

 ExDoctor

 v0.2.6

 Table of contents

 	ExDoctor

 	Modules

 	ExDoctor

 	ExDoctor.Example

ExDoctor

[image: Hex.pm Version]
[image: Hex Docs]
Lightweight tracing, debugging and profiling tool powered by Erlang Doctor.
It collects traces from your Elixir system in an ETS table, putting minimal impact on the system.
After collecting the traces, you can query and analyse them.
By separating data collection from analysis, this tool helps you limit unnecessary repetition and guesswork.

 Quick start

To quickly try it out right now, copy & paste the following to your iex:
:ssl.start; :inets.start; for p <- ["erlang_doctor/master/src/tr.erl", "ex_doctor/main/lib/ex_doctor.ex"] do {:ok, {{_, 200, _}, _, src}} = :httpc.request("https://raw.githubusercontent.com/chrzaszcz/" <> p); tp = "/tmp/" <> Path.basename(p); File.write!(tp, src); c tp end; import ExDoctor; :tr.start
This snippet downloads, compiles and starts two modules:
	:tr is the main module of Erlang Doctor, which provides all the functionality.
	ExDoctor is a small Elixir module, which allows using the Erlang records defined in tr.hrl.

The Erlang records are used to allow quick and easy pattern-matching, which is used very frequently in ExDoctor.
Maps are not used, because they can be a lot slower and consume more memory (this is verified by benchmarks).
The easiest way to use it is the following:
:tr.trace([YourModule])
YourModule.some_function()
:tr.select
You should see the collected traces for the call and return of YourModule.some_function/0.

 Include it as a dependency

The package can be installed by adding ex_doctor to your list of dependencies in mix.exs:
def deps do
 [
 {:ex_doctor, "~> 0.2.6"}
]
end

 Use it during development

You can make Erlang Doctor available in iex by cloning it to EX_DOCTOR_PATH,
compiling it with mix, and loading it in your ~/.iex.exs file:
Code.append_path("EX_DOCTOR_PATH/_build/dev/lib/erlang_doctor/ebin")
Code.append_path("EX_DOCTOR_PATH/_build/dev/lib/ex_doctor/ebin")
import ExDoctor
Code.ensure_loaded!(:tr)

 Tracing: data collection

You can follow the examples on your own - just call iex -S mix in EX_DOCTOR_PATH,
and execute the numbered commands in the same order.

 Setting up: start, start_link

In our case ExDoctor is automatically started by mix, but if you need to start it yourself, call :tr.start/0.
There is also :tr.start/1, which accepts a map of options, including:
	tab: collected traces are stored in an ETS table with this name (default: :trace),
	limit: maximum number of traces in the table - when it is reached, tracing is stopped (default: no limit).

There are :tr.start_link/0 and :tr.start_link/1 as well, and they are intended for use with the whole application.

 Tracing with trace

Let's set up an alias for the Example module, because it will be used very often:
iex(1)> alias ExDoctor.Example
ExDoctor.Example
To trace function calls for given modules, use :tr.trace/1, providing a list of traced modules:
iex(2)> :tr.trace([Example])
:ok
You can provide {module, function, arity} tuples in the list as well.
The function :tr.trace_app/1 traces an application, and :tr.trace_apps/1 traces multiple ones.
If you need to trace an application and some additional modules, use :tr.app_modules/1 to get the list of modules for an application:
:tr.trace([Module1, Module2 | :tr.app_modules(:your_app)])
If you want to trace selected processes instead of all of them, you can use
:tr.trace/2:
:tr.trace([Module1, Module2], [Pid1, Pid2])
The :tr.trace/1 function also accepts a map of options, which include:
	modules: a list of module names or {module, function, arity} tuples. The list is empty by default.
	pids: a list of Pids of processes to trace, or :all (default) to trace all processes.
	msg: :none (default), :all, :send or :recv. Specifies which message events will be traced. By default no messages are traced.
	msg_trigger: :after_traced_call (default) or :always. By default, traced messages in each process are stored after the first traced function call in that process. The goal is to limit the number of traced messages, which can be huge in the entire Erlang system. If you want all messages, set it to :always.

This means that :tr.trace(modules, pids) is a shortcut for :tr.trace(%{modules: modules, pids: pids}),
and :tr.trace(modules) is a shortcut for :tr.trace(%{modules: modules}).

 Calling the traced function

Now we can call some functions - let's trace the following function call.
It calculates the factorial recursively and sleeps 1 ms between each step.
iex(3)> Example.sleepy_factorial(3)
6

 Stopping tracing

You can stop tracing with :tr.stop_tracing/0:
iex(4)> :tr.stop_tracing()
:ok
It's good to stop it as soon as possible to avoid accumulating too many traces in the ETS table.
Usage of tr on production systems is risky, but if you have to do it, start and stop the tracer in the same command,
e.g. for one second with:
:tr.trace(modules); :timer.sleep(1000); :tr.stop_tracing()

 Debugging: data analysis

The collected traces are stored in an ETS table (default name: :trace).
They are stored as tr records with the following fields:
	index: trace identifier, auto-incremented for each received trace.
	pid: process ID associated with the trace.
	event: :call, :return or :exception for function traces; :send or :recv for messages.
	mfa: {module, function, arity} for function traces; :no_mfa for messages.
	data: argument list (for calls), returned value (for returns) or class and value (for exceptions).
	timestamp in microseconds.
	info: For :send events it is a {to, exists} tuple, where to is the recipient pid, and exists is a boolean indicating if the recipient process existed. For other events it is :no_info.

You can load the record definitions with import ExDoctor, but in our case mix has already done it for us.
The snippets shown at the top of this page do it as well.

 Trace selection: select

Use :tr.select/0 to select all collected traces, which include a system call to __info__/1
followed by the call to sleepy_factorial/1.
iex(5)> :tr.select()
[
 {:tr, 1, #PID<0.187.0>, :call, {ExDoctor.Example, :__info__, 1},
 [:deprecated], 1705413018330494, :no_info},
 {:tr, 2, #PID<0.187.0>, :return, {ExDoctor.Example, :__info__, 1}, [],
 1705413018330501, :no_info},
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [3],
 1705413018330532, :no_info},
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [2],
 1705413018332522, :no_info},
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [1],
 1705413018334514, :no_info},
 {:tr, 6, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [0],
 1705413018336506, :no_info},
 {:tr, 7, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 1,
 1705413018338509, :no_info},
 {:tr, 8, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 1,
 1705413018338511, :no_info},
 {:tr, 9, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 2,
 1705413018338512, :no_info},
 {:tr, 10, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 6,
 1705413018338513, :no_info}
]
The :tr.select/1 function accepts a fun that is passed to :ets.fun2ms/1.
This way you can limit the selection to specific items and select only some fields from the tr record:
iex(6)> :tr.select(fn tr(event: :call, data: [n]) when is_integer(n) -> n end)
[3, 2, 1, 0]
Use :tr.select/2 to further filter the results by searching for a term in the data field
(recursively searching in lists, tuples and maps).
iex(7)> :tr.select(fn t -> t end, 2)
[
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [2],
 1705413018332522, :no_info},
 {:tr, 9, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 2,
 1705413018338512, :no_info}
]

 Trace filtering: filter

Sometimes it might be easier to use :tr.filter/1, because it can accept any function as the argument.
You can use :tr.contains_data/2 to search for a term like in the example above.
iex(8)> traces = :tr.filter(fn t -> :tr.contains_data(2, t) end)
[
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [2],
 1705413018332522, :no_info},
 {:tr, 9, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1}, 2,
 1705413018338512, :no_info}
]
The provided function is a predicate, which has to return :true for the matching traces.
For other traces it can return another value, or even raise an exception:
iex(9)> :tr.filter(fn tr(data: [2]) -> :true end)
[
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [2],
 1705413018332522, :no_info}
]
There is also :tr.filter/2, which can be used to search in a different table than the current one - or in a list:
iex(10)> :tr.filter(fn tr(event: :call) -> :true end, traces)
[
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [2],
 1705413018332522, :no_info}
]

 Tracebacks for filtered traces: tracebacks

To find the tracebacks (stack traces) for matching traces, use :tr.tracebacks/1:
iex(11)> :tr.tracebacks(fn tr(data: 1) -> true end)
[
 [
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [1], 1705413018334514, :no_info},
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [2], 1705413018332522, :no_info},
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [3], 1705413018330532, :no_info}
]
]
Note, that by specifying data: 1 we are only matching return traces, as call traces always have a list in data.
Only one traceback is returned. It starts with a call that returned 1. What follows is the stack trace for this call.
One can notice that the call for 0 also returned 1, but the call tree got pruned - whenever two tracebacks overlap, only the shorter one is left.
You can change this by returning tracebacks for all matching traces even if they overlap, setting the output option to :all. Options are specified in the second argument, which is a map:
iex(12)> :tr.tracebacks(fn tr(data: 1) -> true end, %{output: :all})
[
 [
 {:tr, 6, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [0], 1705413018336506, :no_info},
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [1], 1705413018334514, :no_info},
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [2], 1705413018332522, :no_info},
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [3], 1705413018330532, :no_info}
],
 [
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [1], 1705413018334514, :no_info},
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [2], 1705413018332522, :no_info},
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [3], 1705413018330532, :no_info}
]
]
The third possibility is :longest, which does the opposite of pruning, leaving only the longest tracabacks when they overlap:
iex(13)> :tr.tracebacks(fn tr(data: 1) -> true end, %{output: :longest})
[
 [
 {:tr, 6, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [0], 1705413018336506, :no_info},
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [1], 1705413018334514, :no_info},
 {:tr, 4, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [2], 1705413018332522, :no_info},
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [3], 1705413018330532, :no_info}
]
]
Possible options for :tr.tracebacks/2 include:
	tab is the table or list, which is like the second argument of :tr.filter/2.
	output - :shortest (default), :all, :longest - see above.
	format - :list (default), :tree - returns a call tree instead of a list of tracebacks. Trees don't distinguish between all and longest output formats.
	order - :top_down (default), :bottom_up - call order in each tracaback; only for the :list format.
	limit - positive integer or :infinity (default) - limits the number of matched traces. The actual number of tracebacks returned can be smaller unless output is set ot :all.

There are also functions :tr.traceback/1 and :tr.traceback/2. They set limit to one and return only one trace if it exists. The options for :tr.traceback/2 are the same as for :tr.traceback/2 except limit and format. Additionally, it is possible to pass a tr record (or an index) directly to :tr.traceback/1 to obtain the traceback for the provided trace event.

 Trace ranges for filtered traces: ranges

To get a list of traces between each matching call and the corresponding return, use :tr.ranges/1:
iex(14)> :tr.ranges(fn tr(data: [1]) -> true end)
[
 [
 {:tr, 5, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [1], 1705413018334514, :no_info},
 {:tr, 6, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1},
 [0], 1705413018336506, :no_info},
 {:tr, 7, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1},
 1, 1705413018338509, :no_info},
 {:tr, 8, #PID<0.187.0>, :return, {ExDoctor.Example, :sleepy_factorial, 1},
 1, 1705413018338511, :no_info}
]
]
There is also :tr.ranges/2 - it accepts a map of options, including:
	tab is the table or list which is like the second argument of :tr.filter/2,
	max_depth is the maximum depth of nested calls. A message event also adds 1 to the depth.
 You can set it to 1 to get only the top-level call and the corresponding return.

There are two additional functions: :tr.range/1 and :tr.range/2, which return only one range if it exists. It is possible to pass a tr record or an index to :tr.range/1 as well.

 Calling function from a trace: do

It is easy to replay a particular function call with :tr.do/1:
iex(15)> [t] = :tr.filter(fn tr(data: [3]) -> true end)
[
 {:tr, 3, #PID<0.187.0>, :call, {ExDoctor.Example, :sleepy_factorial, 1}, [3],
 1705413018330532, :no_info}
]
iex(16)> :tr.do(t)
6
This is useful e.g. for checking if a bug has been fixed without running the whole test suite.
This function can be called with an index as the argument.

 Getting a single trace for the index: lookup

Use :tr.lookup/1 to obtain the trace for an index.

 Profiling

You can quickly get a hint about possible bottlenecks and redundancies in your system with function call statistics.

 Call statistics: call_stat

The argument of :tr.call_stat/1 is a function that returns a key by which the traces are grouped.
The simplest way to use this function is to look at the total number of calls and their time.
To do this, we group all calls under one key, e.g. total:
iex(17)> :tr.call_stat(fn _ -> :total end)
%{total: {5, 7988, 7988}}
Values of the returned map have the following format (time is in microseconds):
{call_count, acc_time, own_time}
In the example there are four calls, which took 7981 microseconds in total.
For nested calls we only take into account the outermost call, so this means that the whole calculation took 7.981 ms.
Let's see how this looks like for individual steps - we can group the stats by the function argument:
iex(18)> :tr.call_stat(fn tr(data: [n]) -> n end)
%{
 0 => {1, 2003, 2003},
 1 => {1, 3997, 1994},
 2 => {1, 5990, 1993},
 3 => {1, 7981, 1991},
 :deprecated => {1, 7, 7}
}
You can use the provided function to do filtering as well - let's make the output cleaner
by filtering out the unwanted call to __info__(:deprecated):
iex(19)> :tr.call_stat(fn tr(data: [n]) when is_integer(n) -> n end)
%{
 0 => {1, 2003, 2003},
 1 => {1, 3997, 1994},
 2 => {1, 5990, 1993},
 3 => {1, 7981, 1991}
}

 Sorted call statistics: sorted_call_stat

You can sort the call stat by accumulated time (descending) with :tr.sorted_call_stat/1:
iex(20)> :tr.sorted_call_stat(fn tr(data: [n]) when is_integer(n) -> n end)
[{3, 1, 7981, 1991}, {2, 1, 5990, 1993}, {1, 1, 3997, 1994}, {0, 1, 2003, 2003}]
The first element of each tuple is the key, the rest are the same as above.
To pretty-print it, use :tr.print_sorted_call_stat/2.
The second argument limits the table row number, e.g. we can only print the top 3 items:
iex(21)> :tr.print_sorted_call_stat(fn tr(data: [n]) when is_integer(n) -> n end, 3)
3 1 7981 1991
2 1 5990 1993
1 1 3997 1994
:ok

 Call tree statistics: top_call_trees

The function :tr.top_call_trees/0 makes it possible to detect complete call trees that repeat several times,
where corresponding function calls and returns have the same arguments and return values, respectively.
When such functions take a lot of time and do not have useful side effects, they can be often optimized.
As an example, let's trace the call to a function which calculates the 4th element of the Fibonacci Sequence
in a recursive way. The trace table should be empty, so let's clean it up first:
iex(22)> :tr.clean()
:ok
iex(23)> :tr.trace([{Example, :fib, 1}])
ok
iex(24)> Example.fib(4)
3
iex(25)> :tr.stop_tracing()
:ok
Now it is possible to print the most time consuming call trees that repeat at least twice:
iex(26)> :tr.top_call_trees()
[
 {13, 2,
 {:node, ExDoctor.Example, :fib, [2],
 [
 {:node, ExDoctor.Example, :fib, [1], [], {:return, 1}},
 {:node, ExDoctor.Example, :fib, [0], [], {:return, 0}}
], {:return, 1}}},
 {5, 3, {:node, ExDoctor.Example, :fib, [1], [], {:return, 1}}}
]
The resulting list contains tuples {time, count, tree} where time is the accumulated time (in microseconds) spent in the tree,
and count is the number of times the tree repeated. The list is sorted by time, descending.
In the example above fib(2) was called twice and fib(1) was called 3 times,
what already shows that the recursive implementation is suboptimal.
There is also :tr.top_call_trees/1, which takes a map of options, including:
	output - :reduced by default, but it can be set to :complete where subtrees of already listed trees are also listed.
	min_count - minimum number of times a tree has to occur to be listed, the default is 2.
	min_time - minimum accumulated time for a tree, by default there is no minimum.
	max_size - maximum number of trees presented, the default is 10.

As an exercise, try calling :tr.top_call_trees(%{min_count: 1000}) for fib(20).

 Exporting and importing traces

To get the current table name, use :tr.tab/0:
iex(27)> :tr.tab()
:trace
To switch to a new table, use :tr.set_tab/1. The table need not exist.
iex(28)> :tr.set_tab(:tmp)
:ok
Now you can collect traces to the new table without changing the original one.
iex(29)> :tr.trace([Enum]); Enum.to_list(1..10); :tr.stop_tracing()
:ok
iex(30)> :tr.select()
[
 (...)
]
You can dump the current table to file:
iex(31)> :tr.dump("tmp.ets")
:ok
In a new iex session we can load the data with :tr.load/1. This will set the current table name to :tmp.
iex(1)> :tr.load("tmp.ets")
{:ok, :tmp}
iex(2)> :tr.select()
[
 (...)
]
iex(3)> :tr.tab()
:tmp
Finally, you can remove all traces from the ETS table with :tr.clean/0.
iex(4)> :tr.clean()
:ok
To stop ExDoctor, just call :tr.stop/0.

ExDoctor

This module defines records from the :tr module, allowing to use them in iex.
The records are obtained by calling Record.extract_all(from_lib: "erlang_doctor/src/tr.erl")
This module can be dynamically loaded without access to tr.erl, so they are listed literally.

 Summary

 Functions

 node(args \\ [])

 node(record, args)

 tr(args \\ [])

 tr(record, args)

 Functions

 Link to this macro

 node(args \\ [])

 View Source

 (macro)

 Link to this macro

 node(record, args)

 View Source

 (macro)

 Link to this macro

 tr(args \\ [])

 View Source

 (macro)

 Link to this macro

 tr(record, args)

 View Source

 (macro)

ExDoctor.Example

This module contains sample functions that you can trace with ExDoctor.

 Summary

 Functions

 fib(n)

 Calculates the n-th term of the Fibonacci sequence.

 sleepy_factorial(n)

 Calculates factorial of n with a delay of 1 ms after each step

 Functions

 Link to this function

 fib(n)

 View Source

Calculates the n-th term of the Fibonacci sequence.
This recursive implementation is suboptimal on purpose.
The goal is to have a function with extensive redundant branching.

 Link to this function

 sleepy_factorial(n)

 View Source

Calculates factorial of n with a delay of 1 ms after each step

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

