

 evoq

 v1.1.0

 Table of contents

 	Overview

 	Architecture

 	Aggregates

 	Event Handlers

 	Process Managers

 	Projections

 	Adapters

 	Bit Flags

 	Changelog

 	License

 	
 Modules

 	evoq_adapter

 	evoq_aggregate

 	evoq_aggregate_lifespan

 	evoq_aggregate_lifespan_default

 	evoq_aggregate_partition_sup

 	evoq_aggregate_registry

 	evoq_aggregates_sup

 	evoq_app

 	evoq_bit_flags

 	evoq_checkpoint_store

 	evoq_checkpoint_store_ets

 	evoq_command

 	evoq_consistency

 	evoq_dead_letter

 	evoq_dispatcher

 	evoq_error_handler

 	evoq_event_handler

 	evoq_event_handler_sup

 	evoq_event_router

 	evoq_event_store

 	evoq_event_type_registry

 	evoq_event_upcaster

 	evoq_execution_context

 	evoq_failure_context

 	evoq_idempotency

 	evoq_memory_monitor

 	evoq_middleware

 	evoq_pm_instance

 	evoq_pm_instance_sup

 	evoq_pm_router

 	evoq_pm_sup

 	evoq_process_manager

 	evoq_projection

 	evoq_read_model

 	evoq_read_model_ets

 	evoq_retry_strategy

 	evoq_router

 	evoq_saga_compensation

 	evoq_snapshot_adapter

 	evoq_snapshot_store

 	evoq_subscription_adapter

 	evoq_sup

 	evoq_telemetry

 	evoq_test_assertions

 	evoq_type_provider

 evoq

Erlang CQRS/Event Sourcing framework built on reckon-db.
[image: Architecture Overview]
Features
	Aggregate lifecycle with configurable TTL and passivation
	Per-event-type subscriptions (not per-stream)
	Command idempotency
	Middleware pipeline for command dispatch
	Event handlers with retry strategies and dead letter support
	Process managers (sagas) with compensation
	Projections with checkpointing
	Schema evolution via event upcasters
	Memory pressure monitoring with adaptive TTL
	Comprehensive telemetry integration

Installation
Add to your rebar.config:
{deps, [
 {evoq, "1.0.0"}
]}.
Quick Start
Defining an Aggregate
-module(bank_account).
-behaviour(evoq_aggregate).

-export([init/1, execute/2, apply/2]).

init(_AccountId) ->
 {ok, #{balance => 0, status => active}}.

execute(#{status := closed}, _Command) ->
 {error, account_closed};
execute(_State, #{command_type := open_account, initial_balance := B}) ->
 {ok, [#{event_type => <<"AccountOpened">>, data => #{balance => B}}]};
execute(#{balance := Bal}, #{command_type := deposit, amount := A}) ->
 {ok, [#{event_type => <<"MoneyDeposited">>, data => #{amount => A}}]}.

apply(State, #{event_type := <<"AccountOpened">>, data := #{balance := B}}) ->
 State#{balance => B};
apply(#{balance := B} = State, #{event_type := <<"MoneyDeposited">>, data := #{amount := A}}) ->
 State#{balance => B + A}.
Dispatching Commands
%% Create a command
Command = evoq_command:new(
 deposit, %% command type
 bank_account, %% aggregate module
 <<"acc-123">>, %% aggregate id
 #{amount => 100} %% payload
),

%% Dispatch it
{ok, Version, Events} = evoq_router:dispatch(Command).
Event Handlers
-module(notification_handler).
-behaviour(evoq_event_handler).

-export([interested_in/0, init/1, handle_event/4]).

interested_in() ->
 [<<"AccountOpened">>, <<"LargeDeposit">>].

init(_Config) ->
 {ok, #{}}.

handle_event(<<"AccountOpened">>, Event, _Metadata, State) ->
 send_welcome_email(Event),
 {ok, State};
handle_event(<<"LargeDeposit">>, Event, _Metadata, State) ->
 send_deposit_alert(Event),
 {ok, State}.
Process Managers (Sagas)
-module(order_fulfillment_pm).
-behaviour(evoq_process_manager).

-export([interested_in/0, correlate/2, handle/3, apply/2]).

interested_in() ->
 [<<"OrderPlaced">>, <<"PaymentReceived">>, <<"ItemShipped">>].

correlate(#{data := #{order_id := OrderId}}, _Meta) ->
 {continue, OrderId}.

handle(State, #{event_type := <<"OrderPlaced">>} = Event, _Meta) ->
 Cmd = evoq_command:new(process_payment, payment, OrderId, #{}),
 {ok, State, [Cmd]};
handle(State, #{event_type := <<"PaymentReceived">>}, _Meta) ->
 Cmd = evoq_command:new(ship_item, shipping, OrderId, #{}),
 {ok, State, [Cmd]};
handle(State, #{event_type := <<"ItemShipped">>}, _Meta) ->
 {ok, State#{status => completed}}.

apply(State, _Event) ->
 State.
Projections
-module(account_summary_projection).
-behaviour(evoq_projection).

-export([interested_in/0, init/1, project/4]).

interested_in() ->
 [<<"AccountOpened">>, <<"MoneyDeposited">>, <<"MoneyWithdrawn">>].

init(_Config) ->
 {ok, ReadModel} = evoq_read_model:new(evoq_read_model_ets, #{}),
 {ok, #{}, ReadModel}.

project(#{event_type := <<"AccountOpened">>, data := #{balance := B}},
 #{aggregate_id := Id}, State, ReadModel) ->
 {ok, NewRM} = evoq_read_model:put(Id, #{balance => B, tx_count => 0}, ReadModel),
 {ok, State, NewRM};
project(#{event_type := <<"MoneyDeposited">>, data := #{amount := A}},
 #{aggregate_id := Id}, State, ReadModel) ->
 {ok, Current} = evoq_read_model:get(Id, ReadModel),
 Updated = Current#{
 balance => maps:get(balance, Current) + A,
 tx_count => maps:get(tx_count, Current) + 1
 },
 {ok, NewRM} = evoq_read_model:put(Id, Updated, ReadModel),
 {ok, State, NewRM}.
Core Behaviors
evoq_aggregate
Aggregates maintain business invariants and produce events.
-callback init(AggregateId :: binary()) -> {ok, State :: term()}.
-callback execute(State :: term(), Command :: map()) ->
 {ok, [Event :: map()]} | {error, Reason :: term()}.
-callback apply(State :: term(), Event :: map()) -> NewState :: term().

%% Optional: snapshotting
-callback snapshot(State :: term()) -> SnapshotData :: term().
-callback from_snapshot(SnapshotData :: term()) -> State :: term().
evoq_aggregate_lifespan
Controls aggregate lifecycle (TTL, passivation).
-callback after_event(Event :: map()) -> timeout() | infinity | hibernate | stop.
-callback after_command(Command :: map()) -> timeout() | infinity | hibernate | stop.
-callback after_error(Error :: term()) -> timeout() | infinity | hibernate | stop.
-callback on_timeout(State :: term()) -> {ok, action()} | {snapshot, action()}.
Default: 30-minute idle timeout, snapshot on passivation.
evoq_event_handler
Subscribe to events by type (not by stream).
-callback interested_in() -> [EventType :: binary()].
-callback init(Config :: map()) -> {ok, State :: term()}.
-callback handle_event(EventType, Event, Metadata, State) ->
 {ok, NewState} | {error, Reason}.
evoq_process_manager
Coordinate long-running business processes (sagas).
-callback interested_in() -> [EventType :: binary()].
-callback correlate(Event, Metadata) -> {start | continue | stop, ProcessId} | false.
-callback handle(State, Event, Metadata) -> {ok, State} | {ok, State, [Command]}.
-callback apply(State, Event) -> NewState.

%% Optional: saga compensation
-callback compensate(State, FailedCommand) -> {ok, [CompensatingCommand]} | skip.
evoq_projection
Build read models from events.
-callback interested_in() -> [EventType :: binary()].
-callback init(Config) -> {ok, State, ReadModel}.
-callback project(Event, Metadata, State, ReadModel) ->
 {ok, NewState, NewReadModel} | {skip, State, ReadModel}.
evoq_middleware
Intercept command dispatch.
-callback before_dispatch(Pipeline) -> {ok, Pipeline} | {error, Reason}.
-callback after_dispatch(Pipeline) -> {ok, Pipeline}.
-callback on_failure(Pipeline, Reason) -> {ok, Pipeline} | {error, Reason}.
Configuration
%% sys.config
[{evoq, [
 {store_id, my_store},

 {aggregate_defaults, #{
 idle_timeout => 1800000, %% 30 minutes
 hibernate_after => 60000, %% 1 minute
 snapshot_every => 100 %% events
 }},

 {aggregate_partitions, 4},

 {memory_monitor, #{
 check_interval => 10000, %% 10 seconds
 elevated_threshold => 0.70,
 critical_threshold => 0.85
 }},

 {handler_defaults, #{
 consistency => eventual,
 start_from => origin
 }}
]}].
Memory Pressure Handling
The memory monitor adjusts aggregate TTLs based on system memory usage:
	Pressure Level	Memory Usage	TTL Factor
	normal	< 70%	1.0x
	elevated	70-85%	0.5x
	critical	> 85%	0.1x

Telemetry Events
All events follow the pattern: [evoq, component, action, stage]
Aggregate Events
	[evoq, aggregate, execute, start | stop | exception]

	[evoq, aggregate, init | hibernate | passivate | activate]

	[evoq, aggregate, snapshot, save | load]

Handler Events
	[evoq, handler, start | stop | exception]

	[evoq, handler, event, start | stop | exception]

	[evoq, handler, retry | dead_letter]

Process Manager Events
	[evoq, process_manager, start | stop]

	[evoq, process_manager, command | compensate]

Projection Events
	[evoq, projection, start | stop | exception]

	[evoq, projection, event | checkpoint]

Testing
Unit tests
rebar3 eunit --dir=test/unit

Integration tests
rebar3 ct

Dialyzer
rebar3 dialyzer

All tests with coverage
rebar3 do eunit, ct, cover

Key Design Decisions
Per-Event-Type Subscriptions
Unlike stream-based subscriptions, evoq subscribes by event type. This prevents subscription explosion when you have millions of aggregates.
Default TTL (Not Infinity!)
Aggregates have a 30-minute default idle timeout. This prevents unbounded memory growth that occurs with infinite lifespan defaults.
Partitioned Supervision
Aggregates are distributed across 4 partition supervisors using consistent hashing, preventing single-supervisor bottlenecks.
Documentation
Comprehensive guides are available:
	Architecture Overview - How the components work together
	Aggregates - Building domain models with event sourcing
	Event Handlers - Reacting to events with side effects
	Process Managers - Coordinating long-running workflows
	Projections - Building optimized read models
	Adapters - Integrating with different event stores

License
Apache-2.0

 Architecture

evoq implements CQRS (Command Query Responsibility Segregation) and Event Sourcing patterns for Erlang applications. This guide explains the core architecture and how the components work together.
[image: Architecture Overview]
Core Principles
1. Commands Produce Events, Events Update State
The fundamental flow in evoq:
	Command arrives (user intent)
	Aggregate validates and produces Events (facts)
	Events are persisted to the event store
	Events are applied to update aggregate state
	Events are routed to subscribers (handlers, projections, process managers)

This separation ensures:
	Commands can be rejected (validation failed)
	Events are immutable facts (already happened)
	State can be rebuilt by replaying events

2. Read Models Are Separate From Write Models
CQRS separates:
	Write Side	Read Side
	Commands	Queries
	Aggregates	Projections
	Event Store	Read Models
	Business logic	Optimized views

Benefits:
	Read models can be denormalized for fast queries
	Each read model optimized for specific use case
	Read models can be rebuilt from events

3. Event Type Subscriptions (Not Stream-Based)
Unlike stream-based subscriptions, evoq routes events by type:
%% Handler declares interest by event type
interested_in() ->
 [<<"OrderPlaced">>, <<"PaymentReceived">>].
Why this matters:
	1 million orders = 1 million streams
	Stream subscriptions = 1 million subscriptions (memory explosion)
	Type subscriptions = ~10 event types (constant memory)

Component Overview
evoq_dispatcher
Entry point for command processing. Routes commands through the middleware pipeline to the target aggregate.
%% Dispatch a command
{ok, Version, Events} = evoq_dispatcher:dispatch(Command).
evoq_middleware
Pluggable pipeline for command processing:
-behaviour(evoq_middleware).

before_dispatch(Pipeline) ->
 %% Validate, check idempotency, etc.
 {ok, Pipeline}.

after_dispatch(Pipeline) ->
 %% Post-processing
 {ok, Pipeline}.
Built-in middleware:
	Validation - Schema and business rule validation
	Idempotency - Prevent duplicate command processing
	Consistency - Strong or eventual consistency guarantees

evoq_aggregate
Business logic container. Validates commands and produces events.
-behaviour(evoq_aggregate).

%% Initialize state
init(AggregateId) -> {ok, InitialState}.

%% Validate and produce events
execute(State, Command) -> {ok, [Event]} | {error, Reason}.

%% Update state from event
apply(State, Event) -> NewState.
evoq_event_router
Routes persisted events to interested subscribers by event type.
Subscribers:
	Event Handlers (side effects)
	Process Managers (orchestration)
	Projections (read models)

evoq_event_handler
React to events with side effects:
-behaviour(evoq_event_handler).

interested_in() -> [<<"UserRegistered">>].

handle_event(EventType, Event, Metadata, State) ->
 send_welcome_email(Event),
 {ok, State}.
Features:
	Retry strategies (exponential backoff)
	Dead letter queue for failed events
	Checkpoint-based recovery

evoq_process_manager
Coordinate long-running business processes (sagas):
-behaviour(evoq_process_manager).

interested_in() -> [<<"OrderPlaced">>, <<"PaymentReceived">>].

correlate(Event, _Meta) ->
 {continue, maps:get(order_id, Event)}.

handle(State, Event, _Meta) ->
 Cmd = create_next_command(Event),
 {ok, State, [Cmd]}.

compensate(State, FailedCommand) ->
 {ok, [create_rollback_command(FailedCommand)]}.
evoq_projection
Build read models from events:
-behaviour(evoq_projection).

interested_in() -> [<<"OrderPlaced">>, <<"OrderShipped">>].

project(Event, Metadata, State, ReadModel) ->
 Updated = update_order_summary(Event, ReadModel),
 {ok, State, Updated}.
Data Flow
Command Processing
[image: Command Dispatch]
	Client creates command via evoq_command:new/4
	Dispatcher routes through middleware pipeline
	Aggregate executes command, produces events
	Events persisted to reckon-db
	Result returned to client

Event Distribution
[image: Event Routing]
	Events persisted to event store
	Event router receives notification
	Router looks up subscribers by event type
	Events delivered to matching handlers

Supervision Tree
evoq_sup
├── evoq_aggregates_sup # Dynamic aggregate supervisors
│ ├── evoq_aggregate_partition_sup_0
│ │ └── evoq_aggregate (bank_account, "acc-1")
│ │ └── evoq_aggregate (bank_account, "acc-2")
│ ├── evoq_aggregate_partition_sup_1
│ │ └── ...
│ └── ... (4 partitions by default)
├── evoq_event_handler_sup # Event handlers
│ └── evoq_event_handler (email_handler)
│ └── evoq_event_handler (audit_handler)
├── evoq_process_manager_sup # Process managers
│ └── evoq_process_manager (order_pm, "order-123")
├── evoq_projection_sup # Projections
│ └── evoq_projection (order_summary)
├── evoq_memory_monitor # Memory pressure monitoring
└── evoq_event_router # Event type registry
Partitioned Supervision
Aggregates are distributed across 4 partition supervisors using consistent hashing. This prevents:
	Single supervisor bottleneck
	Cascade failures affecting all aggregates
	Uneven load distribution

Integration with reckon-db
evoq uses reckon-db for event persistence:
%% Event store operations delegated to reckon-db
evoq_event_store:append(StoreId, StreamId, ExpectedVersion, Events)
evoq_event_store:read(StoreId, StreamId, StartVersion, Count)
evoq_event_store:subscribe(StoreId, EventTypes, Handler)
The adapter pattern allows different backends:
%% Configure adapter in sys.config
{evoq, [
 {event_store_adapter, evoq_esdb_adapter}
]}
Next Steps
	Aggregates Guide - Deep dive into aggregate patterns
	Event Handlers Guide - Building reactive systems
	Process Managers Guide - Orchestrating workflows
	Projections Guide - Building read models

 Aggregates

Aggregates are the core building blocks of your domain. They encapsulate business logic, maintain invariants, and produce events that represent state changes.
[image: Aggregate Lifecycle]
The Aggregate Pattern
An aggregate in evoq:
	Receives commands - User intents to change state
	Validates business rules - Ensures invariants are maintained
	Produces events - Facts representing what happened
	Applies events - Updates internal state

-module(bank_account).
-behaviour(evoq_aggregate).

-export([init/1, execute/2, apply/2]).

%% Initialize a new aggregate
init(_AccountId) ->
 {ok, #{balance => 0, status => active}}.

%% Validate command and produce events
execute(#{status := closed}, _Command) ->
 {error, account_closed};
execute(#{balance := Balance}, #{command_type := withdraw, amount := Amount})
 when Amount > Balance ->
 {error, insufficient_funds};
execute(_State, #{command_type := deposit, amount := Amount}) ->
 {ok, [#{event_type => <<"MoneyDeposited">>, data => #{amount => Amount}}]}.

%% Apply event to update state
apply(#{balance := Balance} = State, #{event_type := <<"MoneyDeposited">>, data := #{amount := Amount}}) ->
 State#{balance => Balance + Amount}.
Required Callbacks
init/1
Called when an aggregate is first created or reactivated.
-spec init(AggregateId :: binary()) -> {ok, State :: term()}.

init(AccountId) ->
 %% Return initial state for new aggregate
 {ok, #{
 account_id => AccountId,
 balance => 0,
 opened_at => undefined,
 status => new
 }}.
execute/2
Validates the command against current state and produces events.
-spec execute(State :: term(), Command :: map()) ->
 {ok, [Event :: map()]} | {error, Reason :: term()}.

execute(#{status := new}, #{command_type := open_account, initial_deposit := Amount}) ->
 {ok, [
 #{event_type => <<"AccountOpened">>, data => #{initial_deposit => Amount}},
 #{event_type => <<"MoneyDeposited">>, data => #{amount => Amount}}
]};
execute(#{status := active, balance := Balance}, #{command_type := withdraw, amount := Amount})
 when Amount =< Balance ->
 {ok, [#{event_type => <<"MoneyWithdrawn">>, data => #{amount => Amount}}]};
execute(#{status := active, balance := Balance}, #{command_type := withdraw, amount := Amount})
 when Amount > Balance ->
 {error, {insufficient_funds, Balance, Amount}}.
Key patterns:
	Use pattern matching on state for preconditions
	Use guards for numeric validations
	Return {ok, [Events]} on success
	Return {error, Reason} on validation failure
	Never produce events if validation fails

apply/2
Updates state from a single event. Called for each event produced by execute/2 and during replay.
-spec apply(State :: term(), Event :: map()) -> NewState :: term().

apply(State, #{event_type := <<"AccountOpened">>, data := Data}) ->
 State#{
 status => active,
 opened_at => erlang:system_time(millisecond),
 initial_deposit => maps:get(initial_deposit, Data)
 };
apply(#{balance := Balance} = State, #{event_type := <<"MoneyDeposited">>, data := #{amount := Amount}}) ->
 State#{balance => Balance + Amount};
apply(#{balance := Balance} = State, #{event_type := <<"MoneyWithdrawn">>, data := #{amount := Amount}}) ->
 State#{balance => Balance - Amount}.
Key patterns:
	Must be pure (no side effects)
	Must be deterministic (same input = same output)
	Handle all event types the aggregate produces
	Called during replay - don't assume order

Optional Callbacks
snapshot/1 and from_snapshot/1
Enable snapshotting for faster aggregate loading:
-spec snapshot(State :: term()) -> SnapshotData :: term().
snapshot(State) ->
 %% Serialize state for storage
 State.

-spec from_snapshot(SnapshotData :: term()) -> State :: term().
from_snapshot(SnapshotData) ->
 %% Deserialize state from storage
 SnapshotData.
When loading an aggregate:
	Load latest snapshot (if exists)
	Replay events after snapshot version
	Much faster than replaying all events

Lifecycle Management
Aggregates are not kept in memory forever. The evoq_aggregate_lifespan behavior controls:
	How long to keep aggregate active
	When to hibernate (reduce memory)
	When to passivate (stop process)
	When to save snapshots

Default Lifespan
%% Default behavior
-module(evoq_aggregate_lifespan_default).

after_event(_Event) ->
 30 * 60 * 1000. %% 30 minute timeout

after_command(_Command) ->
 30 * 60 * 1000. %% 30 minute timeout

after_error(_Error) ->
 infinity. %% Keep active on error for debugging

on_timeout(State) ->
 {snapshot, stop}. %% Save snapshot, then stop
Custom Lifespan
-module(my_aggregate_lifespan).
-behaviour(evoq_aggregate_lifespan).

after_event(#{event_type := <<"HighValueTransaction">>}) ->
 infinity; %% Keep high-value accounts active
after_event(_) ->
 5 * 60 * 1000. %% 5 minute timeout for others

after_command(_) ->
 10 * 60 * 1000.

after_error({insufficient_funds, _, _}) ->
 60 * 1000; %% 1 minute for expected errors
after_error(_) ->
 infinity. %% Keep active for unexpected errors

on_timeout(State) ->
 case maps:get(balance, State, 0) > 10000 of
 true -> {snapshot, hibernate}; %% Snapshot high-value, hibernate
 false -> {ok, stop} %% Just stop low-value
 end.
Memory Pressure
The evoq_memory_monitor adjusts aggregate TTLs based on system memory:
	Pressure	Memory Usage	TTL Factor	Effect
	normal	< 70%	1.0x	Normal TTL
	elevated	70-85%	0.5x	Faster passivation
	critical	> 85%	0.1x	Aggressive cleanup

This prevents OOM conditions under load while keeping aggregates active when memory is available.
Dispatching Commands
Create and dispatch commands:
%% Create a command
Command = evoq_command:new(
 deposit, %% command type atom
 bank_account, %% aggregate module
 <<"acc-123">>, %% aggregate id
 #{amount => 100} %% payload
),

%% With metadata
CommandWithMeta = evoq_command:with_metadata(Command, #{
 user_id => <<"user-456">>,
 correlation_id => <<"corr-789">>
}),

%% Dispatch
case evoq_dispatcher:dispatch(CommandWithMeta) of
 {ok, NewVersion, ProducedEvents} ->
 %% Success - version and events returned
 ok;
 {error, Reason} ->
 %% Command rejected by aggregate or middleware
 handle_error(Reason)
end.
Concurrency Control
reckon-db uses optimistic concurrency with expected versions:
%% First write to new stream
append(StoreId, StreamId, -1, Events) %% -1 = stream must not exist

%% Append to existing stream
append(StoreId, StreamId, 5, Events) %% Must be at version 5

%% Append without version check
append(StoreId, StreamId, -2, Events) %% -2 = any version
If another process appended events, you get:
{error, {wrong_expected_version, Expected, Actual}}
evoq handles this automatically with retries when appropriate.
Testing Aggregates
Test aggregates in isolation:
-module(bank_account_tests).
-include_lib("eunit/include/eunit.hrl").

deposit_test() ->
 {ok, State0} = bank_account:init(<<"test-acc">>),

 %% Execute command
 Command = #{command_type => deposit, amount => 100},
 {ok, Events} = bank_account:execute(State0, Command),

 %% Apply events
 State1 = lists:foldl(fun bank_account:apply/2, State0, Events),

 ?assertEqual(100, maps:get(balance, State1)).

insufficient_funds_test() ->
 {ok, State0} = bank_account:init(<<"test-acc">>),

 Command = #{command_type => withdraw, amount => 100},
 ?assertEqual({error, insufficient_funds}, bank_account:execute(State0, Command)).
Best Practices
1. Keep Aggregates Small
Aggregates should be cohesive:
	One aggregate = one consistency boundary
	If two things can change independently, they're separate aggregates
	Large aggregates = more conflicts, slower loading

2. Use Domain Language
Events should reflect business meaning:
%% Good - business language
#{event_type => <<"AccountOverdrawn">>}
#{event_type => <<"LoyaltyPointsEarned">>}

%% Bad - CRUD language
#{event_type => <<"AccountUpdated">>}
#{event_type => <<"BalanceChanged">>}
3. Events Are Facts
Events represent what happened, not what will happen:
%% Good - past tense, immutable fact
<<"MoneyDeposited">>
<<"AccountClosed">>

%% Bad - future/present tense
<<"DepositMoney">>
<<"CloseAccount">>
4. Validate Early
Reject invalid commands before producing events:
execute(_, #{command_type := deposit, amount := Amount}) when Amount =< 0 ->
 {error, {invalid_amount, Amount}};
execute(State, #{command_type := deposit, amount := Amount}) ->
 %% Only valid deposits reach here
 {ok, [#{event_type => <<"MoneyDeposited">>, data => #{amount => Amount}}]}.
Next Steps
	Event Handlers - React to events
	Process Managers - Coordinate workflows
	Projections - Build read models

 Event Handlers

Event handlers react to domain events with side effects. They enable loose coupling between the core domain and external concerns like notifications, integrations, and analytics.
[image: Event Routing]
When to Use Event Handlers
Use event handlers for:
	Notifications - Send emails, SMS, push notifications
	External integrations - Update external systems, APIs
	Analytics - Track metrics, log events
	Side effects - Anything that doesn't affect domain state

Do not use event handlers for:
	Updating aggregate state (use apply/2)
	Building read models (use projections)
	Coordinating workflows (use process managers)

Basic Event Handler
-module(email_notification_handler).
-behaviour(evoq_event_handler).

-export([interested_in/0, init/1, handle_event/4]).

%% Declare which event types to receive
interested_in() ->
 [<<"UserRegistered">>, <<"PasswordReset">>, <<"OrderShipped">>].

%% Initialize handler state
init(_Config) ->
 {ok, #{email_service => email_client:connect()}}.

%% Handle each event
handle_event(<<"UserRegistered">>, Event, _Metadata, State) ->
 #{email := Email, name := Name} = maps:get(data, Event),
 send_welcome_email(Email, Name, State),
 {ok, State};

handle_event(<<"PasswordReset">>, Event, _Metadata, State) ->
 #{email := Email, token := Token} = maps:get(data, Event),
 send_password_reset_email(Email, Token, State),
 {ok, State};

handle_event(<<"OrderShipped">>, Event, Metadata, State) ->
 #{order_id := OrderId, tracking := Tracking} = maps:get(data, Event),
 CustomerEmail = lookup_customer_email(OrderId),
 send_shipping_notification(CustomerEmail, Tracking, State),
 {ok, State}.
Required Callbacks
interested_in/0
Declare which event types this handler wants to receive:
-spec interested_in() -> [EventType :: binary()].

interested_in() ->
 [<<"OrderPlaced">>, <<"OrderCancelled">>].
The event router only delivers matching events, reducing overhead.
init/1
Initialize handler state on startup:
-spec init(Config :: map()) -> {ok, State :: term()} | {error, Reason :: term()}.

init(Config) ->
 ApiKey = maps:get(api_key, Config),
 Client = external_service:connect(ApiKey),
 {ok, #{client => Client, retry_count => 0}}.
handle_event/4
Process a single event:
-spec handle_event(EventType :: binary(), Event :: map(), Metadata :: map(), State :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

handle_event(EventType, Event, Metadata, State) ->
 %% EventType: <<"OrderPlaced">>
 %% Event: #{event_type => ..., data => ..., ...}
 %% Metadata: #{aggregate_id => ..., version => ..., timestamp => ...}
 %% State: Handler's internal state

 do_side_effect(Event),
 {ok, State}.
Retry Strategies
Event handlers can fail (network issues, service unavailable). evoq supports retry strategies:
-module(my_handler).
-behaviour(evoq_event_handler).

-export([interested_in/0, init/1, handle_event/4, retry_strategy/0]).

%% Optional callback for retry configuration
retry_strategy() ->
 #{
 max_retries => 5,
 initial_delay => 1000, %% 1 second
 max_delay => 60000, %% 1 minute max
 backoff => exponential, %% exponential | linear | constant
 jitter => true %% Add randomness to prevent thundering herd
 }.

handle_event(EventType, Event, _Meta, State) ->
 case call_external_api(Event) of
 {ok, _} -> {ok, State};
 {error, temporary} -> {error, temporary}; %% Will retry
 {error, permanent} -> {ok, State} %% Don't retry, mark as handled
 end.
Dead Letter Queue
Events that fail after all retries go to the dead letter queue:
%% Handle dead letters
evoq_dead_letter:list(HandlerName) -> [FailedEvent].
evoq_dead_letter:retry(HandlerName, EventId) -> ok | {error, Reason}.
evoq_dead_letter:discard(HandlerName, EventId) -> ok.

%% Monitor dead letters
evoq_dead_letter:count(HandlerName) -> non_neg_integer().
Dead letters include:
	Original event
	Handler name
	Failure reason
	Number of attempts
	Timestamps

Consistency Modes
Event handlers support two consistency modes:
Eventual Consistency (Default)
Events processed asynchronously. Best for most use cases.
init(Config) ->
 {ok, #{}, #{consistency => eventual}}.
Properties:
	Non-blocking command dispatch
	Handler may lag behind writes
	Failures don't affect command success

Strong Consistency
Events processed before command returns. Use sparingly.
init(Config) ->
 {ok, #{}, #{consistency => strong}}.
Properties:
	Blocks until handler completes
	Handler failure fails the command
	Higher latency
	Use only when necessary (audit, compliance)

Start From Position
Control where handler starts processing:
init(Config) ->
 {ok, #{}, #{
 start_from => origin %% Process all historical events
 %% start_from => current %% Only new events
 %% start_from => {position, 1000} %% From specific position
 }}.
Idempotency
Handlers may receive the same event multiple times (restarts, redelivery). Make handlers idempotent:
handle_event(<<"OrderShipped">>, Event, Metadata, State) ->
 EventId = maps:get(event_id, Event),
 case already_processed(EventId, State) of
 true ->
 %% Already handled, skip
 {ok, State};
 false ->
 send_shipping_notification(Event),
 {ok, mark_processed(EventId, State)}
 end.
Or use external idempotency keys:
handle_event(<<"PaymentProcessed">>, Event, _Meta, State) ->
 IdempotencyKey = maps:get(event_id, Event),
 case payment_gateway:charge(Event, #{idempotency_key => IdempotencyKey}) of
 {ok, _} -> {ok, State};
 {error, already_processed} -> {ok, State}; %% Gateway handled idempotency
 {error, Reason} -> {error, Reason}
 end.
Multiple Handlers Per Event
Different handlers can process the same event type:
%% Handler 1: Send email
-module(email_handler).
interested_in() -> [<<"OrderPlaced">>].

%% Handler 2: Update analytics
-module(analytics_handler).
interested_in() -> [<<"OrderPlaced">>].

%% Handler 3: Notify warehouse
-module(warehouse_handler).
interested_in() -> [<<"OrderPlaced">>].
All three receive OrderPlaced events independently.
Handler Registration
Register handlers in your application supervisor:
-module(my_app_sup).

init([]) ->
 Children = [
 %% Register event handlers
 {email_handler, {evoq_event_handler, start_link, [email_handler, #{}]},
 permanent, 5000, worker, [evoq_event_handler]},

 {analytics_handler, {evoq_event_handler, start_link, [analytics_handler, #{
 api_key => <<"...">>
 }]}, permanent, 5000, worker, [evoq_event_handler]}
],
 {ok, {{one_for_one, 5, 10}, Children}}.
Testing Event Handlers
Test handlers in isolation:
-module(email_handler_tests).
-include_lib("eunit/include/eunit.hrl").

handle_user_registered_test() ->
 %% Setup
 {ok, State} = email_handler:init(#{email_service => mock_email}),

 Event = #{
 event_type => <<"UserRegistered">>,
 data => #{email => <<"test@example.com">>, name => <<"Test User">>}
 },
 Metadata = #{aggregate_id => <<"user-123">>, version => 1},

 %% Execute
 {ok, _NewState} = email_handler:handle_event(<<"UserRegistered">>, Event, Metadata, State),

 %% Verify email was sent (via mock)
 ?assert(mock_email:was_called_with(<<"test@example.com">>)).
Telemetry Events
Event handlers emit telemetry:
	Event	Measurements	Metadata
	[evoq, handler, start]	system_time	handler, event_type
	[evoq, handler, stop]	duration	handler, event_type
	[evoq, handler, exception]	duration	handler, error, stacktrace
	[evoq, handler, retry]	attempt	handler, event_type, reason
	[evoq, handler, dead_letter]	system_time	handler, event_type, reason

Best Practices
1. Keep Handlers Focused
One handler = one responsibility:
%% Good - focused
-module(order_email_handler). %% Just emails
-module(order_analytics_handler). %% Just analytics

%% Bad - doing too much
-module(order_handler). %% Emails + analytics + logging + ...
2. Handle Failures Gracefully
handle_event(EventType, Event, _Meta, State) ->
 try
 do_risky_operation(Event),
 {ok, State}
 catch
 error:temporary_failure ->
 {error, temporary}; %% Retry
 error:permanent_failure ->
 log_and_alert(Event),
 {ok, State} %% Don't retry, but continue
 end.
3. Log Extensively
handle_event(EventType, Event, Metadata, State) ->
 logger:info("Processing ~p for aggregate ~p",
 [EventType, maps:get(aggregate_id, Metadata)]),

 Result = do_work(Event),

 logger:info("Completed ~p: ~p", [EventType, Result]),
 {ok, State}.
4. Monitor Dead Letters
Set up alerts for dead letter growth:
%% In your monitoring system
check_dead_letters() ->
 Handlers = [email_handler, analytics_handler],
 lists:foreach(fun(Handler) ->
 Count = evoq_dead_letter:count(Handler),
 telemetry:execute([my_app, dead_letters], #{count => Count}, #{handler => Handler})
 end, Handlers).
Next Steps
	Process Managers - Coordinate multi-step workflows
	Projections - Build read models
	Architecture - System overview

 Process Managers

Process managers (also called sagas) coordinate long-running business processes that span multiple aggregates. They react to events and dispatch commands to drive workflows forward.
[image: Process Manager Flow]
When to Use Process Managers
Use process managers when:
	A business process spans multiple aggregates
	You need to coordinate a sequence of operations
	Failures require compensation (rollback)
	The process has state that persists across events

Examples:
	Order fulfillment (payment → inventory → shipping)
	User onboarding (account → profile → welcome email)
	Money transfer (debit source → credit destination)

Basic Process Manager
-module(order_fulfillment_pm).
-behaviour(evoq_process_manager).

-export([interested_in/0, correlate/2, handle/3, apply/2]).

%% Events this process manager reacts to
interested_in() ->
 [<<"OrderPlaced">>, <<"PaymentReceived">>, <<"InventoryReserved">>, <<"ItemShipped">>].

%% Route events to the correct process instance
correlate(#{data := #{order_id := OrderId}}, _Metadata) ->
 {continue, OrderId}.

%% React to events by dispatching commands
handle(State, #{event_type := <<"OrderPlaced">>} = Event, _Meta) ->
 OrderId = maps:get(order_id, maps:get(data, Event)),
 Amount = maps:get(amount, maps:get(data, Event)),

 %% Dispatch command to payment aggregate
 Cmd = evoq_command:new(process_payment, payment, OrderId, #{amount => Amount}),
 {ok, State#{status => awaiting_payment}, [Cmd]};

handle(State, #{event_type := <<"PaymentReceived">>}, _Meta) ->
 OrderId = maps:get(order_id, State),

 %% Dispatch command to inventory aggregate
 Cmd = evoq_command:new(reserve_inventory, inventory, OrderId, #{}),
 {ok, State#{status => awaiting_inventory}, [Cmd]};

handle(State, #{event_type := <<"InventoryReserved">>}, _Meta) ->
 OrderId = maps:get(order_id, State),

 %% Dispatch command to shipping aggregate
 Cmd = evoq_command:new(ship_item, shipping, OrderId, #{}),
 {ok, State#{status => awaiting_shipment}, [Cmd]};

handle(State, #{event_type := <<"ItemShipped">>}, _Meta) ->
 %% Process complete
 {ok, State#{status => completed}}.

%% Update process state from events
apply(State, #{event_type := <<"OrderPlaced">>, data := Data}) ->
 State#{
 order_id => maps:get(order_id, Data),
 customer_id => maps:get(customer_id, Data),
 items => maps:get(items, Data),
 status => started
 };
apply(State, _Event) ->
 State.
Required Callbacks
interested_in/0
Declare which event types this process manager reacts to:
-spec interested_in() -> [EventType :: binary()].

interested_in() ->
 [<<"OrderPlaced">>, <<"PaymentFailed">>, <<"InventoryUnavailable">>].
correlate/2
Route events to the correct process instance:
-spec correlate(Event :: map(), Metadata :: map()) ->
 {start, ProcessId :: term()} |
 {continue, ProcessId :: term()} |
 {stop, ProcessId :: term()} |
 false.

%% Start a new process
correlate(#{event_type := <<"OrderPlaced">>, data := #{order_id := OrderId}}, _Meta) ->
 {start, OrderId};

%% Continue existing process
correlate(#{event_type := <<"PaymentReceived">>, data := #{order_id := OrderId}}, _Meta) ->
 {continue, OrderId};

%% Stop the process
correlate(#{event_type := <<"OrderCancelled">>, data := #{order_id := OrderId}}, _Meta) ->
 {stop, OrderId};

%% Ignore event (no matching process)
correlate(_, _) ->
 false.
handle/3
React to events and optionally dispatch commands:
-spec handle(State :: term(), Event :: map(), Metadata :: map()) ->
 {ok, NewState :: term()} |
 {ok, NewState :: term(), Commands :: [map()]}.

%% Just update state
handle(State, #{event_type := <<"OrderPlaced">>}, _Meta) ->
 {ok, State#{started_at => erlang:system_time()}};

%% Update state and dispatch commands
handle(State, #{event_type := <<"PaymentReceived">>}, _Meta) ->
 Cmd1 = evoq_command:new(reserve_inventory, inventory, OrderId, #{}),
 Cmd2 = evoq_command:new(notify_warehouse, warehouse, OrderId, #{}),
 {ok, State#{payment_received => true}, [Cmd1, Cmd2]}.
apply/2
Update process state from events (called before handle/3):
-spec apply(State :: term(), Event :: map()) -> NewState :: term().

apply(State, #{event_type := <<"OrderPlaced">>, data := Data}) ->
 State#{
 order_id => maps:get(order_id, Data),
 total => maps:get(total, Data)
 };
apply(State, #{event_type := <<"PaymentReceived">>, data := #{amount := Amount}}) ->
 State#{paid_amount => Amount}.
Compensation (Rollback)
When a step fails, the process manager can compensate by undoing previous steps:
-module(money_transfer_pm).
-behaviour(evoq_process_manager).

-export([interested_in/0, correlate/2, handle/3, apply/2, compensate/2]).

interested_in() ->
 [<<"TransferInitiated">>, <<"SourceDebited">>, <<"DestinationCreditFailed">>].

handle(State, #{event_type := <<"TransferInitiated">>}, _Meta) ->
 %% Step 1: Debit source account
 Cmd = evoq_command:new(debit, account, SourceId, #{amount => Amount}),
 {ok, State#{status => debiting_source}, [Cmd]};

handle(State, #{event_type := <<"SourceDebited">>}, _Meta) ->
 %% Step 2: Credit destination account
 Cmd = evoq_command:new(credit, account, DestId, #{amount => Amount}),
 {ok, State#{status => crediting_dest}, [Cmd]};

handle(State, #{event_type := <<"DestinationCreditFailed">>}, _Meta) ->
 %% Credit failed - need to compensate
 {ok, State#{status => compensating}}.

%% Compensation callback
-spec compensate(State :: term(), FailedCommand :: map()) ->
 {ok, CompensatingCommands :: [map()]} | skip.

compensate(#{source_id := SourceId, amount := Amount}, #{command_type := credit}) ->
 %% Credit failed, refund the source account
 RefundCmd = evoq_command:new(credit, account, SourceId, #{
 amount => Amount,
 reason => <<"transfer_failed">>
 }),
 {ok, [RefundCmd]};

compensate(_, _) ->
 skip.
State Machine Pattern
Process managers naturally model state machines:
-module(order_state_machine_pm).

%% State transitions
handle(#{status := new} = State, #{event_type := <<"OrderPlaced">>}, _) ->
 {ok, State#{status => awaiting_payment}, [process_payment_cmd()]};

handle(#{status := awaiting_payment} = State, #{event_type := <<"PaymentReceived">>}, _) ->
 {ok, State#{status => awaiting_shipment}, [ship_order_cmd()]};

handle(#{status := awaiting_payment} = State, #{event_type := <<"PaymentFailed">>}, _) ->
 {ok, State#{status => cancelled}, [notify_customer_cmd()]};

handle(#{status := awaiting_shipment} = State, #{event_type := <<"ItemShipped">>}, _) ->
 {ok, State#{status => completed}};

%% Invalid transition - ignore
handle(State, _Event, _Meta) ->
 {ok, State}.
Timeout Handling
Handle timeouts for long-running processes:
-module(booking_pm).
-behaviour(evoq_process_manager).

-export([interested_in/0, correlate/2, handle/3, apply/2, timeout/0]).

timeout() ->
 15 * 60 * 1000. %% 15 minute timeout

handle(#{status := awaiting_confirmation, started_at := Started} = State, timeout, _Meta) ->
 %% Timeout triggered - cancel the booking
 Cmd = evoq_command:new(cancel_booking, booking, BookingId, #{
 reason => timeout
 }),
 {ok, State#{status => timed_out}, [Cmd]}.
Correlation Strategies
By Entity ID
Most common - route by the main entity:
correlate(#{data := #{order_id := OrderId}}, _) ->
 {continue, OrderId}.
By Correlation ID
Use metadata for cross-aggregate correlation:
correlate(_Event, #{correlation_id := CorrelationId}) ->
 {continue, CorrelationId}.
Composite Key
When multiple entities involved:
correlate(#{data := #{source := Src, dest := Dst}}, _) ->
 {continue, {transfer, Src, Dst}}.
Testing Process Managers
Test the state machine in isolation:
-module(order_pm_tests).
-include_lib("eunit/include/eunit.hrl").

full_workflow_test() ->
 %% Initial state
 State0 = #{},

 %% Order placed
 {start, OrderId} = order_pm:correlate(order_placed_event(), #{}),
 State1 = order_pm:apply(State0, order_placed_event()),
 {ok, State2, [PaymentCmd]} = order_pm:handle(State1, order_placed_event(), #{}),

 ?assertEqual(awaiting_payment, maps:get(status, State2)),
 ?assertEqual(process_payment, maps:get(command_type, PaymentCmd)),

 %% Payment received
 State3 = order_pm:apply(State2, payment_received_event()),
 {ok, State4, [ShipCmd]} = order_pm:handle(State3, payment_received_event(), #{}),

 ?assertEqual(awaiting_shipment, maps:get(status, State4)),
 ?assertEqual(ship_item, maps:get(command_type, ShipCmd)),

 %% Item shipped
 State5 = order_pm:apply(State4, item_shipped_event()),
 {ok, State6} = order_pm:handle(State5, item_shipped_event(), #{}),

 ?assertEqual(completed, maps:get(status, State6)).
Telemetry Events
Process managers emit telemetry:
	Event	Measurements	Metadata
	[evoq, process_manager, start]	system_time	name, process_id
	[evoq, process_manager, stop]	duration	name, process_id, final_state
	[evoq, process_manager, command]	system_time	name, command_type
	[evoq, process_manager, compensate]	system_time	name, failed_command

Best Practices
1. Keep Processes Short-Lived
Long-running processes accumulate state and risk:
	Design for completion in minutes/hours, not days
	Split long workflows into smaller processes
	Use timeouts to handle stuck processes

2. Make Steps Idempotent
Commands may be dispatched multiple times:
handle(State, Event, _Meta) ->
 case already_dispatched(Event, State) of
 true -> {ok, State};
 false ->
 Cmd = create_command(Event),
 {ok, mark_dispatched(Event, State), [Cmd]}
 end.
3. Handle All Failure Modes
interested_in() ->
 [
 %% Happy path
 <<"OrderPlaced">>, <<"PaymentReceived">>, <<"ItemShipped">>,
 %% Failure cases
 <<"PaymentFailed">>, <<"InventoryUnavailable">>, <<"ShippingFailed">>
].
4. Log State Transitions
handle(State, Event, _Meta) ->
 OldStatus = maps:get(status, State),
 {ok, NewState, Cmds} = do_handle(State, Event),
 NewStatus = maps:get(status, NewState),

 logger:info("Process ~p: ~p -> ~p on ~p",
 [maps:get(process_id, State), OldStatus, NewStatus, maps:get(event_type, Event)]),

 {ok, NewState, Cmds}.
Next Steps
	Projections - Build read models
	Event Handlers - Side effects
	Architecture - System overview

 Projections

Projections build read models from events. They transform the event stream into optimized views for queries, enabling fast reads without impacting write performance.
[image: Projection Flow]
When to Use Projections
Use projections for:
	Query-optimized views - Denormalized data for fast reads
	Aggregated data - Counts, sums, statistics
	Cross-aggregate views - Data from multiple aggregates
	Search indexes - Full-text search, filtering

The key insight: read models can be rebuilt by replaying events.
Basic Projection
-module(order_summary_projection).
-behaviour(evoq_projection).

-export([interested_in/0, init/1, project/4]).

%% Events this projection processes
interested_in() ->
 [<<"OrderPlaced">>, <<"OrderShipped">>, <<"OrderCancelled">>].

%% Initialize projection with a read model backend
init(_Config) ->
 {ok, ReadModel} = evoq_read_model:new(evoq_read_model_ets, #{}),
 {ok, #{}, ReadModel}.

%% Project each event into the read model
project(#{event_type := <<"OrderPlaced">>, data := Data}, Metadata, State, ReadModel) ->
 OrderId = maps:get(aggregate_id, Metadata),
 Summary = #{
 order_id => OrderId,
 customer_id => maps:get(customer_id, Data),
 total => maps:get(total, Data),
 items => maps:get(items, Data),
 status => placed,
 placed_at => maps:get(timestamp, Metadata)
 },
 {ok, NewRM} = evoq_read_model:put(OrderId, Summary, ReadModel),
 {ok, State, NewRM};

project(#{event_type := <<"OrderShipped">>, data := Data}, Metadata, State, ReadModel) ->
 OrderId = maps:get(aggregate_id, Metadata),
 case evoq_read_model:get(OrderId, ReadModel) of
 {ok, Summary} ->
 Updated = Summary#{
 status => shipped,
 tracking_number => maps:get(tracking_number, Data),
 shipped_at => maps:get(timestamp, Metadata)
 },
 {ok, NewRM} = evoq_read_model:put(OrderId, Updated, ReadModel),
 {ok, State, NewRM};
 {error, not_found} ->
 %% Order not found - skip
 {skip, State, ReadModel}
 end;

project(#{event_type := <<"OrderCancelled">>}, Metadata, State, ReadModel) ->
 OrderId = maps:get(aggregate_id, Metadata),
 case evoq_read_model:get(OrderId, ReadModel) of
 {ok, Summary} ->
 Updated = Summary#{
 status => cancelled,
 cancelled_at => maps:get(timestamp, Metadata)
 },
 {ok, NewRM} = evoq_read_model:put(OrderId, Updated, ReadModel),
 {ok, State, NewRM};
 {error, not_found} ->
 {skip, State, ReadModel}
 end.
Required Callbacks
interested_in/0
Declare which event types to process:
-spec interested_in() -> [EventType :: binary()].

interested_in() ->
 [<<"UserRegistered">>, <<"ProfileUpdated">>, <<"UserDeactivated">>].
init/1
Initialize projection state and read model:
-spec init(Config :: map()) ->
 {ok, State :: term(), ReadModel :: term()} |
 {error, Reason :: term()}.

init(Config) ->
 %% Choose read model backend
 Backend = maps:get(backend, Config, evoq_read_model_ets),
 {ok, ReadModel} = evoq_read_model:new(Backend, Config),

 %% Initial state
 State = #{
 events_processed => 0,
 last_event_time => undefined
 },

 {ok, State, ReadModel}.
project/4
Transform an event into read model updates:
-spec project(Event :: map(), Metadata :: map(), State :: term(), ReadModel :: term()) ->
 {ok, NewState :: term(), NewReadModel :: term()} |
 {skip, State :: term(), ReadModel :: term()}.

project(Event, Metadata, State, ReadModel) ->
 %% Event: #{event_type => ..., data => ...}
 %% Metadata: #{aggregate_id => ..., version => ..., timestamp => ...}

 %% Update read model
 {ok, NewRM} = update_read_model(Event, ReadModel),

 %% Update projection state
 NewState = State#{
 events_processed => maps:get(events_processed, State) + 1,
 last_event_time => maps:get(timestamp, Metadata)
 },

 {ok, NewState, NewRM}.
Read Model Backends
evoq provides a evoq_read_model abstraction with multiple backends:
ETS (In-Memory)
Fast, volatile storage. Good for caching and development.
init(_Config) ->
 {ok, RM} = evoq_read_model:new(evoq_read_model_ets, #{
 table_name => order_summaries
 }),
 {ok, #{}, RM}.
PostgreSQL
Persistent, queryable storage. Good for production.
init(Config) ->
 {ok, RM} = evoq_read_model:new(evoq_read_model_postgres, #{
 pool => my_pool,
 table => <<"order_summaries">>
 }),
 {ok, #{}, RM}.
Custom Backend
Implement the evoq_read_model behavior:
-module(my_custom_read_model).
-behaviour(evoq_read_model).

-export([new/1, get/2, put/3, delete/2, list/1]).

new(Config) -> {ok, State}.
get(Key, State) -> {ok, Value} | {error, not_found}.
put(Key, Value, State) -> {ok, NewState}.
delete(Key, State) -> {ok, NewState}.
list(State) -> {ok, [Key]}.
Checkpointing
Projections checkpoint their position in the event stream:
%% Automatic checkpointing (default: every 100 events)
init(Config) ->
 {ok, RM} = evoq_read_model:new(evoq_read_model_ets, #{}),
 {ok, #{}, RM, #{checkpoint_interval => 100}}.

%% Manual checkpointing
project(Event, Metadata, State, ReadModel) ->
 %% Do work...

 %% Checkpoint after expensive operations
 case should_checkpoint(State) of
 true ->
 evoq_projection:checkpoint(self()),
 {ok, reset_checkpoint_state(State), NewRM};
 false ->
 {ok, State, NewRM}
 end.
On restart, projections resume from their last checkpoint.
Rebuilding Projections
Read models can be rebuilt from events:
%% Rebuild a specific projection
evoq_projection:rebuild(order_summary_projection).

%% Rebuild with options
evoq_projection:rebuild(order_summary_projection, #{
 from => origin, %% Start from beginning
 batch_size => 1000, %% Process in batches
 parallel => 4 %% Use 4 workers
}).
This is powerful:
	Fix bugs in projection logic
	Add new fields to read model
	Migrate to a new storage backend
	Test projection changes safely

Cross-Aggregate Projections
Projections can combine data from multiple aggregates:
-module(customer_orders_projection).
-behaviour(evoq_projection).

interested_in() ->
 [<<"CustomerRegistered">>, <<"OrderPlaced">>, <<"OrderShipped">>].

project(#{event_type := <<"CustomerRegistered">>, data := Data}, Meta, State, RM) ->
 CustomerId = maps:get(aggregate_id, Meta),
 Customer = #{
 customer_id => CustomerId,
 name => maps:get(name, Data),
 email => maps:get(email, Data),
 orders => [],
 total_spent => 0
 },
 {ok, NewRM} = evoq_read_model:put(CustomerId, Customer, RM),
 {ok, State, NewRM};

project(#{event_type := <<"OrderPlaced">>, data := Data}, _Meta, State, RM) ->
 CustomerId = maps:get(customer_id, Data),
 case evoq_read_model:get(CustomerId, RM) of
 {ok, Customer} ->
 OrderSummary = #{
 order_id => maps:get(order_id, Data),
 total => maps:get(total, Data),
 status => placed
 },
 Updated = Customer#{
 orders => [OrderSummary | maps:get(orders, Customer)],
 total_spent => maps:get(total_spent, Customer) + maps:get(total, Data)
 },
 {ok, NewRM} = evoq_read_model:put(CustomerId, Updated, RM),
 {ok, State, NewRM};
 {error, not_found} ->
 {skip, State, RM}
 end.
Aggregation Projections
Build statistics and summaries:
-module(daily_stats_projection).
-behaviour(evoq_projection).

interested_in() ->
 [<<"OrderPlaced">>, <<"OrderCancelled">>].

project(#{event_type := <<"OrderPlaced">>, data := Data}, Meta, State, RM) ->
 Date = date_from_timestamp(maps:get(timestamp, Meta)),

 Stats = case evoq_read_model:get(Date, RM) of
 {ok, Existing} -> Existing;
 {error, not_found} -> #{orders => 0, revenue => 0, cancelled => 0}
 end,

 Updated = Stats#{
 orders => maps:get(orders, Stats) + 1,
 revenue => maps:get(revenue, Stats) + maps:get(total, Data)
 },

 {ok, NewRM} = evoq_read_model:put(Date, Updated, RM),
 {ok, State, NewRM}.
Querying Read Models
Query projections directly:
%% Get single item
{ok, OrderSummary} = evoq_read_model:get(OrderId, ReadModel).

%% List all items
{ok, AllOrders} = evoq_read_model:list(ReadModel).

%% Backend-specific queries (PostgreSQL)
{ok, RecentOrders} = evoq_read_model_postgres:query(
 ReadModel,
 "SELECT * FROM order_summaries WHERE status = $1 ORDER BY placed_at DESC LIMIT $2",
 [<<"placed">>, 10]
).
Testing Projections
Test projections with event sequences:
-module(order_summary_projection_tests).
-include_lib("eunit/include/eunit.hrl").

project_order_lifecycle_test() ->
 %% Setup
 {ok, State0, RM0} = order_summary_projection:init(#{}),

 %% Order placed
 PlacedEvent = #{
 event_type => <<"OrderPlaced">>,
 data => #{customer_id => <<"cust-1">>, total => 100, items => []}
 },
 PlacedMeta = #{aggregate_id => <<"order-1">>, timestamp => 1000},

 {ok, State1, RM1} = order_summary_projection:project(PlacedEvent, PlacedMeta, State0, RM0),

 %% Verify
 {ok, Summary1} = evoq_read_model:get(<<"order-1">>, RM1),
 ?assertEqual(placed, maps:get(status, Summary1)),
 ?assertEqual(100, maps:get(total, Summary1)),

 %% Order shipped
 ShippedEvent = #{
 event_type => <<"OrderShipped">>,
 data => #{tracking_number => <<"TRACK123">>}
 },
 ShippedMeta = #{aggregate_id => <<"order-1">>, timestamp => 2000},

 {ok, _State2, RM2} = order_summary_projection:project(ShippedEvent, ShippedMeta, State1, RM1),

 %% Verify
 {ok, Summary2} = evoq_read_model:get(<<"order-1">>, RM2),
 ?assertEqual(shipped, maps:get(status, Summary2)),
 ?assertEqual(<<"TRACK123">>, maps:get(tracking_number, Summary2)).
Telemetry Events
Projections emit telemetry:
	Event	Measurements	Metadata
	[evoq, projection, start]	system_time	name
	[evoq, projection, stop]	duration	name
	[evoq, projection, event]	duration	name, event_type
	[evoq, projection, checkpoint]	position	name
	[evoq, projection, rebuild, start]	system_time	name
	[evoq, projection, rebuild, stop]	duration, events_processed	name

Best Practices
1. Design for Queries
Think about how the data will be queried:
%% Good - optimized for "get orders by customer"
project(Event, Meta, State, RM) ->
 CustomerId = maps:get(customer_id, Event),
 Key = {customer, CustomerId},
 %% One lookup per customer
 ...
2. Handle Missing Data
Events may arrive out of order or reference missing entities:
project(Event, _Meta, State, RM) ->
 case evoq_read_model:get(ParentId, RM) of
 {ok, Parent} ->
 %% Update normally
 {ok, State, NewRM};
 {error, not_found} ->
 %% Parent doesn't exist - skip or create placeholder
 {skip, State, RM}
 end.
3. Keep Projections Idempotent
Projections may replay events during rebuild:
project(Event, Meta, State, RM) ->
 EventId = maps:get(event_id, Event),
 case already_projected(EventId, State) of
 true -> {skip, State, RM};
 false ->
 %% Project normally
 NewState = mark_projected(EventId, State),
 {ok, NewState, NewRM}
 end.
4. Monitor Lag
Track how far behind projections are:
project(Event, Meta, State, RM) ->
 EventTime = maps:get(timestamp, Meta),
 Lag = erlang:system_time(millisecond) - EventTime,

 telemetry:execute([my_app, projection, lag], #{lag_ms => Lag}, #{
 projection => ?MODULE
 }),

 %% Continue projecting...
 {ok, State, NewRM}.
5. Version Read Models
Support schema evolution:
project(Event, Meta, State, RM) ->
 {ok, Existing} = evoq_read_model:get(Key, RM),

 %% Migrate old format
 Migrated = case Existing of
 #{version := 1} -> migrate_v1_to_v2(Existing);
 #{version := 2} -> Existing;
 _ -> #{version => 2} %% New record
 end,

 Updated = update_record(Migrated, Event),
 {ok, NewRM} = evoq_read_model:put(Key, Updated#{version => 2}, RM),
 {ok, State, NewRM}.
Next Steps
	Event Handlers - Side effects
	Process Managers - Orchestration
	Architecture - System overview

 Adapters

evoq uses an adapter pattern to integrate with different event store backends. This guide explains how to configure and implement adapters.
Overview
evoq doesn't include any specific event store implementation. Instead, it defines adapter behaviors that must be implemented to connect to your chosen backend.
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ evoq │────>│ Adapter │────>│ Event Store │
│ (Framework) │ │ (Interface) │ │ (Backend) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Available Adapters
reckon-db-gater (Recommended)
The evoq_esdb_gater_adapter connects to reckon-db via the gateway protocol.
Add to your dependencies:
{deps, [
 {evoq, "0.2.0"},
 {reckon_db_gater, "0.4.3"}
]}.
Configure in sys.config:
{evoq, [
 {event_store_adapter, evoq_esdb_gater_adapter},
 {store_id, my_store}
]}
Adapter Behaviors
evoq defines three adapter behaviors:
evoq_adapter (Event Store)
Core event operations:
-callback append(StoreId, StreamId, ExpectedVersion, Events) -> {ok, Version} | {error, Reason}.
-callback read(StoreId, StreamId, StartVersion, Count, Direction) -> {ok, Events} | {error, Reason}.
-callback read_all(StoreId, StreamId, Direction) -> {ok, Events} | {error, Reason}.
-callback version(StoreId, StreamId) -> integer().
-callback exists(StoreId, StreamId) -> boolean().
-callback list_streams(StoreId) -> {ok, [StreamId]} | {error, Reason}.
-callback delete_stream(StoreId, StreamId) -> ok | {error, Reason}.
evoq_snapshot_adapter
Snapshot operations for aggregate optimization:
-callback save(StoreId, StreamId, Version, Data, Metadata) -> ok | {error, Reason}.
-callback read(StoreId, StreamId) -> {ok, Snapshot} | {error, not_found}.
-callback read_at_version(StoreId, StreamId, Version) -> {ok, Snapshot} | {error, not_found}.
-callback delete(StoreId, StreamId) -> ok | {error, Reason}.
-callback list_versions(StoreId, StreamId) -> {ok, [Version]} | {error, Reason}.
evoq_subscription_adapter
Subscription operations for event delivery:
-callback subscribe(StoreId, Type, Selector, Name, Opts) -> {ok, SubscriptionId} | {error, Reason}.
-callback unsubscribe(StoreId, SubscriptionId) -> ok | {error, Reason}.
-callback ack(StoreId, Name, StreamId, Position) -> ok | {error, Reason}.
-callback get_checkpoint(StoreId, Name) -> {ok, Position} | {error, not_found}.
-callback list(StoreId) -> {ok, [Subscription]} | {error, Reason}.
Implementing a Custom Adapter
To implement a custom adapter:
	Create a module that implements evoq_adapter (required)
	Optionally implement evoq_snapshot_adapter and evoq_subscription_adapter
	Configure evoq to use your adapter

Example skeleton:
-module(my_custom_adapter).
-behaviour(evoq_adapter).
-behaviour(evoq_snapshot_adapter).
-behaviour(evoq_subscription_adapter).

%% evoq_adapter callbacks
-export([append/4, read/5, read_all/3, version/2, exists/2, list_streams/1, delete_stream/2]).

%% evoq_snapshot_adapter callbacks
-export([save/5, read/2, read_at_version/3, delete/2, list_versions/2]).

%% evoq_subscription_adapter callbacks
-export([subscribe/5, unsubscribe/2, ack/4, get_checkpoint/2, list/1]).

%% Implementation...
append(StoreId, StreamId, ExpectedVersion, Events) ->
 %% Connect to your event store and append events
 {ok, NewVersion}.

%% ... implement other callbacks
Configuration
Full adapter configuration options:
{evoq, [
 %% Required: which adapter to use
 {event_store_adapter, evoq_esdb_gater_adapter},

 %% Store identifier (passed to adapter)
 {store_id, my_store},

 %% Optional: separate adapters for snapshots/subscriptions
 {snapshot_adapter, evoq_esdb_gater_snapshot_adapter},
 {subscription_adapter, evoq_esdb_gater_subscription_adapter}
]}
Local Development
For local development, use _checkouts to link adapters:
mkdir -p _checkouts
ln -s /path/to/reckon-db-gater _checkouts/reckon_db_gater

This allows modifying the adapter code alongside your application.
Testing with Mocks
Use meck to mock adapters in tests:
my_test() ->
 meck:new(evoq_esdb_gater_adapter, [passthrough]),
 meck:expect(evoq_esdb_gater_adapter, append, fun(_, _, _, Events) ->
 {ok, length(Events)}
 end),

 %% Run your test
 ok = my_module:do_something(),

 meck:unload(evoq_esdb_gater_adapter).
See Also
	Architecture - How adapters fit into the overall system
	reckon-db-gater - Gateway adapter for reckon-db
	reckon-db - BEAM-native event store

 Working with Bit Flags in Evoq

The evoq_bit_flags module provides a comprehensive set of functions for working with bitwise flags in Erlang. This module is particularly useful for event-sourced systems where aggregate state can be represented efficiently as a set of flags (finite state machine).
Table of Contents
	Overview
	Why Use Bit Flags?
	Basic Concepts
	Core Functions
	Query Operations
	Conversion Operations
	Aggregate State Management
	Best Practices
	Function Reference

Overview
The evoq_bit_flags module offers:
	Efficient state representation using bitwise operations
	Multiple flag manipulation functions
	State querying and validation capabilities
	Human-readable conversions with flag maps
	Event sourcing support for aggregate state management
	Performance-optimized operations using Erlang's bitwise operators

Why Use Bit Flags?
	Memory Efficiency: Store multiple boolean states in a single integer
	Performance: Bitwise operations are extremely fast (CPU-native)
	Atomic Operations: Update multiple flags in a single operation
	Event Sourcing: Efficiently represent aggregate state in event streams
	Database Queries: Use bitwise operators in SQL/NoSQL queries
	Network Efficiency: Single integer travels over the wire vs multiple booleans

Basic Concepts
What are Bit Flags?
Bit flags represent multiple boolean states in a single integer using binary representation. Each bit position corresponds to a specific flag or state.
%% Binary representation: 2#01100100 = 100 in decimal
%% Bit positions: 76543210
%% 01100100
%% This represents flags at positions 2, 5, and 6 being set
Powers of Two
Flags MUST be defined as powers of 2 to ensure each flag occupies a unique bit position:
-define(NONE, 0). %% 2#00000000
-define(CREATED, 1). %% 2#00000001 (2^0)
-define(VALIDATED, 2). %% 2#00000010 (2^1)
-define(PROCESSING, 4). %% 2#00000100 (2^2)
-define(COMPLETED, 8). %% 2#00001000 (2^3)
-define(CANCELLED, 16). %% 2#00010000 (2^4)
-define(ARCHIVED, 32). %% 2#00100000 (2^5)
-define(READY_TO_PUBLISH,64). %% 2#01000000 (2^6)
-define(PUBLISHED, 128). %% 2#10000000 (2^7)
Flag Map for Human-Readable Output
flag_map() ->
 #{
 0 => <<"None">>,
 1 => <<"Created">>,
 2 => <<"Validated">>,
 4 => <<"Processing">>,
 8 => <<"Completed">>,
 16 => <<"Cancelled">>,
 32 => <<"Archived">>,
 64 => <<"Ready to Publish">>,
 128 => <<"Published">>
 }.
Core Functions
Setting Flags
Single Flag
%% Set a single flag
State0 = 0, %% 2#00000000
State1 = evoq_bit_flags:set(State0, 4), %% 2#00000100 (Processing)
%% State1 = 4

%% Set another flag
State2 = evoq_bit_flags:set(State1, 32), %% 2#00100100 (Processing + Archived)
%% State2 = 36
Multiple Flags
%% Set multiple flags at once
State0 = 0,
State1 = evoq_bit_flags:set_all(State0, [1, 4, 32]),
%% State1 = 37 (Created + Processing + Archived)
Unsetting Flags
Single Flag
%% Unset a single flag
State0 = 100, %% 2#01100100 (Processing + Archived + Ready)
State1 = evoq_bit_flags:unset(State0, 64), %% Remove "Ready to Publish"
%% State1 = 36 (2#00100100)
Multiple Flags
%% Unset multiple flags
State0 = 228, %% 2#11100100
State1 = evoq_bit_flags:unset_all(State0, [64, 128]),
%% State1 = 36
Query Operations
Check Single Flag
State = 100, %% 2#01100100

true = evoq_bit_flags:has(State, 4), %% Processing is set
false = evoq_bit_flags:has(State, 8), %% Completed is NOT set
true = evoq_bit_flags:has_not(State, 8), %% Completed is NOT set
Check Multiple Flags
State = 100, %% 2#01100100

%% Check if ALL flags are set
true = evoq_bit_flags:has_all(State, [4, 32, 64]),
false = evoq_bit_flags:has_all(State, [4, 8]),

%% Check if ANY flag is set
true = evoq_bit_flags:has_any(State, [8, 64]), %% 64 is set
false = evoq_bit_flags:has_any(State, [1, 2, 8]), %% None are set
Conversion Operations
Decomposition
Extract all power-of-two components from a number:
[4, 32, 64] = evoq_bit_flags:decompose(100),
[1, 2, 4, 8] = evoq_bit_flags:decompose(15).
Human-Readable Conversion
FlagMap = #{
 4 => <<"Processing">>,
 32 => <<"Archived">>,
 64 => <<"Ready to Publish">>
},

%% Convert to list of descriptions
[<<"Processing">>, <<"Archived">>, <<"Ready to Publish">>] =
 evoq_bit_flags:to_list(100, FlagMap),

%% Convert to comma-separated string
<<"Processing, Archived, Ready to Publish">> =
 evoq_bit_flags:to_string(100, FlagMap),

%% With custom separator
<<"Processing | Archived | Ready to Publish">> =
 evoq_bit_flags:to_string(100, FlagMap, <<" | ">>).
State Analysis
FlagMap = #{
 4 => <<"Processing">>,
 32 => <<"Archived">>,
 64 => <<"Ready to Publish">>
},

State = 100,

%% Get highest priority flag
<<"Ready to Publish">> = evoq_bit_flags:highest(State, FlagMap),

%% Get lowest priority flag
<<"Processing">> = evoq_bit_flags:lowest(State, FlagMap).
Aggregate State Management
Defining Status Flags for an Aggregate
Create a header file with your aggregate's status flags:
%% include/order_status.hrl

-define(ORDER_NONE, 0).
-define(ORDER_CREATED, 1).
-define(ORDER_PAYMENT_PENDING, 2).
-define(ORDER_PAYMENT_CONFIRMED,4).
-define(ORDER_PROCESSING, 8).
-define(ORDER_SHIPPED, 16).
-define(ORDER_DELIVERED, 32).
-define(ORDER_CANCELLED, 64).
-define(ORDER_REFUNDED, 128).

-define(ORDER_STATUS_MAP, #{
 ?ORDER_NONE => <<"None">>,
 ?ORDER_CREATED => <<"Created">>,
 ?ORDER_PAYMENT_PENDING => <<"Payment Pending">>,
 ?ORDER_PAYMENT_CONFIRMED=> <<"Payment Confirmed">>,
 ?ORDER_PROCESSING => <<"Processing">>,
 ?ORDER_SHIPPED => <<"Shipped">>,
 ?ORDER_DELIVERED => <<"Delivered">>,
 ?ORDER_CANCELLED => <<"Cancelled">>,
 ?ORDER_REFUNDED => <<"Refunded">>
}).
Aggregate with Bit Flag Status
-module(order_aggregate).
-behaviour(evoq_aggregate).

-include("order_status.hrl").

-record(order, {
 id :: binary(),
 status :: non_neg_integer(), %% Bit flags!
 customer_id :: binary(),
 items :: list(),
 total :: number()
}).

%% Initialize with CREATED flag
init(#{id := Id, customer_id := CustomerId}) ->
 #order{
 id = Id,
 status = ?ORDER_CREATED,
 customer_id = CustomerId,
 items = [],
 total = 0
 }.

%% Apply events - update status flags
apply_event(#order{status = Status} = Order, {payment_requested, _}) ->
 NewStatus = evoq_bit_flags:set(Status, ?ORDER_PAYMENT_PENDING),
 Order#order{status = NewStatus};

apply_event(#order{status = Status} = Order, {payment_confirmed, _}) ->
 NewStatus = Status
 |> evoq_bit_flags:unset(?ORDER_PAYMENT_PENDING)
 |> evoq_bit_flags:set(?ORDER_PAYMENT_CONFIRMED),
 Order#order{status = NewStatus};

apply_event(#order{status = Status} = Order, {order_shipped, _}) ->
 NewStatus = Status
 |> evoq_bit_flags:unset(?ORDER_PROCESSING)
 |> evoq_bit_flags:set(?ORDER_SHIPPED),
 Order#order{status = NewStatus};

apply_event(#order{status = Status} = Order, {order_cancelled, _}) ->
 NewStatus = evoq_bit_flags:set(Status, ?ORDER_CANCELLED),
 Order#order{status = NewStatus}.

%% Business rule checks using flags
can_cancel(#order{status = Status}) ->
 %% Can cancel if not shipped, delivered, or already cancelled
 not evoq_bit_flags:has_any(Status, [?ORDER_SHIPPED, ?ORDER_DELIVERED, ?ORDER_CANCELLED]).

can_refund(#order{status = Status}) ->
 %% Can refund if payment confirmed and not already refunded
 evoq_bit_flags:has(Status, ?ORDER_PAYMENT_CONFIRMED)
 andalso not evoq_bit_flags:has(Status, ?ORDER_REFUNDED).

is_active(#order{status = Status}) ->
 %% Active if not in terminal state
 not evoq_bit_flags:has_any(Status, [?ORDER_DELIVERED, ?ORDER_CANCELLED, ?ORDER_REFUNDED]).

get_status_string(#order{status = Status}) ->
 evoq_bit_flags:to_string(Status, ?ORDER_STATUS_MAP).

get_current_stage(#order{status = Status}) ->
 evoq_bit_flags:highest(Status, ?ORDER_STATUS_MAP).
Command Handler with Status Validation
-module(maybe_cancel_order).

-include("order_status.hrl").

handle(Order, {cancel_order, Reason}) ->
 case order_aggregate:can_cancel(Order) of
 true ->
 {ok, [{order_cancelled, #{reason => Reason, cancelled_at => erlang:timestamp()}}]};
 false ->
 Status = order_aggregate:get_status_string(Order),
 {error, {cannot_cancel, <<"Order in state: ", Status/binary>>}}
 end.
Best Practices
1. Always Use Powers of Two
%% CORRECT - unique bit positions
-define(FLAG_A, 1). %% 2^0
-define(FLAG_B, 2). %% 2^1
-define(FLAG_C, 4). %% 2^2
-define(FLAG_D, 8). %% 2^3

%% WRONG - overlapping bits!
-define(BAD_A, 1).
-define(BAD_B, 3). %% 3 = 1 + 2, conflicts with FLAG_A!
-define(BAD_C, 5). %% 5 = 1 + 4, conflicts with FLAG_A!
2. Define Constants in Header Files
Keep all flag definitions in .hrl files for consistency:
%% include/task_status.hrl
-ifndef(TASK_STATUS_HRL).
-define(TASK_STATUS_HRL, true).

-define(TASK_CREATED, 1).
-define(TASK_ASSIGNED, 2).
-define(TASK_IN_PROGRESS,4).
-define(TASK_COMPLETED, 8).
-define(TASK_ARCHIVED, 16).

-define(TASK_STATUS_MAP, #{
 ?TASK_CREATED => <<"Created">>,
 ?TASK_ASSIGNED => <<"Assigned">>,
 ?TASK_IN_PROGRESS => <<"In Progress">>,
 ?TASK_COMPLETED => <<"Completed">>,
 ?TASK_ARCHIVED => <<"Archived">>
}).

-endif.
3. Validate State Transitions
Always validate that state transitions are valid:
complete_task(Status) ->
 case evoq_bit_flags:has(Status, ?TASK_ARCHIVED) of
 true ->
 {error, cannot_complete_archived_task};
 false ->
 case evoq_bit_flags:has(Status, ?TASK_IN_PROGRESS) of
 true ->
 {ok, evoq_bit_flags:set(Status, ?TASK_COMPLETED)};
 false ->
 {error, task_must_be_in_progress}
 end
 end.
4. Document Valid Flag Combinations
%% @doc Order status flags.
%%
%% Valid state transitions:
%% - CREATED -> PAYMENT_PENDING
%% - PAYMENT_PENDING -> PAYMENT_CONFIRMED | CANCELLED
%% - PAYMENT_CONFIRMED -> PROCESSING
%% - PROCESSING -> SHIPPED | CANCELLED
%% - SHIPPED -> DELIVERED
%% - Any (except DELIVERED) -> CANCELLED
%% - PAYMENT_CONFIRMED + (CANCELLED | DELIVERED) -> REFUNDED
%%
%% Terminal states: DELIVERED, CANCELLED + REFUNDED
5. Use Flags for Read Model Queries
%% Query all orders that are shipped but not delivered
find_in_transit_orders(Repo) ->
 ShippedFlag = ?ORDER_SHIPPED,
 DeliveredFlag = ?ORDER_DELIVERED,
 %% SQL: WHERE (status & 16) = 16 AND (status & 32) = 0
 Repo:select_where([
 {'band', status, ShippedFlag, ShippedFlag},
 {'band', status, DeliveredFlag, 0}
]).
Function Reference
Core Operations
	Function	Description	Example
	set(Target, Flag)	Set a single flag	set(0, 4) -> 4
	unset(Target, Flag)	Unset a single flag	unset(7, 4) -> 3
	set_all(Target, Flags)	Set multiple flags	set_all(0, [1, 4]) -> 5
	unset_all(Target, Flags)	Unset multiple flags	unset_all(7, [1, 2]) -> 4

Query Operations
	Function	Description	Example
	has(Target, Flag)	Check if flag is set	has(5, 4) -> true
	has_not(Target, Flag)	Check if flag is not set	has_not(5, 2) -> true
	has_all(Target, Flags)	Check if all flags are set	has_all(7, [1, 2]) -> true
	has_any(Target, Flags)	Check if any flag is set	has_any(5, [2, 4]) -> true

Conversion Operations
	Function	Description	Example
	to_list(Target, FlagMap)	Convert to list of descriptions	Returns list of binaries
	to_string(Target, FlagMap)	Convert to comma-separated string	Returns binary
	to_string(Target, FlagMap, Sep)	Convert with custom separator	Returns binary
	decompose(Target)	Get power-of-2 components	decompose(7) -> [1, 2, 4]

Analysis Operations
	Function	Description	Example
	highest(Target, FlagMap)	Get highest set flag description	Returns binary or undefined
	lowest(Target, FlagMap)	Get lowest set flag description	Returns binary or undefined

Binary Representation Quick Reference
	Decimal	Binary	Flags Set
	0	2#00000000	None
	1	2#00000001	Flag 0 (2^0)
	2	2#00000010	Flag 1 (2^1)
	3	2#00000011	Flags 0, 1
	4	2#00000100	Flag 2 (2^2)
	5	2#00000101	Flags 0, 2
	7	2#00000111	Flags 0, 1, 2
	15	2#00001111	Flags 0, 1, 2, 3
	255	2#11111111	All 8 flags

This guide covers the complete functionality of the evoq_bit_flags module. Bit flags are particularly powerful for event sourcing, state machines, and any scenario where you need to efficiently represent multiple boolean states in aggregates.

 Changelog

All notable changes to evoq will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[1.1.0] - 2026-01-08
Added
	Bit Flags Module (evoq_bit_flags): Efficient bitwise flag manipulation for aggregate state
	set/2, unset/2: Set/unset single flags
	set_all/2, unset_all/2: Set/unset multiple flags
	has/2, has_not/2: Check single flag state
	has_all/2, has_any/2: Check multiple flags
	to_list/2, to_string/2,3: Human-readable conversions with flag maps
	decompose/1: Extract power-of-2 components
	highest/2, lowest/2: Get highest/lowest set flag description

	Bit Flags Guide (guides/bit_flags.md): Comprehensive documentation
	Why use bit flags in event sourcing
	Core operations with examples
	Aggregate state management patterns
	Best practices for flag definition
	Complete function reference

Changed
	Aggregate status fields should now use integer bit flags instead of atoms
for better memory efficiency, query performance, and event store compatibility

[1.0.3] - 2026-01-06
Fixed
	Macro guard compatibility: Added -ifndef guards around macro definitions
in evoq_types.hrl to prevent redefinition errors when used alongside
esdb_gater_types.hrl in adapters like reckon_evoq

[1.0.2] - 2026-01-06
Changed
	Independence from reckon_gater: Removed direct dependency on reckon_gater	Introduced include/evoq_types.hrl with evoq's own type definitions
	Adapters (like reckon_evoq) now handle type translation between evoq and backend
	evoq is now a pure CQRS/ES framework without storage backend coupling

Fixed
	hex.pm dependencies: Package now correctly publishes with only telemetry as dependency

[1.0.1] - 2026-01-03
Fixed
	SVG diagrams: Updated architecture.svg, command-dispatch.svg, and event-routing.svg to reference reckon-db instead of erl-esdb

[1.0.0] - 2026-01-03
Changed
	Stable Release: First stable release of evoq under reckon-db-org
	All APIs considered stable and ready for production use
	Fixed documentation links (guides/adapters.md)
	Updated dependency references to reckon_gater

[0.3.0] - 2025-12-20
Added
	Documentation: Comprehensive educational guides with SVG diagrams	Architecture overview guide with system diagram
	Aggregates guide with lifecycle diagram
	Event handlers guide with routing diagram
	Process managers guide with saga flow diagram
	Projections guide with data flow diagram
	Adapters guide for event store integration

	ex_doc integration: Full hex.pm documentation support via rebar3_ex_doc

Changed
	Dependencies: Updated reckon_gater from 0.3.0 to 0.4.3

Fixed
	EDoc errors: Fixed XML parsing issues in memory monitor documentation
	EDoc errors: Removed invalid @doc tags before -callback declarations

[0.2.0] - 2024-12-19
Added
	Event Store Adapter Pattern: Pluggable event store backends
	evoq_adapter behavior for custom adapters
	evoq_event_store facade with adapter delegation
	Support for erl-esdb-gater integration

	Checkpoint Store: Persistent checkpoint tracking
	evoq_checkpoint_store behavior
	evoq_checkpoint_store_ets ETS-based implementation
	Position tracking for projections and handlers

	Dead Letter Queue: Failed event handling
	evoq_dead_letter for events that exhaust retries
	List, retry, and discard operations
	Telemetry integration for monitoring

	Error Handling: Comprehensive error management
	evoq_error_handler for centralized error processing
	Failure context tracking via evoq_failure_context
	Retry strategies with backoff

Changed
	Event Router: Switched to per-event-type subscriptions	Handlers declare interested_in/0 for event types
	Prevents subscription explosion with many aggregates
	Constant memory usage regardless of aggregate count

[0.1.0] - 2024-12-18
Added
	Initial release of evoq CQRS/Event Sourcing framework

	Aggregates (evoq_aggregate):
	evoq_aggregate behavior with init/execute/apply callbacks
	Partitioned supervision across 4 supervisors
	Configurable TTL and idle timeout
	Snapshot support for faster loading
	Memory pressure monitoring with adaptive TTL

	Aggregate Lifespan (evoq_aggregate_lifespan):
	Configurable lifecycle management
	Default 30-minute idle timeout
	Hibernate after 1 minute idle
	Snapshot on passivation

	Command Dispatch (evoq_dispatcher):
	Command routing to aggregates
	Middleware pipeline support
	Consistency mode (strong/eventual)

	Middleware (evoq_middleware):
	Pluggable command pipeline
	Validation middleware
	Idempotency middleware
	Consistency middleware

	Event Handlers (evoq_event_handler):
	Per-event-type subscriptions
	Retry strategies with exponential backoff
	Dead letter queue for failed events
	Strong/eventual consistency modes

	Process Managers (evoq_process_manager):
	Long-running business process coordination
	Event correlation and routing
	Command dispatch from handlers
	Compensation support for failures

	Projections (evoq_projection):
	Read model builders from events
	Checkpointing for resume
	Rebuild capability
	Multiple storage backends

	Event Upcasters (evoq_event_upcaster):
	Schema evolution support
	Event migration on replay

	Memory Monitor (evoq_memory_monitor):
	System memory pressure detection
	Adaptive TTL adjustment
	Aggregate eviction under pressure

	Telemetry Integration:
	Comprehensive event emission
	Aggregate lifecycle events
	Handler processing events
	Projection progress events

Dependencies
	erl_esdb_gater 0.3.0 - Gateway API and shared types
	telemetry 1.3.0 - Observability

 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

evoq_adapter behaviour

Event store adapter behavior for evoq
Defines the interface for event store operations. Implementations provide the actual connection to an event store backend.
[bookmark: Implementing_an_Adapter]Implementing an Adapter
 -module(my_adapter).
 -behaviour(evoq_adapter).

 append(StoreId, StreamId, ExpectedVersion, Events) ->
 %% Implementation here
 {ok, NewVersion}.
[bookmark: Configuration]Configuration
Set the adapter in application config:
 {evoq, [
 {event_store_adapter, my_adapter}
]}

 Summary

 Callbacks

 append/4

 delete_stream/2

 exists/2

 list_streams/1

 read/5

 read_all/3

 read_by_event_types/3

 version/2

 Callbacks

 append/4

 -callback append(StoreId :: atom(), StreamId :: binary(), ExpectedVersion :: integer(), Events :: [map()]) ->
 {ok, non_neg_integer()} | {error, term()}.

 delete_stream/2

 -callback delete_stream(StoreId :: atom(), StreamId :: binary()) -> ok | {error, term()}.

 exists/2

 -callback exists(StoreId :: atom(), StreamId :: binary()) -> boolean().

 list_streams/1

 -callback list_streams(StoreId :: atom()) -> {ok, [binary()]} | {error, term()}.

 read/5

 -callback read(StoreId :: atom(),
 StreamId :: binary(),
 StartVersion :: non_neg_integer(),
 Count :: pos_integer(),
 Direction :: forward | backward) ->
 {ok, [evoq_event()]} | {error, term()}.

 read_all/3

 -callback read_all(StoreId :: atom(), StreamId :: binary(), Direction :: forward | backward) ->
 {ok, [evoq_event()]} | {error, term()}.

 read_by_event_types/3

 -callback read_by_event_types(StoreId :: atom(), EventTypes :: [binary()], BatchSize :: pos_integer()) ->
 {ok, [evoq_event()]} | {error, term()}.

 version/2

 -callback version(StoreId :: atom(), StreamId :: binary()) -> integer().

evoq_aggregate behaviour

Aggregate behavior and GenServer implementation.
Aggregates are the consistency boundary in event sourcing. Each aggregate: - Has a unique stream ID - Processes commands via execute/2 callback - Applies events via apply/2 callback - Supports snapshots for fast recovery - Has configurable lifespan (TTL, hibernate, passivate)
[bookmark: Callbacks]Callbacks
Required: - init(AggregateId) -> {ok, State} - execute(State, Command) -> {ok, [Event]} | {error, Reason} - apply(State, Event) -> NewState
Optional: - snapshot(State) -> SnapshotData - from_snapshot(SnapshotData) -> State

 Summary

 Callbacks

 apply/2

 execute/2

 from_snapshot/1

 init/1

 snapshot/1

 Functions

 execute_command(Pid, Evoq_command)

 Execute a command against an aggregate.

 get_state(Pid)

 Get the current state of an aggregate (for debugging).

 get_version(Pid)

 Get the current version of an aggregate.

 start_link(AggregateModule, AggregateId)

 Start an aggregate process.

 Callbacks

 apply/2

 -callback apply(State :: term(), Event :: map()) -> NewState :: term().

 execute/2

 -callback execute(State :: term(), Command :: map()) -> {ok, [Event :: map()]} | {error, Reason :: term()}.

 from_snapshot/1

 (optional)

 -callback from_snapshot(SnapshotData :: term()) -> State :: term().

 init/1

 -callback init(AggregateId :: binary()) -> {ok, State :: term()}.

 snapshot/1

 (optional)

 -callback snapshot(State :: term()) -> SnapshotData :: term().

 Functions

 execute_command(Pid, Evoq_command)

 -spec execute_command(pid(),
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 {ok, non_neg_integer(), [map()]} | {error, term()}.

Execute a command against an aggregate.

 get_state(Pid)

 -spec get_state(pid()) -> {ok, term()}.

Get the current state of an aggregate (for debugging).

 get_version(Pid)

 -spec get_version(pid()) -> {ok, non_neg_integer()}.

Get the current version of an aggregate.

 start_link(AggregateModule, AggregateId)

 -spec start_link(atom(), binary()) -> {ok, pid()} | {error, term()}.

Start an aggregate process.

evoq_aggregate_lifespan behaviour

Behavior for controlling aggregate lifecycle.
Aggregates can be configured with different lifespan strategies: - TTL-based: Passivate after idle timeout - Hibernate: Reduce memory footprint when idle - Infinite: Keep alive forever (not recommended)
The default implementation (evoq_aggregate_lifespan_default) provides sensible defaults with 30-minute TTL and automatic snapshots.

 Summary

 Types

 action/0

 Callbacks

 after_command/1

 after_error/1

 after_event/1

 on_activate/2

 on_passivate/1

 on_timeout/1

 Types

 action/0

 -type action() :: timeout() | infinity | hibernate | stop | passivate.

 Callbacks

 after_command/1

 -callback after_command(Command :: map()) -> action().

 after_error/1

 -callback after_error(Error :: term()) -> action().

 after_event/1

 -callback after_event(Event :: map()) -> action().

 on_activate/2

 (optional)

 -callback on_activate(StreamId :: binary(), Snapshot :: term() | undefined) -> {ok, State :: term()}.

 on_passivate/1

 (optional)

 -callback on_passivate(State :: term()) -> {ok, SnapshotData :: term()} | skip.

 on_timeout/1

 (optional)

 -callback on_timeout(State :: term()) -> {ok, action()} | {snapshot, action()}.

evoq_aggregate_lifespan_default

Default aggregate lifespan implementation.
Provides sensible defaults for aggregate lifecycle: - 30-minute idle timeout - 5-minute timeout on errors - Automatic snapshot on passivation
This prevents the memory explosion that occurs when aggregates live indefinitely (as in Commanded's default lifespan).

 Summary

 Functions

 after_command(Command)

 Return timeout after processing a command. Resets the idle timer to the default 30 minutes.

 after_error(Error)

 Return timeout after an error. Uses a shorter timeout (5 minutes) to allow faster recovery.

 after_event(Event)

 Return timeout after processing an event. Resets the idle timer to the default 30 minutes.

 on_passivate(State)

 Return snapshot data on passivation.

 on_timeout(State)

 Handle timeout by passivating with snapshot.

 Functions

 after_command(Command)

 -spec after_command(map()) -> evoq_aggregate_lifespan:action().

Return timeout after processing a command. Resets the idle timer to the default 30 minutes.

 after_error(Error)

 -spec after_error(term()) -> evoq_aggregate_lifespan:action().

Return timeout after an error. Uses a shorter timeout (5 minutes) to allow faster recovery.

 after_event(Event)

 -spec after_event(map()) -> evoq_aggregate_lifespan:action().

Return timeout after processing an event. Resets the idle timer to the default 30 minutes.

 on_passivate(State)

 -spec on_passivate(term()) -> {ok, term()}.

Return snapshot data on passivation.

 on_timeout(State)

 -spec on_timeout(term()) -> {snapshot, passivate}.

Handle timeout by passivating with snapshot.

evoq_aggregate_partition_sup

Partition supervisor for aggregate processes.
Uses simple_one_for_one strategy for dynamic aggregate child creation. Each partition handles approximately 1/4 of all aggregates based on hash distribution.

 Summary

 Functions

 start_link(Name)

 Start a partition supervisor with the given name.

 Functions

 start_link(Name)

 -spec start_link(atom()) -> {ok, pid()} | {error, term()}.

Start a partition supervisor with the given name.

evoq_aggregate_registry

pg-based registry for aggregate processes.
Uses OTP pg module for process registration and lookup. Aggregates register with a group key of {aggregate, AggregateId}.

 Summary

 Functions

 get_or_start(AggregateModule, AggregateId)

 Get an existing aggregate or start a new one.

 lookup(AggregateId)

 Lookup an aggregate by ID.

 register(AggregateId, Pid)

 Register an aggregate process.

 start_link()

 Start the aggregate registry.

 unregister(AggregateId)

 Unregister an aggregate process.

 Functions

 get_or_start(AggregateModule, AggregateId)

 -spec get_or_start(atom(), binary()) -> {ok, pid()} | {error, term()}.

Get an existing aggregate or start a new one.

 lookup(AggregateId)

 -spec lookup(binary()) -> {ok, pid()} | {error, not_found}.

Lookup an aggregate by ID.

 register(AggregateId, Pid)

 -spec register(binary(), pid()) -> ok.

Register an aggregate process.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the aggregate registry.

 unregister(AggregateId)

 -spec unregister(binary()) -> ok.

Unregister an aggregate process.

evoq_aggregates_sup

Supervisor for aggregate processes.
Implements partitioned supervision for aggregates. Uses 4 partition supervisors to distribute load and prevent single-supervisor bottlenecks.
Aggregates are distributed across partitions using phash2(StreamId, 4).

 Summary

 Functions

 get_aggregate(AggregateId)

 Get an existing aggregate process.

 partition_for(AggregateId)

 Calculate partition for an aggregate ID.

 start_aggregate(AggregateModule, AggregateId)

 Start an aggregate process in the appropriate partition.

 start_link()

 Start the aggregates supervisor.

 Functions

 get_aggregate(AggregateId)

 -spec get_aggregate(binary()) -> {ok, pid()} | {error, not_found}.

Get an existing aggregate process.

 partition_for(AggregateId)

 -spec partition_for(binary()) -> 1..4.

Calculate partition for an aggregate ID.

 start_aggregate(AggregateModule, AggregateId)

 -spec start_aggregate(atom(), binary()) -> {ok, pid()} | {error, term()}.

Start an aggregate process in the appropriate partition.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the aggregates supervisor.

evoq_app

evoq application module.
Entry point for the evoq CQRS/Event Sourcing framework. Starts the top-level supervisor and initializes the pg groups for aggregate registry and event routing.

 Summary

 Functions

 start(StartType, StartArgs)

 Start the evoq application.

 stop(State)

 Stop the evoq application.

 Functions

 start(StartType, StartArgs)

 -spec start(application:start_type(), term()) -> {ok, pid()} | {error, term()}.

Start the evoq application.

 stop(State)

 -spec stop(term()) -> ok.

Stop the evoq application.

evoq_bit_flags

Bit flag manipulation for aggregate state management.
This module provides functions for working with bitwise flags, which are particularly useful in event-sourced systems where aggregate state can be represented as a set of flags (finite state machine).
[bookmark: Why_Use_Bit_Flags?]Why Use Bit Flags?
	Memory Efficiency: Store multiple boolean states in a single integer
	Performance: Bitwise operations are extremely fast
	Atomic Operations: Update multiple flags in a single operation
	Event Sourcing: Efficiently represent aggregate state in event streams
	Database Queries: Use bitwise operators in SQL/NoSQL queries

[bookmark: Flag_Values]Flag Values
Flags must be powers of 2 to occupy unique bit positions:
 -define(NONE, 0). % 2#00000000
 -define(CREATED, 1). % 2#00000001
 -define(VALIDATED, 2). % 2#00000010
 -define(PROCESSING, 4). % 2#00000100
 -define(COMPLETED, 8). % 2#00001000
 -define(CANCELLED, 16). % 2#00010000
 -define(ARCHIVED, 32). % 2#00100000
[bookmark: Example_Usage]Example Usage
 %% Start with no flags
 State0 = 0,

 %% Set CREATED flag
 State1 = evoq_bit_flags:set(State0, 1), % State1 = 1

 %% Set VALIDATED flag
 State2 = evoq_bit_flags:set(State1, 2), % State2 = 3

 %% Check if CREATED is set
 true = evoq_bit_flags:has(State2, 1),

 %% Check if CANCELLED is set
 false = evoq_bit_flags:has(State2, 16).
Inspired by C# Flags enum attribute.

 Summary

 Types

 flag/0

 flag_map/0

 flags/0

 Functions

 decompose(Target)

 Decomposes a number into its power-of-2 components.

 has(Target, Flag)

 Returns true if the flag is set in the target state.

 has_all(Target, Flags)

 Returns true if ALL flags are set in the target state.

 has_any(Target, Flags)

 Returns true if ANY flag is set in the target state.

 has_not(Target, Flag)

 Returns true if the flag is NOT set in the target state.

 highest(N, FlagMap)

 Returns the description of the highest set flag.

 lowest(N, FlagMap)

 Returns the description of the lowest set flag.

 set(Target, Flag)

 Sets a flag in the target state using bitwise OR.

 set_all(Target, Flags)

 Sets multiple flags in the target state.

 to_list(N, FlagMap)

 Returns a list of flag descriptions that are set in the target state.

 to_string(N, FlagMap)

 Returns a comma-separated string of flag descriptions.

 to_string(N, FlagMap, Separator)

 Returns a string of flag descriptions with custom separator.

 unset(Target, Flag)

 Unsets a flag in the target state using bitwise AND with NOT.

 unset_all(Target, Flags)

 Unsets multiple flags in the target state.

 Types

 flag/0

 -type flag() :: pos_integer().

 flag_map/0

 -type flag_map() :: #{non_neg_integer() => binary() | string()}.

 flags/0

 -type flags() :: non_neg_integer().

 Functions

 decompose(Target)

 -spec decompose(flags()) -> [flag()].

Decomposes a number into its power-of-2 components.
Example:
 [4, 32, 64] = evoq_bit_flags:decompose(100).
 [1, 2, 4, 8] = evoq_bit_flags:decompose(15).

 has(Target, Flag)

 -spec has(flags(), flag()) -> boolean().

Returns true if the flag is set in the target state.
Example:
 true = evoq_bit_flags:has(100, 64).
 false = evoq_bit_flags:has(100, 8).

 has_all(Target, Flags)

 -spec has_all(flags(), [flag()]) -> boolean().

Returns true if ALL flags are set in the target state.
Example:
 true = evoq_bit_flags:has_all(100, [4, 32, 64]).
 false = evoq_bit_flags:has_all(100, [4, 8]).

 has_any(Target, Flags)

 -spec has_any(flags(), [flag()]) -> boolean().

Returns true if ANY flag is set in the target state.
Example:
 true = evoq_bit_flags:has_any(100, [8, 64]).
 false = evoq_bit_flags:has_any(100, [1, 2, 8]).

 has_not(Target, Flag)

 -spec has_not(flags(), flag()) -> boolean().

Returns true if the flag is NOT set in the target state.
Example:
 false = evoq_bit_flags:has_not(100, 64).
 true = evoq_bit_flags:has_not(100, 8).

 highest(N, FlagMap)

 -spec highest(flags(), flag_map()) -> binary() | string() | undefined.

Returns the description of the highest set flag.
Example:
 <<"Ready">> = evoq_bit_flags:highest(100, #{4 => <<"Completed">>, 32 => <<"Archived">>, 64 => <<"Ready">>}).

 lowest(N, FlagMap)

 -spec lowest(flags(), flag_map()) -> binary() | string() | undefined.

Returns the description of the lowest set flag.
Example:
 <<"Completed">> = evoq_bit_flags:lowest(100, #{4 => <<"Completed">>, 32 => <<"Archived">>, 64 => <<"Ready">>}).

 set(Target, Flag)

 -spec set(flags(), flag()) -> flags().

Sets a flag in the target state using bitwise OR.
Example:
 100 = evoq_bit_flags:set(36, 64).
 %% 36 = 2#00100100, 64 = 2#01000000
 %% Result: 2#01100100 = 100

 set_all(Target, Flags)

 -spec set_all(flags(), [flag()]) -> flags().

Sets multiple flags in the target state.
Example:
 228 = evoq_bit_flags:set_all(36, [64, 128]).

 to_list(N, FlagMap)

 -spec to_list(flags(), flag_map()) -> [binary() | string()].

Returns a list of flag descriptions that are set in the target state.
Example:
 FlagMap = #{0 => <<"None">>, 4 => <<"Completed">>, 32 => <<"Archived">>, 64 => <<"Ready">>},
 [<<"Completed">>, <<"Archived">>, <<"Ready">>] = evoq_bit_flags:to_list(100, FlagMap).

 to_string(N, FlagMap)

 -spec to_string(flags(), flag_map()) -> binary().

Returns a comma-separated string of flag descriptions.
Example:
 FlagMap = #{4 => <<"Completed">>, 32 => <<"Archived">>, 64 => <<"Ready">>},
 <<"Completed, Archived, Ready">> = evoq_bit_flags:to_string(100, FlagMap).

 to_string(N, FlagMap, Separator)

 -spec to_string(flags(), flag_map(), binary()) -> binary().

Returns a string of flag descriptions with custom separator.
Example:
 <<"Completed | Archived | Ready">> = evoq_bit_flags:to_string(100, FlagMap, <<" | ">>).

 unset(Target, Flag)

 -spec unset(flags(), flag()) -> flags().

Unsets a flag in the target state using bitwise AND with NOT.
Example:
 36 = evoq_bit_flags:unset(100, 64).
 %% 100 = 2#01100100, 64 = 2#01000000
 %% Result: 2#00100100 = 36

 unset_all(Target, Flags)

 -spec unset_all(flags(), [flag()]) -> flags().

Unsets multiple flags in the target state.
Example:
 36 = evoq_bit_flags:unset_all(228, [64, 128]).

evoq_checkpoint_store behaviour

Checkpoint store behavior for projections.
Provides persistent storage for projection checkpoints. This allows projections to resume from where they left off after restart.
[bookmark: Callbacks]Callbacks
Required: - load(ProjectionName) -> {ok, Checkpoint} | {error, not_found} - save(ProjectionName, Checkpoint) -> ok | {error, Reason}

 Summary

 Callbacks

 delete/1

 load/1

 save/2

 Callbacks

 delete/1

 (optional)

 -callback delete(ProjectionName :: atom()) -> ok | {error, term()}.

 load/1

 -callback load(ProjectionName :: atom()) ->
 {ok, Checkpoint :: non_neg_integer()} | {error, not_found | term()}.

 save/2

 -callback save(ProjectionName :: atom(), Checkpoint :: non_neg_integer()) -> ok | {error, term()}.

evoq_checkpoint_store_ets

ETS-based checkpoint store implementation.
In-memory checkpoint storage for development and testing. For production, use a persistent implementation (e.g., database-backed).
Note: Checkpoints are lost on application restart. Use only for development or projections that can easily rebuild.

 Summary

 Functions

 delete(ProjectionName)

 Delete checkpoint for a projection.

 load(ProjectionName)

 Load checkpoint for a projection.

 save(ProjectionName, Checkpoint)

 Save checkpoint for a projection.

 start_link()

 Start the checkpoint store.

 Functions

 delete(ProjectionName)

 -spec delete(atom()) -> ok.

Delete checkpoint for a projection.

 load(ProjectionName)

 -spec load(atom()) -> {ok, non_neg_integer()} | {error, not_found}.

Load checkpoint for a projection.

 save(ProjectionName, Checkpoint)

 -spec save(atom(), non_neg_integer()) -> ok.

Save checkpoint for a projection.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the checkpoint store.

evoq_command behaviour

Command behavior for evoq.
Commands represent intentions to change state. They are: - Imperative (present tense): open_account, deposit_money - Targeted at a specific aggregate - Validated before dispatch
[bookmark: Callbacks]Callbacks
Optional: - validate(Command) -> ok | {error, Reason}

 Summary

 Callbacks

 validate/1

 Functions

 get_aggregate_id(Evoq_command)

 Get the aggregate ID.

 get_aggregate_type(Evoq_command)

 Get the aggregate type.

 get_id(Evoq_command)

 Get the command ID.

 get_metadata(Evoq_command)

 Get the command metadata.

 get_payload(Evoq_command)

 Get the command payload.

 get_type(Evoq_command)

 Get the command type.

 new(CommandType, AggregateType, AggregateId, Payload)

 Create a new command.

 new(CommandType, AggregateType, AggregateId, Payload, Metadata)

 Create a new command with metadata.

 set_causation_id(CausationId, Evoq_command)

 Set the causation ID.

 set_correlation_id(CorrelationId, Evoq_command)

 Set the correlation ID.

 validate(Evoq_command)

 Validate a command using its module's validate/1 callback.

 Callbacks

 validate/1

 (optional)

 -callback validate(Command :: map()) -> ok | {error, Reason :: term()}.

 Functions

 get_aggregate_id(Evoq_command)

 -spec get_aggregate_id(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 binary().

Get the aggregate ID.

 get_aggregate_type(Evoq_command)

 -spec get_aggregate_type(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 atom().

Get the aggregate type.

 get_id(Evoq_command)

 -spec get_id(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 binary().

Get the command ID.

 get_metadata(Evoq_command)

 -spec get_metadata(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 map().

Get the command metadata.

 get_payload(Evoq_command)

 -spec get_payload(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 map().

Get the command payload.

 get_type(Evoq_command)

 -spec get_type(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 atom().

Get the command type.

 new(CommandType, AggregateType, AggregateId, Payload)

 -spec new(atom(), atom(), binary(), map()) ->
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}.

Create a new command.

 new(CommandType, AggregateType, AggregateId, Payload, Metadata)

 -spec new(atom(), atom(), binary(), map(), map()) ->
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}.

Create a new command with metadata.

 set_causation_id(CausationId, Evoq_command)

 -spec set_causation_id(binary(),
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}.

Set the causation ID.

 set_correlation_id(CorrelationId, Evoq_command)

 -spec set_correlation_id(binary(),
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}.

Set the correlation ID.

 validate(Evoq_command)

 -spec validate(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 ok | {error, term()}.

Validate a command using its module's validate/1 callback.

evoq_consistency

Consistency modes for command dispatch.
Supports: - eventual: Return immediately after events are persisted - strong: Wait for all handlers to process events - {handlers, [atom()]}: Wait for specific handlers
Uses pg for handler acknowledgment tracking.
[bookmark: Strong_Consistency_Flow]Strong Consistency Flow
1. Command dispatched, events persisted 2. Dispatcher calls wait_for/4 3. Event handlers process events 4. Handlers call acknowledge/4 after processing 5. wait_for/4 returns when all required handlers ack

 Summary

 Functions

 acknowledge(HandlerModule, StoreId, AggregateId, Version)

 Acknowledge that a handler has processed events. Called by event handlers after processing.

 start_pg()

 Start the pg scope for consistency tracking.

 wait_for(StoreId, AggregateId, Version, Opts)

 Wait for handlers to process events up to the given version.

 Functions

 acknowledge(HandlerModule, StoreId, AggregateId, Version)

 -spec acknowledge(atom(), atom(), binary(), non_neg_integer()) -> ok.

Acknowledge that a handler has processed events. Called by event handlers after processing.

 start_pg()

 -spec start_pg() -> ok.

Start the pg scope for consistency tracking.

 wait_for(StoreId, AggregateId, Version, Opts)

 -spec wait_for(atom(), binary(), non_neg_integer(), map()) -> ok | {error, timeout}.

Wait for handlers to process events up to the given version.

evoq_dead_letter

Dead letter store for failed events.
Stores events that could not be processed after all retries. Provides API to: - Store failed events - List dead letter entries - Retry dead letter entries - Delete entries after successful reprocessing
Uses ETS for fast in-memory storage. For production, consider implementing a persistent store.

 Summary

 Functions

 count()

 Get count of dead letter entries.

 delete(Id)

 Delete a dead letter entry.

 get(Id)

 Get a specific dead letter entry by ID.

 list()

 List all dead letter entries.

 list(Filters)

 List dead letter entries with filters. Filters: - handler: Filter by handler module - since: Filter by created_at (milliseconds since epoch) - limit: Max number of entries to return

 retry(Id)

 Retry a dead letter entry. Returns the event and handler for reprocessing.

 start_link()

 Start the dead letter store.

 store(Event, HandlerModule, Evoq_failure_context)

 Store a failed event in the dead letter queue.

 store(Event, HandlerModule, Evoq_failure_context, Reason)

 Store a failed event with optional error reason.

 Functions

 count()

 -spec count() -> non_neg_integer().

Get count of dead letter entries.

 delete(Id)

 -spec delete(binary()) -> ok | {error, not_found}.

Delete a dead letter entry.

 get(Id)

 -spec get(binary()) ->
 {ok,
 #evoq_dead_letter{id :: binary(),
 event :: map(),
 handler_module :: atom(),
 error :: term(),
 failure_context ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 created_at :: integer()}} |
 {error, not_found}.

Get a specific dead letter entry by ID.

 list()

 -spec list() ->
 [#evoq_dead_letter{id :: binary(),
 event :: map(),
 handler_module :: atom(),
 error :: term(),
 failure_context ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 created_at :: integer()}].

List all dead letter entries.

 list(Filters)

 -spec list(map()) ->
 [#evoq_dead_letter{id :: binary(),
 event :: map(),
 handler_module :: atom(),
 error :: term(),
 failure_context ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 created_at :: integer()}].

List dead letter entries with filters. Filters: - handler: Filter by handler module - since: Filter by created_at (milliseconds since epoch) - limit: Max number of entries to return

 retry(Id)

 -spec retry(binary()) -> {ok, map(), atom()} | {error, not_found}.

Retry a dead letter entry. Returns the event and handler for reprocessing.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the dead letter store.

 store(Event, HandlerModule, Evoq_failure_context)

 -spec store(map(),
 atom(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 ok.

Store a failed event in the dead letter queue.

 store(Event, HandlerModule, Evoq_failure_context, Reason)

 -spec store(map(),
 atom(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 term()) ->
 ok.

Store a failed event with optional error reason.

evoq_dispatcher

Command dispatcher with middleware pipeline.
Dispatches commands through the middleware chain to aggregates. Supports idempotency, retries, and consistency guarantees.
[bookmark: Dispatch_Flow]Dispatch Flow
1. Check idempotency cache 2. Create execution context 3. Run before_dispatch middleware 4. Get or start aggregate 5. Execute command on aggregate 6. Run after_dispatch or after_failure middleware 7. Handle consistency (wait for handlers if strong) 8. Cache result for idempotency

 Summary

 Functions

 dispatch(Evoq_command, Opts)

 Dispatch a command through the middleware pipeline.

 Functions

 dispatch(Evoq_command, Opts)

 -spec dispatch(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 {ok, non_neg_integer(), [map()]} | {error, term()}.

Dispatch a command through the middleware pipeline.

evoq_error_handler behaviour

Error handler behavior for evoq.
Defines how to handle errors during event processing. Supports multiple strategies: retry, skip, stop, dead_letter.
[bookmark: Error_Actions]Error Actions
- retry: Retry immediately - {retry, DelayMs}: Retry after delay - skip: Skip this event and continue - stop: Stop the handler - {dead_letter, Reason}: Send to dead letter queue
[bookmark: Default_Behavior]Default Behavior
Without implementing on_error/4, handlers use exponential backoff with max 5 retries, then dead letter.

 Summary

 Types

 error_action/0

 Callbacks

 backoff_ms/1

 max_retries/0

 on_error/4

 Functions

 default_action(HandlerModule, Evoq_failure_context)

 Get the default error action based on retry count.

 handle_error(HandlerModule, Error, Event, Evoq_failure_context, HandlerState)

 Handle an error using the handler's error strategy.

 should_retry(HandlerModule, Evoq_failure_context)

 Check if we should retry based on the failure context.

 Types

 error_action/0

 -type error_action() ::
 retry | {retry, DelayMs :: pos_integer()} | skip | stop | {dead_letter, Reason :: term()}.

 Callbacks

 backoff_ms/1

 (optional)

 -callback backoff_ms(AttemptNumber :: pos_integer()) -> pos_integer().

 max_retries/0

 (optional)

 -callback max_retries() -> pos_integer().

 on_error/4

 (optional)

 -callback on_error(Error :: term(),
 Event :: map(),
 FailureContext ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 State :: term()) ->
 error_action().

 Functions

 default_action(HandlerModule, Evoq_failure_context)

 -spec default_action(atom(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 {dead_letter, max_retries_exceeded} | {retry, pos_integer()}.

Get the default error action based on retry count.

 handle_error(HandlerModule, Error, Event, Evoq_failure_context, HandlerState)

 -spec handle_error(atom(),
 term(),
 map(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 term()) ->
 error_action().

Handle an error using the handler's error strategy.

 should_retry(HandlerModule, Evoq_failure_context)

 -spec should_retry(atom(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 boolean().

Check if we should retry based on the failure context.

evoq_event_handler behaviour

Event handler behavior for evoq.
Event handlers subscribe to event types (NOT streams) and process events as they are published. This is the key scalability improvement over per-stream subscriptions.
[bookmark: Callbacks]Callbacks
Required: - interested_in() -> [binary()] Returns list of event types this handler processes
- init(Config) -> {ok, State} Initialize handler state
- handle_event(EventType, Event, Metadata, State) -> {ok, NewState} | {error, Reason} Process a single event
Optional: - on_error(Error, Event, FailureContext, State) -> error_action() Handle errors during event processing

 Summary

 Callbacks

 handle_event/4

 init/1

 interested_in/0

 on_error/4

 Functions

 get_event_types(Pid)

 Get event types this handler is interested in.

 notify(Pid, EventType, Event, Metadata)

 Notify handler of an event.

 start_link(HandlerModule, Config)

 Start an event handler.

 start_link(HandlerModule, Config, Opts)

 Start an event handler with options.

 Callbacks

 handle_event/4

 -callback handle_event(EventType :: binary(), Event :: map(), Metadata :: map(), State :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 init/1

 -callback init(Config :: map()) -> {ok, State :: term()} | {error, Reason :: term()}.

 interested_in/0

 -callback interested_in() -> [EventType :: binary()].

 on_error/4

 (optional)

 -callback on_error(Error :: term(),
 Event :: map(),
 FailureContext ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 State :: term()) ->
 evoq_error_handler:error_action().

 Functions

 get_event_types(Pid)

 -spec get_event_types(pid()) -> [binary()].

Get event types this handler is interested in.

 notify(Pid, EventType, Event, Metadata)

 -spec notify(pid(), binary(), map(), map()) -> ok | {error, term()}.

Notify handler of an event.

 start_link(HandlerModule, Config)

 -spec start_link(atom(), map()) -> {ok, pid()} | {error, term()}.

Start an event handler.

 start_link(HandlerModule, Config, Opts)

 -spec start_link(atom(), map(), map()) -> {ok, pid()} | {error, term()}.

Start an event handler with options.

evoq_event_handler_sup

Supervisor for event handler workers.
Manages event handlers that subscribe to event types (not streams). Each handler declares interest in specific event types via the interested_in/0 callback.

 Summary

 Functions

 start_handler(HandlerModule)

 Start an event handler worker with default config.

 start_handler(HandlerModule, Config)

 Start an event handler worker with config.

 start_link()

 Start the event handler supervisor.

 stop_handler(HandlerModule)

 Stop an event handler worker.

 Functions

 start_handler(HandlerModule)

 -spec start_handler(atom()) -> {ok, pid()} | {error, term()}.

Start an event handler worker with default config.

 start_handler(HandlerModule, Config)

 -spec start_handler(atom(), map()) -> {ok, pid()} | {error, term()}.

Start an event handler worker with config.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the event handler supervisor.

 stop_handler(HandlerModule)

 -spec stop_handler(atom()) -> ok | {error, term()}.

Stop an event handler worker.

evoq_event_router

Routes events to handlers by event type.
Receives events from reckon-db subscriptions and routes them to interested handlers based on event type.
Key features: - Per-event-type routing (not per-stream) - Event upcasting before delivery - Parallel delivery to multiple handlers - Telemetry for observability

 Summary

 Functions

 route_event(Event, Metadata)

 Route an event to interested handlers.

 route_event(Event, Metadata, Opts)

 Route an event with options.

 route_events(Events, Metadata)

 Route multiple events to interested handlers.

 start_link()

 Start the event router.

 Functions

 route_event(Event, Metadata)

 -spec route_event(map(), map()) -> ok.

Route an event to interested handlers.

 route_event(Event, Metadata, Opts)

 -spec route_event(map(), map(), map()) -> ok.

Route an event with options.

 route_events(Events, Metadata)

 -spec route_events([map()], map()) -> ok.

Route multiple events to interested handlers.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the event router.

evoq_event_store

Wrapper for event store operations via adapter.
Provides a consistent interface for event store operations, delegating to a configured adapter.
[bookmark: Configuration_(Required)]Configuration (Required)
You must configure an adapter in your application config:
 {evoq, [
 {event_store_adapter, evoq_esdb_gater_adapter}
]}
Available adapters: - evoq_esdb_gater_adapter (from reckon_evoq package)

 Summary

 Types

 evoq_event/0

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 Append events to a stream.

 exists(StoreId, StreamId)

 Check if a stream exists.

 get_adapter()

 Get the configured event store adapter. Crashes if no adapter is configured.

 list_streams(StoreId)

 List all streams in the store.

 read(StoreId, StreamId, FromVersion, Count, Direction)

 Read events from a stream.

 read_all(StoreId, StreamId, Direction)

 Read all events from a stream.

 read_all(StoreId, StreamId, BatchSize, Direction)

 Read all events from a stream with batch size.

 read_all_events(StoreId, BatchSize)

 Read all events from all streams, sorted by global position. This is useful for projection rebuild.

 read_events_by_types(StoreId, EventTypes, BatchSize)

 Read all events of specific types from all streams.

 set_adapter(Adapter)

 Set the event store adapter (primarily for testing).

 version(StoreId, StreamId)

 Get the current version of a stream.

 Types

 evoq_event/0

 -type evoq_event() ::
 #evoq_event{event_id :: binary(),
 event_type :: binary(),
 stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 timestamp :: integer(),
 epoch_us :: integer(),
 data_content_type :: binary(),
 metadata_content_type :: binary()}.

 Functions

 append(StoreId, StreamId, ExpectedVersion, Events)

 -spec append(atom(), binary(), integer(), [map()]) -> {ok, non_neg_integer()} | {error, term()}.

Append events to a stream.

 exists(StoreId, StreamId)

 -spec exists(atom(), binary()) -> boolean().

Check if a stream exists.

 get_adapter()

 -spec get_adapter() -> module().

Get the configured event store adapter. Crashes if no adapter is configured.

 list_streams(StoreId)

 -spec list_streams(atom()) -> {ok, [binary()]} | {error, term()}.

List all streams in the store.

 read(StoreId, StreamId, FromVersion, Count, Direction)

 -spec read(atom(), binary(), non_neg_integer(), pos_integer(), forward | backward) ->
 {ok, [map()]} | {error, term()}.

Read events from a stream.

 read_all(StoreId, StreamId, Direction)

 -spec read_all(atom(), binary(), forward | backward) -> {ok, [map()]} | {error, term()}.

Read all events from a stream.

 read_all(StoreId, StreamId, BatchSize, Direction)

 -spec read_all(atom(), binary(), pos_integer(), forward | backward) -> {ok, [map()]} | {error, term()}.

Read all events from a stream with batch size.

 read_all_events(StoreId, BatchSize)

 -spec read_all_events(atom(), pos_integer()) -> {ok, [map()]} | {error, term()}.

Read all events from all streams, sorted by global position. This is useful for projection rebuild.

 read_events_by_types(StoreId, EventTypes, BatchSize)

 -spec read_events_by_types(atom(), [binary()], pos_integer()) -> {ok, [map()]} | {error, term()}.

Read all events of specific types from all streams.
Routes through the adapter which uses native filtering when available. Returns events sorted by epoch_us (global ordering).

 set_adapter(Adapter)

 -spec set_adapter(module()) -> ok.

Set the event store adapter (primarily for testing).

 version(StoreId, StreamId)

 -spec version(atom(), binary()) -> integer().

Get the current version of a stream.

evoq_event_type_registry

Event type registry for evoq.
Maintains a mapping of event types to interested handlers. Uses pg (process groups) for efficient pub/sub routing.
This is the key to per-event-type subscriptions: - Handlers register interest in specific event types - When events are published, only interested handlers receive them - Scales to millions of events without per-stream overhead

 Summary

 Functions

 get_all_event_types()

 Get all registered event types.

 get_handlers(EventType)

 Get all handlers registered for an event type. Returns both pids (from pg) and modules (from internal state).

 register(EventType, HandlerPid)

 Register a handler pid for an event type.

 register_handler(EventType, HandlerModule)

 Register a handler module for an event type (legacy API).

 start_link()

 Start the event type registry.

 unregister(EventType, HandlerPid)

 Unregister a handler pid from an event type.

 unregister_handler(EventType, HandlerModule)

 Unregister a handler module from an event type (legacy API).

 Functions

 get_all_event_types()

 -spec get_all_event_types() -> [binary()].

Get all registered event types.

 get_handlers(EventType)

 -spec get_handlers(binary()) -> [pid() | atom()].

Get all handlers registered for an event type. Returns both pids (from pg) and modules (from internal state).

 register(EventType, HandlerPid)

 -spec register(binary(), pid()) -> ok.

Register a handler pid for an event type.

 register_handler(EventType, HandlerModule)

 -spec register_handler(binary(), atom()) -> ok.

Register a handler module for an event type (legacy API).

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the event type registry.

 unregister(EventType, HandlerPid)

 -spec unregister(binary(), pid()) -> ok.

Unregister a handler pid from an event type.

 unregister_handler(EventType, HandlerModule)

 -spec unregister_handler(binary(), atom()) -> ok.

Unregister a handler module from an event type (legacy API).

evoq_event_upcaster behaviour

Event upcaster behavior for schema evolution.
Upcasters transform old event versions to the current version, enabling backwards-compatible schema changes.
[bookmark: Usage]Usage
1. Create an upcaster module for each event type that needs transformation 2. Implement upcast/2 to transform the event 3. Register the upcaster with evoq_type_provider
[bookmark: Example]Example
 -module(account_created_v1_upcaster).
 -behaviour(evoq_event_upcaster).

 -export([upcast/2, version/0]).

 version() -> 1.

 upcast(#{event_type := <<"AccountCreated">>, data := Data} = Event, _Meta) ->
 %% Add default email if missing (v1 -> v2)
 NewData = maps:put(email, <<"unknown@example.com">>, Data),
 {ok, Event#{data := NewData}}.

 Summary

 Callbacks

 upcast/2

 version/0

 Functions

 chain_upcasters(Rest, Event, Metadata)

 Apply a chain of upcasters to an event. Upcasters are applied in order. Each upcaster transforms the event for the next one in the chain.

 upcast(UpcasterModule, Event, Metadata)

 Apply a single upcaster to an event.

 Callbacks

 upcast/2

 -callback upcast(Event :: map(), Metadata :: map()) ->
 {ok, TransformedEvent :: map()} |
 {ok, TransformedEvent :: map(), NewEventType :: binary()} |
 skip.

 version/0

 (optional)

 -callback version() -> pos_integer().

 Functions

 chain_upcasters(Rest, Event, Metadata)

 -spec chain_upcasters([atom()], map(), map()) -> {ok, map()} | {ok, map(), binary()} | skip.

Apply a chain of upcasters to an event. Upcasters are applied in order. Each upcaster transforms the event for the next one in the chain.

 upcast(UpcasterModule, Event, Metadata)

 -spec upcast(atom(), map(), map()) -> {ok, map()} | {ok, map(), binary()} | skip.

Apply a single upcaster to an event.

evoq_execution_context

Execution context for command dispatch.
Tracks command execution state through the middleware pipeline, including retry attempts, consistency requirements, and metadata.

 Summary

 Functions

 can_retry(Evoq_execution_context)

 Check if retries are available.

 get(Key, Evoq_execution_context)

 Get a value from the context metadata.

 new(Evoq_command)

 Create a new execution context from a command.

 new(Evoq_command, Opts)

 Create a new execution context with options.

 put(Key, Value, Evoq_execution_context)

 Put a value into the context metadata.

 retry(Evoq_execution_context)

 Attempt to retry the command. Returns {ok, NewContext} if retries remain, {error, too_many_attempts} otherwise.

 Functions

 can_retry(Evoq_execution_context)

 -spec can_retry(#evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}) ->
 boolean().

Check if retries are available.

 get(Key, Evoq_execution_context)

 -spec get(atom(),
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}) ->
 term() | undefined.

Get a value from the context metadata.

 new(Evoq_command)

 -spec new(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}.

Create a new execution context from a command.

 new(Evoq_command, Opts)

 -spec new(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}.

Create a new execution context with options.

 put(Key, Value, Evoq_execution_context)

 -spec put(atom(),
 term(),
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}) ->
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}.

Put a value into the context metadata.

 retry(Evoq_execution_context)

 -spec retry(#evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}) ->
 {ok,
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency :: eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()}} |
 {error, too_many_attempts}.

Attempt to retry the command. Returns {ok, NewContext} if retries remain, {error, too_many_attempts} otherwise.

evoq_failure_context

Failure context for tracking retry state.
Maintains state across retry attempts for event handlers. Used to implement sophisticated retry strategies with exponential backoff, jitter, and dead letter handling.

 Summary

 Functions

 get_attempt(Evoq_failure_context)

 Get the current attempt number.

 get_duration(Evoq_failure_context)

 Get the duration since first failure.

 get_error(Evoq_failure_context)

 Get the error that caused the failure.

 get_event(Evoq_failure_context)

 Get the event that failed.

 get_handler(Evoq_failure_context)

 Get the handler module.

 increment(Evoq_failure_context)

 Increment the attempt counter and update timestamp.

 new(HandlerModule, Event, Error)

 Create a new failure context.

 with_stacktrace(Stacktrace, Evoq_failure_context)

 Add stacktrace to the context.

 Functions

 get_attempt(Evoq_failure_context)

 -spec get_attempt(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 pos_integer().

Get the current attempt number.

 get_duration(Evoq_failure_context)

 -spec get_duration(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 non_neg_integer().

Get the duration since first failure.

 get_error(Evoq_failure_context)

 -spec get_error(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 term().

Get the error that caused the failure.

 get_event(Evoq_failure_context)

 -spec get_event(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 map().

Get the event that failed.

 get_handler(Evoq_failure_context)

 -spec get_handler(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 atom().

Get the handler module.

 increment(Evoq_failure_context)

 -spec increment(#evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}.

Increment the attempt counter and update timestamp.

 new(HandlerModule, Event, Error)

 -spec new(atom(), map(), term()) ->
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}.

Create a new failure context.

 with_stacktrace(Stacktrace, Evoq_failure_context)

 -spec with_stacktrace(list(),
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}) ->
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()}.

Add stacktrace to the context.

evoq_idempotency

ETS-based command idempotency store.
Stores command results by command_id for deduplication. Duplicate commands return the cached result instead of re-executing against the aggregate.
Uses ETS with automatic TTL-based expiration.

 Summary

 Functions

 check_and_store(CommandId, ExecuteFun, TTL)

 Check for existing result or execute and store. This is the main entry point for idempotent command execution.

 delete(CommandId)

 Delete a command result.

 lookup(CommandId)

 Lookup a command result.

 start_link()

 Start the idempotency store.

 store(CommandId, Result, TTL)

 Store a command result.

 Functions

 check_and_store(CommandId, ExecuteFun, TTL)

 -spec check_and_store(binary(), fun(() -> term()), pos_integer()) -> term().

Check for existing result or execute and store. This is the main entry point for idempotent command execution.

 delete(CommandId)

 -spec delete(binary()) -> ok.

Delete a command result.

 lookup(CommandId)

 -spec lookup(binary()) -> {ok, term()} | not_found.

Lookup a command result.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the idempotency store.

 store(CommandId, Result, TTL)

 -spec store(binary(), term(), pos_integer()) -> ok.

Store a command result.

evoq_memory_monitor

Memory pressure monitor for adaptive TTL.
Monitors system memory usage and adjusts aggregate TTLs to prevent unbounded memory growth.
Pressure Levels:
	normal - Memory below 70 percent, TTL factor 1.0x
	elevated - Memory 70-85 percent, TTL factor 0.5x
	critical - Memory above 85 percent, TTL factor 0.1x

 Summary

 Types

 pressure_level/0

 Functions

 get_pressure_level()

 Get the current memory pressure level.

 get_stats()

 Get memory monitor statistics.

 get_ttl_factor()

 Get the current TTL factor (0.0 - 1.0).

 start_link()

 Start the memory monitor with default config.

 start_link(Config)

 Start the memory monitor with custom config. Options: - check_interval: Milliseconds between checks (default: 10000) - elevated_threshold: Memory % for elevated level (default: 0.70) - critical_threshold: Memory % for critical level (default: 0.85)

 Types

 pressure_level/0

 -type pressure_level() :: normal | elevated | critical.

 Functions

 get_pressure_level()

 -spec get_pressure_level() -> pressure_level().

Get the current memory pressure level.

 get_stats()

 -spec get_stats() -> map().

Get memory monitor statistics.

 get_ttl_factor()

 -spec get_ttl_factor() -> float().

Get the current TTL factor (0.0 - 1.0).

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the memory monitor with default config.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the memory monitor with custom config. Options: - check_interval: Milliseconds between checks (default: 10000) - elevated_threshold: Memory % for elevated level (default: 0.70) - critical_threshold: Memory % for critical level (default: 0.85)

evoq_middleware behaviour

Middleware behavior for command dispatch pipeline.
Middleware can intercept commands at three stages: - before_dispatch: Before command reaches aggregate - after_dispatch: After successful command execution - after_failure: After command execution fails
Middleware can: - Add data to pipeline assigns - Halt the pipeline (prevents further processing) - Modify the response

 Summary

 Callbacks

 after_dispatch/1

 after_failure/1

 before_dispatch/1

 Functions

 assign(Key, Value, Evoq_pipeline)

 Assign a value to the pipeline.

 chain(Evoq_pipeline, Stage, Middleware)

 Chain a pipeline through a list of middleware modules.

 get_assign(Key, Evoq_pipeline)

 Get an assigned value from the pipeline.

 get_assign(Key, Evoq_pipeline, Default)

 Get an assigned value with a default.

 get_response(Evoq_pipeline)

 Get the pipeline response.

 halt(Evoq_pipeline)

 Halt the pipeline.

 halted(Evoq_pipeline)

 Check if the pipeline is halted.

 respond(Response, Evoq_pipeline)

 Set the pipeline response.

 Callbacks

 after_dispatch/1

 (optional)

 -callback after_dispatch(Pipeline ::
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id ::
 binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id ::
 binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

 after_failure/1

 (optional)

 -callback after_failure(Pipeline ::
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id ::
 binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

 before_dispatch/1

 (optional)

 -callback before_dispatch(Pipeline ::
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id ::
 binary() | undefined,
 correlation_id ::
 binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id ::
 binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

 Functions

 assign(Key, Value, Evoq_pipeline)

 -spec assign(atom(),
 term(),
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

Assign a value to the pipeline.

 chain(Evoq_pipeline, Stage, Middleware)

 -spec chain(#evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()},
 atom(),
 [atom()]) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

Chain a pipeline through a list of middleware modules.

 get_assign(Key, Evoq_pipeline)

 -spec get_assign(atom(),
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 term() | undefined.

Get an assigned value from the pipeline.

 get_assign(Key, Evoq_pipeline, Default)

 -spec get_assign(atom(),
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()},
 term()) ->
 term().

Get an assigned value with a default.

 get_response(Evoq_pipeline)

 -spec get_response(#evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong |
 {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 term().

Get the pipeline response.

 halt(Evoq_pipeline)

 -spec halt(#evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

Halt the pipeline.

 halted(Evoq_pipeline)

 -spec halted(#evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 boolean().

Check if the pipeline is halted.

 respond(Response, Evoq_pipeline)

 -spec respond(term(),
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}) ->
 #evoq_pipeline{command ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 context ::
 #evoq_execution_context{command_id :: binary(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined,
 aggregate_id :: binary(),
 aggregate_type :: atom(),
 expected_version :: integer(),
 retry_attempts :: non_neg_integer(),
 consistency ::
 eventual | strong | {handlers, [atom()]},
 timeout :: pos_integer(),
 metadata :: map()},
 assigns :: map(),
 halted :: boolean(),
 response :: term()}.

Set the pipeline response.

evoq_pm_instance

Process manager instance GenServer.
Represents a single running instance of a process manager (saga). Each instance: - Has a unique process ID (correlation ID) - Maintains its own state - Handles events and dispatches commands - Supports saga compensation on failures

 Summary

 Functions

 compensate(Pid, Evoq_command)

 Trigger compensation for a failed command.

 get_state(Pid)

 Get the current state.

 handle_event(Pid, Event, Metadata)

 Handle an event.

 start_link(PMModule, ProcessId, Config)

 Start a PM instance.

 Functions

 compensate(Pid, Evoq_command)

 -spec compensate(pid(),
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 {ok,
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}]} |
 skip.

Trigger compensation for a failed command.

 get_state(Pid)

 -spec get_state(pid()) -> {ok, term()}.

Get the current state.

 handle_event(Pid, Event, Metadata)

 -spec handle_event(pid(), map(), map()) -> ok | {error, term()}.

Handle an event.

 start_link(PMModule, ProcessId, Config)

 -spec start_link(atom(), binary(), map()) -> {ok, pid()} | {error, term()}.

Start a PM instance.

evoq_pm_instance_sup

Supervisor for process manager instances.
Uses simple_one_for_one strategy for dynamic PM instance creation.

 Summary

 Functions

 start_instance(PMModule, ProcessId, Config)

 Start a new PM instance.

 start_link()

 Start the PM instance supervisor.

 stop_instance(Pid)

 Stop a PM instance.

 Functions

 start_instance(PMModule, ProcessId, Config)

 -spec start_instance(atom(), binary(), map()) -> {ok, pid()} | {error, term()}.

Start a new PM instance.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the PM instance supervisor.

 stop_instance(Pid)

 -spec stop_instance(pid()) -> ok | {error, term()}.

Stop a PM instance.

evoq_pm_router

Routes events to process manager instances.
Correlates events with process manager instances based on the correlate/2 callback and routes them accordingly.
[bookmark: Correlation_Flow]Correlation Flow
1. Event received 2. Find all PM modules interested in this event type 3. For each PM, call correlate/2 to determine process instance 4. Route to existing instance or start new one

 Summary

 Functions

 get_instance(EventType, ProcessId)

 Get a PM instance by event type and process ID.

 register_instance(EventType, ProcessId, Pid)

 Register a PM instance for an event type.

 register_pm(PMModule)

 Register a process manager module.

 route_event(Event, Metadata)

 Route an event to process manager instances.

 start_link()

 Start the PM router.

 unregister_instance(EventType, ProcessId)

 Unregister a PM instance.

 unregister_pm(PMModule)

 Unregister a process manager module.

 Functions

 get_instance(EventType, ProcessId)

 -spec get_instance(binary(), binary()) -> {ok, pid()} | {error, not_found}.

Get a PM instance by event type and process ID.

 register_instance(EventType, ProcessId, Pid)

 -spec register_instance(binary(), binary(), pid()) -> ok.

Register a PM instance for an event type.

 register_pm(PMModule)

 -spec register_pm(atom()) -> ok.

Register a process manager module.

 route_event(Event, Metadata)

 -spec route_event(map(), map()) -> ok.

Route an event to process manager instances.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the PM router.

 unregister_instance(EventType, ProcessId)

 -spec unregister_instance(binary(), binary()) -> ok.

Unregister a PM instance.

 unregister_pm(PMModule)

 -spec unregister_pm(atom()) -> ok.

Unregister a process manager module.

evoq_pm_sup

Supervisor for process manager instances.
Process managers (sagas) coordinate long-running business processes that span multiple aggregates. Each PM instance is correlated by a process_id derived from event metadata.

 Summary

 Functions

 start_link()

 Start the process manager supervisor.

 start_pm_instance(PMModule, ProcessId)

 Start a process manager instance.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the process manager supervisor.

 start_pm_instance(PMModule, ProcessId)

 -spec start_pm_instance(atom(), binary()) -> {ok, pid()} | {error, term()}.

Start a process manager instance.

evoq_process_manager behaviour

Process manager (saga) behavior for evoq.
Process managers coordinate long-running business processes that span multiple aggregates. They: - Subscribe to events by type - Correlate events to process instances - Dispatch commands based on events - Support compensation for saga rollback
[bookmark: Callbacks]Callbacks
Required: - interested_in() -> [binary()] Event types this PM processes
- correlate(Event, Metadata) -> correlation_result() Determines process instance for an event
- handle(State, Event, Metadata) -> handle_result() Process the event and optionally dispatch commands
- apply(State, Event) -> NewState Apply event to process manager state
Optional: - compensate(State, FailedCommand) -> compensation_result() Generate compensating commands for saga rollback
[bookmark: Example]Example
 -module(order_fulfillment_pm).
 -behaviour(evoq_process_manager).

 interested_in() -> [<<"OrderPlaced">>, <<"PaymentReceived">>, <<"ItemShipped">>].

 correlate(#{data := #{order_id := OrderId}}, _Meta) ->
 {continue, OrderId}.

 handle(State, #{event_type := <<"OrderPlaced">>} = Event, _Meta) ->
 %% Start payment process
 Cmd = evoq_command:new(process_payment, payment, OrderId, #{...}),
 {ok, State, [Cmd]}.

 Summary

 Types

 compensation_result/0

 correlation_result/0

 handle_result/0

 Callbacks

 apply/2

 compensate/2

 correlate/2

 handle/3

 init/1

 interested_in/0

 Functions

 get_event_types(PMModule)

 Get event types this process manager is interested in.

 start(PMModule, Config)

 Register a process manager (start subscription).

 start(PMModule, Config, Opts)

 Register a process manager with options. This registers the PM module with the router so it receives events.

 Types

 compensation_result/0

 -type compensation_result() ::
 {ok,
 CompensatingCommands ::
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}]} |
 skip.

 correlation_result/0

 -type correlation_result() ::
 {start, ProcessId :: binary()} |
 {continue, ProcessId :: binary()} |
 {stop, ProcessId :: binary()} |
 false.

 handle_result/0

 -type handle_result() ::
 {ok, NewState :: term()} |
 {ok,
 NewState :: term(),
 Commands ::
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}]} |
 {error, Reason :: term()}.

 Callbacks

 apply/2

 -callback apply(State :: term(), Event :: map()) -> NewState :: term().

 compensate/2

 (optional)

 -callback compensate(State :: term(),
 FailedCommand ::
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 compensation_result().

 correlate/2

 -callback correlate(Event :: map(), Metadata :: map()) -> correlation_result().

 handle/3

 -callback handle(State :: term(), Event :: map(), Metadata :: map()) -> handle_result().

 init/1

 (optional)

 -callback init(ProcessId :: binary()) -> {ok, State :: term()}.

 interested_in/0

 -callback interested_in() -> [EventType :: binary()].

 Functions

 get_event_types(PMModule)

 -spec get_event_types(atom()) -> [binary()].

Get event types this process manager is interested in.

 start(PMModule, Config)

 -spec start(atom(), map()) -> ok.

Register a process manager (start subscription).

 start(PMModule, Config, Opts)

 -spec start(atom(), map(), map()) -> ok.

Register a process manager with options. This registers the PM module with the router so it receives events.

evoq_projection behaviour

Projection behavior for evoq.
Projections transform events into read model updates. They subscribe to event types and maintain query-optimized views.
[bookmark: Design_Principles]Design Principles
- Projections do all calculations (events -> read model) - Read models are simple key-value lookups (no joins) - Projections are idempotent (can be replayed safely) - Checkpoints track progress for resume after restart
[bookmark: Callbacks]Callbacks
Required: - interested_in() -> [binary()] Event types this projection handles
- init(Config) -> {ok, State, ReadModel} Initialize projection with read model
- project(Event, Metadata, State, ReadModel) -> {ok, NewState, NewReadModel} | {error, Reason} Transform event into read model updates
Optional: - on_error(Error, Event, FailureContext, State) -> error_action() Handle projection errors
[bookmark: Example]Example
 -module(order_summary_projection).
 -behaviour(evoq_projection).

 interested_in() -> [<<"OrderPlaced">>, <<"OrderShipped">>].

 init(_Config) ->
 {ok, RM} = evoq_read_model:new(evoq_read_model_ets, #{}),
 {ok, #{}, RM}.

 project(#{event_type := <<"OrderPlaced">>, data := Data}, Meta, State, RM) ->
 OrderId = maps:get(order_id, Data),
 Summary = #{status => placed, items => maps:get(items, Data, [])},
 {ok, RM2} = evoq_read_model:put(OrderId, Summary, RM),
 {ok, State, RM2}.

 Summary

 Callbacks

 init/1

 interested_in/0

 on_error/4

 project/4

 Functions

 get_checkpoint(Pid)

 Get the current checkpoint position.

 get_event_types(Pid)

 Get event types this projection handles.

 get_read_model(Pid)

 Get the read model instance.

 notify(Pid, EventType, Event, Metadata)

 Notify projection of an event.

 rebuild(Pid)

 Rebuild the projection from scratch. Clears the read model and replays all events.

 rebuild(Pid, Opts)

 Rebuild with options.

 start_link(ProjectionModule, Config)

 Start a projection.

 start_link(ProjectionModule, Config, Opts)

 Start a projection with options. Options: - checkpoint_store: Module for persistent checkpoint storage - start_from: origin | latest | {position, N}

 Callbacks

 init/1

 -callback init(Config :: map()) ->
 {ok, State :: term(), ReadModel :: evoq_read_model:read_model()} |
 {error, Reason :: term()}.

 interested_in/0

 -callback interested_in() -> [EventType :: binary()].

 on_error/4

 (optional)

 -callback on_error(Error :: term(),
 Event :: map(),
 FailureContext ::
 #evoq_failure_context{handler_module :: atom(),
 event :: map(),
 error :: term(),
 attempt_number :: pos_integer(),
 first_failure_at :: integer(),
 last_failure_at :: integer(),
 stacktrace :: list()},
 State :: term()) ->
 evoq_error_handler:error_action().

 project/4

 -callback project(Event :: map(),
 Metadata :: map(),
 State :: term(),
 ReadModel :: evoq_read_model:read_model()) ->
 {ok, NewState :: term(), NewReadModel :: evoq_read_model:read_model()} |
 {skip, State :: term(), ReadModel :: evoq_read_model:read_model()} |
 {error, Reason :: term()}.

 Functions

 get_checkpoint(Pid)

 -spec get_checkpoint(pid()) -> non_neg_integer().

Get the current checkpoint position.

 get_event_types(Pid)

 -spec get_event_types(pid()) -> [binary()].

Get event types this projection handles.

 get_read_model(Pid)

 -spec get_read_model(pid()) -> evoq_read_model:read_model().

Get the read model instance.

 notify(Pid, EventType, Event, Metadata)

 -spec notify(pid(), binary(), map(), map()) -> ok | {error, term()}.

Notify projection of an event.

 rebuild(Pid)

 -spec rebuild(pid()) -> ok | {error, term()}.

Rebuild the projection from scratch. Clears the read model and replays all events.

 rebuild(Pid, Opts)

 -spec rebuild(pid(), map()) -> ok | {error, term()}.

Rebuild with options.

 start_link(ProjectionModule, Config)

 -spec start_link(atom(), map()) -> {ok, pid()} | {error, term()}.

Start a projection.

 start_link(ProjectionModule, Config, Opts)

 -spec start_link(atom(), map(), map()) -> {ok, pid()} | {error, term()}.

Start a projection with options. Options: - checkpoint_store: Module for persistent checkpoint storage - start_from: origin | latest | {position, N}

evoq_read_model behaviour

Read model store behavior for evoq.
Provides an abstract interface for read model storage. Projections use this behavior to persist query-optimized data.
[bookmark: Design_Principles]Design Principles
- Read models are optimized for queries (no joins, no calculations) - All calculations happen in projections, not queries - Read models can be rebuilt from events at any time
[bookmark: Callbacks]Callbacks
Required: - init(Config) -> {ok, State} - get(Key, State) -> {ok, Value} | {error, not_found} - put(Key, Value, State) -> {ok, NewState} - delete(Key, State) -> {ok, NewState}
Optional: - list(Prefix, State) -> {ok, [{Key, Value}]} - clear(State) -> {ok, NewState}

 Summary

 Types

 read_model/0

 Callbacks

 clear/1

 delete/2

 get/2

 init/1

 list/2

 put/3

 Functions

 clear(Read_model)

 Clear all data from the read model.

 delete(Key, Read_model)

 Delete a value from the read model.

 get(Key, Read_model)

 Get a value from the read model.

 get_checkpoint(Read_model)

 Get the current checkpoint position.

 list(Prefix, Read_model)

 List all key-value pairs matching a prefix.

 new(Module, Config)

 Create a new read model instance.

 put(Key, Value, Read_model)

 Put a value into the read model.

 set_checkpoint(Position, RM)

 Set the checkpoint position.

 Types

 read_model/0

 -opaque read_model()

 Callbacks

 clear/1

 (optional)

 -callback clear(State :: term()) -> {ok, NewState :: term()} | {error, Reason :: term()}.

 delete/2

 -callback delete(Key :: term(), State :: term()) -> {ok, NewState :: term()} | {error, Reason :: term()}.

 get/2

 -callback get(Key :: term(), State :: term()) ->
 {ok, Value :: term()} | {error, not_found} | {error, Reason :: term()}.

 init/1

 -callback init(Config :: map()) -> {ok, State :: term()} | {error, Reason :: term()}.

 list/2

 (optional)

 -callback list(Prefix :: term(), State :: term()) ->
 {ok, [{Key :: term(), Value :: term()}]} | {error, Reason :: term()}.

 put/3

 -callback put(Key :: term(), Value :: term(), State :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 Functions

 clear(Read_model)

 -spec clear(read_model()) -> {ok, read_model()} | {error, term()}.

Clear all data from the read model.

 delete(Key, Read_model)

 -spec delete(term(), read_model()) -> {ok, read_model()} | {error, term()}.

Delete a value from the read model.

 get(Key, Read_model)

 -spec get(term(), read_model()) -> {ok, term()} | {error, not_found | term()}.

Get a value from the read model.

 get_checkpoint(Read_model)

 -spec get_checkpoint(read_model()) -> non_neg_integer().

Get the current checkpoint position.

 list(Prefix, Read_model)

 -spec list(term(), read_model()) -> {ok, [{term(), term()}]} | {error, term()}.

List all key-value pairs matching a prefix.

 new(Module, Config)

 -spec new(atom(), map()) -> {ok, read_model()} | {error, term()}.

Create a new read model instance.

 put(Key, Value, Read_model)

 -spec put(term(), term(), read_model()) -> {ok, read_model()} | {error, term()}.

Put a value into the read model.

 set_checkpoint(Position, RM)

 -spec set_checkpoint(non_neg_integer(), read_model()) -> read_model().

Set the checkpoint position.

evoq_read_model_ets

ETS-based read model store implementation.
Default in-memory implementation of evoq_read_model behavior. Suitable for development, testing, and small-scale deployments.
[bookmark: Configuration]Configuration
- name: ETS table name (default: auto-generated) - type: ETS table type (default: set) - access: public | protected | private (default: protected)

 Summary

 Functions

 clear(State)

 Clear all data from the table.

 delete(Key, State)

 Delete a key.

 get(Key, State)

 Get a value by key.

 init(Config)

 Initialize ETS-backed read model.

 list(Prefix, State)

 List all key-value pairs with matching prefix. For ETS, prefix matching works on tuple/list keys.

 put(Key, Value, State)

 Store a key-value pair.

 Functions

 clear(State)

 -spec clear(#state{table :: ets:tid()}) -> {ok, #state{table :: ets:tid()}}.

Clear all data from the table.

 delete(Key, State)

 -spec delete(term(), #state{table :: ets:tid()}) -> {ok, #state{table :: ets:tid()}}.

Delete a key.

 get(Key, State)

 -spec get(term(), #state{table :: ets:tid()}) -> {ok, term()} | {error, not_found}.

Get a value by key.

 init(Config)

 -spec init(map()) -> {ok, #state{table :: ets:tid()}} | {error, term()}.

Initialize ETS-backed read model.

 list(Prefix, State)

 -spec list(term(), #state{table :: ets:tid()}) -> {ok, [{term(), term()}]}.

List all key-value pairs with matching prefix. For ETS, prefix matching works on tuple/list keys.

 put(Key, Value, State)

 -spec put(term(), term(), #state{table :: ets:tid()}) -> {ok, #state{table :: ets:tid()}}.

Store a key-value pair.

evoq_retry_strategy

Retry strategies for error handling.
Provides various backoff strategies: - immediate: No delay between retries - fixed: Constant delay - exponential: Doubles each time up to max - exponential_jitter: Exponential with random jitter
[bookmark: Usage]Usage
 %% Get delay for attempt 3 with exponential backoff
 Delay = evoq_retry_strategy:next_delay({exponential, 100, 30000}, 3).
 %% Returns approximately 400ms (100 * 2^2)

 Summary

 Types

 strategy/0

 Functions

 exponential(BaseMs, MaxMs)

 Create an exponential backoff strategy.

 exponential_jitter(BaseMs, MaxMs)

 Create an exponential backoff with jitter strategy.

 fixed(DelayMs)

 Create a fixed delay retry strategy.

 immediate()

 Create an immediate retry strategy.

 next_delay(_, Attempt)

 Calculate the next delay for a given attempt.

 Types

 strategy/0

 -type strategy() ::
 immediate |
 {fixed, DelayMs :: pos_integer()} |
 {exponential, BaseMs :: pos_integer(), MaxMs :: pos_integer()} |
 {exponential_jitter, BaseMs :: pos_integer(), MaxMs :: pos_integer()}.

 Functions

 exponential(BaseMs, MaxMs)

 -spec exponential(pos_integer(), pos_integer()) -> {exponential, pos_integer(), pos_integer()}.

Create an exponential backoff strategy.

 exponential_jitter(BaseMs, MaxMs)

 -spec exponential_jitter(pos_integer(), pos_integer()) ->
 {exponential_jitter, pos_integer(), pos_integer()}.

Create an exponential backoff with jitter strategy.

 fixed(DelayMs)

 -spec fixed(pos_integer()) -> {fixed, pos_integer()}.

Create a fixed delay retry strategy.

 immediate()

 -spec immediate() -> immediate.

Create an immediate retry strategy.

 next_delay(_, Attempt)

 -spec next_delay(strategy(), pos_integer()) -> pos_integer().

Calculate the next delay for a given attempt.

evoq_router

Command router for evoq.
Routes commands to the appropriate aggregate based on aggregate_type and aggregate_id. Uses the dispatcher for middleware and execution.

 Summary

 Functions

 dispatch(Evoq_command)

 Dispatch a command with default options.

 dispatch(Evoq_command, Opts)

 Dispatch a command with options.

 Functions

 dispatch(Evoq_command)

 -spec dispatch(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 {ok, non_neg_integer(), [map()]} | {error, term()}.

Dispatch a command with default options.

 dispatch(Evoq_command, Opts)

 -spec dispatch(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 {ok, non_neg_integer(), [map()]} | {error, term()}.

Dispatch a command with options.
Options: - consistency: eventual | strong | {handlers, [atom()]} - timeout: pos_integer() (milliseconds) - expected_version: integer() (-1 for any) - middleware: [atom()] (additional middleware)

evoq_saga_compensation

Saga compensation for rollback transactions.
Provides utilities for implementing compensating transactions in process managers (sagas).
[bookmark: Compensation_Flow]Compensation Flow
1. Saga dispatches commands: [Cmd1, Cmd2, Cmd3] 2. Cmd3 fails 3. Saga calls compensate/2 for rollback 4. Compensation generates: [Compensate2, Compensate1] 5. Compensating commands executed in reverse order
[bookmark: Example]Example
 -module(order_saga).
 -behaviour(evoq_process_manager).

 compensate(State, #evoq_command{command_type = ship_order}) ->
 %% Compensate shipping by canceling shipment
 CancelCmd = evoq_command:new(cancel_shipment, shipping, ...),
 {ok, [CancelCmd]};

 compensate(State, #evoq_command{command_type = charge_payment}) ->
 %% Compensate payment by issuing refund
 RefundCmd = evoq_command:new(issue_refund, payment, ...),
 {ok, [RefundCmd]};

 compensate(_State, _Cmd) ->
 skip. %% No compensation needed

 Summary

 Functions

 build_compensation_chain(PMModule, PMState)

 Build a chain of compensating commands for all executed commands. Returns commands in reverse order (last executed = first compensated).

 execute_compensation(PMPid, Evoq_command, Opts)

 Execute compensation for a failed command. Generates and dispatches compensating commands.

 get_executed_commands(State)

 Get all executed commands from saga state.

 record_command(Evoq_command, State)

 Record an executed command in the saga state. Used for tracking commands for compensation.

 Functions

 build_compensation_chain(PMModule, PMState)

 -spec build_compensation_chain(atom(), term()) ->
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}].

Build a chain of compensating commands for all executed commands. Returns commands in reverse order (last executed = first compensated).

 execute_compensation(PMPid, Evoq_command, Opts)

 -spec execute_compensation(pid(),
 #evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 {ok, [{ok, non_neg_integer(), [map()]} | {error, term()}]} | skip.

Execute compensation for a failed command. Generates and dispatches compensating commands.

 get_executed_commands(State)

 -spec get_executed_commands(term()) ->
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}].

Get all executed commands from saga state.

 record_command(Evoq_command, State)

 -spec record_command(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 term()) ->
 term().

Record an executed command in the saga state. Used for tracking commands for compensation.

evoq_snapshot_adapter behaviour

Snapshot store adapter behavior for evoq
Defines the interface for snapshot operations. Snapshots are used to optimize aggregate reconstruction by storing periodic state.

 Summary

 Callbacks

 delete/2

 delete_at_version/3

 list_versions/2

 read/2

 read_at_version/3

 save/5

 Callbacks

 delete/2

 -callback delete(StoreId :: atom(), StreamId :: binary()) -> ok | {error, term()}.

 delete_at_version/3

 -callback delete_at_version(StoreId :: atom(), StreamId :: binary(), Version :: non_neg_integer()) ->
 ok | {error, term()}.

 list_versions/2

 -callback list_versions(StoreId :: atom(), StreamId :: binary()) ->
 {ok, [non_neg_integer()]} | {error, term()}.

 read/2

 -callback read(StoreId :: atom(), StreamId :: binary()) ->
 {ok, evoq_snapshot()} | {error, not_found | term()}.

 read_at_version/3

 -callback read_at_version(StoreId :: atom(), StreamId :: binary(), Version :: non_neg_integer()) ->
 {ok, evoq_snapshot()} | {error, not_found | term()}.

 save/5

 -callback save(StoreId :: atom(),
 StreamId :: binary(),
 Version :: non_neg_integer(),
 Data :: map() | binary(),
 Metadata :: map()) ->
 ok | {error, term()}.

evoq_snapshot_store

Wrapper for snapshot operations via adapter.
Provides a consistent interface for snapshot operations, delegating to a configured adapter.
[bookmark: Configuration_(Required)]Configuration (Required)
You must configure an adapter in your application config:
 {evoq, [
 {snapshot_store_adapter, evoq_esdb_gater_adapter}
]}

 Summary

 Types

 evoq_snapshot/0

 Functions

 delete(StoreId, StreamId)

 Delete all snapshots for a stream.

 delete(StoreId, StreamId, Version)

 Delete a snapshot at a specific version.

 get_adapter()

 Get the configured snapshot store adapter. Crashes if no adapter is configured.

 load(StoreId, StreamId)

 Load the latest snapshot for a stream.

 load(StoreId, StreamId, Version)

 Load a snapshot at a specific version.

 save(StoreId, StreamId, Version, Data, Metadata)

 Save a snapshot.

 set_adapter(Adapter)

 Set the snapshot store adapter (primarily for testing).

 Types

 evoq_snapshot/0

 -type evoq_snapshot() ::
 #evoq_snapshot{stream_id :: binary(),
 version :: non_neg_integer(),
 data :: map() | binary(),
 metadata :: map(),
 timestamp :: integer()}.

 Functions

 delete(StoreId, StreamId)

 -spec delete(atom(), binary()) -> ok | {error, term()}.

Delete all snapshots for a stream.

 delete(StoreId, StreamId, Version)

 -spec delete(atom(), binary(), non_neg_integer()) -> ok | {error, term()}.

Delete a snapshot at a specific version.

 get_adapter()

 -spec get_adapter() -> module().

Get the configured snapshot store adapter. Crashes if no adapter is configured.

 load(StoreId, StreamId)

 -spec load(atom(), binary()) -> {ok, map()} | {error, not_found | term()}.

Load the latest snapshot for a stream.

 load(StoreId, StreamId, Version)

 -spec load(atom(), binary(), non_neg_integer()) -> {ok, map()} | {error, not_found | term()}.

Load a snapshot at a specific version.

 save(StoreId, StreamId, Version, Data, Metadata)

 -spec save(atom(), binary(), non_neg_integer(), term(), map()) -> ok | {error, term()}.

Save a snapshot.

 set_adapter(Adapter)

 -spec set_adapter(module()) -> ok.

Set the snapshot store adapter (primarily for testing).

evoq_subscription_adapter behaviour

Subscription adapter behavior for evoq
Defines the interface for subscription operations. Subscriptions enable event handlers to receive events as they are appended.
Supports multiple subscription types: - stream: Subscribe to events from a specific stream - event_type: Subscribe to events of a specific type (across all streams) - event_pattern: Subscribe using wildcard patterns - event_payload: Subscribe based on event payload content

 Summary

 Types

 start_from/0

 Callbacks

 ack/4

 get_by_name/2

 get_checkpoint/2

 list/1

 subscribe/5

 unsubscribe/2

 Types

 start_from/0

 -type start_from() :: origin | current | {position, non_neg_integer()}.

 Callbacks

 ack/4

 -callback ack(StoreId :: atom(),
 SubscriptionName :: binary(),
 StreamId :: binary() | undefined,
 Position :: non_neg_integer()) ->
 ok | {error, term()}.

 get_by_name/2

 -callback get_by_name(StoreId :: atom(), SubscriptionName :: binary()) ->
 {ok, evoq_subscription()} | {error, not_found | term()}.

 get_checkpoint/2

 -callback get_checkpoint(StoreId :: atom(), SubscriptionName :: binary()) ->
 {ok, non_neg_integer()} | {error, not_found | term()}.

 list/1

 -callback list(StoreId :: atom()) -> {ok, [evoq_subscription()]} | {error, term()}.

 subscribe/5

 -callback subscribe(StoreId :: atom(),
 Type :: evoq_subscription_type(),
 Selector :: binary() | map(),
 SubscriptionName :: binary(),
 Opts :: map()) ->
 {ok, binary()} | {error, term()}.

 unsubscribe/2

 -callback unsubscribe(StoreId :: atom(), SubscriptionId :: binary()) -> ok | {error, term()}.

evoq_sup

Top-level supervisor for evoq.
Supervises: - evoq_aggregates_sup: Partitioned aggregate supervision - evoq_event_handler_sup: Event handler workers - evoq_pm_sup: Process manager instances - evoq_subscription_manager: reckon-db subscription management

 Summary

 Functions

 start_link()

 Start the top-level supervisor.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the top-level supervisor.

evoq_telemetry

Telemetry utilities for evoq.
Provides helper functions for attaching telemetry handlers and formatting telemetry events.
[bookmark: Event_Naming_Convention]Event Naming Convention
All events follow the pattern: [evoq, component, action, stage] where stage is one of: start | stop | exception
[bookmark: Example_Usage]Example Usage
 %% Attach a handler for all aggregate events
 evoq_telemetry:attach_aggregate_handlers(my_handler, fun handle_event/4).

 %% Attach a handler for specific events
 evoq_telemetry:attach([evoq, aggregate, execute, start], my_handler, fun handle_event/4).

 Summary

 Functions

 attach(EventName, HandlerId, HandlerFun)

 Attach a telemetry handler.

 attach(EventName, HandlerId, HandlerFun, Config)

 Attach a telemetry handler with config.

 attach_aggregate_handlers(HandlerIdPrefix, HandlerFun)

 Attach handlers for all aggregate telemetry events.

 attach_all_handlers(HandlerIdPrefix, HandlerFun)

 Attach handlers for ALL evoq telemetry events.

 attach_handler_handlers(HandlerIdPrefix, HandlerFun)

 Attach handlers for all event handler telemetry events.

 attach_pm_handlers(HandlerIdPrefix, HandlerFun)

 Attach handlers for all process manager telemetry events.

 attach_projection_handlers(HandlerIdPrefix, HandlerFun)

 Attach handlers for all projection telemetry events.

 detach(HandlerId)

 Detach a telemetry handler.

 list_handlers()

 List all attached handlers.

 span(EventPrefix, Metadata, Fun)

 Execute a function within a telemetry span. Emits start and stop (or exception) events.

 Functions

 attach(EventName, HandlerId, HandlerFun)

 -spec attach(atom() | [atom(), ...], atom(), fun(([atom(), ...], map(), map(), term()) -> term())) ->
 ok | {error, already_exists}.

Attach a telemetry handler.

 attach(EventName, HandlerId, HandlerFun, Config)

 -spec attach(atom() | [atom(), ...],
 atom(),
 fun(([atom(), ...], map(), map(), term()) -> term()),
 map()) ->
 ok | {error, already_exists}.

Attach a telemetry handler with config.

 attach_aggregate_handlers(HandlerIdPrefix, HandlerFun)

 -spec attach_aggregate_handlers(atom(), fun()) -> ok.

Attach handlers for all aggregate telemetry events.

 attach_all_handlers(HandlerIdPrefix, HandlerFun)

 -spec attach_all_handlers(atom(), fun()) -> ok.

Attach handlers for ALL evoq telemetry events.

 attach_handler_handlers(HandlerIdPrefix, HandlerFun)

 -spec attach_handler_handlers(atom(), fun()) -> ok.

Attach handlers for all event handler telemetry events.

 attach_pm_handlers(HandlerIdPrefix, HandlerFun)

 -spec attach_pm_handlers(atom(), fun()) -> ok.

Attach handlers for all process manager telemetry events.

 attach_projection_handlers(HandlerIdPrefix, HandlerFun)

 -spec attach_projection_handlers(atom(), fun()) -> ok.

Attach handlers for all projection telemetry events.

 detach(HandlerId)

 -spec detach(atom()) -> ok | {error, not_found}.

Detach a telemetry handler.

 list_handlers()

 -spec list_handlers() -> [map()].

List all attached handlers.

 span(EventPrefix, Metadata, Fun)

 -spec span([atom()], map(), fun(() -> term())) -> term().

Execute a function within a telemetry span. Emits start and stop (or exception) events.

evoq_test_assertions

Test assertion helpers for evoq.
Provides macros and functions for testing CQRS/ES applications.
[bookmark: Usage]Usage
 -include_lib("evoq/include/evoq_test.hrl").

 my_test() ->
 Command = #evoq_command{...},
 ?assert_command_succeeds(Command),
 ?assert_events_produced([<<"OrderCreated">>]).

 Summary

 Functions

 assert_aggregate_state(AggregateType, AggregateId, Predicate)

 Assert aggregate state matches expected.

 assert_command_fails(Evoq_command)

 Assert that a command dispatch fails.

 assert_command_fails(Evoq_command, Opts)

 Assert that a command dispatch fails with options.

 assert_command_fails_with(Evoq_command, ExpectedError)

 Assert that a command fails with a specific error.

 assert_command_succeeds(Evoq_command)

 Assert that a command dispatch succeeds.

 assert_command_succeeds(Evoq_command, Opts)

 Assert that a command dispatch succeeds with options.

 assert_commands_dispatched(ExpectedTypes, DispatchedCommands)

 Assert that commands were dispatched by a PM. Note: This requires capturing commands during test execution.

 assert_compensation_triggered(ExpectedType, CompensatingCommands)

 Assert compensation was triggered.

 assert_event_produced(EventType, Events)

 Assert that a specific event type was produced.

 assert_events_produced(ExpectedTypes, Events)

 Assert that specific event types were produced.

 assert_no_events_produced(Events)

 Assert that no events were produced.

 assert_read_model_contains(ReadModel, Key, ExpectedValue)

 Assert read model contains expected value.

 assert_read_model_empty(ReadModel)

 Assert read model is empty.

 assert_telemetry_emitted(EventName, CollectedEvents)

 Assert that a telemetry event was emitted.

 collect_telemetry(EventName, Fun)

 Collect telemetry events during a function execution.

 get_aggregate_state(AggregateType, AggregateId)

 Get aggregate state for testing.

 Functions

 assert_aggregate_state(AggregateType, AggregateId, Predicate)

 -spec assert_aggregate_state(atom(), binary(), fun((term()) -> boolean())) -> ok.

Assert aggregate state matches expected.

 assert_command_fails(Evoq_command)

 -spec assert_command_fails(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 {error, term()}.

Assert that a command dispatch fails.

 assert_command_fails(Evoq_command, Opts)

 -spec assert_command_fails(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 {error, term()}.

Assert that a command dispatch fails with options.

 assert_command_fails_with(Evoq_command, ExpectedError)

 -spec assert_command_fails_with(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 term()) ->
 ok.

Assert that a command fails with a specific error.

 assert_command_succeeds(Evoq_command)

 -spec assert_command_succeeds(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}) ->
 {ok, non_neg_integer(), [map()]}.

Assert that a command dispatch succeeds.

 assert_command_succeeds(Evoq_command, Opts)

 -spec assert_command_succeeds(#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined},
 map()) ->
 {ok, non_neg_integer(), [map()]}.

Assert that a command dispatch succeeds with options.

 assert_commands_dispatched(ExpectedTypes, DispatchedCommands)

 -spec assert_commands_dispatched([atom()], [term()]) -> ok.

Assert that commands were dispatched by a PM. Note: This requires capturing commands during test execution.

 assert_compensation_triggered(ExpectedType, CompensatingCommands)

 -spec assert_compensation_triggered(atom(),
 [#evoq_command{command_id :: binary() | undefined,
 command_type :: atom() | undefined,
 aggregate_type :: atom() | undefined,
 aggregate_id :: binary() | undefined,
 payload :: map(),
 metadata :: map(),
 causation_id :: binary() | undefined,
 correlation_id :: binary() | undefined}]) ->
 ok.

Assert compensation was triggered.

 assert_event_produced(EventType, Events)

 -spec assert_event_produced(binary(), [map()]) -> map().

Assert that a specific event type was produced.

 assert_events_produced(ExpectedTypes, Events)

 -spec assert_events_produced([binary()], [map()]) -> ok.

Assert that specific event types were produced.

 assert_no_events_produced(Events)

 -spec assert_no_events_produced([map()]) -> ok.

Assert that no events were produced.

 assert_read_model_contains(ReadModel, Key, ExpectedValue)

 -spec assert_read_model_contains(evoq_read_model:read_model(), term(), term()) -> ok.

Assert read model contains expected value.

 assert_read_model_empty(ReadModel)

 -spec assert_read_model_empty(evoq_read_model:read_model()) -> ok.

Assert read model is empty.

 assert_telemetry_emitted(EventName, CollectedEvents)

 -spec assert_telemetry_emitted([atom()], [map()]) -> ok.

Assert that a telemetry event was emitted.

 collect_telemetry(EventName, Fun)

 -spec collect_telemetry([atom()], fun(() -> term())) -> {term(), [map()]}.

Collect telemetry events during a function execution.

 get_aggregate_state(AggregateType, AggregateId)

 -spec get_aggregate_state(atom(), binary()) -> {ok, term()} | {error, term()}.

Get aggregate state for testing.

evoq_type_provider

Type provider for event type to module mapping.
Maintains mappings between: - Event types (binary strings) and event modules - Event types and their upcasters
This enables: - Dynamic event deserialization - Schema evolution through upcasters - Type-safe event handling

 Summary

 Functions

 get_all_types()

 Get all registered event types.

 get_module(EventType)

 Get the module for an event type.

 get_upcaster(EventType)

 Get the upcaster for an event type.

 register_event(EventType, Module)

 Register an event type to module mapping.

 register_upcaster(EventType, UpcasterModule)

 Register an upcaster for an event type.

 start_link()

 Start the type provider.

 Functions

 get_all_types()

 -spec get_all_types() -> [binary()].

Get all registered event types.

 get_module(EventType)

 -spec get_module(binary()) -> {ok, atom()} | {error, not_found}.

Get the module for an event type.

 get_upcaster(EventType)

 -spec get_upcaster(binary()) -> {ok, atom()} | {error, not_found}.

Get the upcaster for an event type.

 register_event(EventType, Module)

 -spec register_event(binary(), atom()) -> ok.

Register an event type to module mapping.

 register_upcaster(EventType, UpcasterModule)

 -spec register_upcaster(binary(), atom()) -> ok.

Register an upcaster for an event type.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the type provider.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

