

 ex_hash_ring

 v7.0.0

 Table of contents

 	ExHashRing

 	Upgrade Guild

 	
 Modules

 	ExHashRing

 	ExHashRing.Configuration

 	ExHashRing.Hash

 	ExHashRing.Info

 	ExHashRing.Node

 	ExHashRing.Ring

 	ExHashRing.Utils

ExHashRing

[image: CI]
[image: Hex.pm Version]
[image: Hex.pm License]
[image: HexDocs]
A pure Elixir consistent hash ring implemention based on the excellent C hash-ring lib by Chris Moos.
ExHashRing is a production ready library actively maintained and in use at Discord.
ExHashRing provides the following features.
	Lookup optimized ring storage. A ring is stored in an ETS table which provides excellent lookup performance.
	Key overrides that allow the client to pin a key to a member.
	Configurable replica count for virtual nodes.
	Configurable history that allows for stable lookups over time.

 Installation

Add it to mix.exs.
defp deps do
 [{:ex_hash_ring, "~> 6.0"}]
end

 Upgrading to 6.0.0

Version 6.0.0 introduces a number of breaking changes. Refer to the Upgrade Guide for instructions.

 Quickstart

Each Ring is managed by a GenServer, here's an example of starting an empty Ring.
iex(1)> alias ExHashRing.Ring
ExHashRing.Ring
iex(2)> {:ok, ring} = Ring.start_link()
{:ok, #PID<0.166.0>}
We can add a single node with add_node/2
iex(3)> Ring.add_node(ring, "a")
{:ok, [{"a", 512}]}
The 512 above is the number of replicas for this node. Since we did not specify a custom number of replicas, it was added with the default for this Ring, which itself defaults to 512. We can control the number of default replicas when we start_link the Ring and we can control the number of replicas on a per-node basis.
We can add another node with a custom replica count with add_node/3
iex(4)> Ring.add_node(ring, "b", 100)
{:ok, [{"b", 100}, {"a", 512}]}
Now that we have some nodes we can use our Ring to map keys to nodes with the find_node/2 function.
iex(5)> Ring.find_node(ring, "key1")
{:ok, "a"}
iex(6)> Ring.find_node(ring, "key37")
{:ok, "b"}

 Documentation

The Quickstart above just scratches the surface of the functionality that ExHashRing provides. For more details see the HexDocs

 Configuration

ExHashRing exposes some configuration options under the :ex_hash_ring key.
	Key	Description	Default
	:depth	Default history depth for new rings	1
	:gc_delay	The amount of time, in milliseconds, to wait before garbage collecting stale generations	10_000
	:replicas	Default replicas setting for new rings	512

 License

Hash Ring is released under the MIT License. Check LICENSE file for more information.

Upgrade Guild

 Upgrading to 6.0.0

6.0.0 introduces a number of breaking changes.

 Removal of the In-Memory HashRing

One of the largest changes is that 6.0.0 removes the in-memory HashRing. The library is now more opinionated about how the ring should be stored and queried. Rings are owned by a GenServer, which has ownership over the ETS table used to store the Ring.
Even though the Ring is owned by a GenServer, the lookups into the Ring are done in the client context by reading from the ETS table.

 Renaming of Modules

With the In-Memory and ETS versions of the Ring unified into a single model, some Module renaming was done to simplify the library.
	Pre-6.0.0	6.0.0	Change
	ExHashRing	ExHashRing	No Change
	ExHashRing.HashRing	ExHashRing.Ring	The datastructure is removed in favor of the GenServer version
	ExHashRing.HashRing.Utils	ExHashRing.Utils	No Change
	ExHashRing.HashRing.ETS	ExHashRing.Ring	Module renamed to Ring, interface has changed
	ExHashRing.HashRing.ETS.Config	ExHashRing.Info	Module renamed, entry structure changed

 History Support

Rings now have the ability to store a history of ring snapshots. The history is configurable and the default configuration sets the depth to 1. History support allows the caller to handle situations where they want to find out the assignment of a key to a node in a previous configuration of the ring.
These new functions allow the caller to lookup a key in previous configurations of the Ring.
	find_historical_node/3
	find_historical_nodes/4
	find_stable_nodes/3,4

find_historical_node and find_historical_nodes both accept an argument called back which is the number of generations to look back in the history.
find_stable_nodes will combine the results of looking back over all or some subset of the history and combines the results together.
Any time the Ring changes a new Generation is written out into the History. To prevent generating intermediate generations, new batch APIs have been introduced for altering the Ring.
	add_nodes/2
	remove_nodes/2

These are similar to add_node/2 and remove_node/2 but can add or remove multiple nodes while only creating one new generation.
Changing Overrides does not generate a new generation and no history is retained for overrides.

 Ring Interface

In existing code any place where ExHashRing.HashRing was being used should be changed to ExHashRing.Ring. This is no longer a datastructure but a Process and the caller is responsible for supervision like any other Elixir Process.
In existing code any plat where ExHashRing.HashRing.ETS was being used can use the ExHashRing.Ring module as a mostly drop in replacement.
start_link/2 -> start_link/1
Pre-6.0.0 every ring had to be named and then optionally the process could be registered. This could result in some very confusing issues when using unregistered rings becuase the ring names are required to be unique. Consider the following code and keep in mind that during an iex session it's obvious what is happening, but with supervisors restarting processes the unintuitive behavior can be far away from the start_link calls.
iex(1)> {:ok, first} = ExHashRing.HashRing.ETS.start_link(:example, nodes: ["a", "b"])
{:ok, #PID<0.165.0>}
iex(2)> ExHashRing.HashRing.ETS.find_node(:example, "key1")
{:ok, "a"}
iex(3)> {:ok, second} = ExHashRing.HashRing.ETS.start_link(:example, nodes: ["c", "d"])
{:ok, #PID<0.168.0>}
iex(4)> ExHashRing.HashRing.ETS.find_node(:example, "key1")
{:ok, "c"}
iex(5)> Process.alive?(first)
true
iex(6)> Process.alive?(second)
true
iex(7)> ExHashRing.HashRing.ETS.add_node(first, "f")
{:ok, [{"f", 512}, {"a", 512}, {"b", 512}]}
iex(8)> ExHashRing.HashRing.ETS.add_node(second, "g")
{:ok, [{"g", 512}, {"c", 512}, {"d", 512}]}
iex(9)> ExHashRing.HashRing.ETS.add_node(:example, "h")
** (exit) exited in: GenServer.call(:example, {:add_node, "h", nil}, 5000)
 ** (EXIT) no process: the process is not alive or there's no process currently associated with the given name, possibly because its application isn't started
 (elixir) lib/gen_server.ex:914: GenServer.call/3
The conflict occurs because the ring's name is used as the global configuration key. Since the processes don't attempt to register the conflict is never detected and two processes can happily coexists with whoever writes last win semantics.
Pre-6.0.0 when the caller was required to pass the ring's name atom vs when they could provide the ring's pid was fairly inconsistent.
	function	Ring named: false	Ring named: true
	add_node/2,3	pid	pid OR name
	find_node/2	name	name
	find_nodes/3	name	name
	force_gc/1,2	pid	pid OR name
	get_overrides/1	pid	pid OR name
	get_nodes/1	pid	pid OR name
	get_nodes_with_replicas/1	pid	pid OR name
	get_ring_gen/1	name	name
	remove_node/2	pid	pid OR name
	set_nodes/2	pid	pid OR name
	set_overrides/2	pid	pid OR name
	stop/1	pid	pid OR name

6.0.0 allows the caller to create either named rings (via the name option) or unnamed rings. Both named and unnamed rings can be operated on via their pid. Named rings can also be operated on by their name. The equivalent table in 6.0.0 would look like this.
	function	Unnamed Ring	Named Ring
	any function	pid	pid OR name

Naming and Registering
Pre-6.0.0 every ring was required to have a name and the :named option was a boolean that would control whether or not the ring's process registered under that name as well. This meant that start_link/2 has a single required argument, the name, and an optional argument, a Keyword of options.
6.0.0 no longer requires that every ring be named, unnamed rings can be operated on entirely through their pid alone. Naming a ring now requires that the process also register under that name to prevent ring collisions. To create a named ring use the :name option which accepts an atom to name the ring and its process after.
New Options for start_link/2
start_link/2 has gained a new option, :depth which controls how many generations of history the ring should retain.
Renamed Options for start_link/2
The option :default_num_replicas was renamed to :replicas.
The option :named was renamed to :name and accepts the name directly instead of a boolean, see the Naming and Registering section for more details.
Renamed get_ring_gen/1
Since a Generation is now a more important concepts in the library this function was renamed from get_ring_gen/1 to get_generation/1.

 Ring Info

ExHashRing.HashRing.ETS.Config was renamed to ExHashRing.Info and serves a similar purpose. The interface is largely the same, but the entry tuple that can be saved and read to has been changed.
The module was renamed from Config to Info because it holds look-aside information similar to Process.info. This is also to deconflict it with the concept of Application Configuration.
Pre-6.0.0
Pre-6.0.0 each entry in the Config was structured as a tuple containing the following information
{
 ets_table_reference :: reference(),
 ring_generation :: integer(),
 num_nodes :: integer()
}
or
{
 ets_table_reference :: reference()
 ring_generation :: integer(),
 num_nodes :: integer(),
 override_map :: %{atom() => [binary()]}
}
6.0.0
In 6.0.0 more ring information is required to support the history functionality and to unify the two older representations into a single coherent representation.
The entries in the table are always structured as follows.
{
 ets_table_reference :: reference(),
 depth :: Ring.depth() :: pos_integer(),
 sizes :: [Ring.size()] :: [non_neg_integer()],
 generation :: integer(),
 overrides :: %{Ring.key() :: Hash.hashable() :: String.Chars.t() => [Node.name() :: binary()]}
}
Note that the sizes is a list up to depth entries long that holds the number of nodes in each generation of the history starting with the current generation and then continuing with each subsequent generation.
Upgrading
The ExHashRing.HashRing.ETS.Config is largely an internal implementation detail and in the vast majority of cases nothing needs to be done to upgrade. Code that was manually reading or writing configuration should be updated to read the new structure and write out the new structure.

 ExHashRing.Utils

The take_max/2 utility function has been left in this module but the hash/1 and gen_items/1,2 functions have been relocated.
ExHashRing.Utils.hash/1 has been replaced by the ExHashRing.Hash.of/1 function.
ExHashRing.Utils.gen_items/1,2 has been replaced by the ExHashRing.Node.expand/1,2 functions.
Both of these replacements work largely in the same way as the previous versions and were moved out of Utils into more appropriate modules.

 Application Configuration

Prior to version 6.0.0 ExHashRing only had a single configuration value that could be set, :hash_ring :ring_gen_gc_delay
This keyspace is non-conventional since it disagrees with the OTP Application name. 6.0.0 corrects this and stores configuration under the :ex_hash_ring key.
Refer to the following table for more migration details
	Pre-6.0.0	6.0.0	Description
	:ring_gen_gc_delay	:gc_delay	The amount of time, in milliseconds, to wait before garbage collecting stale generations, defaults to 10_000 (10 seconds)
	N / A	:depth	Default history depth for new rings, defaults to 1
	N / A	:replicas	Default replicas setting for new rings, defaults to 512

ExHashRing

ExHashRing Application.
Starts all the components of ExHashRing that must be running for the library to function
correctly

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 start(type, args)

Callback implementation for Application.start/2.

ExHashRing.Configuration

Configuration provides programmatic access into the various configuration settings that can be
configured for ExHashRing.

 Summary

 Functions

 clear_depth()

 Clears any custom configuration for depth, this will cause it to revert to the default,
1

 clear_gc_delay()

 Clears any custom configuration for gc_delay, this will cause it to revert to the default,
10000

 clear_replicas()

 Clears any custom configuration for replicas, this will cause it to rever to the default,
512

 get_default_operation_timeout()

 Get the default operation timeout for ring operations. Unlike other configuration values,
this can only be configured at compile time.

 get_depth()

 Get the configured history depth.

 get_gc_delay()

 Get the configured gc delay. Result is number of milliseconds to delay.

 get_replicas()

 Get the configured number of replicas.

 put_depth(depth)

 Puts the history depth.

 put_gc_delay(delay)

 Puts the gc delay, delay is a positive number of milliseconds to wait before gc.

 put_replicas(replicas)

 Puts the number of replicas.

 Functions

 clear_depth()

 @spec clear_depth() :: :ok

Clears any custom configuration for depth, this will cause it to revert to the default,
1

 clear_gc_delay()

 @spec clear_gc_delay() :: :ok

Clears any custom configuration for gc_delay, this will cause it to revert to the default,
10000

 clear_replicas()

 @spec clear_replicas() :: :ok

Clears any custom configuration for replicas, this will cause it to rever to the default,
512

 get_default_operation_timeout()

 (macro)

Get the default operation timeout for ring operations. Unlike other configuration values,
this can only be configured at compile time.

 get_depth()

 @spec get_depth() :: ExHashRing.Ring.depth()

Get the configured history depth.

 get_gc_delay()

 @spec get_gc_delay() :: pos_integer()

Get the configured gc delay. Result is number of milliseconds to delay.

 get_replicas()

 @spec get_replicas() :: ExHashRing.Node.replicas()

Get the configured number of replicas.

 put_depth(depth)

 @spec put_depth(depth :: ExHashRing.Ring.depth()) :: :ok

Puts the history depth.

 put_gc_delay(delay)

 @spec put_gc_delay(delay :: pos_integer()) :: :ok

Puts the gc delay, delay is a positive number of milliseconds to wait before gc.

 put_replicas(replicas)

 @spec put_replicas(replicas :: ExHashRing.Node.replicas()) :: :ok

Puts the number of replicas.

ExHashRing.Hash

Hash encapsulates the hashing logic for converting keys into ring locations.
Any term that implements the String.Char protocol can be used as a key.

 Summary

 Types

 hashable()

 Any term that can be coerced into a string (String.Chars.t()) is a hashable term.

 t()

 Hash for the term, this is used to locate Nodes in the Ring

 Functions

 of(key)

 Calculate a hash of the hashable term.

 Types

 hashable()

 @type hashable() :: String.Chars.t()

Any term that can be coerced into a string (String.Chars.t()) is a hashable term.

 t()

 @type t() :: integer()

Hash for the term, this is used to locate Nodes in the Ring

 Functions

 of(key)

 @spec of(hashable()) :: t()

Calculate a hash of the hashable term.

ExHashRing.Info

Provides an interface for querying information about Rings.
Each Ring has some associated information that is available at all times to aid in performing
client-context queries into the underlying ETS table.non_neg_integer()

 Summary

 Types

 entry()

 For any ring information can be looked up that will provide an entry containing specifics about
the table holding the ring data, the configured history depth, sizes for each generation in the
history, the current generation, and any overrides that should be applied during lookup.

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get(name)

 Retrieves the info entry for the specified ring.

 init(atom)

 Callback implementation for GenServer.init/1.

 set(name, entry)

 Sets the info entry for the specified ring.

 start_link()

 Types

 entry()

 @type entry() ::
 {table :: :ets.tid(), depth :: ExHashRing.Ring.depth(),
 sizes :: [ExHashRing.Ring.size()],
 generation :: ExHashRing.Ring.generation(),
 overrides :: ExHashRing.Ring.overrides()}

For any ring information can be looked up that will provide an entry containing specifics about
the table holding the ring data, the configured history depth, sizes for each generation in the
history, the current generation, and any overrides that should be applied during lookup.

 t()

 @type t() :: %ExHashRing.Info{monitored_pids: %{required(pid()) => reference()}}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get(name)

 @spec get(name :: ExHashRing.Ring.name()) :: {:ok, entry()} | {:error, :no_ring}

 @spec get(pid()) :: {:ok, entry()} | {:error, :no_ring}

Retrieves the info entry for the specified ring.

 init(atom)

 @spec init(:ok) :: {:ok, t()}

Callback implementation for GenServer.init/1.

 set(name, entry)

 @spec set(name :: ExHashRing.Ring.name(), entry()) :: :ok | {:error, :no_ring}

 @spec set(pid(), entry()) :: :ok

Sets the info entry for the specified ring.

 start_link()

 @spec start_link() :: GenServer.on_start()

ExHashRing.Node

Types and Functions for working with Ring Nodes and their Replicas

 Summary

 Types

 definition()

 Nodes can be defined by either using a bare name or using a fully specified node. When using a
bare name the definition will have to be converted into a fully specified node, see
normalize/2.

 name()

 Nodes are uniquely identified in the ring by their name.

 replicas()

 Replicas is a count of how many times a Node should be placed into a Ring.

 t()

 Nodes are properly specified as a tuple of their name and their number of replicas

 virtual()

 Nodes are expanded into multiple virtual nodes.

 Functions

 expand(nodes)

 Expands a list of nodes into a list of virtual nodes.

 expand(nodes, replicas)

 normalize(nodes, replicas)

 Converts definitions into fully specified nodes.

 Types

 definition()

 @type definition() :: name() | t()

Nodes can be defined by either using a bare name or using a fully specified node. When using a
bare name the definition will have to be converted into a fully specified node, see
normalize/2.

 name()

 @type name() :: binary()

Nodes are uniquely identified in the ring by their name.

 replicas()

 @type replicas() :: non_neg_integer()

Replicas is a count of how many times a Node should be placed into a Ring.
Negative replica counts will result in an ArgumentError when expanded

 t()

 @type t() :: {name(), replicas()}

Nodes are properly specified as a tuple of their name and their number of replicas

 virtual()

 @type virtual() :: {ExHashRing.Hash.t(), name()}

Nodes are expanded into multiple virtual nodes.

 Functions

 expand(nodes)

 @spec expand([t()]) :: [virtual()]

Expands a list of nodes into a list of virtual nodes.

 expand(nodes, replicas)

 @spec expand([t()], replicas()) :: [virtual()]

 normalize(nodes, replicas)

 @spec normalize([definition()], replicas()) :: [t()]

 @spec normalize(t(), replicas()) :: t()

 @spec normalize(name(), replicas()) :: t()

Converts definitions into fully specified nodes.
A single definition or a list of defintions can be normalized by this function.

ExHashRing.Ring

A pure Elixir consistent hash ring.
Ring data is stored in an ETS table owned by the ExHashRing.Ring GenServer. This module
provides functions for managing and querying a consistent hash ring quickly and efficiently.

 Summary

 Types

 depth()

 Rings maintain a history, the history is limited to depth number of generations to retain.

 generation()

 Generations act as a grouping mechanism to associate many records together as one logical and
atomic group.

 key()

 Any hashable key can be looked up in the ring to find the nodes that own that key.

 name()

 Rings are named with a unique atom.

 option()

 Union type that represents all valid options

 option_depth()

 Option that controls the number of generations to retain for lookup.

 option_name()

 Option that controls the name to register this process under, Rings that are registered can use
their name in place of their pid.

 option_nodes()

 Option that controls the initial nodes for the Ring.

 option_overrides()

 Option that controls the initial overrides for the Ring.

 option_replicas()

 Option that controls the number of replicas to use for nodes that do not define replicas.

 options()

 List of options that can be provided when starting a Ring, see the option/0 type and its
associated types for more information.

 overrides()

 Overrides allow the Ring to always resolve a given key to a set list of nodes.

 ring()

 Several functions accept either a name for a named Ring or a pid for an anonymous Ring

 size()

 Ring size is a memoized count of the number of logical nodes in a ring

 t()

 Functions

 add_node(ring, node_name, num_replicas \\ nil, timeout \\ 5000)

 Adds a node to the existing set of nodes in the ring.

 add_nodes(ring, nodes, timeout \\ 5000)

 Adds multiple nodes to the existing set of nodes in the ring.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 do_find_stable_nodes(key, hash, num, back, info)

 find_historical_node(ring, key, back)

 find_historical_nodes(ring, key, num, back)

 Finds the specified number of nodes responsible for the given key in the specified ring's
history, going back back number of generations.

 find_node(ring, key)

 Finds the node responsible for the given key in the specified ring.

 find_nodes(ring, key, num)

 Finds the specified number of nodes responsible for the given key in the specified ring's
current generation.

 find_stable_nodes(ring, key, num)

 Finds the specificed number of nodes responsible for the given key by looking at each generation
in the ring's configured depth. See find_stable_nodes/4 for more information.

 find_stable_nodes(ring, key, num, back)

 Finds the specified number of nodes responsible for the given key in the specified ring's
current generation and in the history of the ring. This means that this function returns up to
back * num; where num = number of nodes requested, and back = the number of generations
to consider.

 force_gc(ring, generation \\ :all_pending, timeout \\ 5000)

 Forces a garbage collection of a specific generation, all generations pending garbage collection
if :all_pending is specified. If a specific generation is specified, the it must be pending or
else {:error, :not_pending} is returned.

 get_generation(ring)

 Get the current ring generation

 get_nodes(ring, timeout \\ 5000)

 Retrieves the current set of node names from the ring.

 get_nodes_with_replicas(ring, timeout \\ 5000)

 Retrieves the current set of nodes as tuples of {name, replicas} from the ring.

 get_overrides(ring, timeout \\ 5000)

 Retrieves the current set of overrides from the ring.

 get_pending_gcs(ring, timeout \\ 5000)

 Retrieves a list of pending gc generations.

 init(options)

 Callback implementation for GenServer.init/1.

 remove_node(ring, name, timeout \\ 5000)

 Removes a node from the ring by its name.

 remove_nodes(ring, names, timeout \\ 5000)

 Atomically remove multiple nodes from the ring by name

 set_nodes(ring, nodes, timeout \\ 5000)

 Replaces the nodes in the ring with a new set of nodes.

 set_overrides(ring, overrides, timeout \\ 5000)

 Replaces the overrides in the ring with new overrides.

 start_link(options \\ [])

 Start and link a Ring with the given name.

 stop(name)

 Stops the GenServer holding the Ring.

 Types

 depth()

 @type depth() :: pos_integer()

Rings maintain a history, the history is limited to depth number of generations to retain.

 generation()

 @type generation() :: integer()

Generations act as a grouping mechanism to associate many records together as one logical and
atomic group.

 key()

 @type key() :: ExHashRing.Hash.hashable()

Any hashable key can be looked up in the ring to find the nodes that own that key.

 name()

 @type name() :: atom()

Rings are named with a unique atom.

 option()

 @type option() ::
 option_depth()
 | option_name()
 | option_nodes()
 | option_overrides()
 | option_replicas()

Union type that represents all valid options

 option_depth()

 @type option_depth() :: {:depth, depth()}

Option that controls the number of generations to retain for lookup.
Defaults to 1

 option_name()

 @type option_name() :: {:name, name()}

Option that controls the name to register this process under, Rings that are registered can use
their name in place of their pid.
Defaults behavior is to not register the Ring process.

 option_nodes()

 @type option_nodes() :: {:nodes, [ExHashRing.Node.definition()]}

Option that controls the initial nodes for the Ring.
Defaults to []

 option_overrides()

 @type option_overrides() :: {:overrides, overrides()}

Option that controls the initial overrides for the Ring.
Defaults to %{}

 option_replicas()

 @type option_replicas() :: {:replicas, ExHashRing.Node.replicas()}

Option that controls the number of replicas to use for nodes that do not define replicas.
Defaults to 512

 options()

 @type options() :: [option()]

List of options that can be provided when starting a Ring, see the option/0 type and its
associated types for more information.

 overrides()

 @type overrides() :: %{required(key()) => [ExHashRing.Node.name()]}

Overrides allow the Ring to always resolve a given key to a set list of nodes.

 ring()

 @type ring() :: name() | pid()

Several functions accept either a name for a named Ring or a pid for an anonymous Ring

 size()

 @type size() :: non_neg_integer()

Ring size is a memoized count of the number of logical nodes in a ring

 t()

 @type t() :: %ExHashRing.Ring{
 depth: depth(),
 generation: generation(),
 nodes: [ExHashRing.Node.t()],
 overrides: overrides(),
 pending_gcs: %{required(generation()) => reference()},
 replicas: ExHashRing.Node.replicas(),
 sizes: [size()],
 table: :ets.tid()
}

 Functions

 add_node(ring, node_name, num_replicas \\ nil, timeout \\ 5000)

 @spec add_node(
 ring(),
 ExHashRing.Node.name(),
 ExHashRing.Node.replicas() | nil,
 timeout :: timeout()
) ::
 {:ok, [ExHashRing.Node.t()]} | {:error, :node_exists}

Adds a node to the existing set of nodes in the ring.

 add_nodes(ring, nodes, timeout \\ 5000)

 @spec add_nodes(ring(), nodes :: [ExHashRing.Node.definition()], timeout :: timeout()) ::
 {:ok, [ExHashRing.Node.t()]} | {:error, :node_exists}

Adds multiple nodes to the existing set of nodes in the ring.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 do_find_stable_nodes(key, hash, num, back, info)

 @spec do_find_stable_nodes(
 key(),
 hash :: ExHashRing.Hash.t(),
 num :: non_neg_integer(),
 back :: non_neg_integer(),
 info :: ExHashRing.Info.entry()
) :: {:ok, [ExHashRing.Node.name()]} | {:error, atom()}

 find_historical_node(ring, key, back)

 @spec find_historical_node(ring(), key(), back :: non_neg_integer()) ::
 {:ok, ExHashRing.Node.name()} | {:error, atom()}

 find_historical_nodes(ring, key, num, back)

 @spec find_historical_nodes(
 ring(),
 key(),
 num :: non_neg_integer(),
 back :: non_neg_integer()
) ::
 {:ok, [ExHashRing.Node.name()]} | {:error, atom()}

Finds the specified number of nodes responsible for the given key in the specified ring's
history, going back back number of generations.

 find_node(ring, key)

 @spec find_node(ring(), key()) :: {:ok, ExHashRing.Node.name()} | {:error, atom()}

Finds the node responsible for the given key in the specified ring.

 find_nodes(ring, key, num)

 @spec find_nodes(ring(), key(), num :: non_neg_integer()) ::
 {:ok, [ExHashRing.Node.name()]} | {:error, reason :: atom()}

Finds the specified number of nodes responsible for the given key in the specified ring's
current generation.

 find_stable_nodes(ring, key, num)

 @spec find_stable_nodes(ring(), key(), num :: non_neg_integer()) ::
 {:ok, [ExHashRing.Node.name()]} | {:error, atom()}

Finds the specificed number of nodes responsible for the given key by looking at each generation
in the ring's configured depth. See find_stable_nodes/4 for more information.

 find_stable_nodes(ring, key, num, back)

 @spec find_stable_nodes(
 ring(),
 key(),
 num :: non_neg_integer(),
 back :: pos_integer()
) ::
 {:ok, [ExHashRing.Node.name()]} | {:error, atom()}

Finds the specified number of nodes responsible for the given key in the specified ring's
current generation and in the history of the ring. This means that this function returns up to
back * num; where num = number of nodes requested, and back = the number of generations
to consider.

 force_gc(ring, generation \\ :all_pending, timeout \\ 5000)

 @spec force_gc(ring(), generation() | :all_pending, timeout :: timeout()) ::
 :ok | {:error, :not_pending}

Forces a garbage collection of a specific generation, all generations pending garbage collection
if :all_pending is specified. If a specific generation is specified, the it must be pending or
else {:error, :not_pending} is returned.

 get_generation(ring)

 @spec get_generation(ring()) :: {:ok, generation()} | :error

Get the current ring generation

 get_nodes(ring, timeout \\ 5000)

 @spec get_nodes(ring(), timeout :: timeout()) :: {:ok, [ExHashRing.Node.name()]}

Retrieves the current set of node names from the ring.

 get_nodes_with_replicas(ring, timeout \\ 5000)

 @spec get_nodes_with_replicas(ring(), timeout :: timeout()) ::
 {:ok, [ExHashRing.Node.t()]}

Retrieves the current set of nodes as tuples of {name, replicas} from the ring.

 get_overrides(ring, timeout \\ 5000)

 @spec get_overrides(ring(), timeout :: timeout()) :: {:ok, overrides()}

Retrieves the current set of overrides from the ring.

 get_pending_gcs(ring, timeout \\ 5000)

 @spec get_pending_gcs(ring(), timeout :: timeout()) :: {:ok, [generation()]}

Retrieves a list of pending gc generations.

 init(options)

 @spec init(options()) :: {:ok, t()}

Callback implementation for GenServer.init/1.

 remove_node(ring, name, timeout \\ 5000)

 @spec remove_node(ring(), name :: ExHashRing.Node.name(), timeout :: timeout()) ::
 {:ok, [ExHashRing.Node.t()]} | {:error, :node_not_exists}

Removes a node from the ring by its name.

 remove_nodes(ring, names, timeout \\ 5000)

Atomically remove multiple nodes from the ring by name

 set_nodes(ring, nodes, timeout \\ 5000)

 @spec set_nodes(ring(), nodes :: [ExHashRing.Node.definition()], timeout :: timeout()) ::
 {:ok, [ExHashRing.Node.t()]}

Replaces the nodes in the ring with a new set of nodes.

 set_overrides(ring, overrides, timeout \\ 5000)

 @spec set_overrides(ring(), overrides(), timeout :: timeout()) :: {:ok, overrides()}

Replaces the overrides in the ring with new overrides.

 start_link(options \\ [])

 @spec start_link(options()) :: GenServer.on_start()

Start and link a Ring with the given name.
Ring supports various options see options/0 for more information.

 stop(name)

 @spec stop(ring()) :: :ok

Stops the GenServer holding the Ring.

ExHashRing.Utils

Utility functions used throughout ExHashRing

 Summary

 Functions

 take_max(list, maximum)

 Take up to maximum items from a list.

 Functions

 take_max(list, maximum)

 @spec take_max(list :: [item], maximum :: non_neg_integer()) ::
 {list :: [item], count :: non_neg_integer()}
when item: term()

Take up to maximum items from a list.
This function returns the items in reverse order and with a count of how many items were found.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

