

 ExChess

 v0.1.0

 Table of contents

 	
 Modules

 	ExChess

 	ExChess.Board

 	ExChess.Fen

 	ExChess.Game

 	ExChess.Move

 	ExChess.Piece

 	ExChess.Square

 	ExChess.Visualization

 	ExChessCore.MoveContext

 	ExChessCore.MoveEvaluation

 	ExChessCore.MoveGeneration

 	ExChessCore.PiecePatterns

 	ExChessCore.PieceRules

 	ExChessCore.PieceRules.KingRules

 	ExChessCore.PieceRules.KnightRules

 	ExChessCore.PieceRules.LinearPieceRules

 	ExChessCore.PieceRules.PawnRules

 	ExChessCore.San

 	ExChessCore.Search

 	ExChessCore.State.BoardManager

 	ExChessCore.State.GameManager

ExChess

ExChess is a, although still primitive, comprehensive implementation of the chess game rules in Elixir.
Examples
Starting a game
iex> ExChess.start_game()
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"
Starting a game using FEN
iex> ExChess.start_game("rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2")
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2"
Making a move
iex> ExChess.start_game()
...> |> ExChess.move("Nf3")
...> |> ExChess.move("Nf6")
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2"
Getting a piece from the board
iex> game = ExChess.start_game()
iex> square = ExChess.Square.new(0, 0)
iex> ExChess.Board.get(game.board, square)
%ExChess.Piece{type: :r, color: :white}
Getting legal moves for a piece
iex> ExChess.start_game()
...> |> ExChess.list_legal_moves(ExChess.Square.new(1, 1))
[%ExChess.Square{file: 1, rank: 2}, %ExChess.Square{file: 1, rank: 3}]

 Summary

 Functions

 claim_draw(game)

 Allows the active player to claim a draw in case of either

 list_legal_moves(game, from_square)

 Lists all available target squares for the piece situated on from_square.

 move(game, move)

 Returns the updated ExChess.Game when the move is valid, and :error otherwise.

 resign(game)

 Returns the update ExChess.Game with the current active color's side having resigned and the opponent is declared the winner.

 start_game(fen \\ nil)

 Instantiates a new ExChess.Game. An optional fen string can be passed in to start the game at a particular position.

 Functions

 claim_draw(game)

 @spec claim_draw(ExChess.Game.t()) :: ExChess.Game.t() | :error

Allows the active player to claim a draw in case of either:
	50 move rule
	threefold repetition

Examples
50 move rule
iex> ExChess.start_game("knn5/8/8/8/8/8/8/KNN5 w - - 101 90") # 101 halfmoves
...> |> ExChess.claim_draw()
...> |> ExChess.Visualization.status()
"1/2-1/2"
Threefold repetition
iex> ExChess.start_game() # first occurence
...> |> ExChess.move("Nc3") |> ExChess.move("Nc6")
...> |> ExChess.move("Nb1") |> ExChess.move("Nb8") # second occurence
...> |> ExChess.move("Nc3") |> ExChess.move("Nc6")
...> |> ExChess.move("Nb1") |> ExChess.move("Nb8") # third occurence
...> |> ExChess.claim_draw()
...> |> ExChess.Visualization.status()
"1/2-1/2"
Draw unclaimable
iex> ExChess.start_game()
...> |> ExChess.claim_draw()
:error
Game already complete
iex> ExChess.start_game()
...> |> ExChess.resign()
...> |> ExChess.claim_draw()
:error

 list_legal_moves(game, from_square)

 @spec list_legal_moves(ExChess.Game.t(), ExChess.Square.t()) :: [ExChess.Square.t()]

Lists all available target squares for the piece situated on from_square.
Examples
Getting legal moves for a piece
iex> ExChess.start_game()
...> |> ExChess.list_legal_moves(ExChess.Square.new(1, 1))
[%ExChess.Square{file: 1, rank: 2}, %ExChess.Square{file: 1, rank: 3}]

 move(game, move)

 @spec move(ExChess.Game.t(), ExChess.Move.t() | ExChessCore.San.t()) ::
 ExChess.Game.t() | :error

Returns the updated ExChess.Game when the move is valid, and :error otherwise.
Examples
Making a move using SAN
iex> ExChess.start_game()
...> |> ExChess.move("Nf3")
...> |> ExChess.move("Nf6")
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2"
Making a move using structs
iex> first_move = ExChess.Move.new(ExChess.Square.new(6, 0), ExChess.Square.new(5, 2))
...> second_move = ExChess.Move.new(ExChess.Square.new(6, 7), ExChess.Square.new(5, 5))
...> ExChess.start_game()
...> |> ExChess.move(first_move)
...> |> ExChess.move(second_move)
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2"
Making an invalid move
iex> ExChess.start_game()
...> |> ExChess.move("a2b3")
:error
Game already complete
iex> ExChess.start_game()
...> |> ExChess.resign()
...> |> ExChess.move("h3")
:error

 resign(game)

 @spec resign(ExChess.Game.t()) :: ExChess.Game.t() | :error

Returns the update ExChess.Game with the current active color's side having resigned and the opponent is declared the winner.
If the game is already complete, this returns :error.
Examples
White resigns
iex> ExChess.start_game()
...> |> ExChess.resign()
...> |> ExChess.Visualization.status()
"0-1"
Black resigns
iex> ExChess.start_game()
...> |> ExChess.move("a3")
...> |> ExChess.resign()
...> |> ExChess.Visualization.status()
"1-0"
Game already complete
iex> ExChess.start_game()
...> |> ExChess.resign()
...> |> ExChess.resign()
:error

 start_game(fen \\ nil)

 @spec start_game(ExChess.Fen.t() | nil) :: ExChess.Game.t()

Instantiates a new ExChess.Game. An optional fen string can be passed in to start the game at a particular position.
Examples
Starting a game
iex> ExChess.start_game()
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"
Starting a game using FEN
iex> ExChess.start_game("rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2")
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkb1r/pppppppp/5n2/8/8/5N2/PPPPPPPP/RNBQKB1R w KQkq - 2 2"

ExChess.Board

Exposes a set of types and functions to work with the game's chess board.

 Summary

 Types

 t()

 A map with ExChess.Squares as keys and ExChess.Pieces as values.

 Functions

 empty()

 Returns an empty board.

 get(board, square)

 Gets the piece from square of board. Returns the ExChess.Piece or nil when not found.

 get_pieces_by_color(board, color)

 Returns a list of all pieces of color on board.

 new()

 Creates a new chess board in the starting position: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR

 set(board, square, piece)

 Returns an updated board with square's value set to piece.

 square_empty?(board, square)

 Returns true if square of board has no piece on it, otherwise false.

 unset(board, square)

 Returns an updated board where the square and it's piece are unset.

 Types

 t()

 @type t() :: %{required(ExChess.Square.t()) => ExChess.Piece.t()}

A map with ExChess.Squares as keys and ExChess.Pieces as values.
If a square on the board is occupied by no piece, it should not appear in the map's keys at all.
This implementation is quite primitive and not very performant, so in later versions it will be replaced with a different board representation, probably bitboards.

 Functions

 empty()

 @spec empty() :: t()

Returns an empty board.
Currently not very useful, but the client code should not care about the fact the board is a map.
Examples
iex> ExChess.Board.empty()
...> |> ExChess.Fen.from_board()
"8/8/8/8/8/8/8/8"

 get(board, square)

 @spec get(t(), ExChess.Square.t()) :: ExChess.Piece.t() | nil

Gets the piece from square of board. Returns the ExChess.Piece or nil when not found.
Examples
Piece found
iex> white_king_square = ExChess.Square.new(4, 0)
iex> ExChess.Board.new()
...> |> ExChess.Board.get(white_king_square)
%ExChess.Piece{type: :k, color: :white}
Piece not found
iex> ExChess.Board.empty()
...> |> ExChess.Board.get(ExChess.Square.new(0, 0))
nil

 get_pieces_by_color(board, color)

 @spec get_pieces_by_color(t(), ExChess.Piece.color()) :: [
 {ExChess.Square.t(), ExChess.Piece.t()}
]

Returns a list of all pieces of color on board.
The returned element is a list of tuples where the first element is the ExChess.Square, and the second element is the ExChess.Piece.
Examples
Empty board
iex> ExChess.Board.empty()
...> |> ExChess.Board.get_pieces_by_color(:white)
[]
Board with pieces
iex> ExChess.Fen.to_board("k7/1p6/8/8/8/8/8/8")
...> |> ExChess.Board.get_pieces_by_color(:black)
[
 {%ExChess.Square{file: 0, rank: 7}, %ExChess.Piece{type: :k, color: :black}},
 {%ExChess.Square{file: 1, rank: 6}, %ExChess.Piece{type: :p, color: :black}}
]

 new()

 @spec new() :: t()

Creates a new chess board in the starting position: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
Examples
iex> ExChess.Board.new()
...> |> ExChess.Fen.from_board()
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR"

 set(board, square, piece)

 @spec set(t(), ExChess.Square.t(), ExChess.Piece.t()) :: t()

Returns an updated board with square's value set to piece.
Examples
Set piece on empty square
iex> ExChess.Board.empty()
...> |> ExChess.Board.set(ExChess.Square.new(0, 0), ExChess.Piece.new(:k, :white))
...> |> ExChess.Fen.from_board()
"8/8/8/8/8/8/8/K7"
Set piece on occupied square
iex> square = ExChess.Square.new(0, 0)
iex> board = ExChess.Board.empty()
...> |> ExChess.Board.set(square, ExChess.Piece.new(:k, :white))
iex> ExChess.Fen.from_board(board)
"8/8/8/8/8/8/8/K7"
iex> ExChess.Board.set(board, square, ExChess.Piece.new(:n, :black))
...> |> ExChess.Fen.from_board()
"8/8/8/8/8/8/8/n7"

 square_empty?(board, square)

 @spec square_empty?(t(), ExChess.Square.t()) :: boolean()

Returns true if square of board has no piece on it, otherwise false.
Empty
iex> ExChess.Board.empty()
...> |> ExChess.Board.square_empty?(ExChess.Square.new(0, 0))
true
Not empty
iex> white_king_square = ExChess.Square.new(4, 0)
iex> ExChess.Board.new()
...> |> ExChess.Board.square_empty?(white_king_square)
false

 unset(board, square)

 @spec unset(t(), ExChess.Square.t()) :: t()

Returns an updated board where the square and it's piece are unset.
Examples
Unset piece from occupied square
iex> square = ExChess.Square.new(0, 0)
iex> board = ExChess.Board.empty()
...> |> ExChess.Board.set(square, ExChess.Piece.new(:k, :white))
iex> ExChess.Fen.from_board(board)
"8/8/8/8/8/8/8/K7"
iex> ExChess.Board.unset(board, square)
...> |> ExChess.Fen.from_board()
"8/8/8/8/8/8/8/8"
Unset piece from empty square
iex> ExChess.Board.empty()
...> |> ExChess.Board.unset(ExChess.Square.new(0, 0))
...> |> ExChess.Fen.from_board()
"8/8/8/8/8/8/8/8"

ExChess.Fen

The functions in this module are used to parse game state to and from Forsyth-Edwards Notation.

 Summary

 Types

 t()

 The FEN string.

 Functions

 from_board(board)

 Returns a parsed FEN representation of the board.

 from_game(game)

 Returns a parsed FEN representation of the entire game state, except for repetition history which is not captured in FEN.

 to_board(board_fen)

 Returns a ExChess.Board parsed from the board_fen string.

 to_game(fen)

 Returns a ExChess.Game struct parsed from the fen string.

 Types

 t()

 @type t() :: binary()

The FEN string.

 Functions

 from_board(board)

 @spec from_board(ExChess.Board.t()) :: binary()

Returns a parsed FEN representation of the board.
Examples
iex> ExChess.Board.new()
...> |> ExChess.Fen.from_board()
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR"

 from_game(game)

 @spec from_game(ExChess.Game.t()) :: t()

Returns a parsed FEN representation of the entire game state, except for repetition history which is not captured in FEN.
Examples
iex> ExChess.start_game()
...> |> ExChess.Fen.from_game()
"rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"

 to_board(board_fen)

Returns a ExChess.Board parsed from the board_fen string.
Examples
iex> ExChess.Fen.to_board("k7/8/8/8/8/8/8/K7")
%{%ExChess.Square{file: 0, rank: 0} => %ExChess.Piece{type: :k, color: :white}, %ExChess.Square{file: 0, rank: 7} => %ExChess.Piece{type: :k, color: :black}}

 to_game(fen)

 @spec to_game(t()) :: ExChess.Game.t()

Returns a ExChess.Game struct parsed from the fen string.
Examples
iex> ExChess.Fen.to_game("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1")
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"

ExChess.Game

The ExChess.Game struct is an aggregate of the entirety of the state required to keep track of the game, and evaluate all chess rules.

 Summary

 Types

 castling_rights()

 Castling is only allowed when neither the rook nor the king have previously moved throughout the game.
Each castle starts with a value of true, and whenever a king or rook is moved, the corresponding castles are set to false.

 en_passant_file()

 The en passant file keeps track of any file where a pawn has advanced two squares and is vulnerable to en passant.
This value is set regardless of whether another pawn is in position to attack.
If the last halfmove was anything other than a pawn advancing two squares, the en passant file is nil.

 fullmove_number()

 Keeps track of the number of fullmoves. A fullmove is incremented by 1 after every move by :black.

 halfmove_clock()

 The halfmove clock keeps track of the number of irreversible moves in a row that have occured. This is then used to
evaluate whether or not the 50 move rule and/or the 75 move rule apply.

 max_repetitions()

 Keeps track of the maximum count present in the repetition history for easier evaluation of threefold/fivefold repetition.

 repetition_history()

 This is used to keep count of all positions that have already been played, in order to evaluate the threefold/fivefold repetition rules.
The map is reset any time an irreversible move is played, as that guarantees that position will never be repeated.

 status()

 The game status.

 t()

 The ExChess.Game struct is an aggregate of the entirety of the state required to keep track of the game, and evaluate all chess rules.

 Functions

 empty_castling_rights()

 deprecated

 Returns a map with all castling rights set to false.

 new()

 Creates a new game with all the default state.

 new(active_color, board, castling_rights \\ nil, en_passant_file \\ nil, halfmove_clock \\ 0, fullmove_number \\ 1)

 Creates a new game.

 Types

 castling_rights()

 @type castling_rights() :: %{
 white_kingside?: boolean(),
 white_queenside?: boolean(),
 black_kingside?: boolean(),
 black_queenside?: boolean()
}

Castling is only allowed when neither the rook nor the king have previously moved throughout the game.
Each castle starts with a value of true, and whenever a king or rook is moved, the corresponding castles are set to false.

 en_passant_file()

 @type en_passant_file() :: non_neg_integer() | nil

The en passant file keeps track of any file where a pawn has advanced two squares and is vulnerable to en passant.
This value is set regardless of whether another pawn is in position to attack.
If the last halfmove was anything other than a pawn advancing two squares, the en passant file is nil.

 fullmove_number()

 @type fullmove_number() :: pos_integer()

Keeps track of the number of fullmoves. A fullmove is incremented by 1 after every move by :black.

 halfmove_clock()

 @type halfmove_clock() :: non_neg_integer()

The halfmove clock keeps track of the number of irreversible moves in a row that have occured. This is then used to
evaluate whether or not the 50 move rule and/or the 75 move rule apply.

 max_repetitions()

 @type max_repetitions() :: pos_integer()

Keeps track of the maximum count present in the repetition history for easier evaluation of threefold/fivefold repetition.

 repetition_history()

 @type repetition_history() :: %{
 required({ExChess.Piece.color(), non_neg_integer()}) => pos_integer()
}

This is used to keep count of all positions that have already been played, in order to evaluate the threefold/fivefold repetition rules.
The map is reset any time an irreversible move is played, as that guarantees that position will never be repeated.
The key is a tuple containing two elements: the active color and a hash of the board state, those two values are enough to
identify each unique position. The values are of course the count of repetitions for said position.

 status()

 @type status() ::
 :continue
 | {ExChess.Piece.color(), :checkmate | :resignation}
 | {:tie,
 :stalemate
 | :insufficient_material
 | :threefold_repetition
 | :fivefold_repetition
 | :fifty_move_rule
 | :seventy_five_move_rule}

The game status.
:continue is the default state, it represents a game that is still in progress.
{Piece.color(), _reason} is used when one of the players has been declared winner.
{:tie, _reason} means the game ended in a draw.

 t()

 @type t() :: %ExChess.Game{
 active_color: ExChess.Piece.color(),
 board: ExChess.Board.t(),
 castling_rights: castling_rights(),
 en_passant_file: en_passant_file(),
 fullmove_number: fullmove_number(),
 halfmove_clock: halfmove_clock(),
 max_repetitions: max_repetitions(),
 repetition_history: repetition_history(),
 status: status()
}

The ExChess.Game struct is an aggregate of the entirety of the state required to keep track of the game, and evaluate all chess rules.

 Functions

 empty_castling_rights()

 This function is deprecated. This is only used in two places and I am not yet sure I want to expose it in the public API..

 @spec empty_castling_rights() :: castling_rights()

Returns a map with all castling rights set to false.

 new()

 @spec new() :: t()

Creates a new game with all the default state.
Examples
iex> ExChess.Game.new()
...> |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"

 new(active_color, board, castling_rights \\ nil, en_passant_file \\ nil, halfmove_clock \\ 0, fullmove_number \\ 1)

 @spec new(
 ExChess.Piece.color(),
 ExChess.Board.t(),
 castling_rights() | nil,
 en_passant_file(),
 halfmove_clock(),
 fullmove_number()
) :: t()

Creates a new game.
Examples
iex> ExChess.Game.new(:white, ExChess.Fen.to_board("knn5/8/8/8/8/8/8/KNN5"), nil, 3, 40)
...> |> ExChess.Fen.from_game()
"knn5/8/8/8/8/8/8/KNN5 w - d4 40 1"

ExChess.Move

ExChess.Move is the struct used to represent a move's starting position (:from_square), destination (:to_square), and promotion type.

 Summary

 Types

 promotion()

 The piece type that a pawn should be promoted to when it is being moved to the last rank.

 t()

 ExChess.Move is the struct used to represent a move's starting position (:from_square), destination (:to_square), and promotion type.

 Functions

 new(from, to, promotion \\ :q)

 Creates a new ExChess.Move struct.

 Types

 promotion()

 @type promotion() :: :q | :r | :b | :n

The piece type that a pawn should be promoted to when it is being moved to the last rank.
The values are similar to ExChess.Piece's color() type, except it does not support :p and :k as values, as those are not valid promotions.

 t()

 @type t() :: %ExChess.Move{
 from: ExChess.Square.t(),
 promotion: promotion(),
 to: ExChess.Square.t()
}

ExChess.Move is the struct used to represent a move's starting position (:from_square), destination (:to_square), and promotion type.

 Functions

 new(from, to, promotion \\ :q)

 @spec new(ExChess.Square.t(), ExChess.Square.t(), promotion()) :: t()

Creates a new ExChess.Move struct.
Examples
With promotion
iex> first_square = ExChess.Square.new(0, 1)
iex> second_square = ExChess.Square.new(0, 2)
iex> ExChess.Move.new(first_square, second_square, :n)
%ExChess.Move{to: %ExChess.Square{file: 0, rank: 2}, from: %ExChess.Square{file: 0, rank: 1}, promotion: :n}
With default promotion
iex> first_square = ExChess.Square.new(0, 1)
iex> second_square = ExChess.Square.new(0, 2)
iex> ExChess.Move.new(first_square, second_square)
%ExChess.Move{to: %ExChess.Square{file: 0, rank: 2}, from: %ExChess.Square{file: 0, rank: 1}, promotion: :q}

ExChess.Piece

This module contains the types used to represent a piece on the chess board, as well as some utility functions to create and work with those types.

 Summary

 Types

 color()

 The piece color.

 t()

 A struct representing a chess piece. Each piece abides to a different set of rules when moving.

 type()

 The piece type (pawn, rook, knight, bishop, queen, king).

 Functions

 flip_color(color)

 Returns the opposing color of the passed in color.

 new(type, color)

 Creates a new chess piece.

 same_color?(arg1, arg2)

 Returns true when both parameters are a ExChess.Piece struct with the same :color, otherwise returns false.

 Types

 color()

 @type color() :: :white | :black

The piece color.

 t()

 @type t() :: %ExChess.Piece{color: color(), type: type()}

A struct representing a chess piece. Each piece abides to a different set of rules when moving.

 type()

 @type type() :: :p | :r | :n | :b | :q | :k

The piece type (pawn, rook, knight, bishop, queen, king).

 Functions

 flip_color(color)

 @spec flip_color(color()) :: color()

Returns the opposing color of the passed in color.
Examples
Flip white to black
iex> ExChess.Piece.flip_color(:white)
:black
Flip black to white
iex> ExChess.Piece.flip_color(:black)
:white

 new(type, color)

 @spec new(type(), color()) :: t()

Creates a new chess piece.
Examples
iex>ExChess.Piece.new(:p, :white)
%ExChess.Piece{type: :p, color: :white}

 same_color?(arg1, arg2)

 @spec same_color?(t() | nil, t() | nil) :: boolean()

Returns true when both parameters are a ExChess.Piece struct with the same :color, otherwise returns false.
Examples
Two pieces of same color
iex> first_piece = ExChess.Piece.new(:p, :white)
iex> second_piece = ExChess.Piece.new(:n, :white)
iex> ExChess.Piece.same_color?(first_piece, second_piece)
true
Two pieces of different color
iex> first_piece = ExChess.Piece.new(:p, :white)
iex> second_piece = ExChess.Piece.new(:p, :black)
iex> ExChess.Piece.same_color?(first_piece, second_piece)
false
Non-piece
iex> piece = ExChess.Piece.new(:n, :white)
iex> ExChess.Piece.same_color?(piece, nil)
false
iex> ExChess.Piece.same_color?(nil, piece)
false

iex> ExChess.Piece.same_color?(nil, nil)
false

ExChess.Square

The ExChess.Square module encapsulates the struct and functions used to create and work with squares.
The functions in this module do not interact with the ExChess.Board module at all and are instead focused entirely on the square struct.

 Summary

 Types

 t()

 A square with it's :file (x) and :rank (y) coordinates.

 Functions

 compare(from, to)

 Returns the file_shift and rank_shift needed to ExChess.Square.shift/3 a square from it's current position to that of another square.

 new(file, rank)

 Creates a new ExChess.Square with the specified file and rank.

 same_location?(arg1, arg2)

 Evaluates whether both squares are on the same location.

 shift(square, file_shift, rank_shift)

 Returns a new ExChess.Square with the updated coordinates by adding the file_shift and rank_shift to the current file and rank.

 valid?(square)

 Evaluates whether both the coordinates of a ExChess.Square are in the 0..7 range.

 Types

 t()

 @type t() :: %ExChess.Square{file: non_neg_integer(), rank: non_neg_integer()}

A square with it's :file (x) and :rank (y) coordinates.
The file is in range 0..7, mapping to files a through h in order.
The rank is in range 0..7, mapping to ranks 1..8 on a chess board.

 Functions

 compare(from, to)

 @spec compare(t(), t()) :: {integer(), integer()}

Returns the file_shift and rank_shift needed to ExChess.Square.shift/3 a square from it's current position to that of another square.
Examples
Equal squares
iex> first_square = ExChess.Square.new(3, 4)
iex> second_square = ExChess.Square.new(3, 4)
iex> ExChess.Square.compare(first_square, second_square)
{0, 0}
Unequal squares
iex> first_square = ExChess.Square.new(3, 4)
iex> second_square = ExChess.Square.new(4, 3)
iex> ExChess.Square.compare(first_square, second_square)
{1, -1}

 new(file, rank)

 @spec new(non_neg_integer(), non_neg_integer()) :: t()

Creates a new ExChess.Square with the specified file and rank.
Examples
iex> ExChess.Square.new(0, 7)
%ExChess.Square{file: 0, rank: 7}

 same_location?(arg1, arg2)

 @spec same_location?(t(), t()) :: boolean()

Evaluates whether both squares are on the same location.
This is currently equivalent to checking whether both arguments are of type ExChess.Square and equal.
Examples
Equal squares
iex> first_square = ExChess.Square.new(3, 4)
iex> second_square = ExChess.Square.new(3, 4)
iex> ExChess.Square.same_location?(first_square, second_square)
true
Unequal squares
iex> first_square = ExChess.Square.new(3, 4)
iex> second_square = ExChess.Square.new(4, 3)
iex> ExChess.Square.same_location?(first_square, second_square)
false
Non-squares
iex> square = ExChess.Square.new(3, 4)
iex> ExChess.Square.same_location?(square, nil)
false
iex> ExChess.Square.same_location?(nil, square)
false

iex> ExChess.Square.same_location?(nil, nil)
false

 shift(square, file_shift, rank_shift)

 @spec shift(t(), integer(), integer()) :: t()

Returns a new ExChess.Square with the updated coordinates by adding the file_shift and rank_shift to the current file and rank.
Examples
Shifting from the bottom-left to the top-right corners
iex> square = ExChess.Square.new(0, 0)
iex> ExChess.Square.shift(square, 7, 7)
%ExChess.Square{file: 7, rank: 7}
Shifting from the top-right to the bottom-left corners
iex> square = ExChess.Square.new(7, 7)
iex> ExChess.Square.shift(square, -7, -7)
%ExChess.Square{file: 0, rank: 0}

 valid?(square)

 @spec valid?(t()) :: boolean()

Evaluates whether both the coordinates of a ExChess.Square are in the 0..7 range.
Examples
Valid
iex> ExChess.Square.new(0, 7) |> ExChess.Square.valid?()
true
Too high
iex> ExChess.Square.new(0, 8) |> ExChess.Square.valid?()
false
Negative
iex> ExChess.Square.new(-1, 7) |> ExChess.Square.valid?()
false

ExChess.Visualization

This is used to prettify some of the game structures into a nice human readable format.

 Summary

 Functions

 board(board)

 Used to visualize a board into a multiline representation.

 game(game)

 Used to visualize a game into a one-line string.

 game_full(game)

 Used to visualize a game into a multiline representation.

 piece_label(arg1)

 Used to visualize a piece into a 1-character string.

 status(game)

 Used to visualize a piece into a 1-character string.

 Functions

 board(board)

 @spec board(ExChess.Board.t()) :: binary()

Used to visualize a board into a multiline representation.

 game(game)

 @spec game(ExChess.Game.t()) :: binary()

Used to visualize a game into a one-line string.
Examples
iex> ExChess.start_game() |> ExChess.Visualization.game()
"STATUS: * | FEN: rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1"

 game_full(game)

 @spec game_full(ExChess.Game.t()) :: binary()

Used to visualize a game into a multiline representation.

 piece_label(arg1)

 @spec piece_label(ExChess.Piece.t() | nil) :: <<_::8>>

Used to visualize a piece into a 1-character string.
Examples
iex> ExChess.Piece.new(:k, :white) |> ExChess.Visualization.piece_label()
"K"

iex> ExChess.Piece.new(:n, :black) |> ExChess.Visualization.piece_label()
"n"

iex> ExChess.Visualization.piece_label(nil)
" "

 status(game)

 @spec status(ExChess.Game.t()) :: binary()

Used to visualize a piece into a 1-character string.
Examples
In progress
iex> ExChess.start_game() |> ExChess.Visualization.status()
"*"
White won
iex> ExChess.start_game()
...> |> ExChess.move("Nc3")
...> |> ExChess.resign()
...> |> ExChess.Visualization.status()
"1-0"
Black won
iex> ExChess.start_game()
...> |> ExChess.resign()
...> |> ExChess.Visualization.status()
"0-1"
Draw
iex> ExChess.start_game("knn5/8/8/8/8/8/8/KNN5 w - - 101 70")
...> |> ExChess.claim_draw()
...> |> ExChess.Visualization.status()
"1/2-1/2"

ExChessCore.MoveContext

 Summary

 Types

 error()

 move_type()

 move_type_basic()

 move_type_king_special()

 move_type_pawn_basic()

 move_type_pawn_special()

 move_type_special()

 pieces()

 t()

 Functions

 error(move_context, code, payload \\ %{})

 new(game, move)

 put_move_type(move_context, move_type)

 Types

 error()

 @type error() :: {:out_of_bounds, %{}}

 move_type()

 @type move_type() :: move_type_basic() | move_type_special()

 move_type_basic()

 @type move_type_basic() :: move_type_pawn_basic() | nil

 move_type_king_special()

 @type move_type_king_special() :: :castle_kingside | :castle_queenside

 move_type_pawn_basic()

 @type move_type_pawn_basic() :: :take | :advance_one | :advance_two

 move_type_pawn_special()

 @type move_type_pawn_special() :: :en_passant

 move_type_special()

 @type move_type_special() :: move_type_king_special() | move_type_pawn_special()

 pieces()

 @type pieces() :: {ExChess.Piece.t() | nil, ExChess.Piece.t() | nil}

 t()

 @type t() :: %ExChessCore.MoveContext{
 board: ExChess.Board.t(),
 castling_rights: nil | ExChess.Game.castling_rights(),
 color: ExChess.Piece.color(),
 en_passant_file: nil | ExChess.Game.en_passant_file(),
 enemy_color: nil | ExChess.Piece.color(),
 error: nil | error(),
 fullmove_number: pos_integer(),
 game_status: nil | ExChess.Game.status(),
 halfmove_clock: nil | ExChess.Game.halfmove_clock(),
 max_repetitions: nil | pos_integer(),
 move_type: nil | move_type(),
 piece: nil | ExChess.Piece.type(),
 promotion: ExChess.Move.promotion(),
 repetition_history: nil | ExChess.Game.repetition_history(),
 square: ExChess.Square.t(),
 square_shift: {file_shift :: integer(), rank_shift :: integer()},
 target_piece: nil | ExChess.Piece.type(),
 target_square: ExChess.Square.t(),
 updated_board: nil | ExChess.Board.t(),
 valid?: nil | boolean()
}

 Functions

 error(move_context, code, payload \\ %{})

 @spec error(t(), atom(), map()) :: t()

 new(game, move)

 put_move_type(move_context, move_type)

 @spec put_move_type(t(), move_type()) :: t()

ExChessCore.MoveEvaluation

 Summary

 Functions

 run(move_context)

 Functions

 run(move_context)

 @spec run(ExChessCore.MoveContext.t()) :: ExChessCore.MoveContext.t()

ExChessCore.MoveGeneration

 Summary

 Functions

 stream(color, board, en_passant_file, castling_rights, piece, square)

 Functions

 stream(color, board, en_passant_file, castling_rights, piece, square)

 @spec stream(
 ExChess.Piece.color(),
 ExChess.Board.t(),
 ExChess.Game.en_passant_file(),
 ExChess.Game.castling_rights(),
 ExChess.Piece.t(),
 ExChess.Square.t()
) :: Enumerable.t(ExChess.Square.t())

ExChessCore.PiecePatterns

 Summary

 Functions

 targets(board, piece, from_square)

 Functions

 targets(board, piece, from_square)

 @spec targets(ExChess.Board.t(), ExChess.Piece.t(), ExChess.Square.t()) ::
 Enumerable.t(ExChess.Square.t())

ExChessCore.PieceRules

 Summary

 Functions

 evaluate(move_context)

 king_threatened?(board, king_square, enemy_color)

 Functions

 evaluate(move_context)

 @spec evaluate(ExChessCore.MoveContext.t()) :: ExChessCore.MoveContext.t()

 king_threatened?(board, king_square, enemy_color)

 @spec king_threatened?(ExChess.Board.t(), ExChess.Square.t(), ExChess.Piece.color()) ::
 boolean()

ExChessCore.PieceRules.KingRules

 Summary

 Functions

 evaluate(move_context, king_threats_only?)

 Functions

 evaluate(move_context, king_threats_only?)

 @spec evaluate(ExChessCore.MoveContext.t(), boolean()) :: ExChessCore.MoveContext.t()

ExChessCore.PieceRules.KnightRules

 Summary

 Functions

 evaluate(move_context, _)

 Functions

 evaluate(move_context, _)

 @spec evaluate(ExChessCore.MoveContext.t(), boolean()) :: ExChessCore.MoveContext.t()

ExChessCore.PieceRules.LinearPieceRules

 Summary

 Functions

 evaluate(move_context, _)

 Functions

 evaluate(move_context, _)

 @spec evaluate(ExChessCore.MoveContext.t(), boolean()) :: ExChessCore.MoveContext.t()

ExChessCore.PieceRules.PawnRules

 Summary

 Functions

 evaluate(move_context, king_threats_only?)

 Functions

 evaluate(move_context, king_threats_only?)

 @spec evaluate(ExChessCore.MoveContext.t(), boolean()) :: ExChessCore.MoveContext.t()

ExChessCore.San

 Summary

 Types

 t()

 Functions

 parse_move(game, move_text)

 Types

 t()

 @type t() :: binary()

 Functions

 parse_move(game, move_text)

 @spec parse_move(ExChess.Game.t(), t()) :: {:ok, ExChess.Move.t()} | :error

ExChessCore.Search

 Summary

 Functions

 run(game, layers_count)

 Functions

 run(game, layers_count)

ExChessCore.State.BoardManager

 Summary

 Functions

 put_updated(move_context)

 Functions

 put_updated(move_context)

 @spec put_updated(ExChessCore.MoveContext.t()) :: ExChessCore.MoveContext.t()

ExChessCore.State.GameManager

 Summary

 Functions

 updated(move_context)

 Functions

 updated(move_context)

 @spec updated(ExChessCore.MoveContext.t()) :: ExChess.Game.t() | :error

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

