View Source Evision.Face.FacemarkKazemi (Evision v0.2.9)
Summary
Functions
Clears the algorithm state
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Detect facial landmarks from an image.
Detect facial landmarks from an image.
getDefaultName
A function to load the trained model before the fitting process.
Reads algorithm parameters from a file storage
save
Stores algorithm parameters in a file storage
write
Types
@type t() :: %Evision.Face.FacemarkKazemi{ref: reference()}
Type that represents an Face.FacemarkKazemi
struct.
ref.
reference()
The underlying erlang resource variable.
Functions
@spec clear(Keyword.t()) :: any() | {:error, String.t()}
@spec clear(t()) :: t() | {:error, String.t()}
Clears the algorithm state
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
Python prototype (for reference only):
clear() -> None
@spec empty(Keyword.t()) :: any() | {:error, String.t()}
@spec empty(t()) :: boolean() | {:error, String.t()}
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
Return
- retval:
bool
Python prototype (for reference only):
empty() -> retval
@spec fit(t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in()) :: [Evision.Mat.t()] | false | {:error, String.t()}
Detect facial landmarks from an image.
Positional Arguments
self:
Evision.Face.FacemarkKazemi.t()
image:
Evision.Mat
.Input image.
faces:
Evision.Mat
.Output of the function which represent region of interest of the detected faces. Each face is stored in cv::Rect container.
Return
retval:
bool
landmarks:
[Evision.Mat]
.The detected landmark points for each faces.
Mat image = imread("image.jpg");
std::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->fit(image, faces, landmarks);
Python prototype (for reference only):
fit(image, faces[, landmarks]) -> retval, landmarks
@spec fit( t(), Evision.Mat.maybe_mat_in(), Evision.Mat.maybe_mat_in(), [{atom(), term()}, ...] | nil ) :: [Evision.Mat.t()] | false | {:error, String.t()}
Detect facial landmarks from an image.
Positional Arguments
self:
Evision.Face.FacemarkKazemi.t()
image:
Evision.Mat
.Input image.
faces:
Evision.Mat
.Output of the function which represent region of interest of the detected faces. Each face is stored in cv::Rect container.
Return
retval:
bool
landmarks:
[Evision.Mat]
.The detected landmark points for each faces.
Mat image = imread("image.jpg");
std::vector<Rect> faces;
std::vector<std::vector<Point2f> > landmarks;
facemark->fit(image, faces, landmarks);
Python prototype (for reference only):
fit(image, faces[, landmarks]) -> retval, landmarks
@spec getDefaultName(Keyword.t()) :: any() | {:error, String.t()}
@spec getDefaultName(t()) :: binary() | {:error, String.t()}
getDefaultName
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
Return
- retval:
String
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
Python prototype (for reference only):
getDefaultName() -> retval
A function to load the trained model before the fitting process.
Positional Arguments
self:
Evision.Face.FacemarkKazemi.t()
model:
String
.A string represent the filename of a trained model.
facemark->loadModel("../data/lbf.model");
Python prototype (for reference only):
loadModel(model) -> None
@spec read(t(), Evision.FileNode.t()) :: t() | {:error, String.t()}
Reads algorithm parameters from a file storage
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
- func:
Evision.FileNode
Python prototype (for reference only):
read(fn) -> None
save
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
- filename:
String
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Python prototype (for reference only):
save(filename) -> None
@spec write(t(), Evision.FileStorage.t()) :: t() | {:error, String.t()}
Stores algorithm parameters in a file storage
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
- fs:
Evision.FileStorage
Python prototype (for reference only):
write(fs) -> None
@spec write(t(), Evision.FileStorage.t(), binary()) :: t() | {:error, String.t()}
write
Positional Arguments
- self:
Evision.Face.FacemarkKazemi.t()
- fs:
Evision.FileStorage
- name:
String
Has overloading in C++
Python prototype (for reference only):
write(fs, name) -> None