

 ExDoc

 v0.39.1

 Table of contents

 	ExDoc

 	Cheatsheet Example

 	Changelog

 	
 Modules

 	Markdown

 	ExDoc.Markdown

 	ExDoc.Markdown.Earmark

 	
 Mix Tasks

 	mix docs

 ExDoc

[image: Build Status]
ExDoc is a tool to generate documentation for Erlang and Elixir projects. To see an example, you can access Elixir's official docs.
Features
ExDoc ships with many features:
	Automatically generates offline-accessible HTML and EPUB documents from your API documentation.
	When hosted, ExDoc relies on browser's page transitions for better UX, caching, and enhanced accessibility.
	Responsive design, covering phones and tablets.
	Support for custom pages, guides, livebooks and cheatsheets.
	Support for custom grouping of modules, functions, and pages in the sidebar.
	Customizable logo and favicon.
	A direct link back to the source code for every documented entity.
	Full-text search.
	Keyboard shortcuts. (Press ? to show help.)
	Quick-search with autocompletion support. (s keyboard shortcut.)
	Go-to shortcut with auto-complete to take the reader to any HexDocs package documentation. (g keyboard shortcut.)
	Support for night mode, activated according to the browser preference.
	Tooltips for links to modules and functions, both for the current project and other projects.
	Version dropdown and "Go to latest" notifications, automatically configured when hosted on HexDocs.

Usage
You can use ExDoc with Mix (recommended for Elixir projects), with Rebar (recommended for Erlang projects), or via the command line.
Mix
ExDoc requires Elixir v1.15 or later. Then add ExDoc as a dependency:
def deps do
 [
 {:ex_doc, "~> 0.34", only: :dev, runtime: false, warn_if_outdated: true},
]
end
Then run mix deps.get.
Erlang development environment
Some Operating System distributions split Erlang into multiple packages, and at least one ExDoc dependency (earmark_parser) requires the Erlang development environment. If you see a message like "/usr/lib/erlang/lib/parsetools-2.3.1/include/yeccpre.hrl: no such file or directory", it means you lack this environment. For instance, on the Debian operating system and its derivatives, you need to apt install erlang-dev.
ExDoc will automatically pull in information from your projects, such as the application and version. However, you may want to set :name, :source_url and :homepage_url in order to have nicer output from ExDoc:
def project do
 [
 app: :my_app,
 version: "0.1.0-dev",
 deps: deps(),

 # Docs
 name: "MyApp",
 source_url: "https://github.com/USER/PROJECT",
 homepage_url: "http://YOUR_PROJECT_HOMEPAGE",
 docs: &docs/0
]
end

defp docs do
 [
 main: "MyApp", # The main page in the docs
 logo: "path/to/logo.png",
 extras: ["README.md"]
]
end
Now you are ready to generate your project documentation with mix docs. To see all options available, run mix help docs.
To learn about how to document your projects, see Elixir's writing documentation page.
Rebar3
From Erlang/OTP 24+, you can use ExDoc to render your Erlang documentation written with EDoc. See rebar3_ex_doc for more information.
CLI
You can use ExDoc via the command line.
	Install ExDoc as an escript:
$ mix escript.install hex ex_doc

	Now you are ready to use it in your projects. Move into your project directory and make sure it's compiled:
$ cd PATH_TO_YOUR_PROJECT
$ mix compile

	Invoke the ex_doc executable from your project:
$ ex_doc "PROJECT_NAME" "PROJECT_VERSION" _build/dev/lib/project/ebin -m "PROJECT_MODULE" -u "https://github.com/GITHUB_USER/GITHUB_REPO" -l path/to/logo.png

Examples of appropriate values:
PROJECT_NAME => Ecto
PROJECT_VERSION => 0.1.0
PROJECT_MODULE => Ecto (the main module provided by the library)
GITHUB_USER => elixir-ecto
GITHUB_REPO => ecto

It is also possible to specify multiple ebin directories in the case of umbrella projects:
 $ ex_doc "PROJECT_NAME" "PROJECT_VERSION" _build/dev/lib/app1/ebin _build/dev/lib/app2/ebin -m "PROJECT_MODULE" -u "https://github.com/GITHUB_USER/GITHUB_REPO" -l path/to/logo.png

If multiple ebin directories are specified, modules are grouped by application by default. It is possible to override this behaviour by providing a custom groups_per_modules option.
You can specify a config file via the --config option, both Elixir and Erlang formats are supported. Invoke ex_doc without arguments to learn more.
Syntax highlighting
ExDoc uses the makeup project for syntax highlighting. By default, highlighters for Erlang and Elixir are included. To syntax-highlight other languages, simply add the equivalent makeup_LANGUAGE package to your mix.exs/rebar.config file. For example, for HTML support you would add:
Elixir (Mix)
{:makeup_html, ">= 0.0.0", only: :dev, runtime: false}
Erlang (Rebar3)
{makeup_html, "0.1.1"}
You can find all supported languages under the Makeup organization on GitHub and view them at Makeup's website.
Additional pages
You can publish additional pages in your project documentation by configuring them as :extras. The following formats and extensions are supported:
	Markdown (.md extension) - useful for general long-term text. Learn more.

	Cheatsheets (.cheatmd extension) - useful for discovery and quick reference. Learn more.

	Livebooks (.livemd extension) - useful for tutorials, interactive examples, and deep dives. Learn more.

For example, you can set your :extras to:
Elixir
extras: ["README.md", "LICENSE", "tutorial.livemd", "cheatsheet.cheatmd"]
Run mix help docs for more information on configuration.
Erlang
{extras, [<<"README.md">>, <<"cheatsheet.cheatmd">>]}.
Metadata
ExDoc supports metadata keys in your documentation.
Elixir
In Elixir, you can add metadata to modules and functions.
For a module, use @moduledoc, which is equivalent to adding the annotation to everything inside the module (functions, macros, callbacks, types):
@moduledoc since: "1.10.0"
For a function, use @doc:
@doc since: "1.13.1"
Erlang
In Erlang's EDoc:
%% @since 0.1.0
The following metadata is available for both modules and functions:
	deprecated (binary) - marks a module/function as deprecated, with the given string as the reason.
	since (binary) - declares a module/function available from a particular version.

The following metadata is available for modules:
	tags (list of atoms) - tags to be added as module annotations. (Not supported by EDoc.)

Auto-linking
ExDoc for Elixir and Erlang will automatically generate links across modules and functions if you enclose them in backticks.
Elixir
ExDoc will automatically link modules, functions, types or callbacks defined in your project and its dependencies (including Erlang and Elixir). ExDoc will automatically link to it at the dependency's documentation at hexdocs.pm. The link can be configured by setting docs: [deps: [my_dep: "https://path/to/docs/"]] in your mix.exs.
ExDoc supports linking to modules (`MyModule` and `m:MyModule`), functions (`MyModule.function/1`), types (`t:MyModule.type/2`) and callbacks (`c:MyModule.callback/3`). If you want to link a function, type or callback in the current module, you may skip the module name, for example: `function/1`.
You can also use custom text, such as [custom text](`MyModule.function/1`). Link to extra pages using the syntax [Up and running](Up and running.md). The final link will be automatically converted to up-and-running.html.
Link to extra pages in another application using the syntax [Writing Documentation](`e:elixir:writing-documentation.html`), skipping the directory in which the page is. The final link will be automatically converted to https://hexdocs.pm/elixir/writing-documentation.html.
It is also possible to place anchors after the module name and extra pages. For example:
	`m:Keyword#module-duplicate-keys-and-ordering` will create a link to https://hexdocs.pm/elixir/Keyword.html#module-duplicate-keys-and-ordering

	`e:elixir:syntax-reference.md#expressions` will create a link to https://hexdocs.pm/elixir/syntax-reference.html#expressions

Erlang
ExDoc will automatically link modules, functions, types or callbacks defined in your project and its dependencies (including Erlang and Elixir). ExDoc will automatically link to it at the dependency's documentation at hexdocs.pm. The link can be configured by setting docs: [deps: [my_dep: "https://path/to/docs/"]] in your mix.exs. The link can be configured by setting {docs, [{deps, [{my_dep, "https://path/to/docs/"}]}]} in your rebar3.config.
ExDoc supports linking to modules (`m:my_module`), functions (`my_module:function/1`), types (`t:my_module:type/2`) and callbacks (`c:my_module:callback/3`). If you want to link a function, type or callback in the current module, you may skip the module name; e.g.: `function/1`.
You can also use custom text, such as [custom text](`my_module:function/1`). This also allows you to refer to Erlang/OTP modules: [The array module](`array`) (note that when a module is given as the link target, it is not necessary nor possible to use the m: prefix).
Link to extra pages using the syntax [Up and running](Up and running.md). The final link will be automatically converted to up-and-running.html.
Link to extra pages in another application using the syntax [Using unicode](`e:stdlib:unicode_usage.html`), skipping the directory in which the page is. The final link will be automatically converted to https://hexdocs.pm/elixir/writing-documentation.html.
It is also possible to place anchors after the module name and extra pages. For example:
	`m:argparse#quick-start` will create a link to https://erlang.org/doc/man/argparse#quick-start

	`e:stdlib:unicode-usage.md#what-unicode-is` will create a link to https://erlang.org/doc/apps/stdlib/unicode-usage.html#what-unicode-is

Admonition blocks
You may want to draw attention to certain statements by taking them out of the content's flow and labeling them with a priority. Such statements are called admonitions. (They are also known as asides or callouts.) An admonition block is rendered based on the assigned label or class. ExDoc supports warning, error, info, tip and neutral tags, on header levels h3 and h4.
The syntax is as follows:
> #### Error {: .error}
>
> This syntax will render an error block
The result for the previous syntax is:
Error
This syntax will render an error block
For example, if you change the class name to neutral, you get the same admonition block in neutral style:
Neutral
This syntax will render a neutral block
Tabsets
Where only one section of content of a series is likely to apply to the reader, you may wish to define a set of tabs.
This example contains code blocks, separating them into tabs based on language:
Elixir
IO.puts "Hello, world!"
Erlang
io:fwrite("Hello, world!\n").
Tabbed content must be defined between <!-- tabs-open --> and <!-- tabs-close --> HTML comments. Each h3 heading results in a new tab panel, with its text setting the tab button label.
Here is the above example's source:
<!-- tabs-open -->

Elixir

```elixir
IO.puts "Hello, world!"
```

Erlang

```erlang
io:fwrite("Hello, world!\n").
```

<!-- tabs-close -->
Extensions
ExDoc renders Markdown content for you, but you can extend it to render complex objects on the page using JavaScript. To inject custom JavaScript into every page, add this to your configuration:
docs: [
 # ...
 before_closing_head_tag: &before_closing_head_tag/1,
 before_closing_body_tag: &before_closing_body_tag/1
]

...

defp before_closing_head_tag(:html) do
 """
 <!-- HTML injected at the end of the <head> element -->
 """
end

defp before_closing_head_tag(:epub), do: ""

defp before_closing_body_tag(:html) do
 """
 <!-- HTML injected at the end of the <body> element -->
 """
end

defp before_closing_body_tag(:epub), do: ""
Besides an anonymous function, you can also pass a module-function-args tuple. It will call the given module and function, with the format prefixed to the arguments:
docs: [
 # ...
 before_closing_head_tag: {MyModule, :before_closing_head_tag, []},
 before_closing_body_tag: {MyModule, :before_closing_body_tag, []}
]
Or you can pass a map where the key is the format:
docs: [
 # ...
 before_closing_head_tag: %{html: "...", epub: "..."},
 before_closing_body_tag: %{html: "...", epub: "..."}
]
On the JavaScript side, ExDoc emits the "exdoc:loaded" event. This event may be called multiple times, as you navigate across pages, so initialization that should happen only once must be conditional. We recommend external scripts to use defer, not async, as shown in the examples below.
Rendering Math
If you write TeX-style math in your Markdown, such as $\sum_{i}^{N} x_i$, it ends up as raw text on the generated pages. To render expressions, we recommend using KaTeX, a JavaScript library that turns expressions into graphics. To load and trigger KaTeX on every documentation page, we can insert the following HTML:
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/katex.min.css" integrity="sha384-vKruj+a13U8yHIkAyGgK1J3ArTLzrFGBbBc0tDp4ad/EyewESeXE/Iv67Aj8gKZ0" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/katex.min.js" integrity="sha384-PwRUT/YqbnEjkZO0zZxNqcxACrXe+j766U2amXcgMg5457rve2Y7I6ZJSm2A0mS4" crossorigin="anonymous"></script>

<link href="https://cdn.jsdelivr.net/npm/katex-copytex@1.0.2/dist/katex-copytex.min.css" rel="stylesheet" type="text/css">
<script defer src="https://cdn.jsdelivr.net/npm/katex-copytex@1.0.2/dist/katex-copytex.min.js" crossorigin="anonymous"></script>

<script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.4/dist/contrib/auto-render.min.js" integrity="sha384-+VBxd3r6XgURycqtZ117nYw44OOcIax56Z4dCRWbxyPt0Koah1uHoK0o4+/RRE05" crossorigin="anonymous"></script>

<script>
 window.addEventListener("exdoc:loaded", () => {
 renderMathInElement(document.body, {
 delimiters: [
 {left: '$$', right: '$$', display: true},
 {left: '$', right: '$', display: false},
]
 })
 })
</script>
For more details and configuration options, see the KaTeX Auto-render Extension.
Rendering Vega-Lite plots
Snippets are also objects you may want to render in a special manner. For example, assuming your Markdown includes Vega-Lite specification in vega-lite code snippets:
<script defer src="https://cdn.jsdelivr.net/npm/vega@5.20.2"></script>
<script defer src="https://cdn.jsdelivr.net/npm/vega-lite@5.1.1"></script>
<script defer src="https://cdn.jsdelivr.net/npm/vega-embed@6.18.2"></script>
<script>
 window.addEventListener("exdoc:loaded", () => {
 for (const codeEl of document.querySelectorAll("pre code.vega-lite")) {
 try {
 const preEl = codeEl.parentElement;
 const spec = JSON.parse(codeEl.textContent);
 const plotEl = document.createElement("div");
 preEl.insertAdjacentElement("afterend", plotEl);
 vegaEmbed(plotEl, spec);
 preEl.remove();
 } catch (error) {
 console.log("Failed to render Vega-Lite plot: " + error)
 }
 }
 });
</script>
For more details and configuration options, see vega/vega-embed.
Rendering Mermaid graphs
Similarly to the example above, if your Markdown includes Mermaid graph specification in mermaid code snippets:
<script defer src="https://cdn.jsdelivr.net/npm/mermaid@10.2.3/dist/mermaid.min.js"></script>
<script>
 let initialized = false;

 window.addEventListener("exdoc:loaded", () => {
 if (!initialized) {
 mermaid.initialize({
 startOnLoad: false,
 theme: document.body.className.includes("dark") ? "dark" : "default"
 });
 initialized = true;
 }

 let id = 0;
 for (const codeEl of document.querySelectorAll("pre code.mermaid")) {
 const preEl = codeEl.parentElement;
 const graphDefinition = codeEl.textContent;
 const graphEl = document.createElement("div");
 const graphId = "mermaid-graph-" + id++;
 mermaid.render(graphId, graphDefinition).then(({svg, bindFunctions}) => {
 graphEl.innerHTML = svg;
 bindFunctions?.(graphEl);
 preEl.insertAdjacentElement("afterend", graphEl);
 preEl.remove();
 });
 }
 });
</script>
For more details and configuration options, see the Mermaid usage docs.
Contributing
The easiest way to test changes to ExDoc is to locally rebuild the app and its own documentation:
	Run mix setup to install all dependencies
	Run mix build to generate the docs and open up the generated doc/index.html
	(optional) Run erl -S httpd serve doc/ to serve the docs locally
	(optional) Run npm run --prefix assets build:watch if working on assets for automatic recompilation
	Run mix lint to check linting and formatting (and mix fix to automatically fix it)
	(important) Do not add the files in the formatters/ directory to your commits, those will be handled by the maintainers

See the README in the assets/ directory for more information on working on the assets.
License
ExDoc source code is released under the Apache 2 License. The generated contents, however, are under different licenses based on projects used to help render HTML, including CSS, JS, and other assets.
Any documentation generated by ExDoc, or any documentation generated by any "Derivative Works" (as specified in the Apache 2 License), must include a direct, readable, and visible link to the ExDoc repository on each rendered material. For HTML pages, every single page is a rendered material. For PDF, EPUB and other ebook formats, the whole body of documentation is a rendered material.

 Cheatsheet Example

Cheatsheets are Markdown files with the .cheatmd extension which support a limited range of elements and formatting. Refer to the source of this document to see the relevant Markdown.
H2 title
H3 title
H4 title
A paragraph.
Code
hello.exs
defmodule Greeter do
 def greet(name) do
 message = "Hello, " <> name <> "!"
 IO.puts message
 end
end

Greeter.greet("world")
Paragraphs
Paragraphs are also supported and can quote code.
Paragraphs are visually distinct from one another.
Lists
	Element 1
	Element 2
	piece of code

Table
Date (H4 header)
	Example	Output
	%m/%d/%Y	06/05/2013
	%A, %B %e, %Y	Sunday, June 5, 2013
	%b %e %a	Jun 5 Sun

Link
Header with links in it.
Variants
Adding variants
H2
{: .col-2}

H3
{: .list-6}

* example 1
* example 2
Variants change presentation via Markdown's inline attribute notation.
Header variants
H2
	.col-2	two-columns
	.col-3	three-columns
	.col-2-left	two-columns (1/3 - 2/3)

H3
	.list-4	four-columns for lists
	.list-6	six-columns for lists

Code
Code with headings
index.ex
Path.join(["~", "foo"])
"~/foo"
other.ex
Path.join(["foo"])
"foo"
Code blocks can have headings.
Long lines
defmodule MyTracer do
 def trace({:remote_function, _meta, module, name, arity}, env) do
 IO.puts "#{env.file}:#{env.line} #{inspect(module)}.#{name}/#{arity}"
 :ok
 end

 def trace(_event, _env) do
 :ok
 end
end
Long lines show scrollbars.
Line wrapping
defmodule MyTracer do
 def trace({:remote_function, _meta, module, name, arity}, env) do
 IO.puts "#{env.file}:#{env.line} #{inspect(module)}.#{name}/#{arity}"
 :ok
 end

 def trace(_event, _env) do
 :ok
 end
end
Add wrap to wrap long lines.
Lists
Bullet lists
	This is
	a list
	with a few items

Ordered lists
	First
	Second
	Third

An extra paragraph after the list.
With headings and code links
Part 1
	is_atom/1
	is_binary/1
	is_number/1

Part 2
	length/1
	elem/2

List columns
Six columns
	One
	Two
	Three
	Four
	Five
	Six
	Seven
	Eight
	Nine
	Ten
	Eleven

Add {: .list-6} after the H3 title to make large lists.
Four columns
	One
	Two
	Three
	Four
	Five
	Six
	Seven
	Eight
	Nine
	Ten
	Eleven

Add {: .list-4} after the H3 title to make large lists.
Full page
The default.
Half width
Avoid overly long lines
Time
	Example	Output
	%H:%M	23:05
	%I:%M %p	11:05 PM

Add {: .width-50} after the H2 title to use only half width.
Column left example
One
hello.exs
defmodule Greeter do
 def greet(name) do
 message = "Hello, " <> name <> "!"
 IO.puts message
 end
end

Greeter.greet("world")
Two
user = %{
 name: "John",
 city: "Melbourne"
}
IO.puts "Hello, " <> user.name
Three
	Yet
	Another
	List

Four
A grid, with 1/3 - 2/3 widths.

 Changelog

v0.39.1 (2025-10-23)
	Bug fixes	Improve box-shadow around autocompletion
	Trim search engine selector on small screens
	Fix admonition titles on small screens

v0.39.0 (2025-10-23)
	Enhancements	Allow custom search engines to be configured with support for https://hexdocs.pm
	Improve admonition blocks so they better integrate with the page flow

	Bug fixes	Add .cheatmd to EPUB to avoid broken links

	Backwards incompatible changes	Validate :extras fields: if you were previously setting them to unexpected values, you may now get an exception
	Setting exdoc:full-text-search-url metadata is no longer supported, using the new search engines configuration

v0.38.4 (2025-09-09)
	Bug fixes	Fix escaping of links when they have ampersand in them
	Increase spacing of footers in pages
	Align stale icon positioning

v0.38.3 (2025-08-17)
	Enhancements	Allow configuring autocomplete limit, and default it to 10 instead of 8
	Display description text in docs groups
	Load discovered makeup apps for CLI

v0.38.2 (2025-05-27)
	Bug fixes	Render documents with hardcoded <h2>/<h3> entries correctly
	Fix padding on external links

v0.38.1 (2025-05-12)
	Bug fixes	Ensure stripping apps for Erlang sources emit valid AST

v0.38.0 (2025-05-09)
	Enhancements
	Allow listing outside URLs in extras

	Bug fixes
	Ensure some cases where <, >, & and in headers would appear as entities in the sidebar
	Fix outline caused by swup.js on Webkit based browsers
	Fix bugs when computing synopsis
	Automatically close the sidebar when navigating sections on mobile

v0.37.3 (2025-03-06)
	Bug fixes	Handle http-equiv=refresh during Swup.js navigation
	Include full error description when syntax highlighting fails

v0.37.2 (2025-02-19)
	Bug fixes	Fix code highlighting for languages with non-alphanumeric characters

v0.37.1 (2025-02-10)
	Enhancements
	Support umbrella projects via the CLI

	Bug fixes
	Make sure docs are rendered inside iframes

v0.37.0 (2025-02-05)
Thanks to @liamcmitchell and @hichemfantar for the extensive contributions in this new release.
	Enhancements
	Optimize and parallelize module retriever, often leading to 20x-30x faster docs generation
	Considerably improve page loading times in the browser
	Allow customizing search_data for extra pages
	Use native style for scroll bars
	Enhance links between extras/pages/guides with padding and hover effects
	Go to latest goes to the same page if it exists, root otherwise
	Apply new style and layout for tabs
	Increase font-weight on sidebar on Apple machines/devices
	Improve accessibility across deprecation, links, and summaries
	Add compatibility to Erlang/OTP 28+
	Rely on the operating system monospace font for unified experience and better load times
	Introduce "exdoc:loaded" window event to track navigation
	Support for favicons

	Bug fixes
	Move action links out from heading tags

v0.36.1 (2024-12-24)
	Enhancements
	Show a progress bar if navigation takes more than 300ms

	Bug fixes
	Fix dark mode styling on cheatsheets
	Ensure the sidebar closes on hosting navigation in mobile

v0.36.0 (2024-12-24)
	Enhancements
	Use swup.js for navigation on hosted sites
	Support :group in documentation metadata for grouping in the sidebar
	Support :default_group_for_doc in configuration to set the default group for functions, callbacks, and types
	Add --warnings-as-errors flag to mix docs

	Bug fixes
	Fix typespec with (...) -> any()
	Do not trap tab commands in the search bar

v0.35.1 (2024-11-21)
	Bug fixes	Make sure symlinks are copied from assets directory
	Discard private functions documented by EDoc

v0.35.0 (2024-11-19)
	Enhancements
	Store proglang in searchdata.js
	Allow searching for atoms inside backticks
	Add support for nominal types from Erlang/OTP 28
	Support a new :redirects option which allows configuring redirects in the sidebar
	Improve warning when referencing type from a private module
	Rename "Search HexDocs package" modal to "Go to package docs"
	Support built-in Erlang/OTP apps in "Go to package docs"

	Bug fixes
	Switch anchor title to aria-label
	Convert admonition blockquotes to sections for screen reader users
	Fix code copy buttons within tabsets

v0.34.2 (2024-07-08)
	Enhancements
	Allow anchors on function and callback autolinks

	Bug fixes
	Make module attributes searchable without leading @
	Make Mod.fun pairs searchable without the arity
	Do not emit warnings on unary plus in typespecs
	Add top margin to nested module prefix in sidebar

v0.34.1 (2024-06-30)
	Enhancements
	Add a v shortcut to open/focus the version select
	Compatibility fixes for Elixir v1.17 and Erlang/OTP 27+

	Bug fixes
	Do not crash on unknown media types in assets during EPUB generation
	Fix slight shift on search bar input during focus
	Avoid unwanted showing/hiding of search bar on mobile when scrolling

v0.34.0 (2024-05-30)
This release requires Elixir v1.13.
	Enhancements
	Allow several assets to be copied by passing a map to :assets
	Improve compatibility when hosting ExDoc on a platform that strips .html

	Bug fixes
	Link to the latest version of Erlang/OTP docs

	Deprecations
	Deprecate passing a binary to :assets

v0.33.0 (2024-05-21)
	Enhancements	Keep the sidebar light in light mode

v0.32.2 (2024-05-10)
	Enhancements
	Allow the modal to close when we click outside the modal content

	Bug fixes
	Fix indentation of -spec/-type in Erlang
	Fix Mix task autolink for tasks with underscores
	Avoid conflicts between custom headers with tooltips/modals

v0.32.1 (2024-04-12)
	Bug fixes	Add version dropdown back on hexdocs.pm
	Improve search input styling and scrolling

v0.32.0 (2024-04-10)
	Enhancements
	Add the ability to see previews during autocompletion
	Remove serif font for content and prefer using the operating system font instead
	Allow the search bar to be focused at any moment
	Make functions acceptable for :skip_undefined_reference_warnings_on
	Make functions acceptable for :skip_code_autolink_to
	Allow using meta tags to disable autocompletion and configure the full text search

	Bug fixes
	Fix blockquote padding inside tabset on small screens
	Consistently index h2 and h3 headers

v0.31.2 (2024-03-05)
	Enhancements
	Add equiv handling for types and callbacks for Erlang
	Add cmd-k/ctrl-k shortcut to focus searchbar
	Use dark backgrounds for admonition blocks in dark theme
	Autolink .cheatmd files
	Warn when extra link targets an application not in dependencies
	Add support for before_closing_footer_tag

	Bug fixes
	Fix sidebar toggle flickering on page load
	Fix background color inside code snippets with no language in dark mode
	Hide search bar and background layer on print
	Use blue links for Erlang
	Fix logo not declared in EPUB's OPF manifest
	Escape URIs and titles in EPUB
	Fix URL slug not updating on anchor clicks

v0.31.1 (2024-01-11)
	Enhancements	Make the sidebar horizontally resizable
	Show the sidebar button and search bar on scroll up on mobile devices
	More improvements to Erlang/OTP 27 support
	Document that source_url_pattern can be a fun
	Support Module

v0.31.0 (2023-12-11)
	Enhancements
	Allow searching atoms, module attributes, and words finishing with ? and !
	Support upcoming Erlang/OTP 27 documentation format
	Include prebuilt binaries on every release
	Add borders dividing table rows in rendered content
	Add accurate warnings for missing docs from Elixir v1.16+
	Support e:dep:some-page.md for explicitly linking to a page in a package
	Support m:SomeModule for explicitly linking to a module
	Add noindex meta tag to 404 and Search pages
	Move search to the main content so we can display more results
	Warn when referencing functions, types, and callbacks from filtered out modules

	Bug fixes
	Fix search for words with hyphens in them
	Fix search for contents inside EEx interpolation

v0.30.9 (2023-10-20)
	Bug fixes
	Fix a scenario where invalid assets would be generated

	Enhancements
	Add admonition EPUB styles

v0.30.8 (2023-10-17)
	Bug fixes	Fix regression in umbrella applications

v0.30.7 (2023-10-15)
	Bug fixes
	Do not crash on EDoc type annotations
	Do not crash on functions without name
	Handle remote types in records
	Fix scrolling to top on iOS
	Fix invalid output markup for “hover link” headings

	Enhancements
	Support any String.Chars as the extra page name
	Improve screen reader accessibility
	Add :skip_code_autolink_to option

v0.30.6 (2023-08-25)
	Enhancements	Extract title from Markdown file when preceded with comments
	Improve focus navigation in notebooks

v0.30.5 (2023-08-12)
	Bug fixes	Fix style for code in headers
	Fix search data generation for Erlang/OTP

v0.30.4 (2023-08-03)
	Bug fixes	Fix style for anchors in headers

v0.30.3 (2023-07-15)
	Enhancements
	Compress search index before storing in local storage

	Bug fixes
	Fix styling for headers on cheatsheets and small screens

v0.30.2 (2023-07-11)
	Bug fixes	Fix escaping in search_data.json
	Skip vega-lite code blocks in search_data.json

v0.30.1 (2023-07-07)
	Bug fixes	Fix styling for headers on cheatsheets and small screens

v0.30.0 (2023-07-07)
	Enhancements
	Support tabsets (see the README for more information)
	Improve search results and indexing by storing more data and metadata
	Warn on invalid references in links
	Strike-through deprecated items on autocompletion
	Add source URL link to API reference page
	Allow multiple extra files with the same name by generating unique names in case of conflicts

	Bug fixes
	Fix rendering of large code blocks in admonition texts
	Do not log errors on module mismatch in case-insensitive file systems

v0.29.4 (2023-03-29)
	Bug fixes	Fix sidebar element with no children taking additional padding
	Fix elements being rendered too thick on macOS
	Fix rendering of HTML elements inside tooltips

v0.29.3 (2023-03-17)
	Enhancements
	Propagate :since metadata from modules
	Add support for MFAs and maps in before_closing_body_tag and before_closing_head_tag

	Bug fixes
	Improve font consistency across different OSes
	Keep language class on livebook output code block
	Ensure switches have higher precedence than config

v0.29.2 (2023-03-02)
	Enhancements
	Improvements to cheatsheets spacing
	Improvements to cheatsheets print
	Include sections of modules and extras in search suggestions
	Make sidebar links full-width and add hover states
	Improve clickable area of sidebar tabs
	Improve contrast on sidebar

	Bug fix
	Add media type for .license files for epub
	Fix overscroll on the sidebar
	Focus search input immediately after keyboard shortcut
	Don't attempt parsing code blocks that don't look like modules
	Fix visited link color in admonition blocks

v0.29.1 (2022-11-21)
	Enhancements
	Add optional function annotations
	Support media print on stylesheets
	Add download ePub link to footer
	Support extras for Erlang
	Add tooltip to functions on sidebar
	Disable spellcheck and autocorrect on search input

	Bug fix
	Special handle functions called record/* in Erlang

	Deprecations
	Rename :groups_for_functions to :groups_for_docs

v0.29.0 (2022-10-19)
	Enhancements
	Support cheatsheets as .cheatmd files

	Bug fix
	Collapse sidebar when resizing page even if stored in the session as opened

v0.28.6 (2022-10-13)
	Enhancements
	Add Elixir special punctuation ! and ? to natural sort
	Add night mode to settings pane
	Support --proglang in mix docs
	Save sidebar state per session
	Distinguish output code blocks in Livebooks

	Bug fixes
	Prevent sidebar button scrolling out of view
	Prevent unreadable text when using inline code with admonition headers

v0.28.5 (2022-08-18)
	Enhancements
	Do not preserve spaces from spec declaration in signature rendering
	Index hyphens in search
	Index @ in search
	Change minimal package search length to 2

	Bug fixes
	Remove extra term() argument at start of @macrocallback

v0.28.4 (2022-04-28)
	Enhancements
	Add a toast when changing theme via keyboard
	Automatically convert .livemd links to .html ones
	Show programming language in HTML footer

	Bug fixes
	Properly escape %/2 special form
	Improve ranking of exact-matching modules in search

v0.28.3 (2022-03-23)
	Enhancements
	Include page titles in autocomplete suggestions
	Allow theme to be set to "System" version
	Remove "Specs" heading and render full typespecs
	Support for source_url_pattern in config being a function

	Bug fixes
	Adjustments for blockquotes and admonition blocks in dark mode
	Fix module sorting when a list of dirs is provided
	Consider casing of letters when sorting items in the menu, summary, function list, etc

v0.28.2 (2022-02-23)
	Bug fixes	Fix links and code tags in admonition text blocks for dark mode

v0.28.1 (2022-02-20)
	Enhancements
	Add support for admonition text blocks
	Improve accessibility for light and dark themes

	Bug fixes
	Ensure that mix docs --open works on Windows
	Ensure search tokenizer also splits on underscore
	Fix false warnings about missing types when running ExDoc in escript mode
	Don't navigate when clicking the current page

v0.28.0 (2022-01-24)
ExDoc v0.28.0 requires Elixir v1.11+.
	Enhancements
	Use custom scrollbar in the sidebar
	Keep hamburger absolute to the opened sidebar
	Support --open flag on mix docs
	The copy button now only copies selectable content

	Bug fixes
	Make sure filename configuration in :extras is used across links
	Ensure all extras pages have a title generated
	Fix margin on 3rd level headers and beyond
	Ensure a task that defines callbacks is still listed as a task

v0.27.3 (2022-01-12)
	Bug fixes	Make HexDocs search case insensitive
	Improve sidebar open/close animation

v0.27.2 (2022-01-11)
	Bug fixes	Fix version dropdown when hosted on HexDocs
	Fix tooltips
	Fix JavaScript error when Hex package information is not available

v0.27.1 (2022-01-11)
	Bug fixes	Several usability fixes on the new layout
	Keep page ordering

v0.27.0 (2022-01-11)
	Enhancements	Introduce new sidebar design
	Add --quiet option to CLI
	Support multiple formatters in the CLI
	Show structs as %Struct{} instead of __struct__ in the sidebar
	Point Erlang links to www.erlang.org instead of erlang.org
	Improvements to the night mode and styling

v0.26.0 (2021-11-21)
	Backwards incompatible changes
	:filter_prefix has been renamed to :filter_modules and supports anonymous functions
	:source_ref now defaults to "main"
	Dropped support for smartypants in Markdown

	Bug fixes
	Do not warn on links to sections

	Enhancements
	Add copy button to code snippets
	Add translate="no" to the relevant attributes to improve interoperability with automatic translation tools
	Support optional module annotations
	Introduce a settings modal to group most of configuration
	Allow customizing the Livebook expansion URL
	Provide documentation on how to render plugins such as Katex, VegaLite, and Mermaid

v0.25.5 (2021-10-20)
	Bug fixes	Do not duplicate API Reference title
	Update assets for Livebook badge functionality

v0.25.4 (2021-10-20)
	Enhancements
	Add source link to pages in :extras
	Add "Run in Livebook" badge to .livemd pages in :extras

	Bug fixes
	Do not generate entries for private Erlang functions
	Do not trim ? and ! from Elixir tokens on search

	Incompatible changes
	Remove unused :source_root option

v0.25.3 (2021-09-21)
	Enhancements
	Track user preference for sidebar state

	Bug fixes
	Do not double escape page titles on the sidebar
	Do not fail when documenting cover compiled modules
	Don't crash upon doc chunks for unknown beam languages

v0.25.2 (2021-09-02)
	Enhancements	Add support for Livebook's .livemd Markdown files
	Preload all applications starting with makeup_ before doc generation
	Add Hex package config and display "Find on Hex" footer links

v0.25.1 (2021-08-02)
	Enhancements
	Supporting grouping of callbacks
	Use shell lexer for code blocks with no language and starting with $

	Bug fixes
	Fix generating type signatures with maps
	Skip Erlang modules that have empty docs
	Skip Erlang functions that have empty docs
	Fix accidentally showing shape of opaque types

v0.25.0 (2021-07-20)
	Enhancements
	Handle remote types when generating signatures, e.g. @callback callback1(GenServer.options()) becomes callback1(options)
	Support Markdown processor options
	Add --paths command line argument to prepend directories to the code path when generating docs
	Make shell prompt, $, not selectable for shell, sh, bash and zsh code blocks

	Bug fixes
	Fix custom links to undefined/hidden references
	Fix generating external links with :deps configuration
	Add ellipsis to more sections

	Backwards incompatible changes
	Remove function landing pages

v0.24.2 (2021-04-06)
	Enhancements
	Support stepped range syntax

	Bug fixes
	Add spaces on paragraph endings for search results
	Fix bug defining app name in config
	Fix rendering void elements (
 etc)

v0.24.1 (2021-03-22)
	Bug fixes	Fix generating function landing pages

v0.24.0 (2021-03-16)
	Enhancements
	Drop jQuery and refactor JavaScript codebase
	Remove highlight.js in favour of migration to Makeup
	Change autolink to return both path and hash for the current module
	Add next/previous at the end of extra pages
	Improve search input blur handling
	Update erlang.org/man URL
	Add function landing page

	Bug fixes
	Ignore extensions when generating external links
	Fix autolink to handle URIs with arbitrary scheme part without warning
	Fix undefined reference warning for typespecs
	Fix search click behavior when a suggestion refers the current page
	Don't crash when we can't format spec
	Fix HTML escaping

v0.23.0 (2020-10-12)
Requires Elixir v1.10.
	Enhancements
	Improve warnings on broken references
	Support Elixir v1.12-dev

	Bug fixes
	Respect deps config in autolink
	Fix html escaping in the sidebar entries
	Fix retrieving specs for macros with when
	Raise if none of :name or :app are found in mix.exs
	Don't crash on code blocks like "A.b.C"

v0.22.6 (2020-09-16)
	Bug fixes	Properly fix CSS bug on headings
	Add expansion arrow to sections on sidebar

v0.22.5 (2020-09-13)
	Bug fixes	Fix CSS bug on headings

v0.22.4 (2020-09-12)
	Enhancements	Improve accessibility and add aria labels
	Show different title and message for a empty search value

v0.22.3 (2020-07-25)
	Bug fixes	[HTML+EPUB] Remove overlapping functions from defaults
	[HTML] Don't show tooltip for module sections and non-html files
	[HTML] Make sure tooltips work with escape ids.

v0.22.2 (2020-07-20)
	Enhancements
	[HTML+EPUB] Add support for path dependent markdown autolink (feeddc1)
	[HTML+EPUB] Improve auto-linking to callbacks and types (12c0a01)
	[HTML+EPUB] Replace <kbd> with <kbd><kbd> when it represents keys to be hit (bd2b8df)
	[HTML] Hide sidebar-over-content on click/tap outside it (b050775)
	[HTML] Redirect to correct file when changing version (0f6f24b)
	[mix docs] Allow files with no extension in extra files (26b93b6)
	[mix docs] Link to siblings in an umbrella (b0d6fdd)
	[mix docs] Switch to earmark_parser. Run mix deps.unlock --unused to remove the now
unused earmark dependency. (021c772)

	Bug fixes
	[HTML+EPUB] Bring back auto-linking to Kernel and Kernel.SpecialForms (fa174eb)
	[HTML+EPUB] Escape HTML special characters in signature (5fed479)
	[HTML+EPUB] Fix auto-linking ./2 and ../2 (2e40acb)
	[HTML+EPUB] Fix list of basic types to auto-link (6df4a3b)
	[HTML+EPUB] Make HTML valid (1187ace)
	[HTML] Escape HTML special characters in sidebar (d26ca71)
	[HTML] Fix keyboard shortcuts on non US keyboard layouts (829c4ee)
	[HTML] Fix text overflow in sidebar (a4ff547)
	[HTML] Handle snake case terms in search results (d511d55)
	[mix docs] Don't crash on markdown that triggers warning (e7cb79c)

v0.22.1 (2020-05-19)
	Bug fixes	[mix docs] Depend on earmark ~> 1.4.0
	[mix docs] Don't crash on comments in markdown
	[mix docs] Don't crash on HTML in markdown

v0.22.0 (2020-05-11)
	Enhancements
	[EPUB] Add epub to the default formatters
	[HTML+EPUB] Move specs out of signature
	[HTML+EPUB] Auto-link "erlang" types & callbacks
	[HTML+EPUB] Auto-link "erlang" modules in custom links
	[mix docs] Warn on broken references in dependencies (e.g. `String.upcase/9`)
	[escript] Add --app
	[HTML+EPUB] Auto-link to extras (e.g. [foo](foo.md))
	[mix docs] Undefined references warning now includes the filename
	[mix docs] :skip_undefined_reference_warnings_on now also accepts a filename
	[HTML+EPUB] Display moduledoc headings in the sidebar

	Bug fixes
	[HTML] Fix hidden text selection, hide tooltips for details link
	[HTML+EPUB] Fix function name sorting (group operators together)
	[HTML+EPUB] Fix displaying nested modules

	Backwards incompatible changes
	[mix docs] Remove built-in support for cmark markdown processor
	[mix docs] Replace ExDoc.Markdown.to_html/2 with to_ast/2
	[HTML+EPUB] Remove auto-linking for local calls to Kernel & Kernel.SpecialForms,
use fully qualified calls instead. (e.g. replace `==/2` with `Kernel.==/2`.)
	[mix docs] :skip_undefined_reference_warnings_on no longer accepts extras id, use
extras filename instead.

v0.21.3
	Enhancements
	[HTML] Make "Exceptions" a module sub-grouping instead of a top-level group
	[HTML] Automatically group deprecated modules
	[HTML] Rely on prefers-color-scheme w/o night mode set
	[HTML] Boost title on search results, add fun/arity to title
	[mix docs] Initial work on support for multiple languages

	Bug fixes
	[HTML] Many improvements to the search engine
	[mix docs] Link to callback docs instead of copying them

v0.21.2
	Enhancements
	[HTML] Add hardcoded packages to the quick-switch search results
	[HTML] Filter out packages without docs on HexDocs in quick-switch
	[HTML+EPUB] Support autolinking for multiple arities
	[mix docs] Avoid deprecation warnings on more recent earmark versions
	[mix docs] Warn on unavailable local functions
	[mix docs] Make invalid index redirect warning case-sensitive
	[mix docs] Ignore non-Elixir modules when missing chunk

	Bug fixes
	[HTML+EPUB] Do not create a custom link when destination does not exist
	[EPUB] Hide screen reader elements

v0.21.1
	Bug fixes	[HTML] Make sure package selector can be reopened after closed with ESC
	[HTML] Ensure tooltip pages can be cached
	[HTML] Support large version numbers on the version dropdown
	[mix docs] Raise nice exception for missing ExDoc.Config

v0.21.0
	Enhancements
	[HTML] Add support for reference popovers
	[HTML] Provide a "g" shortcut to Go To a Hexdocs package (with autocomplete)
	[HTML] Detect if browser prefers night mode
	[EPUB] Add support for covers and the authors field

	Bug fixes
	[HTML+EPUB] Ensure that link headers generate unique IDs
	[HTML+EPUB] Sort structs fields so field names are always ordered
	[HTML+EPUB] Do not strip "Elixir." prefix from module names
	[HTML] Support URLs with non-HTML safe characters
	[EPUB] Fix table of contents without groups

v0.20.2
	Enhancements
	Add "mix " prefix to Mix tasks

	Bug fixes
	Improve scrolling on Safari
	Prevent text casing of codes
	Do not remove stop words from search and make sure function names are searchable in isolation
	Reduce the size of the search metadata
	Remove outline on focus and keep width in version dropdown
	Do not fail if we can't persist index

v0.20.1
	Bug fixes	Hide the spinner when no term is searched
	Use ? for the shortcut hint text
	Improve style of the version dropdown

v0.20.0
	Enhancements
	Rework the search bar to provide autocompletion
	Provide full-text search
	Automatically generate documentation for defdelegate definitions (requires Elixir v1.8+)
	Provide keyboard shortcuts (press ? to see all available outputs) or click the link at the bottom of the page
	Add support for versions dropdown to the HTML sidebar. This requires adding a docs_config.js (also configurable) that sets a versionNodes JavaScript variable.
	Improve mouseover titles on sidebar navigation

	Bug fixes
	Do not hide structs in type/callback summary signatures
	No longer require double click to open up a sidebar on Mobile Safari
	Keep trailing periods in summaries
	Fix typespec arg number to start from 1 instead of 0

v0.19.3
	Enhancements
	Include a "goto" link on mouseover for expandable menu items

	Bug fixes
	Always expand menu items, even if has a single child
	Fix sidebar bottom margin on Firefox
	Fix anchor links sometimes not working by moving JS to HTML head
	Unify code styling for makeup and hljs
	Do not replace the content of custom links pointing to Elixir modules
	Remove border-left on deprecated to not mistake it with a heading

v0.19.2
	Enhancements
	Allow logo in SVG extension
	Allow functions to be grouped based on metadata
	Allow api-reference.html page to be disabled
	Allow nesting of modules by prefix
	Autolink mix help TASK
	Warn on undefined remote functions from project's docs

	Bug fixes
	Sort function names alphabetically in the sidebar
	Fix search input color
	Disable earmark smartypants option

v0.19.1
	Enhancements	Update CSS styles
	Remove sourcemaps from package

v0.19.0
This release requires Elixir v1.7 and later. For earlier Elixir versions, use ExDoc ~> 0.18.0.
	Enhancements
	Do not select "iex>" when selecting code samples
	Use makeup to perform ELixir's syntax highlighting (other languages still use highlight.js)
	Use [rel="noopener"] on external links
	Link directly to page if sidebar item has no subitems
	Autolink Kernel and Kernel functions and special forms with shorthands (for example, only is_atom/1 is necessary)
	Trim EEx contents to reduce HTML size
	Allow apps to be excluded from umbrella app docs

	Bug fixes
	Exclude types with @typedoc false from the docs
	Make sure autolink considers the longest matching dependency name in case of shared prefixes

v0.18.3
	Bug fix	Fix formatting of typespecs causing errors
	Update jQuery
	Properly remove underscore from typespec links

v0.18.2
	Enhancements	Improve documentation pages for printing
	Autolink Kernel, Kernel.SpecialForms, and built-in types
	Annotate opaque types
	Add vertical-align:top to tables
	Allow module-function-arity references in links
	Remove underscore from view source link
	Run code formatter on typespecs (if one is available)
	Make night mode switch link more obvious

v0.18.1
	Bug fixes	Include missing formatter files

v0.18.0
	Enhancements
	No longer strip empty parens from types
	Provide more extension point for markdown processors
	Remove assets from priv since they are now embedded at compile time

	Backwards incompatible changes
	Remove built-in support for hoedown markdown processor
	No longer add favicon when logo option is present (this was added in 0.17.0 but it was reported the logo almost never fits as a favicon)

v0.17.1
	Bug fixes	Fix broken search caused by outdated JavaScript files

v0.17.0
	Enhancements
	Allow modules to be grouped on the sidebar with the :groups_for_modules option
	Allow extras to be grouped on the sidebar with the :groups_for_extras option

	Backwards incompatible changes
	The previous :group option that could be specified for each entry in :extras is no longer supported
	No longer add a specific section for "Protocols". If you would like to segregate the protocols in your application, use the new :groups_for_modules functionality

v0.16.4
	Enhancements
	Generate favicon link if a logo is available

	Bug fixes
	Do not version epub filename as the doc directory is likely already versioned

v0.16.3
	Enhancements
	Make sure its own search.html page and provide history
	Generate source maps only if the --debug flag is given
	Users can now add custom HTML before the closing head tag and the closing body tag
	Highlight the target function/macro/type/callback when clicked

	Bug fixes
	Remove extra term() argument at start of macro spec
	Add unencoded link target for functions with special chars to cope with different behaviour in browsers

v0.16.2
	Enhancements	Link <h3> headers as well
	Add border to code tag

	Bug fixes	Fix sidebar on mobile devices

v0.16.1
	Bug fixes	Fix hover icons coloring

v0.16.0
	Enhancements
	Separate tasks into "Mix Tasks" in sidebar
	Add types to the search results
	Improve accessibility

	Bug fixes
	Strip nesting HTML tags in h2 headers
	Remove the old search results after every new search attempt

v0.15.1
	Bug fixes	Improve project name wrapping on HTML
	Properly set link in types with parameter
	Fix ExDoc.CLI.main/2 to keep --source-ref on Elixir v1.4
	Do not fail if localStorage is not available

v0.15.0
	Enhancements
	Closing the search takes you to where you were in the previous page
	Handle __struct__/0 by displaying the struct instead
	Warn when redirecting to a non-existent file
	List both functions and macros under "Functions"
	Automatically detect GitLab source URL patterns

	Bug fixes
	Break long specs into lines
	Fix the initial state of the sidebar hamburger
	Do not error when abstract code is missing
	Properly link to erlang lib dirs

	Backwards incompatible changes
	No longer support Pandoc
	Require Earmark 1.1

v0.14.5
	Enhancements	Allow ExDoc to work as an escript

v0.14.4
	Enhancements	Point to Elixir docs on hexdocs.pm
	Many improvements to layout and styling of EPUB formatter
	Support multiple formatters to be configured on mix.exs
	Also digest sidebar_items.js
	Force parentheses on type signature to remove ambiguity
	Generate top-level docs for an umbrella project
	Searching on mobile closes menu when the Enter key is hit

v0.14.3
	Enhancements
	Support the :assets option that automatically copies all entries in the given directory to doc/assets
	Remove numbering on Extras subheaders from sidebar
	Pass file and line information to markdown formatters for better warnings
	Allow extra pages to be grouped together under a given heading
	Generate ids for default name/arity pairs so they can be linked (both remotely and locally)

	Bug fixes
	Fix autolink for functions containing %, {, } or uppercase characters in the name

v0.14.2
	Enhancements
	Automatically generate documentations links to any of your dependencies (by default links to hexdocs.pm but allows the URL to be configured)
	Allow documentation to be generated to Erlang modules

	Bug fixes
	Make sure "Top" is not included twice on pages

v0.14.1
	Bug fixes	Include "Top" link in pages with no headings
	Include "Top" link in modules with no docs

v0.14.0
	Enhancements
	Add support for the epub formatter
	Support extraction from <h2> headers out of the settext format

	Layout changes
	Indent documentation inside the function/macro/type/callback header
	Style types the same way as function/macro/callback and include a link to the source
	Increase font-sizes in the sidebar and code snippets
	Move the specs definition inside the function/macro/type/callback header and make better use of vertical space
	Use a gradient on the sidebar to avoid sudden cut-off when scrolling the modules list
	Fix the use of the back-button in some browsers
	Allow the whole sidebar to be navigated without moving away from the current page. Expand (+) and collapse (-) buttons have been added to aid exploration
	Numerically order pages/guides headers

v0.13.2
	Bug fixes	Avoid scrollbar from appearing on all code snippets

v0.13.1
	Enhancements
	Autolink Elixir's stdlib modules and functions
	Show callbacks in search results
	Reduce size taken by font-sizes
	Increase size for headings in the moduledoc

	Bug fixes
	Fix opened sidebar on small screens
	Allow horizontal scrolling for code snippets on small screens

v0.13.0
	Bug fixes
	Fix issue where docs would fail when being built on Erlang 19
	Store templates in priv rather than in lib

	Backwards incompatible changes
	Require Elixir ~> v1.2

v0.12.0
	Enhancements
	Remove warnings when running on Elixir v1.3
	Support for @optional_callbacks
	Improve styling for nested lists
	Include earmark as a default dependency

	Bug fixes
	Fix many styling and performance front-end related bugs

v0.11.5
	Enhancements
	Support canonical URLs

	Bug fixes
	Autolink now allows digits in function names
	Sort specs by line to preserve ordering
	Focus on content element on document ready
	Remove ligature fix on Firefox and Safari as Google Fonts have been updated

v0.11.4
	Bug fixes	Fix ligature issues in recent browsers
	HTML escape headers
	Avoid warning on Elixir master (v1.3)

v0.11.3
	Bug fixes	Fix a regression where the sidebar wouldn't stick on small screens

v0.11.2
	Enhancements
	Include night mode for docs
	Take advantage of extra space on large screens by widening sidebar

	Bug fixes
	Do not attempt to retrieve docs from Erlang modules

v0.11.1
	Bug fixes	Include callbacks even if a module defines a struct

v0.11.0
	Enhancements
	From now on it's possible to set the title in the sidebar area for
additional content, default: "Pages"
	Set the path and title of each additional page in mix.exs file
	Use the first h1 as menu title if title is not configured
	Include the project name as part of the header in small devices

	Bug fixes
	Increase the visual separation between functions
	Remove the extra- prefix for the additional documentation files
	Extra large images do not create an overflow in the content

v0.10.0
	Enhancements	Many improvements and bug fixes in new layout
	Reduced build size
	Overview has been renamed to API Reference
	All extra content, including API Reference, has been moved to inside
"Pages"
	Extra files are now downcased and prefixed by extra-

v0.9.0
	Enhancements
	Whole new clean, readable, usable, responsive layout
	Support for adding logo to generated docs (must be 64x64 pixels)
	Support for adding extra pages to generated docs
	Improve formatting of typespecs and callbacks

	Backwards incompatible changes
	--readme option and :readme configuration have been removed. Use
:extras in your mix.exs file or pass --extra / -e in the
command-line (may be given multiple times)

v0.8.4
	Bug fixes	Generate README.html file instead of readme.html as in previous
releases
	Style fixes in the new layout

v0.8.3
	Bug fixes	Style fixes in the new layout

v0.8.2
	Enhancements
	Uglify and minify JS and CSS code
	Performance improvements when building sidebar
	Redirect from index.html to proper page

	Bug fixes
	Style fixes in the new layout

v0.8.1
	Bug fixes	Style fixes in the new layout

v0.8.0
	Enhancements	New and responsive layout without frames

v0.7.3
	Bug fixes	Update highlight.js with fixes some inlining issues
	Require latest Earmark

v0.7.2
	Bug fixes	Support Elixir master
	Fix error reporting when modules are compiled without docs

v0.7.1
	Enhancements	Use type=search for search input
	Update highlight.js dependency
	Properly tag code comments as coming from Elixir/IEx unless noted otherwise
	Add support for hash redirection

v0.7.0
	Enhancements	Documentation is now generated at doc to follow OTP "standard"

v0.6.2
	Enhancements	Improvements to the document structure
	Add syntax highlight

v0.6.1
	Enhancements	Autolink modules and functions in the README
	Generate ids for callbacks starting with "c:"
	Ensure group ordering is consistent: TYPES > FUNCTIONS > MACROS > CALLBACKS
	Allow users to search by Module.function

v0.6.0
	Enhancements	Support Elixir v1.0.0-rc1

v0.5.2
	Bug fixes	Use proper ANSI escape sequence on Mix success messages

v0.5.1
	Enhancements	Support Elixir v0.15.0
	Add support for Earmark - no need for external processors

v0.5.0
	Enhancements	First public release
	Support pandoc and devinus/markdown as markdown processors

ExDoc.Markdown behaviour

Adapter behaviour and conveniences for converting Markdown to HTML.
ExDoc is compatible with any markdown processor that implements the
functions defined in this module. The markdown processor can be changed
via the :markdown_processor option in your mix.exs.
ExDoc supports the following Markdown parsers out of the box:
	EarmarkParser

ExDoc uses EarmarkParser by default.

 Summary

 Callbacks

 available?()

 Returns true if all dependencies necessary are available.

 to_ast(t, t)

 Converts markdown into HTML.

 Functions

 get_markdown_processor()

 Gets the current markdown processor set globally.

 put_markdown_processor(processor)

 Changes the markdown processor globally.

 to_ast(text, opts \\ [])

 Converts the given markdown document to HTML AST.

 Callbacks

 available?()

 @callback available?() :: boolean()

Returns true if all dependencies necessary are available.

 to_ast(t, t)

 @callback to_ast(String.t(), Keyword.t()) :: term()

Converts markdown into HTML.

 Functions

 get_markdown_processor()

Gets the current markdown processor set globally.

 put_markdown_processor(processor)

Changes the markdown processor globally.

 to_ast(text, opts \\ [])

Converts the given markdown document to HTML AST.

ExDoc.Markdown.Earmark

ExDoc extension for the EarmarkParser Markdown parser.

 Summary

 Functions

 to_ast(text, opts)

 Generate HTML AST.

 Functions

 to_ast(text, opts)

Generate HTML AST.
Options
	:gfm - (boolean) turns on Github Flavored Markdown extensions. Defaults to true.

	:breaks - (boolean) only applicable if gfm is enabled. Makes all line
breaks significant (so every line in the input is a new line in the output).

mix docs

Uses ExDoc to generate a static web page from the project documentation.
Command line options
	--canonical, -n - Indicate the preferred URL with
rel="canonical" link element, defaults to no canonical path

	--formatter, -f - Which formatters to use, html or
epub. This option can be given more than once. By default,
both html and epub are generated.

	--language - Specifies the language to annotate the
EPUB output in valid BCP 47

	--open - open browser window pointed to the documentation

	--output, -o - Output directory for the generated
docs, default: "doc"

	--proglang - Chooses the main programming language: elixir
or erlang

	--warnings-as-errors - Exits with non-zero exit code if any warnings are found

The command line options have higher precedence than the options
specified in your mix.exs file below.
Configuration
ExDoc will automatically pull in information from your project,
like the application and version. However, you may want to set
:name, :source_url and :homepage_url to have a nicer output
from ExDoc, for example:
def project do
 [
 app: :my_app,
 version: "0.1.0-dev",
 deps: deps(),

 # Docs
 name: "My App",
 source_url: "https://github.com/USER/PROJECT",
 homepage_url: "http://YOUR_PROJECT_HOMEPAGE",
 docs: [
 main: "MyApp", # The main page in the docs
 favicon: "path/to/favicon.png",
 logo: "path/to/logo.png",
 extras: ["README.md"]
]
]
end
ExDoc also allows configuration specific to the documentation to
be set. The following options should be put under the :docs key
in your project's main configuration. The :docs options should
be a keyword list or a function returning a keyword list that will
be lazily executed.
	:annotations_for_docs - a function that receives metadata and returns a list
of annotations to be added to the signature. The metadata received will also
contain :module, :name, :arity and :kind to help identify which entity is
currently being processed.

	:api_reference - Whether to generate api-reference.html; default: true.
If this is set to false, :main must also be set.

	:assets - A map of source => target directories that will be copied as is to
the output path. It defaults to an empty map.

	:authors - List of authors for the generated docs or epub.

	:before_closing_body_tag - a function that takes as argument an atom specifying
the formatter being used (:html or :epub) and returns a literal HTML string
to be included just before the closing body tag (</body>).
The atom given as argument can be used to include different content in both formats.
Useful to inject custom assets, such as Javascript.

	:before_closing_head_tag - a function that takes as argument an atom specifying
the formatter being used (:html or :epub) and returns a literal HTML string
to be included just before the closing head tag (</head>).
The atom given as argument can be used to include different content in both formats.
Useful to inject custom assets, such as CSS stylesheets.

	:before_closing_footer_tag - a function that takes as argument an atom specifying
the formatter being used (:html) and returns a literal HTML string
to be included just before the closing footer tag (</footer>).
This option only has effect on the html formatter.
Useful if you want to inject an extra footer into the documentation.

	:canonical - String that defines the preferred URL with the rel="canonical"
element; defaults to no canonical path.

	:cover - Path to the epub cover image (only PNG or JPEG accepted)
The image size should be around 1600x2400. When specified, the cover will be placed under
the "assets" directory in the output path under the name "cover" and the
appropriate extension. This option has no effect when using the "html" formatter.

	:deps - A keyword list application names and their documentation URL.
ExDoc will by default include all dependencies and assume they are hosted on
HexDocs. This can be overridden by your own values. Example: [plug: "https://myserver/plug/"]

	:extra_section - String that defines the section title of the additional
Markdown and plain text pages; default: "PAGES". Example: "GUIDES"

	:extras - List of paths to additional Markdown (.md extension), Live Markdown
(.livemd extension), Cheatsheets (.cheatmd extension), external urls (:url option),
and plain text pages to add to the documentation. You can also specify keyword pairs to
customize the generated filename, title and source file, and search content of each extra page;
default: []. Example: ["README.md", "LICENSE", "CONTRIBUTING.md": [filename: "contributing", title: "Contributing", source: "CONTRIBUTING.mdx"]] See the Customizing Extras section for
more.

	:favicon - Path to a favicon image file for the project. Must be PNG, JPEG or SVG. When
specified, the image file will be placed in the output "assets" directory, named
"favicon.EXTENSION". If using SVG, ensure appropriate width, height and viewBox attributes
are present in order to ensure predictable sizing and cropping.

	:filter_modules - Include only modules that match the given value. The
value can be a regex, a string (representing a regex), or a two-arity
function that receives the module and its metadata and returns true if the
module must be included. If a string or a regex is given, it will be matched
against the complete module name (which includes the "Elixir." prefix for
Elixir modules). If a module has @moduledoc false, then it is always excluded.

	:formatters - Formatter to use; default: ["html", "epub"], options: "html", "epub".

	:groups_for_extras, :groups_for_modules, :groups_for_docs, and :default_group_for_doc -
See the "Groups" section

	:ignore_apps - Apps to be ignored when generating documentation in an umbrella project.
Receives a list of atoms. Example: [:first_app, :second_app].

	:language - Identify the primary language of the documents, its value must be
a valid BCP 47 language tag; default: "en"

	:logo - Path to a logo image file for the project. Must be PNG, JPEG or SVG. When
specified, the image file will be placed in the output "assets" directory, named
"logo.EXTENSION". The image will be shown within a 48x48px area. If using SVG, ensure
appropriate width, height and viewBox attributes are present in order to ensure
predictable sizing and cropping.

	:main - Main page of the documentation. It may be a module or a
generated page, like "Plug" or "api-reference"; default: "api-reference".

	:markdown_processor - The markdown processor to use,
either module() or {module(), keyword()} to provide configuration options;

	:meta - A keyword list or a map to specify meta tag attributes

	:nest_modules_by_prefix - See the "Nesting" section

	:output - Output directory for the generated docs; default: "doc".
May be overridden by command line argument.

	:redirects - A map or list of tuples, where the key is the path to redirect from and the
 value is the path to redirect to. The extension is omitted in both cases, i.e %{"old-readme" => "readme"}.
 See the "Changing documentation over time" section below for more.

	:search - A list of search engine configurations. See the "Search engines" section

	:skip_undefined_reference_warnings_on - ExDoc warns when it can't create a Mod.fun/arity
reference in the current project docs (for example, because of a typo). This option controls when to
skip such warnings. This option can be a list of strings that will be checked for exact matches,
or a function that takes a reference and must return a boolean (true means "skip this").
References that are checked against this option (either whether they're in the given
list or whether they match the given function) are the relative filename, the "ID" of
the node (like User.exists?/1), or the module name. Examples for this option:
	["Foo", "Bar.baz/0"] - skip warnings for Foo and Bar.baz/0
	&String.match?(&1, ~r/Foo/) - skip warnings for any reference that matches the regex
	["pages/deprecations.md"] - skip warnings for any reference in the
pages/deprecations.md file

	:skip_code_autolink_to - Similar to :skip_undefined_reference_warnings_on, this option
controls which terms will be skipped by ExDoc when building documentation.
Useful for example if you want to highlight private modules or functions without warnings.
This option can be a function from a term to a boolean (e.g.: &String.match?(&1, ~r/PrivateModule/))
or a list of terms (e.g.:["PrivateModule", "PrivateModule.func/1"]);
default is nothing to be skipped.

	:source_beam - Path to the beam directory; default: mix's compile path.

	:source_ref - The branch/commit/tag used for source link inference;
default: "main".

	:source_url_pattern - Public URL of the project for source links. This is derived
automatically from the project's :source_url and :source_ref when using one of
the supported public hosting services (currently GitHub, GitLab, or Bitbucket). If
you are using one of those services with their default public hostname, you do not
need to set this configuration.
However, if using a different solution, or self-hosting, you will need to set this
configuration variable to a pattern for source code links. The value must be a string or
a function.
If a string, then it should be the full URI to use for links with the following
variables available for interpolation:
	%{path}: the path of a file in the repo
	%{line}: the line number in the file

For self-hosted GitLab/GitHub:
https://mydomain.org/user_or_team/repo_name/blob/main/%{path}#L%{line}
For self-hosted Bitbucket:
https://mydomain.org/user_or_team/repo_name/src/main/%{path}#cl-%{line}
If a function, then it must be a function that takes two arguments, path and line,
where path is either an relative path from the cwd, or an absolute path. The function
must return the full URI as it should be placed in the documentation.

Using :source_url and :source_ref together
A common setup for a project or library is to set both :source_url and :source_ref. Setting
both of them will allow ExDoc to link to specific version of the code for a function or module
that matches the version of the docs. So if the docs have been generated for version 1.0.5 then
clicking on the source link in the docs will take the browser to the source code for the 1.0.5
version of the code instead of only the primary ref (e.g. main).
A example setup looks like:
@version "0.30.10"
def project do
 [
 ...
 version: @version,
 docs: docs(),
 ...
]
end

def docs do
 ...
 source_ref: "v#{@version}",
 source_url: @source_url,
 ...
end
If you use source_ref: "v#{@version}" then when publishing a new version of your package you
should run git tag vVERSION and push the tag. This way, ExDoc will generate links to the
specific version the docs were generated for.
Groups
ExDoc content can be organized in groups. This is done via the :groups_for_extras
and :groups_for_modules. For example, imagine you are storing extra guides in
your documentation which are organized per directory. In the extras section you
have:
extras: [
 "guides/introduction/foo.md",
 "guides/introduction/bar.md",

 ...

 "guides/advanced/baz.md",
 "guides/advanced/bat.md"
]
You can have those grouped as follows:
groups_for_extras: [
 "Introduction": Path.wildcard("guides/introduction/*.md"),
 "Advanced": Path.wildcard("guides/advanced/*.md")
]
Or via a regex:
groups_for_extras: [
 "Introduction": ~r"/introduction/",
 "Advanced": ~r"/advanced/"
]
External extras from a URL can also be grouped:
groups_for_extras: [
 "Elixir": ~r"https://elixir-lang.org/",
 "Erlang": ~r"https://www.erlang.org/"
]
Similar can be done for modules:
groups_for_modules: [
 "Data types": [Atom, Regex, URI],
 "Collections": [Enum, MapSet, Stream]
]
A regex or the string name of the module is also supported.
Grouping functions, types, and callbacks
Types, functions, and callbacks inside a module can also be organized in groups.
Group metadata
By default, ExDoc respects the :group metadata field to determine in which
group an element belongs:
@doc group: "Queries"
def get_by(schema, fields)
The function above will be automatically listed under the "Queries" section in
the sidebar. The benefit of using :group is that it can also be used by tools
such as IEx during autocompletion. These groups are then displayed in the sidebar.
It is also possible to tell ExDoc to either enrich the group metadata or lookup a
different field via the :default_group_for_doc configuration. The default is:
default_group_for_doc: fn metadata -> metadata[:group] end
The metadata received contains all of the documentation metadata, such as :group,
but also :module, :name, :arity and :kind to help identify which entity is
currently being processed. For example, projects like Nx have a custom function that
converts "Queries" into "Function: Queries":
default_group_for_doc: fn metadata ->
 if group = metadata[:group] do
 "Functions: #{group}"
 end
end
Finally, you can also use the :groups_for_docs which works similarly as the
one for modules/extra pages.
:groups_for_docs is a keyword list of group titles and filtering functions
that receive the documentation metadata and must return a boolean.
For example, imagine that you have an API client library with a large surface
area for all the API endpoints you need to support. It would be helpful to
group the functions with similar responsibilities together. In this case in
your module you might have:
defmodule APIClient do
 @doc section: :auth
 def refresh_token(params \\ [])

 @doc subject: :object
 def update_status(id, new_status)

 @doc permission: :grant
 def grant_privilege(resource, privilege)
end
And then in the configuration you can group these with:
groups_for_docs: [
 Authentication: & &1[:section] == :auth,
 Resource: & &1[:subject] == :object,
 Admin: & &1[:permission] in [:grant, :write]
]
A function can belong to a single group only. The first group that matches
will be the one used. In case no group is found in :groups_for_docs,
the :default_group_for_doc callback is invoked. If it returns nil, it
then falls back to the appropriate "Functions", "Types" or "Callbacks"
section respectively.
Group descriptions
It is possible to display a description for each group under its respective section
in a module's page. This helps to better explain what is the intended usage of each
group elements instead of describing everything in the displayed @moduledoc.
Descriptions can be provided as @moduledoc metadata. Groups without descriptions are
also supported to define group ordering.
@moduledoc groups: [
 "Main API",
 %{title: "Helpers", description: "Functions shared with other modules."}
]
Descriptions can also be given in the :default_group_for_doc configuration:
default_group_for_doc: fn metadata ->
 case metadata[:group] do
 :main_api -> "Main API"
 :helpers -> [title: "Helpers", description: "Functions shared with other modules."]
 _ -> nil
 end
end
Keyword lists or maps are supported in either case.
When using :groups_for_docs, if all the elements for a given group are matched then the
:default_group_for_doc is never invoked and ExDoc will not know about the description.
In that case, the description should be provided in the @moduledoc :groups metadata.
Whenever using the :group key, the groups will be ordered alphabetically.
If you also want control over the group order, you can also use the :groups_for_docs
which works similarly as the one for modules/extra pages.
Group ordering
Groups in the sidebar and main page body are ordered according to the following
rules:
	First, groups defined as @moduledoc groups: [...] in the given order.
	Then groups defined as keys in the :groups_for_docs configuration.
	Then default groups: Types, Callbacks and Functions.
	Finally, other groups returned by :default_group_for_doc by alphabetical order.

Search engines
ExDoc allows custom search engines via the :search key. Each search engine
is a map with the following keys:
	:name - The display name of the search engine (required)
	:help - A help text describing what the search engine does (required)
	:url - The optional search URL template, usually ending with q=
	:packages - An optional list of packages (or package-versions) to search on
https://hexdocs.pm. For example: [:plug, :phoenix, ecto: "3.0.0", ecto_sql: "3.0.0"].
If no version is specified, it uses the package latest

If none of :url or :packages are given, ExDoc will use its default search engine
powered by Lunr.
When multiple search engines are configured, a dropdown selector will appear next to
the search bar allowing users to choose which engine to use. For example:
search: [
 %{name: "FooBar", help: "Search on FooBar", url: "https://example.com/?q="},
 %{name: "Local", help: "In-browser search"}
]
If only one search engine is configured, the dropdown selector will be hidden.
If no search engine is configured, only the built-in Lunr's is shown.
Nesting
ExDoc also allows module names in the sidebar to appear nested under a given
prefix. The :nest_modules_by_prefix expects a list of module names, such as
[Foo.Bar, Bar.Baz]. In this case, a module named Foo.Bar.Baz will appear
nested within Foo.Bar and only the name Baz will be shown in the sidebar.
Note the Foo.Bar module itself is not affected.
This option is mainly intended to improve the display of long module names in
the sidebar, particularly when they are too long for the sidebar or when many
modules share a long prefix. If you mean to group modules logically or call
attention to them in the docs, you should probably use :groups_for_modules
(which can be used in conjunction with :nest_modules_by_prefix).
Changing documentation over time
As your project grows, your documentation may very likely change, even structurally.
There are a few important things to consider in this regard:
	Links to your extras will break if you change or move file names.
	Links to your modules, and mix tasks will change if you change their name.
	Links to functions are actually links to modules with anchor links.
If you change the function name, the link does not break but will leave users
at the top of the module's documentation.

Because these docs are static files, the behavior of a missing page will depend on where they are hosted.
In particular, hexdocs.pm will show a 404 page.
You can improve the developer experience on everything but function names changing
by using the redirects configuration. For example, if you changed the module MyApp.MyModule
to MyApp.My.Module and the extra get-started.md to quickstart.md, you can
setup the following redirects:
redirects: %{
 "MyApp.MyModule" => "MyApp.My.Module",
 "get-started" => "quickstart"
}
Customizing Extras
There are two sources for extras, filenames and urls.
For filenames, the allowed configuration is:
	:title - The title of the extra page. If not provided, the title will be inferred from the filename.
	:filename - The name of the generated file. If not provided, the filename will be inferred from
 the source file.
	:source - The source file of the extra page. This is useful if you want to customize the filename or
 title but keep the source file unchanged.
	:search_data - A list of terms to be indexed for autocomplete and search. If not provided, the content
 of the extra page will be indexed for search. See the section below for more.

For urls:
	:title - The title of the extra page. If not provided, the title will be inferred from the extra name.
	:url - The external url to link to from the sidebar.

Customizing search data
It is possible to fully customize the way a given extra is indexed, both in autocomplete and in search.
In most cases, this makes sense for generated documentation. If search_data is provided, it completely
overrides the built in logic for indexing your document based on the headers and content of the document.
The following fields can be provided in a list of maps for search_data.
	:anchor - The anchor link for the search result. Use "" to point to the top of the page.
	:title - The title of the result.
	:type - The type of the search result, such as "module", "function" or "section".
	:body - The main content or body of the search result, as markdown. Used in search, not autocomplete.

Umbrella project
ExDoc can be used in an umbrella project and generates a single documentation
for all child apps. You can use the :ignore_apps configuration to exclude
certain projects in the umbrella from documentation.
Generating documentation per each child app can be achieved by running:
mix cmd mix docs
See mix help cmd for more information.
Meta-tags configuration
It is also possible to configure some of ExDoc behaviour using meta tags.
These meta tags can be inserted using before_closing_head_tag.
	exdoc:autocomplete - when set to "off", it disables autocompletion.

	exdoc:autocomplete-limit - Set to an integer to configure how many results
appear in the autocomplete dropdown. Defaults to 10.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

