

 ex_json_schema

 v0.11.2

 Table of contents

 	Elixir JSON Schema Validator

 	
 Modules

 	ExJsonSchema

 	ExJsonSchema.Schema

 	ExJsonSchema.Schema.Draft4

 	ExJsonSchema.Schema.Draft6

 	ExJsonSchema.Schema.Draft7

 	ExJsonSchema.Schema.Ref

 	ExJsonSchema.Schema.Root

 	ExJsonSchema.Validator

 	ExJsonSchema.Validator.AllOf

 	ExJsonSchema.Validator.AnyOf

 	ExJsonSchema.Validator.Const

 	ExJsonSchema.Validator.Contains

 	ExJsonSchema.Validator.ContentEncodingContentMediaType

 	ExJsonSchema.Validator.Dependencies

 	ExJsonSchema.Validator.Enum

 	ExJsonSchema.Validator.Error

 	ExJsonSchema.Validator.Error.AdditionalItems

 	ExJsonSchema.Validator.Error.AdditionalProperties

 	ExJsonSchema.Validator.Error.AllOf

 	ExJsonSchema.Validator.Error.AnyOf

 	ExJsonSchema.Validator.Error.Const

 	ExJsonSchema.Validator.Error.Contains

 	ExJsonSchema.Validator.Error.ContentEncoding

 	ExJsonSchema.Validator.Error.ContentMediaType

 	ExJsonSchema.Validator.Error.Dependencies

 	ExJsonSchema.Validator.Error.Enum

 	ExJsonSchema.Validator.Error.False

 	ExJsonSchema.Validator.Error.Format

 	ExJsonSchema.Validator.Error.IfThenElse

 	ExJsonSchema.Validator.Error.InvalidAtIndex

 	ExJsonSchema.Validator.Error.ItemsNotAllowed

 	ExJsonSchema.Validator.Error.MaxItems

 	ExJsonSchema.Validator.Error.MaxLength

 	ExJsonSchema.Validator.Error.MaxProperties

 	ExJsonSchema.Validator.Error.Maximum

 	ExJsonSchema.Validator.Error.MinItems

 	ExJsonSchema.Validator.Error.MinLength

 	ExJsonSchema.Validator.Error.MinProperties

 	ExJsonSchema.Validator.Error.Minimum

 	ExJsonSchema.Validator.Error.MultipleOf

 	ExJsonSchema.Validator.Error.Not

 	ExJsonSchema.Validator.Error.OneOf

 	ExJsonSchema.Validator.Error.Pattern

 	ExJsonSchema.Validator.Error.PropertyNames

 	ExJsonSchema.Validator.Error.Required

 	ExJsonSchema.Validator.Error.StringFormatter

 	ExJsonSchema.Validator.Error.Type

 	ExJsonSchema.Validator.Error.UniqueItems

 	ExJsonSchema.Validator.ExclusiveMaximum

 	ExJsonSchema.Validator.ExclusiveMinimum

 	ExJsonSchema.Validator.Format

 	ExJsonSchema.Validator.IfThenElse

 	ExJsonSchema.Validator.Items

 	ExJsonSchema.Validator.MaxItems

 	ExJsonSchema.Validator.MaxLength

 	ExJsonSchema.Validator.MaxProperties

 	ExJsonSchema.Validator.Maximum

 	ExJsonSchema.Validator.MinItems

 	ExJsonSchema.Validator.MinLength

 	ExJsonSchema.Validator.MinProperties

 	ExJsonSchema.Validator.Minimum

 	ExJsonSchema.Validator.MultipleOf

 	ExJsonSchema.Validator.Not

 	ExJsonSchema.Validator.OneOf

 	ExJsonSchema.Validator.Pattern

 	ExJsonSchema.Validator.Properties

 	ExJsonSchema.Validator.PropertyNames

 	ExJsonSchema.Validator.Ref

 	ExJsonSchema.Validator.Required

 	ExJsonSchema.Validator.Type

 	ExJsonSchema.Validator.UniqueItems

 	Exceptions

 	ExJsonSchema.Schema.InvalidReferenceError

 	ExJsonSchema.Schema.InvalidSchemaError

 	ExJsonSchema.Schema.MissingJsonDecoderError

 	ExJsonSchema.Schema.UndefinedRemoteSchemaResolverError

 	ExJsonSchema.Schema.UnsupportedSchemaVersionError

 Elixir JSON Schema Validator

[image: Build Status]
[image: Coverage Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
A JSON Schema validator with support for the draft 4, draft 6 and draft 7 specifications. Passes the official JSON Schema Test Suite.
Installation
Add the project to your Mix dependencies in mix.exs:
defp deps do
 [
 {:ex_json_schema, "~> 0.11.2"}
]
end
Update your dependencies with:
$ mix deps.get

Loading remote schemata
If you have remote schemata that need to be fetched at runtime, you have to register a function that takes a URL and returns a Map of the parsed JSON. So in your Mix configuration in config/config.exs you should have something like this:
config :ex_json_schema,
 :remote_schema_resolver,
 fn url -> HTTPoison.get!(url).body |> Jason.decode! end
Alternatively, you can specify a module and function name for situations where using anonymous functions is not possible (i.e. working with Erlang releases):
config :ex_json_schema,
 :remote_schema_resolver,
 {MyModule, :my_resolver}
You do not have to do that for the official draft 4 meta-schema found at http://json-schema.org/draft-04/schema# though. That schema is bundled with the project and will work out of the box without any network calls.
Resolving a schema
In this step the schema is validated against its meta-schema (the draft 4 schema definition) and $refs are being resolved (making sure that the reference points to an existing fragment). You should only resolve a schema once to avoid the overhead of resolving it in every validation call.
schema = %{
 "type" => "object",
 "properties" => %{
 "foo" => %{
 "type" => "string"
 }
 }
} |> ExJsonSchema.Schema.resolve()
Note that Map keys are expected to be strings, since in practice that data will always come from some JSON parser.
Usage
If you're only interested in whether a piece of data is valid according to the schema:
iex> ExJsonSchema.Validator.valid?(schema, %{"foo" => "bar"})
true

iex> ExJsonSchema.Validator.valid?(schema, %{"foo" => 1})
false
Or in case you want to have detailed validation errors:
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => "bar"})
:ok

iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1})
{:error, [{"Type mismatch. Expected String but got Integer.", "#/foo"}]}
Validation error formats
By default, errors are formatted using a string formatter that returns errors as tuples of error message and path. If you want to get raw validation error structs, you can pass the following option:
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1}, error_formatter: false)
{:error,
 [
 %ExJsonSchema.Validator.Error{
 error: %ExJsonSchema.Validator.Error.Type{
 actual: "integer",
 expected: ["string"]
 },
 path: "#/foo"
 }
]}
Custom error formatter
You can also pass your own custom error formatter as a module that implements a format/1 function that takes a list of raw errors via the same option:
defmodule MyFormatter do
 def format(errors) do
 Enum.map(errors, fn %ExJsonSchema.Validator.Error{error: error, path: path} ->
 {error.__struct__, path}
 end)
 end
end
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1}, error_formatter: MyFormatter)
{:error, [{ExJsonSchema.Validator.Error.Type, "#/foo"}]}
Validating against a fragment
It is also possible to validate against a subset of the schema by providing either a fragment:
iex> fragment = ExJsonSchema.Schema.get_fragment!(schema, "#/properties/foo")
%{"type" => "string"}

iex> ExJsonSchema.Validator.valid_fragment?(schema, fragment, "bar")
true

iex> ExJsonSchema.Validator.validate_fragment(schema, fragment, "bar")
:ok
or a path:
iex> ExJsonSchema.Validator.valid_fragment?(schema, "#/foo", "bar")
true
Format support
The validator supports all the formats specified by draft 4 (date-time, email, hostname, ipv4, ipv6), with the exception of the uri format which has confusing/broken requirements in the official test suite (see https://github.com/json-schema/JSON-Schema-Test-Suite/issues/77).
Custom formats
The JSON schema spec states that the format property "allows values to be constrained beyond what the other tools in JSON Schema can do". To support this, you can configure a callback validator function which gets called when a format property is encountered that is not one of the builtin formats.
As a global configuration option:
config :ex_json_schema,
 :custom_format_validator,
 {MyModule, :validate}
Or by passing an option when resolving the schema:
ExJsonSchema.Schema.resolve(%{"format" => "custom"}, custom_format_validator: {MyModule, :validate})
The configured function is called with the arguments (format, data) and is expected to return true, false or a {:error, %Error.Format{expected: "something"}} tuple, depending whether the data is valid for the given format. For compatibility with JSON schema, it is expected to return true when the format is unknown by your callback function.
The custom function can also be an anonymous function:
ExJsonSchema.Schema.resolve(%{"format" => "custom"}, custom_format_validator: fn format, data -> true end)
Note that the anonymous function version of the custom validator is only available in the option to Schema.resolve/2 and not as Application config, as using anonymous functions as configuration is not allowed.

License
Copyright (c) 2015 Jonas Schmidt
Released under the MIT license.
TODO
	Add some source code documentation
	Enable providing JSON for known schemata at resolve time

ExJsonSchema

 Summary

 Types

 data()

 json_path()

 object()

 Types

 data()

 @type data() ::
 nil
 | true
 | false
 | list()
 | float()
 | integer()
 | String.t()
 | [data()]
 | object()

 json_path()

 @type json_path() :: String.t()

 object()

 @type object() :: %{required(String.t()) => data()}

ExJsonSchema.Schema

 Summary

 Types

 invalid_reference_error()

 resolved()

 Functions

 decode_json(json)

 get_fragment(root, ref)

 get_fragment!(root, ref)

 get_ref_schema(root, ref)

 raise_invalid_reference_error(ref)

 resolve(schema, options \\ [])

 Types

 invalid_reference_error()

 @type invalid_reference_error() :: {:error, :invalid_reference}

 resolved()

 @type resolved() :: ExJsonSchema.data()

 Functions

 decode_json(json)

 @spec decode_json(String.t()) :: {:ok, String.t()} | {:error, String.t()}

 get_fragment(root, ref)

 @spec get_fragment(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.Schema.Ref.t() | ExJsonSchema.json_path()
) ::
 {:ok, resolved()} | invalid_reference_error() | no_return()

 get_fragment!(root, ref)

 @spec get_fragment!(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.Schema.Ref.t() | ExJsonSchema.json_path()
) :: resolved() | no_return()

 get_ref_schema(root, ref)

 @spec get_ref_schema(ExJsonSchema.Schema.Root.t(), ExJsonSchema.Schema.Ref.t()) ::
 ExJsonSchema.data() | no_return()

 raise_invalid_reference_error(ref)

 @spec raise_invalid_reference_error(any()) :: no_return()

 resolve(schema, options \\ [])

 @spec resolve(boolean() | ExJsonSchema.Schema.Root.t() | ExJsonSchema.object(), [
 {:custom_format_validator, {module(), atom()}}
]) :: ExJsonSchema.Schema.Root.t() | no_return()

ExJsonSchema.Schema.Draft4

 Summary

 Functions

 schema()

 version()

 Functions

 schema()

 @spec schema() :: ExJsonSchema.object()

 version()

 @spec version() :: integer()

ExJsonSchema.Schema.Draft6

 Summary

 Functions

 schema()

 version()

 Functions

 schema()

 @spec schema() :: ExJsonSchema.data()

 version()

 @spec version() :: integer()

ExJsonSchema.Schema.Draft7

 Summary

 Functions

 schema()

 version()

 Functions

 schema()

 @spec schema() :: ExJsonSchema.data()

 version()

 @spec version() :: integer()

ExJsonSchema.Schema.Ref

 Summary

 Types

 t()

 Functions

 cached?(ref, root)

 from_string(ref, root)

 local?(ref)

 Types

 t()

 @type t() :: %ExJsonSchema.Schema.Ref{
 fragment: [String.t()],
 fragment_pointer?: boolean(),
 location: String.t() | nil
}

 Functions

 cached?(ref, root)

 from_string(ref, root)

 local?(ref)

ExJsonSchema.Schema.Root

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExJsonSchema.Schema.Root{
 custom_format_validator:
 {module(), atom()}
 | (String.t(), any() -> boolean() | {:error, any()})
 | nil,
 location: :root | String.t(),
 refs: %{required(String.t()) => ExJsonSchema.Schema.resolved()},
 schema: ExJsonSchema.Schema.resolved(),
 version: non_neg_integer() | nil
}

ExJsonSchema.Validator behaviour

 Summary

 Types

 errors()

 options()

 Callbacks

 validate(t, data, {}, data, json_path)

 Functions

 do_validation_errors(root, schema, data, path)

 map_to_invalid_errors(errors_with_index)

 valid?(root, data)

 valid_fragment?(root, schema_or_ref, data)

 validate(root, data, options \\ [])

 validate_fragment(root, schema_or_ref, data, options \\ [])

 validation_errors(root, schema_or_ref, data, path \\ "#")

 Types

 errors()

 @type errors() ::
 [%ExJsonSchema.Validator.Error{error: term(), path: term()}] | list()

 options()

 @type options() :: [{:error_formatter, module() | false}]

 Callbacks

 validate(t, data, {}, data, json_path)

 @callback validate(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.data(),
 {String.t(), ExJsonSchema.data()},
 ExJsonSchema.data(),
 ExJsonSchema.json_path()
) :: errors()

 Functions

 do_validation_errors(root, schema, data, path)

 map_to_invalid_errors(errors_with_index)

 valid?(root, data)

 @spec valid?(
 ExJsonSchema.Schema.Root.t() | ExJsonSchema.object(),
 ExJsonSchema.data()
) ::
 boolean() | no_return()

 valid_fragment?(root, schema_or_ref, data)

 @spec valid_fragment?(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.json_path() | ExJsonSchema.Schema.resolved(),
 ExJsonSchema.data()
) :: boolean() | ExJsonSchema.Schema.invalid_reference_error() | no_return()

 validate(root, data, options \\ [])

 validate_fragment(root, schema_or_ref, data, options \\ [])

 @spec validate_fragment(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.json_path() | ExJsonSchema.Schema.resolved(),
 ExJsonSchema.data(),
 options()
) ::
 :ok
 | {:error, errors()}
 | ExJsonSchema.Schema.invalid_reference_error()
 | no_return()

 validation_errors(root, schema_or_ref, data, path \\ "#")

 @spec validation_errors(
 ExJsonSchema.Schema.Root.t(),
 ExJsonSchema.json_path() | ExJsonSchema.Schema.resolved(),
 ExJsonSchema.data(),
 String.t()
) :: errors() | ExJsonSchema.Schema.invalid_reference_error() | no_return()

ExJsonSchema.Validator.AllOf

ExJsonSchema.Validator implementation for "allOf" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.5.3
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.26
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.7.1

ExJsonSchema.Validator.AnyOf

ExJsonSchema.Validator implementation for "anyOf" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.5.4
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.27
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.7.2

ExJsonSchema.Validator.Const

ExJsonSchema.Validator implementation for "anyOf" attributes.
See:
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.24
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.1.3

ExJsonSchema.Validator.Contains

ExJsonSchema.Validator implementation for "contains" attributes.
See:
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.14
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.4.6

ExJsonSchema.Validator.ContentEncodingContentMediaType

ExJsonSchema.Validator implementation for "contentEncoding" and "contentMediaType" attributes.
See:
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-8.3

ExJsonSchema.Validator.Dependencies

ExJsonSchema.Validator.Enum

ExJsonSchema.Validator implementation for "enum" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.5.1
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.23
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.1.2

ExJsonSchema.Validator.Error

ExJsonSchema.Validator.Error.AdditionalItems

ExJsonSchema.Validator.Error.AdditionalProperties

ExJsonSchema.Validator.Error.AllOf

ExJsonSchema.Validator.Error.AnyOf

ExJsonSchema.Validator.Error.Const

ExJsonSchema.Validator.Error.Contains

ExJsonSchema.Validator.Error.ContentEncoding

ExJsonSchema.Validator.Error.ContentMediaType

ExJsonSchema.Validator.Error.Dependencies

ExJsonSchema.Validator.Error.Enum

ExJsonSchema.Validator.Error.False

ExJsonSchema.Validator.Error.Format

ExJsonSchema.Validator.Error.IfThenElse

ExJsonSchema.Validator.Error.InvalidAtIndex

ExJsonSchema.Validator.Error.ItemsNotAllowed

ExJsonSchema.Validator.Error.MaxItems

ExJsonSchema.Validator.Error.MaxLength

ExJsonSchema.Validator.Error.MaxProperties

ExJsonSchema.Validator.Error.Maximum

ExJsonSchema.Validator.Error.MinItems

ExJsonSchema.Validator.Error.MinLength

ExJsonSchema.Validator.Error.MinProperties

ExJsonSchema.Validator.Error.Minimum

ExJsonSchema.Validator.Error.MultipleOf

ExJsonSchema.Validator.Error.Not

ExJsonSchema.Validator.Error.OneOf

ExJsonSchema.Validator.Error.Pattern

ExJsonSchema.Validator.Error.PropertyNames

ExJsonSchema.Validator.Error.Required

ExJsonSchema.Validator.Error.StringFormatter

 Summary

 Functions

 format(errors)

 Functions

 format(errors)

 @spec format(ExJsonSchema.Validator.errors()) :: [{String.t(), String.t()}]

ExJsonSchema.Validator.Error.Type

ExJsonSchema.Validator.Error.UniqueItems

ExJsonSchema.Validator.ExclusiveMaximum

ExJsonSchema.Validator implementation for "exclusiveMaximum" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.1.2
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.3
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.2.3

ExJsonSchema.Validator.ExclusiveMinimum

ExJsonSchema.Validator implementation for "exclusiveMinimum" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.1.3
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.5
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.2.5

ExJsonSchema.Validator.Format

ExJsonSchema.Validator implementation for "format" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-7
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-8
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-7

ExJsonSchema.Validator.IfThenElse

ExJsonSchema.Validator implementation for "if"/"then"/"else" attributes.
See:

ExJsonSchema.Validator.Items

ExJsonSchema.Validator implementation for "items" attributes.
See:

ExJsonSchema.Validator.MaxItems

ExJsonSchema.Validator implementation for "maxItems" attributes.
See:

ExJsonSchema.Validator.MaxLength

ExJsonSchema.Validator implementation for "maxLength" attributes.
See:

ExJsonSchema.Validator.MaxProperties

ExJsonSchema.Validator implementation for "maxProperties" attributes.
See:

ExJsonSchema.Validator.Maximum

ExJsonSchema.Validator implementation for "maximum" attributes.
See:

ExJsonSchema.Validator.MinItems

ExJsonSchema.Validator implementation for "minItems" attributes.
See:

ExJsonSchema.Validator.MinLength

ExJsonSchema.Validator implementation for "minLength" attributes.
See:

ExJsonSchema.Validator.MinProperties

ExJsonSchema.Validator implementation for "minProperties" attributes.
See:

ExJsonSchema.Validator.Minimum

ExJsonSchema.Validator implementation for "minimum" attributes.
See:

ExJsonSchema.Validator.MultipleOf

ExJsonSchema.Validator implementation for "multipleOf" attributes.
See:

ExJsonSchema.Validator.Not

ExJsonSchema.Validator implementation for "not" attributes.
See:

ExJsonSchema.Validator.OneOf

ExJsonSchema.Validator implementation for "oneOf" attributes.
See:

ExJsonSchema.Validator.Pattern

ExJsonSchema.Validator implementation for "pattern" attributes.
See:

ExJsonSchema.Validator.Properties

ExJsonSchema.Validator implementation for "properties" attributes.
See:

ExJsonSchema.Validator.PropertyNames

ExJsonSchema.Validator implementation for "propertyNames" attributes.
See:

ExJsonSchema.Validator.Ref

ExJsonSchema.Validator implementation for "$ref" attributes.
See:

ExJsonSchema.Validator.Required

ExJsonSchema.Validator implementation for "required" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.4.3
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.17
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.5.3

ExJsonSchema.Validator.Type

ExJsonSchema.Validator implementation for "type" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.5.2
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.25
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.1.1

ExJsonSchema.Validator.UniqueItems

ExJsonSchema.Validator implementation for "uniqueItems" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.3.4
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.13
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.4.5

ExJsonSchema.Schema.InvalidReferenceError exception

ExJsonSchema.Schema.InvalidSchemaError exception

ExJsonSchema.Schema.MissingJsonDecoderError exception

ExJsonSchema.Schema.UndefinedRemoteSchemaResolverError exception

ExJsonSchema.Schema.UnsupportedSchemaVersionError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

