is a CV_8U Mat at projector's resolution.

Python prototype (for reference only):
generate([, patternImages]) -> retval, patternImages

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.StructuredLight.StructuredLightPattern.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Subdiv2D - Evision v0.1.39

Evision.Subdiv2D

 Summary

 Types

 t()

 Type that represents an Subdiv2D struct.

 Functions

 edgeDst(self, edge)

 Returns the edge destination.

 edgeOrg(self, edge)

 Returns the edge origin.

 findNearest(self, pt)

 Finds the subdivision vertex closest to the given point.

 getEdge(self, edge, nextEdgeType)

 Returns one of the edges related to the given edge.

 getEdgeList(self)

 Returns a list of all edges.

 getLeadingEdgeList(self)

 Returns a list of the leading edge ID connected to each triangle.

 getTriangleList(self)

 Returns a list of all triangles.

 getVertex(self, vertex)

 Returns vertex location from vertex ID.

 getVoronoiFacetList(self, idx)

 Returns a list of all Voronoi facets.

 initDelaunay(self, rect)

 Creates a new empty Delaunay subdivision

 insert(self, ptvec)

 Variant 1:
Insert multiple points into a Delaunay triangulation.

 locate(self, pt)

 Returns the location of a point within a Delaunay triangulation.

 nextEdge(self, edge)

 Returns next edge around the edge origin.

 rotateEdge(self, edge, rotate)

 Returns another edge of the same quad-edge.

 subdiv2D()

 Subdiv2D

 subdiv2D(rect)

 Subdiv2D

 symEdge(self, edge)

 symEdge

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Subdiv2D{ref: reference()}

Type that represents an Subdiv2D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 edgeDst(self, edge)

 View Source

 @spec edgeDst(t(), integer()) ::
 {integer(), {number(), number()}} | {:error, String.t()}

Returns the edge destination.
Positional Arguments
	self: Evision.Subdiv2D.t()

	edge: int.
Subdivision edge ID.

Return
	retval: int

	dstpt: Point2f*.
Output vertex location.

@returns vertex ID.
Python prototype (for reference only):
edgeDst(edge) -> retval, dstpt

 Link to this function

 edgeOrg(self, edge)

 View Source

 @spec edgeOrg(t(), integer()) ::
 {integer(), {number(), number()}} | {:error, String.t()}

Returns the edge origin.
Positional Arguments
	self: Evision.Subdiv2D.t()

	edge: int.
Subdivision edge ID.

Return
	retval: int

	orgpt: Point2f*.
Output vertex location.

@returns vertex ID.
Python prototype (for reference only):
edgeOrg(edge) -> retval, orgpt

 Link to this function

 findNearest(self, pt)

 View Source

 @spec findNearest(
 t(),
 {number(), number()}
) :: {integer(), {number(), number()}} | {:error, String.t()}

Finds the subdivision vertex closest to the given point.
Positional Arguments
	self: Evision.Subdiv2D.t()

	pt: Point2f.
Input point.

Return
	retval: int

	nearestPt: Point2f*.
Output subdivision vertex point.

The function is another function that locates the input point within the subdivision. It finds the
subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
of the facet containing the input point, though the facet (located using locate()) is used as a
starting point.
@returns vertex ID.
Python prototype (for reference only):
findNearest(pt) -> retval, nearestPt

 Link to this function

 getEdge(self, edge, nextEdgeType)

 View Source

 @spec getEdge(t(), integer(), integer()) :: integer() | {:error, String.t()}

Returns one of the edges related to the given edge.
Positional Arguments
	self: Evision.Subdiv2D.t()

	edge: int.
Subdivision edge ID.

	nextEdgeType: int.
Parameter specifying which of the related edges to return.
The following values are possible:
	NEXT_AROUND_ORG next around the edge origin (eOnext on the picture below if e is the input edge)
	NEXT_AROUND_DST next around the edge vertex (eDnext)
	PREV_AROUND_ORG previous around the edge origin (reversed eRnext)
	PREV_AROUND_DST previous around the edge destination (reversed eLnext)
	NEXT_AROUND_LEFT next around the left facet (eLnext)
	NEXT_AROUND_RIGHT next around the right facet (eRnext)
	PREV_AROUND_LEFT previous around the left facet (reversed eOnext)
	PREV_AROUND_RIGHT previous around the right facet (reversed eDnext)

Return
	retval: int

[image: sample output]
@returns edge ID related to the input edge.
Python prototype (for reference only):
getEdge(edge, nextEdgeType) -> retval

 Link to this function

 getEdgeList(self)

 View Source

 @spec getEdgeList(t()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Returns a list of all edges.
Positional Arguments
	self: Evision.Subdiv2D.t()

Return
	edgeList: [Vec4f].
Output vector.

The function gives each edge as a 4 numbers vector, where each two are one of the edge
vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
Python prototype (for reference only):
getEdgeList() -> edgeList

 Link to this function

 getLeadingEdgeList(self)

 View Source

 @spec getLeadingEdgeList(t()) :: [integer()] | {:error, String.t()}

Returns a list of the leading edge ID connected to each triangle.
Positional Arguments
	self: Evision.Subdiv2D.t()

Return
	leadingEdgeList: [int].
Output vector.

The function gives one edge ID for each triangle.
Python prototype (for reference only):
getLeadingEdgeList() -> leadingEdgeList

 Link to this function

 getTriangleList(self)

 View Source

 @spec getTriangleList(t()) ::
 [{number(), number(), number(), number(), number(), number()}]
 | {:error, String.t()}

Returns a list of all triangles.
Positional Arguments
	self: Evision.Subdiv2D.t()

Return
	triangleList: [Vec6f].
Output vector.

The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
Python prototype (for reference only):
getTriangleList() -> triangleList

 Link to this function

 getVertex(self, vertex)

 View Source

 @spec getVertex(t(), integer()) ::
 {{number(), number()}, integer()} | {:error, String.t()}

Returns vertex location from vertex ID.
Positional Arguments
	self: Evision.Subdiv2D.t()

	vertex: int.
vertex ID.

Return
	retval: Point2f

	firstEdge: int*.
Optional. The first edge ID which is connected to the vertex.

@returns vertex (x,y)
Python prototype (for reference only):
getVertex(vertex) -> retval, firstEdge

 Link to this function

 getVoronoiFacetList(self, idx)

 View Source

 @spec getVoronoiFacetList(t(), [integer()]) ::
 {[[{number(), number()}]], [{number(), number()}]} | {:error, String.t()}

Returns a list of all Voronoi facets.
Positional Arguments
	self: Evision.Subdiv2D.t()

	idx: [int].
Vector of vertices IDs to consider. For all vertices you can pass empty vector.

Return
	facetList: [[Point2f]].
Output vector of the Voronoi facets.

	facetCenters: [Point2f].
Output vector of the Voronoi facets center points.

Python prototype (for reference only):
getVoronoiFacetList(idx) -> facetList, facetCenters

 Link to this function

 initDelaunay(self, rect)

 View Source

 @spec initDelaunay(t(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

Creates a new empty Delaunay subdivision
Positional Arguments
	self: Evision.Subdiv2D.t()

	rect: Rect.
Rectangle that includes all of the 2D points that are to be added to the subdivision.

Python prototype (for reference only):
initDelaunay(rect) -> None

 Link to this function

 insert(self, ptvec)

 View Source

 @spec insert(t(), [{number(), number()}]) :: t() | {:error, String.t()}

 @spec insert(
 t(),
 {number(), number()}
) :: integer() | {:error, String.t()}

Variant 1:
Insert multiple points into a Delaunay triangulation.
Positional Arguments
	self: Evision.Subdiv2D.t()

	ptvec: [Point2f].
Points to insert.

The function inserts a vector of points into a subdivision and modifies the subdivision topology
appropriately.
Python prototype (for reference only):
insert(ptvec) -> None
Variant 2:
Insert a single point into a Delaunay triangulation.
Positional Arguments
	self: Evision.Subdiv2D.t()

	pt: Point2f.
Point to insert.

Return
	retval: int

The function inserts a single point into a subdivision and modifies the subdivision topology
appropriately. If a point with the same coordinates exists already, no new point is added.
@returns the ID of the point.
Note: If the point is outside of the triangulation specified rect a runtime error is raised.
Python prototype (for reference only):
insert(pt) -> retval

 Link to this function

 locate(self, pt)

 View Source

 @spec locate(
 t(),
 {number(), number()}
) :: {integer(), integer(), integer()} | {:error, String.t()}

Returns the location of a point within a Delaunay triangulation.
Positional Arguments
	self: Evision.Subdiv2D.t()

	pt: Point2f.
Point to locate.

Return
	retval: int

	edge: int.
Output edge that the point belongs to or is located to the right of it.

	vertex: int.
Optional output vertex the input point coincides with.

The function locates the input point within the subdivision and gives one of the triangle edges
or vertices.
@returns an integer which specify one of the following five cases for point location:
	The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
edges of the facet.

	The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.

	The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
vertex will contain a pointer to the vertex.

	The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
and no pointers are filled.

	One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
processing mode is selected, #PTLOC_ERROR is returned.

Python prototype (for reference only):
locate(pt) -> retval, edge, vertex

 Link to this function

 nextEdge(self, edge)

 View Source

 @spec nextEdge(t(), integer()) :: integer() | {:error, String.t()}

Returns next edge around the edge origin.
Positional Arguments
	self: Evision.Subdiv2D.t()

	edge: int.
Subdivision edge ID.

Return
	retval: int

@returns an integer which is next edge ID around the edge origin: eOnext on the
picture above if e is the input edge).
Python prototype (for reference only):
nextEdge(edge) -> retval

 Link to this function

 rotateEdge(self, edge, rotate)

 View Source

 @spec rotateEdge(t(), integer(), integer()) :: integer() | {:error, String.t()}

Returns another edge of the same quad-edge.
Positional Arguments
	self: Evision.Subdiv2D.t()

	edge: int.
Subdivision edge ID.

	rotate: int.
Parameter specifying which of the edges of the same quad-edge as the input
one to return. The following values are possible:
	0 - the input edge (e on the picture below if e is the input edge)
	1 - the rotated edge (eRot)
	2 - the reversed edge (reversed e (in green))
	3 - the reversed rotated edge (reversed eRot (in green))

Return
	retval: int

@returns one of the edges ID of the same quad-edge as the input edge.
Python prototype (for reference only):
rotateEdge(edge, rotate) -> retval

 Link to this function

 subdiv2D()

 View Source

 @spec subdiv2D() :: t() | {:error, String.t()}

Subdiv2D
Return
	self: Evision.Subdiv2D.t()

creates an empty Subdiv2D object.
To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
Python prototype (for reference only):
Subdiv2D() -> <Subdiv2D object>

 Link to this function

 subdiv2D(rect)

 View Source

 @spec subdiv2D({number(), number(), number(), number()}) :: t() | {:error, String.t()}

Subdiv2D
Positional Arguments
	rect: Rect.
Rectangle that includes all of the 2D points that are to be added to the subdivision.

Return
	self: Evision.Subdiv2D.t()

Has overloading in C++
The function creates an empty Delaunay subdivision where 2D points can be added using the function
insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
error is raised.
Python prototype (for reference only):
Subdiv2D(rect) -> <Subdiv2D object>

 Link to this function

 symEdge(self, edge)

 View Source

 @spec symEdge(t(), integer()) :: integer() | {:error, String.t()}

symEdge
Positional Arguments
	self: Evision.Subdiv2D.t()
	edge: int

Return
	retval: int

Python prototype (for reference only):
symEdge(edge) -> retval

 Evision.Text - Evision v0.1.39

Evision.Text

 Summary

 Types

 t()

 Type that represents an Text struct.

 Functions

 computeNMChannels(src)

 Compute the different channels to be processed independently in the N&M algorithm @cite Neumann12.

 computeNMChannels(src, opts)

 Compute the different channels to be processed independently in the N&M algorithm @cite Neumann12.

 createERFilterNM1(filename)

 Variant 1:
Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml

 createERFilterNM1(filename, opts)

 Variant 1:
Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml

 createERFilterNM2(filename)

 Variant 1:
Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml

 createERFilterNM2(filename, opts)

 Variant 1:
Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml

 createOCRHMMTransitionsTable(vocabulary, lexicon)

 Utility function to create a tailored language model transitions table from a given list of words (lexicon).

 detectRegions(image, er_filter1, er_filter2)

 Extracts text regions from image.

 detectRegions(image, er_filter1, er_filter2, opts)

 Extracts text regions from image.

 detectTextSWT(input, dark_on_light)

 Applies the Stroke Width Transform operator followed by filtering of connected components of similar Stroke Widths to return letter candidates. It also chain them by proximity and size, saving the result in chainBBs.

 detectTextSWT(input, dark_on_light, opts)

 Applies the Stroke Width Transform operator followed by filtering of connected components of similar Stroke Widths to return letter candidates. It also chain them by proximity and size, saving the result in chainBBs.

 erGrouping(image, channel, regions)

 Find groups of Extremal Regions that are organized as text blocks.

 erGrouping(image, channel, regions, opts)

 Find groups of Extremal Regions that are organized as text blocks.

 loadClassifierNM1(filename)

 Allow to implicitly load the default classifier when creating an ERFilter object.

 loadClassifierNM2(filename)

 Allow to implicitly load the default classifier when creating an ERFilter object.

 loadOCRBeamSearchClassifierCNN(filename)

 Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object.

 loadOCRHMMClassifier(filename, classifier)

 Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.

 loadOCRHMMClassifierCNN(filename)

 Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.

 loadOCRHMMClassifierNM(filename)

 Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text{ref: reference()}

Type that represents an Text struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 computeNMChannels(src)

 View Source

 @spec computeNMChannels(Evision.Mat.maybe_mat_in()) ::
 [Evision.Mat.t()] | {:error, String.t()}

Compute the different channels to be processed independently in the N&M algorithm @cite Neumann12.
Positional Arguments
	src: Evision.Mat.t().
Source image. Must be RGB CV_8UC3.

Keyword Arguments
	mode: int.Mode of operation. Currently the only available options are:	ERFILTER_NM_RGBLGrad (used by default) and ERFILTER_NM_IHSGrad**.

Return
	channels: [Evision.Mat].
Output vector\<Mat> where computed channels are stored.

In N&M algorithm, the combination of intensity (I), hue (H), saturation (S), and gradient magnitude
channels (Grad) are used in order to obtain high localization recall. This implementation also
provides an alternative combination of red (R), green (G), blue (B), lightness (L), and gradient
magnitude (Grad).
Python prototype (for reference only):
computeNMChannels(_src[, _channels[, _mode]]) -> _channels

 Link to this function

 computeNMChannels(src, opts)

 View Source

 @spec computeNMChannels(Evision.Mat.maybe_mat_in(), [{:mode, term()}] | nil) ::
 [Evision.Mat.t()] | {:error, String.t()}

Compute the different channels to be processed independently in the N&M algorithm @cite Neumann12.
Positional Arguments
	src: Evision.Mat.t().
Source image. Must be RGB CV_8UC3.

Keyword Arguments
	mode: int.Mode of operation. Currently the only available options are:	ERFILTER_NM_RGBLGrad (used by default) and ERFILTER_NM_IHSGrad**.

Return
	channels: [Evision.Mat].
Output vector\<Mat> where computed channels are stored.

In N&M algorithm, the combination of intensity (I), hue (H), saturation (S), and gradient magnitude
channels (Grad) are used in order to obtain high localization recall. This implementation also
provides an alternative combination of red (R), green (G), blue (B), lightness (L), and gradient
magnitude (Grad).
Python prototype (for reference only):
computeNMChannels(_src[, _channels[, _mode]]) -> _channels

 Link to this function

 createERFilterNM1(filename)

 View Source

 @spec createERFilterNM1(binary()) :: Evision.Text.ERFilter.t() | {:error, String.t()}

 @spec createERFilterNM1(term()) :: Evision.Text.ERFilter.t() | {:error, String.t()}

Variant 1:
Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml
Positional Arguments
	filename: String

Keyword Arguments
	thresholdDelta: int.
	minArea: float.
	maxArea: float.
	minProbability: float.
	nonMaxSuppression: bool.
	minProbabilityDiff: float.

Return
	retval: Evision.Text.ERFilter.t()

Has overloading in C++
Python prototype (for reference only):
createERFilterNM1(filename[, thresholdDelta[, minArea[, maxArea[, minProbability[, nonMaxSuppression[, minProbabilityDiff]]]]]]) -> retval
Variant 2:
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12.
Positional Arguments
	cb: Evision.Text.ERFilter.Callback.t()

Keyword Arguments
	thresholdDelta: int.
	minArea: float.
	maxArea: float.
	minProbability: float.
	nonMaxSuppression: bool.
	minProbabilityDiff: float.

Return
	retval: Evision.Text.ERFilter.t()

The component tree of the image is extracted by a threshold increased step by step from 0 to 255,
incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of
horizontal crossings) are computed for each ER and used as features for a classifier which estimates
the class-conditional probability P(er|character). The value of P(er|character) is tracked using the
inclusion relation of ER across all thresholds and only the ERs which correspond to local maximum of
the probability P(er|character) are selected (if the local maximum of the probability is above a
global limit pmin and the difference between local maximum and local minimum is greater than
minProbabilityDiff).
Python prototype (for reference only):
createERFilterNM1(cb[, thresholdDelta[, minArea[, maxArea[, minProbability[, nonMaxSuppression[, minProbabilityDiff]]]]]]) -> retval

 Link to this function

 createERFilterNM1(filename, opts)

 View Source

 @spec createERFilterNM1(
 binary(),
 [
 minArea: term(),
 nonMaxSuppression: term(),
 minProbability: term(),
 maxArea: term(),
 minProbabilityDiff: term(),
 thresholdDelta: term()
]
 | nil
) :: Evision.Text.ERFilter.t() | {:error, String.t()}

 @spec createERFilterNM1(
 term(),
 [
 minArea: term(),
 nonMaxSuppression: term(),
 minProbability: term(),
 maxArea: term(),
 minProbabilityDiff: term(),
 thresholdDelta: term()
]
 | nil
) :: Evision.Text.ERFilter.t() | {:error, String.t()}

Variant 1:
Reads an Extremal Region Filter for the 1st stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM1.xml
Positional Arguments
	filename: String

Keyword Arguments
	thresholdDelta: int.
	minArea: float.
	maxArea: float.
	minProbability: float.
	nonMaxSuppression: bool.
	minProbabilityDiff: float.

Return
	retval: Evision.Text.ERFilter.t()

Has overloading in C++
Python prototype (for reference only):
createERFilterNM1(filename[, thresholdDelta[, minArea[, maxArea[, minProbability[, nonMaxSuppression[, minProbabilityDiff]]]]]]) -> retval
Variant 2:
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12.
Positional Arguments
	cb: Evision.Text.ERFilter.Callback.t()

Keyword Arguments
	thresholdDelta: int.
	minArea: float.
	maxArea: float.
	minProbability: float.
	nonMaxSuppression: bool.
	minProbabilityDiff: float.

Return
	retval: Evision.Text.ERFilter.t()

The component tree of the image is extracted by a threshold increased step by step from 0 to 255,
incrementally computable descriptors (aspect_ratio, compactness, number of holes, and number of
horizontal crossings) are computed for each ER and used as features for a classifier which estimates
the class-conditional probability P(er|character). The value of P(er|character) is tracked using the
inclusion relation of ER across all thresholds and only the ERs which correspond to local maximum of
the probability P(er|character) are selected (if the local maximum of the probability is above a
global limit pmin and the difference between local maximum and local minimum is greater than
minProbabilityDiff).
Python prototype (for reference only):
createERFilterNM1(cb[, thresholdDelta[, minArea[, maxArea[, minProbability[, nonMaxSuppression[, minProbabilityDiff]]]]]]) -> retval

 Link to this function

 createERFilterNM2(filename)

 View Source

 @spec createERFilterNM2(binary()) :: Evision.Text.ERFilter.t() | {:error, String.t()}

 @spec createERFilterNM2(term()) :: Evision.Text.ERFilter.t() | {:error, String.t()}

Variant 1:
Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml
Positional Arguments
	filename: String

Keyword Arguments
	minProbability: float.

Return
	retval: Evision.Text.ERFilter.t()

Has overloading in C++
Python prototype (for reference only):
createERFilterNM2(filename[, minProbability]) -> retval
Variant 2:
Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12.
Positional Arguments
	cb: Evision.Text.ERFilter.Callback.t()

Keyword Arguments
	minProbability: float.

Return
	retval: Evision.Text.ERFilter.t()

In the second stage, the ERs that passed the first stage are classified into character and
non-character classes using more informative but also more computationally expensive features. The
classifier uses all the features calculated in the first stage and the following additional
features: hole area ratio, convex hull ratio, and number of outer inflexion points.
Python prototype (for reference only):
createERFilterNM2(cb[, minProbability]) -> retval

 Link to this function

 createERFilterNM2(filename, opts)

 View Source

 @spec createERFilterNM2(binary(), [{:minProbability, term()}] | nil) ::
 Evision.Text.ERFilter.t() | {:error, String.t()}

 @spec createERFilterNM2(term(), [{:minProbability, term()}] | nil) ::
 Evision.Text.ERFilter.t() | {:error, String.t()}

Variant 1:
Reads an Extremal Region Filter for the 2nd stage classifier of N&M algorithm
from the provided path e.g. /path/to/cpp/trained_classifierNM2.xml
Positional Arguments
	filename: String

Keyword Arguments
	minProbability: float.

Return
	retval: Evision.Text.ERFilter.t()

Has overloading in C++
Python prototype (for reference only):
createERFilterNM2(filename[, minProbability]) -> retval
Variant 2:
Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12.
Positional Arguments
	cb: Evision.Text.ERFilter.Callback.t()

Keyword Arguments
	minProbability: float.

Return
	retval: Evision.Text.ERFilter.t()

In the second stage, the ERs that passed the first stage are classified into character and
non-character classes using more informative but also more computationally expensive features. The
classifier uses all the features calculated in the first stage and the following additional
features: hole area ratio, convex hull ratio, and number of outer inflexion points.
Python prototype (for reference only):
createERFilterNM2(cb[, minProbability]) -> retval

 Link to this function

 createOCRHMMTransitionsTable(vocabulary, lexicon)

 View Source

 @spec createOCRHMMTransitionsTable(binary(), [binary()]) ::
 Evision.Mat.t() | {:error, String.t()}

Utility function to create a tailored language model transitions table from a given list of words (lexicon).
Positional Arguments
	vocabulary: String.
The language vocabulary (chars when ASCII English text).

	lexicon: [String].
The list of words that are expected to be found in a particular image.

Return
	retval: Evision.Mat.t()

 The function calculate frequency statistics of character pairs from the given lexicon and fills the output transition_probabilities_table with them. The transition_probabilities_table can be used as input in the OCRHMMDecoder::create() and OCRBeamSearchDecoder::create() methods.
Note:
	(C++) An alternative would be to load the default generic language transition table provided in the text module samples folder (created from ispell 42869 english words list) :
https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/OCRHMM_transitions_table.xml

Python prototype (for reference only):
createOCRHMMTransitionsTable(vocabulary, lexicon) -> retval

 Link to this function

 detectRegions(image, er_filter1, er_filter2)

 View Source

 @spec detectRegions(
 Evision.Mat.maybe_mat_in(),
 Evision.Text.ERFilter.t(),
 Evision.Text.ERFilter.t()
) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Extracts text regions from image.
Positional Arguments
	image: Evision.Mat.t().
Source image where text blocks needs to be extracted from. Should be CV_8UC3 (color).

	er_filter1: Evision.Text.ERFilter.t().
Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12

	er_filter2: Evision.Text.ERFilter.t().
Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12

Keyword Arguments
	method: int.
Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ, ERGROUPING_ORIENTATION_ANY.

	filename: String.
The XML or YAML file with the classifier model (e.g. samples/trained_classifier_erGrouping.xml). Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.

	minProbability: float.
The minimum probability for accepting a group. Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.

Return
	groups_rects: [Rect].
Output list of rectangle blocks with text

Python prototype (for reference only):
detectRegions(image, er_filter1, er_filter2[, method[, filename[, minProbability]]]) -> groups_rects

 Link to this function

 detectRegions(image, er_filter1, er_filter2, opts)

 View Source

 @spec detectRegions(
 Evision.Mat.maybe_mat_in(),
 Evision.Text.ERFilter.t(),
 Evision.Text.ERFilter.t(),
 [minProbability: term(), method: term(), filename: term()] | nil
) :: [{number(), number(), number(), number()}] | {:error, String.t()}

Extracts text regions from image.
Positional Arguments
	image: Evision.Mat.t().
Source image where text blocks needs to be extracted from. Should be CV_8UC3 (color).

	er_filter1: Evision.Text.ERFilter.t().
Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12

	er_filter2: Evision.Text.ERFilter.t().
Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12

Keyword Arguments
	method: int.
Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ, ERGROUPING_ORIENTATION_ANY.

	filename: String.
The XML or YAML file with the classifier model (e.g. samples/trained_classifier_erGrouping.xml). Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.

	minProbability: float.
The minimum probability for accepting a group. Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.

Return
	groups_rects: [Rect].
Output list of rectangle blocks with text

Python prototype (for reference only):
detectRegions(image, er_filter1, er_filter2[, method[, filename[, minProbability]]]) -> groups_rects

 Link to this function

 detectTextSWT(input, dark_on_light)

 View Source

 @spec detectTextSWT(Evision.Mat.maybe_mat_in(), boolean()) ::
 {[{number(), number(), number(), number()}], Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Applies the Stroke Width Transform operator followed by filtering of connected components of similar Stroke Widths to return letter candidates. It also chain them by proximity and size, saving the result in chainBBs.
Positional Arguments
	input: Evision.Mat.t().
the input image with 3 channels.

	dark_on_light: bool.
a boolean value signifying whether the text is darker or lighter than the background, it is observed to reverse the gradient obtained from Scharr operator, and significantly affect the result.

Return
	result: [Rect].
a vector of resulting bounding boxes where probability of finding text is high

	draw: Evision.Mat.t().
an optional Mat of type CV_8UC3 which visualises the detected letters using bounding boxes.

	chainBBs: Evision.Mat.t().
an optional parameter which chains the letter candidates according to heuristics in the paper and returns all possible regions where text is likely to occur.

Python prototype (for reference only):
detectTextSWT(input, dark_on_light[, draw[, chainBBs]]) -> result, draw, chainBBs

 Link to this function

 detectTextSWT(input, dark_on_light, opts)

 View Source

 @spec detectTextSWT(
 Evision.Mat.maybe_mat_in(),
 boolean(),
 [{atom(), term()}, ...] | nil
) ::
 {[{number(), number(), number(), number()}], Evision.Mat.t(), Evision.Mat.t()}
 | {:error, String.t()}

Applies the Stroke Width Transform operator followed by filtering of connected components of similar Stroke Widths to return letter candidates. It also chain them by proximity and size, saving the result in chainBBs.
Positional Arguments
	input: Evision.Mat.t().
the input image with 3 channels.

	dark_on_light: bool.
a boolean value signifying whether the text is darker or lighter than the background, it is observed to reverse the gradient obtained from Scharr operator, and significantly affect the result.

Return
	result: [Rect].
a vector of resulting bounding boxes where probability of finding text is high

	draw: Evision.Mat.t().
an optional Mat of type CV_8UC3 which visualises the detected letters using bounding boxes.

	chainBBs: Evision.Mat.t().
an optional parameter which chains the letter candidates according to heuristics in the paper and returns all possible regions where text is likely to occur.

Python prototype (for reference only):
detectTextSWT(input, dark_on_light[, draw[, chainBBs]]) -> result, draw, chainBBs

 Link to this function

 erGrouping(image, channel, regions)

 View Source

 @spec erGrouping(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [
 [{number(), number()}]
]) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Find groups of Extremal Regions that are organized as text blocks.
Positional Arguments
	image: Evision.Mat.t()

	channel: Evision.Mat.t()

	regions: [[Point]].
Vector of ER's retrieved from the ERFilter algorithm from each channel.

Keyword Arguments
	method: int.
Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ,
ERGROUPING_ORIENTATION_ANY.

	filename: String.
The XML or YAML file with the classifier model (e.g.
samples/trained_classifier_erGrouping.xml). Only to use when grouping method is
ERGROUPING_ORIENTATION_ANY.

	minProbablity: float.
The minimum probability for accepting a group. Only to use when grouping
method is ERGROUPING_ORIENTATION_ANY.

Return
	groups_rects: [Rect].
The output of the algorithm are stored in this parameter as list of rectangles.

Python prototype (for reference only):
erGrouping(image, channel, regions[, method[, filename[, minProbablity]]]) -> groups_rects

 Link to this function

 erGrouping(image, channel, regions, opts)

 View Source

 @spec erGrouping(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [[{number(), number()}]],
 [minProbablity: term(), method: term(), filename: term()] | nil
) :: [{number(), number(), number(), number()}] | {:error, String.t()}

Find groups of Extremal Regions that are organized as text blocks.
Positional Arguments
	image: Evision.Mat.t()

	channel: Evision.Mat.t()

	regions: [[Point]].
Vector of ER's retrieved from the ERFilter algorithm from each channel.

Keyword Arguments
	method: int.
Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ,
ERGROUPING_ORIENTATION_ANY.

	filename: String.
The XML or YAML file with the classifier model (e.g.
samples/trained_classifier_erGrouping.xml). Only to use when grouping method is
ERGROUPING_ORIENTATION_ANY.

	minProbablity: float.
The minimum probability for accepting a group. Only to use when grouping
method is ERGROUPING_ORIENTATION_ANY.

Return
	groups_rects: [Rect].
The output of the algorithm are stored in this parameter as list of rectangles.

Python prototype (for reference only):
erGrouping(image, channel, regions[, method[, filename[, minProbablity]]]) -> groups_rects

 Link to this function

 loadClassifierNM1(filename)

 View Source

 @spec loadClassifierNM1(binary()) :: term() | {:error, String.t()}

Allow to implicitly load the default classifier when creating an ERFilter object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. trained_classifierNM1.xml)

Return
	retval: Evision.Text.ERFilter.Callback.t()

returns a pointer to ERFilter::Callback.
Python prototype (for reference only):
loadClassifierNM1(filename) -> retval

 Link to this function

 loadClassifierNM2(filename)

 View Source

 @spec loadClassifierNM2(binary()) :: term() | {:error, String.t()}

Allow to implicitly load the default classifier when creating an ERFilter object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. trained_classifierNM2.xml)

Return
	retval: Evision.Text.ERFilter.Callback.t()

returns a pointer to ERFilter::Callback.
Python prototype (for reference only):
loadClassifierNM2(filename) -> retval

 Link to this function

 loadOCRBeamSearchClassifierCNN(filename)

 View Source

 @spec loadOCRBeamSearchClassifierCNN(binary()) :: term() | {:error, String.t()}

Allow to implicitly load the default character classifier when creating an OCRBeamSearchDecoder object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)

Return
	retval: Evision.Text.OCRBeamSearchDecoder.ClassifierCallback.t()

The CNN default classifier is based in the scene text recognition method proposed by Adam Coates &
Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and
a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions
at each window location.
Python prototype (for reference only):
loadOCRBeamSearchClassifierCNN(filename) -> retval

 Link to this function

 loadOCRHMMClassifier(filename, classifier)

 View Source

 @spec loadOCRHMMClassifier(binary(), integer()) :: term() | {:error, String.t()}

Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)

	classifier: int.
Can be one of classifier_type enum values.

Return
	retval: Evision.Text.OCRHMMDecoder.ClassifierCallback.t()

Python prototype (for reference only):
loadOCRHMMClassifier(filename, classifier) -> retval

 Link to this function

 loadOCRHMMClassifierCNN(filename)

 View Source

 @spec loadOCRHMMClassifierCNN(binary()) :: term() | {:error, String.t()}

Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. OCRBeamSearch_CNN_model_data.xml.gz)

Return
	retval: Evision.Text.OCRHMMDecoder.ClassifierCallback.t()

The CNN default classifier is based in the scene text recognition method proposed by Adam Coates &
Andrew NG in [Coates11a]. The character classifier consists in a Single Layer Convolutional Neural Network and
a linear classifier. It is applied to the input image in a sliding window fashion, providing a set of recognitions
at each window location.
@deprecated use loadOCRHMMClassifier instead
Python prototype (for reference only):
loadOCRHMMClassifierCNN(filename) -> retval

 Link to this function

 loadOCRHMMClassifierNM(filename)

 View Source

 @spec loadOCRHMMClassifierNM(binary()) :: term() | {:error, String.t()}

Allow to implicitly load the default character classifier when creating an OCRHMMDecoder object.
Positional Arguments
	filename: String.
The XML or YAML file with the classifier model (e.g. OCRHMM_knn_model_data.xml)

Return
	retval: Evision.Text.OCRHMMDecoder.ClassifierCallback.t()

The KNN default classifier is based in the scene text recognition method proposed by Lukás Neumann &
Jiri Matas in [Neumann11b]. Basically, the region (contour) in the input image is normalized to a
fixed size, while retaining the centroid and aspect ratio, in order to extract a feature vector
based on gradient orientations along the chain-code of its perimeter. Then, the region is classified
using a KNN model trained with synthetic data of rendered characters with different standard font
types.
@deprecated loadOCRHMMClassifier instead
Python prototype (for reference only):
loadOCRHMMClassifierNM(filename) -> retval

 Evision.Text.BaseOCR - Evision v0.1.39

Evision.Text.BaseOCR

 Summary

 Types

 t()

 Type that represents an Text.BaseOCR struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.BaseOCR{ref: reference()}

Type that represents an Text.BaseOCR struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Text.ERFilter - Evision v0.1.39

Evision.Text.ERFilter

 Summary

 Types

 t()

 Type that represents an Text.ERFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.ERFilter{ref: reference()}

Type that represents an Text.ERFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Text.ERFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Text.ERFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Text.ERFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Text.ERFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Text.ERFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Text.ERFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Text.ERFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Text.OCRBeamSearchDecoder - Evision v0.1.39

Evision.Text.OCRBeamSearchDecoder

 Summary

 Types

 t()

 Type that represents an Text.OCRBeamSearchDecoder struct.

 Functions

 create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table)

 Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.

 create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table, opts)

 Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.

 run(self, image, min_confidence)

 Recognize text using Beam Search.

 run(self, image, min_confidence, opts)

 Variant 1:
run

 run(self, image, mask, min_confidence, opts)

 run

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.OCRBeamSearchDecoder{ref: reference()}

Type that represents an Text.OCRBeamSearchDecoder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table)

 View Source

 @spec create(term(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.
Positional Arguments
	classifier: Evision.Text.OCRBeamSearchDecoder.ClassifierCallback.t().
The character classifier with built in feature extractor.

	vocabulary: string.
The language vocabulary (chars when ASCII English text). vocabulary.size()
must be equal to the number of classes of the classifier.

	transition_probabilities_table: Evision.Mat.t().
Table with transition probabilities between character
pairs. cols == rows == vocabulary.size().

	emission_probabilities_table: Evision.Mat.t().
Table with observation emission probabilities. cols ==
rows == vocabulary.size().

Keyword Arguments
	mode: text_decoder_mode.
HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
(http://en.wikipedia.org/wiki/Viterbi_algorithm).

	beam_size: int.
Size of the beam in Beam Search algorithm.

Return
	retval: OCRBeamSearchDecoder

Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, beam_size]]) -> retval

 Link to this function

 create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table, opts)

 View Source

 @spec create(
 term(),
 binary(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [mode: term(), beam_size: term()] | nil
) :: t() | {:error, String.t()}

Creates an instance of the OCRBeamSearchDecoder class. Initializes HMMDecoder.
Positional Arguments
	classifier: Evision.Text.OCRBeamSearchDecoder.ClassifierCallback.t().
The character classifier with built in feature extractor.

	vocabulary: string.
The language vocabulary (chars when ASCII English text). vocabulary.size()
must be equal to the number of classes of the classifier.

	transition_probabilities_table: Evision.Mat.t().
Table with transition probabilities between character
pairs. cols == rows == vocabulary.size().

	emission_probabilities_table: Evision.Mat.t().
Table with observation emission probabilities. cols ==
rows == vocabulary.size().

Keyword Arguments
	mode: text_decoder_mode.
HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
(http://en.wikipedia.org/wiki/Viterbi_algorithm).

	beam_size: int.
Size of the beam in Beam Search algorithm.

Return
	retval: OCRBeamSearchDecoder

Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, beam_size]]) -> retval

 Link to this function

 run(self, image, min_confidence)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Recognize text using Beam Search.
Positional Arguments
	self: Evision.Text.OCRBeamSearchDecoder.t()

	image: Evision.Mat.t().
Input binary image CV_8UC1 with a single text line (or word).

	min_confidence: int

Keyword Arguments
	component_level: int.
Only OCR_LEVEL_WORD is supported.

Return
	retval: String

Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) ::
 binary() | {:error, String.t()}

 @spec run(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Variant 1:
run
Positional Arguments
	self: Evision.Text.OCRBeamSearchDecoder.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval
Variant 2:
Recognize text using Beam Search.
Positional Arguments
	self: Evision.Text.OCRBeamSearchDecoder.t()

	image: Evision.Mat.t().
Input binary image CV_8UC1 with a single text line (or word).

	min_confidence: int

Keyword Arguments
	component_level: int.
Only OCR_LEVEL_WORD is supported.

Return
	retval: String

Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, mask, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) :: binary() | {:error, String.t()}

run
Positional Arguments
	self: Evision.Text.OCRBeamSearchDecoder.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval

 Evision.Text.OCRBeamSearchDecoder.ClassifierCallback - Evision v0.1.39

Evision.Text.OCRBeamSearchDecoder.ClassifierCallback

 Summary

 Types

 t()

 Type that represents an Text.OCRBeamSearchDecoder.ClassifierCallback struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.OCRBeamSearchDecoder.ClassifierCallback{ref: reference()}

Type that represents an Text.OCRBeamSearchDecoder.ClassifierCallback struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Text.OCRHMMDecoder - Evision v0.1.39

Evision.Text.OCRHMMDecoder

 Summary

 Types

 t()

 Type that represents an Text.OCRHMMDecoder struct.

 Functions

 create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table)

 Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path

 create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table, opts)

 Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path

 run(self, image, min_confidence)

 Recognize text using HMM.

 run(self, image, min_confidence, opts)

 Variant 1:
run

 run(self, image, mask, min_confidence, opts)

 run

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.OCRHMMDecoder{ref: reference()}

Type that represents an Text.OCRHMMDecoder struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table)

 View Source

 @spec create(
 binary(),
 binary(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 t() | {:error, String.t()}

 @spec create(term(), binary(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 t() | {:error, String.t()}

Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Positional Arguments
	filename: String
	vocabulary: String
	transition_probabilities_table: Evision.Mat.t()
	emission_probabilities_table: Evision.Mat.t()

Keyword Arguments
	mode: int.
	classifier: int.

Return
	retval: OCRHMMDecoder

Has overloading in C++
Python prototype (for reference only):
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]]) -> retval
Variant 2:
Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
Positional Arguments
	classifier: Evision.Text.OCRHMMDecoder.ClassifierCallback.t().
The character classifier with built in feature extractor.

	vocabulary: String.
The language vocabulary (chars when ascii english text). vocabulary.size()
must be equal to the number of classes of the classifier.

	transition_probabilities_table: Evision.Mat.t().
Table with transition probabilities between character
pairs. cols == rows == vocabulary.size().

	emission_probabilities_table: Evision.Mat.t().
Table with observation emission probabilities. cols ==
rows == vocabulary.size().

Keyword Arguments
	mode: int.
HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
(http://en.wikipedia.org/wiki/Viterbi_algorithm).

Return
	retval: OCRHMMDecoder

Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode]) -> retval

 Link to this function

 create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table, opts)

 View Source

 @spec create(
 binary(),
 binary(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [classifier: term(), mode: term()] | nil
) :: t() | {:error, String.t()}

 @spec create(
 term(),
 binary(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:mode, term()}] | nil
) :: t() | {:error, String.t()}

Variant 1:
Creates an instance of the OCRHMMDecoder class. Loads and initializes HMMDecoder from the specified path
Positional Arguments
	filename: String
	vocabulary: String
	transition_probabilities_table: Evision.Mat.t()
	emission_probabilities_table: Evision.Mat.t()

Keyword Arguments
	mode: int.
	classifier: int.

Return
	retval: OCRHMMDecoder

Has overloading in C++
Python prototype (for reference only):
create(filename, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode[, classifier]]) -> retval
Variant 2:
Creates an instance of the OCRHMMDecoder class. Initializes HMMDecoder.
Positional Arguments
	classifier: Evision.Text.OCRHMMDecoder.ClassifierCallback.t().
The character classifier with built in feature extractor.

	vocabulary: String.
The language vocabulary (chars when ascii english text). vocabulary.size()
must be equal to the number of classes of the classifier.

	transition_probabilities_table: Evision.Mat.t().
Table with transition probabilities between character
pairs. cols == rows == vocabulary.size().

	emission_probabilities_table: Evision.Mat.t().
Table with observation emission probabilities. cols ==
rows == vocabulary.size().

Keyword Arguments
	mode: int.
HMM Decoding algorithm. Only OCR_DECODER_VITERBI is available for the moment
(http://en.wikipedia.org/wiki/Viterbi_algorithm).

Return
	retval: OCRHMMDecoder

Python prototype (for reference only):
create(classifier, vocabulary, transition_probabilities_table, emission_probabilities_table[, mode]) -> retval

 Link to this function

 run(self, image, min_confidence)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Recognize text using HMM.
Positional Arguments
	self: Evision.Text.OCRHMMDecoder.t()

	image: Evision.Mat.t().
Input image CV_8UC1 or CV_8UC3 with a single text line (or word).

	min_confidence: int

Keyword Arguments
	component_level: int.
Only OCR_LEVEL_WORD is supported.

Return
	retval: String

Takes an image and a mask (where each connected component corresponds to a segmented character)
on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) ::
 binary() | {:error, String.t()}

 @spec run(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Variant 1:
run
Positional Arguments
	self: Evision.Text.OCRHMMDecoder.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval
Variant 2:
Recognize text using HMM.
Positional Arguments
	self: Evision.Text.OCRHMMDecoder.t()

	image: Evision.Mat.t().
Input image CV_8UC1 or CV_8UC3 with a single text line (or word).

	min_confidence: int

Keyword Arguments
	component_level: int.
Only OCR_LEVEL_WORD is supported.

Return
	retval: String

Takes an image and a mask (where each connected component corresponds to a segmented character)
on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, mask, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) :: binary() | {:error, String.t()}

run
Positional Arguments
	self: Evision.Text.OCRHMMDecoder.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval

 Evision.Text.OCRHMMDecoder.ClassifierCallback - Evision v0.1.39

Evision.Text.OCRHMMDecoder.ClassifierCallback

 Summary

 Types

 t()

 Type that represents an Text.OCRHMMDecoder.ClassifierCallback struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.OCRHMMDecoder.ClassifierCallback{ref: reference()}

Type that represents an Text.OCRHMMDecoder.ClassifierCallback struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.Text.OCRTesseract - Evision v0.1.39

Evision.Text.OCRTesseract

 Summary

 Types

 t()

 Type that represents an Text.OCRTesseract struct.

 Functions

 create()

 Creates an instance of the OCRTesseract class. Initializes Tesseract.

 create(opts)

 Creates an instance of the OCRTesseract class. Initializes Tesseract.

 run(self, image, min_confidence)

 Recognize text using the tesseract-ocr API.

 run(self, image, min_confidence, opts)

 Variant 1:
run

 run(self, image, mask, min_confidence, opts)

 run

 setWhiteList(self, char_whitelist)

 setWhiteList

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.OCRTesseract{ref: reference()}

Type that represents an Text.OCRTesseract struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates an instance of the OCRTesseract class. Initializes Tesseract.
Keyword Arguments
	datapath: c_string.
the name of the parent directory of tessdata ended with "/", or NULL to use the
system's default directory.

	language: c_string.
an ISO 639-3 code or NULL will default to "eng".

	char_whitelist: c_string.
specifies the list of characters used for recognition. NULL defaults to ""
(All characters will be used for recognition).

	oem: int.
tesseract-ocr offers different OCR Engine Modes (OEM), by default
tesseract::OEM_DEFAULT is used. See the tesseract-ocr API documentation for other possible
values.

	psmode: int.
tesseract-ocr offers different Page Segmentation Modes (PSM) tesseract::PSM_AUTO
(fully automatic layout analysis) is used. See the tesseract-ocr API documentation for other
possible values.

Return
	retval: OCRTesseract

Note: The char_whitelist default is changed after OpenCV 4.7.0/3.19.0 from "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" to "".
Python prototype (for reference only):
create([, datapath[, language[, char_whitelist[, oem[, psmode]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 datapath: term(),
 oem: term(),
 psmode: term(),
 char_whitelist: term(),
 language: term()
]
 | nil
) :: t() | {:error, String.t()}

Creates an instance of the OCRTesseract class. Initializes Tesseract.
Keyword Arguments
	datapath: c_string.
the name of the parent directory of tessdata ended with "/", or NULL to use the
system's default directory.

	language: c_string.
an ISO 639-3 code or NULL will default to "eng".

	char_whitelist: c_string.
specifies the list of characters used for recognition. NULL defaults to ""
(All characters will be used for recognition).

	oem: int.
tesseract-ocr offers different OCR Engine Modes (OEM), by default
tesseract::OEM_DEFAULT is used. See the tesseract-ocr API documentation for other possible
values.

	psmode: int.
tesseract-ocr offers different Page Segmentation Modes (PSM) tesseract::PSM_AUTO
(fully automatic layout analysis) is used. See the tesseract-ocr API documentation for other
possible values.

Return
	retval: OCRTesseract

Note: The char_whitelist default is changed after OpenCV 4.7.0/3.19.0 from "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" to "".
Python prototype (for reference only):
create([, datapath[, language[, char_whitelist[, oem[, psmode]]]]]) -> retval

 Link to this function

 run(self, image, min_confidence)

 View Source

 @spec run(t(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Recognize text using the tesseract-ocr API.
Positional Arguments
	self: Evision.Text.OCRTesseract.t()

	image: Evision.Mat.t().
Input image CV_8UC1 or CV_8UC3

	min_confidence: int

Keyword Arguments
	component_level: int.
OCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXTLINE.

Return
	retval: String

Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) ::
 binary() | {:error, String.t()}

 @spec run(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), integer()) ::
 binary() | {:error, String.t()}

Variant 1:
run
Positional Arguments
	self: Evision.Text.OCRTesseract.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval
Variant 2:
Recognize text using the tesseract-ocr API.
Positional Arguments
	self: Evision.Text.OCRTesseract.t()

	image: Evision.Mat.t().
Input image CV_8UC1 or CV_8UC3

	min_confidence: int

Keyword Arguments
	component_level: int.
OCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXTLINE.

Return
	retval: String

Takes image on input and returns recognized text in the output_text parameter. Optionally
provides also the Rects for individual text elements found (e.g. words), and the list of those
text elements with their confidence values.
Python prototype (for reference only):
run(image, min_confidence[, component_level]) -> retval

 Link to this function

 run(self, image, mask, min_confidence, opts)

 View Source

 @spec run(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{:component_level, term()}] | nil
) :: binary() | {:error, String.t()}

run
Positional Arguments
	self: Evision.Text.OCRTesseract.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()
	min_confidence: int

Keyword Arguments
	component_level: int.

Return
	retval: String

Python prototype (for reference only):
run(image, mask, min_confidence[, component_level]) -> retval

 Link to this function

 setWhiteList(self, char_whitelist)

 View Source

 @spec setWhiteList(t(), binary()) :: t() | {:error, String.t()}

setWhiteList
Positional Arguments
	self: Evision.Text.OCRTesseract.t()
	char_whitelist: String

Python prototype (for reference only):
setWhiteList(char_whitelist) -> None

 Evision.Text.TextDetector - Evision v0.1.39

Evision.Text.TextDetector

 Summary

 Types

 t()

 Type that represents an Text.TextDetector struct.

 Functions

 detect(self, inputImage)

 Method that provides a quick and simple interface to detect text inside an image

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.TextDetector{ref: reference()}

Type that represents an Text.TextDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detect(self, inputImage)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

Method that provides a quick and simple interface to detect text inside an image
Positional Arguments
	self: Evision.Text.TextDetector.t()

	inputImage: Evision.Mat.t().
an image to process

Return
	bbox: [Rect].
a vector of Rect that will store the detected word bounding box

	confidence: [float].
a vector of float that will be updated with the confidence the classifier has for the selected bounding box

Python prototype (for reference only):
detect(inputImage) -> Bbox, confidence

 Evision.Text.TextDetectorCNN - Evision v0.1.39

Evision.Text.TextDetectorCNN

 Summary

 Types

 t()

 Type that represents an Text.TextDetectorCNN struct.

 Functions

 create(modelArchFilename, modelWeightsFilename)

 create

 detect(self, inputImage)

 detect

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Text.TextDetectorCNN{ref: reference()}

Type that represents an Text.TextDetectorCNN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create(modelArchFilename, modelWeightsFilename)

 View Source

 @spec create(binary(), binary()) :: t() | {:error, String.t()}

create
Positional Arguments
	modelArchFilename: String
	modelWeightsFilename: String

Return
	retval: TextDetectorCNN

Has overloading in C++
Python prototype (for reference only):
create(modelArchFilename, modelWeightsFilename) -> retval

 Link to this function

 detect(self, inputImage)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], [number()]}
 | {:error, String.t()}

detect
Positional Arguments
	self: Evision.Text.TextDetectorCNN.t()

	inputImage: Evision.Mat.t().
an image expected to be a CV_U8C3 of any size

Return
	bbox: [Rect].
a vector of Rect that will store the detected word bounding box

	confidence: [float].
a vector of float that will be updated with the confidence the classifier has for the selected bounding box

Has overloading in C++
Python prototype (for reference only):
detect(inputImage) -> Bbox, confidence

 Evision.ThinPlateSplineShapeTransformer - Evision v0.1.39

Evision.ThinPlateSplineShapeTransformer

 Summary

 Types

 t()

 Type that represents an ThinPlateSplineShapeTransformer struct.

 Functions

 getRegularizationParameter(self)

 getRegularizationParameter

 setRegularizationParameter(self, beta)

 Set the regularization parameter for relaxing the exact interpolation requirements of the TPS
algorithm.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.ThinPlateSplineShapeTransformer{ref: reference()}

Type that represents an ThinPlateSplineShapeTransformer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getRegularizationParameter(self)

 View Source

 @spec getRegularizationParameter(t()) :: number() | {:error, String.t()}

getRegularizationParameter
Positional Arguments
	self: Evision.ThinPlateSplineShapeTransformer.t()

Return
	retval: double

Python prototype (for reference only):
getRegularizationParameter() -> retval

 Link to this function

 setRegularizationParameter(self, beta)

 View Source

 @spec setRegularizationParameter(t(), number()) :: t() | {:error, String.t()}

Set the regularization parameter for relaxing the exact interpolation requirements of the TPS
algorithm.
Positional Arguments
	self: Evision.ThinPlateSplineShapeTransformer.t()

	beta: double.
value of the regularization parameter.

Python prototype (for reference only):
setRegularizationParameter(beta) -> None

 Evision.TickMeter - Evision v0.1.39

Evision.TickMeter

 Summary

 Types

 t()

 Type that represents an TickMeter struct.

 Functions

 getAvgTimeMilli(self)

 getAvgTimeMilli

 getAvgTimeSec(self)

 getAvgTimeSec

 getCounter(self)

 getCounter

 getFPS(self)

 getFPS

 getTimeMicro(self)

 getTimeMicro

 getTimeMilli(self)

 getTimeMilli

 getTimeSec(self)

 getTimeSec

 getTimeTicks(self)

 getTimeTicks

 reset(self)

 reset

 start(self)

 start

 stop(self)

 stop

 tickMeter()

 TickMeter

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TickMeter{ref: reference()}

Type that represents an TickMeter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getAvgTimeMilli(self)

 View Source

 @spec getAvgTimeMilli(t()) :: number() | {:error, String.t()}

getAvgTimeMilli
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getAvgTimeMilli() -> retval

 Link to this function

 getAvgTimeSec(self)

 View Source

 @spec getAvgTimeSec(t()) :: number() | {:error, String.t()}

getAvgTimeSec
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getAvgTimeSec() -> retval

 Link to this function

 getCounter(self)

 View Source

 @spec getCounter(t()) :: integer() | {:error, String.t()}

getCounter
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: int64

Python prototype (for reference only):
getCounter() -> retval

 Link to this function

 getFPS(self)

 View Source

 @spec getFPS(t()) :: number() | {:error, String.t()}

getFPS
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getFPS() -> retval

 Link to this function

 getTimeMicro(self)

 View Source

 @spec getTimeMicro(t()) :: number() | {:error, String.t()}

getTimeMicro
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getTimeMicro() -> retval

 Link to this function

 getTimeMilli(self)

 View Source

 @spec getTimeMilli(t()) :: number() | {:error, String.t()}

getTimeMilli
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getTimeMilli() -> retval

 Link to this function

 getTimeSec(self)

 View Source

 @spec getTimeSec(t()) :: number() | {:error, String.t()}

getTimeSec
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: double

Python prototype (for reference only):
getTimeSec() -> retval

 Link to this function

 getTimeTicks(self)

 View Source

 @spec getTimeTicks(t()) :: integer() | {:error, String.t()}

getTimeTicks
Positional Arguments
	self: Evision.TickMeter.t()

Return
	retval: int64

Python prototype (for reference only):
getTimeTicks() -> retval

 Link to this function

 reset(self)

 View Source

 @spec reset(t()) :: t() | {:error, String.t()}

reset
Positional Arguments
	self: Evision.TickMeter.t()

Python prototype (for reference only):
reset() -> None

 Link to this function

 start(self)

 View Source

 @spec start(t()) :: t() | {:error, String.t()}

start
Positional Arguments
	self: Evision.TickMeter.t()

Python prototype (for reference only):
start() -> None

 Link to this function

 stop(self)

 View Source

 @spec stop(t()) :: t() | {:error, String.t()}

stop
Positional Arguments
	self: Evision.TickMeter.t()

Python prototype (for reference only):
stop() -> None

 Link to this function

 tickMeter()

 View Source

 @spec tickMeter() :: t() | {:error, String.t()}

TickMeter
Return
	self: Evision.TickMeter.t()

Python prototype (for reference only):
TickMeter() -> <TickMeter object>

 Evision.Tonemap - Evision v0.1.39

Evision.Tonemap

 Summary

 Types

 t()

 Type that represents an Tonemap struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getGamma(self)

 getGamma

 process(self, src)

 Tonemaps image

 process(self, src, opts)

 Tonemaps image

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setGamma(self, gamma)

 setGamma

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Tonemap{ref: reference()}

Type that represents an Tonemap struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.Tonemap.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.Tonemap.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.Tonemap.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getGamma(self)

 View Source

 @spec getGamma(t()) :: number() | {:error, String.t()}

getGamma
Positional Arguments
	self: Evision.Tonemap.t()

Return
	retval: float

Python prototype (for reference only):
getGamma() -> retval

 Link to this function

 process(self, src)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Tonemaps image
Positional Arguments
	self: Evision.Tonemap.t()

	src: Evision.Mat.t().
source image - CV_32FC3 Mat (float 32 bits 3 channels)

Return
	dst: Evision.Mat.t().
destination image - CV_32FC3 Mat with values in [0, 1] range

Python prototype (for reference only):
process(src[, dst]) -> dst

 Link to this function

 process(self, src, opts)

 View Source

 @spec process(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Tonemaps image
Positional Arguments
	self: Evision.Tonemap.t()

	src: Evision.Mat.t().
source image - CV_32FC3 Mat (float 32 bits 3 channels)

Return
	dst: Evision.Mat.t().
destination image - CV_32FC3 Mat with values in [0, 1] range

Python prototype (for reference only):
process(src[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.Tonemap.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.Tonemap.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setGamma(self, gamma)

 View Source

 @spec setGamma(t(), number()) :: t() | {:error, String.t()}

setGamma
Positional Arguments
	self: Evision.Tonemap.t()
	gamma: float

Python prototype (for reference only):
setGamma(gamma) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.Tonemap.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.Tonemap.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.TonemapDrago - Evision v0.1.39

Evision.TonemapDrago

 Summary

 Types

 t()

 Type that represents an TonemapDrago struct.

 Functions

 getBias(self)

 getBias

 getSaturation(self)

 getSaturation

 setBias(self, bias)

 setBias

 setSaturation(self, saturation)

 setSaturation

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TonemapDrago{ref: reference()}

Type that represents an TonemapDrago struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getBias(self)

 View Source

 @spec getBias(t()) :: number() | {:error, String.t()}

getBias
Positional Arguments
	self: Evision.TonemapDrago.t()

Return
	retval: float

Python prototype (for reference only):
getBias() -> retval

 Link to this function

 getSaturation(self)

 View Source

 @spec getSaturation(t()) :: number() | {:error, String.t()}

getSaturation
Positional Arguments
	self: Evision.TonemapDrago.t()

Return
	retval: float

Python prototype (for reference only):
getSaturation() -> retval

 Link to this function

 setBias(self, bias)

 View Source

 @spec setBias(t(), number()) :: t() | {:error, String.t()}

setBias
Positional Arguments
	self: Evision.TonemapDrago.t()
	bias: float

Python prototype (for reference only):
setBias(bias) -> None

 Link to this function

 setSaturation(self, saturation)

 View Source

 @spec setSaturation(t(), number()) :: t() | {:error, String.t()}

setSaturation
Positional Arguments
	self: Evision.TonemapDrago.t()
	saturation: float

Python prototype (for reference only):
setSaturation(saturation) -> None

 Evision.TonemapMantiuk - Evision v0.1.39

Evision.TonemapMantiuk

 Summary

 Types

 t()

 Type that represents an TonemapMantiuk struct.

 Functions

 getSaturation(self)

 getSaturation

 getScale(self)

 getScale

 setSaturation(self, saturation)

 setSaturation

 setScale(self, scale)

 setScale

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TonemapMantiuk{ref: reference()}

Type that represents an TonemapMantiuk struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getSaturation(self)

 View Source

 @spec getSaturation(t()) :: number() | {:error, String.t()}

getSaturation
Positional Arguments
	self: Evision.TonemapMantiuk.t()

Return
	retval: float

Python prototype (for reference only):
getSaturation() -> retval

 Link to this function

 getScale(self)

 View Source

 @spec getScale(t()) :: number() | {:error, String.t()}

getScale
Positional Arguments
	self: Evision.TonemapMantiuk.t()

Return
	retval: float

Python prototype (for reference only):
getScale() -> retval

 Link to this function

 setSaturation(self, saturation)

 View Source

 @spec setSaturation(t(), number()) :: t() | {:error, String.t()}

setSaturation
Positional Arguments
	self: Evision.TonemapMantiuk.t()
	saturation: float

Python prototype (for reference only):
setSaturation(saturation) -> None

 Link to this function

 setScale(self, scale)

 View Source

 @spec setScale(t(), number()) :: t() | {:error, String.t()}

setScale
Positional Arguments
	self: Evision.TonemapMantiuk.t()
	scale: float

Python prototype (for reference only):
setScale(scale) -> None

 Evision.TonemapReinhard - Evision v0.1.39

Evision.TonemapReinhard

 Summary

 Types

 t()

 Type that represents an TonemapReinhard struct.

 Functions

 getColorAdaptation(self)

 getColorAdaptation

 getIntensity(self)

 getIntensity

 getLightAdaptation(self)

 getLightAdaptation

 setColorAdaptation(self, color_adapt)

 setColorAdaptation

 setIntensity(self, intensity)

 setIntensity

 setLightAdaptation(self, light_adapt)

 setLightAdaptation

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TonemapReinhard{ref: reference()}

Type that represents an TonemapReinhard struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getColorAdaptation(self)

 View Source

 @spec getColorAdaptation(t()) :: number() | {:error, String.t()}

getColorAdaptation
Positional Arguments
	self: Evision.TonemapReinhard.t()

Return
	retval: float

Python prototype (for reference only):
getColorAdaptation() -> retval

 Link to this function

 getIntensity(self)

 View Source

 @spec getIntensity(t()) :: number() | {:error, String.t()}

getIntensity
Positional Arguments
	self: Evision.TonemapReinhard.t()

Return
	retval: float

Python prototype (for reference only):
getIntensity() -> retval

 Link to this function

 getLightAdaptation(self)

 View Source

 @spec getLightAdaptation(t()) :: number() | {:error, String.t()}

getLightAdaptation
Positional Arguments
	self: Evision.TonemapReinhard.t()

Return
	retval: float

Python prototype (for reference only):
getLightAdaptation() -> retval

 Link to this function

 setColorAdaptation(self, color_adapt)

 View Source

 @spec setColorAdaptation(t(), number()) :: t() | {:error, String.t()}

setColorAdaptation
Positional Arguments
	self: Evision.TonemapReinhard.t()
	color_adapt: float

Python prototype (for reference only):
setColorAdaptation(color_adapt) -> None

 Link to this function

 setIntensity(self, intensity)

 View Source

 @spec setIntensity(t(), number()) :: t() | {:error, String.t()}

setIntensity
Positional Arguments
	self: Evision.TonemapReinhard.t()
	intensity: float

Python prototype (for reference only):
setIntensity(intensity) -> None

 Link to this function

 setLightAdaptation(self, light_adapt)

 View Source

 @spec setLightAdaptation(t(), number()) :: t() | {:error, String.t()}

setLightAdaptation
Positional Arguments
	self: Evision.TonemapReinhard.t()
	light_adapt: float

Python prototype (for reference only):
setLightAdaptation(light_adapt) -> None

 Evision.Tracker - Evision v0.1.39

Evision.Tracker

 Summary

 Types

 t()

 Type that represents an Tracker struct.

 Functions

 init(self, image, boundingBox)

 Initialize the tracker with a known bounding box that surrounded the target

 update(self, image)

 Update the tracker, find the new most likely bounding box for the target

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Tracker{ref: reference()}

Type that represents an Tracker struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 init(self, image, boundingBox)

 View Source

 @spec init(t(), Evision.Mat.maybe_mat_in(), {number(), number(), number(), number()}) ::
 t() | {:error, String.t()}

Initialize the tracker with a known bounding box that surrounded the target
Positional Arguments
	self: Evision.Tracker.t()

	image: Evision.Mat.t().
The initial frame

	boundingBox: Rect.
The initial bounding box

Python prototype (for reference only):
init(image, boundingBox) -> None

 Link to this function

 update(self, image)

 View Source

 @spec update(t(), Evision.Mat.maybe_mat_in()) ::
 {number(), number(), number(), number()} | false | {:error, String.t()}

Update the tracker, find the new most likely bounding box for the target
Positional Arguments
	self: Evision.Tracker.t()

	image: Evision.Mat.t().
The current frame

Return
	retval: bool

	boundingBox: Rect.
The bounding box that represent the new target location, if true was returned, not
modified otherwise

@return True means that target was located and false means that tracker cannot locate target in
current frame. Note, that latter does not imply that tracker has failed, maybe target is indeed
missing from the frame (say, out of sight)
Python prototype (for reference only):
update(image) -> retval, boundingBox

 Evision.TrackerCSRT - Evision v0.1.39

Evision.TrackerCSRT

 Summary

 Types

 t()

 Type that represents an TrackerCSRT struct.

 Functions

 create()

 Create CSRT tracker instance

 create(opts)

 Create CSRT tracker instance

 setInitialMask(self, mask)

 setInitialMask

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerCSRT{ref: reference()}

Type that represents an TrackerCSRT struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Create CSRT tracker instance
Keyword Arguments
	parameters: Evision.TrackerCSRT.Params.t().
CSRT parameters TrackerCSRT::Params

Return
	retval: Evision.TrackerCSRT.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Create CSRT tracker instance
Keyword Arguments
	parameters: Evision.TrackerCSRT.Params.t().
CSRT parameters TrackerCSRT::Params

Return
	retval: Evision.TrackerCSRT.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 setInitialMask(self, mask)

 View Source

 @spec setInitialMask(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setInitialMask
Positional Arguments
	self: Evision.TrackerCSRT.t()
	mask: Evision.Mat.t()

Python prototype (for reference only):
setInitialMask(mask) -> None

 Evision.TrackerCSRT.Params - Evision v0.1.39

Evision.TrackerCSRT.Params

 Summary

 Types

 t()

 Type that represents an TrackerCSRT.Params struct.

 Functions

 get_admm_iterations(self)

 get_background_ratio(self)

 get_cheb_attenuation(self)

 get_filter_lr(self)

 get_gsl_sigma(self)

 get_histogram_bins(self)

 get_histogram_lr(self)

 get_hog_clip(self)

 get_hog_orientations(self)

 get_kaiser_alpha(self)

 get_num_hog_channels_used(self)

 get_number_of_scales(self)

 get_padding(self)

 get_psr_threshold(self)

 get_scale_lr(self)

 get_scale_model_max_area(self)

 get_scale_sigma_factor(self)

 get_scale_step(self)

 get_template_size(self)

 get_use_channel_weights(self)

 get_use_color_names(self)

 get_use_gray(self)

 get_use_hog(self)

 get_use_rgb(self)

 get_use_segmentation(self)

 get_weights_lr(self)

 get_window_function(self)

 params()

 TrackerCSRT_Params

 set_admm_iterations(self, prop)

 set_background_ratio(self, prop)

 set_cheb_attenuation(self, prop)

 set_filter_lr(self, prop)

 set_gsl_sigma(self, prop)

 set_histogram_bins(self, prop)

 set_histogram_lr(self, prop)

 set_hog_clip(self, prop)

 set_hog_orientations(self, prop)

 set_kaiser_alpha(self, prop)

 set_num_hog_channels_used(self, prop)

 set_number_of_scales(self, prop)

 set_padding(self, prop)

 set_psr_threshold(self, prop)

 set_scale_lr(self, prop)

 set_scale_model_max_area(self, prop)

 set_scale_sigma_factor(self, prop)

 set_scale_step(self, prop)

 set_template_size(self, prop)

 set_use_channel_weights(self, prop)

 set_use_color_names(self, prop)

 set_use_gray(self, prop)

 set_use_hog(self, prop)

 set_use_rgb(self, prop)

 set_use_segmentation(self, prop)

 set_weights_lr(self, prop)

 set_window_function(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerCSRT.Params{ref: reference()}

Type that represents an TrackerCSRT.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_admm_iterations(self)

 View Source

 @spec get_admm_iterations(t()) :: integer()

 Link to this function

 get_background_ratio(self)

 View Source

 @spec get_background_ratio(t()) :: integer()

 Link to this function

 get_cheb_attenuation(self)

 View Source

 @spec get_cheb_attenuation(t()) :: number()

 Link to this function

 get_filter_lr(self)

 View Source

 @spec get_filter_lr(t()) :: number()

 Link to this function

 get_gsl_sigma(self)

 View Source

 @spec get_gsl_sigma(t()) :: number()

 Link to this function

 get_histogram_bins(self)

 View Source

 @spec get_histogram_bins(t()) :: integer()

 Link to this function

 get_histogram_lr(self)

 View Source

 @spec get_histogram_lr(t()) :: number()

 Link to this function

 get_hog_clip(self)

 View Source

 @spec get_hog_clip(t()) :: number()

 Link to this function

 get_hog_orientations(self)

 View Source

 @spec get_hog_orientations(t()) :: number()

 Link to this function

 get_kaiser_alpha(self)

 View Source

 @spec get_kaiser_alpha(t()) :: number()

 Link to this function

 get_num_hog_channels_used(self)

 View Source

 @spec get_num_hog_channels_used(t()) :: integer()

 Link to this function

 get_number_of_scales(self)

 View Source

 @spec get_number_of_scales(t()) :: integer()

 Link to this function

 get_padding(self)

 View Source

 @spec get_padding(t()) :: number()

 Link to this function

 get_psr_threshold(self)

 View Source

 @spec get_psr_threshold(t()) :: number()

 Link to this function

 get_scale_lr(self)

 View Source

 @spec get_scale_lr(t()) :: number()

 Link to this function

 get_scale_model_max_area(self)

 View Source

 @spec get_scale_model_max_area(t()) :: number()

 Link to this function

 get_scale_sigma_factor(self)

 View Source

 @spec get_scale_sigma_factor(t()) :: number()

 Link to this function

 get_scale_step(self)

 View Source

 @spec get_scale_step(t()) :: number()

 Link to this function

 get_template_size(self)

 View Source

 @spec get_template_size(t()) :: number()

 Link to this function

 get_use_channel_weights(self)

 View Source

 @spec get_use_channel_weights(t()) :: boolean()

 Link to this function

 get_use_color_names(self)

 View Source

 @spec get_use_color_names(t()) :: boolean()

 Link to this function

 get_use_gray(self)

 View Source

 @spec get_use_gray(t()) :: boolean()

 Link to this function

 get_use_hog(self)

 View Source

 @spec get_use_hog(t()) :: boolean()

 Link to this function

 get_use_rgb(self)

 View Source

 @spec get_use_rgb(t()) :: boolean()

 Link to this function

 get_use_segmentation(self)

 View Source

 @spec get_use_segmentation(t()) :: boolean()

 Link to this function

 get_weights_lr(self)

 View Source

 @spec get_weights_lr(t()) :: number()

 Link to this function

 get_window_function(self)

 View Source

 @spec get_window_function(t()) :: binary()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerCSRT_Params
Return
	self: Evision.TrackerCSRT.Params.t()

Python prototype (for reference only):
TrackerCSRT_Params() -> <TrackerCSRT_Params object>

 Link to this function

 set_admm_iterations(self, prop)

 View Source

 @spec set_admm_iterations(t(), integer()) :: t()

 Link to this function

 set_background_ratio(self, prop)

 View Source

 @spec set_background_ratio(t(), integer()) :: t()

 Link to this function

 set_cheb_attenuation(self, prop)

 View Source

 @spec set_cheb_attenuation(t(), number()) :: t()

 Link to this function

 set_filter_lr(self, prop)

 View Source

 @spec set_filter_lr(t(), number()) :: t()

 Link to this function

 set_gsl_sigma(self, prop)

 View Source

 @spec set_gsl_sigma(t(), number()) :: t()

 Link to this function

 set_histogram_bins(self, prop)

 View Source

 @spec set_histogram_bins(t(), integer()) :: t()

 Link to this function

 set_histogram_lr(self, prop)

 View Source

 @spec set_histogram_lr(t(), number()) :: t()

 Link to this function

 set_hog_clip(self, prop)

 View Source

 @spec set_hog_clip(t(), number()) :: t()

 Link to this function

 set_hog_orientations(self, prop)

 View Source

 @spec set_hog_orientations(t(), number()) :: t()

 Link to this function

 set_kaiser_alpha(self, prop)

 View Source

 @spec set_kaiser_alpha(t(), number()) :: t()

 Link to this function

 set_num_hog_channels_used(self, prop)

 View Source

 @spec set_num_hog_channels_used(t(), integer()) :: t()

 Link to this function

 set_number_of_scales(self, prop)

 View Source

 @spec set_number_of_scales(t(), integer()) :: t()

 Link to this function

 set_padding(self, prop)

 View Source

 @spec set_padding(t(), number()) :: t()

 Link to this function

 set_psr_threshold(self, prop)

 View Source

 @spec set_psr_threshold(t(), number()) :: t()

 Link to this function

 set_scale_lr(self, prop)

 View Source

 @spec set_scale_lr(t(), number()) :: t()

 Link to this function

 set_scale_model_max_area(self, prop)

 View Source

 @spec set_scale_model_max_area(t(), number()) :: t()

 Link to this function

 set_scale_sigma_factor(self, prop)

 View Source

 @spec set_scale_sigma_factor(t(), number()) :: t()

 Link to this function

 set_scale_step(self, prop)

 View Source

 @spec set_scale_step(t(), number()) :: t()

 Link to this function

 set_template_size(self, prop)

 View Source

 @spec set_template_size(t(), number()) :: t()

 Link to this function

 set_use_channel_weights(self, prop)

 View Source

 @spec set_use_channel_weights(t(), boolean()) :: t()

 Link to this function

 set_use_color_names(self, prop)

 View Source

 @spec set_use_color_names(t(), boolean()) :: t()

 Link to this function

 set_use_gray(self, prop)

 View Source

 @spec set_use_gray(t(), boolean()) :: t()

 Link to this function

 set_use_hog(self, prop)

 View Source

 @spec set_use_hog(t(), boolean()) :: t()

 Link to this function

 set_use_rgb(self, prop)

 View Source

 @spec set_use_rgb(t(), boolean()) :: t()

 Link to this function

 set_use_segmentation(self, prop)

 View Source

 @spec set_use_segmentation(t(), boolean()) :: t()

 Link to this function

 set_weights_lr(self, prop)

 View Source

 @spec set_weights_lr(t(), number()) :: t()

 Link to this function

 set_window_function(self, prop)

 View Source

 @spec set_window_function(t(), binary()) :: t()

 Evision.TrackerDaSiamRPN - Evision v0.1.39

Evision.TrackerDaSiamRPN

 Summary

 Types

 t()

 Type that represents an TrackerDaSiamRPN struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

 getTrackingScore(self)

 Return tracking score

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerDaSiamRPN{ref: reference()}

Type that represents an TrackerDaSiamRPN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerDaSiamRPN.Params.t().
DaSiamRPN parameters TrackerDaSiamRPN::Params

Return
	retval: Evision.TrackerDaSiamRPN.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerDaSiamRPN.Params.t().
DaSiamRPN parameters TrackerDaSiamRPN::Params

Return
	retval: Evision.TrackerDaSiamRPN.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 getTrackingScore(self)

 View Source

 @spec getTrackingScore(t()) :: number() | {:error, String.t()}

Return tracking score
Positional Arguments
	self: Evision.TrackerDaSiamRPN.t()

Return
	retval: float

Python prototype (for reference only):
getTrackingScore() -> retval

 Evision.TrackerDaSiamRPN.Params - Evision v0.1.39

Evision.TrackerDaSiamRPN.Params

 Summary

 Types

 t()

 Type that represents an TrackerDaSiamRPN.Params struct.

 Functions

 get_backend(self)

 get_kernel_cls1(self)

 get_kernel_r1(self)

 get_model(self)

 get_target(self)

 params()

 TrackerDaSiamRPN_Params

 set_backend(self, prop)

 set_kernel_cls1(self, prop)

 set_kernel_r1(self, prop)

 set_model(self, prop)

 set_target(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerDaSiamRPN.Params{ref: reference()}

Type that represents an TrackerDaSiamRPN.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_backend(self)

 View Source

 @spec get_backend(t()) :: integer()

 Link to this function

 get_kernel_cls1(self)

 View Source

 @spec get_kernel_cls1(t()) :: binary()

 Link to this function

 get_kernel_r1(self)

 View Source

 @spec get_kernel_r1(t()) :: binary()

 Link to this function

 get_model(self)

 View Source

 @spec get_model(t()) :: binary()

 Link to this function

 get_target(self)

 View Source

 @spec get_target(t()) :: integer()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerDaSiamRPN_Params
Return
	self: Evision.TrackerDaSiamRPN.Params.t()

Python prototype (for reference only):
TrackerDaSiamRPN_Params() -> <TrackerDaSiamRPN_Params object>

 Link to this function

 set_backend(self, prop)

 View Source

 @spec set_backend(t(), integer()) :: t()

 Link to this function

 set_kernel_cls1(self, prop)

 View Source

 @spec set_kernel_cls1(t(), binary()) :: t()

 Link to this function

 set_kernel_r1(self, prop)

 View Source

 @spec set_kernel_r1(t(), binary()) :: t()

 Link to this function

 set_model(self, prop)

 View Source

 @spec set_model(t(), binary()) :: t()

 Link to this function

 set_target(self, prop)

 View Source

 @spec set_target(t(), integer()) :: t()

 Evision.TrackerGOTURN - Evision v0.1.39

Evision.TrackerGOTURN

 Summary

 Types

 t()

 Type that represents an TrackerGOTURN struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerGOTURN{ref: reference()}

Type that represents an TrackerGOTURN struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerGOTURN.Params.t().
GOTURN parameters TrackerGOTURN::Params

Return
	retval: Evision.TrackerGOTURN.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerGOTURN.Params.t().
GOTURN parameters TrackerGOTURN::Params

Return
	retval: Evision.TrackerGOTURN.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Evision.TrackerGOTURN.Params - Evision v0.1.39

Evision.TrackerGOTURN.Params

 Summary

 Types

 t()

 Type that represents an TrackerGOTURN.Params struct.

 Functions

 get_modelBin(self)

 get_modelTxt(self)

 params()

 TrackerGOTURN_Params

 set_modelBin(self, prop)

 set_modelTxt(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerGOTURN.Params{ref: reference()}

Type that represents an TrackerGOTURN.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_modelBin(self)

 View Source

 @spec get_modelBin(t()) :: binary()

 Link to this function

 get_modelTxt(self)

 View Source

 @spec get_modelTxt(t()) :: binary()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerGOTURN_Params
Return
	self: Evision.TrackerGOTURN.Params.t()

Python prototype (for reference only):
TrackerGOTURN_Params() -> <TrackerGOTURN_Params object>

 Link to this function

 set_modelBin(self, prop)

 View Source

 @spec set_modelBin(t(), binary()) :: t()

 Link to this function

 set_modelTxt(self, prop)

 View Source

 @spec set_modelTxt(t(), binary()) :: t()

 Evision.TrackerKCF - Evision v0.1.39

Evision.TrackerKCF

 Summary

 Types

 t()

 Type that represents an TrackerKCF struct.

 Functions

 create()

 Create KCF tracker instance

 create(opts)

 Create KCF tracker instance

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerKCF{ref: reference()}

Type that represents an TrackerKCF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Create KCF tracker instance
Keyword Arguments
	parameters: Evision.TrackerKCF.Params.t().
KCF parameters TrackerKCF::Params

Return
	retval: Evision.TrackerKCF.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Create KCF tracker instance
Keyword Arguments
	parameters: Evision.TrackerKCF.Params.t().
KCF parameters TrackerKCF::Params

Return
	retval: Evision.TrackerKCF.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Evision.TrackerKCF.Params - Evision v0.1.39

Evision.TrackerKCF.Params

 Summary

 Types

 t()

 Type that represents an TrackerKCF.Params struct.

 Functions

 get_compress_feature(self)

 get_compressed_size(self)

 get_desc_npca(self)

 get_desc_pca(self)

 get_detect_thresh(self)

 get_interp_factor(self)

 get_lambda(self)

 get_max_patch_size(self)

 get_output_sigma_factor(self)

 get_pca_learning_rate(self)

 get_resize(self)

 get_sigma(self)

 get_split_coeff(self)

 get_wrap_kernel(self)

 params()

 TrackerKCF_Params

 set_compress_feature(self, prop)

 set_compressed_size(self, prop)

 set_desc_npca(self, prop)

 set_desc_pca(self, prop)

 set_detect_thresh(self, prop)

 set_interp_factor(self, prop)

 set_lambda(self, prop)

 set_max_patch_size(self, prop)

 set_output_sigma_factor(self, prop)

 set_pca_learning_rate(self, prop)

 set_resize(self, prop)

 set_sigma(self, prop)

 set_split_coeff(self, prop)

 set_wrap_kernel(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerKCF.Params{ref: reference()}

Type that represents an TrackerKCF.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_compress_feature(self)

 View Source

 @spec get_compress_feature(t()) :: boolean()

 Link to this function

 get_compressed_size(self)

 View Source

 @spec get_compressed_size(t()) :: integer()

 Link to this function

 get_desc_npca(self)

 View Source

 @spec get_desc_npca(t()) :: integer()

 Link to this function

 get_desc_pca(self)

 View Source

 @spec get_desc_pca(t()) :: integer()

 Link to this function

 get_detect_thresh(self)

 View Source

 @spec get_detect_thresh(t()) :: number()

 Link to this function

 get_interp_factor(self)

 View Source

 @spec get_interp_factor(t()) :: number()

 Link to this function

 get_lambda(self)

 View Source

 @spec get_lambda(t()) :: number()

 Link to this function

 get_max_patch_size(self)

 View Source

 @spec get_max_patch_size(t()) :: integer()

 Link to this function

 get_output_sigma_factor(self)

 View Source

 @spec get_output_sigma_factor(t()) :: number()

 Link to this function

 get_pca_learning_rate(self)

 View Source

 @spec get_pca_learning_rate(t()) :: number()

 Link to this function

 get_resize(self)

 View Source

 @spec get_resize(t()) :: boolean()

 Link to this function

 get_sigma(self)

 View Source

 @spec get_sigma(t()) :: number()

 Link to this function

 get_split_coeff(self)

 View Source

 @spec get_split_coeff(t()) :: boolean()

 Link to this function

 get_wrap_kernel(self)

 View Source

 @spec get_wrap_kernel(t()) :: boolean()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerKCF_Params
Return
	self: Evision.TrackerKCF.Params.t()

Python prototype (for reference only):
TrackerKCF_Params() -> <TrackerKCF_Params object>

 Link to this function

 set_compress_feature(self, prop)

 View Source

 @spec set_compress_feature(t(), boolean()) :: t()

 Link to this function

 set_compressed_size(self, prop)

 View Source

 @spec set_compressed_size(t(), integer()) :: t()

 Link to this function

 set_desc_npca(self, prop)

 View Source

 @spec set_desc_npca(t(), integer()) :: t()

 Link to this function

 set_desc_pca(self, prop)

 View Source

 @spec set_desc_pca(t(), integer()) :: t()

 Link to this function

 set_detect_thresh(self, prop)

 View Source

 @spec set_detect_thresh(t(), number()) :: t()

 Link to this function

 set_interp_factor(self, prop)

 View Source

 @spec set_interp_factor(t(), number()) :: t()

 Link to this function

 set_lambda(self, prop)

 View Source

 @spec set_lambda(t(), number()) :: t()

 Link to this function

 set_max_patch_size(self, prop)

 View Source

 @spec set_max_patch_size(t(), integer()) :: t()

 Link to this function

 set_output_sigma_factor(self, prop)

 View Source

 @spec set_output_sigma_factor(t(), number()) :: t()

 Link to this function

 set_pca_learning_rate(self, prop)

 View Source

 @spec set_pca_learning_rate(t(), number()) :: t()

 Link to this function

 set_resize(self, prop)

 View Source

 @spec set_resize(t(), boolean()) :: t()

 Link to this function

 set_sigma(self, prop)

 View Source

 @spec set_sigma(t(), number()) :: t()

 Link to this function

 set_split_coeff(self, prop)

 View Source

 @spec set_split_coeff(t(), boolean()) :: t()

 Link to this function

 set_wrap_kernel(self, prop)

 View Source

 @spec set_wrap_kernel(t(), boolean()) :: t()

 Evision.TrackerMIL - Evision v0.1.39

Evision.TrackerMIL

 Summary

 Types

 t()

 Type that represents an TrackerMIL struct.

 Functions

 create()

 Create MIL tracker instance

 create(opts)

 Create MIL tracker instance

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerMIL{ref: reference()}

Type that represents an TrackerMIL struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Create MIL tracker instance
Keyword Arguments
	parameters: Evision.TrackerMIL.Params.t().
MIL parameters TrackerMIL::Params

Return
	retval: Evision.TrackerMIL.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Create MIL tracker instance
Keyword Arguments
	parameters: Evision.TrackerMIL.Params.t().
MIL parameters TrackerMIL::Params

Return
	retval: Evision.TrackerMIL.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Evision.TrackerMIL.Params - Evision v0.1.39

Evision.TrackerMIL.Params

 Summary

 Types

 t()

 Type that represents an TrackerMIL.Params struct.

 Functions

 get_featureSetNumFeatures(self)

 get_samplerInitInRadius(self)

 get_samplerInitMaxNegNum(self)

 get_samplerSearchWinSize(self)

 get_samplerTrackInRadius(self)

 get_samplerTrackMaxNegNum(self)

 get_samplerTrackMaxPosNum(self)

 params()

 TrackerMIL_Params

 set_featureSetNumFeatures(self, prop)

 set_samplerInitInRadius(self, prop)

 set_samplerInitMaxNegNum(self, prop)

 set_samplerSearchWinSize(self, prop)

 set_samplerTrackInRadius(self, prop)

 set_samplerTrackMaxNegNum(self, prop)

 set_samplerTrackMaxPosNum(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerMIL.Params{ref: reference()}

Type that represents an TrackerMIL.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_featureSetNumFeatures(self)

 View Source

 @spec get_featureSetNumFeatures(t()) :: integer()

 Link to this function

 get_samplerInitInRadius(self)

 View Source

 @spec get_samplerInitInRadius(t()) :: number()

 Link to this function

 get_samplerInitMaxNegNum(self)

 View Source

 @spec get_samplerInitMaxNegNum(t()) :: integer()

 Link to this function

 get_samplerSearchWinSize(self)

 View Source

 @spec get_samplerSearchWinSize(t()) :: number()

 Link to this function

 get_samplerTrackInRadius(self)

 View Source

 @spec get_samplerTrackInRadius(t()) :: number()

 Link to this function

 get_samplerTrackMaxNegNum(self)

 View Source

 @spec get_samplerTrackMaxNegNum(t()) :: integer()

 Link to this function

 get_samplerTrackMaxPosNum(self)

 View Source

 @spec get_samplerTrackMaxPosNum(t()) :: integer()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerMIL_Params
Return
	self: Evision.TrackerMIL.Params.t()

Python prototype (for reference only):
TrackerMIL_Params() -> <TrackerMIL_Params object>

 Link to this function

 set_featureSetNumFeatures(self, prop)

 View Source

 @spec set_featureSetNumFeatures(t(), integer()) :: t()

 Link to this function

 set_samplerInitInRadius(self, prop)

 View Source

 @spec set_samplerInitInRadius(t(), number()) :: t()

 Link to this function

 set_samplerInitMaxNegNum(self, prop)

 View Source

 @spec set_samplerInitMaxNegNum(t(), integer()) :: t()

 Link to this function

 set_samplerSearchWinSize(self, prop)

 View Source

 @spec set_samplerSearchWinSize(t(), number()) :: t()

 Link to this function

 set_samplerTrackInRadius(self, prop)

 View Source

 @spec set_samplerTrackInRadius(t(), number()) :: t()

 Link to this function

 set_samplerTrackMaxNegNum(self, prop)

 View Source

 @spec set_samplerTrackMaxNegNum(t(), integer()) :: t()

 Link to this function

 set_samplerTrackMaxPosNum(self, prop)

 View Source

 @spec set_samplerTrackMaxPosNum(t(), integer()) :: t()

 Evision.TrackerNano - Evision v0.1.39

Evision.TrackerNano

 Summary

 Types

 t()

 Type that represents an TrackerNano struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

 getTrackingScore(self)

 Return tracking score

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerNano{ref: reference()}

Type that represents an TrackerNano struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerNano.Params.t().
NanoTrack parameters TrackerNano::Params

Return
	retval: Evision.TrackerNano.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) :: t() | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerNano.Params.t().
NanoTrack parameters TrackerNano::Params

Return
	retval: Evision.TrackerNano.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 getTrackingScore(self)

 View Source

 @spec getTrackingScore(t()) :: number() | {:error, String.t()}

Return tracking score
Positional Arguments
	self: Evision.TrackerNano.t()

Return
	retval: float

Python prototype (for reference only):
getTrackingScore() -> retval

 Evision.TrackerNano.Params - Evision v0.1.39

Evision.TrackerNano.Params

 Summary

 Types

 t()

 Type that represents an TrackerNano.Params struct.

 Functions

 get_backbone(self)

 get_backend(self)

 get_neckhead(self)

 get_target(self)

 params()

 TrackerNano_Params

 set_backbone(self, prop)

 set_backend(self, prop)

 set_neckhead(self, prop)

 set_target(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerNano.Params{ref: reference()}

Type that represents an TrackerNano.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_backbone(self)

 View Source

 @spec get_backbone(t()) :: binary()

 Link to this function

 get_backend(self)

 View Source

 @spec get_backend(t()) :: integer()

 Link to this function

 get_neckhead(self)

 View Source

 @spec get_neckhead(t()) :: binary()

 Link to this function

 get_target(self)

 View Source

 @spec get_target(t()) :: integer()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerNano_Params
Return
	self: Evision.TrackerNano.Params.t()

Python prototype (for reference only):
TrackerNano_Params() -> <TrackerNano_Params object>

 Link to this function

 set_backbone(self, prop)

 View Source

 @spec set_backbone(t(), binary()) :: t()

 Link to this function

 set_backend(self, prop)

 View Source

 @spec set_backend(t(), integer()) :: t()

 Link to this function

 set_neckhead(self, prop)

 View Source

 @spec set_neckhead(t(), binary()) :: t()

 Link to this function

 set_target(self, prop)

 View Source

 @spec set_target(t(), integer()) :: t()

 Evision.TrackerVit - Evision v0.1.39

Evision.TrackerVit

 Summary

 Types

 t()

 Type that represents an TrackerVit struct.

 Functions

 create()

 Constructor

 create(opts)

 Constructor

 getTrackingScore(self)

 Return tracking score

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerVit{ref: reference()}

Type that represents an TrackerVit struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: Evision.TrackerVit | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerVit.Params.t().
vit tracker parameters TrackerVit::Params

Return
	retval: Evision.TrackerVit.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:parameters, term()}] | nil) ::
 Evision.TrackerVit | {:error, String.t()}

Constructor
Keyword Arguments
	parameters: Evision.TrackerVit.Params.t().
vit tracker parameters TrackerVit::Params

Return
	retval: Evision.TrackerVit.t()

Python prototype (for reference only):
create([, parameters]) -> retval

 Link to this function

 getTrackingScore(self)

 View Source

 @spec getTrackingScore(t()) :: number() | {:error, String.t()}

Return tracking score
Positional Arguments
	self: Evision.TrackerVit.t()

Return
	retval: float

Python prototype (for reference only):
getTrackingScore() -> retval

 Evision.TrackerVit.Params - Evision v0.1.39

Evision.TrackerVit.Params

 Summary

 Types

 t()

 Type that represents an TrackerVit.Params struct.

 Functions

 get_backend(self)

 get_meanvalue(self)

 get_net(self)

 get_stdvalue(self)

 get_target(self)

 params()

 TrackerVit_Params

 set_backend(self, prop)

 set_meanvalue(self, prop)

 set_net(self, prop)

 set_stdvalue(self, prop)

 set_target(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.TrackerVit.Params{ref: reference()}

Type that represents an TrackerVit.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_backend(self)

 View Source

 @spec get_backend(t()) :: integer()

 Link to this function

 get_meanvalue(self)

 View Source

 @spec get_meanvalue(t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}

 Link to this function

 get_net(self)

 View Source

 @spec get_net(t()) :: binary()

 Link to this function

 get_stdvalue(self)

 View Source

 @spec get_stdvalue(t()) ::
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}

 Link to this function

 get_target(self)

 View Source

 @spec get_target(t()) :: integer()

 Link to this function

 params()

 View Source

 @spec params() :: t() | {:error, String.t()}

TrackerVit_Params
Return
	self: Evision.TrackerVit.Params.t()

Python prototype (for reference only):
TrackerVit_Params() -> <TrackerVit_Params object>

 Link to this function

 set_backend(self, prop)

 View Source

 @spec set_backend(t(), integer()) :: t()

 Link to this function

 set_meanvalue(self, prop)

 View Source

 @spec set_meanvalue(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t()

 Link to this function

 set_net(self, prop)

 View Source

 @spec set_net(t(), binary()) :: t()

 Link to this function

 set_stdvalue(self, prop)

 View Source

 @spec set_stdvalue(
 t(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: t()

 Link to this function

 set_target(self, prop)

 View Source

 @spec set_target(t(), integer()) :: t()

 Evision.UMat - Evision v0.1.39

Evision.UMat

 Summary

 Types

 t()

 Type that represents an UMat struct.

 Functions

 context()

 context

 get(self)

 get

 get_offset(self)

 handle(self, accessFlags)

 handle

 isContinuous(self)

 isContinuous

 isSubmatrix(self)

 isSubmatrix

 queue()

 queue

 set_offset(self, prop)

 uMat()

 UMat

 uMat(opts)

 Variant 1:
UMat

 uMat(m, ranges)

 Variant 1:
UMat

 uMat(m, rowRange, opts)

 Variant 1:
UMat

 uMat(size, type, s, opts)

 Variant 1:
UMat

 uMat(rows, cols, type, s, opts)

 UMat

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.UMat{ref: reference()}

Type that represents an UMat struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 context()

 View Source

 @spec context() :: :ok | {:error, String.t()}

context
Return
	retval: void*

Python prototype (for reference only):
context() -> retval

 Link to this function

 get(self)

 View Source

 @spec get(Evision.Mat.t()) :: Evision.Mat.t() | {:error, String.t()}

get
Positional Arguments
	self: Evision.UMat.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
get() -> retval

 Link to this function

 get_offset(self)

 View Source

 @spec get_offset(Evision.Mat.maybe_mat_in()) :: integer()

 Link to this function

 handle(self, accessFlags)

 View Source

 @spec handle(Evision.Mat.t(), integer()) :: :ok | {:error, String.t()}

handle
Positional Arguments
	self: Evision.UMat.t()
	accessFlags: AccessFlag

Return
	retval: void*

Python prototype (for reference only):
handle(accessFlags) -> retval

 Link to this function

 isContinuous(self)

 View Source

 @spec isContinuous(Evision.Mat.t()) :: boolean() | {:error, String.t()}

isContinuous
Positional Arguments
	self: Evision.UMat.t()

Return
	retval: bool

Python prototype (for reference only):
isContinuous() -> retval

 Link to this function

 isSubmatrix(self)

 View Source

 @spec isSubmatrix(Evision.Mat.t()) :: boolean() | {:error, String.t()}

isSubmatrix
Positional Arguments
	self: Evision.UMat.t()

Return
	retval: bool

Python prototype (for reference only):
isSubmatrix() -> retval

 Link to this function

 queue()

 View Source

 @spec queue() :: :ok | {:error, String.t()}

queue
Return
	retval: void*

Python prototype (for reference only):
queue() -> retval

 Link to this function

 set_offset(self, prop)

 View Source

 @spec set_offset(Evision.Mat.maybe_mat_in(), integer()) :: Evision.Mat.t()

 Link to this function

 uMat()

 View Source

 @spec uMat() :: Evision.Mat.t() | {:error, String.t()}

UMat
Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat([, usageFlags]) -> <UMat object>

 Link to this function

 uMat(opts)

 View Source

 @spec uMat([{:usageFlags, term()}] | nil) :: Evision.Mat.t() | {:error, String.t()}

 @spec uMat(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
UMat
Positional Arguments
	m: Evision.Mat.t()

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(m) -> <UMat object>
Variant 2:
UMat
Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat([, usageFlags]) -> <UMat object>

 Link to this function

 uMat(m, ranges)

 View Source

 @spec uMat(Evision.Mat.maybe_mat_in(), [{integer(), integer()} | :all]) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat(Evision.Mat.maybe_mat_in(), {number(), number(), number(), number()}) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat(Evision.Mat.maybe_mat_in(), {integer(), integer()} | :all) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat(
 {number(), number()},
 integer()
) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
UMat
Positional Arguments
	m: Evision.Mat.t()
	ranges: [Range]

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(m, ranges) -> <UMat object>
Variant 2:
UMat
Positional Arguments
	m: Evision.Mat.t()
	roi: Rect

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(m, roi) -> <UMat object>
Variant 3:
UMat
Positional Arguments
	m: Evision.Mat.t()
	rowRange: Range

Keyword Arguments
	colRange: Range.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(m, rowRange[, colRange]) -> <UMat object>
Variant 4:
UMat
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(size, type[, usageFlags]) -> <UMat object>

 Link to this function

 uMat(m, rowRange, opts)

 View Source

 @spec uMat(
 Evision.Mat.maybe_mat_in(),
 {integer(), integer()} | :all,
 [{:colRange, term()}] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat({number(), number()}, integer(), [{:usageFlags, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat(
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

 @spec uMat(integer(), integer(), integer()) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
UMat
Positional Arguments
	size: Size
	type: int
	s: Scalar

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(size, type, s[, usageFlags]) -> <UMat object>
Variant 2:
UMat
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(rows, cols, type[, usageFlags]) -> <UMat object>
Variant 3:
UMat
Positional Arguments
	m: Evision.Mat.t()
	rowRange: Range

Keyword Arguments
	colRange: Range.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(m, rowRange[, colRange]) -> <UMat object>
Variant 4:
UMat
Positional Arguments
	size: Size
	type: int

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(size, type[, usageFlags]) -> <UMat object>

 Link to this function

 uMat(size, type, s, opts)

 View Source

 @spec uMat(
 {number(), number()},
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:usageFlags, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec uMat(integer(), integer(), integer(), [{:usageFlags, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec uMat(
 integer(),
 integer(),
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()}
) :: Evision.Mat.t() | {:error, String.t()}

Variant 1:
UMat
Positional Arguments
	rows: int
	cols: int
	type: int
	s: Scalar

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(rows, cols, type, s[, usageFlags]) -> <UMat object>
Variant 2:
UMat
Positional Arguments
	size: Size
	type: int
	s: Scalar

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(size, type, s[, usageFlags]) -> <UMat object>
Variant 3:
UMat
Positional Arguments
	rows: int
	cols: int
	type: int

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(rows, cols, type[, usageFlags]) -> <UMat object>

 Link to this function

 uMat(rows, cols, type, s, opts)

 View Source

 @spec uMat(
 integer(),
 integer(),
 integer(),
 {number()}
 | {number(), number()}
 | {number(), number(), number()}
 | {number(), number(), number(), number()},
 [{:usageFlags, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

UMat
Positional Arguments
	rows: int
	cols: int
	type: int
	s: Scalar

Keyword Arguments
	usageFlags: UMatUsageFlags.

Return
	self: Evision.Mat.t()

Python prototype (for reference only):
UMat(rows, cols, type, s[, usageFlags]) -> <UMat object>

 Evision.UsacParams - Evision v0.1.39

Evision.UsacParams

 Summary

 Types

 t()

 Type that represents an UsacParams struct.

 Functions

 get_confidence(self)

 get_final_polisher(self)

 get_final_polisher_iterations(self)

 get_isParallel(self)

 get_loIterations(self)

 get_loMethod(self)

 get_loSampleSize(self)

 get_maxIterations(self)

 get_neighborsSearch(self)

 get_randomGeneratorState(self)

 get_sampler(self)

 get_score(self)

 get_threshold(self)

 set_confidence(self, prop)

 set_final_polisher(self, prop)

 set_final_polisher_iterations(self, prop)

 set_isParallel(self, prop)

 set_loIterations(self, prop)

 set_loMethod(self, prop)

 set_loSampleSize(self, prop)

 set_maxIterations(self, prop)

 set_neighborsSearch(self, prop)

 set_randomGeneratorState(self, prop)

 set_sampler(self, prop)

 set_score(self, prop)

 set_threshold(self, prop)

 usacParams()

 UsacParams

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.UsacParams{ref: reference()}

Type that represents an UsacParams struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_confidence(self)

 View Source

 @spec get_confidence(t()) :: number()

 Link to this function

 get_final_polisher(self)

 View Source

 @spec get_final_polisher(t()) :: integer()

 Link to this function

 get_final_polisher_iterations(self)

 View Source

 @spec get_final_polisher_iterations(t()) :: integer()

 Link to this function

 get_isParallel(self)

 View Source

 @spec get_isParallel(t()) :: boolean()

 Link to this function

 get_loIterations(self)

 View Source

 @spec get_loIterations(t()) :: integer()

 Link to this function

 get_loMethod(self)

 View Source

 @spec get_loMethod(t()) :: integer()

 Link to this function

 get_loSampleSize(self)

 View Source

 @spec get_loSampleSize(t()) :: integer()

 Link to this function

 get_maxIterations(self)

 View Source

 @spec get_maxIterations(t()) :: integer()

 Link to this function

 get_neighborsSearch(self)

 View Source

 @spec get_neighborsSearch(t()) :: integer()

 Link to this function

 get_randomGeneratorState(self)

 View Source

 @spec get_randomGeneratorState(t()) :: integer()

 Link to this function

 get_sampler(self)

 View Source

 @spec get_sampler(t()) :: integer()

 Link to this function

 get_score(self)

 View Source

 @spec get_score(t()) :: integer()

 Link to this function

 get_threshold(self)

 View Source

 @spec get_threshold(t()) :: number()

 Link to this function

 set_confidence(self, prop)

 View Source

 @spec set_confidence(t(), number()) :: t()

 Link to this function

 set_final_polisher(self, prop)

 View Source

 @spec set_final_polisher(t(), integer()) :: t()

 Link to this function

 set_final_polisher_iterations(self, prop)

 View Source

 @spec set_final_polisher_iterations(t(), integer()) :: t()

 Link to this function

 set_isParallel(self, prop)

 View Source

 @spec set_isParallel(t(), boolean()) :: t()

 Link to this function

 set_loIterations(self, prop)

 View Source

 @spec set_loIterations(t(), integer()) :: t()

 Link to this function

 set_loMethod(self, prop)

 View Source

 @spec set_loMethod(t(), integer()) :: t()

 Link to this function

 set_loSampleSize(self, prop)

 View Source

 @spec set_loSampleSize(t(), integer()) :: t()

 Link to this function

 set_maxIterations(self, prop)

 View Source

 @spec set_maxIterations(t(), integer()) :: t()

 Link to this function

 set_neighborsSearch(self, prop)

 View Source

 @spec set_neighborsSearch(t(), integer()) :: t()

 Link to this function

 set_randomGeneratorState(self, prop)

 View Source

 @spec set_randomGeneratorState(t(), integer()) :: t()

 Link to this function

 set_sampler(self, prop)

 View Source

 @spec set_sampler(t(), integer()) :: t()

 Link to this function

 set_score(self, prop)

 View Source

 @spec set_score(t(), integer()) :: t()

 Link to this function

 set_threshold(self, prop)

 View Source

 @spec set_threshold(t(), number()) :: t()

 Link to this function

 usacParams()

 View Source

 @spec usacParams() :: t() | {:error, String.t()}

UsacParams
Return
	self: Evision.UsacParams.t()

Python prototype (for reference only):
UsacParams() -> <UsacParams object>

 Evision.Utils - Evision v0.1.39

Evision.Utils

 Summary

 Types

 t()

 Type that represents an Utils struct.

 Functions

 copyMatAndDumpNamedArguments(src)

 copyMatAndDumpNamedArguments

 copyMatAndDumpNamedArguments(src, opts)

 copyMatAndDumpNamedArguments

 dumpBool(argument)

 dumpBool

 dumpCString(argument)

 dumpCString

 dumpDouble(argument)

 dumpDouble

 dumpFloat(argument)

 dumpFloat

 dumpInputArray(argument)

 dumpInputArray

 dumpInputArrayOfArrays(argument)

 dumpInputArrayOfArrays

 dumpInputOutputArray(argument)

 dumpInputOutputArray

 dumpInputOutputArrayOfArrays(argument)

 dumpInputOutputArrayOfArrays

 dumpInt64(argument)

 dumpInt64

 dumpInt(argument)

 dumpInt

 dumpRange(argument)

 dumpRange

 dumpRect(argument)

 dumpRect

 dumpRotatedRect(argument)

 dumpRotatedRect

 dumpSizeT(argument)

 dumpSizeT

 dumpString(argument)

 dumpString

 dumpTermCriteria(argument)

 dumpTermCriteria

 dumpVec2i()

 dumpVec2i

 dumpVec2i(opts)

 dumpVec2i

 dumpVectorOfDouble(vec)

 dumpVectorOfDouble

 dumpVectorOfInt(vec)

 dumpVectorOfInt

 dumpVectorOfRect(vec)

 dumpVectorOfRect

 generateVectorOfInt(len)

 generateVectorOfInt

 generateVectorOfMat(len, rows, cols, dtype)

 generateVectorOfMat

 generateVectorOfMat(len, rows, cols, dtype, opts)

 generateVectorOfMat

 generateVectorOfRect(len)

 generateVectorOfRect

 testAsyncArray(argument)

 testAsyncArray

 testAsyncException()

 testAsyncException

 testOverloadResolution(rect)

 Variant 1:
testOverloadResolution

 testOverloadResolution(value, opts)

 testOverloadResolution

 testOverwriteNativeMethod(argument)

 testOverwriteNativeMethod

 testRaiseGeneralException()

 testRaiseGeneralException

 testReservedKeywordConversion(positional_argument)

 testReservedKeywordConversion

 testReservedKeywordConversion(positional_argument, opts)

 testReservedKeywordConversion

 testRotatedRect(x, y, w, h, angle)

 testRotatedRect

 testRotatedRectVector(x, y, w, h, angle)

 testRotatedRectVector

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Utils{ref: reference()}

Type that represents an Utils struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 copyMatAndDumpNamedArguments(src)

 View Source

 @spec copyMatAndDumpNamedArguments(Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

copyMatAndDumpNamedArguments
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	params: FunctionParams.

Return
	retval: String
	dst: Evision.Mat.t().

Python prototype (for reference only):
copyMatAndDumpNamedArguments(src[, dst[, params]]) -> retval, dst

 Link to this function

 copyMatAndDumpNamedArguments(src, opts)

 View Source

 @spec copyMatAndDumpNamedArguments(
 Evision.Mat.maybe_mat_in(),
 [{:params, term()}] | nil
) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

copyMatAndDumpNamedArguments
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	params: FunctionParams.

Return
	retval: String
	dst: Evision.Mat.t().

Python prototype (for reference only):
copyMatAndDumpNamedArguments(src[, dst[, params]]) -> retval, dst

 Link to this function

 dumpBool(argument)

 View Source

 @spec dumpBool(boolean()) :: binary() | {:error, String.t()}

dumpBool
Positional Arguments
	argument: bool

Return
	retval: String

Python prototype (for reference only):
dumpBool(argument) -> retval

 Link to this function

 dumpCString(argument)

 View Source

 @spec dumpCString(binary()) :: binary() | {:error, String.t()}

dumpCString
Positional Arguments
	argument: c_string

Return
	retval: String

Python prototype (for reference only):
dumpCString(argument) -> retval

 Link to this function

 dumpDouble(argument)

 View Source

 @spec dumpDouble(number()) :: binary() | {:error, String.t()}

dumpDouble
Positional Arguments
	argument: double

Return
	retval: String

Python prototype (for reference only):
dumpDouble(argument) -> retval

 Link to this function

 dumpFloat(argument)

 View Source

 @spec dumpFloat(number()) :: binary() | {:error, String.t()}

dumpFloat
Positional Arguments
	argument: float

Return
	retval: String

Python prototype (for reference only):
dumpFloat(argument) -> retval

 Link to this function

 dumpInputArray(argument)

 View Source

 @spec dumpInputArray(Evision.Mat.maybe_mat_in()) :: binary() | {:error, String.t()}

dumpInputArray
Positional Arguments
	argument: Evision.Mat.t()

Return
	retval: String

Python prototype (for reference only):
dumpInputArray(argument) -> retval

 Link to this function

 dumpInputArrayOfArrays(argument)

 View Source

 @spec dumpInputArrayOfArrays([Evision.Mat.maybe_mat_in()]) ::
 binary() | {:error, String.t()}

dumpInputArrayOfArrays
Positional Arguments
	argument: [Evision.Mat]

Return
	retval: String

Python prototype (for reference only):
dumpInputArrayOfArrays(argument) -> retval

 Link to this function

 dumpInputOutputArray(argument)

 View Source

 @spec dumpInputOutputArray(Evision.Mat.maybe_mat_in()) ::
 {binary(), Evision.Mat.t()} | {:error, String.t()}

dumpInputOutputArray
Return
	retval: String
	argument: Evision.Mat.t()

Python prototype (for reference only):
dumpInputOutputArray(argument) -> retval, argument

 Link to this function

 dumpInputOutputArrayOfArrays(argument)

 View Source

 @spec dumpInputOutputArrayOfArrays([Evision.Mat.maybe_mat_in()]) ::
 {binary(), [Evision.Mat.t()]} | {:error, String.t()}

dumpInputOutputArrayOfArrays
Return
	retval: String
	argument: [Evision.Mat]

Python prototype (for reference only):
dumpInputOutputArrayOfArrays(argument) -> retval, argument

 Link to this function

 dumpInt64(argument)

 View Source

 @spec dumpInt64(integer()) :: binary() | {:error, String.t()}

dumpInt64
Positional Arguments
	argument: int64

Return
	retval: String

Python prototype (for reference only):
dumpInt64(argument) -> retval

 Link to this function

 dumpInt(argument)

 View Source

 @spec dumpInt(integer()) :: binary() | {:error, String.t()}

dumpInt
Positional Arguments
	argument: int

Return
	retval: String

Python prototype (for reference only):
dumpInt(argument) -> retval

 Link to this function

 dumpRange(argument)

 View Source

 @spec dumpRange({integer(), integer()} | :all) :: binary() | {:error, String.t()}

dumpRange
Positional Arguments
	argument: Range

Return
	retval: String

Python prototype (for reference only):
dumpRange(argument) -> retval

 Link to this function

 dumpRect(argument)

 View Source

 @spec dumpRect({number(), number(), number(), number()}) ::
 binary() | {:error, String.t()}

dumpRect
Positional Arguments
	argument: Rect

Return
	retval: String

Python prototype (for reference only):
dumpRect(argument) -> retval

 Link to this function

 dumpRotatedRect(argument)

 View Source

 @spec dumpRotatedRect({{number(), number()}, {number(), number()}, number()}) ::
 binary() | {:error, String.t()}

dumpRotatedRect
Positional Arguments
	argument: {centre={x, y}, size={s1, s2}, angle}

Return
	retval: String

Python prototype (for reference only):
dumpRotatedRect(argument) -> retval

 Link to this function

 dumpSizeT(argument)

 View Source

 @spec dumpSizeT(integer()) :: binary() | {:error, String.t()}

dumpSizeT
Positional Arguments
	argument: size_t

Return
	retval: String

Python prototype (for reference only):
dumpSizeT(argument) -> retval

 Link to this function

 dumpString(argument)

 View Source

 @spec dumpString(binary()) :: binary() | {:error, String.t()}

dumpString
Positional Arguments
	argument: String

Return
	retval: String

Python prototype (for reference only):
dumpString(argument) -> retval

 Link to this function

 dumpTermCriteria(argument)

 View Source

 @spec dumpTermCriteria({integer(), integer(), number()}) ::
 binary() | {:error, String.t()}

dumpTermCriteria
Positional Arguments
	argument: TermCriteria

Return
	retval: String

Python prototype (for reference only):
dumpTermCriteria(argument) -> retval

 Link to this function

 dumpVec2i()

 View Source

 @spec dumpVec2i() :: binary() | {:error, String.t()}

dumpVec2i
Keyword Arguments
	value: Vec2i.

Return
	retval: String

Python prototype (for reference only):
dumpVec2i([, value]) -> retval

 Link to this function

 dumpVec2i(opts)

 View Source

 @spec dumpVec2i([{:value, term()}] | nil) :: binary() | {:error, String.t()}

dumpVec2i
Keyword Arguments
	value: Vec2i.

Return
	retval: String

Python prototype (for reference only):
dumpVec2i([, value]) -> retval

 Link to this function

 dumpVectorOfDouble(vec)

 View Source

 @spec dumpVectorOfDouble([number()]) :: binary() | {:error, String.t()}

dumpVectorOfDouble
Positional Arguments
	vec: [double]

Return
	retval: String

Python prototype (for reference only):
dumpVectorOfDouble(vec) -> retval

 Link to this function

 dumpVectorOfInt(vec)

 View Source

 @spec dumpVectorOfInt([integer()]) :: binary() | {:error, String.t()}

dumpVectorOfInt
Positional Arguments
	vec: [int]

Return
	retval: String

Python prototype (for reference only):
dumpVectorOfInt(vec) -> retval

 Link to this function

 dumpVectorOfRect(vec)

 View Source

 @spec dumpVectorOfRect([{number(), number(), number(), number()}]) ::
 binary() | {:error, String.t()}

dumpVectorOfRect
Positional Arguments
	vec: [Rect]

Return
	retval: String

Python prototype (for reference only):
dumpVectorOfRect(vec) -> retval

 Link to this function

 generateVectorOfInt(len)

 View Source

 @spec generateVectorOfInt(integer()) :: [integer()] | {:error, String.t()}

generateVectorOfInt
Positional Arguments
	len: size_t

Return
	vec: [int]

Python prototype (for reference only):
generateVectorOfInt(len) -> vec

 Link to this function

 generateVectorOfMat(len, rows, cols, dtype)

 View Source

 @spec generateVectorOfMat(integer(), integer(), integer(), integer()) ::
 [Evision.Mat.t()] | {:error, String.t()}

generateVectorOfMat
Positional Arguments
	len: size_t
	rows: int
	cols: int
	dtype: int

Return
	vec: [Evision.Mat].

Python prototype (for reference only):
generateVectorOfMat(len, rows, cols, dtype[, vec]) -> vec

 Link to this function

 generateVectorOfMat(len, rows, cols, dtype, opts)

 View Source

 @spec generateVectorOfMat(
 integer(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 [Evision.Mat.t()] | {:error, String.t()}

generateVectorOfMat
Positional Arguments
	len: size_t
	rows: int
	cols: int
	dtype: int

Return
	vec: [Evision.Mat].

Python prototype (for reference only):
generateVectorOfMat(len, rows, cols, dtype[, vec]) -> vec

 Link to this function

 generateVectorOfRect(len)

 View Source

 @spec generateVectorOfRect(integer()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

generateVectorOfRect
Positional Arguments
	len: size_t

Return
	vec: [Rect]

Python prototype (for reference only):
generateVectorOfRect(len) -> vec

 Link to this function

 testAsyncArray(argument)

 View Source

 @spec testAsyncArray(Evision.Mat.maybe_mat_in()) ::
 Evision.AsyncArray.t() | {:error, String.t()}

testAsyncArray
Positional Arguments
	argument: Evision.Mat.t()

Return
	retval: Evision.AsyncArray.t()

Python prototype (for reference only):
testAsyncArray(argument) -> retval

 Link to this function

 testAsyncException()

 View Source

 @spec testAsyncException() :: Evision.AsyncArray.t() | {:error, String.t()}

testAsyncException
Return
	retval: Evision.AsyncArray.t()

Python prototype (for reference only):
testAsyncException() -> retval

 Link to this function

 testOverloadResolution(rect)

 View Source

 @spec testOverloadResolution({number(), number(), number(), number()}) ::
 binary() | {:error, String.t()}

 @spec testOverloadResolution(integer()) :: binary() | {:error, String.t()}

Variant 1:
testOverloadResolution
Positional Arguments
	rect: Rect

Return
	retval: String

Python prototype (for reference only):
testOverloadResolution(rect) -> retval
Variant 2:
testOverloadResolution
Positional Arguments
	value: int

Keyword Arguments
	point: Point.

Return
	retval: String

Python prototype (for reference only):
testOverloadResolution(value[, point]) -> retval

 Link to this function

 testOverloadResolution(value, opts)

 View Source

 @spec testOverloadResolution(integer(), [{:point, term()}] | nil) ::
 binary() | {:error, String.t()}

testOverloadResolution
Positional Arguments
	value: int

Keyword Arguments
	point: Point.

Return
	retval: String

Python prototype (for reference only):
testOverloadResolution(value[, point]) -> retval

 Link to this function

 testOverwriteNativeMethod(argument)

 View Source

 @spec testOverwriteNativeMethod(integer()) :: integer() | {:error, String.t()}

testOverwriteNativeMethod
Positional Arguments
	argument: int

Return
	retval: int

Python prototype (for reference only):
testOverwriteNativeMethod(argument) -> retval

 Link to this function

 testRaiseGeneralException()

 View Source

 @spec testRaiseGeneralException() :: :ok | {:error, String.t()}

testRaiseGeneralException
Python prototype (for reference only):
testRaiseGeneralException() -> None

 Link to this function

 testReservedKeywordConversion(positional_argument)

 View Source

 @spec testReservedKeywordConversion(integer()) :: binary() | {:error, String.t()}

testReservedKeywordConversion
Positional Arguments
	positional_argument: int

Keyword Arguments
	lambda: int.
	from: int.

Return
	retval: String

Python prototype (for reference only):
testReservedKeywordConversion(positional_argument[, lambda[, from]]) -> retval

 Link to this function

 testReservedKeywordConversion(positional_argument, opts)

 View Source

 @spec testReservedKeywordConversion(integer(), [lambda: term(), from: term()] | nil) ::
 binary() | {:error, String.t()}

testReservedKeywordConversion
Positional Arguments
	positional_argument: int

Keyword Arguments
	lambda: int.
	from: int.

Return
	retval: String

Python prototype (for reference only):
testReservedKeywordConversion(positional_argument[, lambda[, from]]) -> retval

 Link to this function

 testRotatedRect(x, y, w, h, angle)

 View Source

 @spec testRotatedRect(number(), number(), number(), number(), number()) ::
 {{number(), number()}, {number(), number()}, number()} | {:error, String.t()}

testRotatedRect
Positional Arguments
	x: float
	y: float
	w: float
	h: float
	angle: float

Return
	retval: {centre={x, y}, size={s1, s2}, angle}

Python prototype (for reference only):
testRotatedRect(x, y, w, h, angle) -> retval

 Link to this function

 testRotatedRectVector(x, y, w, h, angle)

 View Source

 @spec testRotatedRectVector(number(), number(), number(), number(), number()) ::
 [{{number(), number()}, {number(), number()}, number()}]
 | {:error, String.t()}

testRotatedRectVector
Positional Arguments
	x: float
	y: float
	w: float
	h: float
	angle: float

Return
	retval: [{centre={x, y}, size={s1, s2}, angle}]

Python prototype (for reference only):
testRotatedRectVector(x, y, w, h, angle) -> retval

 Evision.Utils.ClassWithKeywordProperties - Evision v0.1.39

Evision.Utils.ClassWithKeywordProperties

 Summary

 Types

 t()

 Type that represents an Utils.ClassWithKeywordProperties struct.

 Functions

 classWithKeywordProperties()

 ClassWithKeywordProperties

 classWithKeywordProperties(opts)

 ClassWithKeywordProperties

 get_except(self)

 get_lambda(self)

 set_lambda(self, prop)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Utils.ClassWithKeywordProperties{ref: reference()}

Type that represents an Utils.ClassWithKeywordProperties struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 classWithKeywordProperties()

 View Source

 @spec classWithKeywordProperties() :: t() | {:error, String.t()}

ClassWithKeywordProperties
Keyword Arguments
	lambda_arg: int.
	except_arg: int.

Return
	self: ClassWithKeywordProperties

Python prototype (for reference only):
ClassWithKeywordProperties([, lambda_arg[, except_arg]]) -> <utils_ClassWithKeywordProperties object>

 Link to this function

 classWithKeywordProperties(opts)

 View Source

 @spec classWithKeywordProperties([lambda_arg: term(), except_arg: term()] | nil) ::
 t() | {:error, String.t()}

ClassWithKeywordProperties
Keyword Arguments
	lambda_arg: int.
	except_arg: int.

Return
	self: ClassWithKeywordProperties

Python prototype (for reference only):
ClassWithKeywordProperties([, lambda_arg[, except_arg]]) -> <utils_ClassWithKeywordProperties object>

 Link to this function

 get_except(self)

 View Source

 @spec get_except(t()) :: integer()

 Link to this function

 get_lambda(self)

 View Source

 @spec get_lambda(t()) :: integer()

 Link to this function

 set_lambda(self, prop)

 View Source

 @spec set_lambda(t(), integer()) :: t()

 Evision.Utils.Nested - Evision v0.1.39

Evision.Utils.Nested

 Summary

 Types

 t()

 Type that represents an Utils.Nested struct.

 Functions

 testEchoBooleanFunction(flag)

 testEchoBooleanFunction

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Utils.Nested{ref: reference()}

Type that represents an Utils.Nested struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 testEchoBooleanFunction(flag)

 View Source

 @spec testEchoBooleanFunction(boolean()) :: boolean() | {:error, String.t()}

testEchoBooleanFunction
Positional Arguments
	flag: bool

Return
	retval: bool

Python prototype (for reference only):
testEchoBooleanFunction(flag) -> retval

 Evision.Utils.Nested.OriginalClassName - Evision v0.1.39

Evision.Utils.Nested.OriginalClassName

 Summary

 Types

 t()

 Type that represents an Utils.Nested.OriginalClassName struct.

 Functions

 create()

 create

 create(opts)

 create

 getFloatParam(self)

 getFloatParam

 getIntParam(self)

 getIntParam

 originalName()

 originalName

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Utils.Nested.OriginalClassName{ref: reference()}

Type that represents an Utils.Nested.OriginalClassName struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	params: Evision.Utils.Nested.OriginalClassName.Params.t().

Return
	retval: Evision.Utils.Nested.OriginalClassName.t()

Python prototype (for reference only):
create([, params]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([{:params, term()}] | nil) :: t() | {:error, String.t()}

create
Keyword Arguments
	params: Evision.Utils.Nested.OriginalClassName.Params.t().

Return
	retval: Evision.Utils.Nested.OriginalClassName.t()

Python prototype (for reference only):
create([, params]) -> retval

 Link to this function

 getFloatParam(self)

 View Source

 @spec getFloatParam(t()) :: number() | {:error, String.t()}

getFloatParam
Positional Arguments
	self: Evision.Utils.Nested.OriginalClassName.t()

Return
	retval: float

Python prototype (for reference only):
getFloatParam() -> retval

 Link to this function

 getIntParam(self)

 View Source

 @spec getIntParam(t()) :: integer() | {:error, String.t()}

getIntParam
Positional Arguments
	self: Evision.Utils.Nested.OriginalClassName.t()

Return
	retval: int

Python prototype (for reference only):
getIntParam() -> retval

 Link to this function

 originalName()

 View Source

 @spec originalName() :: binary() | {:error, String.t()}

originalName
Return
	retval: string

Python prototype (for reference only):
originalName() -> retval

 Evision.Utils.Nested.OriginalClassName.Params - Evision v0.1.39

Evision.Utils.Nested.OriginalClassName.Params

 Summary

 Types

 t()

 Type that represents an Utils.Nested.OriginalClassName.Params struct.

 Functions

 get_float_value(self)

 get_int_value(self)

 set_float_value(self, prop)

 set_int_value(self, prop)

 utils_nested_OriginalClassName_Params()

 OriginalClassName_Params

 utils_nested_OriginalClassName_Params(opts)

 OriginalClassName_Params

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.Utils.Nested.OriginalClassName.Params{ref: reference()}

Type that represents an Utils.Nested.OriginalClassName.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_float_value(self)

 View Source

 @spec get_float_value(t()) :: number()

 Link to this function

 get_int_value(self)

 View Source

 @spec get_int_value(t()) :: integer()

 Link to this function

 set_float_value(self, prop)

 View Source

 @spec set_float_value(t(), number()) :: t()

 Link to this function

 set_int_value(self, prop)

 View Source

 @spec set_int_value(t(), integer()) :: t()

 Link to this function

 utils_nested_OriginalClassName_Params()

 View Source

 @spec utils_nested_OriginalClassName_Params() :: t() | {:error, String.t()}

OriginalClassName_Params
Keyword Arguments
	int_param: int.
	float_param: float.

Return
	self: Evision.Utils.Nested.OriginalClassName.Params.t()

Python prototype (for reference only):
OriginalClassName_Params([, int_param[, float_param]]) -> <utils_nested_OriginalClassName_Params object>

 Link to this function

 utils_nested_OriginalClassName_Params(opts)

 View Source

 @spec utils_nested_OriginalClassName_Params(
 [int_param: term(), float_param: term()]
 | nil
) ::
 t() | {:error, String.t()}

OriginalClassName_Params
Keyword Arguments
	int_param: int.
	float_param: float.

Return
	self: Evision.Utils.Nested.OriginalClassName.Params.t()

Python prototype (for reference only):
OriginalClassName_Params([, int_param[, float_param]]) -> <utils_nested_OriginalClassName_Params object>

 Evision.UtilsFS - Evision v0.1.39

Evision.UtilsFS

 Summary

 Types

 t()

 Type that represents an UtilsFS struct.

 Functions

 getCacheDirectoryForDownloads()

 getCacheDirectoryForDownloads

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.UtilsFS{ref: reference()}

Type that represents an UtilsFS struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getCacheDirectoryForDownloads()

 View Source

 @spec getCacheDirectoryForDownloads() :: binary() | {:error, String.t()}

getCacheDirectoryForDownloads
Return
	retval: String

Python prototype (for reference only):
getCacheDirectoryForDownloads() -> retval

 Evision.VariationalRefinement - Evision v0.1.39

Evision.VariationalRefinement

 Summary

 Types

 t()

 Type that represents an VariationalRefinement struct.

 Functions

 calcUV(self, i0, i1, flow_u, flow_v)

 @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
(to avoid extra splits/merges)

 create()

 Creates an instance of VariationalRefinement

 getAlpha(self)

 Weight of the smoothness term

 getDelta(self)

 Weight of the color constancy term

 getFixedPointIterations(self)

 Number of outer (fixed-point) iterations in the minimization procedure.

 getGamma(self)

 Weight of the gradient constancy term

 getOmega(self)

 Relaxation factor in SOR

 getSorIterations(self)

 Number of inner successive over-relaxation (SOR) iterations
in the minimization procedure to solve the respective linear system.

 setAlpha(self, val)

 setAlpha

 setDelta(self, val)

 setDelta

 setFixedPointIterations(self, val)

 setFixedPointIterations

 setGamma(self, val)

 setGamma

 setOmega(self, val)

 setOmega

 setSorIterations(self, val)

 setSorIterations

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.VariationalRefinement{ref: reference()}

Type that represents an VariationalRefinement struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 calcUV(self, i0, i1, flow_u, flow_v)

 View Source

 @spec calcUV(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

@ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
(to avoid extra splits/merges)
Positional Arguments
	self: Evision.VariationalRefinement.t()
	i0: Evision.Mat.t()
	i1: Evision.Mat.t()

Return
	flow_u: Evision.Mat.t()
	flow_v: Evision.Mat.t()

Python prototype (for reference only):
calcUV(I0, I1, flow_u, flow_v) -> flow_u, flow_v

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates an instance of VariationalRefinement
Return
	retval: Evision.VariationalRefinement.t()

Python prototype (for reference only):
create() -> retval

 Link to this function

 getAlpha(self)

 View Source

 @spec getAlpha(t()) :: number() | {:error, String.t()}

Weight of the smoothness term
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: float

@see setAlpha/2
Python prototype (for reference only):
getAlpha() -> retval

 Link to this function

 getDelta(self)

 View Source

 @spec getDelta(t()) :: number() | {:error, String.t()}

Weight of the color constancy term
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: float

@see setDelta/2
Python prototype (for reference only):
getDelta() -> retval

 Link to this function

 getFixedPointIterations(self)

 View Source

 @spec getFixedPointIterations(t()) :: integer() | {:error, String.t()}

Number of outer (fixed-point) iterations in the minimization procedure.
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: int

@see setFixedPointIterations/2
Python prototype (for reference only):
getFixedPointIterations() -> retval

 Link to this function

 getGamma(self)

 View Source

 @spec getGamma(t()) :: number() | {:error, String.t()}

Weight of the gradient constancy term
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: float

@see setGamma/2
Python prototype (for reference only):
getGamma() -> retval

 Link to this function

 getOmega(self)

 View Source

 @spec getOmega(t()) :: number() | {:error, String.t()}

Relaxation factor in SOR
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: float

@see setOmega/2
Python prototype (for reference only):
getOmega() -> retval

 Link to this function

 getSorIterations(self)

 View Source

 @spec getSorIterations(t()) :: integer() | {:error, String.t()}

Number of inner successive over-relaxation (SOR) iterations
in the minimization procedure to solve the respective linear system.
Positional Arguments
	self: Evision.VariationalRefinement.t()

Return
	retval: int

@see setSorIterations/2
Python prototype (for reference only):
getSorIterations() -> retval

 Link to this function

 setAlpha(self, val)

 View Source

 @spec setAlpha(t(), number()) :: t() | {:error, String.t()}

setAlpha
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: float

@see getAlpha/1
Python prototype (for reference only):
setAlpha(val) -> None

 Link to this function

 setDelta(self, val)

 View Source

 @spec setDelta(t(), number()) :: t() | {:error, String.t()}

setDelta
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: float

@see getDelta/1
Python prototype (for reference only):
setDelta(val) -> None

 Link to this function

 setFixedPointIterations(self, val)

 View Source

 @spec setFixedPointIterations(t(), integer()) :: t() | {:error, String.t()}

setFixedPointIterations
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: int

@see getFixedPointIterations/1
Python prototype (for reference only):
setFixedPointIterations(val) -> None

 Link to this function

 setGamma(self, val)

 View Source

 @spec setGamma(t(), number()) :: t() | {:error, String.t()}

setGamma
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: float

@see getGamma/1
Python prototype (for reference only):
setGamma(val) -> None

 Link to this function

 setOmega(self, val)

 View Source

 @spec setOmega(t(), number()) :: t() | {:error, String.t()}

setOmega
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: float

@see getOmega/1
Python prototype (for reference only):
setOmega(val) -> None

 Link to this function

 setSorIterations(self, val)

 View Source

 @spec setSorIterations(t(), integer()) :: t() | {:error, String.t()}

setSorIterations
Positional Arguments
	self: Evision.VariationalRefinement.t()
	val: int

@see getSorIterations/1
Python prototype (for reference only):
setSorIterations(val) -> None

 Evision.VideoCapture - Evision v0.1.39

Evision.VideoCapture

 Summary

 Types

 t()

 Type that represents an Evision.VideoCapture struct.

 Functions

 get(self, propId)

 Returns the specified VideoCapture property

 getBackendName(self)

 Returns used backend API name

 getExceptionMode(self)

 getExceptionMode

 grab(self)

 Grabs the next frame from video file or capturing device.

 isOpened(self)

 Returns true if video capturing has been initialized already.

 open(self, index)

 Variant 1:
Opens a camera for video capturing

 open(self, index, opts)

 Variant 1:
Opens a camera for video capturing

 open(self, index, apiPreference, params)

 Variant 1:
Opens a camera for video capturing with API Preference and parameters

 read(self)

 Grabs, decodes and returns the next video frame.

 read(self, opts)

 Grabs, decodes and returns the next video frame.

 release(self)

 Closes video file or capturing device.

 retrieve(self)

 Decodes and returns the grabbed video frame.

 retrieve(self, opts)

 Decodes and returns the grabbed video frame.

 set(self, propId, value)

 Sets a property in the VideoCapture.

 setExceptionMode(self, enable)

 setExceptionMode

 videoCapture()

 Default constructor

 videoCapture(index)

 Variant 1:
Opens a camera for video capturing

 videoCapture(index, opts)

 Variant 1:
Opens a camera for video capturing

 videoCapture(index, apiPreference, params)

 Variant 1:
Opens a camera for video capturing with API Preference and parameters

 waitAny(streams)

 Wait for ready frames from VideoCapture.

 waitAny(streams, opts)

 Wait for ready frames from VideoCapture.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.VideoCapture{
 fps: number(),
 frame_count: number(),
 frame_height: number(),
 frame_width: number(),
 isOpened: boolean(),
 ref: reference()
}

Type that represents an Evision.VideoCapture struct.
	fps. double.
Frames per second.

	frame_count. double.
Total number of frames.

	frame_width. double.
Width of each frame.

	frame_height. double.
Height of each frame.

	isOpened. boolean.
Is successfully opened the video source.

	ref. reference.
The underlying erlang resource variable.

Functions

 Link to this function

 get(self, propId)

 View Source

 @spec get(t(), integer()) :: number() | {:error, String.t()}

Returns the specified VideoCapture property
Positional Arguments
	self: Evision.VideoCapture.t()

	propId: int.
Property identifier from cv::VideoCaptureProperties (eg. cv::CAP_PROP_POS_MSEC, cv::CAP_PROP_POS_FRAMES, ...)
or one from @ref videoio_flags_others

Return
	retval: double

@return Value for the specified property. Value 0 is returned when querying a property that is
not supported by the backend used by the VideoCapture instance.
Note: Reading / writing properties involves many layers. Some unexpected result might happens
along this chain.
VideoCapture -> API Backend -> Operating System -> Device Driver -> Device Hardware
The returned value might be different from what really used by the device or it could be encoded
using device dependent rules (eg. steps or percentage). Effective behaviour depends from device
driver and API Backend
Python prototype (for reference only):
get(propId) -> retval

 Link to this function

 getBackendName(self)

 View Source

 @spec getBackendName(t()) :: binary() | {:error, String.t()}

Returns used backend API name
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: String

Note: Stream should be opened.
Python prototype (for reference only):
getBackendName() -> retval

 Link to this function

 getExceptionMode(self)

 View Source

 @spec getExceptionMode(t()) :: boolean() | {:error, String.t()}

getExceptionMode
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: bool

Python prototype (for reference only):
getExceptionMode() -> retval

 Link to this function

 grab(self)

 View Source

 @spec grab(t()) :: boolean() | {:error, String.t()}

Grabs the next frame from video file or capturing device.
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: bool

@return true (non-zero) in the case of success.
The method/function grabs the next frame from video file or camera and returns true (non-zero) in
the case of success.
The primary use of the function is in multi-camera environments, especially when the cameras do not
have hardware synchronization. That is, you call VideoCapture::grab() for each camera and after that
call the slower method VideoCapture::retrieve() to decode and get frame from each camera. This way
the overhead on demosaicing or motion jpeg decompression etc. is eliminated and the retrieved frames
from different cameras will be closer in time.
Also, when a connected camera is multi-head (for example, a stereo camera or a Kinect device), the
correct way of retrieving data from it is to call VideoCapture::grab() first and then call
VideoCapture::retrieve() one or more times with different values of the channel parameter.
@ref tutorial_kinect_openni
Python prototype (for reference only):
grab() -> retval

 Link to this function

 isOpened(self)

 View Source

 @spec isOpened(t()) :: boolean() | {:error, String.t()}

Returns true if video capturing has been initialized already.
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: bool

If the previous call to VideoCapture constructor or VideoCapture::open() succeeded, the method returns
true.
Python prototype (for reference only):
isOpened() -> retval

 Link to this function

 open(self, index)

 View Source

 @spec open(t(), integer()) :: boolean() | {:error, String.t()}

 @spec open(t(), binary()) :: boolean() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing
Positional Arguments
	self: Evision.VideoCapture.t()
	index: int

Keyword Arguments
	apiPreference: int.

Return
	retval: bool

Has overloading in C++
Parameters are same as the constructor VideoCapture(int index, int apiPreference = CAP_ANY)
@return true if the camera has been successfully opened.
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(index[, apiPreference]) -> retval
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing.
Positional Arguments
	self: Evision.VideoCapture.t()
	filename: String

Keyword Arguments
	apiPreference: int.

Return
	retval: bool

Has overloading in C++
Parameters are same as the constructor VideoCapture(const String& filename, int apiPreference = CAP_ANY)
@return true if the file has been successfully opened
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(filename[, apiPreference]) -> retval

 Link to this function

 open(self, index, opts)

 View Source

 @spec open(t(), integer(), [{:apiPreference, term()}] | nil) ::
 boolean() | {:error, String.t()}

 @spec open(t(), binary(), [{:apiPreference, term()}] | nil) ::
 boolean() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing
Positional Arguments
	self: Evision.VideoCapture.t()
	index: int

Keyword Arguments
	apiPreference: int.

Return
	retval: bool

Has overloading in C++
Parameters are same as the constructor VideoCapture(int index, int apiPreference = CAP_ANY)
@return true if the camera has been successfully opened.
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(index[, apiPreference]) -> retval
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing.
Positional Arguments
	self: Evision.VideoCapture.t()
	filename: String

Keyword Arguments
	apiPreference: int.

Return
	retval: bool

Has overloading in C++
Parameters are same as the constructor VideoCapture(const String& filename, int apiPreference = CAP_ANY)
@return true if the file has been successfully opened
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(filename[, apiPreference]) -> retval

 Link to this function

 open(self, index, apiPreference, params)

 View Source

 @spec open(t(), integer(), integer(), [integer()]) :: boolean() | {:error, String.t()}

 @spec open(t(), binary(), integer(), [integer()]) :: boolean() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing with API Preference and parameters
Positional Arguments
	self: Evision.VideoCapture.t()
	index: int
	apiPreference: int
	params: [int]

Return
	retval: bool

Has overloading in C++
The params parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
@return true if the camera has been successfully opened.
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(index, apiPreference, params) -> retval
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing with API Preference and parameters
Positional Arguments
	self: Evision.VideoCapture.t()
	filename: String
	apiPreference: int
	params: [int]

Return
	retval: bool

Has overloading in C++
The params parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
@return true if the file has been successfully opened
The method first calls VideoCapture::release to close the already opened file or camera.
Python prototype (for reference only):
open(filename, apiPreference, params) -> retval

 Link to this function

 read(self)

 View Source

 @spec read(t()) :: Evision.Mat.t() | false | {:error, String.t()}

Grabs, decodes and returns the next video frame.
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: bool
	image: Evision.Mat.t().

@return false if no frames has been grabbed
The method/function combines VideoCapture::grab() and VideoCapture::retrieve() in one call. This is the
most convenient method for reading video files or capturing data from decode and returns the just
grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more
frames in video file), the method returns false and the function returns empty image (with %cv::Mat, test it with Mat::empty()).
Note: In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
cvCloneImage and then do whatever you want with the copy.
Python prototype (for reference only):
read([, image]) -> retval, image

 Link to this function

 read(self, opts)

 View Source

 @spec read(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

Grabs, decodes and returns the next video frame.
Positional Arguments
	self: Evision.VideoCapture.t()

Return
	retval: bool
	image: Evision.Mat.t().

@return false if no frames has been grabbed
The method/function combines VideoCapture::grab() and VideoCapture::retrieve() in one call. This is the
most convenient method for reading video files or capturing data from decode and returns the just
grabbed frame. If no frames has been grabbed (camera has been disconnected, or there are no more
frames in video file), the method returns false and the function returns empty image (with %cv::Mat, test it with Mat::empty()).
Note: In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
cvCloneImage and then do whatever you want with the copy.
Python prototype (for reference only):
read([, image]) -> retval, image

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

Closes video file or capturing device.
Positional Arguments
	self: Evision.VideoCapture.t()

The method is automatically called by subsequent VideoCapture::open and by VideoCapture
destructor.
The C function also deallocates memory and clears *capture pointer.
Python prototype (for reference only):
release() -> None

 Link to this function

 retrieve(self)

 View Source

 @spec retrieve(t()) :: Evision.Mat.t() | false | {:error, String.t()}

Decodes and returns the grabbed video frame.
Positional Arguments
	self: Evision.VideoCapture.t()

Keyword Arguments
	flag: int.
it could be a frame index or a driver specific flag

Return
	retval: bool
	image: Evision.Mat.t().

@return false if no frames has been grabbed
The method decodes and returns the just grabbed frame. If no frames has been grabbed
(camera has been disconnected, or there are no more frames in video file), the method returns false
and the function returns an empty image (with %cv::Mat, test it with Mat::empty()).
@sa read()
Note: In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
cvCloneImage and then do whatever you want with the copy.
Python prototype (for reference only):
retrieve([, image[, flag]]) -> retval, image

 Link to this function

 retrieve(self, opts)

 View Source

 @spec retrieve(t(), [{:flag, term()}] | nil) ::
 Evision.Mat.t() | false | {:error, String.t()}

Decodes and returns the grabbed video frame.
Positional Arguments
	self: Evision.VideoCapture.t()

Keyword Arguments
	flag: int.
it could be a frame index or a driver specific flag

Return
	retval: bool
	image: Evision.Mat.t().

@return false if no frames has been grabbed
The method decodes and returns the just grabbed frame. If no frames has been grabbed
(camera has been disconnected, or there are no more frames in video file), the method returns false
and the function returns an empty image (with %cv::Mat, test it with Mat::empty()).
@sa read()
Note: In @ref videoio_c "C API", functions cvRetrieveFrame() and cv.RetrieveFrame() return image stored inside the video
capturing structure. It is not allowed to modify or release the image! You can copy the frame using
cvCloneImage and then do whatever you want with the copy.
Python prototype (for reference only):
retrieve([, image[, flag]]) -> retval, image

 Link to this function

 set(self, propId, value)

 View Source

 @spec set(t(), integer(), number()) :: boolean() | {:error, String.t()}

Sets a property in the VideoCapture.
Positional Arguments
	self: Evision.VideoCapture.t()

	propId: int.
Property identifier from cv::VideoCaptureProperties (eg. cv::CAP_PROP_POS_MSEC, cv::CAP_PROP_POS_FRAMES, ...)
or one from @ref videoio_flags_others

	value: double.
Value of the property.

Return
	retval: bool

@return true if the property is supported by backend used by the VideoCapture instance.
Note: Even if it returns true this doesn't ensure that the property
value has been accepted by the capture device. See note in VideoCapture::get()
Python prototype (for reference only):
set(propId, value) -> retval

 Link to this function

 setExceptionMode(self, enable)

 View Source

 @spec setExceptionMode(t(), boolean()) :: t() | {:error, String.t()}

setExceptionMode
Positional Arguments
	self: Evision.VideoCapture.t()
	enable: bool

Switches exceptions mode
 methods raise exceptions if not successful instead of returning an error code
Python prototype (for reference only):
setExceptionMode(enable) -> None

 Link to this function

 videoCapture()

 View Source

 @spec videoCapture() :: t() | {:error, String.t()}

Default constructor
Return
	self: Evision.VideoCapture.t()

Note: In @ref videoio_c "C API", when you finished working with video, release CvCapture structure with
cvReleaseCapture(), or use Ptr\<CvCapture> that calls cvReleaseCapture() automatically in the
destructor.
Python prototype (for reference only):
VideoCapture() -> <VideoCapture object>

 Link to this function

 videoCapture(index)

 View Source

 @spec videoCapture(integer()) :: t() | {:error, String.t()}

 @spec videoCapture(binary()) :: t() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing
Positional Arguments
	index: int.
id of the video capturing device to open. To open default camera using default backend just pass 0.
(to backward compatibility usage of cameraid + domain_offset (CAP*) is valid when apiPreference is CAP_ANY)

Keyword Arguments
	apiPreference: int.
preferred Capture API backends to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. cv::CAP_DSHOW or cv::CAP_MSMF or cv::CAP_V4L.

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
@sa cv::VideoCaptureAPIs
Python prototype (for reference only):
VideoCapture(index[, apiPreference]) -> <VideoCapture object>
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing with API Preference
Positional Arguments
	filename: String.it can be:	name of video file (eg. video.avi)
	or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
	or URL of video stream (eg. protocol://host:port/script_name?script_params|auth)
	or GStreamer pipeline string in gst-launch tool format in case if GStreamer is used as backend
Note that each video stream or IP camera feed has its own URL scheme. Please refer to the
documentation of source stream to know the right URL.

Keyword Arguments
	apiPreference: int.
preferred Capture API backends to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_IMAGES or cv::CAP_DSHOW.

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
@sa cv::VideoCaptureAPIs
Python prototype (for reference only):
VideoCapture(filename[, apiPreference]) -> <VideoCapture object>

 Link to this function

 videoCapture(index, opts)

 View Source

 @spec videoCapture(integer(), [{:apiPreference, term()}] | nil) ::
 t() | {:error, String.t()}

 @spec videoCapture(binary(), [{:apiPreference, term()}] | nil) ::
 t() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing
Positional Arguments
	index: int.
id of the video capturing device to open. To open default camera using default backend just pass 0.
(to backward compatibility usage of cameraid + domain_offset (CAP*) is valid when apiPreference is CAP_ANY)

Keyword Arguments
	apiPreference: int.
preferred Capture API backends to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. cv::CAP_DSHOW or cv::CAP_MSMF or cv::CAP_V4L.

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
@sa cv::VideoCaptureAPIs
Python prototype (for reference only):
VideoCapture(index[, apiPreference]) -> <VideoCapture object>
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing with API Preference
Positional Arguments
	filename: String.it can be:	name of video file (eg. video.avi)
	or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
	or URL of video stream (eg. protocol://host:port/script_name?script_params|auth)
	or GStreamer pipeline string in gst-launch tool format in case if GStreamer is used as backend
Note that each video stream or IP camera feed has its own URL scheme. Please refer to the
documentation of source stream to know the right URL.

Keyword Arguments
	apiPreference: int.
preferred Capture API backends to use. Can be used to enforce a specific reader
implementation if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_IMAGES or cv::CAP_DSHOW.

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
@sa cv::VideoCaptureAPIs
Python prototype (for reference only):
VideoCapture(filename[, apiPreference]) -> <VideoCapture object>

 Link to this function

 videoCapture(index, apiPreference, params)

 View Source

 @spec videoCapture(integer(), integer(), [integer()]) :: t() | {:error, String.t()}

 @spec videoCapture(binary(), integer(), [integer()]) :: t() | {:error, String.t()}

Variant 1:
Opens a camera for video capturing with API Preference and parameters
Positional Arguments
	index: int
	apiPreference: int
	params: [int]

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
The params parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
Python prototype (for reference only):
VideoCapture(index, apiPreference, params) -> <VideoCapture object>
Variant 2:
Opens a video file or a capturing device or an IP video stream for video capturing with API Preference and parameters
Positional Arguments
	filename: String
	apiPreference: int
	params: [int]

Return
	self: Evision.VideoCapture.t()

Has overloading in C++
The params parameter allows to specify extra parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ...).
See cv::VideoCaptureProperties
Python prototype (for reference only):
VideoCapture(filename, apiPreference, params) -> <VideoCapture object>

 Link to this function

 waitAny(streams)

 View Source

 @spec waitAny([t()]) :: [integer()] | false | {:error, String.t()}

Wait for ready frames from VideoCapture.
Positional Arguments
	streams: [Evision.VideoCapture].
input video streams

Keyword Arguments
	timeoutNs: int64.
number of nanoseconds (0 - infinite)

Return
	retval: bool

	readyIndex: [int].
stream indexes with grabbed frames (ready to use .retrieve() to fetch actual frame)

@return true if streamReady is not empty
@throws Exception %Exception on stream errors (check .isOpened() to filter out malformed streams) or VideoCapture type is not supported
The primary use of the function is in multi-camera environments.
The method fills the ready state vector, grabs video frame, if camera is ready.
After this call use VideoCapture::retrieve() to decode and fetch frame data.
Python prototype (for reference only):
waitAny(streams[, timeoutNs]) -> retval, readyIndex

 Link to this function

 waitAny(streams, opts)

 View Source

 @spec waitAny([t()], [{:timeoutNs, term()}] | nil) ::
 [integer()] | false | {:error, String.t()}

Wait for ready frames from VideoCapture.
Positional Arguments
	streams: [Evision.VideoCapture].
input video streams

Keyword Arguments
	timeoutNs: int64.
number of nanoseconds (0 - infinite)

Return
	retval: bool

	readyIndex: [int].
stream indexes with grabbed frames (ready to use .retrieve() to fetch actual frame)

@return true if streamReady is not empty
@throws Exception %Exception on stream errors (check .isOpened() to filter out malformed streams) or VideoCapture type is not supported
The primary use of the function is in multi-camera environments.
The method fills the ready state vector, grabs video frame, if camera is ready.
After this call use VideoCapture::retrieve() to decode and fetch frame data.
Python prototype (for reference only):
waitAny(streams[, timeoutNs]) -> retval, readyIndex

 Evision.VideoIORegistry - Evision v0.1.39

Evision.VideoIORegistry

 Summary

 Types

 t()

 Type that represents an VideoIORegistry struct.

 Functions

 getBackendName(api)

 Returns backend API name or "UnknownVideoAPI(xxx)"

 getBackends()

 Returns list of all available backends

 getCameraBackendPluginVersion(api)

 Returns description and ABI/API version of videoio plugin's camera interface

 getCameraBackends()

 Returns list of available backends which works via cv::VideoCapture(int index)

 getStreamBackendPluginVersion(api)

 Returns description and ABI/API version of videoio plugin's stream capture interface

 getStreamBackends()

 Returns list of available backends which works via cv::VideoCapture(filename)

 getWriterBackendPluginVersion(api)

 Returns description and ABI/API version of videoio plugin's writer interface

 getWriterBackends()

 Returns list of available backends which works via cv::VideoWriter()

 hasBackend(api)

 Returns true if backend is available

 isBackendBuiltIn(api)

 Returns true if backend is built in (false if backend is used as plugin)

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.VideoIORegistry{ref: reference()}

Type that represents an VideoIORegistry struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getBackendName(api)

 View Source

 @spec getBackendName(integer()) :: binary() | {:error, String.t()}

Returns backend API name or "UnknownVideoAPI(xxx)"
Positional Arguments
	api: VideoCaptureAPIs.
backend ID (#VideoCaptureAPIs)

Return
	retval: String

Python prototype (for reference only):
getBackendName(api) -> retval

 Link to this function

 getBackends()

 View Source

 @spec getBackends() :: [integer()] | {:error, String.t()}

Returns list of all available backends
Return
	retval: [VideoCaptureAPIs]

Python prototype (for reference only):
getBackends() -> retval

 Link to this function

 getCameraBackendPluginVersion(api)

 View Source

 @spec getCameraBackendPluginVersion(integer()) ::
 {binary(), integer(), integer()} | {:error, String.t()}

Returns description and ABI/API version of videoio plugin's camera interface
Positional Arguments
	api: VideoCaptureAPIs

Return
	retval: string
	version_ABI: int
	version_API: int

Python prototype (for reference only):
getCameraBackendPluginVersion(api) -> retval, version_ABI, version_API

 Link to this function

 getCameraBackends()

 View Source

 @spec getCameraBackends() :: [integer()] | {:error, String.t()}

Returns list of available backends which works via cv::VideoCapture(int index)
Return
	retval: [VideoCaptureAPIs]

Python prototype (for reference only):
getCameraBackends() -> retval

 Link to this function

 getStreamBackendPluginVersion(api)

 View Source

 @spec getStreamBackendPluginVersion(integer()) ::
 {binary(), integer(), integer()} | {:error, String.t()}

Returns description and ABI/API version of videoio plugin's stream capture interface
Positional Arguments
	api: VideoCaptureAPIs

Return
	retval: string
	version_ABI: int
	version_API: int

Python prototype (for reference only):
getStreamBackendPluginVersion(api) -> retval, version_ABI, version_API

 Link to this function

 getStreamBackends()

 View Source

 @spec getStreamBackends() :: [integer()] | {:error, String.t()}

Returns list of available backends which works via cv::VideoCapture(filename)
Return
	retval: [VideoCaptureAPIs]

Python prototype (for reference only):
getStreamBackends() -> retval

 Link to this function

 getWriterBackendPluginVersion(api)

 View Source

 @spec getWriterBackendPluginVersion(integer()) ::
 {binary(), integer(), integer()} | {:error, String.t()}

Returns description and ABI/API version of videoio plugin's writer interface
Positional Arguments
	api: VideoCaptureAPIs

Return
	retval: string
	version_ABI: int
	version_API: int

Python prototype (for reference only):
getWriterBackendPluginVersion(api) -> retval, version_ABI, version_API

 Link to this function

 getWriterBackends()

 View Source

 @spec getWriterBackends() :: [integer()] | {:error, String.t()}

Returns list of available backends which works via cv::VideoWriter()
Return
	retval: [VideoCaptureAPIs]

Python prototype (for reference only):
getWriterBackends() -> retval

 Link to this function

 hasBackend(api)

 View Source

 @spec hasBackend(integer()) :: boolean() | {:error, String.t()}

Returns true if backend is available
Positional Arguments
	api: VideoCaptureAPIs

Return
	retval: bool

Python prototype (for reference only):
hasBackend(api) -> retval

 Link to this function

 isBackendBuiltIn(api)

 View Source

 @spec isBackendBuiltIn(integer()) :: boolean() | {:error, String.t()}

Returns true if backend is built in (false if backend is used as plugin)
Positional Arguments
	api: VideoCaptureAPIs

Return
	retval: bool

Python prototype (for reference only):
isBackendBuiltIn(api) -> retval

 Evision.VideoWriter - Evision v0.1.39

Evision.VideoWriter

 Summary

 Types

 t()

 Type that represents an VideoWriter struct.

 Functions

 fourcc(c1, c2, c3, c4)

 Concatenates 4 chars to a fourcc code

 get(self, propId)

 Returns the specified VideoWriter property

 getBackendName(self)

 Returns used backend API name

 isOpened(self)

 Returns true if video writer has been successfully initialized.

 open(self, filename, fourcc, fps, frameSize)

 Initializes or reinitializes video writer.

 open(self, filename, fourcc, fps, frameSize, opts)

 Variant 1:
open

 open(self, filename, apiPreference, fourcc, fps, frameSize, opts)

 Variant 1:
open

 release(self)

 Closes the video writer.

 set(self, propId, value)

 Sets a property in the VideoWriter.

 videoWriter()

 Default constructors

 videoWriter(filename, fourcc, fps, frameSize)

 VideoWriter

 videoWriter(filename, fourcc, fps, frameSize, opts)

 Variant 1:
VideoWriter

 videoWriter(filename, apiPreference, fourcc, fps, frameSize, opts)

 Variant 1:
VideoWriter

 write(self, image)

 Writes the next video frame

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.VideoWriter{ref: reference()}

Type that represents an VideoWriter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 fourcc(c1, c2, c3, c4)

 View Source

 @spec fourcc(char(), char(), char(), char()) :: integer() | {:error, String.t()}

Concatenates 4 chars to a fourcc code
Positional Arguments
	c1: char
	c2: char
	c3: char
	c4: char

Return
	retval: int

@return a fourcc code
This static method constructs the fourcc code of the codec to be used in the constructor
VideoWriter::VideoWriter or VideoWriter::open.
Python prototype (for reference only):
fourcc(c1, c2, c3, c4) -> retval

 Link to this function

 get(self, propId)

 View Source

 @spec get(t(), integer()) :: number() | {:error, String.t()}

Returns the specified VideoWriter property
Positional Arguments
	self: Evision.VideoWriter.t()

	propId: int.
Property identifier from cv::VideoWriterProperties (eg. cv::VIDEOWRITER_PROP_QUALITY)
or one of @ref videoio_flags_others

Return
	retval: double

@return Value for the specified property. Value 0 is returned when querying a property that is
not supported by the backend used by the VideoWriter instance.
Python prototype (for reference only):
get(propId) -> retval

 Link to this function

 getBackendName(self)

 View Source

 @spec getBackendName(t()) :: binary() | {:error, String.t()}

Returns used backend API name
Positional Arguments
	self: Evision.VideoWriter.t()

Return
	retval: String

Note: Stream should be opened.
Python prototype (for reference only):
getBackendName() -> retval

 Link to this function

 isOpened(self)

 View Source

 @spec isOpened(t()) :: boolean() | {:error, String.t()}

Returns true if video writer has been successfully initialized.
Positional Arguments
	self: Evision.VideoWriter.t()

Return
	retval: bool

Python prototype (for reference only):
isOpened() -> retval

 Link to this function

 open(self, filename, fourcc, fps, frameSize)

 View Source

 @spec open(t(), binary(), integer(), number(), {number(), number()}) ::
 boolean() | {:error, String.t()}

Initializes or reinitializes video writer.
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	retval: bool

The method opens video writer. Parameters are the same as in the constructor
VideoWriter::VideoWriter.
@return true if video writer has been successfully initialized
The method first calls VideoWriter::release to close the already opened file.
Python prototype (for reference only):
open(filename, fourcc, fps, frameSize[, isColor]) -> retval

 Link to this function

 open(self, filename, fourcc, fps, frameSize, opts)

 View Source

 @spec open(
 t(),
 binary(),
 integer(),
 number(),
 {number(), number()},
 [{:isColor, term()}] | nil
) ::
 boolean() | {:error, String.t()}

 @spec open(t(), binary(), integer(), number(), {number(), number()}, [integer()]) ::
 boolean() | {:error, String.t()}

 @spec open(t(), binary(), integer(), integer(), number(), {number(), number()}) ::
 boolean() | {:error, String.t()}

Variant 1:
open
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	fourcc: int
	fps: double
	frameSize: Size
	params: [int]

Return
	retval: bool

Has overloading in C++
Python prototype (for reference only):
open(filename, fourcc, fps, frameSize, params) -> retval
Variant 2:
open
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	retval: bool

Has overloading in C++
Python prototype (for reference only):
open(filename, apiPreference, fourcc, fps, frameSize[, isColor]) -> retval
Variant 3:
Initializes or reinitializes video writer.
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	retval: bool

The method opens video writer. Parameters are the same as in the constructor
VideoWriter::VideoWriter.
@return true if video writer has been successfully initialized
The method first calls VideoWriter::release to close the already opened file.
Python prototype (for reference only):
open(filename, fourcc, fps, frameSize[, isColor]) -> retval

 Link to this function

 open(self, filename, apiPreference, fourcc, fps, frameSize, opts)

 View Source

 @spec open(
 t(),
 binary(),
 integer(),
 integer(),
 number(),
 {number(), number()},
 [{:isColor, term()}] | nil
) :: boolean() | {:error, String.t()}

 @spec open(t(), binary(), integer(), integer(), number(), {number(), number()}, [
 integer()
]) ::
 boolean() | {:error, String.t()}

Variant 1:
open
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size
	params: [int]

Return
	retval: bool

Has overloading in C++
Python prototype (for reference only):
open(filename, apiPreference, fourcc, fps, frameSize, params) -> retval
Variant 2:
open
Positional Arguments
	self: Evision.VideoWriter.t()
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	retval: bool

Has overloading in C++
Python prototype (for reference only):
open(filename, apiPreference, fourcc, fps, frameSize[, isColor]) -> retval

 Link to this function

 release(self)

 View Source

 @spec release(t()) :: t() | {:error, String.t()}

Closes the video writer.
Positional Arguments
	self: Evision.VideoWriter.t()

The method is automatically called by subsequent VideoWriter::open and by the VideoWriter
destructor.
Python prototype (for reference only):
release() -> None

 Link to this function

 set(self, propId, value)

 View Source

 @spec set(t(), integer(), number()) :: boolean() | {:error, String.t()}

Sets a property in the VideoWriter.
Positional Arguments
	self: Evision.VideoWriter.t()

	propId: int.
Property identifier from cv::VideoWriterProperties (eg. cv::VIDEOWRITER_PROP_QUALITY)
or one of @ref videoio_flags_others

	value: double.
Value of the property.

Return
	retval: bool

@return true if the property is supported by the backend used by the VideoWriter instance.
Python prototype (for reference only):
set(propId, value) -> retval

 Link to this function

 videoWriter()

 View Source

 @spec videoWriter() :: t() | {:error, String.t()}

Default constructors
Return
	self: Evision.VideoWriter.t()

The constructors/functions initialize video writers.
	On Linux FFMPEG is used to write videos;
	On Windows FFMPEG or MSWF or DSHOW is used;
	On MacOSX AVFoundation is used.

Python prototype (for reference only):
VideoWriter() -> <VideoWriter object>

 Link to this function

 videoWriter(filename, fourcc, fps, frameSize)

 View Source

 @spec videoWriter(binary(), integer(), number(), {number(), number()}) ::
 t() | {:error, String.t()}

VideoWriter
Positional Arguments
	filename: String.
Name of the output video file.

	fourcc: int.
4-character code of codec used to compress the frames. For example,
VideoWriter::fourcc('P','I','M','1') is a MPEG-1 codec, VideoWriter::fourcc('M','J','P','G')
is a motion-jpeg codec etc. List of codes can be obtained at
MSDN page
or with this page
of the fourcc site for a more complete list). FFMPEG backend with MP4 container natively uses
other values as fourcc code: see ObjectType,
so you may receive a warning message from OpenCV about fourcc code conversion.

	fps: double.
Framerate of the created video stream.

	frameSize: Size.
Size of the video frames.

Keyword Arguments
	isColor: bool.
If it is not zero, the encoder will expect and encode color frames, otherwise it
will work with grayscale frames.

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
@b Tips:
	With some backends fourcc=-1 pops up the codec selection dialog from the system.

	To save image sequence use a proper filename (eg. img_%02d.jpg) and fourcc=0
OR fps=0. Use uncompressed image format (eg. img_%02d.BMP) to save raw frames.

	Most codecs are lossy. If you want lossless video file you need to use a lossless codecs
(eg. FFMPEG FFV1, Huffman HFYU, Lagarith LAGS, etc...)

	If FFMPEG is enabled, using codec=0; fps=0; you can create an uncompressed (raw) video file.

	If FFMPEG is used, we allow frames of odd width or height, but in this case we truncate
the rightmost column/the bottom row. Probably, this should be handled more elegantly,
but some internal functions inside FFMPEG swscale require even width/height.

Python prototype (for reference only):
VideoWriter(filename, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>

 Link to this function

 videoWriter(filename, fourcc, fps, frameSize, opts)

 View Source

 @spec videoWriter(
 binary(),
 integer(),
 number(),
 {number(), number()},
 [{:isColor, term()}] | nil
) ::
 t() | {:error, String.t()}

 @spec videoWriter(binary(), integer(), number(), {number(), number()}, [integer()]) ::
 t() | {:error, String.t()}

 @spec videoWriter(binary(), integer(), integer(), number(), {number(), number()}) ::
 t() | {:error, String.t()}

Variant 1:
VideoWriter
Positional Arguments
	filename: String
	fourcc: int
	fps: double
	frameSize: Size
	params: [int]

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
 The params parameter allows to specify extra encoder parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2,)
 see cv::VideoWriterProperties
Python prototype (for reference only):
VideoWriter(filename, fourcc, fps, frameSize, params) -> <VideoWriter object>
Variant 2:
VideoWriter
Positional Arguments
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
The apiPreference parameter allows to specify API backends to use. Can be used to enforce a specific reader implementation
if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_GSTREAMER.
Python prototype (for reference only):
VideoWriter(filename, apiPreference, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>
Variant 3:
VideoWriter
Positional Arguments
	filename: String.
Name of the output video file.

	fourcc: int.
4-character code of codec used to compress the frames. For example,
VideoWriter::fourcc('P','I','M','1') is a MPEG-1 codec, VideoWriter::fourcc('M','J','P','G')
is a motion-jpeg codec etc. List of codes can be obtained at
MSDN page
or with this page
of the fourcc site for a more complete list). FFMPEG backend with MP4 container natively uses
other values as fourcc code: see ObjectType,
so you may receive a warning message from OpenCV about fourcc code conversion.

	fps: double.
Framerate of the created video stream.

	frameSize: Size.
Size of the video frames.

Keyword Arguments
	isColor: bool.
If it is not zero, the encoder will expect and encode color frames, otherwise it
will work with grayscale frames.

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
@b Tips:
	With some backends fourcc=-1 pops up the codec selection dialog from the system.

	To save image sequence use a proper filename (eg. img_%02d.jpg) and fourcc=0
OR fps=0. Use uncompressed image format (eg. img_%02d.BMP) to save raw frames.

	Most codecs are lossy. If you want lossless video file you need to use a lossless codecs
(eg. FFMPEG FFV1, Huffman HFYU, Lagarith LAGS, etc...)

	If FFMPEG is enabled, using codec=0; fps=0; you can create an uncompressed (raw) video file.

	If FFMPEG is used, we allow frames of odd width or height, but in this case we truncate
the rightmost column/the bottom row. Probably, this should be handled more elegantly,
but some internal functions inside FFMPEG swscale require even width/height.

Python prototype (for reference only):
VideoWriter(filename, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>

 Link to this function

 videoWriter(filename, apiPreference, fourcc, fps, frameSize, opts)

 View Source

 @spec videoWriter(
 binary(),
 integer(),
 integer(),
 number(),
 {number(), number()},
 [{:isColor, term()}] | nil
) :: t() | {:error, String.t()}

 @spec videoWriter(binary(), integer(), integer(), number(), {number(), number()}, [
 integer()
]) ::
 t() | {:error, String.t()}

Variant 1:
VideoWriter
Positional Arguments
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size
	params: [int]

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
Python prototype (for reference only):
VideoWriter(filename, apiPreference, fourcc, fps, frameSize, params) -> <VideoWriter object>
Variant 2:
VideoWriter
Positional Arguments
	filename: String
	apiPreference: int
	fourcc: int
	fps: double
	frameSize: Size

Keyword Arguments
	isColor: bool.

Return
	self: Evision.VideoWriter.t()

Has overloading in C++
The apiPreference parameter allows to specify API backends to use. Can be used to enforce a specific reader implementation
if multiple are available: e.g. cv::CAP_FFMPEG or cv::CAP_GSTREAMER.
Python prototype (for reference only):
VideoWriter(filename, apiPreference, fourcc, fps, frameSize[, isColor]) -> <VideoWriter object>

 Link to this function

 write(self, image)

 View Source

 @spec write(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Writes the next video frame
Positional Arguments
	self: Evision.VideoWriter.t()

	image: Evision.Mat.t().
The written frame. In general, color images are expected in BGR format.

The function/method writes the specified image to video file. It must have the same size as has
been specified when opening the video writer.
Python prototype (for reference only):
write(image) -> None

 Evision.WarperCreator - Evision v0.1.39

Evision.WarperCreator

 Summary

 Types

 t()

 Type that represents an WarperCreator struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.WarperCreator{ref: reference()}

Type that represents an WarperCreator struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.WeChatQRCode - Evision v0.1.39

Evision.WeChatQRCode

 Summary

 Types

 t()

 Type that represents an WeChatQRCode struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.WeChatQRCode{ref: reference()}

Type that represents an WeChatQRCode struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.WeChatQRCode.WeChatQRCode - Evision v0.1.39

Evision.WeChatQRCode.WeChatQRCode

 Summary

 Types

 t()

 Type that represents an WeChatQRCode.WeChatQRCode struct.

 Functions

 detectAndDecode(self, img)

 Both detects and decodes QR code.
To simplify the usage, there is a only API: detectAndDecode

 detectAndDecode(self, img, opts)

 Both detects and decodes QR code.
To simplify the usage, there is a only API: detectAndDecode

 getScaleFactor(self)

 getScaleFactor

 setScaleFactor(self, scalingFactor)

 set scale factor
QR code detector use neural network to detect QR.
Before running the neural network, the input image is pre-processed by scaling.
By default, the input image is scaled to an image with an area of 160000 pixels.
The scale factor allows to use custom scale the input image:
width = scaleFactorwidth
height = scaleFactorwidth

 weChatQRCode()

 Initialize the WeChatQRCode.
It includes two models, which are packaged with caffe format.
Therefore, there are prototxt and caffe models (In total, four paramenters).

 weChatQRCode(opts)

 Initialize the WeChatQRCode.
It includes two models, which are packaged with caffe format.
Therefore, there are prototxt and caffe models (In total, four paramenters).

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.WeChatQRCode.WeChatQRCode{ref: reference()}

Type that represents an WeChatQRCode.WeChatQRCode struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 detectAndDecode(self, img)

 View Source

 @spec detectAndDecode(t(), Evision.Mat.maybe_mat_in()) ::
 {[binary()], [Evision.Mat.t()]} | {:error, String.t()}

Both detects and decodes QR code.
To simplify the usage, there is a only API: detectAndDecode
Positional Arguments
	self: Evision.WeChatQRCode.WeChatQRCode.t()

	img: Evision.Mat.t().
supports grayscale or color (BGR) image.

Return
	retval: [string]

	points: [Evision.Mat].
optional output array of vertices of the found QR code quadrangle. Will be
empty if not found.

@return list of decoded string.
Python prototype (for reference only):
detectAndDecode(img[, points]) -> retval, points

 Link to this function

 detectAndDecode(self, img, opts)

 View Source

 @spec detectAndDecode(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 {[binary()], [Evision.Mat.t()]} | {:error, String.t()}

Both detects and decodes QR code.
To simplify the usage, there is a only API: detectAndDecode
Positional Arguments
	self: Evision.WeChatQRCode.WeChatQRCode.t()

	img: Evision.Mat.t().
supports grayscale or color (BGR) image.

Return
	retval: [string]

	points: [Evision.Mat].
optional output array of vertices of the found QR code quadrangle. Will be
empty if not found.

@return list of decoded string.
Python prototype (for reference only):
detectAndDecode(img[, points]) -> retval, points

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.WeChatQRCode.WeChatQRCode.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 setScaleFactor(self, scalingFactor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

set scale factor
QR code detector use neural network to detect QR.
Before running the neural network, the input image is pre-processed by scaling.
By default, the input image is scaled to an image with an area of 160000 pixels.
The scale factor allows to use custom scale the input image:
width = scaleFactorwidth
height = scaleFactorwidth
Positional Arguments
	self: Evision.WeChatQRCode.WeChatQRCode.t()
	scalingFactor: float

 scaleFactor valuse must be > 0 and <= 1, otherwise the scaleFactor value is set to -1
 and use default scaled to an image with an area of 160000 pixels.
Python prototype (for reference only):
setScaleFactor(_scalingFactor) -> None

 Link to this function

 weChatQRCode()

 View Source

 @spec weChatQRCode() :: t() | {:error, String.t()}

Initialize the WeChatQRCode.
It includes two models, which are packaged with caffe format.
Therefore, there are prototxt and caffe models (In total, four paramenters).
Keyword Arguments
	detector_prototxt_path: string.
prototxt file path for the detector

	detector_caffe_model_path: string.
caffe model file path for the detector

	super_resolution_prototxt_path: string.
prototxt file path for the super resolution model

	super_resolution_caffe_model_path: string.
caffe file path for the super resolution model

Return
	self: Evision.WeChatQRCode.WeChatQRCode.t()

Python prototype (for reference only):
WeChatQRCode([, detector_prototxt_path[, detector_caffe_model_path[, super_resolution_prototxt_path[, super_resolution_caffe_model_path]]]]) -> <wechat_qrcode_WeChatQRCode object>

 Link to this function

 weChatQRCode(opts)

 View Source

 @spec weChatQRCode(
 [
 super_resolution_prototxt_path: term(),
 detector_prototxt_path: term(),
 detector_caffe_model_path: term(),
 super_resolution_caffe_model_path: term()
]
 | nil
) :: t() | {:error, String.t()}

Initialize the WeChatQRCode.
It includes two models, which are packaged with caffe format.
Therefore, there are prototxt and caffe models (In total, four paramenters).
Keyword Arguments
	detector_prototxt_path: string.
prototxt file path for the detector

	detector_caffe_model_path: string.
caffe model file path for the detector

	super_resolution_prototxt_path: string.
prototxt file path for the super resolution model

	super_resolution_caffe_model_path: string.
caffe file path for the super resolution model

Return
	self: Evision.WeChatQRCode.WeChatQRCode.t()

Python prototype (for reference only):
WeChatQRCode([, detector_prototxt_path[, detector_caffe_model_path[, super_resolution_prototxt_path[, super_resolution_caffe_model_path]]]]) -> <wechat_qrcode_WeChatQRCode object>

 Evision.Wx - Evision v0.1.39

Evision.Wx

Interact with wxWidgets

 Summary

 Functions

 destroyAllWindows()

 destroyWindow(window_name)

 imshow(window_name, image)

Functions

 Link to this function

 destroyAllWindows()

 View Source

 Link to this function

 destroyWindow(window_name)

 View Source

 Link to this function

 imshow(window_name, image)

 View Source

 Evision.XFeatures2D - Evision v0.1.39

Evision.XFeatures2D

 Summary

 Types

 t()

 Type that represents an XFeatures2D struct.

 Functions

 matchGMS(size1, size2, keypoints1, keypoints2, matches1to2)

 GMS (Grid-based Motion Statistics) feature matching strategy described in @cite Bian2017gms .

 matchGMS(size1, size2, keypoints1, keypoints2, matches1to2, opts)

 GMS (Grid-based Motion Statistics) feature matching strategy described in @cite Bian2017gms .

 matchLOGOS(keypoints1, keypoints2, nn1, nn2)

 LOGOS (Local geometric support for high-outlier spatial verification) feature matching strategy described in @cite Lowry2018LOGOSLG .

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D{ref: reference()}

Type that represents an XFeatures2D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 matchGMS(size1, size2, keypoints1, keypoints2, matches1to2)

 View Source

 @spec matchGMS(
 {number(), number()},
 {number(), number()},
 [Evision.KeyPoint.t()],
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()]
) :: [Evision.DMatch.t()] | {:error, String.t()}

GMS (Grid-based Motion Statistics) feature matching strategy described in @cite Bian2017gms .
Positional Arguments
	size1: Size.
Input size of image1.

	size2: Size.
Input size of image2.

	keypoints1: [Evision.KeyPoint].
Input keypoints of image1.

	keypoints2: [Evision.KeyPoint].
Input keypoints of image2.

	matches1to2: [Evision.DMatch].
Input 1-nearest neighbor matches.

Keyword Arguments
	withRotation: bool.
Take rotation transformation into account.

	withScale: bool.
Take scale transformation into account.

	thresholdFactor: double.
The higher, the less matches.

Return
	matchesGMS: [Evision.DMatch].
Matches returned by the GMS matching strategy.

Note:
Since GMS works well when the number of features is large, we recommend to use the ORB feature and set FastThreshold to 0 to get as many as possible features quickly.
If matching results are not satisfying, please add more features. (We use 10000 for images with 640 X 480).
If your images have big rotation and scale changes, please set withRotation or withScale to true.
Python prototype (for reference only):
matchGMS(size1, size2, keypoints1, keypoints2, matches1to2[, withRotation[, withScale[, thresholdFactor]]]) -> matchesGMS

 Link to this function

 matchGMS(size1, size2, keypoints1, keypoints2, matches1to2, opts)

 View Source

 @spec matchGMS(
 {number(), number()},
 {number(), number()},
 [Evision.KeyPoint.t()],
 [Evision.KeyPoint.t()],
 [Evision.DMatch.t()],
 [withRotation: term(), thresholdFactor: term(), withScale: term()] | nil
) :: [Evision.DMatch.t()] | {:error, String.t()}

GMS (Grid-based Motion Statistics) feature matching strategy described in @cite Bian2017gms .
Positional Arguments
	size1: Size.
Input size of image1.

	size2: Size.
Input size of image2.

	keypoints1: [Evision.KeyPoint].
Input keypoints of image1.

	keypoints2: [Evision.KeyPoint].
Input keypoints of image2.

	matches1to2: [Evision.DMatch].
Input 1-nearest neighbor matches.

Keyword Arguments
	withRotation: bool.
Take rotation transformation into account.

	withScale: bool.
Take scale transformation into account.

	thresholdFactor: double.
The higher, the less matches.

Return
	matchesGMS: [Evision.DMatch].
Matches returned by the GMS matching strategy.

Note:
Since GMS works well when the number of features is large, we recommend to use the ORB feature and set FastThreshold to 0 to get as many as possible features quickly.
If matching results are not satisfying, please add more features. (We use 10000 for images with 640 X 480).
If your images have big rotation and scale changes, please set withRotation or withScale to true.
Python prototype (for reference only):
matchGMS(size1, size2, keypoints1, keypoints2, matches1to2[, withRotation[, withScale[, thresholdFactor]]]) -> matchesGMS

 Link to this function

 matchLOGOS(keypoints1, keypoints2, nn1, nn2)

 View Source

 @spec matchLOGOS([Evision.KeyPoint.t()], [Evision.KeyPoint.t()], [integer()], [
 integer()
]) ::
 [Evision.DMatch.t()] | {:error, String.t()}

LOGOS (Local geometric support for high-outlier spatial verification) feature matching strategy described in @cite Lowry2018LOGOSLG .
Positional Arguments
	keypoints1: [Evision.KeyPoint].
Input keypoints of image1.

	keypoints2: [Evision.KeyPoint].
Input keypoints of image2.

	nn1: [int].
Index to the closest BoW centroid for each descriptors of image1.

	nn2: [int].
Index to the closest BoW centroid for each descriptors of image2.

Return
	matches1to2: [Evision.DMatch].
Matches returned by the LOGOS matching strategy.

Note:
This matching strategy is suitable for features matching against large scale database.
First step consists in constructing the bag-of-words (BoW) from a representative image database.
Image descriptors are then represented by their closest codevector (nearest BoW centroid).
Python prototype (for reference only):
matchLOGOS(keypoints1, keypoints2, nn1, nn2) -> matches1to2

 Evision.XFeatures2D.AffineFeature2D - Evision v0.1.39

Evision.XFeatures2D.AffineFeature2D

 Summary

 Types

 t()

 Type that represents an XFeatures2D.AffineFeature2D struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 read(self, arg1)

 Variant 1:
read

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.AffineFeature2D{ref: reference()}

Type that represents an XFeatures2D.AffineFeature2D struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Feature2D.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.AffineFeature2D.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.BEBLID - Evision v0.1.39

Evision.XFeatures2D.BEBLID

 Summary

 Types

 t()

 Type that represents an XFeatures2D.BEBLID struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create(scale_factor)

 Creates the BEBLID descriptor.

 create(scale_factor, opts)

 Creates the BEBLID descriptor.

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getScaleFactor(self)

 getScaleFactor

 read(self, arg1)

 Variant 1:
read

 setScaleFactor(self, scale_factor)

 setScaleFactor

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.BEBLID{ref: reference()}

Type that represents an XFeatures2D.BEBLID struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create(scale_factor)

 View Source

 @spec create(number()) :: t() | {:error, String.t()}

Creates the BEBLID descriptor.
Positional Arguments
	scale_factor: float.Adjust the sampling window around detected keypoints:	 1.00f should be the scale for ORB keypoints
	 6.75f should be the scale for SIFT detected keypoints
	 6.25f is default and fits for KAZE, SURF detected keypoints
	 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints

Keyword Arguments
	n_bits: int.
Determine the number of bits in the descriptor. Should be either
BEBLID::SIZE_512_BITS or BEBLID::SIZE_256_BITS.

Return
	retval: BEBLID

Python prototype (for reference only):
create(scale_factor[, n_bits]) -> retval

 Link to this function

 create(scale_factor, opts)

 View Source

 @spec create(number(), [{:n_bits, term()}] | nil) :: t() | {:error, String.t()}

Creates the BEBLID descriptor.
Positional Arguments
	scale_factor: float.Adjust the sampling window around detected keypoints:	 1.00f should be the scale for ORB keypoints
	 6.75f should be the scale for SIFT detected keypoints
	 6.25f is default and fits for KAZE, SURF detected keypoints
	 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints

Keyword Arguments
	n_bits: int.
Determine the number of bits in the descriptor. Should be either
BEBLID::SIZE_512_BITS or BEBLID::SIZE_256_BITS.

Return
	retval: BEBLID

Python prototype (for reference only):
create(scale_factor[, n_bits]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setScaleFactor(self, scale_factor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	scale_factor: float

Python prototype (for reference only):
setScaleFactor(scale_factor) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BEBLID.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.BoostDesc - Evision v0.1.39

Evision.XFeatures2D.BoostDesc

 Summary

 Types

 t()

 Type that represents an XFeatures2D.BoostDesc struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getScaleFactor(self)

 getScaleFactor

 getUseScaleOrientation(self)

 getUseScaleOrientation

 read(self, arg1)

 Variant 1:
read

 setScaleFactor(self, scale_factor)

 setScaleFactor

 setUseScaleOrientation(self, use_scale_orientation)

 setUseScaleOrientation

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.BoostDesc{ref: reference()}

Type that represents an XFeatures2D.BoostDesc struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	desc: int.
	use_scale_orientation: bool.
	scale_factor: float.

Return
	retval: BoostDesc

Python prototype (for reference only):
create([, desc[, use_scale_orientation[, scale_factor]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [desc: term(), scale_factor: term(), use_scale_orientation: term()]
 | nil
) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	desc: int.
	use_scale_orientation: bool.
	scale_factor: float.

Return
	retval: BoostDesc

Python prototype (for reference only):
create([, desc[, use_scale_orientation[, scale_factor]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getUseScaleOrientation(self)

 View Source

 @spec getUseScaleOrientation(t()) :: boolean() | {:error, String.t()}

getUseScaleOrientation
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()

Return
	retval: bool

Python prototype (for reference only):
getUseScaleOrientation() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setScaleFactor(self, scale_factor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	scale_factor: float

Python prototype (for reference only):
setScaleFactor(scale_factor) -> None

 Link to this function

 setUseScaleOrientation(self, use_scale_orientation)

 View Source

 @spec setUseScaleOrientation(t(), boolean()) :: t() | {:error, String.t()}

setUseScaleOrientation
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	use_scale_orientation: bool

Python prototype (for reference only):
setUseScaleOrientation(use_scale_orientation) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BoostDesc.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.BriefDescriptorExtractor - Evision v0.1.39

Evision.XFeatures2D.BriefDescriptorExtractor

 Summary

 Types

 t()

 Type that represents an XFeatures2D.BriefDescriptorExtractor struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getDescriptorSize(self)

 getDescriptorSize

 getUseOrientation(self)

 getUseOrientation

 read(self, arg1)

 Variant 1:
read

 setDescriptorSize(self, bytes)

 setDescriptorSize

 setUseOrientation(self, use_orientation)

 setUseOrientation

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.BriefDescriptorExtractor{ref: reference()}

Type that represents an XFeatures2D.BriefDescriptorExtractor struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	bytes: int.
	use_orientation: bool.

Return
	retval: BriefDescriptorExtractor

Python prototype (for reference only):
create([, bytes[, use_orientation]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([use_orientation: term(), bytes: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	bytes: int.
	use_orientation: bool.

Return
	retval: BriefDescriptorExtractor

Python prototype (for reference only):
create([, bytes[, use_orientation]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDescriptorSize(self)

 View Source

 @spec getDescriptorSize(t()) :: integer() | {:error, String.t()}

getDescriptorSize
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: int

Python prototype (for reference only):
getDescriptorSize() -> retval

 Link to this function

 getUseOrientation(self)

 View Source

 @spec getUseOrientation(t()) :: boolean() | {:error, String.t()}

getUseOrientation
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()

Return
	retval: bool

Python prototype (for reference only):
getUseOrientation() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setDescriptorSize(self, bytes)

 View Source

 @spec setDescriptorSize(t(), integer()) :: t() | {:error, String.t()}

setDescriptorSize
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	bytes: int

Python prototype (for reference only):
setDescriptorSize(bytes) -> None

 Link to this function

 setUseOrientation(self, use_orientation)

 View Source

 @spec setUseOrientation(t(), boolean()) :: t() | {:error, String.t()}

setUseOrientation
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	use_orientation: bool

Python prototype (for reference only):
setUseOrientation(use_orientation) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.BriefDescriptorExtractor.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.DAISY - Evision v0.1.39

Evision.XFeatures2D.DAISY

 Summary

 Types

 t()

 Type that represents an XFeatures2D.DAISY struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getH(self)

 getH

 getInterpolation(self)

 getInterpolation

 getNorm(self)

 getNorm

 getQHist(self)

 getQHist

 getQRadius(self)

 getQRadius

 getQTheta(self)

 getQTheta

 getRadius(self)

 getRadius

 getUseOrientation(self)

 getUseOrientation

 read(self, arg1)

 Variant 1:
read

 setH(self, h)

 setH

 setInterpolation(self, interpolation)

 setInterpolation

 setNorm(self, norm)

 setNorm

 setQHist(self, q_hist)

 setQHist

 setQRadius(self, q_radius)

 setQRadius

 setQTheta(self, q_theta)

 setQTheta

 setRadius(self, radius)

 setRadius

 setUseOrientation(self, use_orientation)

 setUseOrientation

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.DAISY{ref: reference()}

Type that represents an XFeatures2D.DAISY struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	radius: float.
	q_radius: int.
	q_theta: int.
	q_hist: int.
	norm: DAISY_NormalizationType.
	h: Evision.Mat.t().
	interpolation: bool.
	use_orientation: bool.

Return
	retval: DAISY

Python prototype (for reference only):
create([, radius[, q_radius[, q_theta[, q_hist[, norm[, H[, interpolation[, use_orientation]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 q_radius: term(),
 radius: term(),
 q_theta: term(),
 h: term(),
 q_hist: term(),
 norm: term(),
 interpolation: term(),
 use_orientation: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	radius: float.
	q_radius: int.
	q_theta: int.
	q_hist: int.
	norm: DAISY_NormalizationType.
	h: Evision.Mat.t().
	interpolation: bool.
	use_orientation: bool.

Return
	retval: DAISY

Python prototype (for reference only):
create([, radius[, q_radius[, q_theta[, q_hist[, norm[, H[, interpolation[, use_orientation]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getH(self)

 View Source

 @spec getH(t()) :: Evision.Mat.t() | {:error, String.t()}

getH
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getH() -> retval

 Link to this function

 getInterpolation(self)

 View Source

 @spec getInterpolation(t()) :: boolean() | {:error, String.t()}

getInterpolation
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: bool

Python prototype (for reference only):
getInterpolation() -> retval

 Link to this function

 getNorm(self)

 View Source

 @spec getNorm(t()) :: integer() | {:error, String.t()}

getNorm
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
getNorm() -> retval

 Link to this function

 getQHist(self)

 View Source

 @spec getQHist(t()) :: integer() | {:error, String.t()}

getQHist
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
getQHist() -> retval

 Link to this function

 getQRadius(self)

 View Source

 @spec getQRadius(t()) :: integer() | {:error, String.t()}

getQRadius
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
getQRadius() -> retval

 Link to this function

 getQTheta(self)

 View Source

 @spec getQTheta(t()) :: integer() | {:error, String.t()}

getQTheta
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: int

Python prototype (for reference only):
getQTheta() -> retval

 Link to this function

 getRadius(self)

 View Source

 @spec getRadius(t()) :: number() | {:error, String.t()}

getRadius
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: float

Python prototype (for reference only):
getRadius() -> retval

 Link to this function

 getUseOrientation(self)

 View Source

 @spec getUseOrientation(t()) :: boolean() | {:error, String.t()}

getUseOrientation
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()

Return
	retval: bool

Python prototype (for reference only):
getUseOrientation() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setH(self, h)

 View Source

 @spec setH(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

setH
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	h: Evision.Mat.t()

Python prototype (for reference only):
setH(H) -> None

 Link to this function

 setInterpolation(self, interpolation)

 View Source

 @spec setInterpolation(t(), boolean()) :: t() | {:error, String.t()}

setInterpolation
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	interpolation: bool

Python prototype (for reference only):
setInterpolation(interpolation) -> None

 Link to this function

 setNorm(self, norm)

 View Source

 @spec setNorm(t(), integer()) :: t() | {:error, String.t()}

setNorm
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	norm: int

Python prototype (for reference only):
setNorm(norm) -> None

 Link to this function

 setQHist(self, q_hist)

 View Source

 @spec setQHist(t(), integer()) :: t() | {:error, String.t()}

setQHist
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	q_hist: int

Python prototype (for reference only):
setQHist(q_hist) -> None

 Link to this function

 setQRadius(self, q_radius)

 View Source

 @spec setQRadius(t(), integer()) :: t() | {:error, String.t()}

setQRadius
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	q_radius: int

Python prototype (for reference only):
setQRadius(q_radius) -> None

 Link to this function

 setQTheta(self, q_theta)

 View Source

 @spec setQTheta(t(), integer()) :: t() | {:error, String.t()}

setQTheta
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	q_theta: int

Python prototype (for reference only):
setQTheta(q_theta) -> None

 Link to this function

 setRadius(self, radius)

 View Source

 @spec setRadius(t(), number()) :: t() | {:error, String.t()}

setRadius
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	radius: float

Python prototype (for reference only):
setRadius(radius) -> None

 Link to this function

 setUseOrientation(self, use_orientation)

 View Source

 @spec setUseOrientation(t(), boolean()) :: t() | {:error, String.t()}

setUseOrientation
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	use_orientation: bool

Python prototype (for reference only):
setUseOrientation(use_orientation) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.DAISY.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.FREAK - Evision v0.1.39

Evision.XFeatures2D.FREAK

 Summary

 Types

 t()

 Type that represents an XFeatures2D.FREAK struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getNOctaves(self)

 getNOctaves

 getOrientationNormalized(self)

 getOrientationNormalized

 getPatternScale(self)

 getPatternScale

 getScaleNormalized(self)

 getScaleNormalized

 read(self, arg1)

 Variant 1:
read

 setNOctaves(self, nOctaves)

 setNOctaves

 setOrientationNormalized(self, orientationNormalized)

 setOrientationNormalized

 setPatternScale(self, patternScale)

 setPatternScale

 setScaleNormalized(self, scaleNormalized)

 setScaleNormalized

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.FREAK{ref: reference()}

Type that represents an XFeatures2D.FREAK struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	orientationNormalized: bool.
Enable orientation normalization.

	scaleNormalized: bool.
Enable scale normalization.

	patternScale: float.
Scaling of the description pattern.

	nOctaves: int.
Number of octaves covered by the detected keypoints.

	selectedPairs: [int].
(Optional) user defined selected pairs indexes,

Return
	retval: FREAK

Python prototype (for reference only):
create([, orientationNormalized[, scaleNormalized[, patternScale[, nOctaves[, selectedPairs]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 nOctaves: term(),
 selectedPairs: term(),
 orientationNormalized: term(),
 patternScale: term(),
 scaleNormalized: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	orientationNormalized: bool.
Enable orientation normalization.

	scaleNormalized: bool.
Enable scale normalization.

	patternScale: float.
Scaling of the description pattern.

	nOctaves: int.
Number of octaves covered by the detected keypoints.

	selectedPairs: [int].
(Optional) user defined selected pairs indexes,

Return
	retval: FREAK

Python prototype (for reference only):
create([, orientationNormalized[, scaleNormalized[, patternScale[, nOctaves[, selectedPairs]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getNOctaves(self)

 View Source

 @spec getNOctaves(t()) :: integer() | {:error, String.t()}

getNOctaves
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaves() -> retval

 Link to this function

 getOrientationNormalized(self)

 View Source

 @spec getOrientationNormalized(t()) :: boolean() | {:error, String.t()}

getOrientationNormalized
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: bool

Python prototype (for reference only):
getOrientationNormalized() -> retval

 Link to this function

 getPatternScale(self)

 View Source

 @spec getPatternScale(t()) :: number() | {:error, String.t()}

getPatternScale
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: double

Python prototype (for reference only):
getPatternScale() -> retval

 Link to this function

 getScaleNormalized(self)

 View Source

 @spec getScaleNormalized(t()) :: boolean() | {:error, String.t()}

getScaleNormalized
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()

Return
	retval: bool

Python prototype (for reference only):
getScaleNormalized() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setNOctaves(self, nOctaves)

 View Source

 @spec setNOctaves(t(), integer()) :: t() | {:error, String.t()}

setNOctaves
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	nOctaves: int

Python prototype (for reference only):
setNOctaves(nOctaves) -> None

 Link to this function

 setOrientationNormalized(self, orientationNormalized)

 View Source

 @spec setOrientationNormalized(t(), boolean()) :: t() | {:error, String.t()}

setOrientationNormalized
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	orientationNormalized: bool

Python prototype (for reference only):
setOrientationNormalized(orientationNormalized) -> None

 Link to this function

 setPatternScale(self, patternScale)

 View Source

 @spec setPatternScale(t(), number()) :: t() | {:error, String.t()}

setPatternScale
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	patternScale: double

Python prototype (for reference only):
setPatternScale(patternScale) -> None

 Link to this function

 setScaleNormalized(self, scaleNormalized)

 View Source

 @spec setScaleNormalized(t(), boolean()) :: t() | {:error, String.t()}

setScaleNormalized
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	scaleNormalized: bool

Python prototype (for reference only):
setScaleNormalized(scaleNormalized) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.FREAK.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.HarrisLaplaceFeatureDetector - Evision v0.1.39

Evision.XFeatures2D.HarrisLaplaceFeatureDetector

 Summary

 Types

 t()

 Type that represents an XFeatures2D.HarrisLaplaceFeatureDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 Creates a new implementation instance.

 create(opts)

 Creates a new implementation instance.

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getCornThresh(self)

 getCornThresh

 getDefaultName(self)

 getDefaultName

 getDOGThresh(self)

 getDOGThresh

 getMaxCorners(self)

 getMaxCorners

 getNumLayers(self)

 getNumLayers

 getNumOctaves(self)

 getNumOctaves

 read(self, arg1)

 Variant 1:
read

 setCornThresh(self, corn_thresh_)

 setCornThresh

 setDOGThresh(self, dOG_thresh_)

 setDOGThresh

 setMaxCorners(self, maxCorners_)

 setMaxCorners

 setNumLayers(self, num_layers_)

 setNumLayers

 setNumOctaves(self, numOctaves_)

 setNumOctaves

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.HarrisLaplaceFeatureDetector{ref: reference()}

Type that represents an XFeatures2D.HarrisLaplaceFeatureDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates a new implementation instance.
Keyword Arguments
	numOctaves: int.
the number of octaves in the scale-space pyramid

	corn_thresh: float.
the threshold for the Harris cornerness measure

	dOG_thresh: float.
the threshold for the Difference-of-Gaussians scale selection

	maxCorners: int.
the maximum number of corners to consider

	num_layers: int.
the number of intermediate scales per octave

Return
	retval: HarrisLaplaceFeatureDetector

Python prototype (for reference only):
create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 maxCorners: term(),
 numOctaves: term(),
 dOG_thresh: term(),
 corn_thresh: term(),
 num_layers: term()
]
 | nil
) :: t() | {:error, String.t()}

Creates a new implementation instance.
Keyword Arguments
	numOctaves: int.
the number of octaves in the scale-space pyramid

	corn_thresh: float.
the threshold for the Harris cornerness measure

	dOG_thresh: float.
the threshold for the Difference-of-Gaussians scale selection

	maxCorners: int.
the maximum number of corners to consider

	num_layers: int.
the number of intermediate scales per octave

Return
	retval: HarrisLaplaceFeatureDetector

Python prototype (for reference only):
create([, numOctaves[, corn_thresh[, DOG_thresh[, maxCorners[, num_layers]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getCornThresh(self)

 View Source

 @spec getCornThresh(t()) :: number() | {:error, String.t()}

getCornThresh
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: float

Python prototype (for reference only):
getCornThresh() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDOGThresh(self)

 View Source

 @spec getDOGThresh(t()) :: number() | {:error, String.t()}

getDOGThresh
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: float

Python prototype (for reference only):
getDOGThresh() -> retval

 Link to this function

 getMaxCorners(self)

 View Source

 @spec getMaxCorners(t()) :: integer() | {:error, String.t()}

getMaxCorners
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxCorners() -> retval

 Link to this function

 getNumLayers(self)

 View Source

 @spec getNumLayers(t()) :: integer() | {:error, String.t()}

getNumLayers
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getNumLayers() -> retval

 Link to this function

 getNumOctaves(self)

 View Source

 @spec getNumOctaves(t()) :: integer() | {:error, String.t()}

getNumOctaves
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()

Return
	retval: int

Python prototype (for reference only):
getNumOctaves() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setCornThresh(self, corn_thresh_)

 View Source

 @spec setCornThresh(t(), number()) :: t() | {:error, String.t()}

setCornThresh
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	cornthresh: float

Python prototype (for reference only):
setCornThresh(corn_thresh_) -> None

 Link to this function

 setDOGThresh(self, dOG_thresh_)

 View Source

 @spec setDOGThresh(t(), number()) :: t() | {:error, String.t()}

setDOGThresh
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	dOGthresh: float

Python prototype (for reference only):
setDOGThresh(DOG_thresh_) -> None

 Link to this function

 setMaxCorners(self, maxCorners_)

 View Source

 @spec setMaxCorners(t(), integer()) :: t() | {:error, String.t()}

setMaxCorners
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	maxCorners_: int

Python prototype (for reference only):
setMaxCorners(maxCorners_) -> None

 Link to this function

 setNumLayers(self, num_layers_)

 View Source

 @spec setNumLayers(t(), integer()) :: t() | {:error, String.t()}

setNumLayers
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	numlayers: int

Python prototype (for reference only):
setNumLayers(num_layers_) -> None

 Link to this function

 setNumOctaves(self, numOctaves_)

 View Source

 @spec setNumOctaves(t(), integer()) :: t() | {:error, String.t()}

setNumOctaves
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	numOctaves_: int

Python prototype (for reference only):
setNumOctaves(numOctaves_) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.HarrisLaplaceFeatureDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.LATCH - Evision v0.1.39

Evision.XFeatures2D.LATCH

 Summary

 Types

 t()

 Type that represents an XFeatures2D.LATCH struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getBytes(self)

 getBytes

 getDefaultName(self)

 getDefaultName

 getHalfSSDsize(self)

 getHalfSSDsize

 getRotationInvariance(self)

 getRotationInvariance

 getSigma(self)

 getSigma

 read(self, arg1)

 Variant 1:
read

 setBytes(self, bytes)

 setBytes

 setHalfSSDsize(self, half_ssd_size)

 setHalfSSDsize

 setRotationInvariance(self, rotationInvariance)

 setRotationInvariance

 setSigma(self, sigma)

 setSigma

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.LATCH{ref: reference()}

Type that represents an XFeatures2D.LATCH struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	bytes: int.
	rotationInvariance: bool.
	half_ssd_size: int.
	sigma: double.

Return
	retval: LATCH

Python prototype (for reference only):
create([, bytes[, rotationInvariance[, half_ssd_size[, sigma]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 half_ssd_size: term(),
 sigma: term(),
 bytes: term(),
 rotationInvariance: term()
]
 | nil
) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	bytes: int.
	rotationInvariance: bool.
	half_ssd_size: int.
	sigma: double.

Return
	retval: LATCH

Python prototype (for reference only):
create([, bytes[, rotationInvariance[, half_ssd_size[, sigma]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBytes(self)

 View Source

 @spec getBytes(t()) :: integer() | {:error, String.t()}

getBytes
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: int

Python prototype (for reference only):
getBytes() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getHalfSSDsize(self)

 View Source

 @spec getHalfSSDsize(t()) :: integer() | {:error, String.t()}

getHalfSSDsize
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: int

Python prototype (for reference only):
getHalfSSDsize() -> retval

 Link to this function

 getRotationInvariance(self)

 View Source

 @spec getRotationInvariance(t()) :: boolean() | {:error, String.t()}

getRotationInvariance
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: bool

Python prototype (for reference only):
getRotationInvariance() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()

Return
	retval: double

Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setBytes(self, bytes)

 View Source

 @spec setBytes(t(), integer()) :: t() | {:error, String.t()}

setBytes
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	bytes: int

Python prototype (for reference only):
setBytes(bytes) -> None

 Link to this function

 setHalfSSDsize(self, half_ssd_size)

 View Source

 @spec setHalfSSDsize(t(), integer()) :: t() | {:error, String.t()}

setHalfSSDsize
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	half_ssd_size: int

Python prototype (for reference only):
setHalfSSDsize(half_ssd_size) -> None

 Link to this function

 setRotationInvariance(self, rotationInvariance)

 View Source

 @spec setRotationInvariance(t(), boolean()) :: t() | {:error, String.t()}

setRotationInvariance
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	rotationInvariance: bool

Python prototype (for reference only):
setRotationInvariance(rotationInvariance) -> None

 Link to this function

 setSigma(self, sigma)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	sigma: double

Python prototype (for reference only):
setSigma(sigma) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.LATCH.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.LUCID - Evision v0.1.39

Evision.XFeatures2D.LUCID

 Summary

 Types

 t()

 Type that represents an XFeatures2D.LUCID struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getBlurKernel(self)

 getBlurKernel

 getDefaultName(self)

 getDefaultName

 getLucidKernel(self)

 getLucidKernel

 read(self, arg1)

 Variant 1:
read

 setBlurKernel(self, blur_kernel)

 setBlurKernel

 setLucidKernel(self, lucid_kernel)

 setLucidKernel

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.LUCID{ref: reference()}

Type that represents an XFeatures2D.LUCID struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	lucid_kernel: int.
kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth

	blur_kernel: int.
kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth

Return
	retval: LUCID

Python prototype (for reference only):
create([, lucid_kernel[, blur_kernel]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create([lucid_kernel: term(), blur_kernel: term()] | nil) ::
 t() | {:error, String.t()}

create
Keyword Arguments
	lucid_kernel: int.
kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth

	blur_kernel: int.
kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth

Return
	retval: LUCID

Python prototype (for reference only):
create([, lucid_kernel[, blur_kernel]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getBlurKernel(self)

 View Source

 @spec getBlurKernel(t()) :: integer() | {:error, String.t()}

getBlurKernel
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: int

Python prototype (for reference only):
getBlurKernel() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLucidKernel(self)

 View Source

 @spec getLucidKernel(t()) :: integer() | {:error, String.t()}

getLucidKernel
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()

Return
	retval: int

Python prototype (for reference only):
getLucidKernel() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setBlurKernel(self, blur_kernel)

 View Source

 @spec setBlurKernel(t(), integer()) :: t() | {:error, String.t()}

setBlurKernel
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	blur_kernel: int

Python prototype (for reference only):
setBlurKernel(blur_kernel) -> None

 Link to this function

 setLucidKernel(self, lucid_kernel)

 View Source

 @spec setLucidKernel(t(), integer()) :: t() | {:error, String.t()}

setLucidKernel
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	lucid_kernel: int

Python prototype (for reference only):
setLucidKernel(lucid_kernel) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.LUCID.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.MSDDetector - Evision v0.1.39

Evision.XFeatures2D.MSDDetector

 Summary

 Types

 t()

 Type that represents an XFeatures2D.MSDDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getComputeOrientation(self)

 getComputeOrientation

 getDefaultName(self)

 getDefaultName

 getKNN(self)

 getKNN

 getNmsRadius(self)

 getNmsRadius

 getNmsScaleRadius(self)

 getNmsScaleRadius

 getNScales(self)

 getNScales

 getPatchRadius(self)

 getPatchRadius

 getScaleFactor(self)

 getScaleFactor

 getSearchAreaRadius(self)

 getSearchAreaRadius

 getThSaliency(self)

 getThSaliency

 read(self, arg1)

 Variant 1:
read

 setComputeOrientation(self, compute_orientation)

 setComputeOrientation

 setKNN(self, kNN)

 setKNN

 setNmsRadius(self, nms_radius)

 setNmsRadius

 setNmsScaleRadius(self, nms_scale_radius)

 setNmsScaleRadius

 setNScales(self, use_orientation)

 setNScales

 setPatchRadius(self, patch_radius)

 setPatchRadius

 setScaleFactor(self, scale_factor)

 setScaleFactor

 setSearchAreaRadius(self, use_orientation)

 setSearchAreaRadius

 setThSaliency(self, th_saliency)

 setThSaliency

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.MSDDetector{ref: reference()}

Type that represents an XFeatures2D.MSDDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	m_patch_radius: int.
	m_search_area_radius: int.
	m_nms_radius: int.
	m_nms_scale_radius: int.
	m_th_saliency: float.
	m_kNN: int.
	m_scale_factor: float.
	m_n_scales: int.
	m_compute_orientation: bool.

Return
	retval: MSDDetector

Python prototype (for reference only):
create([, m_patch_radius[, m_search_area_radius[, m_nms_radius[, m_nms_scale_radius[, m_th_saliency[, m_kNN[, m_scale_factor[, m_n_scales[, m_compute_orientation]]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 m_nms_radius: term(),
 m_nms_scale_radius: term(),
 m_kNN: term(),
 m_compute_orientation: term(),
 m_search_area_radius: term(),
 m_th_saliency: term(),
 m_patch_radius: term(),
 m_scale_factor: term(),
 m_n_scales: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	m_patch_radius: int.
	m_search_area_radius: int.
	m_nms_radius: int.
	m_nms_scale_radius: int.
	m_th_saliency: float.
	m_kNN: int.
	m_scale_factor: float.
	m_n_scales: int.
	m_compute_orientation: bool.

Return
	retval: MSDDetector

Python prototype (for reference only):
create([, m_patch_radius[, m_search_area_radius[, m_nms_radius[, m_nms_scale_radius[, m_th_saliency[, m_kNN[, m_scale_factor[, m_n_scales[, m_compute_orientation]]]]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getComputeOrientation(self)

 View Source

 @spec getComputeOrientation(t()) :: boolean() | {:error, String.t()}

getComputeOrientation
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: bool

Python prototype (for reference only):
getComputeOrientation() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getKNN(self)

 View Source

 @spec getKNN(t()) :: integer() | {:error, String.t()}

getKNN
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getKNN() -> retval

 Link to this function

 getNmsRadius(self)

 View Source

 @spec getNmsRadius(t()) :: integer() | {:error, String.t()}

getNmsRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getNmsRadius() -> retval

 Link to this function

 getNmsScaleRadius(self)

 View Source

 @spec getNmsScaleRadius(t()) :: integer() | {:error, String.t()}

getNmsScaleRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getNmsScaleRadius() -> retval

 Link to this function

 getNScales(self)

 View Source

 @spec getNScales(t()) :: integer() | {:error, String.t()}

getNScales
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getNScales() -> retval

 Link to this function

 getPatchRadius(self)

 View Source

 @spec getPatchRadius(t()) :: integer() | {:error, String.t()}

getPatchRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getPatchRadius() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getSearchAreaRadius(self)

 View Source

 @spec getSearchAreaRadius(t()) :: integer() | {:error, String.t()}

getSearchAreaRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: int

Python prototype (for reference only):
getSearchAreaRadius() -> retval

 Link to this function

 getThSaliency(self)

 View Source

 @spec getThSaliency(t()) :: number() | {:error, String.t()}

getThSaliency
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()

Return
	retval: float

Python prototype (for reference only):
getThSaliency() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setComputeOrientation(self, compute_orientation)

 View Source

 @spec setComputeOrientation(t(), boolean()) :: t() | {:error, String.t()}

setComputeOrientation
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	compute_orientation: bool

Python prototype (for reference only):
setComputeOrientation(compute_orientation) -> None

 Link to this function

 setKNN(self, kNN)

 View Source

 @spec setKNN(t(), integer()) :: t() | {:error, String.t()}

setKNN
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	kNN: int

Python prototype (for reference only):
setKNN(kNN) -> None

 Link to this function

 setNmsRadius(self, nms_radius)

 View Source

 @spec setNmsRadius(t(), integer()) :: t() | {:error, String.t()}

setNmsRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	nms_radius: int

Python prototype (for reference only):
setNmsRadius(nms_radius) -> None

 Link to this function

 setNmsScaleRadius(self, nms_scale_radius)

 View Source

 @spec setNmsScaleRadius(t(), integer()) :: t() | {:error, String.t()}

setNmsScaleRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	nms_scale_radius: int

Python prototype (for reference only):
setNmsScaleRadius(nms_scale_radius) -> None

 Link to this function

 setNScales(self, use_orientation)

 View Source

 @spec setNScales(t(), integer()) :: t() | {:error, String.t()}

setNScales
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	use_orientation: int

Python prototype (for reference only):
setNScales(use_orientation) -> None

 Link to this function

 setPatchRadius(self, patch_radius)

 View Source

 @spec setPatchRadius(t(), integer()) :: t() | {:error, String.t()}

setPatchRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	patch_radius: int

Python prototype (for reference only):
setPatchRadius(patch_radius) -> None

 Link to this function

 setScaleFactor(self, scale_factor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	scale_factor: float

Python prototype (for reference only):
setScaleFactor(scale_factor) -> None

 Link to this function

 setSearchAreaRadius(self, use_orientation)

 View Source

 @spec setSearchAreaRadius(t(), integer()) :: t() | {:error, String.t()}

setSearchAreaRadius
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	use_orientation: int

Python prototype (for reference only):
setSearchAreaRadius(use_orientation) -> None

 Link to this function

 setThSaliency(self, th_saliency)

 View Source

 @spec setThSaliency(t(), number()) :: t() | {:error, String.t()}

setThSaliency
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	th_saliency: float

Python prototype (for reference only):
setThSaliency(th_saliency) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.MSDDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.PCTSignatures - Evision v0.1.39

Evision.XFeatures2D.PCTSignatures

 Summary

 Types

 t()

 Type that represents an XFeatures2D.PCTSignatures struct.

 Functions

 clear(self)

 Clears the algorithm state

 computeSignature(self, image)

 Computes signature of given image.

 computeSignature(self, image, opts)

 Computes signature of given image.

 computeSignatures(self, images, signatures)

 Computes signatures for multiple images in parallel.

 create()

 Creates PCTSignatures algorithm using sample and seed count.
It generates its own sets of sampling points and clusterization seed indexes.

 create(opts)

 Creates PCTSignatures algorithm using sample and seed count.
It generates its own sets of sampling points and clusterization seed indexes.

 create(initSamplingPoints, initClusterSeedIndexes)

 Variant 1:
Creates PCTSignatures algorithm using pre-generated sampling points
and clusterization seeds indexes.

 drawSignature(source, signature)

 Draws signature in the source image and outputs the result.
Signatures are visualized as a circle
with radius based on signature weight
and color based on signature color.
Contrast and entropy are not visualized.

 drawSignature(source, signature, opts)

 Draws signature in the source image and outputs the result.
Signatures are visualized as a circle
with radius based on signature weight
and color based on signature color.
Contrast and entropy are not visualized.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 generateInitPoints(initPoints, count, pointDistribution)

 Generates initial sampling points according to selected point distribution.

 getClusterMinSize(self)

 This parameter multiplied by the index of iteration gives lower limit for cluster size.
Clusters containing fewer points than specified by the limit have their centroid dismissed
and points are reassigned.

 getDefaultName(self)

 getDefaultName

 getDistanceFunction(self)

 Distance function selector used for measuring distance between two points in k-means.

 getDropThreshold(self)

 Remove centroids in k-means whose weight is lesser or equal to given threshold.

 getGrayscaleBits(self)

 Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
The greyscale bitmap is used for computing contrast and entropy values.

 getInitSeedCount(self)

 Number of initial seeds (initial number of clusters) for the k-means algorithm.

 getInitSeedIndexes(self)

 Initial seeds (initial number of clusters) for the k-means algorithm.

 getIterationCount(self)

 Number of iterations of the k-means clustering.
We use fixed number of iterations, since the modified clustering is pruning clusters
(not iteratively refining k clusters).

 getJoiningDistance(self)

 Threshold euclidean distance between two centroids.
If two cluster centers are closer than this distance,
one of the centroid is dismissed and points are reassigned.

 getMaxClustersCount(self)

 Maximal number of generated clusters. If the number is exceeded,
the clusters are sorted by their weights and the smallest clusters are cropped.

 getSampleCount(self)

 Number of initial samples taken from the image.

 getSamplingPoints(self)

 Initial samples taken from the image.
These sampled features become the input for clustering.

 getWeightA(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightB(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightContrast(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightEntropy(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightL(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightX(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWeightY(self)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 getWindowRadius(self)

 Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setClusterMinSize(self, clusterMinSize)

 This parameter multiplied by the index of iteration gives lower limit for cluster size.
Clusters containing fewer points than specified by the limit have their centroid dismissed
and points are reassigned.

 setDistanceFunction(self, distanceFunction)

 Distance function selector used for measuring distance between two points in k-means.
Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY.

 setDropThreshold(self, dropThreshold)

 Remove centroids in k-means whose weight is lesser or equal to given threshold.

 setGrayscaleBits(self, grayscaleBits)

 Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
The greyscale bitmap is used for computing contrast and entropy values.

 setInitSeedIndexes(self, initSeedIndexes)

 Initial seed indexes for the k-means algorithm.

 setIterationCount(self, iterationCount)

 Number of iterations of the k-means clustering.
We use fixed number of iterations, since the modified clustering is pruning clusters
(not iteratively refining k clusters).

 setJoiningDistance(self, joiningDistance)

 Threshold euclidean distance between two centroids.
If two cluster centers are closer than this distance,
one of the centroid is dismissed and points are reassigned.

 setMaxClustersCount(self, maxClustersCount)

 Maximal number of generated clusters. If the number is exceeded,
the clusters are sorted by their weights and the smallest clusters are cropped.

 setSamplingPoints(self, samplingPoints)

 Sets sampling points used to sample the input image.

 setTranslation(self, idx, value)

 Translations of the individual axes of the feature space.

 setTranslations(self, translations)

 Translations of the individual axes of the feature space.

 setWeight(self, idx, value)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space.

 setWeightA(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeightB(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeightContrast(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeightEntropy(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeightL(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeights(self, weights)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space.

 setWeightX(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWeightY(self, weight)

 Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)

 setWindowRadius(self, radius)

 Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.PCTSignatures{ref: reference()}

Type that represents an XFeatures2D.PCTSignatures struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 computeSignature(self, image)

 View Source

 @spec computeSignature(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes signature of given image.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	image: Evision.Mat.t().
Input image of CV_8U type.

Return
	signature: Evision.Mat.t().
Output computed signature.

Python prototype (for reference only):
computeSignature(image[, signature]) -> signature

 Link to this function

 computeSignature(self, image, opts)

 View Source

 @spec computeSignature(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Computes signature of given image.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	image: Evision.Mat.t().
Input image of CV_8U type.

Return
	signature: Evision.Mat.t().
Output computed signature.

Python prototype (for reference only):
computeSignature(image[, signature]) -> signature

 Link to this function

 computeSignatures(self, images, signatures)

 View Source

 @spec computeSignatures(t(), [Evision.Mat.maybe_mat_in()], [
 Evision.Mat.maybe_mat_in()
]) ::
 t() | {:error, String.t()}

Computes signatures for multiple images in parallel.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	images: [Evision.Mat].
Vector of input images of CV_8U type.

	signatures: [Evision.Mat].
Vector of computed signatures.

Python prototype (for reference only):
computeSignatures(images, signatures) -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates PCTSignatures algorithm using sample and seed count.
It generates its own sets of sampling points and clusterization seed indexes.
Keyword Arguments
	initSampleCount: int.
Number of points used for image sampling.

	initSeedCount: int.
Number of initial clusterization seeds.
Must be lower or equal to initSampleCount

	pointDistribution: int.
Distribution of generated points. Default: UNIFORM.
Available: UNIFORM, REGULAR, NORMAL.

Return
	retval: PCTSignatures

@return Created algorithm.
Python prototype (for reference only):
create([, initSampleCount[, initSeedCount[, pointDistribution]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [initSampleCount: term(), pointDistribution: term(), initSeedCount: term()]
 | nil
) ::
 t() | {:error, String.t()}

Creates PCTSignatures algorithm using sample and seed count.
It generates its own sets of sampling points and clusterization seed indexes.
Keyword Arguments
	initSampleCount: int.
Number of points used for image sampling.

	initSeedCount: int.
Number of initial clusterization seeds.
Must be lower or equal to initSampleCount

	pointDistribution: int.
Distribution of generated points. Default: UNIFORM.
Available: UNIFORM, REGULAR, NORMAL.

Return
	retval: PCTSignatures

@return Created algorithm.
Python prototype (for reference only):
create([, initSampleCount[, initSeedCount[, pointDistribution]]]) -> retval

 Link to this function

 create(initSamplingPoints, initClusterSeedIndexes)

 View Source

 @spec create([{number(), number()}], [integer()]) :: t() | {:error, String.t()}

 @spec create([{number(), number()}], integer()) :: t() | {:error, String.t()}

Variant 1:
Creates PCTSignatures algorithm using pre-generated sampling points
and clusterization seeds indexes.
Positional Arguments
	initSamplingPoints: [Point2f].
Sampling points used in image sampling.

	initClusterSeedIndexes: [int].
Indexes of initial clusterization seeds.
Its size must be lower or equal to initSamplingPoints.size().

Return
	retval: PCTSignatures

@return Created algorithm.
Python prototype (for reference only):
create(initSamplingPoints, initClusterSeedIndexes) -> retval
Variant 2:
Creates PCTSignatures algorithm using pre-generated sampling points
and number of clusterization seeds. It uses the provided
sampling points and generates its own clusterization seed indexes.
Positional Arguments
	initSamplingPoints: [Point2f].
Sampling points used in image sampling.

	initSeedCount: int.
Number of initial clusterization seeds.
Must be lower or equal to initSamplingPoints.size().

Return
	retval: PCTSignatures

@return Created algorithm.
Python prototype (for reference only):
create(initSamplingPoints, initSeedCount) -> retval

 Link to this function

 drawSignature(source, signature)

 View Source

 @spec drawSignature(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Draws signature in the source image and outputs the result.
Signatures are visualized as a circle
with radius based on signature weight
and color based on signature color.
Contrast and entropy are not visualized.
Positional Arguments
	source: Evision.Mat.t().
Source image.

	signature: Evision.Mat.t().
Image signature.

Keyword Arguments
	radiusToShorterSideRatio: float.
Determines maximal radius of signature in the output image.

	borderThickness: int.
Border thickness of the visualized signature.

Return
	result: Evision.Mat.t().
Output result.

Python prototype (for reference only):
drawSignature(source, signature[, result[, radiusToShorterSideRatio[, borderThickness]]]) -> result

 Link to this function

 drawSignature(source, signature, opts)

 View Source

 @spec drawSignature(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [borderThickness: term(), radiusToShorterSideRatio: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws signature in the source image and outputs the result.
Signatures are visualized as a circle
with radius based on signature weight
and color based on signature color.
Contrast and entropy are not visualized.
Positional Arguments
	source: Evision.Mat.t().
Source image.

	signature: Evision.Mat.t().
Image signature.

Keyword Arguments
	radiusToShorterSideRatio: float.
Determines maximal radius of signature in the output image.

	borderThickness: int.
Border thickness of the visualized signature.

Return
	result: Evision.Mat.t().
Output result.

Python prototype (for reference only):
drawSignature(source, signature[, result[, radiusToShorterSideRatio[, borderThickness]]]) -> result

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 generateInitPoints(initPoints, count, pointDistribution)

 View Source

 @spec generateInitPoints([{number(), number()}], integer(), integer()) ::
 :ok | {:error, String.t()}

Generates initial sampling points according to selected point distribution.
Positional Arguments
	initPoints: [Point2f].
Output vector where the generated points will be saved.

	count: int.
Number of points to generate.

	pointDistribution: int.
Point distribution selector.
Available: UNIFORM, REGULAR, NORMAL.

Note: Generated coordinates are in range [0..1)
Python prototype (for reference only):
generateInitPoints(initPoints, count, pointDistribution) -> None

 Link to this function

 getClusterMinSize(self)

 View Source

 @spec getClusterMinSize(t()) :: integer() | {:error, String.t()}

This parameter multiplied by the index of iteration gives lower limit for cluster size.
Clusters containing fewer points than specified by the limit have their centroid dismissed
and points are reassigned.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getClusterMinSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getDistanceFunction(self)

 View Source

 @spec getDistanceFunction(t()) :: integer() | {:error, String.t()}

Distance function selector used for measuring distance between two points in k-means.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getDistanceFunction() -> retval

 Link to this function

 getDropThreshold(self)

 View Source

 @spec getDropThreshold(t()) :: number() | {:error, String.t()}

Remove centroids in k-means whose weight is lesser or equal to given threshold.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getDropThreshold() -> retval

 Link to this function

 getGrayscaleBits(self)

 View Source

 @spec getGrayscaleBits(t()) :: integer() | {:error, String.t()}

Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
The greyscale bitmap is used for computing contrast and entropy values.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getGrayscaleBits() -> retval

 Link to this function

 getInitSeedCount(self)

 View Source

 @spec getInitSeedCount(t()) :: integer() | {:error, String.t()}

Number of initial seeds (initial number of clusters) for the k-means algorithm.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getInitSeedCount() -> retval

 Link to this function

 getInitSeedIndexes(self)

 View Source

 @spec getInitSeedIndexes(t()) :: [integer()] | {:error, String.t()}

Initial seeds (initial number of clusters) for the k-means algorithm.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: [int]

Python prototype (for reference only):
getInitSeedIndexes() -> retval

 Link to this function

 getIterationCount(self)

 View Source

 @spec getIterationCount(t()) :: integer() | {:error, String.t()}

Number of iterations of the k-means clustering.
We use fixed number of iterations, since the modified clustering is pruning clusters
(not iteratively refining k clusters).
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getIterationCount() -> retval

 Link to this function

 getJoiningDistance(self)

 View Source

 @spec getJoiningDistance(t()) :: number() | {:error, String.t()}

Threshold euclidean distance between two centroids.
If two cluster centers are closer than this distance,
one of the centroid is dismissed and points are reassigned.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getJoiningDistance() -> retval

 Link to this function

 getMaxClustersCount(self)

 View Source

 @spec getMaxClustersCount(t()) :: integer() | {:error, String.t()}

Maximal number of generated clusters. If the number is exceeded,
the clusters are sorted by their weights and the smallest clusters are cropped.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getMaxClustersCount() -> retval

 Link to this function

 getSampleCount(self)

 View Source

 @spec getSampleCount(t()) :: integer() | {:error, String.t()}

Number of initial samples taken from the image.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getSampleCount() -> retval

 Link to this function

 getSamplingPoints(self)

 View Source

 @spec getSamplingPoints(t()) :: [{number(), number()}] | {:error, String.t()}

Initial samples taken from the image.
These sampled features become the input for clustering.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: [Point2f]

Python prototype (for reference only):
getSamplingPoints() -> retval

 Link to this function

 getWeightA(self)

 View Source

 @spec getWeightA(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightA() -> retval

 Link to this function

 getWeightB(self)

 View Source

 @spec getWeightB(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightB() -> retval

 Link to this function

 getWeightContrast(self)

 View Source

 @spec getWeightContrast(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightContrast() -> retval

 Link to this function

 getWeightEntropy(self)

 View Source

 @spec getWeightEntropy(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightEntropy() -> retval

 Link to this function

 getWeightL(self)

 View Source

 @spec getWeightL(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightL() -> retval

 Link to this function

 getWeightX(self)

 View Source

 @spec getWeightX(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightX() -> retval

 Link to this function

 getWeightY(self)

 View Source

 @spec getWeightY(t()) :: number() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: float

Python prototype (for reference only):
getWeightY() -> retval

 Link to this function

 getWindowRadius(self)

 View Source

 @spec getWindowRadius(t()) :: integer() | {:error, String.t()}

Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

Return
	retval: int

Python prototype (for reference only):
getWindowRadius() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setClusterMinSize(self, clusterMinSize)

 View Source

 @spec setClusterMinSize(t(), integer()) :: t() | {:error, String.t()}

This parameter multiplied by the index of iteration gives lower limit for cluster size.
Clusters containing fewer points than specified by the limit have their centroid dismissed
and points are reassigned.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	clusterMinSize: int

Python prototype (for reference only):
setClusterMinSize(clusterMinSize) -> None

 Link to this function

 setDistanceFunction(self, distanceFunction)

 View Source

 @spec setDistanceFunction(t(), integer()) :: t() | {:error, String.t()}

Distance function selector used for measuring distance between two points in k-means.
Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	distanceFunction: int

Python prototype (for reference only):
setDistanceFunction(distanceFunction) -> None

 Link to this function

 setDropThreshold(self, dropThreshold)

 View Source

 @spec setDropThreshold(t(), number()) :: t() | {:error, String.t()}

Remove centroids in k-means whose weight is lesser or equal to given threshold.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	dropThreshold: float

Python prototype (for reference only):
setDropThreshold(dropThreshold) -> None

 Link to this function

 setGrayscaleBits(self, grayscaleBits)

 View Source

 @spec setGrayscaleBits(t(), integer()) :: t() | {:error, String.t()}

Color resolution of the greyscale bitmap represented in allocated bits
(i.e., value 4 means that 16 shades of grey are used).
The greyscale bitmap is used for computing contrast and entropy values.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	grayscaleBits: int

Python prototype (for reference only):
setGrayscaleBits(grayscaleBits) -> None

 Link to this function

 setInitSeedIndexes(self, initSeedIndexes)

 View Source

 @spec setInitSeedIndexes(t(), [integer()]) :: t() | {:error, String.t()}

Initial seed indexes for the k-means algorithm.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	initSeedIndexes: [int]

Python prototype (for reference only):
setInitSeedIndexes(initSeedIndexes) -> None

 Link to this function

 setIterationCount(self, iterationCount)

 View Source

 @spec setIterationCount(t(), integer()) :: t() | {:error, String.t()}

Number of iterations of the k-means clustering.
We use fixed number of iterations, since the modified clustering is pruning clusters
(not iteratively refining k clusters).
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	iterationCount: int

Python prototype (for reference only):
setIterationCount(iterationCount) -> None

 Link to this function

 setJoiningDistance(self, joiningDistance)

 View Source

 @spec setJoiningDistance(t(), number()) :: t() | {:error, String.t()}

Threshold euclidean distance between two centroids.
If two cluster centers are closer than this distance,
one of the centroid is dismissed and points are reassigned.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	joiningDistance: float

Python prototype (for reference only):
setJoiningDistance(joiningDistance) -> None

 Link to this function

 setMaxClustersCount(self, maxClustersCount)

 View Source

 @spec setMaxClustersCount(t(), integer()) :: t() | {:error, String.t()}

Maximal number of generated clusters. If the number is exceeded,
the clusters are sorted by their weights and the smallest clusters are cropped.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	maxClustersCount: int

Python prototype (for reference only):
setMaxClustersCount(maxClustersCount) -> None

 Link to this function

 setSamplingPoints(self, samplingPoints)

 View Source

 @spec setSamplingPoints(t(), [{number(), number()}]) :: t() | {:error, String.t()}

Sets sampling points used to sample the input image.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	samplingPoints: [Point2f].
Vector of sampling points in range [0..1)

Note: Number of sampling points must be greater or equal to clusterization seed count.
Python prototype (for reference only):
setSamplingPoints(samplingPoints) -> None

 Link to this function

 setTranslation(self, idx, value)

 View Source

 @spec setTranslation(t(), integer(), number()) :: t() | {:error, String.t()}

Translations of the individual axes of the feature space.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	idx: int.
ID of the translation

	value: float.
Value of the translation

Note:
 WEIGHT_IDX = 0;
 X_IDX = 1;
 Y_IDX = 2;
 L_IDX = 3;
 A_IDX = 4;
 B_IDX = 5;
 CONTRAST_IDX = 6;
 ENTROPY_IDX = 7;
Python prototype (for reference only):
setTranslation(idx, value) -> None

 Link to this function

 setTranslations(self, translations)

 View Source

 @spec setTranslations(t(), [number()]) :: t() | {:error, String.t()}

Translations of the individual axes of the feature space.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	translations: [float].
Values of all translations.

Note:
 WEIGHT_IDX = 0;
 X_IDX = 1;
 Y_IDX = 2;
 L_IDX = 3;
 A_IDX = 4;
 B_IDX = 5;
 CONTRAST_IDX = 6;
 ENTROPY_IDX = 7;
Python prototype (for reference only):
setTranslations(translations) -> None

 Link to this function

 setWeight(self, idx, value)

 View Source

 @spec setWeight(t(), integer(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	idx: int.
ID of the weight

	value: float.
Value of the weight

Note:
 WEIGHT_IDX = 0;
 X_IDX = 1;
 Y_IDX = 2;
 L_IDX = 3;
 A_IDX = 4;
 B_IDX = 5;
 CONTRAST_IDX = 6;
 ENTROPY_IDX = 7;
Python prototype (for reference only):
setWeight(idx, value) -> None

 Link to this function

 setWeightA(self, weight)

 View Source

 @spec setWeightA(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightA(weight) -> None

 Link to this function

 setWeightB(self, weight)

 View Source

 @spec setWeightB(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightB(weight) -> None

 Link to this function

 setWeightContrast(self, weight)

 View Source

 @spec setWeightContrast(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightContrast(weight) -> None

 Link to this function

 setWeightEntropy(self, weight)

 View Source

 @spec setWeightEntropy(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightEntropy(weight) -> None

 Link to this function

 setWeightL(self, weight)

 View Source

 @spec setWeightL(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightL(weight) -> None

 Link to this function

 setWeights(self, weights)

 View Source

 @spec setWeights(t(), [number()]) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()

	weights: [float].
Values of all weights.

Note:
 WEIGHT_IDX = 0;
 X_IDX = 1;
 Y_IDX = 2;
 L_IDX = 3;
 A_IDX = 4;
 B_IDX = 5;
 CONTRAST_IDX = 6;
 ENTROPY_IDX = 7;
Python prototype (for reference only):
setWeights(weights) -> None

 Link to this function

 setWeightX(self, weight)

 View Source

 @spec setWeightX(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightX(weight) -> None

 Link to this function

 setWeightY(self, weight)

 View Source

 @spec setWeightY(t(), number()) :: t() | {:error, String.t()}

Weights (multiplicative constants) that linearly stretch individual axes of the feature space
(x,y = position; L,a,b = color in CIE Lab space; c = contrast. e = entropy)
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	weight: float

Python prototype (for reference only):
setWeightY(weight) -> None

 Link to this function

 setWindowRadius(self, radius)

 View Source

 @spec setWindowRadius(t(), integer()) :: t() | {:error, String.t()}

Size of the texture sampling window used to compute contrast and entropy
(center of the window is always in the pixel selected by x,y coordinates
of the corresponding feature sample).
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	radius: int

Python prototype (for reference only):
setWindowRadius(radius) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.PCTSignatures.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.PCTSignaturesSQFD - Evision v0.1.39

Evision.XFeatures2D.PCTSignaturesSQFD

 Summary

 Types

 t()

 Type that represents an XFeatures2D.PCTSignaturesSQFD struct.

 Functions

 clear(self)

 Clears the algorithm state

 computeQuadraticFormDistance(self, signature0, signature1)

 Computes Signature Quadratic Form Distance of two signatures.

 computeQuadraticFormDistances(self, sourceSignature, imageSignatures, distances)

 Computes Signature Quadratic Form Distance between the reference signature
and each of the other image signatures.

 create()

 Creates the algorithm instance using selected distance function,
similarity function and similarity function parameter.

 create(opts)

 Creates the algorithm instance using selected distance function,
similarity function and similarity function parameter.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.PCTSignaturesSQFD{ref: reference()}

Type that represents an XFeatures2D.PCTSignaturesSQFD struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 computeQuadraticFormDistance(self, signature0, signature1)

 View Source

 @spec computeQuadraticFormDistance(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 number() | {:error, String.t()}

Computes Signature Quadratic Form Distance of two signatures.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()

	signature0: Evision.Mat.t().
The first signature.

	signature1: Evision.Mat.t().
The second signature.

Return
	retval: float

Python prototype (for reference only):
computeQuadraticFormDistance(_signature0, _signature1) -> retval

 Link to this function

 computeQuadraticFormDistances(self, sourceSignature, imageSignatures, distances)

 View Source

 @spec computeQuadraticFormDistances(
 t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.Mat.maybe_mat_in()],
 [
 number()
]
) :: t() | {:error, String.t()}

Computes Signature Quadratic Form Distance between the reference signature
and each of the other image signatures.
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()

	sourceSignature: Evision.Mat.t().
The signature to measure distance of other signatures from.

	imageSignatures: [Evision.Mat].
Vector of signatures to measure distance from the source signature.

	distances: [float].
Output vector of measured distances.

Python prototype (for reference only):
computeQuadraticFormDistances(sourceSignature, imageSignatures, distances) -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Creates the algorithm instance using selected distance function,
similarity function and similarity function parameter.
Keyword Arguments
	distanceFunction: int.
Distance function selector. Default: L2
Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY

	similarityFunction: int.
Similarity function selector. Default: HEURISTIC
Available: MINUS, GAUSSIAN, HEURISTIC

	similarityParameter: float.
Parameter of the similarity function.

Return
	retval: PCTSignaturesSQFD

Python prototype (for reference only):
create([, distanceFunction[, similarityFunction[, similarityParameter]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 distanceFunction: term(),
 similarityParameter: term(),
 similarityFunction: term()
]
 | nil
) ::
 t() | {:error, String.t()}

Creates the algorithm instance using selected distance function,
similarity function and similarity function parameter.
Keyword Arguments
	distanceFunction: int.
Distance function selector. Default: L2
Available: L0_25, L0_5, L1, L2, L2SQUARED, L5, L_INFINITY

	similarityFunction: int.
Similarity function selector. Default: HEURISTIC
Available: MINUS, GAUSSIAN, HEURISTIC

	similarityParameter: float.
Parameter of the similarity function.

Return
	retval: PCTSignaturesSQFD

Python prototype (for reference only):
create([, distanceFunction[, similarityFunction[, similarityParameter]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.PCTSignaturesSQFD.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.SURF - Evision v0.1.39

Evision.XFeatures2D.SURF

 Summary

 Types

 t()

 Type that represents an XFeatures2D.SURF struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getExtended(self)

 getExtended

 getHessianThreshold(self)

 getHessianThreshold

 getNOctaveLayers(self)

 getNOctaveLayers

 getNOctaves(self)

 getNOctaves

 getUpright(self)

 getUpright

 read(self, arg1)

 Variant 1:
read

 setExtended(self, extended)

 setExtended

 setHessianThreshold(self, hessianThreshold)

 setHessianThreshold

 setNOctaveLayers(self, nOctaveLayers)

 setNOctaveLayers

 setNOctaves(self, nOctaves)

 setNOctaves

 setUpright(self, upright)

 setUpright

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.SURF{ref: reference()}

Type that represents an XFeatures2D.SURF struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	hessianThreshold: double.
Threshold for hessian keypoint detector used in SURF.

	nOctaves: int.
Number of pyramid octaves the keypoint detector will use.

	nOctaveLayers: int.
Number of octave layers within each octave.

	extended: bool.
Extended descriptor flag (true - use extended 128-element descriptors; false - use
64-element descriptors).

	upright: bool.
Up-right or rotated features flag (true - do not compute orientation of features;
false - compute orientation).

Return
	retval: SURF

Python prototype (for reference only):
create([, hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 nOctaves: term(),
 extended: term(),
 hessianThreshold: term(),
 upright: term(),
 nOctaveLayers: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	hessianThreshold: double.
Threshold for hessian keypoint detector used in SURF.

	nOctaves: int.
Number of pyramid octaves the keypoint detector will use.

	nOctaveLayers: int.
Number of octave layers within each octave.

	extended: bool.
Extended descriptor flag (true - use extended 128-element descriptors; false - use
64-element descriptors).

	upright: bool.
Up-right or rotated features flag (true - do not compute orientation of features;
false - compute orientation).

Return
	retval: SURF

Python prototype (for reference only):
create([, hessianThreshold[, nOctaves[, nOctaveLayers[, extended[, upright]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getExtended(self)

 View Source

 @spec getExtended(t()) :: boolean() | {:error, String.t()}

getExtended
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: bool

Python prototype (for reference only):
getExtended() -> retval

 Link to this function

 getHessianThreshold(self)

 View Source

 @spec getHessianThreshold(t()) :: number() | {:error, String.t()}

getHessianThreshold
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: double

Python prototype (for reference only):
getHessianThreshold() -> retval

 Link to this function

 getNOctaveLayers(self)

 View Source

 @spec getNOctaveLayers(t()) :: integer() | {:error, String.t()}

getNOctaveLayers
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaveLayers() -> retval

 Link to this function

 getNOctaves(self)

 View Source

 @spec getNOctaves(t()) :: integer() | {:error, String.t()}

getNOctaves
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: int

Python prototype (for reference only):
getNOctaves() -> retval

 Link to this function

 getUpright(self)

 View Source

 @spec getUpright(t()) :: boolean() | {:error, String.t()}

getUpright
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()

Return
	retval: bool

Python prototype (for reference only):
getUpright() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setExtended(self, extended)

 View Source

 @spec setExtended(t(), boolean()) :: t() | {:error, String.t()}

setExtended
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	extended: bool

Python prototype (for reference only):
setExtended(extended) -> None

 Link to this function

 setHessianThreshold(self, hessianThreshold)

 View Source

 @spec setHessianThreshold(t(), number()) :: t() | {:error, String.t()}

setHessianThreshold
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	hessianThreshold: double

Python prototype (for reference only):
setHessianThreshold(hessianThreshold) -> None

 Link to this function

 setNOctaveLayers(self, nOctaveLayers)

 View Source

 @spec setNOctaveLayers(t(), integer()) :: t() | {:error, String.t()}

setNOctaveLayers
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	nOctaveLayers: int

Python prototype (for reference only):
setNOctaveLayers(nOctaveLayers) -> None

 Link to this function

 setNOctaves(self, nOctaves)

 View Source

 @spec setNOctaves(t(), integer()) :: t() | {:error, String.t()}

setNOctaves
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	nOctaves: int

Python prototype (for reference only):
setNOctaves(nOctaves) -> None

 Link to this function

 setUpright(self, upright)

 View Source

 @spec setUpright(t(), boolean()) :: t() | {:error, String.t()}

setUpright
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	upright: bool

Python prototype (for reference only):
setUpright(upright) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.SURF.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.StarDetector - Evision v0.1.39

Evision.XFeatures2D.StarDetector

 Summary

 Types

 t()

 Type that represents an XFeatures2D.StarDetector struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getLineThresholdBinarized(self)

 getLineThresholdBinarized

 getLineThresholdProjected(self)

 getLineThresholdProjected

 getMaxSize(self)

 getMaxSize

 getResponseThreshold(self)

 getResponseThreshold

 getSuppressNonmaxSize(self)

 getSuppressNonmaxSize

 read(self, arg1)

 Variant 1:
read

 setLineThresholdBinarized(self, lineThresholdBinarized)

 setLineThresholdBinarized

 setLineThresholdProjected(self, lineThresholdProjected)

 setLineThresholdProjected

 setMaxSize(self, maxSize)

 setMaxSize

 setResponseThreshold(self, responseThreshold)

 setResponseThreshold

 setSuppressNonmaxSize(self, suppressNonmaxSize)

 setSuppressNonmaxSize

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.StarDetector{ref: reference()}

Type that represents an XFeatures2D.StarDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	maxSize: int.
	responseThreshold: int.
	lineThresholdProjected: int.
	lineThresholdBinarized: int.
	suppressNonmaxSize: int.

Return
	retval: StarDetector

Python prototype (for reference only):
create([, maxSize[, responseThreshold[, lineThresholdProjected[, lineThresholdBinarized[, suppressNonmaxSize]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 lineThresholdBinarized: term(),
 lineThresholdProjected: term(),
 maxSize: term(),
 responseThreshold: term(),
 suppressNonmaxSize: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	maxSize: int.
	responseThreshold: int.
	lineThresholdProjected: int.
	lineThresholdBinarized: int.
	suppressNonmaxSize: int.

Return
	retval: StarDetector

Python prototype (for reference only):
create([, maxSize[, responseThreshold[, lineThresholdProjected[, lineThresholdBinarized[, suppressNonmaxSize]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLineThresholdBinarized(self)

 View Source

 @spec getLineThresholdBinarized(t()) :: integer() | {:error, String.t()}

getLineThresholdBinarized
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
getLineThresholdBinarized() -> retval

 Link to this function

 getLineThresholdProjected(self)

 View Source

 @spec getLineThresholdProjected(t()) :: integer() | {:error, String.t()}

getLineThresholdProjected
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
getLineThresholdProjected() -> retval

 Link to this function

 getMaxSize(self)

 View Source

 @spec getMaxSize(t()) :: integer() | {:error, String.t()}

getMaxSize
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
getMaxSize() -> retval

 Link to this function

 getResponseThreshold(self)

 View Source

 @spec getResponseThreshold(t()) :: integer() | {:error, String.t()}

getResponseThreshold
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
getResponseThreshold() -> retval

 Link to this function

 getSuppressNonmaxSize(self)

 View Source

 @spec getSuppressNonmaxSize(t()) :: integer() | {:error, String.t()}

getSuppressNonmaxSize
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()

Return
	retval: int

Python prototype (for reference only):
getSuppressNonmaxSize() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setLineThresholdBinarized(self, lineThresholdBinarized)

 View Source

 @spec setLineThresholdBinarized(t(), integer()) :: t() | {:error, String.t()}

setLineThresholdBinarized
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	lineThresholdBinarized: int

Python prototype (for reference only):
setLineThresholdBinarized(_lineThresholdBinarized) -> None

 Link to this function

 setLineThresholdProjected(self, lineThresholdProjected)

 View Source

 @spec setLineThresholdProjected(t(), integer()) :: t() | {:error, String.t()}

setLineThresholdProjected
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	lineThresholdProjected: int

Python prototype (for reference only):
setLineThresholdProjected(_lineThresholdProjected) -> None

 Link to this function

 setMaxSize(self, maxSize)

 View Source

 @spec setMaxSize(t(), integer()) :: t() | {:error, String.t()}

setMaxSize
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	maxSize: int

Python prototype (for reference only):
setMaxSize(_maxSize) -> None

 Link to this function

 setResponseThreshold(self, responseThreshold)

 View Source

 @spec setResponseThreshold(t(), integer()) :: t() | {:error, String.t()}

setResponseThreshold
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	responseThreshold: int

Python prototype (for reference only):
setResponseThreshold(_responseThreshold) -> None

 Link to this function

 setSuppressNonmaxSize(self, suppressNonmaxSize)

 View Source

 @spec setSuppressNonmaxSize(t(), integer()) :: t() | {:error, String.t()}

setSuppressNonmaxSize
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	suppressNonmaxSize: int

Python prototype (for reference only):
setSuppressNonmaxSize(_suppressNonmaxSize) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.StarDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.TBMR - Evision v0.1.39

Evision.XFeatures2D.TBMR

 Summary

 Types

 t()

 Type that represents an XFeatures2D.TBMR struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getMaxAreaRelative(self)

 getMaxAreaRelative

 getMinArea(self)

 getMinArea

 getNScales(self)

 getNScales

 getScaleFactor(self)

 getScaleFactor

 read(self, arg1)

 Variant 1:
read

 setMaxAreaRelative(self, maxArea)

 setMaxAreaRelative

 setMinArea(self, minArea)

 setMinArea

 setNScales(self, n_scales)

 setNScales

 setScaleFactor(self, scale_factor)

 setScaleFactor

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.TBMR{ref: reference()}

Type that represents an XFeatures2D.TBMR struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	min_area: int.
	max_area_relative: float.
	scale_factor: float.
	n_scales: int.

Return
	retval: TBMR

Python prototype (for reference only):
create([, min_area[, max_area_relative[, scale_factor[, n_scales]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 scale_factor: term(),
 max_area_relative: term(),
 min_area: term(),
 n_scales: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	min_area: int.
	max_area_relative: float.
	scale_factor: float.
	n_scales: int.

Return
	retval: TBMR

Python prototype (for reference only):
create([, min_area[, max_area_relative[, scale_factor[, n_scales]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Feature2D.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getMaxAreaRelative(self)

 View Source

 @spec getMaxAreaRelative(t()) :: number() | {:error, String.t()}

getMaxAreaRelative
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: float

Python prototype (for reference only):
getMaxAreaRelative() -> retval

 Link to this function

 getMinArea(self)

 View Source

 @spec getMinArea(t()) :: integer() | {:error, String.t()}

getMinArea
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: int

Python prototype (for reference only):
getMinArea() -> retval

 Link to this function

 getNScales(self)

 View Source

 @spec getNScales(t()) :: integer() | {:error, String.t()}

getNScales
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: int

Python prototype (for reference only):
getNScales() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setMaxAreaRelative(self, maxArea)

 View Source

 @spec setMaxAreaRelative(t(), number()) :: t() | {:error, String.t()}

setMaxAreaRelative
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	maxArea: float

Python prototype (for reference only):
setMaxAreaRelative(maxArea) -> None

 Link to this function

 setMinArea(self, minArea)

 View Source

 @spec setMinArea(t(), integer()) :: t() | {:error, String.t()}

setMinArea
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	minArea: int

Python prototype (for reference only):
setMinArea(minArea) -> None

 Link to this function

 setNScales(self, n_scales)

 View Source

 @spec setNScales(t(), integer()) :: t() | {:error, String.t()}

setNScales
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	n_scales: int

Python prototype (for reference only):
setNScales(n_scales) -> None

 Link to this function

 setScaleFactor(self, scale_factor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	scale_factor: float

Python prototype (for reference only):
setScaleFactor(scale_factor) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.TBMR.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.TEBLID - Evision v0.1.39

Evision.XFeatures2D.TEBLID

 Summary

 Types

 t()

 Type that represents an XFeatures2D.TEBLID struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create(scale_factor)

 Creates the TEBLID descriptor.

 create(scale_factor, opts)

 Creates the TEBLID descriptor.

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 read(self, arg1)

 Variant 1:
read

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.TEBLID{ref: reference()}

Type that represents an XFeatures2D.TEBLID struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create(scale_factor)

 View Source

 @spec create(number()) :: t() | {:error, String.t()}

Creates the TEBLID descriptor.
Positional Arguments
	scale_factor: float.Adjust the sampling window around detected keypoints:	 1.00f should be the scale for ORB keypoints
	 6.75f should be the scale for SIFT detected keypoints
	 6.25f is default and fits for KAZE, SURF detected keypoints
	 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints

Keyword Arguments
	n_bits: int.
Determine the number of bits in the descriptor. Should be either
TEBLID::SIZE_256_BITS or TEBLID::SIZE_512_BITS.

Return
	retval: TEBLID

Python prototype (for reference only):
create(scale_factor[, n_bits]) -> retval

 Link to this function

 create(scale_factor, opts)

 View Source

 @spec create(number(), [{:n_bits, term()}] | nil) :: t() | {:error, String.t()}

Creates the TEBLID descriptor.
Positional Arguments
	scale_factor: float.Adjust the sampling window around detected keypoints:	 1.00f should be the scale for ORB keypoints
	 6.75f should be the scale for SIFT detected keypoints
	 6.25f is default and fits for KAZE, SURF detected keypoints
	 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints

Keyword Arguments
	n_bits: int.
Determine the number of bits in the descriptor. Should be either
TEBLID::SIZE_256_BITS or TEBLID::SIZE_512_BITS.

Return
	retval: TEBLID

Python prototype (for reference only):
create(scale_factor[, n_bits]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.TEBLID.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XFeatures2D.VGG - Evision v0.1.39

Evision.XFeatures2D.VGG

 Summary

 Types

 t()

 Type that represents an XFeatures2D.VGG struct.

 Functions

 compute(self, images, keypoints)

 Variant 1:
compute

 compute(self, images, keypoints, opts)

 Variant 1:
compute

 create()

 create

 create(opts)

 create

 defaultNorm(self)

 defaultNorm

 descriptorSize(self)

 descriptorSize

 descriptorType(self)

 descriptorType

 detect(self, images)

 Variant 1:
detect

 detect(self, images, opts)

 Variant 1:
detect

 detectAndCompute(self, image, mask)

 detectAndCompute

 detectAndCompute(self, image, mask, opts)

 detectAndCompute

 empty(self)

 empty

 getDefaultName(self)

 getDefaultName

 getScaleFactor(self)

 getScaleFactor

 getSigma(self)

 getSigma

 getUseNormalizeDescriptor(self)

 getUseNormalizeDescriptor

 getUseNormalizeImage(self)

 getUseNormalizeImage

 getUseScaleOrientation(self)

 getUseScaleOrientation

 read(self, arg1)

 Variant 1:
read

 setScaleFactor(self, scale_factor)

 setScaleFactor

 setSigma(self, isigma)

 setSigma

 setUseNormalizeDescriptor(self, dsc_normalize)

 setUseNormalizeDescriptor

 setUseNormalizeImage(self, img_normalize)

 setUseNormalizeImage

 setUseScaleOrientation(self, use_scale_orientation)

 setUseScaleOrientation

 write(self, fileName)

 write

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XFeatures2D.VGG{ref: reference()}

Type that represents an XFeatures2D.VGG struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 compute(self, images, keypoints)

 View Source

 @spec compute(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()], [
 [Evision.KeyPoint.t()]
]) ::
 {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in(), [
 Evision.KeyPoint.t()
]) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 compute(self, images, keypoints, opts)

 View Source

 @spec compute(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [[Evision.KeyPoint.t()]],
 [{atom(), term()}, ...] | nil
) :: {[[Evision.KeyPoint.t()]], [Evision.Mat.t()]} | {:error, String.t()}

 @spec compute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [Evision.KeyPoint.t()],
 [{atom(), term()}, ...] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

Variant 1:
compute
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	images: [Evision.Mat].
Image set.

Return
	keypoints: [[Evision.KeyPoint]].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: [Evision.Mat].
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Has overloading in C++
Python prototype (for reference only):
compute(images, keypoints[, descriptors]) -> keypoints, descriptors
Variant 2:
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
(second variant).
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	image: Evision.Mat.t().
Image.

Return
	keypoints: [Evision.KeyPoint].
Input collection of keypoints. Keypoints for which a descriptor cannot be
computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
with several dominant orientations (for each orientation).

	descriptors: Evision.Mat.t().
Computed descriptors. In the second variant of the method descriptors[i] are
descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
descriptor for keypoint j-th keypoint.

Python prototype (for reference only):
compute(image, keypoints[, descriptors]) -> keypoints, descriptors

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Keyword Arguments
	desc: int.
	isigma: float.
	img_normalize: bool.
	use_scale_orientation: bool.
	scale_factor: float.
	dsc_normalize: bool.

Return
	retval: VGG

Python prototype (for reference only):
create([, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 scale_factor: term(),
 isigma: term(),
 img_normalize: term(),
 desc: term(),
 use_scale_orientation: term(),
 dsc_normalize: term()
]
 | nil
) :: t() | {:error, String.t()}

create
Keyword Arguments
	desc: int.
	isigma: float.
	img_normalize: bool.
	use_scale_orientation: bool.
	scale_factor: float.
	dsc_normalize: bool.

Return
	retval: VGG

Python prototype (for reference only):
create([, desc[, isigma[, img_normalize[, use_scale_orientation[, scale_factor[, dsc_normalize]]]]]]) -> retval

 Link to this function

 defaultNorm(self)

 View Source

 @spec defaultNorm(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

defaultNorm
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: int

Python prototype (for reference only):
defaultNorm() -> retval

 Link to this function

 descriptorSize(self)

 View Source

 @spec descriptorSize(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorSize
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: int

Python prototype (for reference only):
descriptorSize() -> retval

 Link to this function

 descriptorType(self)

 View Source

 @spec descriptorType(Evision.Feature2D.t()) :: integer() | {:error, String.t()}

descriptorType
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: int

Python prototype (for reference only):
descriptorType() -> retval

 Link to this function

 detect(self, images)

 View Source

 @spec detect(Evision.Feature2D.t(), [Evision.Mat.maybe_mat_in()]) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(Evision.Feature2D.t(), Evision.Mat.maybe_mat_in()) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detect(self, images, opts)

 View Source

 @spec detect(
 Evision.Feature2D.t(),
 [Evision.Mat.maybe_mat_in()],
 [{:masks, term()}] | nil
) ::
 [[Evision.KeyPoint.t()]] | {:error, String.t()}

 @spec detect(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 [{:mask, term()}] | nil
) ::
 [Evision.KeyPoint.t()] | {:error, String.t()}

Variant 1:
detect
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	images: [Evision.Mat].
Image set.

Keyword Arguments
	masks: [Evision.Mat].
Masks for each input image specifying where to look for keypoints (optional).
masks[i] is a mask for images[i].

Return
	keypoints: [[Evision.KeyPoint]].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Has overloading in C++
Python prototype (for reference only):
detect(images[, masks]) -> keypoints
Variant 2:
Detects keypoints in an image (first variant) or image set (second variant).
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

	image: Evision.Mat.t().
Image.

Keyword Arguments
	mask: Evision.Mat.t().
Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
matrix with non-zero values in the region of interest.

Return
	keypoints: [Evision.KeyPoint].
The detected keypoints. In the second variant of the method keypoints[i] is a set
of keypoints detected in images[i] .

Python prototype (for reference only):
detect(image[, mask]) -> keypoints

 Link to this function

 detectAndCompute(self, image, mask)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 detectAndCompute(self, image, mask, opts)

 View Source

 @spec detectAndCompute(
 Evision.Feature2D.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:useProvidedKeypoints, term()}] | nil
) :: {[Evision.KeyPoint.t()], Evision.Mat.t()} | {:error, String.t()}

detectAndCompute
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	image: Evision.Mat.t()
	mask: Evision.Mat.t()

Keyword Arguments
	useProvidedKeypoints: bool.

Return
	keypoints: [Evision.KeyPoint]
	descriptors: Evision.Mat.t().

Detects keypoints and computes the descriptors
Python prototype (for reference only):
detectAndCompute(image, mask[, descriptors[, useProvidedKeypoints]]) -> keypoints, descriptors

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Feature2D.t()) :: boolean() | {:error, String.t()}

empty
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: String

Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getScaleFactor(self)

 View Source

 @spec getScaleFactor(t()) :: number() | {:error, String.t()}

getScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: float

Python prototype (for reference only):
getScaleFactor() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: float

Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 getUseNormalizeDescriptor(self)

 View Source

 @spec getUseNormalizeDescriptor(t()) :: boolean() | {:error, String.t()}

getUseNormalizeDescriptor
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: bool

Python prototype (for reference only):
getUseNormalizeDescriptor() -> retval

 Link to this function

 getUseNormalizeImage(self)

 View Source

 @spec getUseNormalizeImage(t()) :: boolean() | {:error, String.t()}

getUseNormalizeImage
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: bool

Python prototype (for reference only):
getUseNormalizeImage() -> retval

 Link to this function

 getUseScaleOrientation(self)

 View Source

 @spec getUseScaleOrientation(t()) :: boolean() | {:error, String.t()}

getUseScaleOrientation
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()

Return
	retval: bool

Python prototype (for reference only):
getUseScaleOrientation() -> retval

 Link to this function

 read(self, arg1)

 View Source

 @spec read(Evision.Feature2D.t(), Evision.FileNode.t()) ::
 Evision.Feature2D.t() | {:error, String.t()}

 @spec read(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

Variant 1:
read
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	arg1: Evision.FileNode.t()

Python prototype (for reference only):
read(arg1) -> None
Variant 2:
read
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	fileName: String

Python prototype (for reference only):
read(fileName) -> None

 Link to this function

 setScaleFactor(self, scale_factor)

 View Source

 @spec setScaleFactor(t(), number()) :: t() | {:error, String.t()}

setScaleFactor
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	scale_factor: float

Python prototype (for reference only):
setScaleFactor(scale_factor) -> None

 Link to this function

 setSigma(self, isigma)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	isigma: float

Python prototype (for reference only):
setSigma(isigma) -> None

 Link to this function

 setUseNormalizeDescriptor(self, dsc_normalize)

 View Source

 @spec setUseNormalizeDescriptor(t(), boolean()) :: t() | {:error, String.t()}

setUseNormalizeDescriptor
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	dsc_normalize: bool

Python prototype (for reference only):
setUseNormalizeDescriptor(dsc_normalize) -> None

 Link to this function

 setUseNormalizeImage(self, img_normalize)

 View Source

 @spec setUseNormalizeImage(t(), boolean()) :: t() | {:error, String.t()}

setUseNormalizeImage
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	img_normalize: bool

Python prototype (for reference only):
setUseNormalizeImage(img_normalize) -> None

 Link to this function

 setUseScaleOrientation(self, use_scale_orientation)

 View Source

 @spec setUseScaleOrientation(t(), boolean()) :: t() | {:error, String.t()}

setUseScaleOrientation
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	use_scale_orientation: bool

Python prototype (for reference only):
setUseScaleOrientation(use_scale_orientation) -> None

 Link to this function

 write(self, fileName)

 View Source

 @spec write(Evision.Feature2D.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	fileName: String

Python prototype (for reference only):
write(fileName) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Feature2D.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Feature2D.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XFeatures2D.VGG.t()
	fs: Evision.FileStorage.t()
	name: String

Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc - Evision v0.1.39

Evision.XImgProc

 Summary

 Types

 t()

 Type that represents an XImgProc struct.

 Functions

 amFilter(joint, src, sigma_s, sigma_r)

 Simple one-line Adaptive Manifold Filter call.

 amFilter(joint, src, sigma_s, sigma_r, opts)

 Simple one-line Adaptive Manifold Filter call.

 anisotropicDiffusion(src, alpha, k, niters)

 Performs anisotropic diffusion on an image.

 anisotropicDiffusion(src, alpha, k, niters, opts)

 Performs anisotropic diffusion on an image.

 bilateralTextureFilter(src)

 Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
For more details about this filter see @cite Cho2014.

 bilateralTextureFilter(src, opts)

 Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
For more details about this filter see @cite Cho2014.

 colorMatchTemplate(img, templ)

 Compares a color template against overlapped color image regions.

 colorMatchTemplate(img, templ, opts)

 Compares a color template against overlapped color image regions.

 computeBadPixelPercent(gT, src, rOI)

 Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)

 computeBadPixelPercent(gT, src, rOI, opts)

 Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)

 computeMSE(gT, src, rOI)

 Function for computing mean square error for disparity maps

 contourSampling(src, nbElt)

 Contour sampling .

 contourSampling(src, nbElt, opts)

 Contour sampling .

 covarianceEstimation(src, windowRows, windowCols)

 Computes the estimated covariance matrix of an image using the sliding
window forumlation.

 covarianceEstimation(src, windowRows, windowCols, opts)

 Computes the estimated covariance matrix of an image using the sliding
window forumlation.

 createAMFilter(sigma_s, sigma_r)

 Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.

 createAMFilter(sigma_s, sigma_r, opts)

 Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.

 createContourFitting()

 create ContourFitting algorithm object

 createContourFitting(opts)

 create ContourFitting algorithm object

 createDisparityWLSFilter(matcher_left)

 Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
filter parameters automatically based on the matcher instance. Currently supports only StereoBM and StereoSGBM.

 createDisparityWLSFilterGeneric(use_confidence)

 More generic factory method, create instance of DisparityWLSFilter and execute basic
initialization routines. When using this method you will need to set-up the ROI, matchers and
other parameters by yourself.

 createDTFilter(guide, sigmaSpatial, sigmaColor)

 Factory method, create instance of DTFilter and produce initialization routines.

 createDTFilter(guide, sigmaSpatial, sigmaColor, opts)

 Factory method, create instance of DTFilter and produce initialization routines.

 createEdgeAwareInterpolator()

 Factory method that creates an instance of the
EdgeAwareInterpolator.

 createEdgeBoxes()

 Creates a Edgeboxes

 createEdgeBoxes(opts)

 Creates a Edgeboxes

 createEdgeDrawing()

 Creates a smart pointer to a EdgeDrawing object and initializes it

 createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma)

 Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.

 createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma, opts)

 Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.

 createFastGlobalSmootherFilter(guide, lambda, sigma_color)

 Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.

 createFastGlobalSmootherFilter(guide, lambda, sigma_color, opts)

 Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.

 createFastLineDetector()

 Creates a smart pointer to a FastLineDetector object and initializes it

 createFastLineDetector(opts)

 Creates a smart pointer to a FastLineDetector object and initializes it

 createGraphSegmentation()

 Creates a graph based segmentor

 createGraphSegmentation(opts)

 Creates a graph based segmentor

 createGuidedFilter(guide, radius, eps)

 Factory method, create instance of GuidedFilter and produce initialization routines.

 createQuaternionImage(img)

 creates a quaternion image.

 createQuaternionImage(img, opts)

 creates a quaternion image.

 createRFFeatureGetter()

 createRFFeatureGetter

 createRICInterpolator()

 Factory method that creates an instance of the
RICInterpolator.

 createRightMatcher(matcher_left)

 Convenience method to set up the matcher for computing the right-view disparity map
that is required in case of filtering with confidence.

 createScanSegment(image_width, image_height, num_superpixels)

 Initializes a ScanSegment object.

 createScanSegment(image_width, image_height, num_superpixels, opts)

 Initializes a ScanSegment object.

 createSelectiveSearchSegmentation()

 Create a new SelectiveSearchSegmentation class.

 createSelectiveSearchSegmentationStrategyColor()

 Create a new color-based strategy

 createSelectiveSearchSegmentationStrategyFill()

 Create a new fill-based strategy

 createSelectiveSearchSegmentationStrategyMultiple()

 Create a new multiple strategy

 createSelectiveSearchSegmentationStrategyMultiple(s1)

 Create a new multiple strategy and set one subtrategy

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2)

 Create a new multiple strategy and set two subtrategies, with equal weights

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3)

 Create a new multiple strategy and set three subtrategies, with equal weights

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3, s4)

 Create a new multiple strategy and set four subtrategies, with equal weights

 createSelectiveSearchSegmentationStrategySize()

 Create a new size-based strategy

 createSelectiveSearchSegmentationStrategyTexture()

 Create a new size-based strategy

 createStructuredEdgeDetection(model)

 createStructuredEdgeDetection

 createStructuredEdgeDetection(model, opts)

 createStructuredEdgeDetection

 createSuperpixelLSC(image)

 Class implementing the LSC (Linear Spectral Clustering) superpixels

 createSuperpixelLSC(image, opts)

 Class implementing the LSC (Linear Spectral Clustering) superpixels

 createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels)

 Initializes a SuperpixelSEEDS object.

 createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels, opts)

 Initializes a SuperpixelSEEDS object.

 createSuperpixelSLIC(image)

 Initialize a SuperpixelSLIC object

 createSuperpixelSLIC(image, opts)

 Initialize a SuperpixelSLIC object

 dtFilter(guide, src, sigmaSpatial, sigmaColor)

 Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
guided image then use DTFilter interface to avoid extra computations on initialization stage.

 dtFilter(guide, src, sigmaSpatial, sigmaColor, opts)

 Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
guided image then use DTFilter interface to avoid extra computations on initialization stage.

 edgePreservingFilter(src, d, threshold)

 Smoothes an image using the Edge-Preserving filter.

 edgePreservingFilter(src, d, threshold, opts)

 Smoothes an image using the Edge-Preserving filter.

 fastBilateralSolverFilter(guide, src, confidence)

 Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
guide then use FastBilateralSolverFilter interface to avoid extra computations.

 fastBilateralSolverFilter(guide, src, confidence, opts)

 Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
guide then use FastBilateralSolverFilter interface to avoid extra computations.

 fastGlobalSmootherFilter(guide, src, lambda, sigma_color)

 Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
guide then use FastGlobalSmootherFilter interface to avoid extra computations.

 fastGlobalSmootherFilter(guide, src, lambda, sigma_color, opts)

 Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
guide then use FastGlobalSmootherFilter interface to avoid extra computations.

 fastHoughTransform(src, dstMatDepth)

 Calculates 2D Fast Hough transform of an image.

 fastHoughTransform(src, dstMatDepth, opts)

 Calculates 2D Fast Hough transform of an image.

 findEllipses(image)

 Finds ellipses fastly in an image using projective invariant pruning.

 findEllipses(image, opts)

 Finds ellipses fastly in an image using projective invariant pruning.

 fourierDescriptor(src)

 Fourier descriptors for planed closed curves

 fourierDescriptor(src, opts)

 Fourier descriptors for planed closed curves

 getDisparityVis(src)

 Function for creating a disparity map visualization (clamped CV_8U image)

 getDisparityVis(src, opts)

 Function for creating a disparity map visualization (clamped CV_8U image)

 gradientDericheX(op, alpha, omega)

 Applies X Deriche filter to an image.

 gradientDericheX(op, alpha, omega, opts)

 Applies X Deriche filter to an image.

 gradientDericheY(op, alpha, omega)

 Applies Y Deriche filter to an image.

 gradientDericheY(op, alpha, omega, opts)

 Applies Y Deriche filter to an image.

 guidedFilter(guide, src, radius, eps)

 Simple one-line Guided Filter call.

 guidedFilter(guide, src, radius, eps, opts)

 Simple one-line Guided Filter call.

 houghPoint2Line(houghPoint, srcImgInfo)

 Calculates coordinates of line segment corresponded by point in Hough space.

 houghPoint2Line(houghPoint, srcImgInfo, opts)

 Calculates coordinates of line segment corresponded by point in Hough space.

 jointBilateralFilter(joint, src, d, sigmaColor, sigmaSpace)

 Applies the joint bilateral filter to an image.

 jointBilateralFilter(joint, src, d, sigmaColor, sigmaSpace, opts)

 Applies the joint bilateral filter to an image.

 l0Smooth(src)

 Global image smoothing via L0 gradient minimization.

 l0Smooth(src, opts)

 Global image smoothing via L0 gradient minimization.

 niBlackThreshold(src, maxValue, type, blockSize, k)

 Performs thresholding on input images using Niblack's technique or some of the
popular variations it inspired.

 niBlackThreshold(src, maxValue, type, blockSize, k, opts)

 Performs thresholding on input images using Niblack's technique or some of the
popular variations it inspired.

 peiLinNormalization(i)

 PeiLinNormalization

 peiLinNormalization(i, opts)

 PeiLinNormalization

 qconj(qimg)

 calculates conjugate of a quaternion image.

 qconj(qimg, opts)

 calculates conjugate of a quaternion image.

 qdft(img, flags, sideLeft)

 Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.

 qdft(img, flags, sideLeft, opts)

 Performs a forward or inverse Discrete quaternion Fourier transform of a 2D quaternion array.

 qmultiply(src1, src2)

 Calculates the per-element quaternion product of two arrays

 qmultiply(src1, src2, opts)

 Calculates the per-element quaternion product of two arrays

 qunitary(qimg)

 divides each element by its modulus.

 qunitary(qimg, opts)

 divides each element by its modulus.

 radonTransform(src)

 Calculate Radon Transform of an image.

 radonTransform(src, opts)

 Calculate Radon Transform of an image.

 readGT(src_path)

 Function for reading ground truth disparity maps. Supports basic Middlebury
and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.

 readGT(src_path, opts)

 Function for reading ground truth disparity maps. Supports basic Middlebury
and MPI-Sintel formats. Note that the resulting disparity map is scaled by 16.

 rollingGuidanceFilter(src)

 Applies the rolling guidance filter to an image.

 rollingGuidanceFilter(src, opts)

 Applies the rolling guidance filter to an image.

 thinning(src)

 Applies a binary blob thinning operation, to achieve a skeletization of the input image.

 thinning(src, opts)

 Applies a binary blob thinning operation, to achieve a skeletization of the input image.

 transformFD(src, t)

 transform a contour

 transformFD(src, t, opts)

 transform a contour

 weightedMedianFilter(joint, src, r)

 Applies weighted median filter to an image.

 weightedMedianFilter(joint, src, r, opts)

 Applies weighted median filter to an image.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc{ref: reference()}

Type that represents an XImgProc struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 amFilter(joint, src, sigma_s, sigma_r)

 View Source

 @spec amFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Simple one-line Adaptive Manifold Filter call.
Positional Arguments
	joint: Evision.Mat.t().
joint (also called as guided) image or array of images with any numbers of channels.

	src: Evision.Mat.t().
filtering image with any numbers of channels.

	sigma_s: double.
spatial standard deviation.

	sigma_r: double.
color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.

Keyword Arguments
	adjust_outliers: bool.
optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.

Return
	dst: Evision.Mat.t().
output image.

Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
sigmas in bilateralFilter and dtFilter functions. @sa bilateralFilter, dtFilter, guidedFilter
Python prototype (for reference only):
amFilter(joint, src, sigma_s, sigma_r[, dst[, adjust_outliers]]) -> dst

 Link to this function

 amFilter(joint, src, sigma_s, sigma_r, opts)

 View Source

 @spec amFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [{:adjust_outliers, term()}] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Adaptive Manifold Filter call.
Positional Arguments
	joint: Evision.Mat.t().
joint (also called as guided) image or array of images with any numbers of channels.

	src: Evision.Mat.t().
filtering image with any numbers of channels.

	sigma_s: double.
spatial standard deviation.

	sigma_r: double.
color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.

Keyword Arguments
	adjust_outliers: bool.
optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.

Return
	dst: Evision.Mat.t().
output image.

Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
sigmas in bilateralFilter and dtFilter functions. @sa bilateralFilter, dtFilter, guidedFilter
Python prototype (for reference only):
amFilter(joint, src, sigma_s, sigma_r[, dst[, adjust_outliers]]) -> dst

 Link to this function

 anisotropicDiffusion(src, alpha, k, niters)

 View Source

 @spec anisotropicDiffusion(Evision.Mat.maybe_mat_in(), number(), number(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs anisotropic diffusion on an image.
Positional Arguments
	src: Evision.Mat.t().
Source image with 3 channels.

	alpha: float.
The amount of time to step forward by on each iteration (normally, it's between 0 and 1).

	k: float.
sensitivity to the edges

	niters: int.
The number of iterations

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
\f[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\f]
Suggested functions for c(x,y,t) are:
\f[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\f]
or
\f[c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \f]
Python prototype (for reference only):
anisotropicDiffusion(src, alpha, K, niters[, dst]) -> dst

 Link to this function

 anisotropicDiffusion(src, alpha, k, niters, opts)

 View Source

 @spec anisotropicDiffusion(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Performs anisotropic diffusion on an image.
Positional Arguments
	src: Evision.Mat.t().
Source image with 3 channels.

	alpha: float.
The amount of time to step forward by on each iteration (normally, it's between 0 and 1).

	k: float.
sensitivity to the edges

	niters: int.
The number of iterations

Return
	dst: Evision.Mat.t().
Destination image of the same size and the same number of channels as src .

The function applies Perona-Malik anisotropic diffusion to an image. This is the solution to the partial differential equation:
\f[{\frac {\partial I}{\partial t}}={\mathrm {div}}\left(c(x,y,t)\nabla I\right)=\nabla c\cdot \nabla I+c(x,y,t)\Delta I\f]
Suggested functions for c(x,y,t) are:
\f[c\left(\|\nabla I\|\right)=e^{{-\left(\|\nabla I\|/K\right)^{2}}}\f]
or
\f[c\left(\|\nabla I\|\right)={\frac {1}{1+\left({\frac {\|\nabla I\|}{K}}\right)^{2}}} \f]
Python prototype (for reference only):
anisotropicDiffusion(src, alpha, K, niters[, dst]) -> dst

 Link to this function

 bilateralTextureFilter(src)

 View Source

 @spec bilateralTextureFilter(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
For more details about this filter see @cite Cho2014.
Positional Arguments
	src: Evision.Mat.t().
Source image whose depth is 8-bit UINT or 32-bit FLOAT

Keyword Arguments
	fr: int.
Radius of kernel to be used for filtering. It should be positive integer

	numIter: int.
Number of iterations of algorithm, It should be positive integer

	sigmaAlpha: double.
Controls the sharpness of the weight transition from edges to smooth/texture regions, where
a bigger value means sharper transition. When the value is negative, it is automatically calculated.

	sigmaAvg: double.
Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
value is negative, it is automatically calculated as described in the paper.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src.

@sa rollingGuidanceFilter, bilateralFilter
Python prototype (for reference only):
bilateralTextureFilter(src[, dst[, fr[, numIter[, sigmaAlpha[, sigmaAvg]]]]]) -> dst

 Link to this function

 bilateralTextureFilter(src, opts)

 View Source

 @spec bilateralTextureFilter(
 Evision.Mat.maybe_mat_in(),
 [fr: term(), numIter: term(), sigmaAvg: term(), sigmaAlpha: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Applies the bilateral texture filter to an image. It performs structure-preserving texture filter.
For more details about this filter see @cite Cho2014.
Positional Arguments
	src: Evision.Mat.t().
Source image whose depth is 8-bit UINT or 32-bit FLOAT

Keyword Arguments
	fr: int.
Radius of kernel to be used for filtering. It should be positive integer

	numIter: int.
Number of iterations of algorithm, It should be positive integer

	sigmaAlpha: double.
Controls the sharpness of the weight transition from edges to smooth/texture regions, where
a bigger value means sharper transition. When the value is negative, it is automatically calculated.

	sigmaAvg: double.
Range blur parameter for texture blurring. Larger value makes result to be more blurred. When the
value is negative, it is automatically calculated as described in the paper.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src.

@sa rollingGuidanceFilter, bilateralFilter
Python prototype (for reference only):
bilateralTextureFilter(src[, dst[, fr[, numIter[, sigmaAlpha[, sigmaAvg]]]]]) -> dst

 Link to this function

 colorMatchTemplate(img, templ)

 View Source

 @spec colorMatchTemplate(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Compares a color template against overlapped color image regions.
Positional Arguments
	img: Evision.Mat.t()
	templ: Evision.Mat.t()

Return
	result: Evision.Mat.t().

Python prototype (for reference only):
colorMatchTemplate(img, templ[, result]) -> result

 Link to this function

 colorMatchTemplate(img, templ, opts)

 View Source

 @spec colorMatchTemplate(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Compares a color template against overlapped color image regions.
Positional Arguments
	img: Evision.Mat.t()
	templ: Evision.Mat.t()

Return
	result: Evision.Mat.t().

Python prototype (for reference only):
colorMatchTemplate(img, templ[, result]) -> result

 Link to this function

 computeBadPixelPercent(gT, src, rOI)

 View Source

 @spec computeBadPixelPercent(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()}
) :: number() | {:error, String.t()}

Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)
Positional Arguments
	gT: Evision.Mat.t().
ground truth disparity map

	src: Evision.Mat.t().
disparity map to evaluate

	rOI: Rect.
region of interest

Keyword Arguments
	thresh: int.
threshold used to determine "bad" pixels

Return
	retval: double

@result returns mean square error between GT and src
Python prototype (for reference only):
computeBadPixelPercent(GT, src, ROI[, thresh]) -> retval

 Link to this function

 computeBadPixelPercent(gT, src, rOI, opts)

 View Source

 @spec computeBadPixelPercent(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()},
 [{:thresh, term()}] | nil
) :: number() | {:error, String.t()}

Function for computing the percent of "bad" pixels in the disparity map
(pixels where error is higher than a specified threshold)
Positional Arguments
	gT: Evision.Mat.t().
ground truth disparity map

	src: Evision.Mat.t().
disparity map to evaluate

	rOI: Rect.
region of interest

Keyword Arguments
	thresh: int.
threshold used to determine "bad" pixels

Return
	retval: double

@result returns mean square error between GT and src
Python prototype (for reference only):
computeBadPixelPercent(GT, src, ROI[, thresh]) -> retval

 Link to this function

 computeMSE(gT, src, rOI)

 View Source

 @spec computeMSE(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 {number(), number(), number(), number()}
) :: number() | {:error, String.t()}

Function for computing mean square error for disparity maps
Positional Arguments
	gT: Evision.Mat.t().
ground truth disparity map

	src: Evision.Mat.t().
disparity map to evaluate

	rOI: Rect.
region of interest

Return
	retval: double

@result returns mean square error between GT and src
Python prototype (for reference only):
computeMSE(GT, src, ROI) -> retval

 Link to this function

 contourSampling(src, nbElt)

 View Source

 @spec contourSampling(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Contour sampling .
Positional Arguments
	src: Evision.Mat.t()
	nbElt: int

Return
	out: Evision.Mat.t().

Python prototype (for reference only):
contourSampling(src, nbElt[, out]) -> out

 Link to this function

 contourSampling(src, nbElt, opts)

 View Source

 @spec contourSampling(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Contour sampling .
Positional Arguments
	src: Evision.Mat.t()
	nbElt: int

Return
	out: Evision.Mat.t().

Python prototype (for reference only):
contourSampling(src, nbElt[, out]) -> out

 Link to this function

 covarianceEstimation(src, windowRows, windowCols)

 View Source

 @spec covarianceEstimation(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Computes the estimated covariance matrix of an image using the sliding
window forumlation.
Positional Arguments
	src: Evision.Mat.t().
The source image. Input image must be of a complex type.

	windowRows: int.
The number of rows in the window.

	windowCols: int.
The number of cols in the window.
The window size parameters control the accuracy of the estimation.
The sliding window moves over the entire image from the top-left corner
to the bottom right corner. Each location of the window represents a sample.
If the window is the size of the image, then this gives the exact covariance matrix.
For all other cases, the sizes of the window will impact the number of samples
and the number of elements in the estimated covariance matrix.

Return
	dst: Evision.Mat.t().
The destination estimated covariance matrix. Output matrix will be size (windowRowswindowCols, windowRowswindowCols).

Python prototype (for reference only):
covarianceEstimation(src, windowRows, windowCols[, dst]) -> dst

 Link to this function

 covarianceEstimation(src, windowRows, windowCols, opts)

 View Source

 @spec covarianceEstimation(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Computes the estimated covariance matrix of an image using the sliding
window forumlation.
Positional Arguments
	src: Evision.Mat.t().
The source image. Input image must be of a complex type.

	windowRows: int.
The number of rows in the window.

	windowCols: int.
The number of cols in the window.
The window size parameters control the accuracy of the estimation.
The sliding window moves over the entire image from the top-left corner
to the bottom right corner. Each location of the window represents a sample.
If the window is the size of the image, then this gives the exact covariance matrix.
For all other cases, the sizes of the window will impact the number of samples
and the number of elements in the estimated covariance matrix.

Return
	dst: Evision.Mat.t().
The destination estimated covariance matrix. Output matrix will be size (windowRowswindowCols, windowRowswindowCols).

Python prototype (for reference only):
covarianceEstimation(src, windowRows, windowCols[, dst]) -> dst

 Link to this function

 createAMFilter(sigma_s, sigma_r)

 View Source

 @spec createAMFilter(number(), number()) ::
 Evision.XImgProc.AdaptiveManifoldFilter.t() | {:error, String.t()}

Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
Positional Arguments
	sigma_s: double.
spatial standard deviation.

	sigma_r: double.
color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.

Keyword Arguments
	adjust_outliers: bool.
optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.

Return
	retval: Evision.XImgProc.AdaptiveManifoldFilter.t()

For more details about Adaptive Manifold Filter parameters, see the original article @cite Gastal12 .
Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
sigmas in bilateralFilter and dtFilter functions.
Python prototype (for reference only):
createAMFilter(sigma_s, sigma_r[, adjust_outliers]) -> retval

 Link to this function

 createAMFilter(sigma_s, sigma_r, opts)

 View Source

 @spec createAMFilter(number(), number(), [{:adjust_outliers, term()}] | nil) ::
 Evision.XImgProc.AdaptiveManifoldFilter.t() | {:error, String.t()}

Factory method, create instance of AdaptiveManifoldFilter and produce some initialization routines.
Positional Arguments
	sigma_s: double.
spatial standard deviation.

	sigma_r: double.
color space standard deviation, it is similar to the sigma in the color space into
bilateralFilter.

Keyword Arguments
	adjust_outliers: bool.
optional, specify perform outliers adjust operation or not, (Eq. 9) in the
original paper.

Return
	retval: Evision.XImgProc.AdaptiveManifoldFilter.t()

For more details about Adaptive Manifold Filter parameters, see the original article @cite Gastal12 .
Note: Joint images with CV_8U and CV_16U depth converted to images with CV_32F depth and [0; 1]
color range before processing. Hence color space sigma sigma_r must be in [0; 1] range, unlike same
sigmas in bilateralFilter and dtFilter functions.
Python prototype (for reference only):
createAMFilter(sigma_s, sigma_r[, adjust_outliers]) -> retval

 Link to this function

 createContourFitting()

 View Source

 @spec createContourFitting() ::
 Evision.XImgProc.ContourFitting.t() | {:error, String.t()}

create ContourFitting algorithm object
Keyword Arguments
	ctr: int.
number of Fourier descriptors equal to number of contour points after resampling.

	fd: int.
Contour defining second shape (Target).

Return
	retval: Evision.XImgProc.ContourFitting.t()

Python prototype (for reference only):
createContourFitting([, ctr[, fd]]) -> retval

 Link to this function

 createContourFitting(opts)

 View Source

 @spec createContourFitting([ctr: term(), fd: term()] | nil) ::
 Evision.XImgProc.ContourFitting.t() | {:error, String.t()}

create ContourFitting algorithm object
Keyword Arguments
	ctr: int.
number of Fourier descriptors equal to number of contour points after resampling.

	fd: int.
Contour defining second shape (Target).

Return
	retval: Evision.XImgProc.ContourFitting.t()

Python prototype (for reference only):
createContourFitting([, ctr[, fd]]) -> retval

 Link to this function

 createDisparityWLSFilter(matcher_left)

 View Source

 @spec createDisparityWLSFilter(Evision.StereoMatcher.t()) ::
 Evision.XImgProc.DisparityWLSFilter.t() | {:error, String.t()}

Convenience factory method that creates an instance of DisparityWLSFilter and sets up all the relevant
filter parameters automatically based on the matcher instance. Currently supports only StereoBM and StereoSGBM.
Positional Arguments
	matcher_left: Evision.StereoMatcher.t().
stereo matcher instance that will be used with the filter

Return
	retval: Evision.XImgProc.DisparityWLSFilter.t()

Python prototype (for reference only):
createDisparityWLSFilter(matcher_left) -> retval

 Link to this function

 createDisparityWLSFilterGeneric(use_confidence)

 View Source

 @spec createDisparityWLSFilterGeneric(boolean()) ::
 Evision.XImgProc.DisparityWLSFilter.t() | {:error, String.t()}

More generic factory method, create instance of DisparityWLSFilter and execute basic
initialization routines. When using this method you will need to set-up the ROI, matchers and
other parameters by yourself.
Positional Arguments
	use_confidence: bool.
filtering with confidence requires two disparity maps (for the left and right views) and is
approximately two times slower. However, quality is typically significantly better.

Return
	retval: Evision.XImgProc.DisparityWLSFilter.t()

Python prototype (for reference only):
createDisparityWLSFilterGeneric(use_confidence) -> retval

 Link to this function

 createDTFilter(guide, sigmaSpatial, sigmaColor)

 View Source

 @spec createDTFilter(Evision.Mat.maybe_mat_in(), number(), number()) ::
 Evision.XImgProc.DTFilter.t() | {:error, String.t()}

Factory method, create instance of DTFilter and produce initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
guided image (used to build transformed distance, which describes edge structure of
guided image).

	sigmaSpatial: double.
\f${\sigma}_H\f$ parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.

	sigmaColor: double.
\f${\sigma}_r\f$ parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.

Keyword Arguments
	mode: int.
one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.

	numIters: int.
optional number of iterations used for filtering, 3 is quite enough.

Return
	retval: Evision.XImgProc.DTFilter.t()

For more details about Domain Transform filter parameters, see the original article @cite Gastal11 and
Domain Transform filter homepage.
Python prototype (for reference only):
createDTFilter(guide, sigmaSpatial, sigmaColor[, mode[, numIters]]) -> retval

 Link to this function

 createDTFilter(guide, sigmaSpatial, sigmaColor, opts)

 View Source

 @spec createDTFilter(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [mode: term(), numIters: term()] | nil
) :: Evision.XImgProc.DTFilter.t() | {:error, String.t()}

Factory method, create instance of DTFilter and produce initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
guided image (used to build transformed distance, which describes edge structure of
guided image).

	sigmaSpatial: double.
\f${\sigma}_H\f$ parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.

	sigmaColor: double.
\f${\sigma}_r\f$ parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.

Keyword Arguments
	mode: int.
one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.

	numIters: int.
optional number of iterations used for filtering, 3 is quite enough.

Return
	retval: Evision.XImgProc.DTFilter.t()

For more details about Domain Transform filter parameters, see the original article @cite Gastal11 and
Domain Transform filter homepage.
Python prototype (for reference only):
createDTFilter(guide, sigmaSpatial, sigmaColor[, mode[, numIters]]) -> retval

 Link to this function

 createEdgeAwareInterpolator()

 View Source

 @spec createEdgeAwareInterpolator() ::
 Evision.XImgProc.EdgeAwareInterpolator.t() | {:error, String.t()}

Factory method that creates an instance of the
EdgeAwareInterpolator.
Return
	retval: Evision.XImgProc.EdgeAwareInterpolator.t()

Python prototype (for reference only):
createEdgeAwareInterpolator() -> retval

 Link to this function

 createEdgeBoxes()

 View Source

 @spec createEdgeBoxes() :: Evision.XImgProc.EdgeBoxes.t() | {:error, String.t()}

Creates a Edgeboxes
Keyword Arguments
	alpha: float.
step size of sliding window search.

	beta: float.
nms threshold for object proposals.

	eta: float.
adaptation rate for nms threshold.

	minScore: float.
min score of boxes to detect.

	maxBoxes: int.
max number of boxes to detect.

	edgeMinMag: float.
edge min magnitude. Increase to trade off accuracy for speed.

	edgeMergeThr: float.
edge merge threshold. Increase to trade off accuracy for speed.

	clusterMinMag: float.
cluster min magnitude. Increase to trade off accuracy for speed.

	maxAspectRatio: float.
max aspect ratio of boxes.

	minBoxArea: float.
minimum area of boxes.

	gamma: float.
affinity sensitivity.

	kappa: float.
scale sensitivity.

Return
	retval: Evision.XImgProc.EdgeBoxes.t()

Python prototype (for reference only):
createEdgeBoxes([, alpha[, beta[, eta[, minScore[, maxBoxes[, edgeMinMag[, edgeMergeThr[, clusterMinMag[, maxAspectRatio[, minBoxArea[, gamma[, kappa]]]]]]]]]]]]) -> retval

 Link to this function

 createEdgeBoxes(opts)

 View Source

 @spec createEdgeBoxes(
 [
 alpha: term(),
 minScore: term(),
 edgeMergeThr: term(),
 gamma: term(),
 clusterMinMag: term(),
 kappa: term(),
 maxAspectRatio: term(),
 eta: term(),
 edgeMinMag: term(),
 beta: term(),
 minBoxArea: term(),
 maxBoxes: term()
]
 | nil
) :: Evision.XImgProc.EdgeBoxes.t() | {:error, String.t()}

Creates a Edgeboxes
Keyword Arguments
	alpha: float.
step size of sliding window search.

	beta: float.
nms threshold for object proposals.

	eta: float.
adaptation rate for nms threshold.

	minScore: float.
min score of boxes to detect.

	maxBoxes: int.
max number of boxes to detect.

	edgeMinMag: float.
edge min magnitude. Increase to trade off accuracy for speed.

	edgeMergeThr: float.
edge merge threshold. Increase to trade off accuracy for speed.

	clusterMinMag: float.
cluster min magnitude. Increase to trade off accuracy for speed.

	maxAspectRatio: float.
max aspect ratio of boxes.

	minBoxArea: float.
minimum area of boxes.

	gamma: float.
affinity sensitivity.

	kappa: float.
scale sensitivity.

Return
	retval: Evision.XImgProc.EdgeBoxes.t()

Python prototype (for reference only):
createEdgeBoxes([, alpha[, beta[, eta[, minScore[, maxBoxes[, edgeMinMag[, edgeMergeThr[, clusterMinMag[, maxAspectRatio[, minBoxArea[, gamma[, kappa]]]]]]]]]]]]) -> retval

 Link to this function

 createEdgeDrawing()

 View Source

 @spec createEdgeDrawing() :: Evision.XImgProc.EdgeDrawing.t() | {:error, String.t()}

Creates a smart pointer to a EdgeDrawing object and initializes it
Return
	retval: Evision.XImgProc.EdgeDrawing.t()

Python prototype (for reference only):
createEdgeDrawing() -> retval

 Link to this function

 createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma)

 View Source

 @spec createFastBilateralSolverFilter(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 number()
) ::
 Evision.XImgProc.FastBilateralSolverFilter.t() | {:error, String.t()}

Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	sigma_spatial: double.
parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.

	sigma_luma: double.
parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.

	sigma_chroma: double.
parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.

Keyword Arguments
	lambda: double.
smoothness strength parameter for solver.

	num_iter: int.
number of iterations used for solver, 25 is usually enough.

	max_tol: double.
convergence tolerance used for solver.

Return
	retval: Evision.XImgProc.FastBilateralSolverFilter.t()

For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
Python prototype (for reference only):
createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma[, lambda[, num_iter[, max_tol]]]) -> retval

 Link to this function

 createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma, opts)

 View Source

 @spec createFastBilateralSolverFilter(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 number(),
 [lambda: term(), num_iter: term(), max_tol: term()] | nil
) :: Evision.XImgProc.FastBilateralSolverFilter.t() | {:error, String.t()}

Factory method, create instance of FastBilateralSolverFilter and execute the initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	sigma_spatial: double.
parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.

	sigma_luma: double.
parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.

	sigma_chroma: double.
parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.

Keyword Arguments
	lambda: double.
smoothness strength parameter for solver.

	num_iter: int.
number of iterations used for solver, 25 is usually enough.

	max_tol: double.
convergence tolerance used for solver.

Return
	retval: Evision.XImgProc.FastBilateralSolverFilter.t()

For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
Python prototype (for reference only):
createFastBilateralSolverFilter(guide, sigma_spatial, sigma_luma, sigma_chroma[, lambda[, num_iter[, max_tol]]]) -> retval

 Link to this function

 createFastGlobalSmootherFilter(guide, lambda, sigma_color)

 View Source

 @spec createFastGlobalSmootherFilter(Evision.Mat.maybe_mat_in(), number(), number()) ::
 Evision.XImgProc.FastGlobalSmootherFilter.t() | {:error, String.t()}

Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	lambda: double.
parameter defining the amount of regularization

	sigma_color: double.
parameter, that is similar to color space sigma in bilateralFilter.

Keyword Arguments
	lambda_attenuation: double.
internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.

	num_iter: int.
number of iterations used for filtering, 3 is usually enough.

Return
	retval: Evision.XImgProc.FastGlobalSmootherFilter.t()

For more details about Fast Global Smoother parameters, see the original paper @cite Min2014. However, please note that
there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
propose to dynamically update the guide image after each iteration. To maximize the performance this feature
was not implemented here.
Python prototype (for reference only):
createFastGlobalSmootherFilter(guide, lambda, sigma_color[, lambda_attenuation[, num_iter]]) -> retval

 Link to this function

 createFastGlobalSmootherFilter(guide, lambda, sigma_color, opts)

 View Source

 @spec createFastGlobalSmootherFilter(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [num_iter: term(), lambda_attenuation: term()] | nil
) :: Evision.XImgProc.FastGlobalSmootherFilter.t() | {:error, String.t()}

Factory method, create instance of FastGlobalSmootherFilter and execute the initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	lambda: double.
parameter defining the amount of regularization

	sigma_color: double.
parameter, that is similar to color space sigma in bilateralFilter.

Keyword Arguments
	lambda_attenuation: double.
internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.

	num_iter: int.
number of iterations used for filtering, 3 is usually enough.

Return
	retval: Evision.XImgProc.FastGlobalSmootherFilter.t()

For more details about Fast Global Smoother parameters, see the original paper @cite Min2014. However, please note that
there are several differences. Lambda attenuation described in the paper is implemented a bit differently so do not
expect the results to be identical to those from the paper; sigma_color values from the paper should be multiplied by 255.0 to
achieve the same effect. Also, in case of image filtering where source and guide image are the same, authors
propose to dynamically update the guide image after each iteration. To maximize the performance this feature
was not implemented here.
Python prototype (for reference only):
createFastGlobalSmootherFilter(guide, lambda, sigma_color[, lambda_attenuation[, num_iter]]) -> retval

 Link to this function

 createFastLineDetector()

 View Source

 @spec createFastLineDetector() ::
 Evision.XImgProc.FastLineDetector.t() | {:error, String.t()}

Creates a smart pointer to a FastLineDetector object and initializes it
Keyword Arguments
	length_threshold: int.
Segment shorter than this will be discarded

	distance_threshold: float.
A point placed from a hypothesis line
segment farther than this will be regarded as an outlier

	canny_th1: double.
First threshold for hysteresis procedure in Canny()

	canny_th2: double.
Second threshold for hysteresis procedure in Canny()

	canny_aperture_size: int.
Aperturesize for the sobel operator in Canny().
If zero, Canny() is not applied and the input image is taken as an edge image.

	do_merge: bool.
If true, incremental merging of segments will be performed

Return
	retval: Evision.XImgProc.FastLineDetector.t()

Python prototype (for reference only):
createFastLineDetector([, length_threshold[, distance_threshold[, canny_th1[, canny_th2[, canny_aperture_size[, do_merge]]]]]]) -> retval

 Link to this function

 createFastLineDetector(opts)

 View Source

 @spec createFastLineDetector(
 [
 canny_aperture_size: term(),
 canny_th2: term(),
 length_threshold: term(),
 do_merge: term(),
 distance_threshold: term(),
 canny_th1: term()
]
 | nil
) :: Evision.XImgProc.FastLineDetector.t() | {:error, String.t()}

Creates a smart pointer to a FastLineDetector object and initializes it
Keyword Arguments
	length_threshold: int.
Segment shorter than this will be discarded

	distance_threshold: float.
A point placed from a hypothesis line
segment farther than this will be regarded as an outlier

	canny_th1: double.
First threshold for hysteresis procedure in Canny()

	canny_th2: double.
Second threshold for hysteresis procedure in Canny()

	canny_aperture_size: int.
Aperturesize for the sobel operator in Canny().
If zero, Canny() is not applied and the input image is taken as an edge image.

	do_merge: bool.
If true, incremental merging of segments will be performed

Return
	retval: Evision.XImgProc.FastLineDetector.t()

Python prototype (for reference only):
createFastLineDetector([, length_threshold[, distance_threshold[, canny_th1[, canny_th2[, canny_aperture_size[, do_merge]]]]]]) -> retval

 Link to this function

 createGraphSegmentation()

 View Source

 @spec createGraphSegmentation() ::
 Evision.XImgProc.GraphSegmentation.t() | {:error, String.t()}

Creates a graph based segmentor
Keyword Arguments
	sigma: double.
The sigma parameter, used to smooth image

	k: float.
The k parameter of the algorythm

	min_size: int.
The minimum size of segments

Return
	retval: Evision.XImgProc.GraphSegmentation.t()

Python prototype (for reference only):
createGraphSegmentation([, sigma[, k[, min_size]]]) -> retval

 Link to this function

 createGraphSegmentation(opts)

 View Source

 @spec createGraphSegmentation([sigma: term(), k: term(), min_size: term()] | nil) ::
 Evision.XImgProc.GraphSegmentation.t() | {:error, String.t()}

Creates a graph based segmentor
Keyword Arguments
	sigma: double.
The sigma parameter, used to smooth image

	k: float.
The k parameter of the algorythm

	min_size: int.
The minimum size of segments

Return
	retval: Evision.XImgProc.GraphSegmentation.t()

Python prototype (for reference only):
createGraphSegmentation([, sigma[, k[, min_size]]]) -> retval

 Link to this function

 createGuidedFilter(guide, radius, eps)

 View Source

 @spec createGuidedFilter(Evision.Mat.maybe_mat_in(), integer(), number()) ::
 Evision.XImgProc.GuidedFilter.t() | {:error, String.t()}

Factory method, create instance of GuidedFilter and produce initialization routines.
Positional Arguments
	guide: Evision.Mat.t().
guided image (or array of images) with up to 3 channels, if it have more then 3
channels then only first 3 channels will be used.

	radius: int.
radius of Guided Filter.

	eps: double.
regularization term of Guided Filter. \f${eps}^2\f$ is similar to the sigma in the color
space into bilateralFilter.

Return
	retval: Evision.XImgProc.GuidedFilter.t()

For more details about Guided Filter parameters, see the original article @cite Kaiming10 .
Python prototype (for reference only):
createGuidedFilter(guide, radius, eps) -> retval

 Link to this function

 createQuaternionImage(img)

 View Source

 @spec createQuaternionImage(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

creates a quaternion image.
Positional Arguments
	img: Evision.Mat.t()

Return
	qimg: Evision.Mat.t().

Python prototype (for reference only):
createQuaternionImage(img[, qimg]) -> qimg

 Link to this function

 createQuaternionImage(img, opts)

 View Source

 @spec createQuaternionImage(Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

creates a quaternion image.
Positional Arguments
	img: Evision.Mat.t()

Return
	qimg: Evision.Mat.t().

Python prototype (for reference only):
createQuaternionImage(img[, qimg]) -> qimg

 Link to this function

 createRFFeatureGetter()

 View Source

 @spec createRFFeatureGetter() ::
 Evision.XImgProc.RFFeatureGetter.t() | {:error, String.t()}

createRFFeatureGetter
Return
	retval: Evision.XImgProc.RFFeatureGetter.t()

Python prototype (for reference only):
createRFFeatureGetter() -> retval

 Link to this function

 createRICInterpolator()

 View Source

 @spec createRICInterpolator() ::
 Evision.XImgProc.RICInterpolator.t() | {:error, String.t()}

Factory method that creates an instance of the
RICInterpolator.
Return
	retval: Evision.XImgProc.RICInterpolator.t()

Python prototype (for reference only):
createRICInterpolator() -> retval

 Link to this function

 createRightMatcher(matcher_left)

 View Source

 @spec createRightMatcher(Evision.StereoMatcher.t()) ::
 Evision.StereoMatcher.t() | {:error, String.t()}

Convenience method to set up the matcher for computing the right-view disparity map
that is required in case of filtering with confidence.
Positional Arguments
	matcher_left: Evision.StereoMatcher.t().
main stereo matcher instance that will be used with the filter

Return
	retval: Evision.StereoMatcher.t()

Python prototype (for reference only):
createRightMatcher(matcher_left) -> retval

 Link to this function

 createScanSegment(image_width, image_height, num_superpixels)

 View Source

 @spec createScanSegment(integer(), integer(), integer()) ::
 Evision.XImgProc.ScanSegment.t() | {:error, String.t()}

Initializes a ScanSegment object.
Positional Arguments
	image_width: int.
Image width.

	image_height: int.
Image height.

	num_superpixels: int.
Desired number of superpixels. Note that the actual number may be smaller
due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
get the actual number.

Keyword Arguments
	slices: int.
Number of processing threads for parallelisation. Setting -1 uses the maximum number
of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.

	merge_small: bool.
merge small segments to give the desired number of superpixels. Processing is
much faster without merging, but many small segments will be left in the image.

Return
	retval: Evision.XImgProc.ScanSegment.t()

The function initializes a ScanSegment object for the input image. It stores the parameters of
the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
algorithm, which are: num_superpixels, threads, and merge_small.
Python prototype (for reference only):
createScanSegment(image_width, image_height, num_superpixels[, slices[, merge_small]]) -> retval

 Link to this function

 createScanSegment(image_width, image_height, num_superpixels, opts)

 View Source

 @spec createScanSegment(
 integer(),
 integer(),
 integer(),
 [slices: term(), merge_small: term()] | nil
) ::
 Evision.XImgProc.ScanSegment.t() | {:error, String.t()}

Initializes a ScanSegment object.
Positional Arguments
	image_width: int.
Image width.

	image_height: int.
Image height.

	num_superpixels: int.
Desired number of superpixels. Note that the actual number may be smaller
due to restrictions (depending on the image size). Use getNumberOfSuperpixels() to
get the actual number.

Keyword Arguments
	slices: int.
Number of processing threads for parallelisation. Setting -1 uses the maximum number
of threads. In practice, four threads is enough for smaller images and eight threads for larger ones.

	merge_small: bool.
merge small segments to give the desired number of superpixels. Processing is
much faster without merging, but many small segments will be left in the image.

Return
	retval: Evision.XImgProc.ScanSegment.t()

The function initializes a ScanSegment object for the input image. It stores the parameters of
the image: image_width and image_height. It also sets the parameters of the F-DBSCAN superpixel
algorithm, which are: num_superpixels, threads, and merge_small.
Python prototype (for reference only):
createScanSegment(image_width, image_height, num_superpixels[, slices[, merge_small]]) -> retval

 Link to this function

 createSelectiveSearchSegmentation()

 View Source

 @spec createSelectiveSearchSegmentation() ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Create a new SelectiveSearchSegmentation class.
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentation.t()

Python prototype (for reference only):
createSelectiveSearchSegmentation() -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyColor()

 View Source

 @spec createSelectiveSearchSegmentationStrategyColor() ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyColor.t()
 | {:error, String.t()}

Create a new color-based strategy
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyColor.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyColor() -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyFill()

 View Source

 @spec createSelectiveSearchSegmentationStrategyFill() ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyFill.t()
 | {:error, String.t()}

Create a new fill-based strategy
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyFill.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyFill() -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyMultiple()

 View Source

 @spec createSelectiveSearchSegmentationStrategyMultiple() ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()
 | {:error, String.t()}

Create a new multiple strategy
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyMultiple() -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyMultiple(s1)

 View Source

 @spec createSelectiveSearchSegmentationStrategyMultiple(
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
) ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()
 | {:error, String.t()}

Create a new multiple strategy and set one subtrategy
Positional Arguments
	s1: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The first strategy

Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyMultiple(s1) -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2)

 View Source

 @spec createSelectiveSearchSegmentationStrategyMultiple(
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
) ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()
 | {:error, String.t()}

Create a new multiple strategy and set two subtrategies, with equal weights
Positional Arguments
	s1: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The first strategy

	s2: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The second strategy

Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyMultiple(s1, s2) -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3)

 View Source

 @spec createSelectiveSearchSegmentationStrategyMultiple(
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
) ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()
 | {:error, String.t()}

Create a new multiple strategy and set three subtrategies, with equal weights
Positional Arguments
	s1: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The first strategy

	s2: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The second strategy

	s3: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The third strategy

Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3) -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3, s4)

 View Source

 @spec createSelectiveSearchSegmentationStrategyMultiple(
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
) ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()
 | {:error, String.t()}

Create a new multiple strategy and set four subtrategies, with equal weights
Positional Arguments
	s1: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The first strategy

	s2: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The second strategy

	s3: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The third strategy

	s4: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The forth strategy

Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyMultiple(s1, s2, s3, s4) -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategySize()

 View Source

 @spec createSelectiveSearchSegmentationStrategySize() ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategySize.t()
 | {:error, String.t()}

Create a new size-based strategy
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategySize.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategySize() -> retval

 Link to this function

 createSelectiveSearchSegmentationStrategyTexture()

 View Source

 @spec createSelectiveSearchSegmentationStrategyTexture() ::
 Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture.t()
 | {:error, String.t()}

Create a new size-based strategy
Return
	retval: Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture.t()

Python prototype (for reference only):
createSelectiveSearchSegmentationStrategyTexture() -> retval

 Link to this function

 createStructuredEdgeDetection(model)

 View Source

 @spec createStructuredEdgeDetection(binary()) ::
 Evision.XImgProc.StructuredEdgeDetection.t() | {:error, String.t()}

createStructuredEdgeDetection
Positional Arguments
	model: String

Keyword Arguments
	howToGetFeatures: Evision.XImgProc.RFFeatureGetter.t().

Return
	retval: Evision.XImgProc.StructuredEdgeDetection.t()

Python prototype (for reference only):
createStructuredEdgeDetection(model[, howToGetFeatures]) -> retval

 Link to this function

 createStructuredEdgeDetection(model, opts)

 View Source

 @spec createStructuredEdgeDetection(binary(), [{:howToGetFeatures, term()}] | nil) ::
 Evision.XImgProc.StructuredEdgeDetection.t() | {:error, String.t()}

createStructuredEdgeDetection
Positional Arguments
	model: String

Keyword Arguments
	howToGetFeatures: Evision.XImgProc.RFFeatureGetter.t().

Return
	retval: Evision.XImgProc.StructuredEdgeDetection.t()

Python prototype (for reference only):
createStructuredEdgeDetection(model[, howToGetFeatures]) -> retval

 Link to this function

 createSuperpixelLSC(image)

 View Source

 @spec createSuperpixelLSC(Evision.Mat.maybe_mat_in()) ::
 Evision.XImgProc.SuperpixelLSC.t() | {:error, String.t()}

Class implementing the LSC (Linear Spectral Clustering) superpixels
Positional Arguments
	image: Evision.Mat.t().
Image to segment

Keyword Arguments
	region_size: int.
Chooses an average superpixel size measured in pixels

	ratio: float.
Chooses the enforcement of superpixel compactness factor of superpixel

Return
	retval: Evision.XImgProc.SuperpixelLSC.t()

The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
computing iterations over the given image. An example of LSC is ilustrated in the following picture.
For enanched results it is recommended for color images to preprocess image with little gaussian blur
with a small 3 x 3 kernel and additional conversion into CieLAB color space.
[image: image]
Python prototype (for reference only):
createSuperpixelLSC(image[, region_size[, ratio]]) -> retval

 Link to this function

 createSuperpixelLSC(image, opts)

 View Source

 @spec createSuperpixelLSC(
 Evision.Mat.maybe_mat_in(),
 [region_size: term(), ratio: term()] | nil
) ::
 Evision.XImgProc.SuperpixelLSC.t() | {:error, String.t()}

Class implementing the LSC (Linear Spectral Clustering) superpixels
Positional Arguments
	image: Evision.Mat.t().
Image to segment

Keyword Arguments
	region_size: int.
Chooses an average superpixel size measured in pixels

	ratio: float.
Chooses the enforcement of superpixel compactness factor of superpixel

Return
	retval: Evision.XImgProc.SuperpixelLSC.t()

The function initializes a SuperpixelLSC object for the input image. It sets the parameters of
superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
computing iterations over the given image. An example of LSC is ilustrated in the following picture.
For enanched results it is recommended for color images to preprocess image with little gaussian blur
with a small 3 x 3 kernel and additional conversion into CieLAB color space.
[image: image]
Python prototype (for reference only):
createSuperpixelLSC(image[, region_size[, ratio]]) -> retval

 Link to this function

 createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels)

 View Source

 @spec createSuperpixelSEEDS(integer(), integer(), integer(), integer(), integer()) ::
 Evision.XImgProc.SuperpixelSEEDS.t() | {:error, String.t()}

Initializes a SuperpixelSEEDS object.
Positional Arguments
	image_width: int.
Image width.

	image_height: int.
Image height.

	image_channels: int.
Number of channels of the image.

	num_superpixels: int.
Desired number of superpixels. Note that the actual number may be smaller
due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
get the actual number.

	num_levels: int.
Number of block levels. The more levels, the more accurate is the segmentation,
but needs more memory and CPU time.

Keyword Arguments
	prior: int.
enable 3x3 shape smoothing term if >0. A larger value leads to smoother shapes. prior
must be in the range [0, 5].

	histogram_bins: int.
Number of histogram bins.

	double_step: bool.
If true, iterate each block level twice for higher accuracy.

Return
	retval: Evision.XImgProc.SuperpixelSEEDS.t()

The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
double_step.
The number of levels in num_levels defines the amount of block levels that the algorithm use in the
optimization. The initialization is a grid, in which the superpixels are equally distributed through
the width and the height of the image. The larger blocks correspond to the superpixel size, and the
levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
recursively until the smaller block level. An example of initialization of 4 block levels is
illustrated in the following figure.
[image: image]
Python prototype (for reference only):
createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels[, prior[, histogram_bins[, double_step]]]) -> retval

 Link to this function

 createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels, opts)

 View Source

 @spec createSuperpixelSEEDS(
 integer(),
 integer(),
 integer(),
 integer(),
 integer(),
 [histogram_bins: term(), double_step: term(), prior: term()] | nil
) :: Evision.XImgProc.SuperpixelSEEDS.t() | {:error, String.t()}

Initializes a SuperpixelSEEDS object.
Positional Arguments
	image_width: int.
Image width.

	image_height: int.
Image height.

	image_channels: int.
Number of channels of the image.

	num_superpixels: int.
Desired number of superpixels. Note that the actual number may be smaller
due to restrictions (depending on the image size and num_levels). Use getNumberOfSuperpixels() to
get the actual number.

	num_levels: int.
Number of block levels. The more levels, the more accurate is the segmentation,
but needs more memory and CPU time.

Keyword Arguments
	prior: int.
enable 3x3 shape smoothing term if >0. A larger value leads to smoother shapes. prior
must be in the range [0, 5].

	histogram_bins: int.
Number of histogram bins.

	double_step: bool.
If true, iterate each block level twice for higher accuracy.

Return
	retval: Evision.XImgProc.SuperpixelSEEDS.t()

The function initializes a SuperpixelSEEDS object for the input image. It stores the parameters of
the image: image_width, image_height and image_channels. It also sets the parameters of the SEEDS
superpixel algorithm, which are: num_superpixels, num_levels, use_prior, histogram_bins and
double_step.
The number of levels in num_levels defines the amount of block levels that the algorithm use in the
optimization. The initialization is a grid, in which the superpixels are equally distributed through
the width and the height of the image. The larger blocks correspond to the superpixel size, and the
levels with smaller blocks are formed by dividing the larger blocks into 2 x 2 blocks of pixels,
recursively until the smaller block level. An example of initialization of 4 block levels is
illustrated in the following figure.
[image: image]
Python prototype (for reference only):
createSuperpixelSEEDS(image_width, image_height, image_channels, num_superpixels, num_levels[, prior[, histogram_bins[, double_step]]]) -> retval

 Link to this function

 createSuperpixelSLIC(image)

 View Source

 @spec createSuperpixelSLIC(Evision.Mat.maybe_mat_in()) ::
 Evision.XImgProc.SuperpixelSLIC.t() | {:error, String.t()}

Initialize a SuperpixelSLIC object
Positional Arguments
	image: Evision.Mat.t().
Image to segment

Keyword Arguments
	algorithm: int.
Chooses the algorithm variant to use:
SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.

	region_size: int.
Chooses an average superpixel size measured in pixels

	ruler: float.
Chooses the enforcement of superpixel smoothness factor of superpixel

Return
	retval: Evision.XImgProc.SuperpixelSLIC.t()

The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
computing iterations over the given image. For enanched results it is recommended for color images to
preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
[image: image]
Python prototype (for reference only):
createSuperpixelSLIC(image[, algorithm[, region_size[, ruler]]]) -> retval

 Link to this function

 createSuperpixelSLIC(image, opts)

 View Source

 @spec createSuperpixelSLIC(
 Evision.Mat.maybe_mat_in(),
 [region_size: term(), ruler: term(), algorithm: term()] | nil
) :: Evision.XImgProc.SuperpixelSLIC.t() | {:error, String.t()}

Initialize a SuperpixelSLIC object
Positional Arguments
	image: Evision.Mat.t().
Image to segment

Keyword Arguments
	algorithm: int.
Chooses the algorithm variant to use:
SLIC segments image using a desired region_size, and in addition SLICO will optimize using adaptive compactness factor,
while MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels.

	region_size: int.
Chooses an average superpixel size measured in pixels

	ruler: float.
Chooses the enforcement of superpixel smoothness factor of superpixel

Return
	retval: Evision.XImgProc.SuperpixelSLIC.t()

The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
computing iterations over the given image. For enanched results it is recommended for color images to
preprocess image with little gaussian blur using a small 3 x 3 kernel and additional conversion into
CieLAB color space. An example of SLIC versus SLICO and MSLIC is ilustrated in the following picture.
[image: image]
Python prototype (for reference only):
createSuperpixelSLIC(image[, algorithm[, region_size[, ruler]]]) -> retval

 Link to this function

 dtFilter(guide, src, sigmaSpatial, sigmaColor)

 View Source

 @spec dtFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) ::
 Evision.Mat.t() | {:error, String.t()}

Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
guided image then use DTFilter interface to avoid extra computations on initialization stage.
Positional Arguments
	guide: Evision.Mat.t().
guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
depth and up to 4 channels.

	src: Evision.Mat.t().
filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.

	sigmaSpatial: double.
\f${\sigma}_H\f$ parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.

	sigmaColor: double.
\f${\sigma}_r\f$ parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.

Keyword Arguments
	mode: int.
one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.

	numIters: int.
optional number of iterations used for filtering, 3 is quite enough.

Return
	dst: Evision.Mat.t().
destination image

@sa bilateralFilter, guidedFilter, amFilter
Python prototype (for reference only):
dtFilter(guide, src, sigmaSpatial, sigmaColor[, dst[, mode[, numIters]]]) -> dst

 Link to this function

 dtFilter(guide, src, sigmaSpatial, sigmaColor, opts)

 View Source

 @spec dtFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [mode: term(), numIters: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Domain Transform filter call. If you have multiple images to filter with the same
guided image then use DTFilter interface to avoid extra computations on initialization stage.
Positional Arguments
	guide: Evision.Mat.t().
guided image (also called as joint image) with unsigned 8-bit or floating-point 32-bit
depth and up to 4 channels.

	src: Evision.Mat.t().
filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.

	sigmaSpatial: double.
\f${\sigma}_H\f$ parameter in the original article, it's similar to the sigma in the
coordinate space into bilateralFilter.

	sigmaColor: double.
\f${\sigma}_r\f$ parameter in the original article, it's similar to the sigma in the
color space into bilateralFilter.

Keyword Arguments
	mode: int.
one form three modes DTF_NC, DTF_RF and DTF_IC which corresponds to three modes for
filtering 2D signals in the article.

	numIters: int.
optional number of iterations used for filtering, 3 is quite enough.

Return
	dst: Evision.Mat.t().
destination image

@sa bilateralFilter, guidedFilter, amFilter
Python prototype (for reference only):
dtFilter(guide, src, sigmaSpatial, sigmaColor[, dst[, mode[, numIters]]]) -> dst

 Link to this function

 edgePreservingFilter(src, d, threshold)

 View Source

 @spec edgePreservingFilter(Evision.Mat.maybe_mat_in(), integer(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Smoothes an image using the Edge-Preserving filter.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit 3-channel image.

	d: int.
Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.

	threshold: double.
Threshold, which distinguishes between noise, outliers, and data.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src.

 The function smoothes Gaussian noise as well as salt & pepper noise.
 For more details about this implementation, please see
 [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
Python prototype (for reference only):
edgePreservingFilter(src, d, threshold[, dst]) -> dst

 Link to this function

 edgePreservingFilter(src, d, threshold, opts)

 View Source

 @spec edgePreservingFilter(
 Evision.Mat.maybe_mat_in(),
 integer(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Smoothes an image using the Edge-Preserving filter.
Positional Arguments
	src: Evision.Mat.t().
Source 8-bit 3-channel image.

	d: int.
Diameter of each pixel neighborhood that is used during filtering. Must be greater or equal 3.

	threshold: double.
Threshold, which distinguishes between noise, outliers, and data.

Return
	dst: Evision.Mat.t().
Destination image of the same size and type as src.

 The function smoothes Gaussian noise as well as salt & pepper noise.
 For more details about this implementation, please see
 [ReiWoe18] Reich, S. and Wörgötter, F. and Dellen, B. (2018). A Real-Time Edge-Preserving Denoising Filter. Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP): Visapp, 85-94, 4. DOI: 10.5220/0006509000850094.
Python prototype (for reference only):
edgePreservingFilter(src, d, threshold[, dst]) -> dst

 Link to this function

 fastBilateralSolverFilter(guide, src, confidence)

 View Source

 @spec fastBilateralSolverFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
guide then use FastBilateralSolverFilter interface to avoid extra computations.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

	confidence: Evision.Mat.t().
confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.

Keyword Arguments
	sigma_spatial: double.
parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.

	sigma_luma: double.
parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.

	sigma_chroma: double.
parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.

	lambda: double.
smoothness strength parameter for solver.

	num_iter: int.
number of iterations used for solver, 25 is usually enough.

	max_tol: double.
convergence tolerance used for solver.

Return
	dst: Evision.Mat.t().
destination image.

For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
Python prototype (for reference only):
fastBilateralSolverFilter(guide, src, confidence[, dst[, sigma_spatial[, sigma_luma[, sigma_chroma[, lambda[, num_iter[, max_tol]]]]]]]) -> dst

 Link to this function

 fastBilateralSolverFilter(guide, src, confidence, opts)

 View Source

 @spec fastBilateralSolverFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 num_iter: term(),
 lambda: term(),
 max_tol: term(),
 sigma_chroma: term(),
 sigma_spatial: term(),
 sigma_luma: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Fast Bilateral Solver filter call. If you have multiple images to filter with the same
guide then use FastBilateralSolverFilter interface to avoid extra computations.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

	confidence: Evision.Mat.t().
confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.

Keyword Arguments
	sigma_spatial: double.
parameter, that is similar to spatial space sigma (bandwidth) in bilateralFilter.

	sigma_luma: double.
parameter, that is similar to luma space sigma (bandwidth) in bilateralFilter.

	sigma_chroma: double.
parameter, that is similar to chroma space sigma (bandwidth) in bilateralFilter.

	lambda: double.
smoothness strength parameter for solver.

	num_iter: int.
number of iterations used for solver, 25 is usually enough.

	max_tol: double.
convergence tolerance used for solver.

Return
	dst: Evision.Mat.t().
destination image.

For more details about the Fast Bilateral Solver parameters, see the original paper @cite BarronPoole2016.
Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
Python prototype (for reference only):
fastBilateralSolverFilter(guide, src, confidence[, dst[, sigma_spatial[, sigma_luma[, sigma_chroma[, lambda[, num_iter[, max_tol]]]]]]]) -> dst

 Link to this function

 fastGlobalSmootherFilter(guide, src, lambda, sigma_color)

 View Source

 @spec fastGlobalSmootherFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number()
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
guide then use FastGlobalSmootherFilter interface to avoid extra computations.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

	lambda: double.
parameter defining the amount of regularization

	sigma_color: double.
parameter, that is similar to color space sigma in bilateralFilter.

Keyword Arguments
	lambda_attenuation: double.
internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.

	num_iter: int.
number of iterations used for filtering, 3 is usually enough.

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
fastGlobalSmootherFilter(guide, src, lambda, sigma_color[, dst[, lambda_attenuation[, num_iter]]]) -> dst

 Link to this function

 fastGlobalSmootherFilter(guide, src, lambda, sigma_color, opts)

 View Source

 @spec fastGlobalSmootherFilter(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 [num_iter: term(), lambda_attenuation: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Simple one-line Fast Global Smoother filter call. If you have multiple images to filter with the same
guide then use FastGlobalSmootherFilter interface to avoid extra computations.
Positional Arguments
	guide: Evision.Mat.t().
image serving as guide for filtering. It should have 8-bit depth and either 1 or 3 channels.

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

	lambda: double.
parameter defining the amount of regularization

	sigma_color: double.
parameter, that is similar to color space sigma in bilateralFilter.

Keyword Arguments
	lambda_attenuation: double.
internal parameter, defining how much lambda decreases after each iteration. Normally,
it should be 0.25. Setting it to 1.0 may lead to streaking artifacts.

	num_iter: int.
number of iterations used for filtering, 3 is usually enough.

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
fastGlobalSmootherFilter(guide, src, lambda, sigma_color[, dst[, lambda_attenuation[, num_iter]]]) -> dst

 Link to this function

 fastHoughTransform(src, dstMatDepth)

 View Source

 @spec fastHoughTransform(Evision.Mat.maybe_mat_in(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Calculates 2D Fast Hough transform of an image.
Positional Arguments
	src: Evision.Mat.t()
	dstMatDepth: int

Keyword Arguments
	angleRange: int.
	op: int.
	makeSkew: int.

Return
	dst: Evision.Mat.t().

 The function calculates the fast Hough transform for full, half or quarter
 range of angles.
Python prototype (for reference only):
FastHoughTransform(src, dstMatDepth[, dst[, angleRange[, op[, makeSkew]]]]) -> dst

 Link to this function

 fastHoughTransform(src, dstMatDepth, opts)

 View Source

 @spec fastHoughTransform(
 Evision.Mat.maybe_mat_in(),
 integer(),
 [makeSkew: term(), op: term(), angleRange: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Calculates 2D Fast Hough transform of an image.
Positional Arguments
	src: Evision.Mat.t()
	dstMatDepth: int

Keyword Arguments
	angleRange: int.
	op: int.
	makeSkew: int.

Return
	dst: Evision.Mat.t().

 The function calculates the fast Hough transform for full, half or quarter
 range of angles.
Python prototype (for reference only):
FastHoughTransform(src, dstMatDepth[, dst[, angleRange[, op[, makeSkew]]]]) -> dst

 Link to this function

 findEllipses(image)

 View Source

 @spec findEllipses(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds ellipses fastly in an image using projective invariant pruning.
Positional Arguments
	image: Evision.Mat.t().
input image, could be gray or color.

Keyword Arguments
	scoreThreshold: float.
float, the threshold of ellipse score.

	reliabilityThreshold: float.
float, the threshold of reliability.

	centerDistanceThreshold: float.
float, the threshold of center distance.

Return
	ellipses: Evision.Mat.t().
output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.

 The function detects ellipses in images using projective invariant pruning.
 For more details about this implementation, please see @cite jia2017fast
 Jia, Qi et al, (2017).
 A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
Python prototype (for reference only):
findEllipses(image[, ellipses[, scoreThreshold[, reliabilityThreshold[, centerDistanceThreshold]]]]) -> ellipses

 Link to this function

 findEllipses(image, opts)

 View Source

 @spec findEllipses(
 Evision.Mat.maybe_mat_in(),
 [
 reliabilityThreshold: term(),
 scoreThreshold: term(),
 centerDistanceThreshold: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

Finds ellipses fastly in an image using projective invariant pruning.
Positional Arguments
	image: Evision.Mat.t().
input image, could be gray or color.

Keyword Arguments
	scoreThreshold: float.
float, the threshold of ellipse score.

	reliabilityThreshold: float.
float, the threshold of reliability.

	centerDistanceThreshold: float.
float, the threshold of center distance.

Return
	ellipses: Evision.Mat.t().
output vector of found ellipses. each vector is encoded as five float $x, y, a, b, radius, score$.

 The function detects ellipses in images using projective invariant pruning.
 For more details about this implementation, please see @cite jia2017fast
 Jia, Qi et al, (2017).
 A Fast Ellipse Detector using Projective Invariant Pruning. IEEE Transactions on Image Processing.
Python prototype (for reference only):
findEllipses(image[, ellipses[, scoreThreshold[, reliabilityThreshold[, centerDistanceThreshold]]]]) -> ellipses

 Link to this function

 fourierDescriptor(src)

 View Source

 @spec fourierDescriptor(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Fourier descriptors for planed closed curves
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	nbElt: int.
	nbFD: int.

Return
	dst: Evision.Mat.t().

 For more details about this implementation, please see @cite PersoonFu1977
Python prototype (for reference only):
fourierDescriptor(src[, dst[, nbElt[, nbFD]]]) -> dst

 Link to this function

 fourierDescriptor(src, opts)

 View Source

 @spec fourierDescriptor(
 Evision.Mat.maybe_mat_in(),
 [nbElt: term(), nbFD: term()] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Fourier descriptors for planed closed curves
Positional Arguments
	src: Evision.Mat.t()

Keyword Arguments
	nbElt: int.
	nbFD: int.

Return
	dst: Evision.Mat.t().

 For more details about this implementation, please see @cite PersoonFu1977
Python prototype (for reference only):
fourierDescriptor(src[, dst[, nbElt[, nbFD]]]) -> dst

 Link to this function

 getDisparityVis(src)

 View Source

 @spec getDisparityVis(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Function for creating a disparity map visualization (clamped CV_8U image)
Positional Arguments
	src: Evision.Mat.t().
input disparity map (CV_16S depth)

Keyword Arguments
	scale: double.
disparity map will be multiplied by this value for visualization

Return
	dst: Evision.Mat.t().
output visualization

Python prototype (for reference only):
getDisparityVis(src[, dst[, scale]]) -> dst

 Link to this function

 getDisparityVis(src, opts)

 View Source

 @spec getDisparityVis(Evision.Mat.maybe_mat_in(), [{:scale, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Function for creating a disparity map visualization (clamped CV_8U image)
Positional Arguments
	src: Evision.Mat.t().
input disparity map (CV_16S depth)

Keyword Arguments
	scale: double.
disparity map will be multiplied by this value for visualization

Return
	dst: Evision.Mat.t().
output visualization

Python prototype (for reference only):
getDisparityVis(src[, dst[, scale]]) -> dst

 Link to this function

 gradientDericheX(op, alpha, omega)

 View Source

 @spec gradientDericheX(Evision.Mat.maybe_mat_in(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Applies X Deriche filter to an image.
Positional Arguments
	op: Evision.Mat.t()
	alpha: double
	omega: double

Return
	dst: Evision.Mat.t().

 For more details about this implementation, please see

 Evision.XImgProc.AdaptiveManifoldFilter - Evision v0.1.39

Evision.XImgProc.AdaptiveManifoldFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.AdaptiveManifoldFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 collectGarbage(self)

 collectGarbage

 create()

 create

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, src)

 Apply high-dimensional filtering using adaptive manifolds.

 filter(self, src, opts)

 Apply high-dimensional filtering using adaptive manifolds.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.AdaptiveManifoldFilter{ref: reference()}

Type that represents an XImgProc.AdaptiveManifoldFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 collectGarbage(self)

 View Source

 @spec collectGarbage(t()) :: t() | {:error, String.t()}

collectGarbage
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

Python prototype (for reference only):
collectGarbage() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

create
Return
	retval: Evision.XImgProc.AdaptiveManifoldFilter.t()

Python prototype (for reference only):
create() -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, src)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply high-dimensional filtering using adaptive manifolds.
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

	src: Evision.Mat.t().
filtering image with any numbers of channels.

Keyword Arguments
	joint: Evision.Mat.t().
optional joint (also called as guided) image with any numbers of channels.

Return
	dst: Evision.Mat.t().
output image.

Python prototype (for reference only):
filter(src[, dst[, joint]]) -> dst

 Link to this function

 filter(self, src, opts)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), [{:joint, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Apply high-dimensional filtering using adaptive manifolds.
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

	src: Evision.Mat.t().
filtering image with any numbers of channels.

Keyword Arguments
	joint: Evision.Mat.t().
optional joint (also called as guided) image with any numbers of channels.

Return
	dst: Evision.Mat.t().
output image.

Python prototype (for reference only):
filter(src[, dst[, joint]]) -> dst

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.AdaptiveManifoldFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.ContourFitting - Evision v0.1.39

Evision.XImgProc.ContourFitting

 Summary

 Types

 t()

 Type that represents an XImgProc.ContourFitting struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 estimateTransformation(self, src, dst)

 Fit two closed curves using fourier descriptors. More details in @cite PersoonFu1977 and @cite BergerRaghunathan1998

 estimateTransformation(self, src, dst, opts)

 Fit two closed curves using fourier descriptors. More details in @cite PersoonFu1977 and @cite BergerRaghunathan1998

 getCtrSize(self)

 getCtrSize

 getDefaultName(self)

 getDefaultName

 getFDSize(self)

 getFDSize

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setCtrSize(self, n)

 set number of Fourier descriptors used in estimateTransformation

 setFDSize(self, n)

 set number of Fourier descriptors when estimateTransformation used vector<Point>

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.ContourFitting{ref: reference()}

Type that represents an XImgProc.ContourFitting struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 estimateTransformation(self, src, dst)

 View Source

 @spec estimateTransformation(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 {Evision.Mat.t(), number()} | {:error, String.t()}

Fit two closed curves using fourier descriptors. More details in @cite PersoonFu1977 and @cite BergerRaghunathan1998
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

	src: Evision.Mat.t().
Contour defining first shape.

	dst: Evision.Mat.t().
Contour defining second shape (Target).

Keyword Arguments
	fdContour: bool.
false then src and dst are contours and true src and dst are fourier descriptors.

Return
	alphaPhiST: Evision.Mat.t().
: \f$ \alpha \f$=alphaPhiST(0,0), \f$ \phi \f$=alphaPhiST(0,1) (in radian), s=alphaPhiST(0,2), Tx=alphaPhiST(0,3), Ty=alphaPhiST(0,4) rotation center

	dist: double.
distance between src and dst after matching.

Python prototype (for reference only):
estimateTransformation(src, dst[, alphaPhiST[, fdContour]]) -> alphaPhiST, dist

 Link to this function

 estimateTransformation(self, src, dst, opts)

 View Source

 @spec estimateTransformation(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:fdContour, term()}] | nil
) :: {Evision.Mat.t(), number()} | {:error, String.t()}

Fit two closed curves using fourier descriptors. More details in @cite PersoonFu1977 and @cite BergerRaghunathan1998
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

	src: Evision.Mat.t().
Contour defining first shape.

	dst: Evision.Mat.t().
Contour defining second shape (Target).

Keyword Arguments
	fdContour: bool.
false then src and dst are contours and true src and dst are fourier descriptors.

Return
	alphaPhiST: Evision.Mat.t().
: \f$ \alpha \f$=alphaPhiST(0,0), \f$ \phi \f$=alphaPhiST(0,1) (in radian), s=alphaPhiST(0,2), Tx=alphaPhiST(0,3), Ty=alphaPhiST(0,4) rotation center

	dist: double.
distance between src and dst after matching.

Python prototype (for reference only):
estimateTransformation(src, dst[, alphaPhiST[, fdContour]]) -> alphaPhiST, dist

 Link to this function

 getCtrSize(self)

 View Source

 @spec getCtrSize(t()) :: integer() | {:error, String.t()}

getCtrSize
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

Return
	retval: int

@returns number of fourier descriptors
Python prototype (for reference only):
getCtrSize() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getFDSize(self)

 View Source

 @spec getFDSize(t()) :: integer() | {:error, String.t()}

getFDSize
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

Return
	retval: int

@returns number of fourier descriptors used for optimal curve matching
Python prototype (for reference only):
getFDSize() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setCtrSize(self, n)

 View Source

 @spec setCtrSize(t(), integer()) :: t() | {:error, String.t()}

set number of Fourier descriptors used in estimateTransformation
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

	n: int.
number of Fourier descriptors equal to number of contour points after resampling.

Python prototype (for reference only):
setCtrSize(n) -> None

 Link to this function

 setFDSize(self, n)

 View Source

 @spec setFDSize(t(), integer()) :: t() | {:error, String.t()}

set number of Fourier descriptors when estimateTransformation used vector<Point>
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()

	n: int.
number of fourier descriptors used for optimal curve matching.

Python prototype (for reference only):
setFDSize(n) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.ContourFitting.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.DTFilter - Evision v0.1.39

Evision.XImgProc.DTFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.DTFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, src)

 Produce domain transform filtering operation on source image.

 filter(self, src, opts)

 Produce domain transform filtering operation on source image.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.DTFilter{ref: reference()}

Type that represents an XImgProc.DTFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, src)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Produce domain transform filtering operation on source image.
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()

	src: Evision.Mat.t().
filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.

Keyword Arguments
	dDepth: int.
optional depth of the output image. dDepth can be set to -1, which will be equivalent
to src.depth().

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
filter(src[, dst[, dDepth]]) -> dst

 Link to this function

 filter(self, src, opts)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), [{:dDepth, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Produce domain transform filtering operation on source image.
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()

	src: Evision.Mat.t().
filtering image with unsigned 8-bit or floating-point 32-bit depth and up to 4 channels.

Keyword Arguments
	dDepth: int.
optional depth of the output image. dDepth can be set to -1, which will be equivalent
to src.depth().

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
filter(src[, dst[, dDepth]]) -> dst

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.DTFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.DisparityFilter - Evision v0.1.39

Evision.XImgProc.DisparityFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.DisparityFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, disparity_map_left, left_view)

 Apply filtering to the disparity map.

 filter(self, disparity_map_left, left_view, opts)

 Apply filtering to the disparity map.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.DisparityFilter{ref: reference()}

Type that represents an XImgProc.DisparityFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, disparity_map_left, left_view)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply filtering to the disparity map.
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()

	disparity_map_left: Evision.Mat.t().
disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity
values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map
can have any resolution, it will be automatically resized to fit left_view resolution.

	left_view: Evision.Mat.t().
left view of the original stereo-pair to guide the filtering process, 8-bit single-channel
or three-channel image.

Keyword Arguments
	disparity_map_right: Evision.Mat.t().
optional argument, some implementations might also use the disparity map
of the right view to compute confidence maps, for instance.

	rOI: Rect.
region of the disparity map to filter. Optional, usually it should be set automatically.

	right_view: Evision.Mat.t().
optional argument, some implementations might also use the right view of the original
stereo-pair.

Return
	filtered_disparity_map: Evision.Mat.t().
output disparity map.

Python prototype (for reference only):
filter(disparity_map_left, left_view[, filtered_disparity_map[, disparity_map_right[, ROI[, right_view]]]]) -> filtered_disparity_map

 Link to this function

 filter(self, disparity_map_left, left_view, opts)

 View Source

 @spec filter(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [disparity_map_right: term(), rOI: term(), right_view: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Apply filtering to the disparity map.
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()

	disparity_map_left: Evision.Mat.t().
disparity map of the left view, 1 channel, CV_16S type. Implicitly assumes that disparity
values are scaled by 16 (one-pixel disparity corresponds to the value of 16 in the disparity map). Disparity map
can have any resolution, it will be automatically resized to fit left_view resolution.

	left_view: Evision.Mat.t().
left view of the original stereo-pair to guide the filtering process, 8-bit single-channel
or three-channel image.

Keyword Arguments
	disparity_map_right: Evision.Mat.t().
optional argument, some implementations might also use the disparity map
of the right view to compute confidence maps, for instance.

	rOI: Rect.
region of the disparity map to filter. Optional, usually it should be set automatically.

	right_view: Evision.Mat.t().
optional argument, some implementations might also use the right view of the original
stereo-pair.

Return
	filtered_disparity_map: Evision.Mat.t().
output disparity map.

Python prototype (for reference only):
filter(disparity_map_left, left_view[, filtered_disparity_map[, disparity_map_right[, ROI[, right_view]]]]) -> filtered_disparity_map

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.DisparityFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.DisparityWLSFilter - Evision v0.1.39

Evision.XImgProc.DisparityWLSFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.DisparityWLSFilter struct.

 Functions

 getConfidenceMap(self)

 Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image
with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing
correct disparity values with a high degree of confidence).

 getDepthDiscontinuityRadius(self)

 DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of
low-confidence regions around depth discontinuities.

 getLambda(self)

 Lambda is a parameter defining the amount of regularization during filtering. Larger values force
filtered disparity map edges to adhere more to source image edges. Typical value is 8000.

 getLRCthresh(self)

 LRCthresh is a threshold of disparity difference used in left-right-consistency check during
confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough.

 getROI(self)

 Get the ROI used in the last filter call

 getSigmaColor(self)

 SigmaColor is a parameter defining how sensitive the filtering process is to source image edges.
Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too
sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0.

 setDepthDiscontinuityRadius(self, disc_radius)

 setDepthDiscontinuityRadius

 setLambda(self, lambda)

 setLambda

 setLRCthresh(self, lRC_thresh)

 setLRCthresh

 setSigmaColor(self, sigma_color)

 setSigmaColor

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.DisparityWLSFilter{ref: reference()}

Type that represents an XImgProc.DisparityWLSFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getConfidenceMap(self)

 View Source

 @spec getConfidenceMap(t()) :: Evision.Mat.t() | {:error, String.t()}

Get the confidence map that was used in the last filter call. It is a CV_32F one-channel image
with values ranging from 0.0 (totally untrusted regions of the raw disparity map) to 255.0 (regions containing
correct disparity values with a high degree of confidence).
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: Evision.Mat.t()

Python prototype (for reference only):
getConfidenceMap() -> retval

 Link to this function

 getDepthDiscontinuityRadius(self)

 View Source

 @spec getDepthDiscontinuityRadius(t()) :: integer() | {:error, String.t()}

DepthDiscontinuityRadius is a parameter used in confidence computation. It defines the size of
low-confidence regions around depth discontinuities.
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: int

Python prototype (for reference only):
getDepthDiscontinuityRadius() -> retval

 Link to this function

 getLambda(self)

 View Source

 @spec getLambda(t()) :: number() | {:error, String.t()}

Lambda is a parameter defining the amount of regularization during filtering. Larger values force
filtered disparity map edges to adhere more to source image edges. Typical value is 8000.
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: double

Python prototype (for reference only):
getLambda() -> retval

 Link to this function

 getLRCthresh(self)

 View Source

 @spec getLRCthresh(t()) :: integer() | {:error, String.t()}

LRCthresh is a threshold of disparity difference used in left-right-consistency check during
confidence map computation. The default value of 24 (1.5 pixels) is virtually always good enough.
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: int

Python prototype (for reference only):
getLRCthresh() -> retval

 Link to this function

 getROI(self)

 View Source

 @spec getROI(t()) :: {number(), number(), number(), number()} | {:error, String.t()}

Get the ROI used in the last filter call
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: Rect

Python prototype (for reference only):
getROI() -> retval

 Link to this function

 getSigmaColor(self)

 View Source

 @spec getSigmaColor(t()) :: number() | {:error, String.t()}

SigmaColor is a parameter defining how sensitive the filtering process is to source image edges.
Large values can lead to disparity leakage through low-contrast edges. Small values can make the filter too
sensitive to noise and textures in the source image. Typical values range from 0.8 to 2.0.
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()

Return
	retval: double

Python prototype (for reference only):
getSigmaColor() -> retval

 Link to this function

 setDepthDiscontinuityRadius(self, disc_radius)

 View Source

 @spec setDepthDiscontinuityRadius(t(), integer()) :: t() | {:error, String.t()}

setDepthDiscontinuityRadius
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()
	disc_radius: int

@see getDepthDiscontinuityRadius
Python prototype (for reference only):
setDepthDiscontinuityRadius(_disc_radius) -> None

 Link to this function

 setLambda(self, lambda)

 View Source

 @spec setLambda(t(), number()) :: t() | {:error, String.t()}

setLambda
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()
	lambda: double

@see getLambda
Python prototype (for reference only):
setLambda(_lambda) -> None

 Link to this function

 setLRCthresh(self, lRC_thresh)

 View Source

 @spec setLRCthresh(t(), integer()) :: t() | {:error, String.t()}

setLRCthresh
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()
	lRC_thresh: int

@see getLRCthresh
Python prototype (for reference only):
setLRCthresh(_LRC_thresh) -> None

 Link to this function

 setSigmaColor(self, sigma_color)

 View Source

 @spec setSigmaColor(t(), number()) :: t() | {:error, String.t()}

setSigmaColor
Positional Arguments
	self: Evision.XImgProc.DisparityWLSFilter.t()
	sigma_color: double

@see getSigmaColor
Python prototype (for reference only):
setSigmaColor(_sigma_color) -> None

 Evision.XImgProc.EdgeAwareInterpolator - Evision v0.1.39

Evision.XImgProc.EdgeAwareInterpolator

 Summary

 Types

 t()

 Type that represents an XImgProc.EdgeAwareInterpolator struct.

 Functions

 getFGSLambda(self)

 getFGSLambda

 getFGSSigma(self)

 getFGSSigma

 getK(self)

 getK

 getLambda(self)

 getLambda

 getSigma(self)

 getSigma

 getUsePostProcessing(self)

 getUsePostProcessing

 setCostMap(self, costMap)

 Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
This implementation is based on a rather simple gradient-based edge map estimation.
To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
used in the original publication) that may lead to improved accuracies, the internal
edge map estimation can be bypassed here.

 setFGSLambda(self, lambda)

 Sets the respective fastGlobalSmootherFilter() parameter.

 setFGSSigma(self, sigma)

 setFGSSigma

 setK(self, k)

 K is a number of nearest-neighbor matches considered, when fitting a locally affine
model. Usually it should be around 128. However, lower values would make the interpolation
noticeably faster.

 setLambda(self, lambda)

 Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
should be in the range of 0 to 1000.

 setSigma(self, sigma)

 Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
output flow.

 setUsePostProcessing(self, use_post_proc)

 Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by
default.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.EdgeAwareInterpolator{ref: reference()}

Type that represents an XImgProc.EdgeAwareInterpolator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getFGSLambda(self)

 View Source

 @spec getFGSLambda(t()) :: number() | {:error, String.t()}

getFGSLambda
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: float

@see setFGSLambda/2
Python prototype (for reference only):
getFGSLambda() -> retval

 Link to this function

 getFGSSigma(self)

 View Source

 @spec getFGSSigma(t()) :: number() | {:error, String.t()}

getFGSSigma
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: float

@see setFGSLambda/2
Python prototype (for reference only):
getFGSSigma() -> retval

 Link to this function

 getK(self)

 View Source

 @spec getK(t()) :: integer() | {:error, String.t()}

getK
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: int

@see setK/2
Python prototype (for reference only):
getK() -> retval

 Link to this function

 getLambda(self)

 View Source

 @spec getLambda(t()) :: number() | {:error, String.t()}

getLambda
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: float

@see setLambda/2
Python prototype (for reference only):
getLambda() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: float

@see setSigma/2
Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 getUsePostProcessing(self)

 View Source

 @spec getUsePostProcessing(t()) :: boolean() | {:error, String.t()}

getUsePostProcessing
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

Return
	retval: bool

@see setUsePostProcessing/2
Python prototype (for reference only):
getUsePostProcessing() -> retval

 Link to this function

 setCostMap(self, costMap)

 View Source

 @spec setCostMap(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
This implementation is based on a rather simple gradient-based edge map estimation.
To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
used in the original publication) that may lead to improved accuracies, the internal
edge map estimation can be bypassed here.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()

	costMap: Evision.Mat.t().
a type CV_32FC1 Mat is required.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setCostMap(_costMap) -> None

 Link to this function

 setFGSLambda(self, lambda)

 View Source

 @spec setFGSLambda(t(), number()) :: t() | {:error, String.t()}

Sets the respective fastGlobalSmootherFilter() parameter.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	lambda: float

Python prototype (for reference only):
setFGSLambda(_lambda) -> None

 Link to this function

 setFGSSigma(self, sigma)

 View Source

 @spec setFGSSigma(t(), number()) :: t() | {:error, String.t()}

setFGSSigma
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	sigma: float

@see setFGSLambda/2
Python prototype (for reference only):
setFGSSigma(_sigma) -> None

 Link to this function

 setK(self, k)

 View Source

 @spec setK(t(), integer()) :: t() | {:error, String.t()}

K is a number of nearest-neighbor matches considered, when fitting a locally affine
model. Usually it should be around 128. However, lower values would make the interpolation
noticeably faster.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	k: int

Python prototype (for reference only):
setK(_k) -> None

 Link to this function

 setLambda(self, lambda)

 View Source

 @spec setLambda(t(), number()) :: t() | {:error, String.t()}

Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
should be in the range of 0 to 1000.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	lambda: float

Python prototype (for reference only):
setLambda(_lambda) -> None

 Link to this function

 setSigma(self, sigma)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
output flow.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	sigma: float

Python prototype (for reference only):
setSigma(_sigma) -> None

 Link to this function

 setUsePostProcessing(self, use_post_proc)

 View Source

 @spec setUsePostProcessing(t(), boolean()) :: t() | {:error, String.t()}

Sets whether the fastGlobalSmootherFilter() post-processing is employed. It is turned on by
default.
Positional Arguments
	self: Evision.XImgProc.EdgeAwareInterpolator.t()
	use_post_proc: bool

Python prototype (for reference only):
setUsePostProcessing(_use_post_proc) -> None

 Evision.XImgProc.EdgeBoxes - Evision v0.1.39

Evision.XImgProc.EdgeBoxes

 Summary

 Types

 t()

 Type that represents an XImgProc.EdgeBoxes struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getAlpha(self)

 Returns the step size of sliding window search.

 getBeta(self)

 Returns the nms threshold for object proposals.

 getBoundingBoxes(self, edge_map, orientation_map)

 Returns array containing proposal boxes.

 getBoundingBoxes(self, edge_map, orientation_map, opts)

 Returns array containing proposal boxes.

 getClusterMinMag(self)

 Returns the cluster min magnitude.

 getDefaultName(self)

 getDefaultName

 getEdgeMergeThr(self)

 Returns the edge merge threshold.

 getEdgeMinMag(self)

 Returns the edge min magnitude.

 getEta(self)

 Returns adaptation rate for nms threshold.

 getGamma(self)

 Returns the affinity sensitivity.

 getKappa(self)

 Returns the scale sensitivity.

 getMaxAspectRatio(self)

 Returns the max aspect ratio of boxes.

 getMaxBoxes(self)

 Returns the max number of boxes to detect.

 getMinBoxArea(self)

 Returns the minimum area of boxes.

 getMinScore(self)

 Returns the min score of boxes to detect.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setAlpha(self, value)

 Sets the step size of sliding window search.

 setBeta(self, value)

 Sets the nms threshold for object proposals.

 setClusterMinMag(self, value)

 Sets the cluster min magnitude.

 setEdgeMergeThr(self, value)

 Sets the edge merge threshold.

 setEdgeMinMag(self, value)

 Sets the edge min magnitude.

 setEta(self, value)

 Sets the adaptation rate for nms threshold.

 setGamma(self, value)

 Sets the affinity sensitivity

 setKappa(self, value)

 Sets the scale sensitivity.

 setMaxAspectRatio(self, value)

 Sets the max aspect ratio of boxes.

 setMaxBoxes(self, value)

 Sets max number of boxes to detect.

 setMinBoxArea(self, value)

 Sets the minimum area of boxes.

 setMinScore(self, value)

 Sets the min score of boxes to detect.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.EdgeBoxes{ref: reference()}

Type that represents an XImgProc.EdgeBoxes struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getAlpha(self)

 View Source

 @spec getAlpha(t()) :: number() | {:error, String.t()}

Returns the step size of sliding window search.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getAlpha() -> retval

 Link to this function

 getBeta(self)

 View Source

 @spec getBeta(t()) :: number() | {:error, String.t()}

Returns the nms threshold for object proposals.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getBeta() -> retval

 Link to this function

 getBoundingBoxes(self, edge_map, orientation_map)

 View Source

 @spec getBoundingBoxes(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {[{number(), number(), number(), number()}], Evision.Mat.t()}
 | {:error, String.t()}

Returns array containing proposal boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

	edge_map: Evision.Mat.t().
edge image.

	orientation_map: Evision.Mat.t().
orientation map.

Return
	boxes: [Rect].
proposal boxes.

	scores: Evision.Mat.t().
of the proposal boxes, provided a vector of float types.

Python prototype (for reference only):
getBoundingBoxes(edge_map, orientation_map[, scores]) -> boxes, scores

 Link to this function

 getBoundingBoxes(self, edge_map, orientation_map, opts)

 View Source

 @spec getBoundingBoxes(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 {[{number(), number(), number(), number()}], Evision.Mat.t()}
 | {:error, String.t()}

Returns array containing proposal boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

	edge_map: Evision.Mat.t().
edge image.

	orientation_map: Evision.Mat.t().
orientation map.

Return
	boxes: [Rect].
proposal boxes.

	scores: Evision.Mat.t().
of the proposal boxes, provided a vector of float types.

Python prototype (for reference only):
getBoundingBoxes(edge_map, orientation_map[, scores]) -> boxes, scores

 Link to this function

 getClusterMinMag(self)

 View Source

 @spec getClusterMinMag(t()) :: number() | {:error, String.t()}

Returns the cluster min magnitude.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getClusterMinMag() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeMergeThr(self)

 View Source

 @spec getEdgeMergeThr(t()) :: number() | {:error, String.t()}

Returns the edge merge threshold.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getEdgeMergeThr() -> retval

 Link to this function

 getEdgeMinMag(self)

 View Source

 @spec getEdgeMinMag(t()) :: number() | {:error, String.t()}

Returns the edge min magnitude.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getEdgeMinMag() -> retval

 Link to this function

 getEta(self)

 View Source

 @spec getEta(t()) :: number() | {:error, String.t()}

Returns adaptation rate for nms threshold.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getEta() -> retval

 Link to this function

 getGamma(self)

 View Source

 @spec getGamma(t()) :: number() | {:error, String.t()}

Returns the affinity sensitivity.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getGamma() -> retval

 Link to this function

 getKappa(self)

 View Source

 @spec getKappa(t()) :: number() | {:error, String.t()}

Returns the scale sensitivity.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getKappa() -> retval

 Link to this function

 getMaxAspectRatio(self)

 View Source

 @spec getMaxAspectRatio(t()) :: number() | {:error, String.t()}

Returns the max aspect ratio of boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getMaxAspectRatio() -> retval

 Link to this function

 getMaxBoxes(self)

 View Source

 @spec getMaxBoxes(t()) :: integer() | {:error, String.t()}

Returns the max number of boxes to detect.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: int

Python prototype (for reference only):
getMaxBoxes() -> retval

 Link to this function

 getMinBoxArea(self)

 View Source

 @spec getMinBoxArea(t()) :: number() | {:error, String.t()}

Returns the minimum area of boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getMinBoxArea() -> retval

 Link to this function

 getMinScore(self)

 View Source

 @spec getMinScore(t()) :: number() | {:error, String.t()}

Returns the min score of boxes to detect.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()

Return
	retval: float

Python prototype (for reference only):
getMinScore() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setAlpha(self, value)

 View Source

 @spec setAlpha(t(), number()) :: t() | {:error, String.t()}

Sets the step size of sliding window search.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setAlpha(value) -> None

 Link to this function

 setBeta(self, value)

 View Source

 @spec setBeta(t(), number()) :: t() | {:error, String.t()}

Sets the nms threshold for object proposals.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setBeta(value) -> None

 Link to this function

 setClusterMinMag(self, value)

 View Source

 @spec setClusterMinMag(t(), number()) :: t() | {:error, String.t()}

Sets the cluster min magnitude.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setClusterMinMag(value) -> None

 Link to this function

 setEdgeMergeThr(self, value)

 View Source

 @spec setEdgeMergeThr(t(), number()) :: t() | {:error, String.t()}

Sets the edge merge threshold.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setEdgeMergeThr(value) -> None

 Link to this function

 setEdgeMinMag(self, value)

 View Source

 @spec setEdgeMinMag(t(), number()) :: t() | {:error, String.t()}

Sets the edge min magnitude.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setEdgeMinMag(value) -> None

 Link to this function

 setEta(self, value)

 View Source

 @spec setEta(t(), number()) :: t() | {:error, String.t()}

Sets the adaptation rate for nms threshold.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setEta(value) -> None

 Link to this function

 setGamma(self, value)

 View Source

 @spec setGamma(t(), number()) :: t() | {:error, String.t()}

Sets the affinity sensitivity
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setGamma(value) -> None

 Link to this function

 setKappa(self, value)

 View Source

 @spec setKappa(t(), number()) :: t() | {:error, String.t()}

Sets the scale sensitivity.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setKappa(value) -> None

 Link to this function

 setMaxAspectRatio(self, value)

 View Source

 @spec setMaxAspectRatio(t(), number()) :: t() | {:error, String.t()}

Sets the max aspect ratio of boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setMaxAspectRatio(value) -> None

 Link to this function

 setMaxBoxes(self, value)

 View Source

 @spec setMaxBoxes(t(), integer()) :: t() | {:error, String.t()}

Sets max number of boxes to detect.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: int

Python prototype (for reference only):
setMaxBoxes(value) -> None

 Link to this function

 setMinBoxArea(self, value)

 View Source

 @spec setMinBoxArea(t(), number()) :: t() | {:error, String.t()}

Sets the minimum area of boxes.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setMinBoxArea(value) -> None

 Link to this function

 setMinScore(self, value)

 View Source

 @spec setMinScore(t(), number()) :: t() | {:error, String.t()}

Sets the min score of boxes to detect.
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	value: float

Python prototype (for reference only):
setMinScore(value) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.EdgeBoxes.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.EdgeDrawing - Evision v0.1.39

Evision.XImgProc.EdgeDrawing

 Summary

 Types

 t()

 Type that represents an XImgProc.EdgeDrawing struct.

 Functions

 clear(self)

 Clears the algorithm state

 detectEdges(self, src)

 Detects edges in a grayscale image and prepares them to detect lines and ellipses.

 detectEllipses(self)

 Detects circles and ellipses.

 detectEllipses(self, opts)

 Detects circles and ellipses.

 detectLines(self)

 Detects lines.

 detectLines(self, opts)

 Detects lines.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getEdgeImage(self)

 returns Edge Image prepared by detectEdges() function.

 getEdgeImage(self, opts)

 returns Edge Image prepared by detectEdges() function.

 getGradientImage(self)

 returns Gradient Image prepared by detectEdges() function.

 getGradientImage(self, opts)

 returns Gradient Image prepared by detectEdges() function.

 getSegmentIndicesOfLines(self)

 Returns for each line found in detectLines() its edge segment index in getSegments()

 getSegments(self)

 Returns std::vector<std::vector<Point>> of detected edge segments, see detectEdges()

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setParams(self, parameters)

 sets parameters.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.EdgeDrawing{ref: reference()}

Type that represents an XImgProc.EdgeDrawing struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detectEdges(self, src)

 View Source

 @spec detectEdges(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Detects edges in a grayscale image and prepares them to detect lines and ellipses.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

	src: Evision.Mat.t().
8-bit, single-channel, grayscale input image.

Python prototype (for reference only):
detectEdges(src) -> None

 Link to this function

 detectEllipses(self)

 View Source

 @spec detectEllipses(t()) :: Evision.Mat.t() | {:error, String.t()}

Detects circles and ellipses.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	ellipses: Evision.Mat.t().
output Vec<6d> contains center point and perimeter for circles, center point, axes and angle for ellipses.

Note: you should call detectEdges() before calling this function.
Python prototype (for reference only):
detectEllipses([, ellipses]) -> ellipses

 Link to this function

 detectEllipses(self, opts)

 View Source

 @spec detectEllipses(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Detects circles and ellipses.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	ellipses: Evision.Mat.t().
output Vec<6d> contains center point and perimeter for circles, center point, axes and angle for ellipses.

Note: you should call detectEdges() before calling this function.
Python prototype (for reference only):
detectEllipses([, ellipses]) -> ellipses

 Link to this function

 detectLines(self)

 View Source

 @spec detectLines(t()) :: Evision.Mat.t() | {:error, String.t()}

Detects lines.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	lines: Evision.Mat.t().
output Vec<4f> contains the start point and the end point of detected lines.

Note: you should call detectEdges() before calling this function.
Python prototype (for reference only):
detectLines([, lines]) -> lines

 Link to this function

 detectLines(self, opts)

 View Source

 @spec detectLines(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Detects lines.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	lines: Evision.Mat.t().
output Vec<4f> contains the start point and the end point of detected lines.

Note: you should call detectEdges() before calling this function.
Python prototype (for reference only):
detectLines([, lines]) -> lines

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getEdgeImage(self)

 View Source

 @spec getEdgeImage(t()) :: Evision.Mat.t() | {:error, String.t()}

returns Edge Image prepared by detectEdges() function.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	dst: Evision.Mat.t().
returns 8-bit, single-channel output image.

Python prototype (for reference only):
getEdgeImage([, dst]) -> dst

 Link to this function

 getEdgeImage(self, opts)

 View Source

 @spec getEdgeImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

returns Edge Image prepared by detectEdges() function.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	dst: Evision.Mat.t().
returns 8-bit, single-channel output image.

Python prototype (for reference only):
getEdgeImage([, dst]) -> dst

 Link to this function

 getGradientImage(self)

 View Source

 @spec getGradientImage(t()) :: Evision.Mat.t() | {:error, String.t()}

returns Gradient Image prepared by detectEdges() function.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	dst: Evision.Mat.t().
returns 16-bit, single-channel output image.

Python prototype (for reference only):
getGradientImage([, dst]) -> dst

 Link to this function

 getGradientImage(self, opts)

 View Source

 @spec getGradientImage(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

returns Gradient Image prepared by detectEdges() function.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	dst: Evision.Mat.t().
returns 16-bit, single-channel output image.

Python prototype (for reference only):
getGradientImage([, dst]) -> dst

 Link to this function

 getSegmentIndicesOfLines(self)

 View Source

 @spec getSegmentIndicesOfLines(t()) :: [integer()] | {:error, String.t()}

Returns for each line found in detectLines() its edge segment index in getSegments()
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	retval: [int]

Python prototype (for reference only):
getSegmentIndicesOfLines() -> retval

 Link to this function

 getSegments(self)

 View Source

 @spec getSegments(t()) :: [[{number(), number()}]] | {:error, String.t()}

Returns std::vector<std::vector<Point>> of detected edge segments, see detectEdges()
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

Return
	retval: [[Point]]

Python prototype (for reference only):
getSegments() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setParams(self, parameters)

 View Source

 @spec setParams(t(), Evision.XImgProc.EdgeDrawing.Params.t()) ::
 t() | {:error, String.t()}

sets parameters.
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()

	parameters: Evision.XImgProc.EdgeDrawing.Params.t().
Parameters of the algorithm

this function is meant to be used for parameter setting in other languages than c++ like python.
Python prototype (for reference only):
setParams(parameters) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.EdgeDrawing.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.EdgeDrawing.Params - Evision v0.1.39

Evision.XImgProc.EdgeDrawing.Params

 Summary

 Types

 t()

 Type that represents an XImgProc.EdgeDrawing.Params struct.

 Functions

 get_AnchorThresholdValue(self)

 get_EdgeDetectionOperator(self)

 get_GradientThresholdValue(self)

 get_LineFitErrorThreshold(self)

 get_MaxDistanceBetweenTwoLines(self)

 get_MaxErrorThreshold(self)

 get_MinLineLength(self)

 get_MinPathLength(self)

 get_NFAValidation(self)

 get_PFmode(self)

 get_ScanInterval(self)

 get_Sigma(self)

 get_SumFlag(self)

 set_AnchorThresholdValue(self, prop)

 set_EdgeDetectionOperator(self, prop)

 set_GradientThresholdValue(self, prop)

 set_LineFitErrorThreshold(self, prop)

 set_MaxDistanceBetweenTwoLines(self, prop)

 set_MaxErrorThreshold(self, prop)

 set_MinLineLength(self, prop)

 set_MinPathLength(self, prop)

 set_NFAValidation(self, prop)

 set_PFmode(self, prop)

 set_ScanInterval(self, prop)

 set_Sigma(self, prop)

 set_SumFlag(self, prop)

 ximgproc_EdgeDrawing_Params()

 EdgeDrawing_Params

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.EdgeDrawing.Params{ref: reference()}

Type that represents an XImgProc.EdgeDrawing.Params struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 get_AnchorThresholdValue(self)

 View Source

 @spec get_AnchorThresholdValue(t()) :: integer()

 Link to this function

 get_EdgeDetectionOperator(self)

 View Source

 @spec get_EdgeDetectionOperator(t()) :: integer()

 Link to this function

 get_GradientThresholdValue(self)

 View Source

 @spec get_GradientThresholdValue(t()) :: integer()

 Link to this function

 get_LineFitErrorThreshold(self)

 View Source

 @spec get_LineFitErrorThreshold(t()) :: number()

 Link to this function

 get_MaxDistanceBetweenTwoLines(self)

 View Source

 @spec get_MaxDistanceBetweenTwoLines(t()) :: number()

 Link to this function

 get_MaxErrorThreshold(self)

 View Source

 @spec get_MaxErrorThreshold(t()) :: number()

 Link to this function

 get_MinLineLength(self)

 View Source

 @spec get_MinLineLength(t()) :: integer()

 Link to this function

 get_MinPathLength(self)

 View Source

 @spec get_MinPathLength(t()) :: integer()

 Link to this function

 get_NFAValidation(self)

 View Source

 @spec get_NFAValidation(t()) :: boolean()

 Link to this function

 get_PFmode(self)

 View Source

 @spec get_PFmode(t()) :: boolean()

 Link to this function

 get_ScanInterval(self)

 View Source

 @spec get_ScanInterval(t()) :: integer()

 Link to this function

 get_Sigma(self)

 View Source

 @spec get_Sigma(t()) :: number()

 Link to this function

 get_SumFlag(self)

 View Source

 @spec get_SumFlag(t()) :: boolean()

 Link to this function

 set_AnchorThresholdValue(self, prop)

 View Source

 @spec set_AnchorThresholdValue(t(), integer()) :: t()

 Link to this function

 set_EdgeDetectionOperator(self, prop)

 View Source

 @spec set_EdgeDetectionOperator(t(), integer()) :: t()

 Link to this function

 set_GradientThresholdValue(self, prop)

 View Source

 @spec set_GradientThresholdValue(t(), integer()) :: t()

 Link to this function

 set_LineFitErrorThreshold(self, prop)

 View Source

 @spec set_LineFitErrorThreshold(t(), number()) :: t()

 Link to this function

 set_MaxDistanceBetweenTwoLines(self, prop)

 View Source

 @spec set_MaxDistanceBetweenTwoLines(t(), number()) :: t()

 Link to this function

 set_MaxErrorThreshold(self, prop)

 View Source

 @spec set_MaxErrorThreshold(t(), number()) :: t()

 Link to this function

 set_MinLineLength(self, prop)

 View Source

 @spec set_MinLineLength(t(), integer()) :: t()

 Link to this function

 set_MinPathLength(self, prop)

 View Source

 @spec set_MinPathLength(t(), integer()) :: t()

 Link to this function

 set_NFAValidation(self, prop)

 View Source

 @spec set_NFAValidation(t(), boolean()) :: t()

 Link to this function

 set_PFmode(self, prop)

 View Source

 @spec set_PFmode(t(), boolean()) :: t()

 Link to this function

 set_ScanInterval(self, prop)

 View Source

 @spec set_ScanInterval(t(), integer()) :: t()

 Link to this function

 set_Sigma(self, prop)

 View Source

 @spec set_Sigma(t(), number()) :: t()

 Link to this function

 set_SumFlag(self, prop)

 View Source

 @spec set_SumFlag(t(), boolean()) :: t()

 Link to this function

 ximgproc_EdgeDrawing_Params()

 View Source

 @spec ximgproc_EdgeDrawing_Params() :: t() | {:error, String.t()}

EdgeDrawing_Params
Return
	self: Evision.XImgProc.EdgeDrawing.Params.t()

Python prototype (for reference only):
EdgeDrawing_Params() -> <ximgproc_EdgeDrawing_Params object>

 Evision.XImgProc.FastBilateralSolverFilter - Evision v0.1.39

Evision.XImgProc.FastBilateralSolverFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.FastBilateralSolverFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, src, confidence)

 Apply smoothing operation to the source image.

 filter(self, src, confidence, opts)

 Apply smoothing operation to the source image.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.FastBilateralSolverFilter{ref: reference()}

Type that represents an XImgProc.FastBilateralSolverFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, src, confidence)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply smoothing operation to the source image.
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 3 channels.

	confidence: Evision.Mat.t().
confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.

Return
	dst: Evision.Mat.t().
destination image.

Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
Python prototype (for reference only):
filter(src, confidence[, dst]) -> dst

 Link to this function

 filter(self, src, confidence, opts)

 View Source

 @spec filter(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Apply smoothing operation to the source image.
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 3 channels.

	confidence: Evision.Mat.t().
confidence image with unsigned 8-bit or floating-point 32-bit confidence and 1 channel.

Return
	dst: Evision.Mat.t().
destination image.

Note: Confidence images with CV_8U depth are expected to in [0, 255] and CV_32F in [0, 1] range.
Python prototype (for reference only):
filter(src, confidence[, dst]) -> dst

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.FastBilateralSolverFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.FastGlobalSmootherFilter - Evision v0.1.39

Evision.XImgProc.FastGlobalSmootherFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.FastGlobalSmootherFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, src)

 Apply smoothing operation to the source image.

 filter(self, src, opts)

 Apply smoothing operation to the source image.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.FastGlobalSmootherFilter{ref: reference()}

Type that represents an XImgProc.FastGlobalSmootherFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, src)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply smoothing operation to the source image.
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
filter(src[, dst]) -> dst

 Link to this function

 filter(self, src, opts)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Apply smoothing operation to the source image.
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()

	src: Evision.Mat.t().
source image for filtering with unsigned 8-bit or signed 16-bit or floating-point 32-bit depth and up to 4 channels.

Return
	dst: Evision.Mat.t().
destination image.

Python prototype (for reference only):
filter(src[, dst]) -> dst

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.FastGlobalSmootherFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.FastLineDetector - Evision v0.1.39

Evision.XImgProc.FastLineDetector

 Summary

 Types

 t()

 Type that represents an XImgProc.FastLineDetector struct.

 Functions

 clear(self)

 Clears the algorithm state

 detect(self, image)

 Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above
shown image.

 detect(self, image, opts)

 Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above
shown image.

 drawSegments(self, image, lines)

 Draws the line segments on a given image.

 drawSegments(self, image, lines, opts)

 Draws the line segments on a given image.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.FastLineDetector{ref: reference()}

Type that represents an XImgProc.FastLineDetector struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 detect(self, image)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above
shown image.
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

	image: Evision.Mat.t().
A grayscale (CV_8UC1) input image. If only a roi needs to be
selected, use: fld_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);

Return
	lines: Evision.Mat.t().
A vector of Vec4f elements specifying the beginning
and ending point of a line. Where Vec4f is (x1, y1, x2, y2), point
1 is the start, point 2 - end. Returned lines are directed so that the
brighter side is on their left.

[image: image]
Python prototype (for reference only):
detect(image[, lines]) -> lines

 Link to this function

 detect(self, image, opts)

 View Source

 @spec detect(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above
shown image.
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

	image: Evision.Mat.t().
A grayscale (CV_8UC1) input image. If only a roi needs to be
selected, use: fld_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);

Return
	lines: Evision.Mat.t().
A vector of Vec4f elements specifying the beginning
and ending point of a line. Where Vec4f is (x1, y1, x2, y2), point
1 is the start, point 2 - end. Returned lines are directed so that the
brighter side is on their left.

[image: image]
Python prototype (for reference only):
detect(image[, lines]) -> lines

 Link to this function

 drawSegments(self, image, lines)

 View Source

 @spec drawSegments(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Draws the line segments on a given image.
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

	lines: Evision.Mat.t().
A vector of the lines that needed to be drawn.

Keyword Arguments
	draw_arrow: bool.
If true, arrow heads will be drawn.

	linecolor: Scalar.
Line color.

	linethickness: int.
Line thickness.

Return
	image: Evision.Mat.t().
The image, where the lines will be drawn. Should be bigger
or equal to the image, where the lines were found.

Python prototype (for reference only):
drawSegments(image, lines[, draw_arrow[, linecolor[, linethickness]]]) -> image

 Link to this function

 drawSegments(self, image, lines, opts)

 View Source

 @spec drawSegments(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [draw_arrow: term(), linecolor: term(), linethickness: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Draws the line segments on a given image.
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

	lines: Evision.Mat.t().
A vector of the lines that needed to be drawn.

Keyword Arguments
	draw_arrow: bool.
If true, arrow heads will be drawn.

	linecolor: Scalar.
Line color.

	linethickness: int.
Line thickness.

Return
	image: Evision.Mat.t().
The image, where the lines will be drawn. Should be bigger
or equal to the image, where the lines were found.

Python prototype (for reference only):
drawSegments(image, lines[, draw_arrow[, linecolor[, linethickness]]]) -> image

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.FastLineDetector.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.GraphSegmentation - Evision v0.1.39

Evision.XImgProc.GraphSegmentation

 Summary

 Types

 t()

 Type that represents an XImgProc.GraphSegmentation struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getK(self)

 getK

 getMinSize(self)

 getMinSize

 getSigma(self)

 getSigma

 processImage(self, src)

 Segment an image and store output in dst

 processImage(self, src, opts)

 Segment an image and store output in dst

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setK(self, k)

 setK

 setMinSize(self, min_size)

 setMinSize

 setSigma(self, sigma)

 setSigma

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.GraphSegmentation{ref: reference()}

Type that represents an XImgProc.GraphSegmentation struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getK(self)

 View Source

 @spec getK(t()) :: number() | {:error, String.t()}

getK
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Return
	retval: float

Python prototype (for reference only):
getK() -> retval

 Link to this function

 getMinSize(self)

 View Source

 @spec getMinSize(t()) :: integer() | {:error, String.t()}

getMinSize
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Return
	retval: int

Python prototype (for reference only):
getMinSize() -> retval

 Link to this function

 getSigma(self)

 View Source

 @spec getSigma(t()) :: number() | {:error, String.t()}

getSigma
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

Return
	retval: double

Python prototype (for reference only):
getSigma() -> retval

 Link to this function

 processImage(self, src)

 View Source

 @spec processImage(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Segment an image and store output in dst
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

	src: Evision.Mat.t().
The input image. Any number of channel (1 (Eg: Gray), 3 (Eg: RGB), 4 (Eg: RGB-D)) can be provided

Return
	dst: Evision.Mat.t().
The output segmentation. It's a CV_32SC1 Mat with the same number of cols and rows as input image, with an unique, sequential, id for each pixel.

Python prototype (for reference only):
processImage(src[, dst]) -> dst

 Link to this function

 processImage(self, src, opts)

 View Source

 @spec processImage(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Segment an image and store output in dst
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()

	src: Evision.Mat.t().
The input image. Any number of channel (1 (Eg: Gray), 3 (Eg: RGB), 4 (Eg: RGB-D)) can be provided

Return
	dst: Evision.Mat.t().
The output segmentation. It's a CV_32SC1 Mat with the same number of cols and rows as input image, with an unique, sequential, id for each pixel.

Python prototype (for reference only):
processImage(src[, dst]) -> dst

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setK(self, k)

 View Source

 @spec setK(t(), number()) :: t() | {:error, String.t()}

setK
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	k: float

Python prototype (for reference only):
setK(k) -> None

 Link to this function

 setMinSize(self, min_size)

 View Source

 @spec setMinSize(t(), integer()) :: t() | {:error, String.t()}

setMinSize
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	min_size: int

Python prototype (for reference only):
setMinSize(min_size) -> None

 Link to this function

 setSigma(self, sigma)

 View Source

 @spec setSigma(t(), number()) :: t() | {:error, String.t()}

setSigma
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	sigma: double

Python prototype (for reference only):
setSigma(sigma) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.GraphSegmentation.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.GuidedFilter - Evision v0.1.39

Evision.XImgProc.GuidedFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.GuidedFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 filter(self, src)

 Apply Guided Filter to the filtering image.

 filter(self, src, opts)

 Apply Guided Filter to the filtering image.

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.GuidedFilter{ref: reference()}

Type that represents an XImgProc.GuidedFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 filter(self, src)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply Guided Filter to the filtering image.
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()

	src: Evision.Mat.t().
filtering image with any numbers of channels.

Keyword Arguments
	dDepth: int.
optional depth of the output image. dDepth can be set to -1, which will be equivalent
to src.depth().

Return
	dst: Evision.Mat.t().
output image.

Python prototype (for reference only):
filter(src[, dst[, dDepth]]) -> dst

 Link to this function

 filter(self, src, opts)

 View Source

 @spec filter(t(), Evision.Mat.maybe_mat_in(), [{:dDepth, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Apply Guided Filter to the filtering image.
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()

	src: Evision.Mat.t().
filtering image with any numbers of channels.

Keyword Arguments
	dDepth: int.
optional depth of the output image. dDepth can be set to -1, which will be equivalent
to src.depth().

Return
	dst: Evision.Mat.t().
output image.

Python prototype (for reference only):
filter(src[, dst[, dDepth]]) -> dst

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.GuidedFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.RFFeatureGetter - Evision v0.1.39

Evision.XImgProc.RFFeatureGetter

 Summary

 Types

 t()

 Type that represents an XImgProc.RFFeatureGetter struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getFeatures(self, src, features, gnrmRad, gsmthRad, shrink, outNum, gradNum)

 getFeatures

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.RFFeatureGetter{ref: reference()}

Type that represents an XImgProc.RFFeatureGetter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getFeatures(self, src, features, gnrmRad, gsmthRad, shrink, outNum, gradNum)

 View Source

 @spec getFeatures(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 integer(),
 integer()
) :: t() | {:error, String.t()}

getFeatures
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()
	src: Evision.Mat.t()
	features: Evision.Mat.t()
	gnrmRad: int
	gsmthRad: int
	shrink: int
	outNum: int
	gradNum: int

Python prototype (for reference only):
getFeatures(src, features, gnrmRad, gsmthRad, shrink, outNum, gradNum) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.RFFeatureGetter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.RICInterpolator - Evision v0.1.39

Evision.XImgProc.RICInterpolator

 Summary

 Types

 t()

 Type that represents an XImgProc.RICInterpolator struct.

 Functions

 getAlpha(self)

 getAlpha

 getFGSLambda(self)

 getFGSLambda

 getFGSSigma(self)

 getFGSSigma

 getK(self)

 getK

 getMaxFlow(self)

 getMaxFlow

 getModelIter(self)

 getModelIter

 getRefineModels(self)

 getRefineModels

 getSuperpixelMode(self)

 getSuperpixelMode

 getSuperpixelNNCnt(self)

 getSuperpixelNNCnt

 getSuperpixelRuler(self)

 getSuperpixelRuler

 getSuperpixelSize(self)

 getSuperpixelSize

 getUseGlobalSmootherFilter(self)

 getUseGlobalSmootherFilter

 getUseVariationalRefinement(self)

 getUseVariationalRefinement

 setAlpha(self)

 Alpha is a parameter defining a global weight for transforming geodesic distance into weight.

 setAlpha(self, opts)

 Alpha is a parameter defining a global weight for transforming geodesic distance into weight.

 setCostMap(self, costMap)

 Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
This implementation is based on a rather simple gradient-based edge map estimation.
To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
used in the original publication) that may lead to improved accuracies, the internal
edge map estimation can be bypassed here.

 setFGSLambda(self)

 Sets the respective fastGlobalSmootherFilter() parameter.

 setFGSLambda(self, opts)

 Sets the respective fastGlobalSmootherFilter() parameter.

 setFGSSigma(self)

 Sets the respective fastGlobalSmootherFilter() parameter.

 setFGSSigma(self, opts)

 Sets the respective fastGlobalSmootherFilter() parameter.

 setK(self)

 K is a number of nearest-neighbor matches considered, when fitting a locally affine
model for a superpixel segment. However, lower values would make the interpolation
noticeably faster. The original implementation of @cite Hu2017 uses 32.

 setK(self, opts)

 K is a number of nearest-neighbor matches considered, when fitting a locally affine
model for a superpixel segment. However, lower values would make the interpolation
noticeably faster. The original implementation of @cite Hu2017 uses 32.

 setMaxFlow(self)

 MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
If the prediction exceeds the treshold the translational model will be applied instead.

 setMaxFlow(self, opts)

 MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
If the prediction exceeds the treshold the translational model will be applied instead.

 setModelIter(self)

 Parameter defining the number of iterations for piece-wise affine model estimation.

 setModelIter(self, opts)

 Parameter defining the number of iterations for piece-wise affine model estimation.

 setRefineModels(self)

 Parameter to choose wether additional refinement of the piece-wise affine models is employed.

 setRefineModels(self, opts)

 Parameter to choose wether additional refinement of the piece-wise affine models is employed.

 setSuperpixelMode(self)

 Parameter to choose superpixel algorithm variant to use

 setSuperpixelMode(self, opts)

 Parameter to choose superpixel algorithm variant to use

 setSuperpixelNNCnt(self)

 Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
model.

 setSuperpixelNNCnt(self, opts)

 Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
model.

 setSuperpixelRuler(self)

 Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.

 setSuperpixelRuler(self, opts)

 Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.

 setSuperpixelSize(self)

 Get the internal cost, i.e. edge map, used for estimating the edge-aware term.

 setSuperpixelSize(self, opts)

 Get the internal cost, i.e. edge map, used for estimating the edge-aware term.

 setUseGlobalSmootherFilter(self)

 Sets whether the fastGlobalSmootherFilter() post-processing is employed.

 setUseGlobalSmootherFilter(self, opts)

 Sets whether the fastGlobalSmootherFilter() post-processing is employed.

 setUseVariationalRefinement(self)

 Parameter to choose wether the VariationalRefinement post-processing is employed.

 setUseVariationalRefinement(self, opts)

 Parameter to choose wether the VariationalRefinement post-processing is employed.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.RICInterpolator{ref: reference()}

Type that represents an XImgProc.RICInterpolator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getAlpha(self)

 View Source

 @spec getAlpha(t()) :: number() | {:error, String.t()}

getAlpha
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: float

@copybrief setAlpha
@see setAlpha/2
Python prototype (for reference only):
getAlpha() -> retval

 Link to this function

 getFGSLambda(self)

 View Source

 @spec getFGSLambda(t()) :: number() | {:error, String.t()}

getFGSLambda
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: float

@copybrief setFGSLambda
@see setFGSLambda/2
Python prototype (for reference only):
getFGSLambda() -> retval

 Link to this function

 getFGSSigma(self)

 View Source

 @spec getFGSSigma(t()) :: number() | {:error, String.t()}

getFGSSigma
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: float

@copybrief setFGSSigma
@see setFGSSigma/2
Python prototype (for reference only):
getFGSSigma() -> retval

 Link to this function

 getK(self)

 View Source

 @spec getK(t()) :: integer() | {:error, String.t()}

getK
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: int

@copybrief setK
@see setK/2
Python prototype (for reference only):
getK() -> retval

 Link to this function

 getMaxFlow(self)

 View Source

 @spec getMaxFlow(t()) :: number() | {:error, String.t()}

getMaxFlow
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: float

@copybrief setMaxFlow
@see setMaxFlow/2
Python prototype (for reference only):
getMaxFlow() -> retval

 Link to this function

 getModelIter(self)

 View Source

 @spec getModelIter(t()) :: integer() | {:error, String.t()}

getModelIter
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: int

@copybrief setModelIter
@see setModelIter/2
Python prototype (for reference only):
getModelIter() -> retval

 Link to this function

 getRefineModels(self)

 View Source

 @spec getRefineModels(t()) :: boolean() | {:error, String.t()}

getRefineModels
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: bool

@copybrief setRefineModels
@see setRefineModels/2
Python prototype (for reference only):
getRefineModels() -> retval

 Link to this function

 getSuperpixelMode(self)

 View Source

 @spec getSuperpixelMode(t()) :: integer() | {:error, String.t()}

getSuperpixelMode
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: int

@copybrief setSuperpixelMode
@see setSuperpixelMode/2
Python prototype (for reference only):
getSuperpixelMode() -> retval

 Link to this function

 getSuperpixelNNCnt(self)

 View Source

 @spec getSuperpixelNNCnt(t()) :: integer() | {:error, String.t()}

getSuperpixelNNCnt
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: int

@copybrief setSuperpixelNNCnt
@see setSuperpixelNNCnt/2
Python prototype (for reference only):
getSuperpixelNNCnt() -> retval

 Link to this function

 getSuperpixelRuler(self)

 View Source

 @spec getSuperpixelRuler(t()) :: number() | {:error, String.t()}

getSuperpixelRuler
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: float

@copybrief setSuperpixelRuler
@see setSuperpixelRuler/2
Python prototype (for reference only):
getSuperpixelRuler() -> retval

 Link to this function

 getSuperpixelSize(self)

 View Source

 @spec getSuperpixelSize(t()) :: integer() | {:error, String.t()}

getSuperpixelSize
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: int

@copybrief setSuperpixelSize
@see setSuperpixelSize/2
Python prototype (for reference only):
getSuperpixelSize() -> retval

 Link to this function

 getUseGlobalSmootherFilter(self)

 View Source

 @spec getUseGlobalSmootherFilter(t()) :: boolean() | {:error, String.t()}

getUseGlobalSmootherFilter
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: bool

@copybrief setUseGlobalSmootherFilter
@see setUseGlobalSmootherFilter/2
Python prototype (for reference only):
getUseGlobalSmootherFilter() -> retval

 Link to this function

 getUseVariationalRefinement(self)

 View Source

 @spec getUseVariationalRefinement(t()) :: boolean() | {:error, String.t()}

getUseVariationalRefinement
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Return
	retval: bool

@copybrief setUseVariationalRefinement
@see setUseVariationalRefinement/2
Python prototype (for reference only):
getUseVariationalRefinement() -> retval

 Link to this function

 setAlpha(self)

 View Source

 @spec setAlpha(t()) :: t() | {:error, String.t()}

Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	alpha: float.

Python prototype (for reference only):
setAlpha([, alpha]) -> None

 Link to this function

 setAlpha(self, opts)

 View Source

 @spec setAlpha(t(), [{:alpha, term()}] | nil) :: t() | {:error, String.t()}

Alpha is a parameter defining a global weight for transforming geodesic distance into weight.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	alpha: float.

Python prototype (for reference only):
setAlpha([, alpha]) -> None

 Link to this function

 setCostMap(self, costMap)

 View Source

 @spec setCostMap(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Interface to provide a more elaborated cost map, i.e. edge map, for the edge-aware term.
This implementation is based on a rather simple gradient-based edge map estimation.
To used more complex edge map estimator (e.g. StructuredEdgeDetection that has been
used in the original publication) that may lead to improved accuracies, the internal
edge map estimation can be bypassed here.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

	costMap: Evision.Mat.t().
a type CV_32FC1 Mat is required.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setCostMap(costMap) -> None

 Link to this function

 setFGSLambda(self)

 View Source

 @spec setFGSLambda(t()) :: t() | {:error, String.t()}

Sets the respective fastGlobalSmootherFilter() parameter.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	lambda: float.

Python prototype (for reference only):
setFGSLambda([, lambda]) -> None

 Link to this function

 setFGSLambda(self, opts)

 View Source

 @spec setFGSLambda(t(), [{:lambda, term()}] | nil) :: t() | {:error, String.t()}

Sets the respective fastGlobalSmootherFilter() parameter.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	lambda: float.

Python prototype (for reference only):
setFGSLambda([, lambda]) -> None

 Link to this function

 setFGSSigma(self)

 View Source

 @spec setFGSSigma(t()) :: t() | {:error, String.t()}

Sets the respective fastGlobalSmootherFilter() parameter.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	sigma: float.

Python prototype (for reference only):
setFGSSigma([, sigma]) -> None

 Link to this function

 setFGSSigma(self, opts)

 View Source

 @spec setFGSSigma(t(), [{:sigma, term()}] | nil) :: t() | {:error, String.t()}

Sets the respective fastGlobalSmootherFilter() parameter.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	sigma: float.

Python prototype (for reference only):
setFGSSigma([, sigma]) -> None

 Link to this function

 setK(self)

 View Source

 @spec setK(t()) :: t() | {:error, String.t()}

K is a number of nearest-neighbor matches considered, when fitting a locally affine
model for a superpixel segment. However, lower values would make the interpolation
noticeably faster. The original implementation of @cite Hu2017 uses 32.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	k: int.

Python prototype (for reference only):
setK([, k]) -> None

 Link to this function

 setK(self, opts)

 View Source

 @spec setK(t(), [{:k, term()}] | nil) :: t() | {:error, String.t()}

K is a number of nearest-neighbor matches considered, when fitting a locally affine
model for a superpixel segment. However, lower values would make the interpolation
noticeably faster. The original implementation of @cite Hu2017 uses 32.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	k: int.

Python prototype (for reference only):
setK([, k]) -> None

 Link to this function

 setMaxFlow(self)

 View Source

 @spec setMaxFlow(t()) :: t() | {:error, String.t()}

MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
If the prediction exceeds the treshold the translational model will be applied instead.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	maxFlow: float.

Python prototype (for reference only):
setMaxFlow([, maxFlow]) -> None

 Link to this function

 setMaxFlow(self, opts)

 View Source

 @spec setMaxFlow(t(), [{:maxFlow, term()}] | nil) :: t() | {:error, String.t()}

MaxFlow is a threshold to validate the predictions using a certain piece-wise affine model.
If the prediction exceeds the treshold the translational model will be applied instead.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	maxFlow: float.

Python prototype (for reference only):
setMaxFlow([, maxFlow]) -> None

 Link to this function

 setModelIter(self)

 View Source

 @spec setModelIter(t()) :: t() | {:error, String.t()}

Parameter defining the number of iterations for piece-wise affine model estimation.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	modelIter: int.

Python prototype (for reference only):
setModelIter([, modelIter]) -> None

 Link to this function

 setModelIter(self, opts)

 View Source

 @spec setModelIter(t(), [{:modelIter, term()}] | nil) :: t() | {:error, String.t()}

Parameter defining the number of iterations for piece-wise affine model estimation.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	modelIter: int.

Python prototype (for reference only):
setModelIter([, modelIter]) -> None

 Link to this function

 setRefineModels(self)

 View Source

 @spec setRefineModels(t()) :: t() | {:error, String.t()}

Parameter to choose wether additional refinement of the piece-wise affine models is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	refineModles: bool.

Python prototype (for reference only):
setRefineModels([, refineModles]) -> None

 Link to this function

 setRefineModels(self, opts)

 View Source

 @spec setRefineModels(t(), [{:refineModles, term()}] | nil) ::
 t() | {:error, String.t()}

Parameter to choose wether additional refinement of the piece-wise affine models is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	refineModles: bool.

Python prototype (for reference only):
setRefineModels([, refineModles]) -> None

 Link to this function

 setSuperpixelMode(self)

 View Source

 @spec setSuperpixelMode(t()) :: t() | {:error, String.t()}

Parameter to choose superpixel algorithm variant to use:
	cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
	cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
	cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).

Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	mode: int.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setSuperpixelMode([, mode]) -> None

 Link to this function

 setSuperpixelMode(self, opts)

 View Source

 @spec setSuperpixelMode(t(), [{:mode, term()}] | nil) :: t() | {:error, String.t()}

Parameter to choose superpixel algorithm variant to use:
	cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
	cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
	cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).

Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	mode: int.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setSuperpixelMode([, mode]) -> None

 Link to this function

 setSuperpixelNNCnt(self)

 View Source

 @spec setSuperpixelNNCnt(t()) :: t() | {:error, String.t()}

Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
model.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	spNN: int.

Python prototype (for reference only):
setSuperpixelNNCnt([, spNN]) -> None

 Link to this function

 setSuperpixelNNCnt(self, opts)

 View Source

 @spec setSuperpixelNNCnt(t(), [{:spNN, term()}] | nil) :: t() | {:error, String.t()}

Parameter defines the number of nearest-neighbor matches for each superpixel considered, when fitting a locally affine
model.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	spNN: int.

Python prototype (for reference only):
setSuperpixelNNCnt([, spNN]) -> None

 Link to this function

 setSuperpixelRuler(self)

 View Source

 @spec setSuperpixelRuler(t()) :: t() | {:error, String.t()}

Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	ruler: float.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setSuperpixelRuler([, ruler]) -> None

 Link to this function

 setSuperpixelRuler(self, opts)

 View Source

 @spec setSuperpixelRuler(t(), [{:ruler, term()}] | nil) :: t() | {:error, String.t()}

Parameter to tune enforcement of superpixel smoothness factor used for oversegmentation.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	ruler: float.

@see cv::ximgproc::createSuperpixelSLIC
Python prototype (for reference only):
setSuperpixelRuler([, ruler]) -> None

 Link to this function

 setSuperpixelSize(self)

 View Source

 @spec setSuperpixelSize(t()) :: t() | {:error, String.t()}

Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	spSize: int.

@see setCostMap/2
Python prototype (for reference only):
setSuperpixelSize([, spSize]) -> None

 Link to this function

 setSuperpixelSize(self, opts)

 View Source

 @spec setSuperpixelSize(t(), [{:spSize, term()}] | nil) :: t() | {:error, String.t()}

Get the internal cost, i.e. edge map, used for estimating the edge-aware term.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	spSize: int.

@see setCostMap/2
Python prototype (for reference only):
setSuperpixelSize([, spSize]) -> None

 Link to this function

 setUseGlobalSmootherFilter(self)

 View Source

 @spec setUseGlobalSmootherFilter(t()) :: t() | {:error, String.t()}

Sets whether the fastGlobalSmootherFilter() post-processing is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	use_FGS: bool.

Python prototype (for reference only):
setUseGlobalSmootherFilter([, use_FGS]) -> None

 Link to this function

 setUseGlobalSmootherFilter(self, opts)

 View Source

 @spec setUseGlobalSmootherFilter(t(), [{:use_FGS, term()}] | nil) ::
 t() | {:error, String.t()}

Sets whether the fastGlobalSmootherFilter() post-processing is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	use_FGS: bool.

Python prototype (for reference only):
setUseGlobalSmootherFilter([, use_FGS]) -> None

 Link to this function

 setUseVariationalRefinement(self)

 View Source

 @spec setUseVariationalRefinement(t()) :: t() | {:error, String.t()}

Parameter to choose wether the VariationalRefinement post-processing is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	use_variational_refinement: bool.

Python prototype (for reference only):
setUseVariationalRefinement([, use_variational_refinement]) -> None

 Link to this function

 setUseVariationalRefinement(self, opts)

 View Source

 @spec setUseVariationalRefinement(t(), [{:use_variational_refinement, term()}] | nil) ::
 t() | {:error, String.t()}

Parameter to choose wether the VariationalRefinement post-processing is employed.
Positional Arguments
	self: Evision.XImgProc.RICInterpolator.t()

Keyword Arguments
	use_variational_refinement: bool.

Python prototype (for reference only):
setUseVariationalRefinement([, use_variational_refinement]) -> None

 Evision.XImgProc.RidgeDetectionFilter - Evision v0.1.39

Evision.XImgProc.RidgeDetectionFilter

 Summary

 Types

 t()

 Type that represents an XImgProc.RidgeDetectionFilter struct.

 Functions

 clear(self)

 Clears the algorithm state

 create()

 Create pointer to the Ridge detection filter.

 create(opts)

 Create pointer to the Ridge detection filter.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getRidgeFilteredImage(self, img)

 Apply Ridge detection filter on input image.

 getRidgeFilteredImage(self, img, opts)

 Apply Ridge detection filter on input image.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.RidgeDetectionFilter{ref: reference()}

Type that represents an XImgProc.RidgeDetectionFilter struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 create()

 View Source

 @spec create() :: t() | {:error, String.t()}

Create pointer to the Ridge detection filter.
Keyword Arguments
	ddepth: int.
Specifies output image depth. Defualt is CV_32FC1

	dx: int.
Order of derivative x, default is 1

	dy: int.
Order of derivative y, default is 1

	ksize: int.
Sobel kernel size , default is 3

	out_dtype: int.
Converted format for output, default is CV_8UC1

	scale: double.
Optional scale value for derivative values, default is 1

	delta: double.
Optional bias added to output, default is 0

	borderType: int.
Pixel extrapolation method, default is BORDER_DEFAULT

Return
	retval: RidgeDetectionFilter

@see Sobel, threshold, getStructuringElement, morphologyEx.(for additional refinement)
Python prototype (for reference only):
create([, ddepth[, dx[, dy[, ksize[, out_dtype[, scale[, delta[, borderType]]]]]]]]) -> retval

 Link to this function

 create(opts)

 View Source

 @spec create(
 [
 out_dtype: term(),
 ksize: term(),
 scale: term(),
 borderType: term(),
 ddepth: term(),
 dy: term(),
 delta: term(),
 dx: term()
]
 | nil
) :: t() | {:error, String.t()}

Create pointer to the Ridge detection filter.
Keyword Arguments
	ddepth: int.
Specifies output image depth. Defualt is CV_32FC1

	dx: int.
Order of derivative x, default is 1

	dy: int.
Order of derivative y, default is 1

	ksize: int.
Sobel kernel size , default is 3

	out_dtype: int.
Converted format for output, default is CV_8UC1

	scale: double.
Optional scale value for derivative values, default is 1

	delta: double.
Optional bias added to output, default is 0

	borderType: int.
Pixel extrapolation method, default is BORDER_DEFAULT

Return
	retval: RidgeDetectionFilter

@see Sobel, threshold, getStructuringElement, morphologyEx.(for additional refinement)
Python prototype (for reference only):
create([, ddepth[, dx[, dy[, ksize[, out_dtype[, scale[, delta[, borderType]]]]]]]]) -> retval

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getRidgeFilteredImage(self, img)

 View Source

 @spec getRidgeFilteredImage(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Apply Ridge detection filter on input image.
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()

	img: Evision.Mat.t().
InputArray as supported by Sobel. img can be 1-Channel or 3-Channels.

Return
	out: Evision.Mat.t().
OutputAray of structure as RidgeDetectionFilter::ddepth. Output image with ridges.

Python prototype (for reference only):
getRidgeFilteredImage(_img[, out]) -> out

 Link to this function

 getRidgeFilteredImage(self, img, opts)

 View Source

 @spec getRidgeFilteredImage(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Apply Ridge detection filter on input image.
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()

	img: Evision.Mat.t().
InputArray as supported by Sobel. img can be 1-Channel or 3-Channels.

Return
	out: Evision.Mat.t().
OutputAray of structure as RidgeDetectionFilter::ddepth. Output image with ridges.

Python prototype (for reference only):
getRidgeFilteredImage(_img[, out]) -> out

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.RidgeDetectionFilter.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.ScanSegment - Evision v0.1.39

Evision.XImgProc.ScanSegment

 Summary

 Types

 t()

 Type that represents an XImgProc.ScanSegment struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getLabelContourMask(self)

 Returns the mask of the superpixel segmentation stored in the ScanSegment object.

 getLabelContourMask(self, opts)

 Returns the mask of the superpixel segmentation stored in the ScanSegment object.

 getLabels(self)

 Returns the segmentation labeling of the image.

 getLabels(self, opts)

 Returns the segmentation labeling of the image.

 getNumberOfSuperpixels(self)

 Returns the actual superpixel segmentation from the last image processed using iterate.

 iterate(self, img)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the ScanSegment object.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.ScanSegment{ref: reference()}

Type that represents an XImgProc.ScanSegment struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLabelContourMask(self)

 View Source

 @spec getLabelContourMask(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in the ScanSegment object.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border are masked.

Return
	image: Evision.Mat.t().
Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabelContourMask(self, opts)

 View Source

 @spec getLabelContourMask(t(), [{:thick_line, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in the ScanSegment object.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border are masked.

Return
	image: Evision.Mat.t().
Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border, and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32UC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getLabels(self, opts)

 View Source

 @spec getLabels(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32UC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getNumberOfSuperpixels(self)

 View Source

 @spec getNumberOfSuperpixels(t()) :: integer() | {:error, String.t()}

Returns the actual superpixel segmentation from the last image processed using iterate.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

Return
	retval: int

Returns zero if no image has been processed.
Python prototype (for reference only):
getNumberOfSuperpixels() -> retval

 Link to this function

 iterate(self, img)

 View Source

 @spec iterate(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the ScanSegment object.
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()

	img: Evision.Mat.t().
Input image. Supported format: CV_8UC3. Image size must match with the initialized
image size with the function createScanSegment(). It MUST be in Lab color space.

This function can be called again for other images without the need of initializing the algorithm with createScanSegment().
This save the computational cost of allocating memory for all the structures of the algorithm.
Python prototype (for reference only):
iterate(img) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.ScanSegment.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.Segmentation.SelectiveSearchSegmentation - Evision v0.1.39

Evision.XImgProc.Segmentation.SelectiveSearchSegmentation

 Summary

 Types

 t()

 Type that represents an XImgProc.Segmentation.SelectiveSearchSegmentation struct.

 Functions

 addGraphSegmentation(self, g)

 Add a new graph segmentation in the list of graph segementations to process.

 addImage(self, img)

 Add a new image in the list of images to process.

 addStrategy(self, s)

 Add a new strategy in the list of strategy to process.

 clear(self)

 Clears the algorithm state

 clearGraphSegmentations(self)

 Clear the list of graph segmentations to process;

 clearImages(self)

 Clear the list of images to process

 clearStrategies(self)

 Clear the list of strategy to process;

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 process(self)

 Based on all images, graph segmentations and stragies, computes all possible rects and return them

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setBaseImage(self, img)

 Set a image used by switch* functions to initialize the class

 switchToSelectiveSearchFast(self)

 Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.

 switchToSelectiveSearchFast(self, opts)

 Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.

 switchToSelectiveSearchQuality(self)

 Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.

 switchToSelectiveSearchQuality(self, opts)

 Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.

 switchToSingleStrategy(self)

 Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.

 switchToSingleStrategy(self, opts)

 Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.Segmentation.SelectiveSearchSegmentation{
 ref: reference()
}

Type that represents an XImgProc.Segmentation.SelectiveSearchSegmentation struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addGraphSegmentation(self, g)

 View Source

 @spec addGraphSegmentation(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 Evision.XImgProc.GraphSegmentation.t()
) :: Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Add a new graph segmentation in the list of graph segementations to process.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

	g: Evision.XImgProc.GraphSegmentation.t().
The graph segmentation

Python prototype (for reference only):
addGraphSegmentation(g) -> None

 Link to this function

 addImage(self, img)

 View Source

 @spec addImage(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Add a new image in the list of images to process.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

	img: Evision.Mat.t().
The image

Python prototype (for reference only):
addImage(img) -> None

 Link to this function

 addStrategy(self, s)

 View Source

 @spec addStrategy(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
) :: Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Add a new strategy in the list of strategy to process.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

	s: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The strategy

Python prototype (for reference only):
addStrategy(s) -> None

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 clearGraphSegmentations(self)

 View Source

 @spec clearGraphSegmentations(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Clear the list of graph segmentations to process;
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Python prototype (for reference only):
clearGraphSegmentations() -> None

 Link to this function

 clearImages(self)

 View Source

 @spec clearImages(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Clear the list of images to process
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Python prototype (for reference only):
clearImages() -> None

 Link to this function

 clearStrategies(self)

 View Source

 @spec clearStrategies(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Clear the list of strategy to process;
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Python prototype (for reference only):
clearStrategies() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 process(self)

 View Source

 @spec process(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 [{number(), number(), number(), number()}] | {:error, String.t()}

Based on all images, graph segmentations and stragies, computes all possible rects and return them
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Return
	rects: [Rect].
The list of rects. The first ones are more relevents than the lasts ones.

Python prototype (for reference only):
process() -> rects

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setBaseImage(self, img)

 View Source

 @spec setBaseImage(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 Evision.Mat.maybe_mat_in()
) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Set a image used by switch* functions to initialize the class
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

	img: Evision.Mat.t().
The image

Python prototype (for reference only):
setBaseImage(img) -> None

 Link to this function

 switchToSelectiveSearchFast(self)

 View Source

 @spec switchToSelectiveSearchFast(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	base_k: int.
The k parameter for the first graph segmentation

	inc_k: int.
The increment of the k parameter for all graph segmentations

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSelectiveSearchFast([, base_k[, inc_k[, sigma]]]) -> None

 Link to this function

 switchToSelectiveSearchFast(self, opts)

 View Source

 @spec switchToSelectiveSearchFast(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 [sigma: term(), base_k: term(), inc_k: term()] | nil
) :: Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	base_k: int.
The k parameter for the first graph segmentation

	inc_k: int.
The increment of the k parameter for all graph segmentations

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSelectiveSearchFast([, base_k[, inc_k[, sigma]]]) -> None

 Link to this function

 switchToSelectiveSearchQuality(self)

 View Source

 @spec switchToSelectiveSearchQuality(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	base_k: int.
The k parameter for the first graph segmentation

	inc_k: int.
The increment of the k parameter for all graph segmentations

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSelectiveSearchQuality([, base_k[, inc_k[, sigma]]]) -> None

 Link to this function

 switchToSelectiveSearchQuality(self, opts)

 View Source

 @spec switchToSelectiveSearchQuality(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 [sigma: term(), base_k: term(), inc_k: term()] | nil
) :: Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Selective search fast' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	base_k: int.
The k parameter for the first graph segmentation

	inc_k: int.
The increment of the k parameter for all graph segmentations

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSelectiveSearchQuality([, base_k[, inc_k[, sigma]]]) -> None

 Link to this function

 switchToSingleStrategy(self)

 View Source

 @spec switchToSingleStrategy(Evision.XImgProc.SelectiveSearchSegmentation.t()) ::
 Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	k: int.
The k parameter for the graph segmentation

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSingleStrategy([, k[, sigma]]) -> None

 Link to this function

 switchToSingleStrategy(self, opts)

 View Source

 @spec switchToSingleStrategy(
 Evision.XImgProc.SelectiveSearchSegmentation.t(),
 [sigma: term(), k: term()] | nil
) :: Evision.XImgProc.SelectiveSearchSegmentation.t() | {:error, String.t()}

Initialize the class with the 'Single stragegy' parameters describled in @cite uijlings2013selective.
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()

Keyword Arguments
	k: int.
The k parameter for the graph segmentation

	sigma: float.
The sigma parameter for the graph segmentation

Python prototype (for reference only):
switchToSingleStrategy([, k[, sigma]]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.Segmentation.SelectiveSearchSegmentation.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.SelectiveSearchSegmentation - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentation

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentation struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentation{ref: reference()}

Type that represents an XImgProc.SelectiveSearchSegmentation struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.XImgProc.SelectiveSearchSegmentationStrategy - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategy

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategy struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 get(self, r1, r2)

 Return the score between two regions (between 0 and 1)

 getDefaultName(self)

 getDefaultName

 merge(self, r1, r2)

 Inform the strategy that two regions will be merged

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 setImage(self, img, regions, sizes)

 Set a initial image, with a segmentation.

 setImage(self, img, regions, sizes, opts)

 Set a initial image, with a segmentation.

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategy{ref: reference()}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategy struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 get(self, r1, r2)

 View Source

 @spec get(t(), integer(), integer()) :: number() | {:error, String.t()}

Return the score between two regions (between 0 and 1)
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

	r1: int.
The first region

	r2: int.
The second region

Return
	retval: float

Python prototype (for reference only):
get(r1, r2) -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 merge(self, r1, r2)

 View Source

 @spec merge(t(), integer(), integer()) :: t() | {:error, String.t()}

Inform the strategy that two regions will be merged
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

	r1: int.
The first region

	r2: int.
The second region

Python prototype (for reference only):
merge(r1, r2) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 setImage(self, img, regions, sizes)

 View Source

 @spec setImage(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) ::
 t() | {:error, String.t()}

Set a initial image, with a segmentation.
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

	img: Evision.Mat.t().
The input image. Any number of channel can be provided

	regions: Evision.Mat.t().
A segmentation of the image. The parameter must be the same size of img.

	sizes: Evision.Mat.t().
The sizes of different regions

Keyword Arguments
	image_id: int.
If not set to -1, try to cache pre-computations. If the same set og (img, regions, size) is used, the image_id need to be the same.

Python prototype (for reference only):
setImage(img, regions, sizes[, image_id]) -> None

 Link to this function

 setImage(self, img, regions, sizes, opts)

 View Source

 @spec setImage(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{:image_id, term()}] | nil
) :: t() | {:error, String.t()}

Set a initial image, with a segmentation.
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()

	img: Evision.Mat.t().
The input image. Any number of channel can be provided

	regions: Evision.Mat.t().
A segmentation of the image. The parameter must be the same size of img.

	sizes: Evision.Mat.t().
The sizes of different regions

Keyword Arguments
	image_id: int.
If not set to -1, try to cache pre-computations. If the same set og (img, regions, size) is used, the image_id need to be the same.

Python prototype (for reference only):
setImage(img, regions, sizes[, image_id]) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.SelectiveSearchSegmentationStrategyColor - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategyColor

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategyColor struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategyColor{
 ref: reference()
}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategyColor struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.XImgProc.SelectiveSearchSegmentationStrategyFill - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategyFill

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategyFill struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategyFill{
 ref: reference()
}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategyFill struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategyMultiple struct.

 Functions

 addStrategy(self, g, weight)

 Add a new sub-strategy

 clearStrategies(self)

 Remove all sub-strategies

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple{
 ref: reference()
}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategyMultiple struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 addStrategy(self, g, weight)

 View Source

 @spec addStrategy(
 t(),
 Evision.XImgProc.SelectiveSearchSegmentationStrategy.t(),
 number()
) ::
 t() | {:error, String.t()}

Add a new sub-strategy
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

	g: Evision.XImgProc.SelectiveSearchSegmentationStrategy.t().
The strategy

	weight: float.
The weight of the strategy

Python prototype (for reference only):
addStrategy(g, weight) -> None

 Link to this function

 clearStrategies(self)

 View Source

 @spec clearStrategies(t()) :: t() | {:error, String.t()}

Remove all sub-strategies
Positional Arguments
	self: Evision.XImgProc.SelectiveSearchSegmentationStrategyMultiple.t()

Python prototype (for reference only):
clearStrategies() -> None

 Evision.XImgProc.SelectiveSearchSegmentationStrategySize - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategySize

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategySize struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategySize{
 ref: reference()
}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategySize struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture - Evision v0.1.39

Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture

 Summary

 Types

 t()

 Type that represents an XImgProc.SelectiveSearchSegmentationStrategyTexture struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SelectiveSearchSegmentationStrategyTexture{
 ref: reference()
}

Type that represents an XImgProc.SelectiveSearchSegmentationStrategyTexture struct.
	ref. reference()
The underlying erlang resource variable.

 Evision.XImgProc.SparseMatchInterpolator - Evision v0.1.39

Evision.XImgProc.SparseMatchInterpolator

 Summary

 Types

 t()

 Type that represents an XImgProc.SparseMatchInterpolator struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 interpolate(self, from_image, from_points, to_image, to_points)

 Interpolate input sparse matches.

 interpolate(self, from_image, from_points, to_image, to_points, opts)

 Interpolate input sparse matches.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SparseMatchInterpolator{ref: reference()}

Type that represents an XImgProc.SparseMatchInterpolator struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 interpolate(self, from_image, from_points, to_image, to_points)

 View Source

 @spec interpolate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in()
) :: Evision.Mat.t() | {:error, String.t()}

Interpolate input sparse matches.
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()

	from_image: Evision.Mat.t().
first of the two matched images, 8-bit single-channel or three-channel.

	from_points: Evision.Mat.t().
points of the from_image for which there are correspondences in the
to_image (Point2f vector or Mat of depth CV_32F)

	to_image: Evision.Mat.t().
second of the two matched images, 8-bit single-channel or three-channel.

	to_points: Evision.Mat.t().
points in the to_image corresponding to from_points
(Point2f vector or Mat of depth CV_32F)

Return
	dense_flow: Evision.Mat.t().
output dense matching (two-channel CV_32F image)

Python prototype (for reference only):
interpolate(from_image, from_points, to_image, to_points[, dense_flow]) -> dense_flow

 Link to this function

 interpolate(self, from_image, from_points, to_image, to_points, opts)

 View Source

 @spec interpolate(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Interpolate input sparse matches.
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()

	from_image: Evision.Mat.t().
first of the two matched images, 8-bit single-channel or three-channel.

	from_points: Evision.Mat.t().
points of the from_image for which there are correspondences in the
to_image (Point2f vector or Mat of depth CV_32F)

	to_image: Evision.Mat.t().
second of the two matched images, 8-bit single-channel or three-channel.

	to_points: Evision.Mat.t().
points in the to_image corresponding to from_points
(Point2f vector or Mat of depth CV_32F)

Return
	dense_flow: Evision.Mat.t().
output dense matching (two-channel CV_32F image)

Python prototype (for reference only):
interpolate(from_image, from_points, to_image, to_points[, dense_flow]) -> dense_flow

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.SparseMatchInterpolator.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.StructuredEdgeDetection - Evision v0.1.39

Evision.XImgProc.StructuredEdgeDetection

 Summary

 Types

 t()

 Type that represents an XImgProc.StructuredEdgeDetection struct.

 Functions

 clear(self)

 Clears the algorithm state

 computeOrientation(self, src)

 The function computes orientation from edge image.

 computeOrientation(self, src, opts)

 The function computes orientation from edge image.

 detectEdges(self, src)

 The function detects edges in src and draw them to dst.

 detectEdges(self, src, opts)

 The function detects edges in src and draw them to dst.

 edgesNms(self, edge_image, orientation_image)

 The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.

 edgesNms(self, edge_image, orientation_image, opts)

 The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.StructuredEdgeDetection{ref: reference()}

Type that represents an XImgProc.StructuredEdgeDetection struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 computeOrientation(self, src)

 View Source

 @spec computeOrientation(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

The function computes orientation from edge image.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	src: Evision.Mat.t().
edge image.

Return
	dst: Evision.Mat.t().
orientation image.

Python prototype (for reference only):
computeOrientation(src[, dst]) -> dst

 Link to this function

 computeOrientation(self, src, opts)

 View Source

 @spec computeOrientation(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

The function computes orientation from edge image.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	src: Evision.Mat.t().
edge image.

Return
	dst: Evision.Mat.t().
orientation image.

Python prototype (for reference only):
computeOrientation(src[, dst]) -> dst

 Link to this function

 detectEdges(self, src)

 View Source

 @spec detectEdges(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

The function detects edges in src and draw them to dst.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	src: Evision.Mat.t().
source image (RGB, float, in [0;1]) to detect edges

Return
	dst: Evision.Mat.t().
destination image (grayscale, float, in [0;1]) where edges are drawn

The algorithm underlies this function is much more robust to texture presence, than common
approaches, e.g. Sobel
@sa Sobel, Canny
Python prototype (for reference only):
detectEdges(src[, dst]) -> dst

 Link to this function

 detectEdges(self, src, opts)

 View Source

 @spec detectEdges(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

The function detects edges in src and draw them to dst.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	src: Evision.Mat.t().
source image (RGB, float, in [0;1]) to detect edges

Return
	dst: Evision.Mat.t().
destination image (grayscale, float, in [0;1]) where edges are drawn

The algorithm underlies this function is much more robust to texture presence, than common
approaches, e.g. Sobel
@sa Sobel, Canny
Python prototype (for reference only):
detectEdges(src[, dst]) -> dst

 Link to this function

 edgesNms(self, edge_image, orientation_image)

 View Source

 @spec edgesNms(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	edge_image: Evision.Mat.t().
edge image from detectEdges function.

	orientation_image: Evision.Mat.t().
orientation image from computeOrientation function.

Keyword Arguments
	r: int.
radius for NMS suppression.

	s: int.
radius for boundary suppression.

	m: float.
multiplier for conservative suppression.

	isParallel: bool.
enables/disables parallel computing.

Return
	dst: Evision.Mat.t().
suppressed image (grayscale, float, in [0;1])

Python prototype (for reference only):
edgesNms(edge_image, orientation_image[, dst[, r[, s[, m[, isParallel]]]]]) -> dst

 Link to this function

 edgesNms(self, edge_image, orientation_image, opts)

 View Source

 @spec edgesNms(
 t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [r: term(), isParallel: term(), s: term(), m: term()] | nil
) :: Evision.Mat.t() | {:error, String.t()}

The function edgenms in edge image and suppress edges where edge is stronger in orthogonal direction.
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

	edge_image: Evision.Mat.t().
edge image from detectEdges function.

	orientation_image: Evision.Mat.t().
orientation image from computeOrientation function.

Keyword Arguments
	r: int.
radius for NMS suppression.

	s: int.
radius for boundary suppression.

	m: float.
multiplier for conservative suppression.

	isParallel: bool.
enables/disables parallel computing.

Return
	dst: Evision.Mat.t().
suppressed image (grayscale, float, in [0;1])

Python prototype (for reference only):
edgesNms(edge_image, orientation_image[, dst[, r[, s[, m[, isParallel]]]]]) -> dst

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.StructuredEdgeDetection.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.SuperpixelLSC - Evision v0.1.39

Evision.XImgProc.SuperpixelLSC

 Summary

 Types

 t()

 Type that represents an XImgProc.SuperpixelLSC struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 enforceLabelConnectivity(self)

 Enforce label connectivity.

 enforceLabelConnectivity(self, opts)

 Enforce label connectivity.

 getDefaultName(self)

 getDefaultName

 getLabelContourMask(self)

 Returns the mask of the superpixel segmentation stored in SuperpixelLSC object.

 getLabelContourMask(self, opts)

 Returns the mask of the superpixel segmentation stored in SuperpixelLSC object.

 getLabels(self)

 Returns the segmentation labeling of the image.

 getLabels(self, opts)

 Returns the segmentation labeling of the image.

 getNumberOfSuperpixels(self)

 Calculates the actual amount of superpixels on a given segmentation computed
and stored in SuperpixelLSC object.

 iterate(self)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelLSC object.

 iterate(self, opts)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelLSC object.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SuperpixelLSC{ref: reference()}

Type that represents an XImgProc.SuperpixelLSC struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 enforceLabelConnectivity(self)

 View Source

 @spec enforceLabelConnectivity(t()) :: t() | {:error, String.t()}

Enforce label connectivity.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	min_element_size: int.
The minimum element size in percents that should be absorbed into a bigger
superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
that less then a quarter sized superpixel should be absorbed, this is default.

The function merge component that is too small, assigning the previously found adjacent label
to this component. Calling this function may change the final number of superpixels.
Python prototype (for reference only):
enforceLabelConnectivity([, min_element_size]) -> None

 Link to this function

 enforceLabelConnectivity(self, opts)

 View Source

 @spec enforceLabelConnectivity(t(), [{:min_element_size, term()}] | nil) ::
 t() | {:error, String.t()}

Enforce label connectivity.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	min_element_size: int.
The minimum element size in percents that should be absorbed into a bigger
superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
that less then a quarter sized superpixel should be absorbed, this is default.

The function merge component that is too small, assigning the previously found adjacent label
to this component. Calling this function may change the final number of superpixels.
Python prototype (for reference only):
enforceLabelConnectivity([, min_element_size]) -> None

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLabelContourMask(self)

 View Source

 @spec getLabelContourMask(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelLSC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabelContourMask(self, opts)

 View Source

 @spec getLabelContourMask(t(), [{:thick_line, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelLSC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32SC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with the labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getLabels(self, opts)

 View Source

 @spec getLabels(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32SC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with the labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getNumberOfSuperpixels(self)

 View Source

 @spec getNumberOfSuperpixels(t()) :: integer() | {:error, String.t()}

Calculates the actual amount of superpixels on a given segmentation computed
and stored in SuperpixelLSC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Return
	retval: int

Python prototype (for reference only):
getNumberOfSuperpixels() -> retval

 Link to this function

 iterate(self)

 View Source

 @spec iterate(t()) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelLSC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	num_iterations: int.
Number of iterations. Higher number improves the result.

This function can be called again without the need of initializing the algorithm with
createSuperpixelLSC(). This save the computational cost of allocating memory for all the
structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelLSC(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of edges boundaries.
Python prototype (for reference only):
iterate([, num_iterations]) -> None

 Link to this function

 iterate(self, opts)

 View Source

 @spec iterate(t(), [{:num_iterations, term()}] | nil) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelLSC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()

Keyword Arguments
	num_iterations: int.
Number of iterations. Higher number improves the result.

This function can be called again without the need of initializing the algorithm with
createSuperpixelLSC(). This save the computational cost of allocating memory for all the
structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelLSC(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of edges boundaries.
Python prototype (for reference only):
iterate([, num_iterations]) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.SuperpixelLSC.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.SuperpixelSEEDS - Evision v0.1.39

Evision.XImgProc.SuperpixelSEEDS

 Summary

 Types

 t()

 Type that represents an XImgProc.SuperpixelSEEDS struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 getLabelContourMask(self)

 Returns the mask of the superpixel segmentation stored in SuperpixelSEEDS object.

 getLabelContourMask(self, opts)

 Returns the mask of the superpixel segmentation stored in SuperpixelSEEDS object.

 getLabels(self)

 Returns the segmentation labeling of the image.

 getLabels(self, opts)

 Returns the segmentation labeling of the image.

 getNumberOfSuperpixels(self)

 Calculates the superpixel segmentation on a given image stored in SuperpixelSEEDS object.

 iterate(self, img)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSEEDS object.

 iterate(self, img, opts)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSEEDS object.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SuperpixelSEEDS{ref: reference()}

Type that represents an XImgProc.SuperpixelSEEDS struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLabelContourMask(self)

 View Source

 @spec getLabelContourMask(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelSEEDS object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Note:
	(Python) A demo on how to generate superpixels in images from the webcam can be found at
opencv_source_code/samples/python2/seeds.py

	(cpp) A demo on how to generate superpixels in images from the webcam can be found at
opencv_source_code/modules/ximgproc/samples/seeds.cpp. By adding a file image as a command
line argument, the static image will be used instead of the webcam.

	It will show a window with the video from the webcam with the superpixel boundaries marked
in red (see below). Use Space to switch between different output modes. At the top of the
window there are 4 sliders, from which the user can change on-the-fly the number of
superpixels, the number of block levels, the strength of the boundary prior term to modify
the shape, and the number of iterations at pixel level. This is useful to play with the
parameters and set them to the user convenience. In the console the frame-rate of the
algorithm is indicated.

[image: image]
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabelContourMask(self, opts)

 View Source

 @spec getLabelContourMask(t(), [{:thick_line, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelSEEDS object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8UC1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Note:
	(Python) A demo on how to generate superpixels in images from the webcam can be found at
opencv_source_code/samples/python2/seeds.py

	(cpp) A demo on how to generate superpixels in images from the webcam can be found at
opencv_source_code/modules/ximgproc/samples/seeds.cpp. By adding a file image as a command
line argument, the static image will be used instead of the webcam.

	It will show a window with the video from the webcam with the superpixel boundaries marked
in red (see below). Use Space to switch between different output modes. At the top of the
window there are 4 sliders, from which the user can change on-the-fly the number of
superpixels, the number of block levels, the strength of the boundary prior term to modify
the shape, and the number of iterations at pixel level. This is useful to play with the
parameters and set them to the user convenience. In the console the frame-rate of the
algorithm is indicated.

[image: image]
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32UC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with ssthe labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getLabels(self, opts)

 View Source

 @spec getLabels(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32UC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with ssthe labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getNumberOfSuperpixels(self)

 View Source

 @spec getNumberOfSuperpixels(t()) :: integer() | {:error, String.t()}

Calculates the superpixel segmentation on a given image stored in SuperpixelSEEDS object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

Return
	retval: int

The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelSEEDS().
Python prototype (for reference only):
getNumberOfSuperpixels() -> retval

 Link to this function

 iterate(self, img)

 View Source

 @spec iterate(t(), Evision.Mat.maybe_mat_in()) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSEEDS object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

	img: Evision.Mat.t().
Input image. Supported formats: CV_8U, CV_16U, CV_32F. Image size & number of
channels must match with the initialized image size & channels with the function
createSuperpixelSEEDS(). It should be in HSV or Lab color space. Lab is a bit better, but also
slower.

Keyword Arguments
	num_iterations: int.
Number of pixel level iterations. Higher number improves the result.

This function can be called again for other images without the need of initializing the
algorithm with createSuperpixelSEEDS(). This save the computational cost of allocating memory
for all the structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelSEEDS(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of blocks of pixels that lie at the boundaries
from large to smaller size, finalizing with proposing pixel updates. An illustrative example
can be seen below.
[image: image]
Python prototype (for reference only):
iterate(img[, num_iterations]) -> None

 Link to this function

 iterate(self, img, opts)

 View Source

 @spec iterate(t(), Evision.Mat.maybe_mat_in(), [{:num_iterations, term()}] | nil) ::
 t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSEEDS object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()

	img: Evision.Mat.t().
Input image. Supported formats: CV_8U, CV_16U, CV_32F. Image size & number of
channels must match with the initialized image size & channels with the function
createSuperpixelSEEDS(). It should be in HSV or Lab color space. Lab is a bit better, but also
slower.

Keyword Arguments
	num_iterations: int.
Number of pixel level iterations. Higher number improves the result.

This function can be called again for other images without the need of initializing the
algorithm with createSuperpixelSEEDS(). This save the computational cost of allocating memory
for all the structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelSEEDS(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of blocks of pixels that lie at the boundaries
from large to smaller size, finalizing with proposing pixel updates. An illustrative example
can be seen below.
[image: image]
Python prototype (for reference only):
iterate(img[, num_iterations]) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.SuperpixelSEEDS.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XImgProc.SuperpixelSLIC - Evision v0.1.39

Evision.XImgProc.SuperpixelSLIC

 Summary

 Types

 t()

 Type that represents an XImgProc.SuperpixelSLIC struct.

 Functions

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 enforceLabelConnectivity(self)

 Enforce label connectivity.

 enforceLabelConnectivity(self, opts)

 Enforce label connectivity.

 getDefaultName(self)

 getDefaultName

 getLabelContourMask(self)

 Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.

 getLabelContourMask(self, opts)

 Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.

 getLabels(self)

 Returns the segmentation labeling of the image.

 getLabels(self, opts)

 Returns the segmentation labeling of the image.

 getNumberOfSuperpixels(self)

 Calculates the actual amount of superpixels on a given segmentation computed
and stored in SuperpixelSLIC object.

 iterate(self)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSLIC object.

 iterate(self, opts)

 Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSLIC object.

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XImgProc.SuperpixelSLIC{ref: reference()}

Type that represents an XImgProc.SuperpixelSLIC struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 enforceLabelConnectivity(self)

 View Source

 @spec enforceLabelConnectivity(t()) :: t() | {:error, String.t()}

Enforce label connectivity.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	min_element_size: int.
The minimum element size in percents that should be absorbed into a bigger
superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
that less then a quarter sized superpixel should be absorbed, this is default.

The function merge component that is too small, assigning the previously found adjacent label
to this component. Calling this function may change the final number of superpixels.
Python prototype (for reference only):
enforceLabelConnectivity([, min_element_size]) -> None

 Link to this function

 enforceLabelConnectivity(self, opts)

 View Source

 @spec enforceLabelConnectivity(t(), [{:min_element_size, term()}] | nil) ::
 t() | {:error, String.t()}

Enforce label connectivity.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	min_element_size: int.
The minimum element size in percents that should be absorbed into a bigger
superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
that less then a quarter sized superpixel should be absorbed, this is default.

The function merge component that is too small, assigning the previously found adjacent label
to this component. Calling this function may change the final number of superpixels.
Python prototype (for reference only):
enforceLabelConnectivity([, min_element_size]) -> None

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 getLabelContourMask(self)

 View Source

 @spec getLabelContourMask(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabelContourMask(self, opts)

 View Source

 @spec getLabelContourMask(t(), [{:thick_line, term()}] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	thick_line: bool.
If false, the border is only one pixel wide, otherwise all pixels at the border
are masked.

Return
	image: Evision.Mat.t().
Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
and 0 otherwise.

The function return the boundaries of the superpixel segmentation.
Python prototype (for reference only):
getLabelContourMask([, image[, thick_line]]) -> image

 Link to this function

 getLabels(self)

 View Source

 @spec getLabels(t()) :: Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32SC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with the labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getLabels(self, opts)

 View Source

 @spec getLabels(t(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Returns the segmentation labeling of the image.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Return
	labels_out: Evision.Mat.t().
Return: A CV_32SC1 integer array containing the labels of the superpixel
segmentation. The labels are in the range [0, getNumberOfSuperpixels()].

Each label represents a superpixel, and each pixel is assigned to one superpixel label.
The function returns an image with the labels of the superpixel segmentation. The labels are in
the range [0, getNumberOfSuperpixels()].
Python prototype (for reference only):
getLabels([, labels_out]) -> labels_out

 Link to this function

 getNumberOfSuperpixels(self)

 View Source

 @spec getNumberOfSuperpixels(t()) :: integer() | {:error, String.t()}

Calculates the actual amount of superpixels on a given segmentation computed
and stored in SuperpixelSLIC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Return
	retval: int

Python prototype (for reference only):
getNumberOfSuperpixels() -> retval

 Link to this function

 iterate(self)

 View Source

 @spec iterate(t()) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSLIC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	num_iterations: int.
Number of iterations. Higher number improves the result.

This function can be called again without the need of initializing the algorithm with
createSuperpixelSLIC(). This save the computational cost of allocating memory for all the
structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of edges boundaries.
Python prototype (for reference only):
iterate([, num_iterations]) -> None

 Link to this function

 iterate(self, opts)

 View Source

 @spec iterate(t(), [{:num_iterations, term()}] | nil) :: t() | {:error, String.t()}

Calculates the superpixel segmentation on a given image with the initialized
parameters in the SuperpixelSLIC object.
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()

Keyword Arguments
	num_iterations: int.
Number of iterations. Higher number improves the result.

This function can be called again without the need of initializing the algorithm with
createSuperpixelSLIC(). This save the computational cost of allocating memory for all the
structures of the algorithm.
The function computes the superpixels segmentation of an image with the parameters initialized
with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and
then refines the boundaries by proposing updates of edges boundaries.
Python prototype (for reference only):
iterate([, num_iterations]) -> None

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XImgProc.SuperpixelSLIC.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.XPhoto - Evision v0.1.39

Evision.XPhoto

 Summary

 Types

 t()

 Type that represents an XPhoto struct.

 Functions

 applyChannelGains(src, gainB, gainG, gainR)

 Implements an efficient fixed-point approximation for applying channel gains, which is
the last step of multiple white balance algorithms.

 applyChannelGains(src, gainB, gainG, gainR, opts)

 Implements an efficient fixed-point approximation for applying channel gains, which is
the last step of multiple white balance algorithms.

 bm3dDenoising(src)

 Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.

 bm3dDenoising(src, opts)

 Variant 1:
Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.

 bm3dDenoising(src, dstStep1, opts)

 Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.

 createGrayworldWB()

 Creates an instance of GrayworldWB

 createLearningBasedWB()

 Creates an instance of LearningBasedWB

 createLearningBasedWB(opts)

 Creates an instance of LearningBasedWB

 createSimpleWB()

 Creates an instance of SimpleWB

 createTonemapDurand()

 Creates TonemapDurand object

 createTonemapDurand(opts)

 Creates TonemapDurand object

 dctDenoising(src, dst, sigma)

 The function implements simple dct-based denoising

 dctDenoising(src, dst, sigma, opts)

 The function implements simple dct-based denoising

 inpaint(src, mask, dst, algorithmType)

 The function implements different single-image inpainting algorithms.

 oilPainting(src, size, dynRatio)

 oilPainting
See the book @cite Holzmann1988 for details.

 oilPainting(src, size, dynRatio, opts)

 Variant 1:
oilPainting
See the book @cite Holzmann1988 for details.

 oilPainting(src, size, dynRatio, code, opts)

 oilPainting
See the book @cite Holzmann1988 for details.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto{ref: reference()}

Type that represents an XPhoto struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 applyChannelGains(src, gainB, gainG, gainR)

 View Source

 @spec applyChannelGains(Evision.Mat.maybe_mat_in(), number(), number(), number()) ::
 Evision.Mat.t() | {:error, String.t()}

Implements an efficient fixed-point approximation for applying channel gains, which is
the last step of multiple white balance algorithms.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)

	gainB: float.
gain for the B channel

	gainG: float.
gain for the G channel

	gainR: float.
gain for the R channel

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
applyChannelGains(src, gainB, gainG, gainR[, dst]) -> dst

 Link to this function

 applyChannelGains(src, gainB, gainG, gainR, opts)

 View Source

 @spec applyChannelGains(
 Evision.Mat.maybe_mat_in(),
 number(),
 number(),
 number(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

Implements an efficient fixed-point approximation for applying channel gains, which is
the last step of multiple white balance algorithms.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel image in the BGR color space (either CV_8UC3 or CV_16UC3)

	gainB: float.
gain for the B channel

	gainG: float.
gain for the G channel

	gainR: float.
gain for the R channel

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
applyChannelGains(src, gainB, gainG, gainR[, dst]) -> dst

 Link to this function

 bm3dDenoising(src)

 View Source

 @spec bm3dDenoising(Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit 1-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise.

	templateWindowSize: int.
Size in pixels of the template patch that is used for block-matching.
Should be power of 2.

	searchWindowSize: int.
Size in pixels of the window that is used to perform block-matching.
Affect performance linearly: greater searchWindowsSize - greater denoising time.
Must be larger than templateWindowSize.

	blockMatchingStep1: int.
Block matching threshold for the first step of BM3D (hard thresholding),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	blockMatchingStep2: int.
Block matching threshold for the second step of BM3D (Wiener filtering),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	groupSize: int.
Maximum size of the 3D group for collaborative filtering.

	slidingStep: int.
Sliding step to process every next reference block.

	beta: float.
Kaiser window parameter that affects the sidelobe attenuation of the transform of the
window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
set beta to zero.

	normType: int.
Norm used to calculate distance between blocks. L2 is slower than L1
but yields more accurate results.

	step: int.
Step of BM3D to be executed. Allowed are only BM3D_STEP1 and BM3D_STEPALL.
BM3D_STEP2 is not allowed as it requires basic estimate to be present.

	transformType: int.
Type of the orthogonal transform used in collaborative filtering step.
Currently only Haar transform is supported.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

This function expected to be applied to grayscale images. Advanced usage of this function
can be manual denoising of colored image in different colorspaces.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
bm3dDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize[, blockMatchingStep1[, blockMatchingStep2[, groupSize[, slidingStep[, beta[, normType[, step[, transformType]]]]]]]]]]]]) -> dst

 Link to this function

 bm3dDenoising(src, opts)

 View Source

 @spec bm3dDenoising(
 Evision.Mat.maybe_mat_in(),
 [
 blockMatchingStep1: term(),
 h: term(),
 slidingStep: term(),
 transformType: term(),
 templateWindowSize: term(),
 normType: term(),
 step: term(),
 blockMatchingStep2: term(),
 searchWindowSize: term(),
 groupSize: term(),
 beta: term()
]
 | nil
) :: Evision.Mat.t() | {:error, String.t()}

 @spec bm3dDenoising(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) ::
 {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Variant 1:
Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit 1-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise.

	templateWindowSize: int.
Size in pixels of the template patch that is used for block-matching.
Should be power of 2.

	searchWindowSize: int.
Size in pixels of the window that is used to perform block-matching.
Affect performance linearly: greater searchWindowsSize - greater denoising time.
Must be larger than templateWindowSize.

	blockMatchingStep1: int.
Block matching threshold for the first step of BM3D (hard thresholding),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	blockMatchingStep2: int.
Block matching threshold for the second step of BM3D (Wiener filtering),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	groupSize: int.
Maximum size of the 3D group for collaborative filtering.

	slidingStep: int.
Sliding step to process every next reference block.

	beta: float.
Kaiser window parameter that affects the sidelobe attenuation of the transform of the
window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
set beta to zero.

	normType: int.
Norm used to calculate distance between blocks. L2 is slower than L1
but yields more accurate results.

	step: int.
Step of BM3D to be executed. Possible variants are: step 1, step 2, both steps.

	transformType: int.
Type of the orthogonal transform used in collaborative filtering step.
Currently only Haar transform is supported.

Return
	dstStep1: Evision.Mat.t().
Output image of the first step of BM3D with the same size and type as src.

	dstStep2: Evision.Mat.t().
Output image of the second step of BM3D with the same size and type as src.

This function expected to be applied to grayscale images. Advanced usage of this function
can be manual denoising of colored image in different colorspaces.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
bm3dDenoising(src, dstStep1[, dstStep2[, h[, templateWindowSize[, searchWindowSize[, blockMatchingStep1[, blockMatchingStep2[, groupSize[, slidingStep[, beta[, normType[, step[, transformType]]]]]]]]]]]]) -> dstStep1, dstStep2
Variant 2:
Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit 1-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise.

	templateWindowSize: int.
Size in pixels of the template patch that is used for block-matching.
Should be power of 2.

	searchWindowSize: int.
Size in pixels of the window that is used to perform block-matching.
Affect performance linearly: greater searchWindowsSize - greater denoising time.
Must be larger than templateWindowSize.

	blockMatchingStep1: int.
Block matching threshold for the first step of BM3D (hard thresholding),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	blockMatchingStep2: int.
Block matching threshold for the second step of BM3D (Wiener filtering),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	groupSize: int.
Maximum size of the 3D group for collaborative filtering.

	slidingStep: int.
Sliding step to process every next reference block.

	beta: float.
Kaiser window parameter that affects the sidelobe attenuation of the transform of the
window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
set beta to zero.

	normType: int.
Norm used to calculate distance between blocks. L2 is slower than L1
but yields more accurate results.

	step: int.
Step of BM3D to be executed. Allowed are only BM3D_STEP1 and BM3D_STEPALL.
BM3D_STEP2 is not allowed as it requires basic estimate to be present.

	transformType: int.
Type of the orthogonal transform used in collaborative filtering step.
Currently only Haar transform is supported.

Return
	dst: Evision.Mat.t().
Output image with the same size and type as src.

This function expected to be applied to grayscale images. Advanced usage of this function
can be manual denoising of colored image in different colorspaces.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
bm3dDenoising(src[, dst[, h[, templateWindowSize[, searchWindowSize[, blockMatchingStep1[, blockMatchingStep2[, groupSize[, slidingStep[, beta[, normType[, step[, transformType]]]]]]]]]]]]) -> dst

 Link to this function

 bm3dDenoising(src, dstStep1, opts)

 View Source

 @spec bm3dDenoising(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 [
 blockMatchingStep1: term(),
 h: term(),
 slidingStep: term(),
 transformType: term(),
 templateWindowSize: term(),
 normType: term(),
 step: term(),
 blockMatchingStep2: term(),
 searchWindowSize: term(),
 groupSize: term(),
 beta: term()
]
 | nil
) :: {Evision.Mat.t(), Evision.Mat.t()} | {:error, String.t()}

Performs image denoising using the Block-Matching and 3D-filtering algorithm
http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_TIP_2007.pdf with several computational
optimizations. Noise expected to be a gaussian white noise.
Positional Arguments
	src: Evision.Mat.t().
Input 8-bit or 16-bit 1-channel image.

Keyword Arguments
	h: float.
Parameter regulating filter strength. Big h value perfectly removes noise but also
removes image details, smaller h value preserves details but also preserves some noise.

	templateWindowSize: int.
Size in pixels of the template patch that is used for block-matching.
Should be power of 2.

	searchWindowSize: int.
Size in pixels of the window that is used to perform block-matching.
Affect performance linearly: greater searchWindowsSize - greater denoising time.
Must be larger than templateWindowSize.

	blockMatchingStep1: int.
Block matching threshold for the first step of BM3D (hard thresholding),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	blockMatchingStep2: int.
Block matching threshold for the second step of BM3D (Wiener filtering),
i.e. maximum distance for which two blocks are considered similar.
Value expressed in euclidean distance.

	groupSize: int.
Maximum size of the 3D group for collaborative filtering.

	slidingStep: int.
Sliding step to process every next reference block.

	beta: float.
Kaiser window parameter that affects the sidelobe attenuation of the transform of the
window. Kaiser window is used in order to reduce border effects. To prevent usage of the window,
set beta to zero.

	normType: int.
Norm used to calculate distance between blocks. L2 is slower than L1
but yields more accurate results.

	step: int.
Step of BM3D to be executed. Possible variants are: step 1, step 2, both steps.

	transformType: int.
Type of the orthogonal transform used in collaborative filtering step.
Currently only Haar transform is supported.

Return
	dstStep1: Evision.Mat.t().
Output image of the first step of BM3D with the same size and type as src.

	dstStep2: Evision.Mat.t().
Output image of the second step of BM3D with the same size and type as src.

This function expected to be applied to grayscale images. Advanced usage of this function
can be manual denoising of colored image in different colorspaces.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
bm3dDenoising(src, dstStep1[, dstStep2[, h[, templateWindowSize[, searchWindowSize[, blockMatchingStep1[, blockMatchingStep2[, groupSize[, slidingStep[, beta[, normType[, step[, transformType]]]]]]]]]]]]) -> dstStep1, dstStep2

 Link to this function

 createGrayworldWB()

 View Source

 @spec createGrayworldWB() :: Evision.XPhoto.GrayworldWB.t() | {:error, String.t()}

Creates an instance of GrayworldWB
Return
	retval: Evision.XPhoto.GrayworldWB.t()

Python prototype (for reference only):
createGrayworldWB() -> retval

 Link to this function

 createLearningBasedWB()

 View Source

 @spec createLearningBasedWB() ::
 Evision.XPhoto.LearningBasedWB.t() | {:error, String.t()}

Creates an instance of LearningBasedWB
Keyword Arguments
	path_to_model: String.
Path to a .yml file with the model. If not specified, the default model is used

Return
	retval: Evision.XPhoto.LearningBasedWB.t()

Python prototype (for reference only):
createLearningBasedWB([, path_to_model]) -> retval

 Link to this function

 createLearningBasedWB(opts)

 View Source

 @spec createLearningBasedWB([{:path_to_model, term()}] | nil) ::
 Evision.XPhoto.LearningBasedWB.t() | {:error, String.t()}

Creates an instance of LearningBasedWB
Keyword Arguments
	path_to_model: String.
Path to a .yml file with the model. If not specified, the default model is used

Return
	retval: Evision.XPhoto.LearningBasedWB.t()

Python prototype (for reference only):
createLearningBasedWB([, path_to_model]) -> retval

 Link to this function

 createSimpleWB()

 View Source

 @spec createSimpleWB() :: Evision.XPhoto.SimpleWB.t() | {:error, String.t()}

Creates an instance of SimpleWB
Return
	retval: Evision.XPhoto.SimpleWB.t()

Python prototype (for reference only):
createSimpleWB() -> retval

 Link to this function

 createTonemapDurand()

 View Source

 @spec createTonemapDurand() :: Evision.XPhoto.TonemapDurand.t() | {:error, String.t()}

Creates TonemapDurand object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	contrast: float.
resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
are maximum and minimum luminance values of the resulting image.

	saturation: float.
saturation enhancement value. See createTonemapDrago

	sigma_color: float.
bilateral filter sigma in color space

	sigma_space: float.
bilateral filter sigma in coordinate space

Return
	retval: Evision.XPhoto.TonemapDurand.t()

You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.
Python prototype (for reference only):
createTonemapDurand([, gamma[, contrast[, saturation[, sigma_color[, sigma_space]]]]]) -> retval

 Link to this function

 createTonemapDurand(opts)

 View Source

 @spec createTonemapDurand(
 [
 saturation: term(),
 sigma_space: term(),
 contrast: term(),
 gamma: term(),
 sigma_color: term()
]
 | nil
) :: Evision.XPhoto.TonemapDurand.t() | {:error, String.t()}

Creates TonemapDurand object
Keyword Arguments
	gamma: float.
gamma value for gamma correction. See createTonemap

	contrast: float.
resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
are maximum and minimum luminance values of the resulting image.

	saturation: float.
saturation enhancement value. See createTonemapDrago

	sigma_color: float.
bilateral filter sigma in color space

	sigma_space: float.
bilateral filter sigma in coordinate space

Return
	retval: Evision.XPhoto.TonemapDurand.t()

You need to set the OPENCV_ENABLE_NONFREE option in cmake to use those. Use them at your own risk.
Python prototype (for reference only):
createTonemapDurand([, gamma[, contrast[, saturation[, sigma_color[, sigma_space]]]]]) -> retval

 Link to this function

 dctDenoising(src, dst, sigma)

 View Source

 @spec dctDenoising(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), number()) ::
 :ok | {:error, String.t()}

The function implements simple dct-based denoising
Positional Arguments
	src: Evision.Mat.t().
source image

	dst: Evision.Mat.t().
destination image

	sigma: double.
expected noise standard deviation

Keyword Arguments
	psize: int.
size of block side where dct is computed

http://www.ipol.im/pub/art/2011/ys-dct/.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
dctDenoising(src, dst, sigma[, psize]) -> None

 Link to this function

 dctDenoising(src, dst, sigma, opts)

 View Source

 @spec dctDenoising(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 number(),
 [{:psize, term()}] | nil
) :: :ok | {:error, String.t()}

The function implements simple dct-based denoising
Positional Arguments
	src: Evision.Mat.t().
source image

	dst: Evision.Mat.t().
destination image

	sigma: double.
expected noise standard deviation

Keyword Arguments
	psize: int.
size of block side where dct is computed

http://www.ipol.im/pub/art/2011/ys-dct/.
@sa
fastNlMeansDenoising
Python prototype (for reference only):
dctDenoising(src, dst, sigma[, psize]) -> None

 Link to this function

 inpaint(src, mask, dst, algorithmType)

 View Source

 @spec inpaint(
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 integer()
) :: :ok | {:error, String.t()}

The function implements different single-image inpainting algorithms.
Positional Arguments
	src: Evision.Mat.t().
source image
	#INPAINT_SHIFTMAP: it could be of any type and any number of channels from 1 to 4. In case of
3- and 4-channels images the function expect them in CIELab colorspace or similar one, where first
color component shows intensity, while second and third shows colors. Nonetheless you can try any
colorspaces.
	#INPAINT_FSR_BEST or #INPAINT_FSR_FAST: 1-channel grayscale or 3-channel BGR image.

	mask: Evision.Mat.t().
mask (#CV_8UC1), where non-zero pixels indicate valid image area, while zero pixels
indicate area to be inpainted

	dst: Evision.Mat.t().
destination image

	algorithmType: int.
see xphoto::InpaintTypes

See the original papers @cite He2012 (Shiftmap) or @cite GenserPCS2018 and @cite SeilerTIP2015 (FSR) for details.
Python prototype (for reference only):
inpaint(src, mask, dst, algorithmType) -> None

 Link to this function

 oilPainting(src, size, dynRatio)

 View Source

 @spec oilPainting(Evision.Mat.maybe_mat_in(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

oilPainting
See the book @cite Holzmann1988 for details.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)

	size: int.
neighbouring size is 2-size+1

	dynRatio: int.
image is divided by dynRatio before histogram processing

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
oilPainting(src, size, dynRatio[, dst]) -> dst

 Link to this function

 oilPainting(src, size, dynRatio, opts)

 View Source

 @spec oilPainting(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

 @spec oilPainting(Evision.Mat.maybe_mat_in(), integer(), integer(), integer()) ::
 Evision.Mat.t() | {:error, String.t()}

Variant 1:
oilPainting
See the book @cite Holzmann1988 for details.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)

	size: int.
neighbouring size is 2-size+1

	dynRatio: int.
image is divided by dynRatio before histogram processing

	code: int

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
oilPainting(src, size, dynRatio, code[, dst]) -> dst
Variant 2:
oilPainting
See the book @cite Holzmann1988 for details.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)

	size: int.
neighbouring size is 2-size+1

	dynRatio: int.
image is divided by dynRatio before histogram processing

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
oilPainting(src, size, dynRatio[, dst]) -> dst

 Link to this function

 oilPainting(src, size, dynRatio, code, opts)

 View Source

 @spec oilPainting(
 Evision.Mat.maybe_mat_in(),
 integer(),
 integer(),
 integer(),
 [{atom(), term()}, ...] | nil
) :: Evision.Mat.t() | {:error, String.t()}

oilPainting
See the book @cite Holzmann1988 for details.
Positional Arguments
	src: Evision.Mat.t().
Input three-channel or one channel image (either CV_8UC3 or CV_8UC1)

	size: int.
neighbouring size is 2-size+1

	dynRatio: int.
image is divided by dynRatio before histogram processing

	code: int

Return
	dst: Evision.Mat.t().
Output image of the same size and type as src.

Python prototype (for reference only):
oilPainting(src, size, dynRatio, code[, dst]) -> dst

 Evision.XPhoto.GrayworldWB - Evision v0.1.39

Evision.XPhoto.GrayworldWB

 Summary

 Types

 t()

 Type that represents an XPhoto.GrayworldWB struct.

 Functions

 getSaturationThreshold(self)

 Maximum saturation for a pixel to be included in the
gray-world assumption

 setSaturationThreshold(self, val)

 setSaturationThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto.GrayworldWB{ref: reference()}

Type that represents an XPhoto.GrayworldWB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getSaturationThreshold(self)

 View Source

 @spec getSaturationThreshold(t()) :: number() | {:error, String.t()}

Maximum saturation for a pixel to be included in the
gray-world assumption
Positional Arguments
	self: Evision.XPhoto.GrayworldWB.t()

Return
	retval: float

@see setSaturationThreshold/2
Python prototype (for reference only):
getSaturationThreshold() -> retval

 Link to this function

 setSaturationThreshold(self, val)

 View Source

 @spec setSaturationThreshold(t(), number()) :: t() | {:error, String.t()}

setSaturationThreshold
Positional Arguments
	self: Evision.XPhoto.GrayworldWB.t()
	val: float

@see getSaturationThreshold/1
Python prototype (for reference only):
setSaturationThreshold(val) -> None

 Evision.XPhoto.LearningBasedWB - Evision v0.1.39

Evision.XPhoto.LearningBasedWB

 Summary

 Types

 t()

 Type that represents an XPhoto.LearningBasedWB struct.

 Functions

 extractSimpleFeatures(self, src)

 Implements the feature extraction part of the algorithm.

 extractSimpleFeatures(self, src, opts)

 Implements the feature extraction part of the algorithm.

 getHistBinNum(self)

 Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
(e.g. 256 bins for a 12 bit image).

 getRangeMaxVal(self)

 Maximum possible value of the input image (e.g. 255 for 8 bit images,
4095 for 12 bit images)

 getSaturationThreshold(self)

 Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
channels exceeds \f$\texttt{saturation_threshold}\times\texttt{range_max_val}\f$ are ignored.

 setHistBinNum(self, val)

 setHistBinNum

 setRangeMaxVal(self, val)

 setRangeMaxVal

 setSaturationThreshold(self, val)

 setSaturationThreshold

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto.LearningBasedWB{ref: reference()}

Type that represents an XPhoto.LearningBasedWB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 extractSimpleFeatures(self, src)

 View Source

 @spec extractSimpleFeatures(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Implements the feature extraction part of the algorithm.
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()

	src: Evision.Mat.t().
Input three-channel image (BGR color space is assumed).

Return
	dst: Evision.Mat.t().
An array of four (r,g) chromaticity tuples corresponding to the features listed above.

In accordance with @cite Cheng2015 , computes the following features for the input image:
	Chromaticity of an average (R,G,B) tuple
	Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
	Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
	Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
a Epanechnikov kernel function.

Python prototype (for reference only):
extractSimpleFeatures(src[, dst]) -> dst

 Link to this function

 extractSimpleFeatures(self, src, opts)

 View Source

 @spec extractSimpleFeatures(
 t(),
 Evision.Mat.maybe_mat_in(),
 [{atom(), term()}, ...] | nil
) ::
 Evision.Mat.t() | {:error, String.t()}

Implements the feature extraction part of the algorithm.
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()

	src: Evision.Mat.t().
Input three-channel image (BGR color space is assumed).

Return
	dst: Evision.Mat.t().
An array of four (r,g) chromaticity tuples corresponding to the features listed above.

In accordance with @cite Cheng2015 , computes the following features for the input image:
	Chromaticity of an average (R,G,B) tuple
	Chromaticity of the brightest (R,G,B) tuple (while ignoring saturated pixels)
	Chromaticity of the dominant (R,G,B) tuple (the one that has the highest value in the RGB histogram)
	Mode of the chromaticity palette, that is constructed by taking 300 most common colors according to
the RGB histogram and projecting them on the chromaticity plane. Mode is the most high-density point
of the palette, which is computed by a straightforward fixed-bandwidth kernel density estimator with
a Epanechnikov kernel function.

Python prototype (for reference only):
extractSimpleFeatures(src[, dst]) -> dst

 Link to this function

 getHistBinNum(self)

 View Source

 @spec getHistBinNum(t()) :: integer() | {:error, String.t()}

Defines the size of one dimension of a three-dimensional RGB histogram that is used internally
by the algorithm. It often makes sense to increase the number of bins for images with higher bit depth
(e.g. 256 bins for a 12 bit image).
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()

Return
	retval: int

@see setHistBinNum/2
Python prototype (for reference only):
getHistBinNum() -> retval

 Link to this function

 getRangeMaxVal(self)

 View Source

 @spec getRangeMaxVal(t()) :: integer() | {:error, String.t()}

Maximum possible value of the input image (e.g. 255 for 8 bit images,
4095 for 12 bit images)
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()

Return
	retval: int

@see setRangeMaxVal/2
Python prototype (for reference only):
getRangeMaxVal() -> retval

 Link to this function

 getSaturationThreshold(self)

 View Source

 @spec getSaturationThreshold(t()) :: number() | {:error, String.t()}

Threshold that is used to determine saturated pixels, i.e. pixels where at least one of the
channels exceeds \f$\texttt{saturation_threshold}\times\texttt{range_max_val}\f$ are ignored.
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()

Return
	retval: float

@see setSaturationThreshold/2
Python prototype (for reference only):
getSaturationThreshold() -> retval

 Link to this function

 setHistBinNum(self, val)

 View Source

 @spec setHistBinNum(t(), integer()) :: t() | {:error, String.t()}

setHistBinNum
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()
	val: int

@see getHistBinNum/1
Python prototype (for reference only):
setHistBinNum(val) -> None

 Link to this function

 setRangeMaxVal(self, val)

 View Source

 @spec setRangeMaxVal(t(), integer()) :: t() | {:error, String.t()}

setRangeMaxVal
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()
	val: int

@see getRangeMaxVal/1
Python prototype (for reference only):
setRangeMaxVal(val) -> None

 Link to this function

 setSaturationThreshold(self, val)

 View Source

 @spec setSaturationThreshold(t(), number()) :: t() | {:error, String.t()}

setSaturationThreshold
Positional Arguments
	self: Evision.XPhoto.LearningBasedWB.t()
	val: float

@see getSaturationThreshold/1
Python prototype (for reference only):
setSaturationThreshold(val) -> None

 Evision.XPhoto.SimpleWB - Evision v0.1.39

Evision.XPhoto.SimpleWB

 Summary

 Types

 t()

 Type that represents an XPhoto.SimpleWB struct.

 Functions

 getInputMax(self)

 Input image range maximum value

 getInputMin(self)

 Input image range minimum value

 getOutputMax(self)

 Output image range maximum value

 getOutputMin(self)

 Output image range minimum value

 getP(self)

 Percent of top/bottom values to ignore

 setInputMax(self, val)

 setInputMax

 setInputMin(self, val)

 setInputMin

 setOutputMax(self, val)

 setOutputMax

 setOutputMin(self, val)

 setOutputMin

 setP(self, val)

 setP

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto.SimpleWB{ref: reference()}

Type that represents an XPhoto.SimpleWB struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getInputMax(self)

 View Source

 @spec getInputMax(t()) :: number() | {:error, String.t()}

Input image range maximum value
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()

Return
	retval: float

@see setInputMax/2
Python prototype (for reference only):
getInputMax() -> retval

 Link to this function

 getInputMin(self)

 View Source

 @spec getInputMin(t()) :: number() | {:error, String.t()}

Input image range minimum value
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()

Return
	retval: float

@see setInputMin/2
Python prototype (for reference only):
getInputMin() -> retval

 Link to this function

 getOutputMax(self)

 View Source

 @spec getOutputMax(t()) :: number() | {:error, String.t()}

Output image range maximum value
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()

Return
	retval: float

@see setOutputMax/2
Python prototype (for reference only):
getOutputMax() -> retval

 Link to this function

 getOutputMin(self)

 View Source

 @spec getOutputMin(t()) :: number() | {:error, String.t()}

Output image range minimum value
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()

Return
	retval: float

@see setOutputMin/2
Python prototype (for reference only):
getOutputMin() -> retval

 Link to this function

 getP(self)

 View Source

 @spec getP(t()) :: number() | {:error, String.t()}

Percent of top/bottom values to ignore
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()

Return
	retval: float

@see setP/2
Python prototype (for reference only):
getP() -> retval

 Link to this function

 setInputMax(self, val)

 View Source

 @spec setInputMax(t(), number()) :: t() | {:error, String.t()}

setInputMax
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()
	val: float

@see getInputMax/1
Python prototype (for reference only):
setInputMax(val) -> None

 Link to this function

 setInputMin(self, val)

 View Source

 @spec setInputMin(t(), number()) :: t() | {:error, String.t()}

setInputMin
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()
	val: float

@see getInputMin/1
Python prototype (for reference only):
setInputMin(val) -> None

 Link to this function

 setOutputMax(self, val)

 View Source

 @spec setOutputMax(t(), number()) :: t() | {:error, String.t()}

setOutputMax
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()
	val: float

@see getOutputMax/1
Python prototype (for reference only):
setOutputMax(val) -> None

 Link to this function

 setOutputMin(self, val)

 View Source

 @spec setOutputMin(t(), number()) :: t() | {:error, String.t()}

setOutputMin
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()
	val: float

@see getOutputMin/1
Python prototype (for reference only):
setOutputMin(val) -> None

 Link to this function

 setP(self, val)

 View Source

 @spec setP(t(), number()) :: t() | {:error, String.t()}

setP
Positional Arguments
	self: Evision.XPhoto.SimpleWB.t()
	val: float

@see getP/1
Python prototype (for reference only):
setP(val) -> None

 Evision.XPhoto.TonemapDurand - Evision v0.1.39

Evision.XPhoto.TonemapDurand

 Summary

 Types

 t()

 Type that represents an XPhoto.TonemapDurand struct.

 Functions

 getContrast(self)

 getContrast

 getSaturation(self)

 getSaturation

 getSigmaColor(self)

 getSigmaColor

 getSigmaSpace(self)

 getSigmaSpace

 setContrast(self, contrast)

 setContrast

 setSaturation(self, saturation)

 setSaturation

 setSigmaColor(self, sigma_color)

 setSigmaColor

 setSigmaSpace(self, sigma_space)

 setSigmaSpace

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto.TonemapDurand{ref: reference()}

Type that represents an XPhoto.TonemapDurand struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 getContrast(self)

 View Source

 @spec getContrast(t()) :: number() | {:error, String.t()}

getContrast
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()

Return
	retval: float

Python prototype (for reference only):
getContrast() -> retval

 Link to this function

 getSaturation(self)

 View Source

 @spec getSaturation(t()) :: number() | {:error, String.t()}

getSaturation
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()

Return
	retval: float

Python prototype (for reference only):
getSaturation() -> retval

 Link to this function

 getSigmaColor(self)

 View Source

 @spec getSigmaColor(t()) :: number() | {:error, String.t()}

getSigmaColor
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()

Return
	retval: float

Python prototype (for reference only):
getSigmaColor() -> retval

 Link to this function

 getSigmaSpace(self)

 View Source

 @spec getSigmaSpace(t()) :: number() | {:error, String.t()}

getSigmaSpace
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()

Return
	retval: float

Python prototype (for reference only):
getSigmaSpace() -> retval

 Link to this function

 setContrast(self, contrast)

 View Source

 @spec setContrast(t(), number()) :: t() | {:error, String.t()}

setContrast
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()
	contrast: float

Python prototype (for reference only):
setContrast(contrast) -> None

 Link to this function

 setSaturation(self, saturation)

 View Source

 @spec setSaturation(t(), number()) :: t() | {:error, String.t()}

setSaturation
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()
	saturation: float

Python prototype (for reference only):
setSaturation(saturation) -> None

 Link to this function

 setSigmaColor(self, sigma_color)

 View Source

 @spec setSigmaColor(t(), number()) :: t() | {:error, String.t()}

setSigmaColor
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()
	sigma_color: float

Python prototype (for reference only):
setSigmaColor(sigma_color) -> None

 Link to this function

 setSigmaSpace(self, sigma_space)

 View Source

 @spec setSigmaSpace(t(), number()) :: t() | {:error, String.t()}

setSigmaSpace
Positional Arguments
	self: Evision.XPhoto.TonemapDurand.t()
	sigma_space: float

Python prototype (for reference only):
setSigmaSpace(sigma_space) -> None

 Evision.XPhoto.WhiteBalancer - Evision v0.1.39

Evision.XPhoto.WhiteBalancer

 Summary

 Types

 t()

 Type that represents an XPhoto.WhiteBalancer struct.

 Functions

 balanceWhite(self, src)

 Applies white balancing to the input image

 balanceWhite(self, src, opts)

 Applies white balancing to the input image

 clear(self)

 Clears the algorithm state

 empty(self)

 Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read

 getDefaultName(self)

 getDefaultName

 read(self, fn_)

 Reads algorithm parameters from a file storage

 save(self, filename)

 save

 write(self, fs)

 Stores algorithm parameters in a file storage

 write(self, fs, name)

 write

Types

 Link to this type

 t()

 View Source

 @type t() :: %Evision.XPhoto.WhiteBalancer{ref: reference()}

Type that represents an XPhoto.WhiteBalancer struct.
	ref. reference()
The underlying erlang resource variable.

Functions

 Link to this function

 balanceWhite(self, src)

 View Source

 @spec balanceWhite(t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | {:error, String.t()}

Applies white balancing to the input image
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()

	src: Evision.Mat.t().
Input image

Return
	dst: Evision.Mat.t().
White balancing result

@sa cvtColor, equalizeHist
Python prototype (for reference only):
balanceWhite(src[, dst]) -> dst

 Link to this function

 balanceWhite(self, src, opts)

 View Source

 @spec balanceWhite(t(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil) ::
 Evision.Mat.t() | {:error, String.t()}

Applies white balancing to the input image
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()

	src: Evision.Mat.t().
Input image

Return
	dst: Evision.Mat.t().
White balancing result

@sa cvtColor, equalizeHist
Python prototype (for reference only):
balanceWhite(src[, dst]) -> dst

 Link to this function

 clear(self)

 View Source

 @spec clear(Evision.Algorithm.t()) :: Evision.Algorithm.t() | {:error, String.t()}

Clears the algorithm state
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()

Python prototype (for reference only):
clear() -> None

 Link to this function

 empty(self)

 View Source

 @spec empty(Evision.Algorithm.t()) :: boolean() | {:error, String.t()}

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()

Return
	retval: bool

Python prototype (for reference only):
empty() -> retval

 Link to this function

 getDefaultName(self)

 View Source

 @spec getDefaultName(Evision.Algorithm.t()) :: binary() | {:error, String.t()}

getDefaultName
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()

Return
	retval: String

Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval

 Link to this function

 read(self, fn_)

 View Source

 @spec read(Evision.Algorithm.t(), Evision.FileNode.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Reads algorithm parameters from a file storage
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()
	fn_: Evision.FileNode.t()

Python prototype (for reference only):
read(fn_) -> None

 Link to this function

 save(self, filename)

 View Source

 @spec save(Evision.Algorithm.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

save
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()
	filename: String

Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None

 Link to this function

 write(self, fs)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t()) ::
 Evision.Algorithm.t() | {:error, String.t()}

Stores algorithm parameters in a file storage
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()
	fs: Evision.FileStorage.t()

Python prototype (for reference only):
write(fs) -> None

 Link to this function

 write(self, fs, name)

 View Source

 @spec write(Evision.Algorithm.t(), Evision.FileStorage.t(), binary()) ::
 Evision.Algorithm.t() | {:error, String.t()}

write
Positional Arguments
	self: Evision.XPhoto.WhiteBalancer.t()
	fs: Evision.FileStorage.t()
	name: String

Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None

 Evision.Zoo - Evision v0.1.39

Evision.Zoo

Evision Model Zoo

 Summary

 Types

 smartcell_option()

 smartcell_param()

 smartcell_param_map()

 smartcell_params()

 smartcell_tasks()

 variant()

 Functions

 available_backend_and_target()

 backends()

 cache_dir()

 download(file_url, filename, opts \\ [])

 targets()

 targets_reverse_lookup()

 to_quoted_backend_and_target(attrs)

Types

 Link to this type

 smartcell_option()

 View Source

 @type smartcell_option() :: %{value: Strung.t(), label: Strung.t()}

 Link to this type

 smartcell_param()

 View Source

 @type smartcell_param() :: %{
 field: String.t(),
 label: String.t(),
 type: atom(),
 default: term(),
 is_option: boolean() | nil,
 options: [smartcell_option()]
}

 Link to this type

 smartcell_param_map()

 View Source

 @type smartcell_param_map() :: %{name: String.t(), params: [smartcell_param()]}

 Link to this type

 smartcell_params()

 View Source

 @type smartcell_params() :: [smartcell_param_map()]

 Link to this type

 smartcell_tasks()

 View Source

 @type smartcell_tasks() :: [variant()]

 Link to this type

 variant()

 View Source

 @type variant() :: %{
 id: String.t(),
 name: String.t(),
 docs_url: String.t(),
 params: smartcell_params(),
 docs: String.t()
}

Functions

 Link to this function

 available_backend_and_target()

 View Source

 Link to this function

 backends()

 View Source

 Link to this function

 cache_dir()

 View Source

 Link to this function

 download(file_url, filename, opts \\ [])

 View Source

 Link to this function

 targets()

 View Source

 Link to this function

 targets_reverse_lookup()

 View Source

 Link to this function

 to_quoted_backend_and_target(attrs)

 View Source

 Evision.Zoo.FaceDetection - Evision v0.1.39

Evision.Zoo.FaceDetection

Face detection model collection.

 Summary

 Functions

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.FaceDetection.YuNet - Evision v0.1.39

Evision.Zoo.FaceDetection.YuNet

YuNet is a light-weight, fast and accurate face detection model

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 infer(self, image)

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 init(model_path, input_size, opts)

 model_info(atom)

 Model URL and filename of predefined model.

 setInputSize(self, size)

 Set the input size.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

 visualize(image, results, opts \\ [])

 Visualize the result.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 infer(self, image)

 View Source

 @spec infer(Evision.FaceDetectorYN.t(), Evision.Mat.maybe_mat_in()) ::
 Evision.Mat.t() | nil

Inference.
Positional arguments
	self: Evision.FaceDetectorYN.t().
An initialized FaceDetectorYN model.

	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.FaceDetectorYN.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model |:quant_model`.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	input_size: {width=pos_integer(), height=pos_integer()}

Input size of the image. It can be adjusted later with setInputSize/2.Defaults to {320, 320}.	conf_threshold: number().

Confidence threshold. Defaults to 0.9	nms_threshold: number().

NMS threshold. Defaults to 0.3	top_k: pos_integer().

Top k results.	cache_dir: String.t().

Path to the cache directory.Optional. Defaults to :filename.basedir(:user_cache, "", ...)	backend: integer().

Specify the backend.Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().	target: integer().

Specify the target.Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 init(model_path, input_size, opts)

 View Source

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 setInputSize(self, size)

 View Source

 @spec setInputSize(
 Evision.FaceDetectorYN.t(),
 {pos_integer(), pos_integer()}
) :: :ok | {:error, String.t()}

Set the input size.
infer/2 will call this function automatically.
Positional arguments
	self: Evision.FaceDetectorYN.t().
An initialized FaceDetectorYN model.

	size: {width=pos_integer(), height=pos_integer()}.
Input size of the image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Link to this function

 visualize(image, results, opts \\ [])

 View Source

 @spec visualize(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), Keyword.t()) ::
 Evision.Mat.t()

Visualize the result.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Original image.

	results: Evision.Mat.maybe_mat_in(), nil.
Results given by infer/2.

Keyword arguments
	box_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 255, 0}.
Specify the color of the bounding box.

	text_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 0, 255}.
Specify the color of the text (confidence value).

Return
An image with bounding boxes and corresponding confidence values.

 Evision.Zoo.FaceRecognition - Evision v0.1.39

Evision.Zoo.FaceRecognition

Face recognition model collection.

 Summary

 Functions

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.FaceRecognition.SFace - Evision v0.1.39

Evision.Zoo.FaceRecognition.SFace

SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 infer(self, face_image, bbox \\ nil)

 Get feature for the input face image.

 init(model_path, opts \\ [])

 Initialize model.

 match(self, original, comparison, opts \\ [])

 Compare two faces.

 match_feature(self, face1_feat, face2_feat, opts \\ [])

 Compare two face features.

 model_info(atom)

 Model URL and filename of predefined model.

 preprocess(self, face_image, bbox)

 Preprocessing the input face image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 infer(self, face_image, bbox \\ nil)

 View Source

Get feature for the input face image.
Positional arguments
	self: Evision.FaceRecognizerSF.t().
An initialized FaceRecognizerSF model.

	face_image: Evision.Mat.maybe_mat_in().
Input face image.

	bbox: Evision.Mat.maybe_mat_in().
Optional bounding box that specifies the face location in the given image.
Defaults to nil.
When bbox is not nil, preprocess/3 will crop the face from given image
and use the cropped image as the input.
Otherwise, face_image will be set as the input.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.FaceRecognizerSF.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model | :quant_model.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 match(self, original, comparison, opts \\ [])

 View Source

Compare two faces.
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	original: Evision.Mat.maybe_mat_in().
Original face.

	comparison: Evision.Mat.maybe_mat_in().
Comparison face.

Keyword Arguments
	distance_type: atom.
Either :cosine_similarity or :l2_norm. Defaults to :cosine_similarity.

	cosine_threshold: number().
Defaults to 0.363.

	l2_norm_threshold: number().
Defaults to 1.128.

	detector_module: module().
Face detector module. Defaults to Evision.Zoo.FaceDetection.YuNet.

	detector_model: String.t() | atom().
Face detector model name or path to model weights. Defaults to :default_model.

	detector_opts: Keyword.t().
Face detector initialization options. Defaults to [].

Return
A map with three keys.
	matched: boolean()
true if two faces match, false otherwise.

	measure: "cosine_score" | "l2_norm_distance"
Distance type.

	retval: number()
	When measure == "cosine_score", retval is the cosine similarity score.
	When measure == "l2_norm_distance", retval is the L2 norm distance.

 Link to this function

 match_feature(self, face1_feat, face2_feat, opts \\ [])

 View Source

Compare two face features.
Positional Arguments
	self: Evision.FaceRecognizerSF.t()

	face1_feat: Evision.Mat.maybe_mat_in().
Feature value of face 1.

	face2_feat: Evision.Mat.maybe_mat_in().
Feature value of face 2.

Keyword Arguments
	distance_type: atom.
Either :cosine_similarity or :l2_norm. Defaults to :cosine_similarity.

	cosine_threshold: number().
Defaults to 0.363.

	l2_norm_threshold: number().
Defaults to 1.128.

Return
A map with three keys.
	matched: boolean()
true if two faces match, false otherwise.

	measure: "cosine_score" | "l2_norm_distance"
Distance type.

	retval: number()
	When measure == "cosine_score", retval is the cosine similarity score.
	When measure == "l2_norm_distance", retval is the L2 norm distance.

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 preprocess(self, face_image, bbox)

 View Source

Preprocessing the input face image.
infer/3 will call this function automatically.
Positional arguments
	self: Evision.FaceRecognizerSF.t().
An initialized FaceRecognizerSF model.

	face_image: Evision.Mat.maybe_mat_in().
Input face image.

	bbox: Evision.Mat.maybe_mat_in().
Optional bounding box that specifies the face location in the given image.
Defaults to nil.
When bbox is not nil, preprocess/3 will crop the face from given image
and return the cropped image.
Otherwise, face_image will be returned.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageClassification - Evision v0.1.39

Evision.Zoo.ImageClassification

Image classfication model collection.

 Summary

 Functions

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageClassification.MobileNetV1 - Evision v0.1.39

Evision.Zoo.ImageClassification.MobileNetV1

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 get_labels(opts \\ [])

 Get labels.

 infer(self, image, opts \\ [])

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 labels()

 Default label file URL and filename.

 model_info(atom)

 Model URL and filename of predefined model.

 preprocess(image)

 Preprocessing the input image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 get_labels(opts \\ [])

 View Source

 @spec get_labels(Keyword.t()) :: [binary()]

Get labels.
Keyword arguments
	labels_path: String.t().
Path to the label file. Defaults to nil.
When labels_path is nil, get_labels/1 will try to
download the default label file.

	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

Returns
A list of labels.

 Link to this function

 infer(self, image, opts \\ [])

 View Source

 @spec infer(Evision.DNN.Net.t(), Evision.Mat.maybe_mat_in(), Keyword.t()) :: [
 number()
]

Inference.
Positional arguments
	self: Evision.DNN.Net.t().
An initialized MobileNetV1 model.

	image: Evision.Mat.maybe_mat_in().
Input image.

Keyword arguments
	top_k: pos_integer().
Get top k results.
Optional. Defaults to 5.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.DNN.Net.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model | :quant_model.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 labels()

 View Source

 @spec labels() :: {String.t(), String.t()}

Default label file URL and filename.

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 preprocess(image)

 View Source

 @spec preprocess(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t()

Preprocessing the input image.
infer/3 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageClassification.MobileNetV2 - Evision v0.1.39

Evision.Zoo.ImageClassification.MobileNetV2

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 get_labels(opts \\ [])

 Get labels.

 infer(self, image, opts \\ [])

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 labels()

 Default label file URL and filename.

 model_info(atom)

 Model URL and filename of predefined model.

 preprocess(image)

 Preprocessing the input image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 get_labels(opts \\ [])

 View Source

 @spec get_labels(Keyword.t()) :: [binary()]

Get labels.
Keyword arguments
	labels_path: String.t().
Path to the label file. Defaults to nil.
When labels_path is nil, get_labels/1 will try to
download the default label file.

	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

Returns
A list of labels.

 Link to this function

 infer(self, image, opts \\ [])

 View Source

 @spec infer(Evision.DNN.Net.t(), Evision.Mat.maybe_mat_in(), Keyword.t()) :: [
 number()
]

Inference.
Positional arguments
	self: Evision.DNN.Net.t().
An initialized MobileNetV2 model.

	image: Evision.Mat.maybe_mat_in().
Input image.

Keyword arguments
	top_k: pos_integer().
Get top k results.
Optional. Defaults to 5.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.DNN.Net.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model | :quant_model.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 labels()

 View Source

 @spec labels() :: {String.t(), String.t()}

Default label file URL and filename.

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 preprocess(image)

 View Source

 @spec preprocess(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t()

Preprocessing the input image.
infer/3 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageClassification.PPResNet - Evision v0.1.39

Evision.Zoo.ImageClassification.PPResNet

Deep Residual Learning for Image Recognition.

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 get_labels(opts \\ [])

 Get labels.

 infer(self, image, opts \\ [])

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 labels()

 Default label file URL and filename.

 model_info(atom)

 Model URL and filename of predefined model.

 preprocess(image)

 Preprocessing the input image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 get_labels(opts \\ [])

 View Source

 @spec get_labels(Keyword.t()) :: [binary()]

Get labels.
Keyword arguments
	labels_path: String.t().
Path to the label file. Defaults to nil.
When labels_path is nil, get_labels/1 will try to
download the default label file.

	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

Returns
A list of labels.

 Link to this function

 infer(self, image, opts \\ [])

 View Source

 @spec infer(Evision.DNN.Net.t(), Evision.Mat.maybe_mat_in(), Keyword.t()) :: [
 number()
]

Inference.
Positional arguments
	self: Evision.DNN.Net.t().
An initialized PPResNet model.

	image: Evision.Mat.maybe_mat_in().
Input image.

Keyword arguments
	top_k: pos_integer().
Get top k results.
Optional. Defaults to 5.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.DNN.Net.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model | :quant_model.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 labels()

 View Source

 @spec labels() :: {String.t(), String.t()}

Default label file URL and filename.

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 preprocess(image)

 View Source

 @spec preprocess(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t()

Preprocessing the input image.
infer/3 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageSegmentation - Evision v0.1.39

Evision.Zoo.ImageSegmentation

Image segmentation model collection.

 Summary

 Functions

 color_map(num_classes)

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 color_map(num_classes)

 View Source

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.ImageSegmentation.PPHumanSeg - Evision v0.1.39

Evision.Zoo.ImageSegmentation.PPHumanSeg

PP-Human Segmentation model.

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 infer(self, image)

 Inference.

 init(model, opts \\ [])

 Initialize model.

 model_info(atom)

 Model URL and filename of predefined model.

 preprocess(image)

 Preprocessing the input image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

 visualize(image, results, opts \\ [])

 Visualize the result.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 infer(self, image)

 View Source

 @spec infer(Evision.DNN.Net.t(), Evision.Mat.maybe_mat_in()) :: Evision.Mat.t()

Inference.
Positional arguments
	self: Evision.DNN.Net.t().
An initialized PPHumanSeg model.

	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 init(model, opts \\ [])

 View Source

 @spec init(binary() | :default_model | :quant_model, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.DNN.Net.t()

Initialize model.
Positional arguments
	model: String.t() | :default_model | :quant_model.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is either :default_model or :quant_model, init/2 will
download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 preprocess(image)

 View Source

 @spec preprocess(Evision.Mat.maybe_mat_in()) :: Evision.Mat.t()

Preprocessing the input image.
infer/2 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Link to this function

 visualize(image, results, opts \\ [])

 View Source

 @spec visualize(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), Keyword.t()) ::
 [
 Evision.Mat.t()
]

Visualize the result.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Original image.

	results: Evision.Mat.maybe_mat_in().
Results given by infer/2.

Keyword arguments
	weight: number().
A number in [0.0, 1.0]. Defaults to 0.6.
Specify the weight of the original image. The weight of the segmentation visualization image
will be 1 - weight.

Return
A list that contains two images (Evision.Mat.t()).
	The first one is the original image with the segmentation overlay.
	The second one is the segmentation image.

 Evision.Zoo.TextDetection - Evision v0.1.39

Evision.Zoo.TextDetection

Text detection model collection.

 Summary

 Functions

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.TextDetection.DB - Evision v0.1.39

Evision.Zoo.TextDetection.DB

Real-time Scene Text Detection with Differentiable Binarization
	IC15 model is trained on IC15 dataset, which can detect English text instances only.
	TD500 model is trained on TD500 dataset, which can detect both English & Chinese instances.

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 infer(self, image)

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 model_info(atom)

 Model URL and filename of predefined model.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

 visualize(image, detections, confidences, opts \\ [])

 Visualize the result.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 infer(self, image)

 View Source

 @spec infer(Evision.DNN.TextDetectionModelDB.t(), Evision.Mat.maybe_mat_in()) ::
 {[{{number(), number()}, {number(), number()}, number()}], [number()]}
 | {:error, String.t()}

Inference.
Positional arguments
	self: Evision.DNN.TextDetectionModelDB.t().
An initialized Evision.DNN.TextDetectionModelDB model.

	image: Evision.Mat.maybe_mat_in().
Input image.

Return
{detections, confidence}

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(
 binary()
 | :ic15_resnet18
 | :ic15_resnet50
 | :td500_resnet18
 | :td500_resnet50,
 nil | Keyword.t()
) :: {:error, String.t()} | Evision.DNN.TextDetectionModelDB.t()

Initialize model.
Positional arguments
	model: String.t() | :ic15_resnet18 | :ic15_resnet50 | :td500_resnet18 | :td500_resnet50
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is one of :ic15_resnet18, :ic15_resnet50, :td500_resnet18 or :td500_resnet50,
init/2 will download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:default_model | :quant_model) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Link to this function

 visualize(image, detections, confidences, opts \\ [])

 View Source

Visualize the result.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Original image.

	detections: list({{number(), number()}, {number(), number()}, number()}).
Rotation retangulars.

	confidences: list(number()).
Confidence values.

Keyword arguments
	box_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 255, 0}.
Specify the color of the bounding box.

	text_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 0, 255}.
Specify the color of the text (confidence value).

 Evision.Zoo.TextDetection.PPOCRV3 - Evision v0.1.39

Evision.Zoo.TextDetection.PPOCRV3

Real-time Scene Text Detection with PP-OCRv3

 Summary

 Functions

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 infer(self, image)

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 model_info(atom)

 Model URL and filename of predefined model.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

 visualize(image, detections, confidences, opts \\ [])

 Visualize the result.

Functions

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 infer(self, image)

 View Source

 @spec infer(Evision.DNN.TextDetectionModelDB.t(), Evision.Mat.maybe_mat_in()) ::
 {[{{number(), number()}, {number(), number()}, number()}], [number()]}
 | {:error, String.t()}

Inference.
Positional arguments
	self: Evision.DNN.TextDetectionModelDB.t().
An initialized Evision.DNN.TextDetectionModelDB model.

	image: Evision.Mat.maybe_mat_in().
Input image.

Return
{detections, confidence}

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(binary() | :en | :cn, nil | Keyword.t()) ::
 {:error, String.t()} | Evision.DNN.TextDetectionModelDB.t()

Initialize model.
Positional arguments
	model: String.t() | :en | :cn
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is one of :en and :cn,
init/2 will download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(:en | :cn | :en_int8 | :cn_int8) :: {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Link to this function

 visualize(image, detections, confidences, opts \\ [])

 View Source

Visualize the result.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Original image.

	detections: list({{number(), number()}, {number(), number()}, number()}).
Rotation retangulars.

	confidences: list(number()).
Confidence values.

Keyword arguments
	box_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 255, 0}.
Specify the color of the bounding box.

	text_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 0, 255}.
Specify the color of the text (confidence value).

 Evision.Zoo.TextRecognition - Evision v0.1.39

Evision.Zoo.TextRecognition

Text recognition model collection.

 Summary

 Functions

 id()

 label()

 module_list()

 modules()

 smartcell_tasks()

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

Functions

 Link to this function

 id()

 View Source

 Link to this function

 label()

 View Source

 Link to this function

 module_list()

 View Source

 Link to this function

 modules()

 View Source

 Link to this function

 smartcell_tasks()

 View Source

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Evision.Zoo.TextRecognition.CRNN - Evision v0.1.39

Evision.Zoo.TextRecognition.CRNN

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition.
'FP16' or 'INT8' stands for 'model quantized into FP16' or 'model quantized into int8'.
	CRNN_EN and it variants can detect digits (0-9) and letters (return lowercase letters a-z).
	CRNN_CH and it variants can detect digits (0-9), upper/lower-case letters (a-z and A-Z), and some special characters.
	CRNN_CN and it variants can detect digits (0-9), upper/lower-case letters (a-z and A-Z), some Chinese characters and some special characters.

 Summary

 Functions

 charset_36_EN()

 Charset that contains digits (0~9) and letters (return lowercase letters a~z).

 charset_94_CH()

 Charset that contains digits (0~9), upper/lower-case letters (a~z and A~Z),
and some special characters.

 charset_3944_CN()

 Charset that contains digits (0~9), upper/lower-case letters (a~z and A~Z),
some Chinese characters and some special characters.

 charset_info(en)

 chartset_info(other)

 default_config()

 Default configuration.

 docs()

 Docs in smart cell.

 get_charset(model_type)

 Get charset

 infer(self, image, rotation_box, opts \\ [])

 Inference.

 init(model_path, opts \\ [])

 Initialize model.

 input_size()

 Get default input size

 model_info(atom)

 Model URL and filename of predefined model.

 postprocess(outputBlob, charset)

 Postprocessing the results.

 preprocess(image, rotation_box, to_gray)

 Preprocessing the input image.

 smartcell_params()

 Customizable parameters from smart cell.

 smartcell_tasks()

 Smart cell tasks.

 target_vertices()

 Get default target vertices

 to_quoted(attrs)

 Generate quoted code from smart cell attrs.

 visualize(image, texts, detections, confidences, opts \\ [])

 Visualize the result.

Functions

 Link to this function

 charset_36_EN()

 View Source

Charset that contains digits (0~9) and letters (return lowercase letters a~z).
Content copied from charset_36_EN.txt.

 Link to this function

 charset_94_CH()

 View Source

Charset that contains digits (0~9), upper/lower-case letters (a~z and A~Z),
and some special characters.
Content copied from charset_94_CH.txt.

 Link to this function

 charset_3944_CN()

 View Source

Charset that contains digits (0~9), upper/lower-case letters (a~z and A~Z),
some Chinese characters and some special characters.
Content copied from charset_94_CH.txt.

 Link to this function

 charset_info(en)

 View Source

 Link to this function

 chartset_info(other)

 View Source

 Link to this function

 default_config()

 View Source

 @spec default_config() :: map()

Default configuration.

 Link to this function

 docs()

 View Source

 @spec docs() :: String.t()

Docs in smart cell.

 Link to this function

 get_charset(model_type)

 View Source

 @spec get_charset(:ch | :cn | :en) :: [binary()]

Get charset

 Link to this function

 infer(self, image, rotation_box, opts \\ [])

 View Source

 @spec infer(
 Evision.DNN.Net.t(),
 Evision.Mat.maybe_mat_in(),
 Evision.Mat.maybe_mat_in(),
 Keyword.t()
) ::
 String.t()

Inference.
Positional arguments
	self: Evision.DNN.Net.t().
An initialized CRNN model.

	image: Evision.Mat.maybe_mat_in().
Input image.

	rotation_box: Evision.Mat.maybe_mat_in().
Rotation box.

Keyword arguments
	charset: [binary] | :en | :ch | :cn
Required. The corresponding charset for the model.

	to_gray: boolean.
Required. The input image need to be converted to grayscale if the model is :en*.
Please set to true if the model is :en*.

 Link to this function

 init(model_path, opts \\ [])

 View Source

 @spec init(
 binary()
 | :en
 | :en_fp16
 | :en_int8
 | :ch
 | :ch_fp16
 | :ch_int8
 | :cn
 | :cn_int8,
 nil | Keyword.t()
) :: {:error, String.t()} | Evision.DNN.Net.t()

Initialize model.
Positional arguments
	model: String.t() | :en | :en_fp16 | :en_int8 | :ch | :ch_fp16 | :ch_int8 | :cn | :cn_int8.
	When model is a string, it will be treat as the path to a weight file
and init/2 will load the model from it.

	When model is one the allowed atoms, init/2 will download and load the predefined model.

Keyword arguments
	cache_dir: String.t().
Path to the cache directory.
Optional. Defaults to :filename.basedir(:user_cache, "", ...)

	backend: integer().
Specify the backend.
Optional. Defaults to Evision.Constant.cv_DNN_BACKEND_OPENCV().

	target: integer().
Specify the target.
Optional. Defaults to Evision.Constant.cv_DNN_TARGET_CPU().

 Link to this function

 input_size()

 View Source

 @spec input_size() :: {100, 32}

Get default input size

 Link to this function

 model_info(atom)

 View Source

 @spec model_info(
 :ch
 | :ch_fp16
 | :ch_int8
 | :cn
 | :cn_int8
 | :en
 | :en_fp16
 | :en_int8
) ::
 {String.t(), String.t()}

Model URL and filename of predefined model.

 Link to this function

 postprocess(outputBlob, charset)

 View Source

 @spec postprocess(Evision.Mat.t(), :ch | :cn | :en | [String.t()]) :: String.t()

Postprocessing the results.
infer/4 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 preprocess(image, rotation_box, to_gray)

 View Source

 @spec preprocess(Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), boolean()) ::
 Evision.Mat.t()

Preprocessing the input image.
infer/4 will call this function automatically.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Input image.

 Link to this function

 smartcell_params()

 View Source

 @spec smartcell_params() :: Evision.Zoo.smartcell_params()

Customizable parameters from smart cell.

 Link to this function

 smartcell_tasks()

 View Source

 @spec smartcell_tasks() :: Evision.Zoo.smartcell_tasks()

Smart cell tasks.
A list of variants of the current model.

 Link to this function

 target_vertices()

 View Source

 @spec target_vertices() :: Nx.Tensor.t()

Get default target vertices

 Link to this function

 to_quoted(attrs)

 View Source

 @spec to_quoted(map()) :: list()

Generate quoted code from smart cell attrs.

 Link to this function

 visualize(image, texts, detections, confidences, opts \\ [])

 View Source

Visualize the result.
Positional arguments
	image: Evision.Mat.maybe_mat_in().
Original image.

	results: Evision.Mat.maybe_mat_in().
Results given by infer/2.

Keyword arguments
	box_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 255, 0}.
Specify the color of the bounding box.

	text_color: {blue=integer(), green=integer(), red=integer()}.
Values should be in [0, 255]. Defaults to {0, 0, 255}.
Specify the color of the text (confidence value).

 mix evision.fetch - Evision v0.1.39

mix evision.fetch

A task responsible for downloading the precompiled NIFs for a given module.
This task must only be used by package creators who want to ship the
precompiled NIFs. The goal is to download the precompiled packages and
generate a checksum to check-in alongside the project in the the Hex repository.
This is done by passing the --all flag.
You can also use the --only-local flag to download only the precompiled
package for use during development.
You can use the --ignore-unavailable flag to ignore any NIFs that are not available.
This is useful when you are developing a new NIF that does not support all platforms.
This task also accept the --print flag to print the checksums.

OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEac