

 ExDoc

 v0.40.0

 Table of contents

 	ExDoc

 	Cheatsheet Example

 	Changelog

 	
 Modules

 	ExDoc

 	Markdown

 	ExDoc.Markdown

 	ExDoc.Markdown.Earmark

 	Formatter

 	ExDoc.Formatter

 	ExDoc.Formatter.Config

 	Nodes

 	ExDoc.DocGroupNode

 	ExDoc.DocNode

 	ExDoc.ExtraNode

 	ExDoc.ModuleNode

 	ExDoc.URLNode

 	
 Mix Tasks

 	mix docs

ExDoc

Main entry point for generating docs.

 Summary

 Functions

 generate(project, version, source_beams, options)

 Generates documentation for the given project, vsn (version),
source_beams directories, and options.

 version()

 Returns the ExDoc version (used in templates).

 warn(message, stacktrace_info)

 Emits a warning.

 Functions

 generate(project, version, source_beams, options)

 @spec generate(String.t(), String.t(), [Path.t()], Keyword.t()) :: [
 %{entrypoint: String.t(), warned?: boolean(), formatter: module()}
]

Generates documentation for the given project, vsn (version),
source_beams directories, and options.
By default it generates HTML, Markdown, and EPUB documents.
Options
	:annotations_for_docs - a function that receives metadata and returns a list
of annotations to be added to the signature. The metadata received will also
contain :module, :name, :arity and :kind to help identify which entity is
currently being processed.

	:api_reference - Whether to generate api-reference.html; default: true.
If this is set to false, :main must also be set.

	:assets - A map of source => target directories that will be copied as is to
the output path. It defaults to an empty map.

	:authors - List of authors for the generated docs or epub.

	:before_closing_body_tag - a function that takes as argument an atom specifying
the formatter being used (:html or :epub) and returns a literal HTML string
to be included just before the closing body tag (</body>).
The atom given as argument can be used to include different content in both formats.
Useful to inject custom assets, such as Javascript.

	:before_closing_head_tag - a function that takes as argument an atom specifying
the formatter being used (:html or :epub) and returns a literal HTML string
to be included just before the closing head tag (</head>).
The atom given as argument can be used to include different content in both formats.
Useful to inject custom assets, such as CSS stylesheets.

	:before_closing_footer_tag - a function that takes as argument an atom specifying
the formatter being used (:html) and returns a literal HTML string
to be included just before the closing footer tag (</footer>).
This option only has effect on the html formatter.
Useful if you want to inject an extra footer into the documentation.

	:canonical - String that defines the preferred URL with the rel="canonical"
element; defaults to no canonical path.

	:cover - Path to the epub cover image (only PNG or JPEG accepted)
The image size should be around 1600x2400. When specified, the cover will be placed under
the "assets" directory in the output path under the name "cover" and the
appropriate extension. This option has no effect when using the "html" formatter.

	:deps - A keyword list application names and their documentation URL.
ExDoc will by default include all dependencies and assume they are hosted on
HexDocs. This can be overridden by your own values. Example: [plug: "https://myserver/plug/"]

	:extra_section - String that defines the section title of the additional
Markdown and plain text pages; default: "Pages". Example: "Guides"

	:extras - List of paths to additional Markdown (.md extension), Live Markdown
(.livemd extension), Cheatsheets (.cheatmd extension), external urls (:url option),
and plain text pages to add to the documentation. You can also specify keyword pairs to
customize the generated filename, title and source file, and search content of each extra page;
default: []. Example: ["README.md", "LICENSE", "CONTRIBUTING.md": [filename: "contributing", title: "Contributing", source: "CONTRIBUTING.mdx"]] See the Customizing Extras section for
more.

	:favicon - Path to a favicon image file for the project. Must be PNG, JPEG or SVG. When
specified, the image file will be placed in the output "assets" directory, named
"favicon.EXTENSION". If using SVG, ensure appropriate width, height and viewBox attributes
are present in order to ensure predictable sizing and cropping.

	:filter_modules - Include only modules that match the given value. The
value can be a regex, a string (representing a regex), or a two-arity
function that receives the module and its metadata and returns true if the
module must be included. If a string or a regex is given, it will be matched
against the complete module name (which includes the "Elixir." prefix for
Elixir modules). If a module has @moduledoc false, then it is always excluded.

	:formatters - Formatter to use; default: ["html", "markdown", "epub"], options: "html", "markdown", "epub".

	:footer - When false, does not render the footer on all pages, except for
the required "Built with ExDoc" note.

	:groups_for_extras, :groups_for_modules, :groups_for_docs, and :default_group_for_doc -
See the "Groups" section.

	:ignore_apps - Apps to be ignored when generating documentation in an umbrella project.
Receives a list of atoms. Example: [:first_app, :second_app].

	:language - Identify the primary language of the documents, its value must be
a valid BCP 47 language tag. Default: "en".

	:logo - Path to a logo image file for the project. Must be PNG, JPEG or SVG. When
specified, the image file will be placed in the output "assets" directory, named
"logo.EXTENSION". The image will be shown within a 48x48px area. If using SVG, ensure
appropriate width, height and viewBox attributes are present in order to ensure
predictable sizing and cropping.

	:main - Main page of the documentation. It may be a module or a
generated page, like "Plug" or "api-reference". Default: "api-reference".

	:markdown_processor - The markdown processor to use,
either module() or {module(), keyword()} to provide configuration options.

	:meta - A keyword list or a map to specify <meta> tag attributes.

	:nest_modules_by_prefix - See the "Nesting" section.

	:output - Output directory for the generated docs. Default: "doc".
May be overridden by command line argument.

	:redirects - A map or list of tuples, where the key is the path to redirect from and the
 value is the path to redirect to. The extension is omitted in both cases, i.e %{"old-readme" => "readme"}.
 The destination may include an anchor, i.e %{"old-readme" => "readme#section"}.
 See the "Changing documentation over time" section below for more.

	:search - A list of search engine configurations. See the "Search engines" section.

	:skip_undefined_reference_warnings_on - ExDoc warns when it can't create a Mod.fun/arity
reference in the current project docs (for example, because of a typo). This option controls when to
skip such warnings. This option can be a list of strings that will be checked for exact matches,
or a function that takes a reference and must return a boolean (true means "skip this").
References that are checked against this option (either whether they're in the given
list or whether they match the given function) are the relative filename, the "ID" of
the node (like User.exists?/1), or the module name. Examples for this option:
	["Foo", "Bar.baz/0"] - skip warnings for Foo and Bar.baz/0
	&String.match?(&1, ~r/Foo/) - skip warnings for any reference that matches the regex
	["pages/deprecations.md"] - skip warnings for any reference in the
pages/deprecations.md file

	:skip_code_autolink_to - Similar to :skip_undefined_reference_warnings_on, this option
controls which terms will be skipped by ExDoc when building documentation.
Useful for example if you want to highlight private modules or functions without warnings.
This option can be a function from a term to a boolean (e.g.: &String.match?(&1, ~r/PrivateModule/))
or a list of terms (e.g.:["PrivateModule", "PrivateModule.func/1"]);
default is nothing to be skipped.

	:source_beam - Path to the beam directory; default: mix's compile path.

	:source_url - The source URL fallback if :source_url is not given at the project
configuration. See the following sections.

	:source_ref - The branch/commit/tag used for source link inference.
Default: "main".

	:source_url_pattern - Public URL of the project for source links. This is derived
automatically from the project's :source_url and :source_ref when using one of
the supported public hosting services (currently GitHub, GitLab, or Bitbucket). If
you are using one of those services with their default public hostname, you do not
need to set this configuration.
However, if using a different solution, or self-hosting, you will need to set this
configuration variable to a pattern for source code links. The value must be a string or
a function.
If a string, then it should be the full URI to use for links with the following
variables available for interpolation:
	%{path}: the path of a file in the repo
	%{line}: the line number in the file

For self-hosted GitLab/GitHub:
https://mydomain.org/user_or_team/repo_name/blob/main/%{path}#L%{line}
For self-hosted Bitbucket:
https://mydomain.org/user_or_team/repo_name/src/main/%{path}#cl-%{line}
If a function, then it must be a function that takes two arguments, path and line,
where path is either an relative path from the cwd, or an absolute path. The function
must return the full URI as it should be placed in the documentation.

Using :source_url and :source_ref together
A common setup for a project or library is to set both :source_url and :source_ref. Setting
both of them will allow ExDoc to link to specific version of the code for a function or module
that matches the version of the docs. So if the docs have been generated for version 1.0.5 then
clicking on the source link in the docs will take the browser to the source code for the 1.0.5
version of the code instead of only the primary ref (for example, main).
A example setup looks like:
@version "0.30.10"
def project do
 [
 ...
 version: @version,
 source_url: "https://github.com/USER/PROJECT",
 docs: &docs/0
]
end

def docs do
 [
 ...
 source_ref: "v#{@version}"
]
end
If you use source_ref: "v#{@version}" then when publishing a new version of your package you
should run git tag vVERSION and push the tag. This way, ExDoc will generate links to the
specific version the docs were generated for.
Additional pages (extras)
It is possible to attach additional pages to the documentation. Markdown extensions (and variations)
such as .md, .livemd, and .cheatmd rendered by extension. Other extensions are added as is.
When specifying extras, the allowed configuration is:
	:title - The title of the extra page. If not provided, the title will be inferred from the filename.
	:filename - The name of the generated file. If not provided, the filename will be inferred from
 the source file.
	:source - The source file of the extra page. This is useful if you want to customize the filename or
 title but keep the source file unchanged.
	:search_data - A list of terms to be indexed for autocomplete and search. If not provided, the content
 of the extra page will be indexed for search. See the section below for more.

It is also possible to specify URLs, which are added as links to the sidebar:
	:title - The title of the extra page. If not provided, the title will be inferred from the extra name.
	:url - The external url to link to from the sidebar.

Customizing search data
It is possible to fully customize the way a given extra is indexed, both in autocomplete and in search.
In most cases, this makes sense for generated documentation. If search_data is provided, it completely
overrides the built in logic for indexing your document based on the headers and content of the document.
The following fields can be provided in a list of maps for search_data.
	:anchor - The anchor link for the search result. Use "" to point to the top of the page.
	:title - The title of the result.
	:type - The type of the search result, such as "module", "function" or "section".
	:body - The main content or body of the search result, as markdown. Used in search, not autocomplete.

Groups
ExDoc content can be organized in groups. This is done via the :groups_for_extras
and :groups_for_modules. For example, imagine you are storing extra guides in
your documentation which are organized per directory. In the extras section you
have:
extras: [
 "guides/introduction/foo.md",
 "guides/introduction/bar.md",

 ...

 "guides/advanced/baz.md",
 "guides/advanced/bat.md"
]
You can have those grouped as follows:
groups_for_extras: [
 "Introduction": Path.wildcard("guides/introduction/*.md"),
 "Advanced": Path.wildcard("guides/advanced/*.md")
]
Or via a regex:
groups_for_extras: [
 "Introduction": ~r"/introduction/",
 "Advanced": ~r"/advanced/"
]
External extras from a URL can also be grouped:
groups_for_extras: [
 "Elixir": ~r"https://elixir-lang.org/",
 "Erlang": ~r"https://www.erlang.org/"
]
Similar can be done for modules:
groups_for_modules: [
 "Data types": [Atom, Regex, URI],
 "Collections": [Enum, MapSet, Stream]
]
A regex or the string name of the module is also supported.
Grouping functions, types, and callbacks
Types, functions, and callbacks inside a module can also be organized in groups.
Group metadata
By default, ExDoc respects the :group metadata field to determine in which
group an element belongs:
@doc group: "Queries"
def get_by(schema, fields)
The function above will be automatically listed under the "Queries" section in
the sidebar. The benefit of using :group is that it can also be used by tools
such as IEx during autocompletion. These groups are then displayed in the sidebar.
It is also possible to tell ExDoc to either enrich the group metadata or lookup a
different field via the :default_group_for_doc configuration. The default is:
default_group_for_doc: fn metadata -> metadata[:group] end
The metadata received contains all of the documentation metadata, such as :group,
but also :module, :name, :arity and :kind to help identify which entity is
currently being processed. For example, projects like Nx have a custom function that
converts "Queries" into "Function: Queries":
default_group_for_doc: fn metadata ->
 if group = metadata[:group] do
 "Functions: #{group}"
 end
end
Finally, you can also use the :groups_for_docs which works similarly as the
one for modules/extra pages.
:groups_for_docs is a keyword list of group titles and filtering functions
that receive the documentation metadata and must return a boolean.
For example, imagine that you have an API client library with a large surface
area for all the API endpoints you need to support. It would be helpful to
group the functions with similar responsibilities together. In this case in
your module you might have:
defmodule APIClient do
 @doc section: :auth
 def refresh_token(params \\ [])

 @doc subject: :object
 def update_status(id, new_status)

 @doc permission: :grant
 def grant_privilege(resource, privilege)
end
And then in the configuration you can group these with:
groups_for_docs: [
 Authentication: & &1[:section] == :auth,
 Resource: & &1[:subject] == :object,
 Admin: & &1[:permission] in [:grant, :write]
]
A function can belong to a single group only. The first group that matches
will be the one used. In case no group is found in :groups_for_docs,
the :default_group_for_doc callback is invoked. If it returns nil, it
then falls back to the appropriate "Functions", "Types" or "Callbacks"
section respectively.
Group descriptions
It is possible to display a description for each group under its respective section
in a module's page. This helps to better explain what is the intended usage of each
group elements instead of describing everything in the displayed @moduledoc.
Descriptions can be provided as @moduledoc metadata. Groups without descriptions are
also supported to define group ordering.
@moduledoc groups: [
 "Main API",
 %{title: "Helpers", description: "Functions shared with other modules."}
]
Descriptions can also be given in the :default_group_for_doc configuration:
default_group_for_doc: fn metadata ->
 case metadata[:group] do
 :main_api -> "Main API"
 :helpers -> [title: "Helpers", description: "Functions shared with other modules."]
 _ -> nil
 end
end
Keyword lists or maps are supported in either case.
When using :groups_for_docs, if all the elements for a given group are matched then the
:default_group_for_doc is never invoked and ExDoc will not know about the description.
In that case, the description should be provided in the @moduledoc :groups metadata.
Whenever using the :group key, the groups will be ordered alphabetically.
If you also want control over the group order, you can also use the :groups_for_docs
which works similarly as the one for modules/extra pages.
Group ordering
Groups in the sidebar and main page body are ordered according to the following
rules:
	First, groups defined as @moduledoc groups: [...] in the given order.
	Then groups defined as keys in the :groups_for_docs configuration.
	Then default groups: Types, Callbacks and Functions.
	Finally, other groups returned by :default_group_for_doc by alphabetical order.

Nesting
ExDoc also allows module names in the sidebar to appear nested under a given
prefix. The :nest_modules_by_prefix expects a list of module names, such as
[Foo.Bar, Bar.Baz]. In this case, a module named Foo.Bar.Baz will appear
nested within Foo.Bar and only the name Baz will be shown in the sidebar.
Note the Foo.Bar module itself is not affected.
This option is mainly intended to improve the display of long module names in
the sidebar, particularly when they are too long for the sidebar or when many
modules share a long prefix. If you mean to group modules logically or call
attention to them in the docs, you should probably use :groups_for_modules
(which can be used in conjunction with :nest_modules_by_prefix).
HTML-specific configuration
Search engines
ExDoc allows custom search engines via the :search key. Each search engine
is a map with the following keys:
	:name - The display name of the search engine (required)
	:help - A help text describing what the search engine does (required)
	:url - The optional search URL template, usually ending with q=
	:packages - An optional list of packages (or package-versions) to search on
https://hexdocs.pm. For example: [:plug, :phoenix, ecto: "3.0.0", ecto_sql: "3.0.0"].
If no version is specified, it uses the package latest

If none of :url or :packages are given, ExDoc will use its default search engine
powered by Lunr.
When multiple search engines are configured, a dropdown selector will appear next to
the search bar allowing users to choose which engine to use. For example:
search: [
 %{name: "FooBar", help: "Search on FooBar", url: "https://example.com/?q="},
 %{name: "Local", help: "In-browser search"}
]
If only one search engine is configured, the dropdown selector will be hidden.
If no search engine is configured, only the built-in Lunr's is shown.
Redirects and changing documentation over time
As your project grows, your documentation may very likely change, even structurally.
There are a few important things to consider in this regard:
	Links to your extras will break if you change or move file names.
	Links to your modules, and mix tasks will change if you change their name.
	Links to functions are actually links to modules with anchor links.
If you change the function name, the link does not break but will leave users
at the top of the module's documentation.

Because these docs are static files, the behavior of a missing page will depend on where they are hosted.
In particular, hexdocs.pm will show a 404 page.
You can improve the developer experience on everything but function names changing
by using the redirects configuration. For example, if you changed the module MyApp.MyModule
to MyApp.My.Module and the extra get-started.md to quickstart.md, you can
setup the following redirects:
redirects: %{
 "MyApp.MyModule" => "MyApp.My.Module",
 "get-started" => "quickstart"
}
The destination may also include an anchor to redirect to a specific section:
redirects: %{
 "old-page" => "new-page#relevant-section"
}
<meta>-tags configuration
It is also possible to configure some of ExDoc behaviour using meta tags
by passing the :meta option
	exdoc:autocomplete - when set to "off", it disables autocompletion.

	exdoc:autocomplete-limit - Set to an integer to configure how many results
appear in the autocomplete dropdown. Defaults to 10.

You can also insert meta tags using before_closing_head_tag option.
docs_config.js
ExDoc will automatically render a version dropdown on HTML pages if a
docs_config.js file is placed within the documentation.
This file may define the following global variables in JavaScript:
	versionNodes - an array of {"version":"vNUMBER", "url":url} listing
all documented versions and their URLs. ExDoc will automatically match
the version of the package with the one in the array to mark as current.

 version()

 @spec version() :: String.t()

Returns the ExDoc version (used in templates).

 warn(message, stacktrace_info)

Emits a warning.

ExDoc.Markdown behaviour

Adapter behaviour and conveniences for converting Markdown to HTML.
ExDoc is compatible with any markdown processor that implements the
functions defined in this module. The markdown processor can be changed
via the :markdown_processor option. Note that doing such change is global.
ExDoc supports the following Markdown parsers out of the box:
	EarmarkParser

ExDoc uses EarmarkParser by default.

 Summary

 Callbacks

 available?()

 Returns true if all dependencies necessary are available.

 to_ast(t, t)

 Converts markdown into HTML.

 Functions

 to_ast(text, opts \\ [])

 Converts the given markdown document to HTML AST.

 Callbacks

 available?()

 @callback available?() :: boolean()

Returns true if all dependencies necessary are available.

 to_ast(t, t)

 @callback to_ast(String.t(), Keyword.t()) :: term()

Converts markdown into HTML.

 Functions

 to_ast(text, opts \\ [])

Converts the given markdown document to HTML AST.
Options
	:markdown_processor - The markdown processor to use,
either as a module or a {module, keyword} tuple

All other options are passed through to the markdown processor.

ExDoc.Markdown.Earmark

ExDoc extension for the EarmarkParser Markdown parser.

 Summary

 Functions

 to_ast(text, opts)

 Generate HTML AST.

 Functions

 to_ast(text, opts)

Generate HTML AST.
Options
	:gfm - (boolean) turns on Github Flavored Markdown extensions. Defaults to true.

	:breaks - (boolean) only applicable if gfm is enabled. Makes all line
breaks significant (so every line in the input is a new line in the output).

ExDoc.Formatter behaviour

Specifies the custom formatter API.

 Summary

 Callbacks

 autolink_options()

 A list of options to configure autolinking behaviour.

 run(t, list, list)

 The callback that must be implemented by formatters.

 Functions

 copy_assets(assets, output)

 Copy assets to the given output folder.

 copy_cover(map, target)

 Copies the cover to the given location in the output directory.

 copy_favicon(map, target)

 Copies the favicon to the given location in the output directory.

 copy_logo(map, target)

 Copies the logo to the given location in the output directory.

 Callbacks

 autolink_options()

 (optional)

 @callback autolink_options() :: [highlight_tag: String.t(), extension: String.t()]

A list of options to configure autolinking behaviour.

 run(t, list, list)

 @callback run(ExDoc.Formatter.Config.t(), [ExDoc.ModuleNode.t()], [
 ExDoc.ExtraNode.t() | ExDoc.URLNode.t()
]) ::
 %{entrypoint: String.t(), build: [String.t()]}

The callback that must be implemented by formatters.
It receives the configuration, a list of nodes,
and it must return the documentation entrypoint
plus a list of files built inside the output folder.

 Functions

 copy_assets(assets, output)

Copy assets to the given output folder.

 copy_cover(map, target)

Copies the cover to the given location in the output directory.

 copy_favicon(map, target)

Copies the favicon to the given location in the output directory.

 copy_logo(map, target)

Copies the logo to the given location in the output directory.

ExDoc.Formatter.Config

Configuration used by formatters.
Contains project metadata, output settings, and various
customization options for generating documentation.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExDoc.Formatter.Config{
 api_reference: boolean(),
 apps: [atom()],
 assets: %{required(binary()) => binary()},
 authors: nil | [String.t()],
 before_closing_body_tag: (atom() -> String.t()) | mfa() | map(),
 before_closing_footer_tag: (atom() -> String.t()) | mfa() | map(),
 before_closing_head_tag: (atom() -> String.t()) | mfa() | map(),
 canonical: nil | String.t(),
 cover: nil | Path.t(),
 deps: [{ebin_path :: String.t(), doc_url :: String.t()}],
 extra_section: String.t(),
 favicon: nil | Path.t(),
 footer: boolean(),
 formatters: [String.t()],
 homepage_url: nil | String.t(),
 language: String.t(),
 logo: nil | Path.t(),
 main: nil | String.t(),
 nest_modules_by_prefix: [String.t()],
 output: Path.t(),
 package: :atom | nil,
 proglang: :elixir | :erlang,
 project: nil | String.t(),
 redirects: %{optional(String.t()) => String.t()} | [{String.t(), String.t()}],
 search: [%{name: String.t(), help: String.t(), url: String.t()}],
 skip_code_autolink_to: (String.t() -> boolean()),
 skip_undefined_reference_warnings_on: (String.t() -> boolean()),
 source_url: nil | String.t(),
 title: nil | String.t(),
 version: nil | String.t()
}

ExDoc.DocGroupNode

Represents a group of functions, macros, callbacks, or types.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExDoc.DocGroupNode{
 description: String.t() | nil,
 doc: ExDoc.DocAST.t() | nil,
 docs: [ExDoc.DocNode.t()],
 title: String.t() | atom()
}

ExDoc.DocNode

Represents a function, macro, callback, or type.

 Summary

 Types

 annotation()

 function_default()

 spec_ast()

 t()

 Types

 annotation()

 @type annotation() :: String.t()

 function_default()

 @type function_default() :: {name :: atom(), arity :: non_neg_integer()}

 spec_ast()

 @type spec_ast() :: term()

 t()

 @type t() :: %ExDoc.DocNode{
 annotations: [annotation()],
 arity: non_neg_integer(),
 defaults: [function_default()],
 deprecated: String.t() | nil,
 doc: ExDoc.DocAST.t() | nil,
 doc_file: String.t(),
 doc_line: non_neg_integer(),
 group: String.t() | nil,
 id: String.t(),
 name: atom(),
 signature: String.t(),
 source_doc: term() | nil,
 source_specs: [spec_ast()],
 source_url: String.t() | nil,
 specs: [String.t()],
 type: atom()
}

ExDoc.ExtraNode

Represents an extra page.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExDoc.ExtraNode{
 doc: ExDoc.DocAST.t() | nil,
 group: atom() | nil,
 id: String.t(),
 search_data: [map()] | nil,
 source_doc: String.t(),
 source_path: String.t(),
 source_url: String.t(),
 title: String.t(),
 title_doc: ExDoc.DocAST.t() | String.t(),
 type: atom()
}

ExDoc.ModuleNode

Represents a module.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExDoc.ModuleNode{
 annotations: [atom()],
 deprecated: String.t() | nil,
 doc: ExDoc.DocAST.t() | nil,
 docs_groups: [ExDoc.DocGroupNode.t()],
 group: atom() | nil,
 id: String.t(),
 language: module(),
 metadata: map(),
 module: module(),
 moduledoc_file: String.t(),
 moduledoc_line: non_neg_integer(),
 nested_context: String.t() | nil,
 nested_title: String.t() | nil,
 source_doc: term() | nil,
 source_format: String.t() | nil,
 source_path: String.t() | nil,
 source_url: String.t() | nil,
 title: String.t(),
 type: atom(),
 typespecs: [ExDoc.DocNode.t()]
}

ExDoc.URLNode

Represents an extra URL.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExDoc.URLNode{
 group: atom() | nil,
 id: String.t(),
 title: String.t(),
 url: String.t()
}

mix docs

Uses ExDoc to generate a static web page from the project documentation.
Command line options
	--canonical, -n - Indicate the preferred URL with
rel="canonical" link element, defaults to no canonical path

	--formatter, -f - Which formatters to use, html,
epub, or markdown. This option can be given more than once. By default,
html, epub, and markdown are generated.

	--language - Specifies the language to annotate the
EPUB output in valid BCP 47

	--open - open browser window pointed to the documentation

	--output, -o - Output directory for the generated
docs, default: "doc"

	--proglang - Chooses the main programming language: elixir
or erlang

	--warnings-as-errors - Exits with non-zero exit code if any warnings are found

The command line options have higher precedence than the options
specified in your mix.exs file below.
Configuration
ExDoc will automatically pull in information from your project,
like the application and version. However, you may want to set
:name, :source_url and :homepage_url to have a nicer output
from ExDoc, for example:
def project do
 [
 app: :my_app,
 version: "0.1.0-dev",
 deps: deps(),

 # Docs
 name: "My App",
 source_url: "https://github.com/USER/PROJECT",
 homepage_url: "http://YOUR_PROJECT_HOMEPAGE",
 docs: [
 main: "MyApp", # The main page in the docs
 favicon: "path/to/favicon.png",
 logo: "path/to/logo.png",
 extras: ["README.md"]
]
]
end
ExDoc also allows configuration specific to the documentation to
be set. The following options should be put under the :docs key
in your project's main configuration. The :docs options should
be a keyword list or a function returning a keyword list that will
be lazily executed. See all supported options in ExDoc.generate/4.
Umbrella project
ExDoc can be used in an umbrella project and generates a single documentation
for all child apps. You can use the :ignore_apps configuration to exclude
certain projects in the umbrella from documentation.
Generating documentation per each child app can be achieved by running:
mix cmd mix docs
See mix help cmd for more information.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

