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A JSON Schema validator with support for the draft 4, draft 6 and draft 7 specifications. Passes the official JSON Schema Test Suite.
Installation
Add the project to your Mix dependencies in mix.exs:
defp deps do
  [
    {:ex_json_schema, "~> 0.11.2"}
  ]
end
Update your dependencies with:
$ mix deps.get

Loading remote schemata
If you have remote schemata that need to be fetched at runtime, you have to register a function that takes a URL and returns a Map of the parsed JSON. So in your Mix configuration in config/config.exs you should have something like this:
config :ex_json_schema,
  :remote_schema_resolver,
  fn url -> HTTPoison.get!(url).body |> Jason.decode! end
Alternatively, you can specify a module and function name for situations where using anonymous functions is not possible (i.e. working with Erlang releases):
config :ex_json_schema,
  :remote_schema_resolver,
  {MyModule, :my_resolver}
You do not have to do that for the official draft 4 meta-schema found at http://json-schema.org/draft-04/schema# though. That schema is bundled with the project and will work out of the box without any network calls.
Resolving a schema
In this step the schema is validated against its meta-schema (the draft 4 schema definition) and $refs are being resolved (making sure that the reference points to an existing fragment). You should only resolve a schema once to avoid the overhead of resolving it in every validation call.
schema = %{
  "type" => "object",
  "properties" => %{
    "foo" => %{
      "type" => "string"
    }
  }
} |> ExJsonSchema.Schema.resolve()
Note that Map keys are expected to be strings, since in practice that data will always come from some JSON parser.
Usage
If you're only interested in whether a piece of data is valid according to the schema:
iex> ExJsonSchema.Validator.valid?(schema, %{"foo" => "bar"})
true

iex> ExJsonSchema.Validator.valid?(schema, %{"foo" => 1})
false
Or in case you want to have detailed validation errors:
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => "bar"})
:ok

iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1})
{:error, [{"Type mismatch. Expected String but got Integer.", "#/foo"}]}
Validation error formats
By default, errors are formatted using a string formatter that returns errors as tuples of error message and path. If you want to get raw validation error structs, you can pass the following option:
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1}, error_formatter: false)
{:error,
 [
   %ExJsonSchema.Validator.Error{
     error: %ExJsonSchema.Validator.Error.Type{
       actual: "integer",
       expected: ["string"]
     },
     path: "#/foo"
   }
 ]}
Custom error formatter
You can also pass your own custom error formatter as a module that implements a format/1 function that takes a list of raw errors via the same option:
defmodule MyFormatter do
  def format(errors) do
    Enum.map(errors, fn %ExJsonSchema.Validator.Error{error: error, path: path} ->
      {error.__struct__, path}
    end)
  end
end
iex> ExJsonSchema.Validator.validate(schema, %{"foo" => 1}, error_formatter: MyFormatter)
{:error, [{ExJsonSchema.Validator.Error.Type, "#/foo"}]}
Validating against a fragment
It is also possible to validate against a subset of the schema by providing either a fragment:
iex> fragment = ExJsonSchema.Schema.get_fragment!(schema, "#/properties/foo")
%{"type" => "string"}

iex> ExJsonSchema.Validator.valid_fragment?(schema, fragment, "bar")
true

iex> ExJsonSchema.Validator.validate_fragment(schema, fragment, "bar")
:ok
or a path:
iex> ExJsonSchema.Validator.valid_fragment?(schema, "#/foo", "bar")
true
Format support
The validator supports all the formats specified by draft 4 (date-time, email, hostname, ipv4, ipv6), with the exception of the uri format which has confusing/broken requirements in the official test suite (see https://github.com/json-schema/JSON-Schema-Test-Suite/issues/77).
Custom formats
The JSON schema spec states that the format property "allows values to be constrained beyond what the other tools in JSON Schema can do". To support this, you can configure a callback validator function which gets called when a format property is encountered that is not one of the builtin formats.
As a global configuration option:
config :ex_json_schema,
  :custom_format_validator,
  {MyModule, :validate}
Or by passing an option when resolving the schema:
ExJsonSchema.Schema.resolve(%{"format" => "custom"}, custom_format_validator: {MyModule, :validate})
The configured function is called with the arguments (format, data) and is expected to return true, false or a {:error, %Error.Format{expected: "something"}} tuple, depending whether the data is valid for the given format. For compatibility with JSON schema, it is expected to return true when the format is unknown by your callback function.
The custom function can also be an anonymous function:
ExJsonSchema.Schema.resolve(%{"format" => "custom"}, custom_format_validator: fn format, data -> true end)
Note that the anonymous function version of the custom validator is only available in the option to Schema.resolve/2 and not as Application config, as using anonymous functions as configuration is not allowed.

License
Copyright (c) 2015 Jonas Schmidt
Released under the MIT license.
TODO
	Add some source code documentation
	Enable providing JSON for known schemata at resolve time
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https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.1.1

      




  

    
ExJsonSchema.Validator.UniqueItems 
    



      
ExJsonSchema.Validator implementation for "uniqueItems" attributes.
See:
https://tools.ietf.org/html/draft-fge-json-schema-validation-00#section-5.3.4
https://tools.ietf.org/html/draft-wright-json-schema-validation-01#section-6.13
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01#section-6.4.5

      




  

    
ExJsonSchema.Schema.InvalidReferenceError exception
    






  

    
ExJsonSchema.Schema.InvalidSchemaError exception
    






  

    
ExJsonSchema.Schema.MissingJsonDecoderError exception
    






  

    
ExJsonSchema.Schema.UndefinedRemoteSchemaResolverError exception
    






  

    
ExJsonSchema.Schema.UnsupportedSchemaVersionError exception
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