

 ExMacOSControl

 v0.1.2

 Table of contents

 	ExMacOSControl

 	Changelog

 	Guides

 	Getting Started with ExMacOSControl

 	Common Automation Patterns

 	DSL vs Raw AppleScript: Choosing the Right Approach

 	Advanced Usage

 	Reference

 	Performance Guide

 	Creating New App Modules for ExMacOSControl

 	
 Modules

 	Core

 	ExMacOSControl

 	ExMacOSControl.Adapter

 	ExMacOSControl.Error

 	ExMacOSControl.OSAScriptAdapter

 	ExMacOSControl.Platform

 	Advanced Features

 	ExMacOSControl.Permissions

 	ExMacOSControl.Retry

 	ExMacOSControl.Script

 	App Modules

 	ExMacOSControl.Finder

 	ExMacOSControl.Mail

 	ExMacOSControl.Messages

 	ExMacOSControl.Safari

 	ExMacOSControl.SystemEvents

 	Exceptions

 	ExMacOSControl.PlatformError

 ExMacOSControl

Control your Mac with Elixir
[image: hex.pm version]
[image: hex.pm downloads]
[image: hex.pm license]
[image: Last Updated]
A production-ready Elixir library for macOS automation via AppleScript and JavaScript for Automation (JXA). Automate Safari, Finder, Mail, Messages, and more—all with the safety and reliability of Elixir.
Why ExMacOSControl?
	🎯 Type-Safe Automation: Leverage Elixir's type system and pattern matching for robust automation
	🧪 Test-Friendly: Built-in adapter pattern with Mox support makes testing automation code straightforward
	⚡ Production-Ready: Automatic retry logic, telemetry integration, and comprehensive error handling
	📦 Batteries Included: Pre-built modules for Safari, Finder, Mail, Messages, and system control
	🔒 Permission Management: Built-in helpers for checking and requesting macOS permissions
	🛠️ Extensible: Clean patterns and guides for adding your own app modules

Use Cases
	Developer Tooling: Automate your Mac-based development workflow
	Testing & QA: Control Safari for browser testing, automate UI interactions
	System Administration: Manage processes, files, and system settings programmatically
	Communication Bots: Send automated emails and messages
	Data Collection: Extract data from running applications
	Productivity Automation: Build custom workflows combining multiple apps

Quick Example
Here's a complete workflow combining multiple features:
alias ExMacOSControl, as: Mac
alias ExMacOSControl.{Safari, Mail, Retry, Permissions}

Check permissions before starting
case Permissions.check_automation("Safari") do
 {:ok, :granted} -> :ok
 {:ok, :not_granted} ->
 Permissions.show_automation_help("Safari")
 raise "Safari automation permission required"
end

Scrape data from a website with automatic retry
{:ok, price} = Retry.with_retry(fn ->
 # Open URL
 :ok = Safari.open_url("https://example.com/product")
 Process.sleep(2000) # Wait for page load

 # Extract price via JavaScript
 Safari.execute_javascript(~s|
 document.querySelector('.price').textContent
 |)
end, max_attempts: 3, backoff: :exponential)

Send email notification if price dropped
if String.contains?(price, "$99") do
 :ok = Mail.send_email(
 to: "me@example.com",
 subject: "Price Alert!",
 body: "The product is now #{price}!"
)

 IO.puts("✅ Alert sent!")
end
Features
Core Features
	AppleScript Execution: Timeout support, argument passing, comprehensive error handling
	JavaScript for Automation (JXA): Full JXA support with ObjC bridge access
	Script File Execution: Auto-detect .applescript, .scpt, .js, .jxa files
	macOS Shortcuts: Run Shortcuts with input parameters (strings, numbers, maps, lists)

App Modules
	System Events: Process management, UI automation (menu clicks, keystrokes), file operations
	Safari: Open URLs, execute JavaScript, manage tabs
	Finder: Navigate folders, manage selections, set view modes
	Mail: Send emails (with CC/BCC), search mailboxes, unread counts
	Messages: Send iMessages/SMS, retrieve chats, unread counts

Advanced Features
	Permissions: Check and manage macOS automation permissions
	Retry Logic: Automatic retry with exponential/linear backoff
	Telemetry: Built-in observability via :telemetry events
	Script DSL: Optional Elixir DSL for building AppleScript
	Platform Detection: Automatic macOS validation

Quick Start
AppleScript Execution
Basic AppleScript execution
{:ok, result} = ExMacOSControl.run_applescript(~s(return "Hello, World!"))
=> {:ok, "Hello, World!"}

With timeout (5 seconds)
{:ok, result} = ExMacOSControl.run_applescript("delay 2\nreturn \"done\"", timeout: 5000)
=> {:ok, "done"}

With arguments
script = """
on run argv
 set name to item 1 of argv
 return "Hello, " & name
end run
"""
{:ok, result} = ExMacOSControl.run_applescript(script, args: ["World"])
=> {:ok, "Hello, World"}

Combined options
{:ok, result} = ExMacOSControl.run_applescript(script, timeout: 5000, args: ["Elixir"])
=> {:ok, "Hello, Elixir"}
JavaScript for Automation (JXA)
Basic JXA execution
{:ok, result} = ExMacOSControl.run_javascript("(function() { return 'Hello from JXA!'; })()")
=> {:ok, "Hello from JXA!"}

Application automation
{:ok, name} = ExMacOSControl.run_javascript("Application('Finder').name()")
=> {:ok, "Finder"}

With arguments
script = "function run(argv) { return argv[0]; }"
{:ok, result} = ExMacOSControl.run_javascript(script, args: ["test"])
=> {:ok, "test"}
Script File Execution
Execute AppleScript file (auto-detected from .applescript extension)
{:ok, result} = ExMacOSControl.run_script_file("/path/to/script.applescript")

Execute JavaScript file (auto-detected from .js extension)
{:ok, result} = ExMacOSControl.run_script_file("/path/to/script.js")

With arguments
{:ok, result} = ExMacOSControl.run_script_file(
 "/path/to/script.applescript",
 args: ["arg1", "arg2"]
)

With timeout
{:ok, result} = ExMacOSControl.run_script_file(
 "/path/to/script.js",
 timeout: 5000
)

Override language detection for files with non-standard extensions
{:ok, result} = ExMacOSControl.run_script_file(
 "/path/to/script.txt",
 language: :applescript
)

All options combined
{:ok, result} = ExMacOSControl.run_script_file(
 "/path/to/script.scpt",
 language: :applescript,
 args: ["test"],
 timeout: 10_000
)
macOS Shortcuts
Run macOS Shortcuts
:ok = ExMacOSControl.run_shortcut("My Shortcut Name")

Run Shortcut with string input
{:ok, result} = ExMacOSControl.run_shortcut("Process Text", input: "Hello, World!")

Run Shortcut with map input (serialized as JSON)
{:ok, result} = ExMacOSControl.run_shortcut("Process Data", input: %{
 "name" => "John",
 "age" => 30
})

Run Shortcut with list input
{:ok, result} = ExMacOSControl.run_shortcut("Process Items", input: ["item1", "item2", "item3"])

List available shortcuts
{:ok, shortcuts} = ExMacOSControl.list_shortcuts()
=> {:ok, ["Shortcut 1", "Shortcut 2", "My Shortcut"]}

Check if a shortcut exists before running it
case ExMacOSControl.list_shortcuts() do
 {:ok, shortcuts} ->
 if "My Shortcut" in shortcuts do
 ExMacOSControl.run_shortcut("My Shortcut")
 end
 {:error, reason} ->
 {:error, reason}
end
System Events - Process Management
Control running applications on macOS:
List all running apps
{:ok, processes} = ExMacOSControl.SystemEvents.list_processes()
=> {:ok, ["Safari", "Finder", "Terminal", "Mail", ...]}

Check if an app is running
{:ok, true} = ExMacOSControl.SystemEvents.process_exists?("Safari")
=> {:ok, true}

{:ok, false} = ExMacOSControl.SystemEvents.process_exists?("NonexistentApp")
=> {:ok, false}

Launch an app
:ok = ExMacOSControl.SystemEvents.launch_application("Calculator")
=> :ok

Activate (bring to front) an app - same as launch
:ok = ExMacOSControl.SystemEvents.activate_application("Safari")
=> :ok

Quit an app gracefully
:ok = ExMacOSControl.SystemEvents.quit_application("Calculator")
=> :ok

Full workflow example
app_name = "Calculator"

Check if it's running
case ExMacOSControl.SystemEvents.process_exists?(app_name) do
 {:ok, false} ->
 # Not running, launch it
 ExMacOSControl.SystemEvents.launch_application(app_name)
 {:ok, true} ->
 # Already running, bring to front
 ExMacOSControl.SystemEvents.activate_application(app_name)
end
Note: This module requires automation permission for System Events. macOS may prompt for permission on first use.
System Events - UI Automation
Control application UI elements programmatically (requires Accessibility permission):
Click menu items
:ok = ExMacOSControl.SystemEvents.click_menu_item("Safari", "File", "New Tab")
=> :ok

:ok = ExMacOSControl.SystemEvents.click_menu_item("TextEdit", "Format", "Make Plain Text")
=> :ok

Send keystrokes
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "a")
=> :ok

Send keystrokes with modifiers
:ok = ExMacOSControl.SystemEvents.press_key("Safari", "t", using: [:command])
=> :ok

Multiple modifiers (Command+Shift+Q)
:ok = ExMacOSControl.SystemEvents.press_key("Safari", "q", using: [:command, :shift])
=> :ok

Get window properties
{:ok, props} = ExMacOSControl.SystemEvents.get_window_properties("Safari")
=> {:ok, %{position: [100, 100], size: [800, 600], title: "Google"}}

Application with no windows returns nil
{:ok, nil} = ExMacOSControl.SystemEvents.get_window_properties("AppWithNoWindows")
=> {:ok, nil}

Set window bounds
:ok = ExMacOSControl.SystemEvents.set_window_bounds("Calculator",
 position: [100, 100],
 size: [400, 500]
)
=> :ok

Complete UI automation workflow
1. Launch app
:ok = ExMacOSControl.SystemEvents.launch_application("TextEdit")

2. Create new document (Command+N)
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "n", using: [:command])

3. Type some text
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "H")
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "e")
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "l")
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "l")
:ok = ExMacOSControl.SystemEvents.press_key("TextEdit", "o")

4. Get window properties
{:ok, props} = ExMacOSControl.SystemEvents.get_window_properties("TextEdit")

5. Resize window
:ok = ExMacOSControl.SystemEvents.set_window_bounds("TextEdit",
 position: [0, 0],
 size: [1000, 800]
)
Important: UI automation requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility
(Or System Preferences → Security & Privacy → Privacy → Accessibility on older macOS)
Add Terminal (or your Elixir runtime) to the list of allowed applications.
Available Modifiers: :command, :control, :option, :shift
System Events - File Operations
Convenient helpers for file operations using Finder:
Reveal file in Finder (opens window and selects the file)
:ok = ExMacOSControl.SystemEvents.reveal_in_finder("/Users/me/Documents/report.pdf")
=> :ok

Get currently selected items in Finder
{:ok, selected} = ExMacOSControl.SystemEvents.get_selected_finder_items()
=> {:ok, ["/Users/me/file1.txt", "/Users/me/file2.txt"]}

Empty selection returns empty list
{:ok, []} = ExMacOSControl.SystemEvents.get_selected_finder_items()
=> {:ok, []}

Move file to trash
:ok = ExMacOSControl.SystemEvents.trash_file("/Users/me/old_file.txt")
=> :ok

Complete workflow example
1. Create a test file
File.write!("/tmp/test.txt", "test content")

2. Reveal it in Finder
:ok = ExMacOSControl.SystemEvents.reveal_in_finder("/tmp/test.txt")

3. Get selected items (the file we just revealed should be selected)
{:ok, selected} = ExMacOSControl.SystemEvents.get_selected_finder_items()
=> {:ok, ["/tmp/test.txt"]}

4. Move to trash when done
:ok = ExMacOSControl.SystemEvents.trash_file("/tmp/test.txt")

Error handling
{:error, error} = ExMacOSControl.SystemEvents.reveal_in_finder("/nonexistent/file")
=> {:error, %ExMacOSControl.Error{type: :not_found, ...}}

{:error, error} = ExMacOSControl.SystemEvents.trash_file("relative/path")
=> {:error, %ExMacOSControl.Error{type: :execution_error, message: "Path must be absolute", ...}}
Important Notes:
	File operation paths must be absolute (start with /)
	reveal_in_finder/1 will open a Finder window and bring Finder to the front
	trash_file/1 moves items to Trash (not permanent deletion), but should still be used with caution
	File operations require Finder access (usually granted automatically)

Finder Automation
Control the macOS Finder application:
Get selected files in Finder
{:ok, files} = ExMacOSControl.Finder.get_selection()
=> {:ok, ["/Users/me/file.txt", "/Users/me/file2.txt"]}

Empty selection returns empty list
{:ok, []} = ExMacOSControl.Finder.get_selection()
=> {:ok, []}

Open Finder at a location
:ok = ExMacOSControl.Finder.open_location("/Users/me/Documents")
=> :ok

Create new Finder window
:ok = ExMacOSControl.Finder.new_window("/Applications")
=> :ok

Get current folder path
{:ok, path} = ExMacOSControl.Finder.get_current_folder()
=> {:ok, "/Users/me/Documents"}

Returns empty string if no Finder windows open
{:ok, ""} = ExMacOSControl.Finder.get_current_folder()
=> {:ok, ""}

Set view mode
:ok = ExMacOSControl.Finder.set_view(:icon) # Icon view
:ok = ExMacOSControl.Finder.set_view(:list) # List view
:ok = ExMacOSControl.Finder.set_view(:column) # Column view
:ok = ExMacOSControl.Finder.set_view(:gallery) # Gallery view

Error handling
{:error, error} = ExMacOSControl.Finder.open_location("/nonexistent/path")
=> {:error, %ExMacOSControl.Error{...}}

{:error, error} = ExMacOSControl.Finder.set_view(:invalid)
=> {:error, %ExMacOSControl.Error{type: :execution_error, message: "Invalid view mode", ...}}
Note: This module requires automation permission for Finder. macOS may prompt for permission on first use.
Safari Automation
Control Safari browser programmatically:
Open URL in new tab
:ok = ExMacOSControl.Safari.open_url("https://example.com")
=> :ok

Get current tab URL
{:ok, url} = ExMacOSControl.Safari.get_current_url()
=> {:ok, "https://example.com"}

Execute JavaScript in current tab
{:ok, title} = ExMacOSControl.Safari.execute_javascript("document.title")
=> {:ok, "Example Domain"}

{:ok, result} = ExMacOSControl.Safari.execute_javascript("2 + 2")
=> {:ok, "4"}

List all tab URLs across all windows
{:ok, urls} = ExMacOSControl.Safari.list_tabs()
=> {:ok, ["https://example.com", "https://google.com", "https://github.com"]}

Close a tab by index (1-based)
:ok = ExMacOSControl.Safari.close_tab(2)
=> :ok

Complete workflow example
Open a new tab
:ok = ExMacOSControl.Safari.open_url("https://example.com")

Wait for page to load, then execute JavaScript
Process.sleep(2000)
{:ok, title} = ExMacOSControl.Safari.execute_javascript("document.title")

List all tabs
{:ok, tabs} = ExMacOSControl.Safari.list_tabs()
IO.inspect(tabs, label: "Open tabs")

Close the first tab
:ok = ExMacOSControl.Safari.close_tab(1)
Note: This module requires automation permission for Safari. Tab indices are 1-based (1 is the first tab).
Mail Automation
Control Mail.app programmatically:
Send an email
:ok = ExMacOSControl.Mail.send_email(
 to: "recipient@example.com",
 subject: "Automated Report",
 body: "Here is your daily report."
)

Send with CC and BCC
:ok = ExMacOSControl.Mail.send_email(
 to: "team@example.com",
 subject: "Team Update",
 body: "Weekly status update.",
 cc: ["manager@example.com"],
 bcc: ["archive@example.com"]
)

Get unread count (inbox)
{:ok, count} = ExMacOSControl.Mail.get_unread_count()
=> {:ok, 42}

Get unread count (specific mailbox)
{:ok, count} = ExMacOSControl.Mail.get_unread_count("Work")
=> {:ok, 5}

Search mailbox
{:ok, messages} = ExMacOSControl.Mail.search_mailbox("INBOX", "invoice")
=> {:ok, [%{subject: "Invoice #123", from: "billing@example.com", date: "2025-01-15"}, ...]}

Complete workflow example
Check unread count
{:ok, unread} = ExMacOSControl.Mail.get_unread_count()
IO.puts("You have #{unread} unread messages")

Search for important messages
{:ok, messages} = ExMacOSControl.Mail.search_mailbox("INBOX", "urgent")

Process search results
Enum.each(messages, fn msg ->
 IO.puts("From: #{msg.from}")
 IO.puts("Subject: #{msg.subject}")
 IO.puts("Date: #{msg.date}")
 IO.puts("---")
end)

Send notification email if urgent messages found
if length(messages) > 0 do
 :ok = ExMacOSControl.Mail.send_email(
 to: "admin@example.com",
 subject: "Urgent Messages Alert",
 body: "Found #{length(messages)} urgent messages requiring attention."
)
end
Important Safety Notes:
	Mail automation requires Mail.app to be configured with an email account
	send_email/1 sends emails immediately - there is no undo
	Use with caution in production environments
	Consider adding confirmation prompts before sending emails
	Test with safe recipient addresses first

Messages Automation
⚠️ Safety Warning: Message sending functions will send real messages!
Control the Messages app programmatically:
Send a message (iMessage or SMS)
:ok = ExMacOSControl.Messages.send_message("+1234567890", "Hello!")

Send to a contact name
:ok = ExMacOSControl.Messages.send_message("John Doe", "Meeting at 3pm?")

Force SMS (not iMessage)
:ok = ExMacOSControl.Messages.send_message(
 "+1234567890",
 "Hello!",
 service: :sms
)

Force iMessage
:ok = ExMacOSControl.Messages.send_message(
 "john@icloud.com",
 "Hello!",
 service: :imessage
)

Get recent messages from a chat
{:ok, messages} = ExMacOSControl.Messages.get_recent_messages("+1234567890")
=> {:ok, [
%{from: "+1234567890", text: "Hello!", timestamp: "Monday, January 15, 2024 at 2:30:00 PM"},
%{from: "+1234567890", text: "How are you?", timestamp: "Monday, January 15, 2024 at 2:31:00 PM"}
]}

List all chats
{:ok, chats} = ExMacOSControl.Messages.list_chats()
=> {:ok, [
%{id: "iMessage;+E:+1234567890", name: "+1234567890", unread: 2},
%{id: "iMessage;-;+E:john@icloud.com", name: "John Doe", unread: 0}
]}

Get total unread count
{:ok, count} = ExMacOSControl.Messages.get_unread_count()
=> {:ok, 5}

Complete workflow example
Check for unread messages
{:ok, unread} = ExMacOSControl.Messages.get_unread_count()

if unread > 0 do
 # List all chats to see who has unread messages
 {:ok, chats} = ExMacOSControl.Messages.list_chats()

 # Find chats with unread messages
 unread_chats = Enum.filter(chats, fn chat -> chat.unread > 0 end)

 # Get recent messages from the first unread chat
 if length(unread_chats) > 0 do
 first_chat = hd(unread_chats)
 {:ok, messages} = ExMacOSControl.Messages.get_recent_messages(first_chat.name)

 # Process the messages
 Enum.each(messages, fn msg ->
 IO.puts("From: #{msg.from}")
 IO.puts("Text: #{msg.text}")
 IO.puts("Time: #{msg.timestamp}")
 IO.puts("---")
 end)
 end
end
Required Permissions:
	Automation permission for Terminal/your app to control Messages
	Full Disk Access (for reading message history)

Important Safety Notes:
	send_message/2 and send_message/3 send real messages immediately - there is no undo
	Messages are sent via iMessage by default, falling back to SMS if iMessage is not available
	Use the :service option to force SMS or iMessage
	Be extremely careful when using in automated scripts
	Consider adding confirmation prompts before sending messages
	Test with your own phone number first

Checking and Managing Permissions
macOS requires explicit permissions for automation. Use the Permissions module to check and manage these:
Check accessibility permission
case ExMacOSControl.Permissions.check_accessibility() do
 {:ok, :granted} ->
 IO.puts("Ready for UI automation!")
 {:ok, :not_granted} ->
 ExMacOSControl.Permissions.show_accessibility_help()
end

Check automation permission for specific apps
ExMacOSControl.Permissions.check_automation("Safari")
=> {:ok, :granted} | {:ok, :not_granted}

Get overview of all permissions
statuses = ExMacOSControl.Permissions.check_all()
=> %{accessibility: :granted, safari_automation: :not_granted, ...}

Open System Settings to grant permissions
ExMacOSControl.Permissions.open_accessibility_preferences()
ExMacOSControl.Permissions.open_automation_preferences()
Required Permissions:
	Accessibility: For UI automation (menu items, keystrokes, windows)
	Automation: For controlling specific apps (Safari, Finder, Mail, etc.)
	Full Disk Access: For some operations (e.g., Messages history)

Performance & Reliability
Retry Logic
ExMacOSControl includes automatic retry functionality for handling transient failures like timeouts:
alias ExMacOSControl.Retry

Basic retry with exponential backoff (default: 3 attempts)
Retries: immediately, after 200ms, after 400ms
{:ok, result} = Retry.with_retry(fn ->
 ExMacOSControl.Finder.get_selection()
end)

Custom max attempts with linear backoff
Retries: immediately, after 1s, after 1s, after 1s, after 1s
{:ok, windows} = Retry.with_retry(fn ->
 ExMacOSControl.SystemEvents.get_window_properties("Safari")
end, max_attempts: 5, backoff: :linear)

Combining timeout and retry for reliability
{:ok, result} = Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(script, timeout: 10_000)
end, max_attempts: 3, backoff: :exponential)
Retry Behavior:
	Only retries timeout errors (errors with type: :timeout)
	Non-timeout errors (syntax, permission, not found) return immediately
	Exponential backoff: 200ms, 400ms, 800ms, 1600ms, etc.
	Linear backoff: constant 1000ms between retries

When to Use:
	✅ Timeout errors that may succeed on retry
	✅ Operations depending on application state
	✅ UI automation affected by system responsiveness
	❌ Syntax errors (won't be fixed by retrying)
	❌ Permission errors (user intervention required)

Telemetry
ExMacOSControl emits telemetry events for monitoring and observability:
In your application.ex
:telemetry.attach_many(
 "ex-macos-control-handler",
 [
 [:ex_macos_control, :applescript, :start],
 [:ex_macos_control, :applescript, :stop],
 [:ex_macos_control, :applescript, :exception],
 [:ex_macos_control, :retry, :start],
 [:ex_macos_control, :retry, :stop],
 [:ex_macos_control, :retry, :error]
],
 &MyApp.handle_telemetry/4,
 nil
)

Example handler to track slow operations
defmodule MyApp do
 def handle_telemetry([:ex_macos_control, :applescript, :stop], measurements, metadata, _) do
 duration_ms = measurements.duration / 1_000

 if duration_ms > 5_000 do
 Logger.warning("Slow operation: #{duration_ms}ms - #{metadata.script}")
 end
 end

 def handle_telemetry(_, _, _, _), do: :ok
end
Available Events:
	[:ex_macos_control, :applescript, :start] - Script execution begins
	[:ex_macos_control, :applescript, :stop] - Script succeeds (includes duration in microseconds)
	[:ex_macos_control, :applescript, :exception] - Script fails (includes error details)
	[:ex_macos_control, :retry, :*] - Retry lifecycle events

See docs/performance.md for comprehensive performance guide including:
	Timeout configuration recommendations
	Common bottlenecks and solutions
	Benchmarking strategies
	When to use retry logic
	Complete telemetry event reference

Installation
Add ex_macos_control to your list of dependencies in mix.exs:
def deps do
 [
 {:ex_macos_control, "~> 0.1.0"}
]
end
Then run:
mix deps.get

Verify Installation
In iex
iex> ExMacOSControl.run_applescript(~s(return "Hello!"))
{:ok, "Hello!"}
If this works, you're ready to automate! 🎉
System Requirements
	macOS 10.15 (Catalina) or later
	Elixir 1.19 or later
	Appropriate macOS permissions (accessibility, automation, etc.)

See the Permissions section for details on required permissions.
Documentation
Full documentation is available at https://hexdocs.pm/ex_macos_control.
Development
Setup
Install dependencies
mix deps.get

Install git hooks (recommended)
./scripts/install-hooks.sh

Run tests
mix test

Git Hooks: This project uses pre-commit and pre-push hooks to ensure code quality. See docs/git_hooks.md for details.
Code Quality
This project uses strict code quality standards. All contributions must pass the following checks:
Run All Quality Checks
Run all quality checks (format, credo, dialyzer)
mix quality

Individual Checks
Format code
mix format

Check code formatting
mix format.check

Run Credo static analysis (strict mode)
mix credo --strict

Run Dialyzer type checking
mix dialyzer

Run tests
mix test

Quality Standards
	Formatting: All code must be formatted with mix format (120 character line length)
	Credo: All code must pass strict Credo checks with zero warnings
	Dialyzer: All code must pass Dialyzer type checking with zero warnings
	Tests: Aim for 100% test coverage on new code (minimum 90%)
	Documentation: All public functions must have @doc, @spec, and @moduledoc

See CONTRIBUTING.md for detailed development guidelines and standards.
Extending ExMacOSControl
Creating New App Modules
Want to add automation for additional macOS apps? ExMacOSControl provides comprehensive documentation for creating new app automation modules.
See the App Module Creation Guide for:
	Step-by-step instructions for creating modules
	Common patterns and best practices
	Testing strategies (unit and integration)
	Complete examples (Music and Calendar modules)
	Troubleshooting guide
	Ready-to-use boilerplate templates

The guide includes everything you need to extend ExMacOSControl with new functionality while following established patterns and maintaining code quality standards.
What's Next?
📚 Learn More
	Getting Started Guide - Complete walkthrough for first-time users
	Common Patterns - Real-world automation examples and workflows
	DSL vs Raw AppleScript - Choosing the right approach for your use case
	Advanced Usage - Telemetry, custom adapters, and performance tuning
	Performance Guide - Optimization tips and best practices

💬 Get Help
	Issues: GitHub Issues for bugs and feature requests
	Discussions: GitHub Discussions for questions and community support
	Documentation: HexDocs for API reference

🤝 Contributing
Contributions are welcome! Please see CONTRIBUTING.md for details on:
	Code of conduct
	Development setup
	Testing requirements
	Pull request process

Whether it's fixing bugs, adding new app modules, improving documentation, or sharing use cases—all contributions are appreciated!
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
	Built with Elixir
	Powered by macOS osascript and the Shortcuts app
	Inspired by the macOS automation community

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.1.0 - 2025-11-30
Added
Core Features
	AppleScript Execution: Execute AppleScript code with timeout support and argument passing
	JavaScript for Automation (JXA): Full JXA support with ObjC bridge access
	Script File Execution: Execute .applescript, .scpt, .js, and .jxa files with automatic language detection
	macOS Shortcuts: Run Shortcuts with input parameter support (strings, numbers, maps, lists)
	Comprehensive Error Handling: Detailed error types and messages via ExMacOSControl.Error module

Application Modules
	SystemEvents: Process management (list, launch, quit, check if running)
	SystemEvents.UI: UI automation (menu clicks, keystrokes, window properties)
	SystemEvents.FileOps: File operations (reveal in Finder, trash files, get selection)
	Finder: Control Finder application (selection, navigation, view modes)
	Safari: Browser automation (open URLs, execute JavaScript, manage tabs)
	Mail: Email automation (send emails with CC/BCC, search mailboxes, unread counts)
	Messages: iMessage/SMS automation (send messages, retrieve chats, unread counts)

Advanced Features
	Permissions Module: Check and manage macOS automation permissions (accessibility, automation, full disk access)
	Script Building DSL: Minimal DSL for constructing AppleScript programmatically
	Retry Logic: Automatic retry with exponential/linear backoff for timeout errors
	Telemetry Integration: Observability via :telemetry events for monitoring and debugging
	Performance Monitoring: Built-in telemetry events for script execution and retry operations

Developer Experience
	Platform Detection: Automatic macOS platform validation with helpful error messages
	Test-Friendly Design: Adapter pattern with Mox support for comprehensive testing
	Comprehensive Documentation: Module creation guide for extending with new app modules
	Performance Guide: Best practices for timeout tuning, retry strategies, and telemetry setup

Technical Details
	Test Coverage: 417 tests with 100% pass rate (408 unit tests, 9 doctests, 171 integration tests)
	Code Quality: Zero Credo issues (strict mode), zero Dialyzer warnings
	Dependencies: Minimal dependencies (telemetry for monitoring, mox for testing)
	Elixir Version: Requires Elixir ~> 1.19

Known Limitations
	macOS Only: This library only works on macOS platforms (validated at runtime)
	Permissions Required: Most features require macOS permissions (accessibility, automation, full disk access)
	Application Availability: App modules (Safari, Mail, Messages, etc.) require the respective apps to be installed and properly configured
	Script Timeout: Long-running scripts may timeout; use the :timeout option to adjust (default varies by operation)
	Integration Tests: Many integration tests are skipped by default to prevent destructive operations (use mix test --include integration to run)

Security Considerations
	Message Sending: Messages.send_message/2 sends real messages immediately with no undo
	Email Sending: Mail.send_email/1 sends real emails immediately with no undo
	File Operations: SystemEvents.trash_file/1 moves files to trash (not permanent but use with caution)
	Permission Prompts: macOS will prompt for permissions on first use; ensure users understand what permissions are needed and why

Breaking Changes
None (initial release)
0.1.1 - 2025-11-30
Fixed
	Messages.list_chats/0: Fixed AppleScript syntax error with unread count property	Changed from unread count of c to c's unread count (possessive form required for multi-word properties)
	Now properly retrieves chat names from participant full names instead of missing values
	Returns unread: 0 for all chats as Messages AppleScript API doesn't expose unread counts

	Messages.get_unread_count/0: Updated to return {:ok, 0} as placeholder	Documents that real unread counts require Full Disk Access and direct SQLite database queries

	Messages.send_message/3: Simplified AppleScript to use send to buddy syntax	Fixed issues with service type selection that caused execution errors
	Properly handles contact names with correct capitalization

Added
	Messages Group Chat Support: New :group_chat option for send_message/3	Send messages to group chats by participant names (e.g., "John Doe & Jane Smith")
	Automatically finds matching group chat via list_chats() and uses chat ID
	Returns :not_found error if group chat doesn't exist
	Comprehensive test coverage for group chat functionality

	Messages Documentation: Enhanced module documentation with group chat examples and limitations section

Changed
	Messages AppleScript: Updated to use simpler and more reliable syntax patterns	Individual messages use send to buddy syntax
	Group messages use send to chat id syntax

0.1.2 - 2025-11-30
Fixed
	Telemetry Performance Warning: Fixed telemetry handler warnings in test suite	Changed from anonymous functions to module function references using &Module.function/4 syntax
	Eliminates "local function" performance penalty warnings from :telemetry.attach_many/4
	Affected files: retry_test.exs and osascript_adapter_telemetry_test.exs
	Improves test suite performance and reduces noise in test output

[Unreleased]
Planned Features
	Additional app modules (Music, Photos, Calendar, Contacts, Reminders, Notes, Notification Center)
	Advanced error handling features
	Real unread count support via SQLite database access (requires Full Disk Access)

 Getting Started with ExMacOSControl

Welcome to ExMacOSControl! This guide will help you get up and running with macOS automation using Elixir.
What You'll Learn
	Installing and verifying ExMacOSControl
	Understanding AppleScript vs JavaScript for Automation (JXA)
	Setting up required macOS permissions
	Running your first automation
	Common gotchas and troubleshooting
	Next steps for building real automation

Prerequisites
Before you begin, ensure you have:
	macOS 10.15 (Catalina) or later
	Elixir 1.19 or later - Install Elixir
	Basic Elixir knowledge - Familiarity with pattern matching, modules, and functions
	Terminal access - You'll be running commands from the terminal

Installation
1. Add Dependency
Add ExMacOSControl to your mix.exs:
def deps do
 [
 {:ex_macos_control, "~> 0.1.0"}
]
end
2. Fetch Dependencies
mix deps.get

3. Verify Installation
Start an IEx session and try a simple command:
iex -S mix

iex> ExMacOSControl.run_applescript(~s(return "Hello from macOS!"))
{:ok, "Hello from macOS!"}
If you see {:ok, "Hello from macOS!"}, congratulations! ExMacOSControl is installed and working.
Your First Automation
Let's build a simple automation that:
	Checks if Safari is running
	Launches it if needed
	Opens a URL
	Extracts the page title

Step 1: Check if Safari is Running
alias ExMacOSControl.SystemEvents

{:ok, is_running} = SystemEvents.process_exists?("Safari")

if is_running do
 IO.puts("Safari is already running")
else
 IO.puts("Safari is not running, launching...")
 SystemEvents.launch_application("Safari")
 Process.sleep(1000) # Wait for Safari to launch
end
Step 2: Open a URL
alias ExMacOSControl.Safari

:ok = Safari.open_url("https://example.com")
Process.sleep(2000) # Wait for page to load
Step 3: Extract Page Title
{:ok, title} = Safari.execute_javascript("document.title")
IO.puts("Page title: #{title}")
=> Page title: Example Domain
Complete Script
Here's the complete automation in one script:
defmodule MyFirstAutomation do
 alias ExMacOSControl.{SystemEvents, Safari}

 def run do
 # Check if Safari is running
 {:ok, is_running} = SystemEvents.process_exists?("Safari")

 unless is_running do
 IO.puts("Launching Safari...")
 SystemEvents.launch_application("Safari")
 Process.sleep(1000)
 end

 # Open URL
 IO.puts("Opening https://example.com...")
 :ok = Safari.open_url("https://example.com")
 Process.sleep(2000)

 # Get page title
 {:ok, title} = Safari.execute_javascript("document.title")
 IO.puts("Page title: #{title}")

 {:ok, title}
 end
end

Run it
MyFirstAutomation.run()
Understanding AppleScript vs JXA
ExMacOSControl supports two macOS automation languages:
AppleScript
Pros:
	Native macOS scripting language
	Excellent app support
	Extensive documentation and community resources
	Natural language-like syntax

Cons:
	Quirky syntax
	Less familiar to developers coming from other languages

Example:
script = """
tell application "Finder"
 get name of every file of desktop
end tell
"""

{:ok, files} = ExMacOSControl.run_applescript(script)
JavaScript for Automation (JXA)
Pros:
	Uses JavaScript syntax (familiar to web developers)
	Access to Objective-C bridge
	More programmatic feel

Cons:
	Less documentation than AppleScript
	Some apps have better AppleScript support
	Slightly less community resources

Example:
script = """
var finder = Application('Finder')
finder.desktop.files.name()
"""

{:ok, files} = ExMacOSControl.run_javascript(script)
Which Should You Use?
	Use AppleScript when:
	Working with apps that have excellent AppleScript dictionaries
	Following existing tutorials/documentation
	You find natural language syntax easier

	Use JXA when:
	You're more comfortable with JavaScript
	You need ObjC bridge features
	You want more programmatic control

Good news: You can mix both! Use whatever works best for each task.
macOS Permissions
macOS requires explicit permissions for automation. ExMacOSControl makes it easy to check and request permissions.
Understanding Permission Types
	Accessibility Permission
	Required for: UI automation (menu clicks, keystrokes)
	Granted in: System Settings → Privacy & Security → Accessibility

	Automation Permission
	Required for: Controlling specific apps (Safari, Finder, Mail, etc.)
	Granted per-app when first accessed (macOS will prompt)

	Full Disk Access (rarely needed)
	Required for: Reading Messages database
	Granted in: System Settings → Privacy & Security → Full Disk Access

Checking Permissions
alias ExMacOSControl.Permissions

Check accessibility permission
case Permissions.check_accessibility() do
 {:ok, :granted} ->
 IO.puts("✅ Accessibility permission granted")
 {:ok, :not_granted} ->
 IO.puts("❌ Accessibility permission not granted")
 Permissions.show_accessibility_help()
end

Check automation permission for Safari
case Permissions.check_automation("Safari") do
 {:ok, :granted} ->
 IO.puts("✅ Safari automation granted")
 {:ok, :not_granted} ->
 IO.puts("❌ Safari automation not granted")
 Permissions.show_automation_help("Safari")
end

Get overview of all permissions
statuses = Permissions.check_all()
IO.inspect(statuses)
Pre-flight Check Pattern
It's good practice to check permissions before running automation:
defmodule SafeAutomation do
 alias ExMacOSControl.{Permissions, Safari}

 def run do
 # Pre-flight check
 with {:ok, :granted} <- Permissions.check_automation("Safari") do
 # Run automation
 Safari.open_url("https://example.com")
 else
 {:ok, :not_granted} ->
 Permissions.show_automation_help("Safari")
 {:error, :permission_denied}

 error ->
 error
 end
 end
end
Granting Permissions
ExMacOSControl can open System Settings to the right location:
Open accessibility preferences
Permissions.open_accessibility_preferences()

Open automation preferences
Permissions.open_automation_preferences()
macOS 13+ will open System Settings directly to the Privacy & Security pane.
Common Gotchas
1. Scripts Need Time to Complete
macOS automation isn't instant. Always account for timing:
❌ BAD: No time for page to load
Safari.open_url("https://example.com")
Safari.execute_javascript("document.title") # Might get previous page!

✅ GOOD: Wait for page load
Safari.open_url("https://example.com")
Process.sleep(2000)
{:ok, title} = Safari.execute_javascript("document.title")
2. Timeout Errors
If scripts take too long, they'll timeout. Adjust the timeout:
Default timeout is usually 30 seconds
{:ok, result} = ExMacOSControl.run_applescript(script)

Custom timeout (60 seconds)
{:ok, result} = ExMacOSControl.run_applescript(script, timeout: 60_000)
3. App Names Are Case-Sensitive
SystemEvents.process_exists?("safari") # ❌ Won't work
SystemEvents.process_exists?("Safari") # ✅ Correct
4. Quote Escaping in AppleScript
AppleScript strings need proper quote escaping:
❌ BAD: Breaks AppleScript syntax
script = ~s(display dialog "Hello "World"")

✅ GOOD: Escape quotes
script = ~s(display dialog "Hello \\"World\\"")

✅ BETTER: Use triple-quoted string
script = """
display dialog "Hello \\"World\\""
"""
5. Permission Prompts Block Execution
When macOS prompts for permission, your script will pause:
First time running - macOS shows permission dialog
Script waits for user response
Safari.open_url("https://example.com")
Solution: Check permissions first or inform users to expect prompts.
6. Apps Must Be Installed
Trying to control non-existent apps will fail:
If Safari isn't installed
{:error, %{type: :not_found}} = Safari.open_url("https://example.com")
Solution: Check if processes exist before controlling them.
Error Handling
ExMacOSControl uses structured errors. Always handle them:
case ExMacOSControl.run_applescript(script) do
 {:ok, result} ->
 # Success
 process_result(result)

 {:error, %{type: :timeout}} ->
 # Script took too long
 Logger.warn("Script timed out")
 {:error, :timeout}

 {:error, %{type: :permission_denied}} ->
 # Permission issue
 Permissions.show_accessibility_help()
 {:error, :needs_permission}

 {:error, %{type: :syntax_error, message: msg}} ->
 # AppleScript syntax error
 Logger.error("Syntax error: #{msg}")
 {:error, :syntax}

 {:error, error} ->
 # Other error
 Logger.error("Automation failed: #{inspect(error)}")
 {:error, :unknown}
end
Best Practices
1. Use Aliases for Readability
Instead of repeating ExMacOSControl everywhere
alias ExMacOSControl, as: Mac
alias ExMacOSControl.{Safari, Finder, Mail}

Mac.run_applescript(script)
Safari.open_url(url)
2. Create Helper Modules
Wrap common patterns in functions:
defmodule BrowserHelper do
 alias ExMacOSControl.Safari

 def navigate_and_extract(url, selector) do
 with :ok <- Safari.open_url(url),
 :ok <- Process.sleep(2000),
 {:ok, content} <- Safari.execute_javascript("""
 document.querySelector('#{selector}').textContent
 """) do
 {:ok, String.trim(content)}
 end
 end
end
3. Use Retry for Reliability
alias ExMacOSControl.Retry

Automatically retry on timeout
{:ok, result} = Retry.with_retry(fn ->
 Safari.execute_javascript("document.title")
end, max_attempts: 3)
4. Log Important Operations
require Logger

def automate do
 Logger.info("Starting automation...")

 case run_automation() do
 {:ok, result} ->
 Logger.info("Automation succeeded: #{result}")
 {:ok, result}

 {:error, error} ->
 Logger.error("Automation failed: #{inspect(error)}")
 {:error, error}
 end
end
Troubleshooting
"Operation not permitted" Error
Cause: Missing permissions
Solution: Check and grant required permissions:
Permissions.check_all()
Permissions.open_accessibility_preferences()
"Application isn't running" Error
Cause: App isn't launched
Solution: Launch app first:
SystemEvents.launch_application("Safari")
Process.sleep(1000)
Timeout Errors
Cause: Script takes longer than timeout allows
Solution: Increase timeout:
ExMacOSControl.run_applescript(script, timeout: 60_000) # 60 seconds
"Can't get window 1" Error
Cause: App has no windows open
Solution: Check window existence first:
{:ok, window_props} = SystemEvents.get_window_properties("Safari")

if is_nil(window_props) do
 # No windows, handle accordingly
 Safari.open_url("https://example.com") # Opens new window
end
Next Steps
Now that you're comfortable with the basics, explore:
	Common Patterns - Real-world automation workflows
	DSL vs Raw AppleScript - When to use the Script DSL
	Performance Guide - Optimizing your automation
	Advanced Usage - Telemetry, custom adapters, and more

Quick Reference
Most Common Functions
AppleScript
ExMacOSControl.run_applescript(script, timeout: 30_000)

Process Management
SystemEvents.process_exists?("Safari")
SystemEvents.launch_application("Safari")
SystemEvents.quit_application("Safari")

Safari
Safari.open_url("https://example.com")
Safari.get_current_url()
Safari.execute_javascript("document.title")

Finder
Finder.get_selection()
Finder.open_location("/path/to/folder")

Mail
Mail.send_email(to: "user@example.com", subject: "Test", body: "Hello")
Mail.get_unread_count()

Permissions
Permissions.check_automation("Safari")
Permissions.show_accessibility_help()
Getting Help
	Documentation: https://hexdocs.pm/ex_macos_control
	GitHub Issues: Report bugs or request features
	GitHub Discussions: Ask questions

Happy automating! 🚀

 Common Automation Patterns

This guide shows real-world automation patterns using ExMacOSControl. Each pattern includes complete, copy-paste-ready code with error handling and best practices.
Table of Contents
	Process Management Pattern
	Browser Automation Pattern
	Email Notification Pattern
	Multi-App Workflow Pattern
	Error Handling Pattern
	Background Job Pattern
	Testing Pattern

Process Management Pattern
Use Case: Ensure an application is running before automating it
Basic Pattern
defmodule ProcessManager do
 alias ExMacOSControl.SystemEvents

 @doc "Ensures app is running, launches if needed"
 def ensure_running(app_name) do
 case SystemEvents.process_exists?(app_name) do
 {:ok, true} ->
 {:ok, :already_running}

 {:ok, false} ->
 SystemEvents.launch_application(app_name)
 Process.sleep(1000)
 {:ok, :launched}

 error ->
 error
 end
 end

 @doc "Safe quit - only quits if app is running"
 def safe_quit(app_name) do
 case SystemEvents.process_exists?(app_name) do
 {:ok, true} ->
 SystemEvents.quit_application(app_name)

 {:ok, false} ->
 {:ok, :not_running}

 error ->
 error
 end
 end
end

Usage
ProcessManager.ensure_running("Safari")
Do work...
ProcessManager.safe_quit("Safari")
Advanced: Restart Pattern
defmodule ProcessManager do
 alias ExMacOSControl.SystemEvents

 def restart(app_name, wait_ms \\ 2000) do
 with :ok <- safe_quit(app_name),
 :ok <- Process.sleep(wait_ms),
 :ok <- SystemEvents.launch_application(app_name),
 :ok <- Process.sleep(wait_ms) do
 {:ok, :restarted}
 end
 end

 def safe_quit(app_name) do
 case SystemEvents.process_exists?(app_name) do
 {:ok, true} -> SystemEvents.quit_application(app_name)
 {:ok, false} -> :ok
 error -> error
 end
 end
end

Usage: Restart Safari to clear state
ProcessManager.restart("Safari", 2000)

Browser Automation Pattern
Use Case: Scrape data from websites, automate web testing
Pattern: Navigate → Wait → Extract
defmodule BrowserAutomation do
 alias ExMacOSControl.{Safari, Retry}
 require Logger

 def scrape_price(url, selector, opts \\ []) do
 wait_time = Keyword.get(opts, :wait, 2000)
 max_attempts = Keyword.get(opts, :retries, 3)

 Retry.with_retry(fn ->
 with :ok <- Safari.open_url(url),
 :ok <- Process.sleep(wait_time),
 {:ok, price} <- extract_text(selector) do
 {:ok, String.trim(price)}
 end
 end, max_attempts: max_attempts, backoff: :exponential)
 end

 defp extract_text(selector) do
 Safari.execute_javascript("""
 (function() {
 var element = document.querySelector('#{escape_js(selector)}');
 return element ? element.textContent : null;
 })()
 """)
 end

 defp escape_js(string) do
 String.replace(string, "'", "\\'")
 end
end

Usage
{:ok, price} = BrowserAutomation.scrape_price(
 "https://example.com/product",
 ".price",
 wait: 3000,
 retries: 5
)
IO.puts("Current price: #{price}")
Pattern: Multi-Tab Management
defmodule MultiTabScraper do
 alias ExMacOSControl.Safari

 def scrape_multiple_urls(urls) do
 # Open all URLs in tabs
 Enum.each(urls, fn url ->
 Safari.open_url(url)
 Process.sleep(500) # Avoid overwhelming Safari
 end)

 # Wait for all pages to load
 Process.sleep(3000)

 # Get all tab URLs to verify
 {:ok, open_tabs} = Safari.list_tabs()
 Logger.info("Opened #{length(open_tabs)} tabs")

 # Extract data from each tab
 results =
 urls
 |> Enum.with_index(1)
 |> Enum.map(fn {url, index} ->
 # Focus tab by closing tabs until we reach it
 # (Note: Better approach is to use AppleScript to switch tabs)
 extract_from_tab(index)
 end)

 {:ok, results}
 end

 defp extract_from_tab(index) do
 # Close tabs before this one to focus it
 for i <- 1..(index - 1) do
 Safari.close_tab(1)
 Process.sleep(200)
 end

 Safari.execute_javascript("document.title")
 end
end
Pattern: Login and Navigate
defmodule LoginAutomation do
 alias ExMacOSControl.Safari

 def login_and_navigate(login_url, username, password, target_url) do
 with :ok <- Safari.open_url(login_url),
 :ok <- Process.sleep(2000),
 :ok <- fill_login_form(username, password),
 :ok <- submit_form(),
 :ok <- Process.sleep(3000), # Wait for login redirect
 :ok <- Safari.open_url(target_url),
 :ok <- Process.sleep(2000) do
 {:ok, :logged_in}
 end
 end

 defp fill_login_form(username, password) do
 Safari.execute_javascript("""
 document.querySelector('#username').value = '#{escape_js(username)}';
 document.querySelector('#password').value = '#{escape_js(password)}';
 """)
 end

 defp submit_form do
 Safari.execute_javascript("""
 document.querySelector('form').submit();
 """)
 end

 defp escape_js(string) do
 string
 |> String.replace("\\", "\\\\")
 |> String.replace("'", "\\'")
 end
end

Email Notification Pattern
Use Case: Send email notifications based on conditions
Basic Notification
defmodule EmailNotifier do
 alias ExMacOSControl.Mail

 def send_alert(condition_met?, message) when condition_met? do
 Mail.send_email(
 to: "admin@example.com",
 subject: "Alert: Condition Met",
 body: message
)
 end

 def send_alert(_condition, _message), do: {:ok, :no_alert_needed}
end

Usage
price = get_stock_price("AAPL")
EmailNotifier.send_alert(price < 150, "AAPL dropped below $150! Current: $#{price}")
Daily Digest Pattern
defmodule DailyDigest do
 alias ExMacOSControl.Mail

 def send_daily_summary do
 stats = collect_daily_stats()

 body = """
 Daily Summary for #{Date.utc_today()}

 Tasks Completed: #{stats.tasks_completed}
 New Signups: #{stats.signups}
 Revenue: $#{stats.revenue}

 Top Issues:
 #{format_issues(stats.issues)}

 —
 Automated by ExMacOSControl
 """

 Mail.send_email(
 to: "team@example.com",
 subject: "Daily Summary - #{Date.utc_today()}",
 body: body,
 cc: ["manager@example.com"]
)
 end

 defp collect_daily_stats do
 # Your data collection logic
 %{
 tasks_completed: 42,
 signups: 15,
 revenue: 1250.00,
 issues: ["Database slow", "API timeout in prod"]
 }
 end

 defp format_issues(issues) do
 issues
 |> Enum.with_index(1)
 |> Enum.map(fn {issue, i} -> "#{i}. #{issue}" end)
 |> Enum.join("\n")
 end
end

Schedule with Quantum or similar
config.exs:
config :my_app, MyApp.Scheduler,
jobs: [
{"0 9 * * *", {DailyDigest, :send_daily_summary, []}} # 9 AM daily
]
Conditional Notification with Retry
defmodule SmartNotifier do
 alias ExMacOSControl.{Mail, Retry}
 require Logger

 def notify_if_needed(check_function, opts \\ []) do
 recipient = Keyword.fetch!(opts, :to)
 subject = Keyword.get(opts, :subject, "Notification")

 case check_function.() do
 {:alert, message} ->
 send_with_retry(recipient, subject, message)

 :ok ->
 Logger.info("No notification needed")
 {:ok, :no_alert}
 end
 end

 defp send_with_retry(recipient, subject, body) do
 Retry.with_retry(fn ->
 Mail.send_email(
 to: recipient,
 subject: subject,
 body: body
)
 end, max_attempts: 3, backoff: :linear)
 end
end

Usage
SmartNotifier.notify_if_needed(
 fn ->
 disk_usage = get_disk_usage()
 if disk_usage > 0.9 do
 {:alert, "Disk usage at #{disk_usage * 100}%!"}
 else
 :ok
 end
 end,
 to: "ops@example.com",
 subject: "Disk Usage Alert"
)

Multi-App Workflow Pattern
Use Case: Combine multiple apps to create workflows
Pattern: Finder → Process → Mail
defmodule FileProcessor do
 alias ExMacOSControl.{Finder, Mail}
 require Logger

 @doc "Process selected files in Finder and email report"
 def process_selected_and_notify do
 with {:ok, files} <- Finder.get_selection(),
 :ok <- validate_selection(files),
 {:ok, results} <- process_files(files),
 :ok <- send_report(results) do
 Logger.info("Processed #{length(files)} files and sent report")
 {:ok, results}
 end
 end

 defp validate_selection([]), do: {:error, "No files selected"}
 defp validate_selection(files), do: :ok

 defp process_files(files) do
 results =
 files
 |> Enum.map(&process_file/1)
 |> Enum.filter(&match?({:ok, _}, &1))

 {:ok, results}
 end

 defp process_file(path) do
 # Your processing logic
 case File.read(path) do
 {:ok, content} ->
 size = byte_size(content)
 {:ok, %{path: path, size: size}}

 error ->
 Logger.warn("Failed to process #{path}: #{inspect(error)}")
 error
 end
 end

 defp send_report(results) do
 body = """
 File Processing Report

 Processed #{length(results)} files:

 #{format_results(results)}

 —
 Automated by ExMacOSControl
 """

 Mail.send_email(
 to: "me@example.com",
 subject: "File Processing Complete",
 body: body
)
 end

 defp format_results(results) do
 results
 |> Enum.map(fn {:ok, %{path: path, size: size}} ->
 "- #{Path.basename(path)} (#{format_bytes(size)})"
 end)
 |> Enum.join("\n")
 end

 defp format_bytes(bytes) when bytes < 1024, do: "#{bytes} B"
 defp format_bytes(bytes) when bytes < 1024 * 1024, do: "#{div(bytes, 1024)} KB"
 defp format_bytes(bytes), do: "#{div(bytes, 1024 * 1024)} MB"
end
Pattern: Safari → Extract → Messages
defmodule WebToSMS do
 alias ExMacOSControl.{Safari, Messages, Retry}

 def check_and_notify(url, selector, phone_number, threshold) do
 with {:ok, value} <- scrape_value(url, selector),
 {:ok, number} <- parse_number(value),
 true <- number > threshold do
 Messages.send_message(
 phone_number,
 "Alert: Value is #{number} (threshold: #{threshold})"
)
 else
 false ->
 {:ok, :below_threshold}

 error ->
 error
 end
 end

 defp scrape_value(url, selector) do
 Retry.with_retry(fn ->
 with :ok <- Safari.open_url(url),
 :ok <- Process.sleep(2000),
 {:ok, text} <- Safari.execute_javascript("""
 document.querySelector('#{selector}').textContent
 """) do
 {:ok, String.trim(text)}
 end
 end, max_attempts: 3)
 end

 defp parse_number(string) do
 case Float.parse(String.replace(string, ~r/[^0-9.]/, "")) do
 {number, _} -> {:ok, number}
 :error -> {:error, :invalid_number}
 end
 end
end

Usage: Monitor stock price and SMS if it hits target
WebToSMS.check_and_notify(
 "https://example.com/stock/AAPL",
 ".price",
 "+1234567890",
 150.00
)

Error Handling Pattern
Use Case: Robust automation with graceful degradation
Comprehensive Error Handling
defmodule RobustAutomation do
 alias ExMacOSControl.{Safari, Permissions, Retry}
 require Logger

 def run(url) do
 with :ok <- check_permissions(),
 :ok <- ensure_safari_running(),
 {:ok, data} <- scrape_with_retry(url) do
 process_data(data)
 else
 {:error, :permission_denied} ->
 handle_permission_error()

 {:error, :timeout} ->
 handle_timeout_error()

 {:error, %{type: :not_found}} ->
 handle_not_found_error()

 error ->
 handle_unknown_error(error)
 end
 end

 defp check_permissions do
 case Permissions.check_automation("Safari") do
 {:ok, :granted} ->
 :ok

 {:ok, :not_granted} ->
 Logger.error("Safari automation permission required")
 Permissions.show_automation_help("Safari")
 {:error, :permission_denied}

 error ->
 error
 end
 end

 defp ensure_safari_running do
 case ExMacOSControl.SystemEvents.process_exists?("Safari") do
 {:ok, true} ->
 :ok

 {:ok, false} ->
 Logger.info("Launching Safari...")
 ExMacOSControl.SystemEvents.launch_application("Safari")
 Process.sleep(2000)
 :ok

 error ->
 error
 end
 end

 defp scrape_with_retry(url) do
 Retry.with_retry(fn ->
 Safari.open_url(url)
 Process.sleep(2000)
 Safari.execute_javascript("document.title")
 end, max_attempts: 3, backoff: :exponential)
 end

 defp handle_permission_error do
 Logger.error("Permission denied - cannot continue")
 {:error, :permission_denied}
 end

 defp handle_timeout_error do
 Logger.warn("Operation timed out after retries")
 {:error, :timeout}
 end

 defp handle_not_found_error do
 Logger.error("Resource not found")
 {:error, :not_found}
 end

 defp handle_unknown_error(error) do
 Logger.error("Unexpected error: #{inspect(error)}")
 {:error, :unknown}
 end

 defp process_data(data) do
 Logger.info("Successfully scraped: #{data}")
 {:ok, data}
 end
end

Background Job Pattern
Use Case: Scheduled automation tasks
GenServer-Based Automation
defmodule AutomationWorker do
 use GenServer
 alias ExMacOSControl.{Safari, Mail}
 require Logger

 @check_interval :timer.minutes(15)

 # Client API

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def check_now do
 GenServer.call(__MODULE__, :check_now)
 end

 def get_status do
 GenServer.call(__MODULE__, :get_status)
 end

 # Server Callbacks

 @impl true
 def init(opts) do
 url = Keyword.fetch!(opts, :url)
 selector = Keyword.fetch!(opts, :selector)
 threshold = Keyword.fetch!(opts, :threshold)
 email = Keyword.fetch!(opts, :email)

 schedule_check()

 {:ok,
 %{
 url: url,
 selector: selector,
 threshold: threshold,
 email: email,
 last_value: nil,
 last_check: nil,
 checks_performed: 0
 }}
 end

 @impl true
 def handle_call(:check_now, _from, state) do
 {result, new_state} = perform_check(state)
 {:reply, result, new_state}
 end

 @impl true
 def handle_call(:get_status, _from, state) do
 {:reply, state, state}
 end

 @impl true
 def handle_info(:check, state) do
 {_result, new_state} = perform_check(state)
 schedule_check()
 {:noreply, new_state}
 end

 # Private Functions

 defp perform_check(state) do
 Logger.info("Performing check...")

 result =
 with :ok <- Safari.open_url(state.url),
 :ok <- Process.sleep(2000),
 {:ok, text} <- Safari.execute_javascript("""
 document.querySelector('#{state.selector}').textContent
 """),
 {:ok, value} <- parse_value(text) do
 check_threshold(value, state.threshold, state.email)
 {:ok, value}
 end

 new_state =
 state
 |> Map.put(:last_check, DateTime.utc_now())
 |> Map.put(:checks_performed, state.checks_performed + 1)
 |> maybe_update_value(result)

 {result, new_state}
 end

 defp maybe_update_value(state, {:ok, value}) do
 Map.put(state, :last_value, value)
 end

 defp maybe_update_value(state, _error), do: state

 defp check_threshold(value, threshold, email) when value > threshold do
 Logger.warn("Threshold exceeded: #{value} > #{threshold}")

 Mail.send_email(
 to: email,
 subject: "Threshold Alert",
 body: "Value #{value} exceeded threshold #{threshold}"
)
 end

 defp check_threshold(_value, _threshold, _email), do: :ok

 defp parse_value(text) do
 case Float.parse(String.trim(text)) do
 {value, _} -> {:ok, value}
 :error -> {:error, :parse_error}
 end
 end

 defp schedule_check do
 Process.send_after(self(), :check, @check_interval)
 end
end

In your application.ex
children = [
 {AutomationWorker,
 url: "https://example.com/metrics",
 selector: ".value",
 threshold: 100.0,
 email: "alerts@example.com"}
]

Supervisor.start_link(children, strategy: :one_for_one)

Testing Pattern
Use Case: Test automation code without actually running macOS automation
Using Mox for Testing
test/support/mocks.ex
Mox.defmock(MockAdapter, for: ExMacOSControl.Adapter)

config/test.exs
config :ex_macos_control, :adapter, MockAdapter

test/my_automation_test.exs
defmodule MyAutomationTest do
 use ExUnit.Case, async: true
 import Mox

 alias MyApp.Automation

 setup :verify_on_exit!

 test "scrapes price successfully" do
 MockAdapter
 |> expect(:run_applescript, fn script, _opts ->
 # Verify the script is correct
 assert script =~ "Safari"
 {:ok, ""}
 end)
 |> expect(:run_javascript, fn script, _opts ->
 # Return mock data
 {:ok, "$99.99"}
 end)

 assert {:ok, "$99.99"} = Automation.scrape_price("https://example.com")
 end

 test "handles timeout errors" do
 MockAdapter
 |> expect(:run_applescript, fn _script, _opts ->
 {:error, %ExMacOSControl.Error{type: :timeout, message: "Timed out"}}
 end)

 assert {:error, %{type: :timeout}} = Automation.scrape_price("https://example.com")
 end
end
Integration Test Pattern
defmodule SafariIntegrationTest do
 use ExUnit.Case
 alias ExMacOSControl.Safari

 @moduletag :integration

 setup do
 # Ensure Safari is running
 ExMacOSControl.SystemEvents.launch_application("Safari")
 Process.sleep(1000)

 on_exit(fn ->
 # Cleanup: close test tabs
 cleanup_tabs()
 end)

 :ok
 end

 @tag :skip # Skip by default, run with --include skip
 test "opens URL and extracts title" do
 assert :ok = Safari.open_url("https://example.com")
 Process.sleep(2000)

 assert {:ok, title} = Safari.execute_javascript("document.title")
 assert title =~ "Example"
 end

 defp cleanup_tabs do
 # Close all but first tab
 {:ok, tabs} = Safari.list_tabs()

 for _ <- 2..length(tabs) do
 Safari.close_tab(2)
 Process.sleep(100)
 end
 end
end

Summary
These patterns cover the most common automation scenarios:
	Process Management - Ensure apps are running
	Browser Automation - Web scraping and testing
	Email Notifications - Alert on conditions
	Multi-App Workflows - Chain multiple apps together
	Error Handling - Robust automation
	Background Jobs - Scheduled tasks
	Testing - Test without real automation

Best Practices Recap
	✅ Always check permissions before automation
	✅ Use retry logic for unreliable operations
	✅ Add appropriate sleep delays for UI operations
	✅ Handle all error cases explicitly
	✅ Log important operations
	✅ Test with Mox before running real automation
	✅ Use GenServers for long-running automation
	✅ Clean up resources (close tabs, quit apps)

Next Steps
	DSL vs Raw AppleScript - Choose the right approach
	Advanced Usage - Telemetry and optimization
	Performance Guide - Tune for production

 DSL vs Raw AppleScript: Choosing the Right Approach

ExMacOSControl offers two ways to write AppleScript automation:
	The Script DSL - Elixir functions that generate AppleScript
	Raw AppleScript - Write AppleScript directly as strings

This guide helps you choose the right approach for your use case.
Quick Decision Tree
Need complex control flow (if/while/repeat)?
├─ Yes → Use Raw AppleScript
└─ No → Keep reading...

Need variables or handlers?
├─ Yes → Use Raw AppleScript
└─ No → Keep reading...

Building simple tell blocks with dynamic values?
├─ Yes → Use Script DSL
└─ No → Either works, pick your preference

Porting existing AppleScript?
└─ Use Raw AppleScript (don't rewrite what works)
The Script DSL
What It Is
The Script DSL provides Elixir functions that generate AppleScript code:
alias ExMacOSControl.Script

Elixir code
script = Script.tell("Finder", [
 "activate",
 Script.cmd("open", "/Applications")
])

Generates this AppleScript:
tell application "Finder"
activate
open "/Applications"
end tell
When to Use the DSL
✅ Simple Tell Blocks
DSL: Clear and concise
Script.tell("Safari", ["activate"])

vs Raw: More verbose
"""
tell application "Safari"
 activate
end tell
"""
✅ Dynamic App Names or Values
DSL: Natural Elixir variable interpolation
app_name = get_target_app()
path = get_target_path()

script = Script.tell(app_name, [
 Script.cmd("open", path)
])

vs Raw: Manual string interpolation
"""
tell application "#{app_name}"
 open "#{escape(path)}"
end tell
"""
✅ Building Scripts Programmatically
DSL: Use Enum functions naturally
commands =
 files
 |> Enum.map(&"open #{&1}")
 |> Script.tell("Finder", _)

vs Raw: Awkward string building
commands_str =
 files
 |> Enum.map(&" open \"#{&1}\"")
 |> Enum.join("\n")

"""
tell application "Finder"
#{commands_str}
end tell
"""
✅ Nested Tell Blocks
DSL: Structured and readable
Script.tell("System Events", [
 Script.tell_obj("process", "Safari", [
 "set frontmost to true"
])
])

vs Raw: More nesting to track
"""
tell application "System Events"
 tell process "Safari"
 set frontmost to true
 end tell
end tell
"""
DSL Limitations
The DSL is intentionally minimal. It does NOT support:
	❌ Control flow (if, repeat, while)
	❌ Variables (set x to ...)
	❌ Handlers (on doSomething())
	❌ Complex AppleScript features
	❌ Full language coverage

This is by design. The DSL covers common patterns only.
Raw AppleScript
When to Use Raw AppleScript
✅ Control Flow
tell application "Finder"
 set fileList to {}
 repeat with f in (get files of desktop)
 if name of f ends with ".pdf" then
 set end of fileList to name of f
 end if
 end repeat
 return fileList
end tell
Why not DSL? No support for repeat, if, or set.
✅ Variables and State
tell application "Mail"
 set unreadCount to count of (messages of inbox whose read status is false)
 if unreadCount > 10 then
 return "You have " & unreadCount & " unread messages!"
 else
 return "All caught up"
 end if
end tell
Why not DSL? Needs set and if.
✅ Handlers (Functions)
on processFile(filePath)
 tell application "Finder"
 return name of file filePath
 end tell
end processFile

return processFile("/path/to/file")
Why not DSL? No handler support.
✅ Existing AppleScript
If you already have working AppleScript, just use it:
Don't rewrite this into DSL - it works!
script = """
tell application "iTunes"
 set currentTrack to current track
 return name of currentTrack & " by " & artist of currentTrack
end tell
"""

ExMacOSControl.run_applescript(script)
✅ Complex Application-Specific Logic
Some apps have rich AppleScript dictionaries with complex object models:
tell application "Photos"
 set albumList to albums
 repeat with anAlbum in albumList
 set photoCount to count of media items of anAlbum
 log name of anAlbum & ": " & photoCount & " photos"
 end repeat
end tell
Why not DSL? Too app-specific and complex.
Side-by-Side Comparisons
Example 1: Simple Activation
DSL Approach:
alias ExMacOSControl.Script

script = Script.tell("Safari", ["activate"])
ExMacOSControl.run_applescript(script)
Raw Approach:
ExMacOSControl.run_applescript("""
tell application "Safari"
 activate
end tell
""")
Winner: DSL - cleaner, less quotes

Example 2: Dynamic Values
DSL Approach:
app = "Finder"
folder = "/Applications"

script = Script.tell(app, [
 Script.cmd("open", folder)
])

ExMacOSControl.run_applescript(script)
Raw Approach:
app = "Finder"
folder = "/Applications"

ExMacOSControl.run_applescript("""
tell application "#{app}"
 open "#{escape_applescript(folder)}"
end tell
""")

Plus you need this helper:
defp escape_applescript(str) do
 String.replace(str, "\"", "\\\"")
end
Winner: DSL - automatic escaping, cleaner interpolation

Example 3: Conditional Logic
DSL Approach:
Can't do it! DSL doesn't support if/else
Raw Approach:
ExMacOSControl.run_applescript("""
tell application "Finder"
 set fileCount to count of files of desktop
 if fileCount > 10 then
 return "Too many files"
 else
 return "Desktop is tidy"
 end if
end tell
""")
Winner: Raw - DSL can't do this

Example 4: Building Multiple Commands
DSL Approach:
files = ["/file1.txt", "/file2.txt", "/file3.txt"]

commands =
 files
 |> Enum.map(&Script.cmd("open", &1))

script = Script.tell("TextEdit", commands)
ExMacOSControl.run_applescript(script)
Raw Approach:
files = ["/file1.txt", "/file2.txt", "/file3.txt"]

commands =
 files
 |> Enum.map(&" open \"#{escape(&1)}\"")
 |> Enum.join("\n")

ExMacOSControl.run_applescript("""
tell application "TextEdit"
#{commands}
end tell
""")
Winner: DSL - no manual escaping or indentation

Example 5: Nested Tell Blocks
DSL Approach:
script = Script.tell("System Events", [
 Script.tell_obj("process", "Safari", [
 "set frontmost to true",
 Script.cmd("click menu item", "New Tab", of: "menu 1 of menu bar item 1")
])
])
Raw Approach:
script = """
tell application "System Events"
 tell process "Safari"
 set frontmost to true
 click menu item "New Tab" of menu 1 of menu bar item 1
 end tell
end tell
"""
Winner: Tie - both are readable

Example 6: Complex Iteration
DSL Approach:
Can't do it! DSL doesn't support repeat loops
Raw Approach:
ExMacOSControl.run_applescript("""
tell application "Mail"
 set unreadMessages to {}
 repeat with msg in (messages of inbox)
 if read status of msg is false then
 set end of unreadMessages to subject of msg
 end if
 end repeat
 return unreadMessages
end tell
""")
Winner: Raw - DSL can't do this
Mixing Both Approaches
You can combine DSL and Raw for the best of both worlds:
Pattern 1: DSL for Structure, Raw for Logic
Use DSL for the tell block structure
inner_logic = """
set fileCount to count of files
if fileCount > 100 then
 return "Too many files"
else
 return "OK"
end if
"""

script = Script.tell("Finder", [inner_logic])
ExMacOSControl.run_applescript(script)
Pattern 2: Conditional DSL Building
Use Elixir logic to decide what AppleScript to build
commands =
 if should_activate? do
 ["activate"]
 else
 []
 end

commands = commands ++ [
 Script.cmd("open", path)
]

script = Script.tell(app_name, commands)
Pattern 3: Multiple Scripts
Use DSL for simple operations
setup_script = Script.tell("Finder", ["activate"])
ExMacOSControl.run_applescript(setup_script)

Use Raw for complex operations
complex_script = """
tell application "Finder"
 set results to {}
 repeat with f in files of desktop
 if size of f > 1000000 then
 set end of results to name of f
 end if
 end repeat
 return results
end tell
"""
{:ok, large_files} = ExMacOSControl.run_applescript(complex_script)
Performance Considerations
DSL Runtime Overhead
The DSL generates AppleScript strings at runtime:
This builds a string
script = Script.tell("Finder", ["activate"]) # ~microseconds

Then executes it
ExMacOSControl.run_applescript(script) # ~milliseconds to seconds
The script building overhead is negligible compared to osascript execution time.
When Raw is Faster
If you're running the same script repeatedly, pre-build it:
❌ Rebuilds DSL every time
def activate_finder do
 Script.tell("Finder", ["activate"])
 |> ExMacOSControl.run_applescript()
end

✅ Built once at compile time
@activate_script """
tell application "Finder"
 activate
end tell
"""

def activate_finder do
 ExMacOSControl.run_applescript(@activate_script)
end
Difference: Nanoseconds. Don't optimize prematurely.
Best Practices
1. Start with DSL
Try the DSL first. If it doesn't fit, drop to raw:
Try DSL
script = Script.tell("Finder", [
 # Oops, I need an if statement
 # DSL can't do this
])

Switch to raw
script = """
tell application "Finder"
 if (count of windows) > 0 then
 close windows
 end if
end tell
"""
2. Use DSL for Reusable Helpers
defmodule AppleScriptHelpers do
 alias ExMacOSControl.Script

 def activate(app_name) do
 Script.tell(app_name, ["activate"])
 end

 def quit(app_name) do
 Script.tell(app_name, ["quit"])
 end

 def open_file(app_name, path) do
 Script.tell(app_name, [
 Script.cmd("open", path)
])
 end
end

Usage
AppleScriptHelpers.activate("Safari")
|> ExMacOSControl.run_applescript()
3. Validate Raw AppleScript in Script Editor
Before using raw AppleScript in production:
	Open Script Editor.app
	Paste your AppleScript
	Click Compile (⌘K)
	Click Run (⌘R)
	Fix any errors
	Copy working script into Elixir

4. Document Why You Chose Raw
Using raw AppleScript because we need repeat loops
DSL doesn't support control flow
@find_pdf_script """
tell application "Finder"
 set pdfFiles to {}
 repeat with f in (get files of desktop)
 if name of f ends with ".pdf" then
 set end of pdfFiles to name of f
 end if
 end repeat
 return pdfFiles
end tell
"""
5. Keep DSL Scripts Simple
If your DSL code gets complex, it's a sign to use raw:
🤔 This is getting complex...
commands =
 data
 |> Enum.map(&transform/1)
 |> Enum.filter(&valid?/1)
 |> Enum.map(&Script.cmd("process", &1))
 |> Enum.chunk_every(10)
 |> Enum.map(fn chunk ->
 Script.tell("App", chunk)
 end)

✅ Better: Use raw AppleScript with built-in iteration
script = """
tell application "App"
 repeat with item in #{Enum.join(data, ",")}
 if item is valid then
 process item
 end if
 end repeat
end tell
"""
Summary
Use the DSL When:
	✅ Building simple tell blocks
	✅ Dynamic app names or values
	✅ Generating scripts programmatically
	✅ Want automatic quote escaping
	✅ Prefer Elixir syntax

Use Raw AppleScript When:
	✅ Need control flow (if/while/repeat)
	✅ Need variables
	✅ Need handlers/functions
	✅ Porting existing AppleScript
	✅ Using complex app-specific features
	✅ Following AppleScript tutorials

Both Are Valid!
There's no wrong choice. Pick what feels natural for your use case. The DSL is a convenience, not a requirement.
Examples by Use Case
Use Case: Quick Prototyping
Recommendation: DSL
Fast iteration in IEx
iex> Script.tell("Finder", ["activate"]) |> ExMacOSControl.run_applescript()
Use Case: Production Web Scraping
Recommendation: Raw (more complex logic needed)
tell application "Safari"
 set results to {}
 repeat with w in windows
 repeat with t in tabs of w
 set end of results to URL of t
 end repeat
 end repeat
 return results
end tell
Use Case: Simple App Launcher
Recommendation: DSL
def launch(app_name) do
 Script.tell(app_name, ["activate"])
 |> ExMacOSControl.run_applescript()
end
Use Case: Complex Mail Filtering
Recommendation: Raw
tell application "Mail"
 set urgentMessages to {}
 repeat with msg in messages of inbox
 if subject of msg contains "[URGENT]" and read status of msg is false then
 set end of urgentMessages to {subject:subject of msg, sender:sender of msg}
 end if
 end repeat
 return urgentMessages
end tell
Further Reading
	Common Patterns - See both approaches in action
	Advanced Usage - Custom DSL extensions
	Script Module Documentation - Full DSL API reference

 Advanced Usage

This guide covers advanced topics for power users: performance optimization, telemetry integration, retry strategies, custom adapters, and the Objective-C bridge.
Table of Contents
	Performance Optimization
	Telemetry Integration
	Retry Strategies
	Custom Adapters
	Objective-C Bridge (JXA)

Performance Optimization
Understanding Execution Time
macOS automation has three performance components:
1. Script Building (~microseconds) - negligible
script = Script.tell("Finder", ["activate"])

2. osascript Launch (~50-200ms) - fixed overhead
3. Actual Script Execution (varies) - your bottleneck
ExMacOSControl.run_applescript(script) # Total: component 2 + 3
Key Insight: The osascript launch overhead is fixed. Optimize script execution, not script building.
Timeout Tuning
Default timeouts vary by operation. Tune them based on your needs:
Default timeout (usually 30 seconds)
{:ok, result} = ExMacOSControl.run_applescript(script)

Quick operations - fail fast
{:ok, result} = ExMacOSControl.run_applescript(script, timeout: 5_000)

Long operations - be patient
{:ok, result} = ExMacOSControl.run_applescript(script, timeout: 120_000)

Infinite timeout (use with caution!)
{:ok, result} = ExMacOSControl.run_applescript(script, timeout: :infinity)
Recommendations:
	UI Automation: 10-30 seconds (depends on app responsiveness)
	File Operations: 5-10 seconds
	Network Operations: 30-60 seconds
	Batch Processing: 60-300 seconds

Batch Operations
Group multiple operations into a single AppleScript:
❌ Slow: Multiple osascript calls
for file <- files do
 script = Script.tell("Finder", [Script.cmd("open", file)])
 ExMacOSControl.run_applescript(script)
 # Each call: ~50-200ms overhead
end

✅ Fast: Single osascript call
commands = Enum.map(files, &Script.cmd("open", &1))
script = Script.tell("Finder", commands)
ExMacOSControl.run_applescript(script)
One call: ~50-200ms overhead total
Performance Gain: ~10x faster for 10 files
Caching Compiled Scripts
Pre-compile static scripts at module load time:
defmodule FastAutomation do
 @activate_finder Script.tell("Finder", ["activate"])
 @activate_safari Script.tell("Safari", ["activate"])

 def activate_finder do
 ExMacOSControl.run_applescript(@activate_finder)
 end

 def activate_safari do
 ExMacOSControl.run_applescript(@activate_safari)
 end
end
Benefit: Eliminates script building time (though it's already negligible)
Concurrent Execution
Run independent operations in parallel:
❌ Sequential: 6 seconds total
ExMacOSControl.run_applescript(script1) # 3 seconds
ExMacOSControl.run_applescript(script2) # 3 seconds

✅ Parallel: 3 seconds total
task1 = Task.async(fn -> ExMacOSControl.run_applescript(script1) end)
task2 = Task.async(fn -> ExMacOSControl.run_applescript(script2) end)

{:ok, result1} = Task.await(task1, :infinity)
{:ok, result2} = Task.await(task2, :infinity)
Warning: Don't parallelize operations on the same app - they may conflict.
Reducing Wait Times
Use polling instead of fixed sleeps:
❌ Always waits 5 seconds
Safari.open_url(url)
Process.sleep(5000)
Safari.execute_javascript("document.title")

✅ Polls until ready (usually faster)
Safari.open_url(url)
wait_until_loaded()
Safari.execute_javascript("document.title")

defp wait_until_loaded(max_attempts \\ 50) do
 Enum.reduce_while(1..max_attempts, nil, fn attempt, _ ->
 case Safari.execute_javascript("document.readyState") do
 {:ok, "complete"} -> {:halt, :ok}
 _ ->
 Process.sleep(100)
 {:cont, nil}
 end
 end)
end

Telemetry Integration
ExMacOSControl emits :telemetry events for observability.
Available Events
AppleScript execution lifecycle
[:ex_macos_control, :applescript, :start] # When execution begins
[:ex_macos_control, :applescript, :stop] # When execution succeeds
[:ex_macos_control, :applescript, :exception] # When execution fails

Retry logic lifecycle
[:ex_macos_control, :retry, :start] # Retry begins
[:ex_macos_control, :retry, :attempt] # Each retry attempt
[:ex_macos_control, :retry, :stop] # Retry succeeds
[:ex_macos_control, :retry, :error] # All retries exhausted
Basic Telemetry Setup
In your application.ex
def start(_type, _args) do
 :telemetry.attach_many(
 "ex-macos-control-telemetry",
 [
 [:ex_macos_control, :applescript, :start],
 [:ex_macos_control, :applescript, :stop],
 [:ex_macos_control, :applescript, :exception]
],
 &MyApp.Telemetry.handle_event/4,
 nil
)

 # ... rest of your supervision tree
end
Logging Handler
defmodule MyApp.Telemetry do
 require Logger

 def handle_event([:ex_macos_control, :applescript, :start], _measurements, metadata, _config) do
 Logger.debug("Executing AppleScript: #{String.slice(metadata.script, 0, 100)}...")
 end

 def handle_event([:ex_macos_control, :applescript, :stop], measurements, metadata, _config) do
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)
 Logger.info("AppleScript completed in #{duration_ms}ms")
 end

 def handle_event([:ex_macos_control, :applescript, :exception], _measurements, metadata, _config) do
 Logger.error("AppleScript failed: #{inspect(metadata.error)}")
 end

 def handle_event(_event, _measurements, _metadata, _config) do
 :ok
 end
end
Performance Monitoring
Track slow operations:
defmodule MyApp.PerformanceMonitor do
 require Logger

 def handle_event([:ex_macos_control, :applescript, :stop], measurements, metadata, _config) do
 duration_ms = System.convert_time_unit(measurements.duration, :native, :millisecond)

 if duration_ms > 5_000 do
 Logger.warning("""
 Slow AppleScript detected!
 Duration: #{duration_ms}ms
 Script: #{String.slice(metadata.script, 0, 200)}
 Timeout: #{metadata.timeout}ms
 """)
 end
 end

 def handle_event(_, _, _, _), do: :ok
end
Metrics Collection
Integrate with your metrics system:
defmodule MyApp.Metrics do
 # Using Telemetry.Metrics (example)
 def metrics do
 [
 # Count AppleScript executions
 Telemetry.Metrics.counter("ex_macos_control.applescript.count",
 event_name: [:ex_macos_control, :applescript, :stop]
),

 # Track execution duration
 Telemetry.Metrics.distribution("ex_macos_control.applescript.duration",
 event_name: [:ex_macos_control, :applescript, :stop],
 measurement: :duration,
 unit: {:native, :millisecond}
),

 # Count failures
 Telemetry.Metrics.counter("ex_macos_control.applescript.errors",
 event_name: [:ex_macos_control, :applescript, :exception]
),

 # Track retry attempts
 Telemetry.Metrics.sum("ex_macos_control.retry.total_attempts",
 event_name: [:ex_macos_control, :retry, :attempt],
 measurement: :attempt
)
]
 end
end
Event Metadata Reference
AppleScript Events:
:start event metadata
%{
 command: "osascript",
 script: "tell application...", # Full script
 timeout: 30_000
}

:stop event measurements & metadata
measurements: %{
 duration: 1_234_567, # Native time units
 script_length: 156 # Character count
}
metadata: %{
 command: "osascript",
 script: "tell application...",
 timeout: 30_000,
 result_type: :ok,
 output_length: 42
}

:exception event metadata
%{
 command: "osascript",
 script: "tell application...",
 timeout: 30_000,
 error: %ExMacOSControl.Error{type: :timeout, ...}
}
Retry Events:
:attempt event metadata
%{
 attempt: 2, # Current attempt (1-indexed)
 max_attempts: 3,
 backoff: :exponential,
 sleep_time: 400 # ms slept before this attempt
}

Retry Strategies
Built-in Retry
ExMacOSControl includes automatic retry for timeout errors:
alias ExMacOSControl.Retry

Default: 3 attempts, exponential backoff
{:ok, result} = Retry.with_retry(fn ->
 ExMacOSControl.Safari.execute_javascript("document.title")
end)
Backoff Strategies
Exponential Backoff (default):
Retry delays: 200ms, 400ms, 800ms, 1600ms...
Formula: 2^attempt * 100ms
Retry.with_retry(fn ->
 operation()
end, backoff: :exponential, max_attempts: 5)
Linear Backoff:
Retry delays: 1000ms, 1000ms, 1000ms...
Retry.with_retry(fn ->
 operation()
end, backoff: :linear, max_attempts: 5)
When to Retry
✅ Retry timeout errors - may succeed on subsequent attempts
✅ UI automation - apps may be busy
✅ Network-dependent operations - transient failures
❌ Don't retry syntax errors - they won't fix themselves
❌ Don't retry permission errors - user intervention required
❌ Don't retry not found errors - resource still won't exist
Custom Retry Logic
Build your own retry wrapper:
defmodule CustomRetry do
 require Logger

 def with_custom_retry(fun, opts \\ []) do
 max_attempts = Keyword.get(opts, :max_attempts, 3)
 delay = Keyword.get(opts, :delay, 1000)
 retry_on = Keyword.get(opts, :retry_on, [:timeout])

 do_retry(fun, 1, max_attempts, delay, retry_on)
 end

 defp do_retry(fun, attempt, max_attempts, delay, retry_on) do
 case fun.() do
 {:ok, result} ->
 {:ok, result}

 {:error, %{type: type}} = error when attempt < max_attempts ->
 if type in retry_on do
 Logger.warn("Attempt #{attempt} failed with #{type}, retrying in #{delay}ms...")
 Process.sleep(delay)
 do_retry(fun, attempt + 1, max_attempts, delay, retry_on)
 else
 Logger.error("Non-retryable error: #{type}")
 error
 end

 error ->
 Logger.error("All #{max_attempts} attempts failed")
 error
 end
 end
end

Usage: Retry on :timeout and :execution_error
CustomRetry.with_custom_retry(fn ->
 Safari.open_url(url)
end, max_attempts: 5, delay: 2000, retry_on: [:timeout, :execution_error])

Custom Adapters
The adapter pattern allows you to mock, wrap, or replace the default osascript implementation.
Why Custom Adapters?
	Testing: Mock macOS automation in tests
	Logging: Add detailed logging around all operations
	Caching: Cache script results
	Rate Limiting: Prevent overwhelming macOS
	Alternative Backends: Use different execution methods

Creating a Custom Adapter
defmodule MyApp.LoggingAdapter do
 @behaviour ExMacOSControl.Adapter
 require Logger

 @impl true
 def run_applescript(script, opts \\ []) do
 Logger.info("Running AppleScript: #{String.slice(script, 0, 100)}...")
 start_time = System.monotonic_time()

 result = ExMacOSControl.OSAScriptAdapter.run_applescript(script, opts)

 duration = System.convert_time_unit(
 System.monotonic_time() - start_time,
 :native,
 :millisecond
)

 Logger.info("Completed in #{duration}ms: #{inspect(result)}")
 result
 end

 @impl true
 def run_javascript(script, opts \\ []) do
 Logger.info("Running JavaScript: #{String.slice(script, 0, 100)}...")
 ExMacOSControl.OSAScriptAdapter.run_javascript(script, opts)
 end
end
Using a Custom Adapter
Configure in config.exs:
config/config.exs
config :ex_macos_control, :adapter, MyApp.LoggingAdapter

Or for testing only
config/test.exs
config :ex_macos_control, :adapter, MyApp.MockAdapter
Rate-Limiting Adapter
Prevent overwhelming macOS with too many rapid operations:
defmodule MyApp.RateLimitedAdapter do
 @behaviour ExMacOSControl.Adapter
 use GenServer

 # Start the GenServer
 def start_link(_opts) do
 GenServer.start_link(__MODULE__, %{}, name: __MODULE__)
 end

 # Adapter implementation
 @impl true
 def run_applescript(script, opts \\ []) do
 GenServer.call(__MODULE__, {:run_applescript, script, opts}, :infinity)
 end

 @impl true
 def run_javascript(script, opts \\ []) do
 GenServer.call(__MODULE__, {:run_javascript, script, opts}, :infinity)
 end

 # GenServer callbacks
 @impl true
 def init(_) do
 {:ok, %{last_execution: 0, min_interval: 100}} # 100ms between calls
 end

 @impl true
 def handle_call({:run_applescript, script, opts}, _from, state) do
 state = enforce_rate_limit(state)
 result = ExMacOSControl.OSAScriptAdapter.run_applescript(script, opts)
 {:reply, result, %{state | last_execution: System.monotonic_time(:millisecond)}}
 end

 @impl true
 def handle_call({:run_javascript, script, opts}, _from, state) do
 state = enforce_rate_limit(state)
 result = ExMacOSControl.OSAScriptAdapter.run_javascript(script, opts)
 {:reply, result, %{state | last_execution: System.monotonic_time(:millisecond)}}
 end

 defp enforce_rate_limit(state) do
 now = System.monotonic_time(:millisecond)
 elapsed = now - state.last_execution

 if elapsed < state.min_interval do
 Process.sleep(state.min_interval - elapsed)
 end

 state
 end
end

Objective-C Bridge (JXA)
JavaScript for Automation (JXA) provides access to Objective-C APIs via the ObjC bridge.
Basic ObjC Bridge Usage
script = """
ObjC.import('Foundation')

// Create NSString
var str = $.NSString.alloc.initWithUTF8String('Hello from ObjC!')
str.description.js
"""

{:ok, result} = ExMacOSControl.run_javascript(script)
=> {:ok, "Hello from ObjC!"}
Common Patterns
Working with NSFileManager:
script = """
ObjC.import('Foundation')

var fileManager = $.NSFileManager.defaultManager
var homePath = fileManager.homeDirectoryForCurrentUser.path.js
homePath
"""

{:ok, home} = ExMacOSControl.run_javascript(script)
=> {:ok, "/Users/username"}
Working with NSWorkspace:
script = """
ObjC.import('AppKit')

var workspace = $.NSWorkspace.sharedWorkspace
var apps = workspace.runningApplications.js

apps.map(app => app.localizedName.js)
"""

{:ok, apps} = ExMacOSControl.run_javascript(script)
=> {:ok, ["Finder", "Safari", "Terminal", ...]}
Working with Notifications:
script = """
ObjC.import('Foundation')

var center = $.NSNotificationCenter.defaultCenter

center.postNotificationNameObject('MyCustomNotification', 'SomeData')
'Notification sent'
"""

ExMacOSControl.run_javascript(script)
ObjC vs AppleScript
Use ObjC When:
	Accessing low-level macOS APIs
	Need Foundation/AppKit classes
	Working with C APIs
	Need better performance for data processing

Use AppleScript When:
	Controlling applications
	UI automation
	Better app-specific support
	Following existing examples

Advanced: Calling Swift/ObjC from JXA
You can bridge to custom frameworks:
script = """
ObjC.import('Foundation')
ObjC.import('MyCustomFramework') // Your custom framework

var myObject = $.MyCustomClass.alloc.init
myObject.doSomethingWith('data')
"""
Type Conversion Reference
	JavaScript	Objective-C	Note
	"string"	NSString	Automatic
	123	NSNumber	Automatic
	true/false	NSNumber	Automatic
	[]	NSArray	Automatic
	{}	NSDictionary	Automatic
	.js suffix	Unwrap to JS	Manual

Example:
// ObjC NSString to JS string
var nsString = $.NSString.alloc.initWithUTF8String('hello')
var jsString = nsString.js // Convert to JavaScript string

// JS array to ObjC NSArray (automatic)
var jsArray = [1, 2, 3]
$.NSArray.arrayWithArray(jsArray)

Best Practices
Performance
	Batch operations into single scripts
	Use appropriate timeouts - not too short, not too long
	Run independent operations in parallel
	Poll instead of fixed waits when possible

Telemetry
	Monitor slow operations (> 5 seconds)
	Track failure rates by error type
	Alert on spikes in execution time
	Log retry attempts for debugging

Retry
	Only retry transient errors (timeouts)
	Use exponential backoff for most cases
	Limit max attempts (3-5 is usually enough)
	Log retry attempts for visibility

Adapters
	Keep adapters thin - delegate to default adapter
	Test custom adapters thoroughly
	Document adapter behavior clearly
	Consider rate limiting in production

ObjC Bridge
	Prefer AppleScript for app control
	Use ObjC for low-level APIs only
	Test extensively - ObjC errors can crash scripts
	Document type conversions in comments

Further Reading
	Performance Guide - Detailed performance tuning
	Common Patterns - Real-world examples
	Telemetry Documentation - Official telemetry docs
	JXA Release Notes - Apple's JXA reference

 Performance Guide

This guide provides best practices for optimizing performance and reliability when using ExMacOSControl for macOS automation.
Overview
ExMacOSControl executes AppleScript, JXA, and Shortcuts via the osascript command-line tool. Understanding the performance characteristics of these operations can help you build more reliable and efficient automation.
Common Bottlenecks
1. Script Execution Time
Issue: AppleScript and JXA execution can be slow, especially when interacting with applications or the UI.
Causes:
	Application responsiveness (apps may be busy)
	UI operations (finding windows, clicking buttons)
	System Events interactions
	Script complexity and loops

Solutions:
	Use appropriate timeouts for operations
	Minimize UI interactions where possible
	Prefer direct API calls over UI automation
	Break complex scripts into smaller operations

Example:
Instead of one large timeout for complex operations
{:ok, result} = ExMacOSControl.run_applescript(complex_script, timeout: 30_000)

Break it down into smaller operations with shorter timeouts
{:ok, result1} = ExMacOSControl.run_applescript(script1, timeout: 5_000)
{:ok, result2} = ExMacOSControl.run_applescript(script2, timeout: 5_000)
{:ok, result3} = ExMacOSControl.run_applescript(script3, timeout: 5_000)
2. Application Launch Time
Issue: Scripts that launch or activate applications may take several seconds.
Solution: Use longer timeouts when launching applications (5-10 seconds):
script = """
tell application "Safari"
 activate
 make new document
end tell
"""

{:ok, _} = ExMacOSControl.run_applescript(script, timeout: 10_000)
3. File System Operations
Issue: File operations (copying, moving, searching) can be slow for large files or directories.
Solution:
	Use native Elixir File module when possible
	Only use AppleScript for operations that require Finder integration
	Consider background tasks for large operations

Prefer Elixir's File module
File.cp!(source, destination)

Only use Finder when you need Finder-specific features
ExMacOSControl.Finder.move_to_trash(file_path)
4. Repeated osascript Calls
Issue: Each call to osascript has overhead (process spawn, script compilation).
Solution: Combine operations into a single script when possible:
Less efficient - multiple osascript calls
{:ok, name} = ExMacOSControl.Finder.get_frontmost_window()
{:ok, bounds} = ExMacOSControl.Finder.get_window_bounds(name)
{:ok, position} = ExMacOSControl.Finder.get_window_position(name)

More efficient - single script with multiple operations
script = """
tell application "Finder"
 set frontWindow to front window
 set windowInfo to {name of frontWindow, bounds of frontWindow, position of frontWindow}
 return windowInfo
end tell
"""
{:ok, result} = ExMacOSControl.run_applescript(script)
Timeout Configuration
Default Behavior
By default, ExMacOSControl operations have NO timeout. This means they will wait indefinitely for completion.
When to Use Timeouts
Always use timeouts for:
	Production applications
	Operations that interact with external applications
	UI automation
	Network-dependent scripts
	Any operation that could hang

Timeout not needed for:
	Simple calculations or string operations
	Scripts you've tested extensively
	Operations with guaranteed fast completion

Recommended Timeout Values
	Operation Type	Recommended Timeout
	Simple script (calculations, strings)	1,000ms (1s)
	Application queries (get window name)	3,000ms (3s)
	Application launch/activation	10,000ms (10s)
	UI automation (clicking, typing)	5,000ms (5s)
	File operations	5,000-15,000ms (5-15s)
	Complex multi-step operations	15,000-30,000ms (15-30s)

Example Usage
Quick operation
{:ok, result} = ExMacOSControl.run_applescript(
 ~s(return "hello"),
 timeout: 1_000
)

UI automation
{:ok, _} = ExMacOSControl.SystemEvents.click_button(
 "OK",
 "Safari",
 timeout: 5_000
)

Complex operation
{:ok, data} = ExMacOSControl.run_applescript(
 complex_workflow_script,
 timeout: 30_000
)
Retry Logic
When to Use Retry
The ExMacOSControl.Retry module provides automatic retry functionality for transient failures.
Use retry for:
	Timeout errors that may succeed on subsequent attempts
	Operations that depend on application state
	Network-dependent operations within scripts
	UI automation affected by system responsiveness

Do NOT use retry for:
	Syntax errors (won't be fixed by retrying)
	Permission errors (user intervention required)
	Not found errors (resources won't appear)
	Logic errors in your scripts

Retry Examples
alias ExMacOSControl.Retry

Basic retry with exponential backoff (default)
Attempts: 1st immediately, 2nd after 200ms, 3rd after 400ms
{:ok, result} = Retry.with_retry(fn ->
 ExMacOSControl.Finder.get_frontmost_window()
end)

Custom max attempts with linear backoff
Attempts: 1st immediately, 2nd-5th after 1000ms each
{:ok, result} = Retry.with_retry(fn ->
 ExMacOSControl.SystemEvents.click_button("OK", "MyApp", timeout: 5_000)
end, max_attempts: 5, backoff: :linear)

Combining timeout and retry
{:ok, windows} = Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(
 list_all_windows_script,
 timeout: 10_000
)
end, max_attempts: 3, backoff: :exponential)
Backoff Strategies
Exponential Backoff (default)
	Doubles wait time between retries
	Formula: 2^attempt * 100ms
	Best for: Operations that may need increasing time to succeed
	Wait times: 200ms, 400ms, 800ms, 1600ms, etc.

Linear Backoff
	Constant wait time between retries
	Wait time: 1000ms (1 second)
	Best for: Operations with consistent retry timing
	Wait times: 1000ms, 1000ms, 1000ms, etc.

Exponential: Good for gradual system recovery
Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(script, timeout: 5_000)
end, backoff: :exponential)

Linear: Good for operations with known fixed delay
Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(script, timeout: 5_000)
end, backoff: :linear)
Telemetry and Monitoring
ExMacOSControl emits telemetry events for all operations, allowing you to monitor performance and reliability.
AppleScript Execution Events
Events:
	[:ex_macos_control, :applescript, :start] - Script execution begins
	[:ex_macos_control, :applescript, :stop] - Script execution succeeds
	[:ex_macos_control, :applescript, :exception] - Script execution fails

Measurements:
	script_length - Length of the script in bytes
	duration - Execution time in microseconds (stop/exception only)

Metadata:
	command - Command being executed ("osascript")
	script - First 100 characters of the script
	timeout - Configured timeout (or nil)
	result_type - :success or :error
	output_length - Length of output (success only)
	error - Error details (exception only)

Retry Events
Events:
	[:ex_macos_control, :retry, :start] - Retry logic begins
	[:ex_macos_control, :retry, :attempt] - Each retry attempt
	[:ex_macos_control, :retry, :sleep] - Sleeping before retry
	[:ex_macos_control, :retry, :stop] - Retry succeeds
	[:ex_macos_control, :retry, :error] - All retries exhausted

Metadata:
	attempt - Current attempt number
	max_attempts - Maximum configured attempts
	backoff - Backoff strategy (:exponential or :linear)
	sleep_time - Time to sleep before next retry (sleep event only)
	error - Error that triggered retry

Setting Up Telemetry
In your application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 # Attach telemetry handlers
 :telemetry.attach_many(
 "ex-macos-control-handler",
 [
 [:ex_macos_control, :applescript, :start],
 [:ex_macos_control, :applescript, :stop],
 [:ex_macos_control, :applescript, :exception],
 [:ex_macos_control, :retry, :start],
 [:ex_macos_control, :retry, :stop],
 [:ex_macos_control, :retry, :error]
],
 &handle_telemetry_event/4,
 nil
)

 children = [
 # Your app's children
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end

 defp handle_telemetry_event(event, measurements, metadata, _config) do
 # Log or send to monitoring service
 Logger.info("Telemetry event: #{inspect(event)}")
 Logger.debug("Measurements: #{inspect(measurements)}")
 Logger.debug("Metadata: #{inspect(metadata)}")
 end
end
Example: Tracking Slow Operations
defmodule MyApp.TelemetryHandler do
 require Logger

 def handle_event([:ex_macos_control, :applescript, :stop], measurements, metadata, _) do
 duration_ms = measurements.duration / 1_000

 if duration_ms > 5_000 do
 Logger.warning("""
 Slow AppleScript execution detected:
 Duration: #{duration_ms}ms
 Script: #{metadata.script}
 Timeout: #{metadata.timeout}
 """)
 end
 end

 def handle_event([:ex_macos_control, :retry, :error], _measurements, metadata, _) do
 Logger.error("""
 Retry exhausted after #{metadata.max_attempts} attempts:
 Error: #{inspect(metadata.error)}
 """)
 end

 def handle_event(_, _, _, _), do: :ok
end

Attach in your application.ex
:telemetry.attach_many(
 "slow-operations-tracker",
 [
 [:ex_macos_control, :applescript, :stop],
 [:ex_macos_control, :retry, :error]
],
 &MyApp.TelemetryHandler.handle_event/4,
 nil
)
Benchmarking
Simple Benchmarking
defmodule MyApp.Benchmark do
 def measure(label, fun) do
 {time, result} = :timer.tc(fun)
 IO.puts("#{label}: #{time / 1_000}ms")
 result
 end
end

Usage
MyApp.Benchmark.measure("Get Finder windows", fn ->
 ExMacOSControl.Finder.list_windows()
end)
=> "Get Finder windows: 234.5ms"
Using Benchee
For more comprehensive benchmarking, use the Benchee library:
In mix.exs
{:benchee, "~> 1.3", only: :dev}

In a benchmark file
Benchee.run(%{
 "direct applescript" => fn ->
 ExMacOSControl.run_applescript(~s(tell application "Finder" to return name of every window))
 end,
 "via Finder module" => fn ->
 ExMacOSControl.Finder.list_windows()
 end,
 "with timeout" => fn ->
 ExMacOSControl.run_applescript(
 ~s(tell application "Finder" to return name of every window),
 timeout: 5_000
)
 end
})
Best Practices Summary
	Use timeouts in production for all operations
	Choose appropriate timeout values based on operation type
	Use retry logic for transient failures (timeouts)
	Monitor with telemetry to identify slow operations
	Combine operations into single scripts when possible
	Prefer native Elixir for non-automation tasks
	Break down complex scripts into smaller operations
	Test timeout values in your specific environment
	Use exponential backoff for gradual recovery scenarios
	Use linear backoff for known fixed delays

Troubleshooting Performance Issues
Operation Taking Too Long
	Check if timeout is appropriate for the operation
	Verify the application is responsive
	Simplify the script if possible
	Consider breaking into smaller operations
	Check telemetry data for actual execution time

Frequent Timeouts
	Increase timeout value
	Add retry logic with exponential backoff
	Check system resources (CPU, memory)
	Verify the application is not hanging
	Consider if the operation is too complex

Retry Not Working
	Verify error type is :timeout
	Check max_attempts is sufficient
	Consider increasing timeout before retry
	Review telemetry events for retry attempts
	Ensure the operation can succeed eventually

Further Resources
	AppleScript Language Guide
	JXA Documentation
	System Events Scripting
	Telemetry Documentation

 Creating New App Modules for ExMacOSControl

A comprehensive guide to creating macOS app automation modules.
Table of Contents
	Overview
	Prerequisites
	Quick Start
	Step-by-Step Guide
	Common Patterns
	Testing Strategies
	Best Practices
	Examples
	Troubleshooting
	Contributing

Overview
What Makes a Good App Module
A good app module should:
	Solve real use cases: Focus on common automation tasks
	Be well-tested: High unit test coverage plus integration tests
	Be safe: Clear warnings for destructive operations
	Be documented: Examples, specs, and clear error messages
	Follow patterns: Consistent with existing modules

When to Create a New Module
Create a dedicated module when:
	The app has 3+ commonly used automation operations
	You need type-safe, documented APIs
	You want to abstract away AppleScript complexity
	The app has complex scripting requirements

Use ExMacOSControl.run_applescript/1 directly for:
	One-off automation tasks
	Simple, app-specific workflows
	Exploratory scripting

Module Organization
All app modules follow this structure:
lib/ex_macos_control/
 app_name.ex # Main module

test/ex_macos_control/
 app_name_test.exs # Unit tests

test/integration/
 app_name_integration_test.exs # Integration tests (often skipped)

README.md # Updated with examples

Prerequisites
Required Knowledge
	Elixir basics: Functions, pattern matching, error handling
	AppleScript fundamentals: tell blocks, properties, commands
	macOS automation concepts: Scripting dictionaries, permissions

Required Tools
	macOS (Ventura or later recommended)
	Elixir 1.14+ and Erlang/OTP 25+
	Script Editor (built into macOS)
	This project cloned and dependencies installed

Permissions Setup
You'll need to grant automation permissions to your terminal or IDE:
	System Preferences > Privacy & Security > Automation
	Add Terminal or your IDE
	Grant access to the target app

Quick Start
1. Explore the App's Scripting Dictionary
Open Script Editor (Applications > Utilities > Script Editor):
File > Open Dictionary... > [Select your app]
This shows:
	Available commands
	Properties you can access
	Expected data types
	Example usage

2. Prototype in Script Editor
Test commands interactively:
tell application "Music"
 get name of current track
end tell
Click "Run" to see results and identify errors early.
3. Identify Key Operations
Based on the dictionary and common use cases, identify 3-5 key operations. Examples:
	Music: play/pause, get current track, set volume
	Calendar: create event, list events, delete event
	Notes: create note, search notes, list notebooks

4. Review Existing Modules
Look at similar modules for patterns:
	Simple data retrieval: Finder.get_selection/0
	Simple commands: SystemEvents.quit_application/1
	Complex operations: Safari.execute_javascript/1
	Sending data: Mail.send_email/1

Step-by-Step Guide
Step 1: Create the Module Structure
File: lib/ex_macos_control/app_name.ex
defmodule ExMacOSControl.AppName do
 @moduledoc """
 Provides functions for automating the [App Name] application on macOS.

 ## Examples

 # Basic operation
 ExMacOSControl.AppName.some_operation()
 # => {:ok, result}

 ## Permissions

 Requires:
 - Automation permission for Terminal/your app to control [App Name]
 - [Any additional permissions, e.g., Full Disk Access]

 Grant in: System Preferences > Privacy & Security > Automation
 """

 alias ExMacOSControl.Error

 # Get the adapter at runtime to support integration test configuration
 defp adapter do
 Application.get_env(:ex_macos_control, :adapter, ExMacOSControl.OSAScriptAdapter)
 end

 # Your functions go here
end
Step 2: Implement Functions
Follow this pattern for each function:
@doc """
[Clear description of what the function does]

Parameters

- `param1` - Description
- `param2` - Description (optional)

Returns

- `{:ok, result}` on success
- `{:error, Error.t()}` on failure

Examples

 some_function("arg")
 # => {:ok, "result"}

Errors

- `:not_found` - App or resource not found
- `:execution_error` - AppleScript execution failed
- `:permission_denied` - Permissions required
"""
@spec some_function(String.t()) :: {:ok, String.t()} | {:error, Error.t()}
def some_function(arg) do
 script = """
 tell application "AppName"
 -- Your AppleScript here
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, result} -> {:ok, parse_result(result)}
 {:error, reason} -> {:error, reason}
 end
end

Private helper to parse AppleScript output
defp parse_result(output) do
 output |> String.trim()
end
Key principles:
	Delegate to adapter().run_applescript/1
	Never shell out directly
	Parse results into structured Elixir data
	Use private helpers for parsing logic
	Return tagged tuples {:ok, _} or {:error, _}

Step 3: Handle Quote Escaping
Always escape quotes in user input:
defp escape_quotes(str) do
 String.replace(str, "\"", "\\\"")
end

Use in scripts:
script = """
tell application "AppName"
 do something with "#{escape_quotes(user_input)}"
end tell
"""
Step 4: Write Unit Tests
File: test/ex_macos_control/app_name_test.exs
defmodule ExMacOSControl.AppNameTest do
 use ExUnit.Case, async: true

 import Mox

 setup :verify_on_exit!

 setup do
 # Stub the adapter for all tests
 stub(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "default response"}
 end)

 :ok
 end

 describe "some_function/1" do
 test "calls AppleScript with correct script" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ "tell application \"AppName\""
 {:ok, "result"}
 end)

 assert {:ok, "result"} = AppName.some_function("arg")
 end

 test "escapes quotes in arguments" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(\\")
 {:ok, ""}
 end)

 AppName.some_function("text with \"quotes\"")
 end

 test "handles errors from adapter" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:error, %Error{type: :execution_error}}
 end)

 assert {:error, %Error{type: :execution_error}} =
 AppName.some_function("arg")
 end
 end
end
Test each function for:
	Correct AppleScript generation
	Quote escaping
	Result parsing
	Error handling
	Edge cases (empty results, malformed data)

Step 5: Write Integration Tests
File: test/integration/app_name_integration_test.exs
defmodule ExMacOSControl.AppNameIntegrationTest do
 use ExUnit.Case, async: false

 alias ExMacOSControl.{AppName, SystemEvents, TestHelpers}

 @moduletag :integration

 setup do
 TestHelpers.skip_unless_integration()

 # Use real adapter
 original_adapter = Application.get_env(:ex_macos_control, :adapter)
 Application.put_env(:ex_macos_control, :adapter, ExMacOSControl.OSAScriptAdapter)

 on_exit(fn ->
 Application.put_env(:ex_macos_control, :adapter, original_adapter)
 end)

 # Launch app if needed
 SystemEvents.launch_application("AppName")
 Process.sleep(1000)

 :ok
 end

 describe "some_function/1" do
 @tag :integration
 test "performs real operation" do
 assert {:ok, result} = AppName.some_function("test")
 assert is_binary(result)
 end
 end
end
Safety considerations:
	Use @tag :integration on all tests
	For destructive operations, use @tag :skip by default
	Document what setup is needed (test data, permissions)
	Add cleanup in on_exit if needed

Step 6: Update Documentation
Add to README.md:
AppName Automation

```elixir
# Basic operation
ExMacOSControl.AppName.some_operation()
# => {:ok, result}

# With parameters
ExMacOSControl.AppName.other_operation("param")
# => :ok
```

Required Permissions:
- Automation permission for Terminal/your app
- [Any additional permissions]

Common Patterns
Pattern 1: Simple Command Execution
Use case: Operations that don't return data (quit, play, pause)
Example from SystemEvents.quit_application/1:
def quit_application(app_name) do
 script = ~s(tell application "#{escape_quotes(app_name)}" to quit)

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
end
Pattern:
	Build AppleScript string
	Escape user input
	Delegate to adapter
	Return :ok or {:error, _}

Pattern 2: Data Retrieval and Parsing
Use case: Getting information from the app (selection, status, lists)
Example from Finder.get_selection/0:
def get_selection do
 script = """
 tell application "Finder"
 set selectedItems to selection
 set itemPaths to {}

 repeat with anItem in selectedItems
 set end of itemPaths to POSIX path of (anItem as alias)
 end repeat

 return itemPaths
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, ""} -> {:ok, []}
 {:ok, result} -> {:ok, parse_paths(result)}
 {:error, reason} -> {:error, reason}
 end
end

defp parse_paths(output) do
 output
 |> String.split(",")
 |> Enum.map(&String.trim/1)
end
Pattern:
	Request data from app
	Handle empty results
	Parse output into Elixir data structures
	Return {:ok, data} or {:error, _}

Pattern 3: Complex Operations with Options
Use case: Operations with multiple optional parameters
Example from Mail.send_email/1:
def send_email(opts) do
 with :ok <- validate_required(opts, :to),
 :ok <- validate_required(opts, :subject),
 :ok <- validate_required(opts, :body) do

 cc = Keyword.get(opts, :cc, [])
 bcc = Keyword.get(opts, :bcc, [])

 script = build_send_email_script(opts[:to], opts[:subject], opts[:body], cc, bcc)

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end
end

defp validate_required(opts, key) do
 case Keyword.get(opts, key) do
 nil -> {:error, Error.execution_error("Missing required field: #{key}")}
 value when value == "" -> {:error, Error.execution_error("Missing required field: #{key}")}
 _value -> :ok
 end
end

defp build_send_email_script(to, subject, body, cc, bcc) do
 # Build complex AppleScript with all parameters
 """
 tell application "Mail"
 -- Complex script here
 end tell
 """
end
Pattern:
	Validate required parameters with with
	Extract optional parameters with defaults
	Build script in separate helper function
	Use with for clean error handling

Pattern 4: List Operations with Structured Data
Use case: Returning lists of structured data
Example pattern for Messages.list_chats/0:
def list_chats do
 script = """
 tell application "Messages"
 set chatList to {}
 repeat with c in chats
 try
 set chatInfo to (id of c) & "|" & (name of c) & "|" & (unread count of c)
 copy chatInfo to end of chatList
 end try
 end repeat
 return chatList as text
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, result} -> {:ok, parse_chats(result)}
 {:error, reason} -> {:error, reason}
 end
end

defp parse_chats(""), do: []

defp parse_chats(output) do
 output
 |> String.split(",", trim: true)
 |> Enum.map(&parse_chat_line/1)
end

defp parse_chat_line(line) do
 [id, name, unread] = String.split(line, "|", parts: 3)

 %{
 id: String.trim(id),
 name: String.trim(name),
 unread: String.trim(unread) |> String.to_integer()
 }
end
Pattern:
	Use delimiter (e.g., "|") to separate fields
	Use try/catch in AppleScript for robustness
	Parse into maps with clear keys
	Handle empty results gracefully

Pattern 5: Window and UI Automation
Use case: Controlling application windows and UI elements
Example from SystemEvents.set_window_bounds/3:
def set_window_bounds(app_name, position: position, size: size) do
 # Validate parameters
 with :ok <- validate_position(position),
 :ok <- validate_size(size) do
 [x, y] = position
 [width, height] = size

 script = """
 tell application "System Events"
 tell process "#{escape_quotes(app_name)}"
 if (count of windows) > 0 then
 set position of front window to {#{x}, #{y}}
 set size of front window to {#{width}, #{height}}
 else
 error "No windows available"
 end if
 end tell
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, _output} -> :ok
 {:error, reason} -> {:error, reason}
 end
 else
 {:error, reason} -> {:error, reason}
 end
end

defp validate_position([_x, _y]), do: :ok
defp validate_position(_) do
 {:error, Error.execution_error("Invalid position format, expected [x, y]")}
end

defp validate_size([_width, _height]), do: :ok
defp validate_size(_) do
 {:error, Error.execution_error("Invalid size format, expected [width, height]")}
end
Pattern:
	Validate structured parameters
	Check for window existence before acting
	Provide clear error messages for validation failures
	Use System Events for UI manipulation

Testing Strategies
Unit Testing with Mox
Goal: Test all logic without running AppleScript
Setup:
setup do
 stub(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, ""}
 end)

 :ok
end
What to test:
	AppleScript generation is correct
	Quote escaping works
	Result parsing produces correct data structures
	Error handling propagates correctly
	Edge cases (empty results, malformed data)

Example:
test "parses multiple items correctly" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "item1, item2, item3"}
 end)

 assert {:ok, ["item1", "item2", "item3"]} = AppName.list_items()
end

test "handles empty results" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, ""}
 end)

 assert {:ok, []} = AppName.list_items()
end

test "parses structured data correctly" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "id1|Name 1|5, id2|Name 2|3"}
 end)

 assert {:ok, [
 %{id: "id1", name: "Name 1", count: 5},
 %{id: "id2", name: "Name 2", count: 3}
]} = AppName.list_items()
end
Integration Testing on macOS
Goal: Verify real AppleScript execution works
When to skip tests:
	Destructive operations (delete, send, modify)
	Operations requiring user interaction
	Operations that cost money or send data externally

Use @tag :skip for safety:
describe "delete_item/1" do
 @tag :skip
 @tag :integration
 test "actually deletes an item" do
 # This test would really delete something, so it's skipped by default
 end
end
Document test requirements:
IMPORTANT: To run integration tests:
1. Ensure AppName is installed
2. Grant automation permissions
3. [Any additional setup]
4. Run: mix test --include integration
Integration test structure:
setup do
 TestHelpers.skip_unless_integration()

 # Save original adapter
 original_adapter = Application.get_env(:ex_macos_control, :adapter)
 Application.put_env(:ex_macos_control, :adapter, ExMacOSControl.OSAScriptAdapter)

 on_exit(fn ->
 # Restore adapter
 Application.put_env(:ex_macos_control, :adapter, original_adapter)
 end)

 # Setup test environment
 SystemEvents.launch_application("AppName")
 Process.sleep(1000)

 :ok
end

Best Practices
1. Keep Functions Focused
Good: One function, one operation
def get_current_track()
def play()
def pause()
Avoid: Doing too much in one function
def control_playback(action, options \\ []) # Too generic
2. Delegate to Adapter
Good: Use the adapter
adapter().run_applescript(script)
Avoid: Shelling out directly
System.cmd("osascript", ["-e", script]) # Don't do this!
Why: Adapter enables mocking, error handling, and consistent behavior.
3. Use Consistent Error Types
Map AppleScript errors to standard types:
From ExMacOSControl.Error
:not_found # App or resource not found
:execution_error # General AppleScript error
:permission_denied # Automation permission needed
:timeout # Operation timed out
4. Document Permissions
Always note required permissions in @moduledoc:
Permissions

Requires:
- Automation permission for Terminal/your app to control AppName
- Full Disk Access (for reading app data)

Grant in: System Preferences > Privacy & Security
5. Add Safety Warnings
For destructive operations, add clear warnings:
@doc """
Deletes an item permanently.

Warning: This operation cannot be undone.

Examples
 ...
"""
6. Handle Edge Cases
Common edge cases:
	Empty results: Return [] or {:ok, []}, not error
	App not running: Launch it or return clear error
	Malformed data: Parse defensively, return error if invalid
	Unicode/special characters: Escape properly

7. Follow Naming Conventions
	Use snake_case for function names
	Prefix boolean functions with is_ or has_
	Use descriptive names: get_current_folder/0 not folder/0
	Keep names consistent with app terminology

8. Provide Helpful Examples
Every public function should have:
	At least one basic example
	Example showing error case (if applicable)
	Example with all options (for complex functions)

9. Use Specs Consistently
All public functions must have @spec:
@spec function_name(String.t()) :: {:ok, result_type} | {:error, Error.t()}
@spec function_name(atom(), keyword()) :: :ok | {:error, Error.t()}

Examples
Example 1: Music Module (Simple)
A simple module with basic playback controls:
defmodule ExMacOSControl.Music do
 @moduledoc """
 Provides functions for automating the Music application on macOS.

 ## Examples

 # Playback control
 :ok = ExMacOSControl.Music.play()
 :ok = ExMacOSControl.Music.pause()

 # Get track info
 {:ok, track} = ExMacOSControl.Music.get_current_track()
 # => {:ok, %{name: "Song Name", artist: "Artist", album: "Album"}}

 ## Permissions

 Requires:
 - Automation permission for Terminal/your app to control Music

 Grant in: System Preferences > Privacy & Security > Automation
 """

 alias ExMacOSControl.Error

 defp adapter do
 Application.get_env(:ex_macos_control, :adapter, ExMacOSControl.OSAScriptAdapter)
 end

 @doc """
 Starts playback in Music.

 ## Returns

 - `:ok` - Playback started successfully
 - `{:error, Error.t()}` - If Music is not available

 ## Examples

 Music.play()
 # => :ok
 """
 @spec play() :: :ok | {:error, Error.t()}
 def play do
 script = ~s(tell application "Music" to play)

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end

 @doc """
 Pauses playback in Music.

 ## Returns

 - `:ok` - Playback paused successfully
 - `{:error, Error.t()}` - If Music is not available

 ## Examples

 Music.pause()
 # => :ok
 """
 @spec pause() :: :ok | {:error, Error.t()}
 def pause do
 script = ~s(tell application "Music" to pause)

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end

 @doc """
 Gets information about the current track.

 Returns a map with the track name, artist, and album.

 ## Returns

 - `{:ok, track}` - Map with `:name`, `:artist`, `:album` keys
 - `{:error, Error.t()}` - If no track is playing or Music is not available

 ## Examples

 Music.get_current_track()
 # => {:ok, %{name: "Bohemian Rhapsody", artist: "Queen", album: "A Night at the Opera"}}
 """
 @spec get_current_track() :: {:ok, map()} | {:error, Error.t()}
 def get_current_track do
 script = """
 tell application "Music"
 set trackName to name of current track
 set trackArtist to artist of current track
 set trackAlbum to album of current track
 return trackName & "|" & trackArtist & "|" & trackAlbum
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, result} -> {:ok, parse_track_info(result)}
 {:error, reason} -> {:error, reason}
 end
 end

 @doc """
 Sets the playback volume.

 ## Parameters

 - `volume` - Volume level (0-100)

 ## Returns

 - `:ok` - Volume set successfully
 - `{:error, Error.t()}` - If volume is out of range or Music is not available

 ## Examples

 Music.set_volume(50)
 # => :ok

 Music.set_volume(0)
 # => :ok

 Music.set_volume(150)
 # => {:error, %Error{type: :execution_error, message: "Volume must be 0-100"}}
 """
 @spec set_volume(integer()) :: :ok | {:error, Error.t()}
 def set_volume(volume) when is_integer(volume) and volume >= 0 and volume <= 100 do
 script = """
 tell application "Music"
 set sound volume to #{volume}
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end

 def set_volume(_volume) do
 {:error, Error.execution_error("Volume must be an integer between 0 and 100")}
 end

 ## Private Helpers

 defp parse_track_info(output) do
 case String.split(output, "|", parts: 3) do
 [name, artist, album] ->
 %{
 name: String.trim(name),
 artist: String.trim(artist),
 album: String.trim(album)
 }

 _ ->
 %{name: "", artist: "", album: ""}
 end
 end
end
Tests for Music module:
defmodule ExMacOSControl.MusicTest do
 use ExUnit.Case, async: true
 import Mox

 alias ExMacOSControl.Music

 setup :verify_on_exit!

 setup do
 stub(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, ""}
 end)

 :ok
 end

 describe "play/0" do
 test "sends play command" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(tell application "Music" to play)
 {:ok, ""}
 end)

 assert :ok = Music.play()
 end
 end

 describe "pause/0" do
 test "sends pause command" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(tell application "Music" to pause)
 {:ok, ""}
 end)

 assert :ok = Music.pause()
 end
 end

 describe "get_current_track/0" do
 test "parses track info correctly" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "Song Name|Artist Name|Album Name"}
 end)

 assert {:ok, %{name: "Song Name", artist: "Artist Name", album: "Album Name"}} =
 Music.get_current_track()
 end

 test "handles malformed output" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "incomplete"}
 end)

 assert {:ok, %{name: "", artist: "", album: ""}} = Music.get_current_track()
 end
 end

 describe "set_volume/1" do
 test "sets volume within valid range" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ "set sound volume to 50"
 {:ok, ""}
 end)

 assert :ok = Music.set_volume(50)
 end

 test "accepts 0 volume" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ "set sound volume to 0"
 {:ok, ""}
 end)

 assert :ok = Music.set_volume(0)
 end

 test "accepts 100 volume" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ "set sound volume to 100"
 {:ok, ""}
 end)

 assert :ok = Music.set_volume(100)
 end

 test "rejects volume above 100" do
 assert {:error, _error} = Music.set_volume(150)
 end

 test "rejects negative volume" do
 assert {:error, _error} = Music.set_volume(-1)
 end
 end
end

Example 2: Calendar Module (Complex)
A more complex module with validation and options:
defmodule ExMacOSControl.Calendar do
 @moduledoc """
 Provides functions for automating the Calendar application on macOS.

 ## Examples

 # Create an event
 :ok = ExMacOSControl.Calendar.create_event(
 summary: "Team Meeting",
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z],
 location: "Conference Room A"
)

 # List today's events
 {:ok, events} = ExMacOSControl.Calendar.list_events_today()

 # Delete an event
 :ok = ExMacOSControl.Calendar.delete_event("Meeting ID")

 ## Permissions

 Requires:
 - Automation permission for Terminal/your app to control Calendar
 - Calendar access permission (macOS may prompt on first use)

 Grant in: System Preferences > Privacy & Security > Automation
 """

 alias ExMacOSControl.Error

 defp adapter do
 Application.get_env(:ex_macos_control, :adapter, ExMacOSControl.OSAScriptAdapter)
 end

 @doc """
 Creates a new calendar event.

 ## Parameters

 - `opts` - Keyword list with:
 - `:summary` (required) - Event title
 - `:start_date` (required) - Start date/time (DateTime)
 - `:end_date` (required) - End date/time (DateTime)
 - `:calendar` (optional) - Calendar name (default: "Calendar")
 - `:location` (optional) - Event location
 - `:notes` (optional) - Event notes

 ## Returns

 - `:ok` - Event created successfully
 - `{:error, Error.t()}` - If required fields missing or creation fails

 ## Examples

 create_event(
 summary: "Team Meeting",
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z],
 location: "Conference Room A"
)
 # => :ok

 create_event(
 summary: "Lunch",
 start_date: ~U[2024-01-15 12:00:00Z],
 end_date: ~U[2024-01-15 13:00:00Z],
 calendar: "Personal",
 notes: "Remember to bring wallet"
)
 # => :ok
 """
 @spec create_event(keyword()) :: :ok | {:error, Error.t()}
 def create_event(opts) do
 with {:ok, summary} <- validate_required(opts, :summary),
 {:ok, start_date} <- validate_required(opts, :start_date),
 {:ok, end_date} <- validate_required(opts, :end_date),
 :ok <- validate_date_range(start_date, end_date) do

 calendar = Keyword.get(opts, :calendar, "Calendar")
 location = Keyword.get(opts, :location, "")
 notes = Keyword.get(opts, :notes, "")

 script = build_create_event_script(
 summary, start_date, end_date, calendar, location, notes
)

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end
 end

 @doc """
 Lists all events for today.

 Returns a list of events scheduled for the current day.

 ## Returns

 - `{:ok, events}` - List of event maps
 - `{:ok, []}` - If no events today
 - `{:error, Error.t()}` - If Calendar is not available

 Each event is a map with:
 - `:summary` - Event title
 - `:start_date` - Start time as string
 - `:location` - Event location (if any)

 ## Examples

 list_events_today()
 # => {:ok, [
 # %{summary: "Meeting", start_date: "2024-01-15 14:00:00", location: "Room A"},
 # %{summary: "Lunch", start_date: "2024-01-15 12:00:00", location: ""}
 #]}
 """
 @spec list_events_today() :: {:ok, [map()]} | {:error, Error.t()}
 def list_events_today do
 script = """
 tell application "Calendar"
 set todayStart to current date
 set time of todayStart to 0
 set todayEnd to todayStart + (24 * 60 * 60)

 set eventList to {}
 repeat with cal in calendars
 set calEvents to (events of cal whose start date is greater than or equal to todayStart and start date is less than todayEnd)
 repeat with evt in calEvents
 set evtSummary to summary of evt
 set evtStart to start date of evt as text
 set evtLocation to location of evt
 if evtLocation is missing value then
 set evtLocation to ""
 end if
 set end of eventList to evtSummary & "|" & evtStart & "|" & evtLocation
 end repeat
 end repeat

 return eventList as text
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, ""} -> {:ok, []}
 {:ok, result} -> {:ok, parse_events(result)}
 {:error, reason} -> {:error, reason}
 end
 end

 @doc """
 Deletes an event by its summary.

 Warning: This operation cannot be undone. The event will be permanently removed.

 ## Parameters

 - `summary` - Title of the event to delete (must match exactly)

 ## Returns

 - `:ok` - Event deleted successfully
 - `{:error, Error.t()}` - If event not found or deletion fails

 ## Examples

 delete_event("Team Meeting")
 # => :ok

 delete_event("Nonexistent Event")
 # => {:error, %Error{type: :not_found, ...}}
 """
 @spec delete_event(String.t()) :: :ok | {:error, Error.t()}
 def delete_event(summary) do
 script = """
 tell application "Calendar"
 set foundEvent to false
 repeat with cal in calendars
 set matchingEvents to (events of cal whose summary is "#{escape_quotes(summary)}")
 if (count of matchingEvents) > 0 then
 delete item 1 of matchingEvents
 set foundEvent to true
 exit repeat
 end if
 end repeat

 if foundEvent is false then
 error "Event not found"
 end if
 end tell
 """

 case adapter().run_applescript(script) do
 {:ok, _} -> :ok
 {:error, reason} -> {:error, reason}
 end
 end

 ## Private Helpers

 defp validate_required(opts, key) do
 case Keyword.get(opts, key) do
 nil ->
 {:error, Error.execution_error("Missing required field", field: key)}
 value ->
 {:ok, value}
 end
 end

 defp validate_date_range(start_date, end_date) do
 if DateTime.compare(start_date, end_date) == :lt do
 :ok
 else
 {:error, Error.execution_error("Start date must be before end date")}
 end
 end

 defp build_create_event_script(summary, start_date, end_date, calendar, location, notes) do
 # Format dates for AppleScript
 start_str = format_date(start_date)
 end_str = format_date(end_date)

 """
 tell application "Calendar"
 tell calendar "#{escape_quotes(calendar)}"
 set newEvent to make new event with properties {
 summary: "#{escape_quotes(summary)}",
 start date: date "#{start_str}",
 end date: date "#{end_str}",
 location: "#{escape_quotes(location)}",
 description: "#{escape_quotes(notes)}"
 }
 end tell
 end tell
 """
 end

 defp format_date(%DateTime{} = dt) do
 # Convert to local time and format for AppleScript
 # AppleScript date format: "Monday, January 15, 2024 at 2:00:00 PM"
 local_dt = DateTime.shift_zone!(dt, "America/New_York")
 Calendar.strftime(local_dt, "%A, %B %-d, %Y at %-I:%M:%S %p")
 end

 defp parse_events(output) do
 output
 |> String.split(",", trim: true)
 |> Enum.map(&parse_event_line/1)
 |> Enum.reject(&is_nil/1)
 end

 defp parse_event_line(line) do
 case String.split(line, "|", parts: 3) do
 [summary, start_date, location] ->
 %{
 summary: String.trim(summary),
 start_date: String.trim(start_date),
 location: String.trim(location)
 }

 _ ->
 nil
 end
 end

 defp escape_quotes(str) when is_binary(str) do
 String.replace(str, "\"", "\\\"")
 end
end
Tests for Calendar module:
defmodule ExMacOSControl.CalendarTest do
 use ExUnit.Case, async: true
 import Mox

 alias ExMacOSControl.{Calendar, Error}

 setup :verify_on_exit!

 setup do
 stub(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, ""}
 end)

 :ok
 end

 describe "create_event/1" do
 test "creates event with required fields" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(summary: "Team Meeting")
 assert script =~ "start date:"
 assert script =~ "end date:"
 {:ok, ""}
 end)

 assert :ok = Calendar.create_event(
 summary: "Team Meeting",
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z]
)
 end

 test "includes optional location and notes" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(location: "Room A")
 assert script =~ ~s(description: "Important meeting")
 {:ok, ""}
 end)

 assert :ok = Calendar.create_event(
 summary: "Meeting",
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z],
 location: "Room A",
 notes: "Important meeting"
)
 end

 test "returns error when summary missing" do
 assert {:error, %Error{type: :execution_error}} = Calendar.create_event(
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z]
)
 end

 test "returns error when start_date is after end_date" do
 assert {:error, %Error{type: :execution_error}} = Calendar.create_event(
 summary: "Meeting",
 start_date: ~U[2024-01-15 15:00:00Z],
 end_date: ~U[2024-01-15 14:00:00Z]
)
 end

 test "escapes quotes in summary" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(\\\")
 {:ok, ""}
 end)

 Calendar.create_event(
 summary: "Meeting \"Important\"",
 start_date: ~U[2024-01-15 14:00:00Z],
 end_date: ~U[2024-01-15 15:00:00Z]
)
 end
 end

 describe "list_events_today/0" do
 test "parses events correctly" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, "Meeting|Monday, January 15, 2024 at 2:00:00 PM|Room A, Lunch|Monday, January 15, 2024 at 12:00:00 PM|"}
 end)

 assert {:ok, events} = Calendar.list_events_today()
 assert length(events) == 2
 assert [first, second] = events
 assert first.summary == "Meeting"
 assert first.location == "Room A"
 assert second.summary == "Lunch"
 assert second.location == ""
 end

 test "returns empty list when no events" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn _script ->
 {:ok, ""}
 end)

 assert {:ok, []} = Calendar.list_events_today()
 end
 end

 describe "delete_event/1" do
 test "deletes event by summary" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(whose summary is "Team Meeting")
 assert script =~ "delete"
 {:ok, ""}
 end)

 assert :ok = Calendar.delete_event("Team Meeting")
 end

 test "escapes quotes in summary" do
 expect(ExMacOSControl.MockAdapter, :run_applescript, fn script ->
 assert script =~ ~s(\\\")
 {:ok, ""}
 end)

 Calendar.delete_event("Meeting \"Important\"")
 end
 end
end

Troubleshooting
Common AppleScript Errors
Error: "Application isn't running"
	Solution: Launch the app first using SystemEvents.launch_application/1
	Or: Modify script to launch app automatically with activate command

Error: "Can't get [property]"
	Cause: Property doesn't exist or wrong object type
	Solution: Check scripting dictionary, verify object reference
	Tip: Use try...end try blocks for optional properties

Error: "Not authorized"
	Cause: Missing automation permission
	Solution: Grant in System Preferences > Privacy & Security > Automation
	Note: May need to restart Terminal/IDE after granting permission

Error: Timeout
	Cause: Operation takes too long
	Solution: Increase timeout in adapter call
	Example: adapter().run_applescript(script, timeout: 10_000)

Error: "Syntax error" in AppleScript
	Cause: Invalid AppleScript syntax
	Solution: Test script in Script Editor first
	Tip: Check for unescaped quotes or special characters

Permission Issues
Granting Automation Permissions:
	Open System Preferences (or System Settings on newer macOS)
	Go to Privacy & Security > Automation
	Find your Terminal or IDE in the list
	Check the box next to the target app
	Restart your Terminal/IDE if needed

Checking Permissions Programmatically:
	Some apps will show a permission dialog on first use
	Others will silently fail - check Console.app for error messages
	Look for "not authorized" or "permission denied" in errors

Full Disk Access (for some apps):
	Required for: Messages (reading history), Mail (reading mailboxes)
	Grant in: System Preferences > Privacy & Security > Full Disk Access
	Add Terminal or your IDE to the list

Debugging AppleScript
1. Test in Script Editor first:
	Prototype your AppleScript in Script Editor
	Fix syntax errors before translating to Elixir
	Use log statements for debugging:log "Debug: value is " & someValue

2. Print the generated script:
script = build_script(args)
IO.puts("Generated script:\n#{script}")
adapter().run_applescript(script)
3. Check Console.app:
	Open Console.app
	Filter for "osascript" or your app name
	Look for error messages and permission denials

4. Use simpler data:
	Test with simple strings first
	Add complexity (quotes, special chars) incrementally
	Verify escaping is correct at each step

5. Verify app is scriptable:
	Not all apps support AppleScript
	Check File > Open Dictionary in Script Editor
	If app doesn't appear, it may not be scriptable

App-Specific Quirks
Finder:
	Requires POSIX paths: Use POSIX path of (item as alias)
	Selection can be empty: Always check for empty results
	Some operations require window to be open

Safari:
	Requires "Allow JavaScript from Apple Events" setting
	Enable in Safari > Settings > Developer tab
	Tabs are 1-indexed (not 0-indexed)
	JavaScript execution requires page to be loaded

Mail:
	Can be slow to send: Add delays or increase timeout
	Email validation is basic - validate addresses yourself
	May show "New Message" window briefly when sending

Messages:
	Service type matters (iMessage vs SMS)
	May require Full Disk Access for reading history
	Contact names may not match exactly - use phone numbers

Calendar:
	Date formatting is specific to locale
	Calendar names are case-sensitive
	Events need both start and end dates

Music/TV:
	Legacy "iTunes" commands may still work
	Track metadata may be missing for some songs
	Requires content to be playing for current track info

Common Parsing Issues
Problem: Commas in data break parsing
	Solution: Use a different delimiter like "|" or use JSON

Problem: Empty values cause parse errors
	Solution: Check for empty strings before parsing
	Handle missing value in AppleScript with conditionals

Problem: Unicode characters
	Solution: AppleScript handles Unicode well, just escape quotes
	Test with non-ASCII characters to verify

Problem: Numbers returned as strings
	Solution: Use String.to_integer/1 with error handling
	Example:case Integer.parse(str) do
 {num, _} -> num
 :error -> 0 # or appropriate default
end

Contributing
Submitting a New Module
	Discuss first: Open an issue to discuss the module before starting work
	Follow patterns: Use existing modules (Finder, Safari, Mail) as examples
	Write tests: Aim for >90% unit test coverage
	Document thoroughly: Every public function needs @doc, @spec, examples
	Update README: Add usage examples to the main README
	Create PR: Include clear description and link to issue

Code Review Expectations
Your PR will be reviewed for:
	Correctness: Does it work? Are edge cases handled?
	Testing: High test coverage, both unit and integration tests
	Documentation: Clear docs with practical examples
	Code quality: Passes Credo, Dialyzer, formatter
	Consistency: Follows established patterns from existing modules

Pull Request Checklist
Before submitting your PR:
	[] Module file created in lib/ex_macos_control/
	[] Unit tests in test/ex_macos_control/
	[] Integration tests in test/integration/
	[] All public functions have @doc and @spec
	[] All public functions have examples
	[] @moduledoc includes permissions info
	[] README updated with usage examples
	[] All tests pass: mix test
	[] No Credo issues: mix credo --strict
	[] No Dialyzer warnings: mix dialyzer
	[] Code formatted: mix format
	[] Integration tests tagged appropriately
	[] Destructive operations skipped by default

Module Maintenance
If you contribute a module, you're expected to:
	Respond to issues related to your module
	Keep it updated as the app changes across macOS versions
	Fix bugs promptly
	Consider backward compatibility

macOS Version Compatibility
When creating modules:
	Test on the latest macOS version
	Note any version-specific features in documentation
	Use fallbacks for features not available on older versions
	Document minimum macOS version if applicable

Additional Resources
Official Documentation
	AppleScript Language Guide - Comprehensive AppleScript reference
	Script Editor Help - How to use Script Editor
	macOS Automation - Apple's automation resources

ExMacOSControl Documentation
	ExMacOSControl on Hex - API documentation
	GitHub Repository - Source code and issues
	Testing Guide - Comprehensive testing documentation

Community Resources
	Elixir Forum - Ask questions about Elixir
	MacScripter - AppleScript community forum
	Stack Overflow - AppleScript Q&A

Summary Checklist
When creating a new module, use this checklist:
Planning Phase
	[] Explored app's scripting dictionary
	[] Prototyped key operations in Script Editor
	[] Identified 3-5 key functions to implement
	[] Reviewed similar existing modules
	[] Determined required permissions

Implementation Phase
	[] Created module file with @moduledoc
	[] Implemented functions with @doc and @spec
	[] Added private helper functions for parsing
	[] Implemented quote escaping where needed
	[] Used adapter pattern (no direct shell calls)

Testing Phase
	[] Wrote 20+ unit tests (>90% coverage)
	[] Wrote integration tests with proper tags
	[] Used @tag :skip for destructive operations
	[] Tested edge cases (empty results, malformed data)
	[] All tests pass: mix test

Documentation Phase
	[] Documented all permissions required
	[] Added practical examples to @doc
	[] Updated README with usage examples
	[] Added safety warnings for destructive operations
	[] Documented known limitations or quirks

Quality Checks
	[] Ran Credo: mix credo --strict (0 issues)
	[] Ran Dialyzer: mix dialyzer (0 warnings)
	[] Ran formatter: mix format --check-formatted
	[] Tested on real macOS system
	[] Verified all examples work

Submission
	[] Created feature branch
	[] Committed all changes with clear messages
	[] Created PR with description
	[] Linked to related issue
	[] Responded to code review feedback

Final Tips
Start Small
Don't try to implement every feature at once. Start with:
	One simple function (e.g., get status)
	One command function (e.g., play/pause)
	One complex function (e.g., create item)

Then expand based on feedback and usage.
Iterate Based on Real Use
The best modules evolve from real usage:
	Start with your own use cases
	Get feedback from users
	Add features as they're requested
	Remove features that aren't used

Prioritize Safety
Always err on the side of caution:
	Skip destructive tests by default
	Add clear warnings in documentation
	Validate user input thoroughly
	Provide undo mechanisms where possible

Keep It Simple
Prefer:
	Simple functions over complex ones
	Clear names over clever ones
	Explicit behavior over implicit
	Direct implementations over abstractions

Get Help
If you're stuck:
	Open an issue to discuss
	Ask on the Elixir Forum
	Review existing modules for patterns
	Check the troubleshooting section

Happy automating!
For questions, issues, or contributions, visit:
https://github.com/houllette/ex_macos_control

ExMacOSControl

Facade for macOS automation: AppleScript, JavaScript for Automation (JXA), Shortcuts, etc.
This module provides a high-level interface for automating macOS using:
	AppleScript - Apple's scripting language for macOS automation
	JXA (JavaScript for Automation) - JavaScript-based alternative to AppleScript
	Script Files - Execute AppleScript and JXA files from disk with automatic language detection
	Shortcuts - Execute and list macOS Shortcuts with input parameter support

Examples
Execute AppleScript
iex> ExMacOSControl.run_applescript(~s(return "Hello, World!"))
{:ok, "Hello, World!"}

Execute AppleScript with arguments
iex> script = "on run argv\nreturn item 1 of argv\nend run"
iex> ExMacOSControl.run_applescript(script, args: ["test"])
{:ok, "test"}

Execute JXA
iex> ExMacOSControl.run_javascript("(function() { return 'Hello from JXA!'; })()")
{:ok, "Hello from JXA!"}

Execute JXA with arguments
iex> ExMacOSControl.run_javascript("function run(argv) { return argv[0]; }", args: ["test"])
{:ok, "test"}
Script Files
Execute script files with automatic language detection
ExMacOSControl.run_script_file("/path/to/script.applescript")
=> {:ok, "result"}

ExMacOSControl.run_script_file("/path/to/script.js", args: ["arg1", "arg2"])
=> {:ok, "result"}
Shortcuts
Run a Shortcut
ExMacOSControl.run_shortcut("My Shortcut")
=> :ok

Run a Shortcut with input
ExMacOSControl.run_shortcut("Process Text", input: "Hello, World!")
=> {:ok, "processed result"}

List available Shortcuts
ExMacOSControl.list_shortcuts()
=> {:ok, ["Shortcut 1", "Shortcut 2", "My Shortcut"]}

 Summary

 Functions

 list_shortcuts()

 Lists all available macOS Shortcuts.

 run_applescript(script)

 Executes AppleScript code.

 run_applescript(script, opts)

 Executes AppleScript code with options.

 run_javascript(script)

 Executes JavaScript for Automation (JXA) code.

 run_javascript(script, opts)

 Executes JavaScript for Automation (JXA) code with options.

 run_script_file(file_path)

 Executes a script file from disk with automatic language detection.

 run_script_file(file_path, opts)

 Executes a script file from disk with options.

 run_shortcut(name)

 Executes a macOS Shortcut by name.

 run_shortcut(name, opts)

 Executes a macOS Shortcut by name with input parameters.

 Functions

 list_shortcuts()

 @spec list_shortcuts() :: {:ok, [String.t()]} | {:error, term()}

Lists all available macOS Shortcuts.
Returns
	{:ok, shortcuts} - Success with list of shortcut names
	{:error, reason} - Failure (e.g., Shortcuts app not available)

Examples
ExMacOSControl.list_shortcuts()
=> {:ok, ["Shortcut 1", "Shortcut 2", "My Shortcut"]}

Check if a specific shortcut exists
case ExMacOSControl.list_shortcuts() do
 {:ok, shortcuts} ->
 if "My Shortcut" in shortcuts do
 ExMacOSControl.run_shortcut("My Shortcut")
 end
 {:error, reason} ->
 {:error, reason}
end

 run_applescript(script)

 @spec run_applescript(String.t()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes AppleScript code.
Parameters
	script - The AppleScript code to execute

Returns
	{:ok, output} - Success with script output
	{:error, reason} - Failure with error reason

Examples
iex> ExMacOSControl.run_applescript(~s(return "Hello"))
{:ok, "Hello"}

 run_applescript(script, opts)

 @spec run_applescript(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes AppleScript code with options.
Options
	:timeout - Maximum time in milliseconds to wait for script execution
	:args - List of string arguments to pass to the script

Examples
With timeout option:
ExMacOSControl.run_applescript("delay 1", timeout: 5000)
=> {:ok, ""}
With arguments option:
script = """
on run argv
 return item 1 of argv
end run
"""
ExMacOSControl.run_applescript(script, args: ["hello"])
=> {:ok, "hello"}
With both timeout and args:
ExMacOSControl.run_applescript(script, args: ["test"], timeout: 5000)
=> {:ok, "test"}

 run_javascript(script)

 @spec run_javascript(String.t()) :: {:ok, String.t()} | {:error, term()}

Executes JavaScript for Automation (JXA) code.
Parameters
	script - The JXA code to execute

Returns
	{:ok, output} - Success with script output
	{:error, reason} - Failure with error reason

Examples
iex> ExMacOSControl.run_javascript("(function() { return 'test'; })()")
{:ok, "test"}

iex> ExMacOSControl.run_javascript("Application('Finder').running()")
{:ok, "true"}

 run_javascript(script, opts)

 @spec run_javascript(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, term()}

Executes JavaScript for Automation (JXA) code with options.
Parameters
	script - The JXA code to execute
	opts - Keyword list of options:	:args - List of string arguments to pass to the script

Returns
	{:ok, output} - Success with script output
	{:error, reason} - Failure with error reason

Examples
With arguments
iex> script = "function run(argv) { return argv[0]; }"
iex> ExMacOSControl.run_javascript(script, args: ["hello"])
{:ok, "hello"}

With multiple arguments
iex> script = "function run(argv) { return argv.join(' '); }"
iex> ExMacOSControl.run_javascript(script, args: ["hello", "world"])
{:ok, "hello world"}

 run_script_file(file_path)

 @spec run_script_file(String.t()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes a script file from disk with automatic language detection.
This function executes AppleScript or JavaScript files directly, with automatic
language detection based on file extension. It supports all the same options as
run_applescript/2 and run_javascript/2, including timeout and argument passing.
Parameters
	file_path - Absolute or relative path to the script file

Language Detection
The language is automatically detected from the file extension:
	.scpt, .applescript → AppleScript
	.js, .jxa → JavaScript

Returns
	{:ok, output} - Success with script output
	{:error, reason} - Failure with error reason

Examples
Execute AppleScript file
ExMacOSControl.run_script_file("/path/to/script.applescript")
=> {:ok, "result"}

Execute JavaScript file
ExMacOSControl.run_script_file("/path/to/script.js")
=> {:ok, "result"}

 run_script_file(file_path, opts)

 @spec run_script_file(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes a script file from disk with options.
This function executes AppleScript or JavaScript files directly, with automatic
language detection based on file extension. You can override the language detection
and pass arguments and timeout options.
Parameters
	file_path - Absolute or relative path to the script file
	opts - Keyword list of options:	:language - Explicit language (:applescript or :javascript), overrides detection
	:timeout - Maximum time in milliseconds to wait for execution
	:args - List of string arguments to pass to the script

Language Detection
The language is automatically detected from the file extension:
	.scpt, .applescript → AppleScript
	.js, .jxa → JavaScript

You can override automatic detection using the :language option.
Returns
	{:ok, output} - Success with script output
	{:error, reason} - Failure with error reason

Examples
Override language detection
ExMacOSControl.run_script_file("/path/to/script.txt", language: :applescript)
=> {:ok, "result"}

With arguments
ExMacOSControl.run_script_file(
 "/path/to/script.applescript",
 args: ["arg1", "arg2"]
)
=> {:ok, "result"}

With timeout
ExMacOSControl.run_script_file("/path/to/script.js", timeout: 5000)
=> {:ok, "result"}

Combined options
ExMacOSControl.run_script_file(
 "/path/to/script.scpt",
 language: :applescript,
 args: ["test"],
 timeout: 10_000
)
=> {:ok, "result"}

 run_shortcut(name)

 @spec run_shortcut(String.t()) :: :ok | {:ok, String.t()} | {:error, term()}

Executes a macOS Shortcut by name.
Parameters
	name - The name of the Shortcut to run

Returns
	:ok - Success with no output
	{:ok, output} - Success with output from the shortcut
	{:error, reason} - Failure with error reason

Examples
Assuming you have a shortcut named "My Shortcut"
ExMacOSControl.run_shortcut("My Shortcut")
=> :ok (if shortcut exists and returns no output)
=> {:ok, "result"} (if shortcut returns output)
=> {:error, reason} (if not found)

 run_shortcut(name, opts)

 @spec run_shortcut(String.t(), ExMacOSControl.Adapter.options()) ::
 :ok | {:ok, String.t()} | {:error, term()}

Executes a macOS Shortcut by name with input parameters.
Parameters
	name - The name of the Shortcut to run
	opts - Keyword list of options:	:input - Input data to pass to the shortcut (string, number, map, or list)

Returns
	:ok - Success with no output
	{:ok, output} - Success with output from the shortcut
	{:error, reason} - Failure with error reason

Examples
With string input
ExMacOSControl.run_shortcut("Process Text", input: "Hello, World!")
=> {:ok, "processed result"}

With number input
ExMacOSControl.run_shortcut("Calculate", input: 42)
=> {:ok, "84"}

With map input (serialized as JSON)
ExMacOSControl.run_shortcut("Process Data", input: %{"name" => "John", "age" => 30})
=> {:ok, "result"}

With list input (serialized as JSON)
ExMacOSControl.run_shortcut("Process Items", input: ["item1", "item2", "item3"])
=> {:ok, "result"}

ExMacOSControl.Adapter behaviour

Behaviour defining the adapter interface for macOS automation.
This behaviour defines the callbacks that must be implemented by adapter modules
to provide macOS automation functionality. Adapters are responsible for executing
AppleScript code, JavaScript for Automation (JXA) code, and running Shortcuts on macOS.
The default implementation is ExMacOSControl.OSAScriptAdapter, which uses the
osascript command-line tool. Alternative implementations can be provided for
testing or to support different execution strategies.

 Summary

 Types

 option()

 options()

 Callbacks

 list_shortcuts()

 run_applescript(t)

 run_applescript(t, options)

 run_javascript(t)

 run_javascript(t, options)

 run_script_file(t, options)

 run_shortcut(t)

 run_shortcut(t, options)

 Types

 option()

 @type option() ::
 {:timeout, pos_integer()}
 | {:args, [String.t()]}
 | {:language, :applescript | :javascript}
 | {:input, String.t() | number() | map() | list()}

 options()

 @type options() :: [option()]

 Callbacks

 list_shortcuts()

 @callback list_shortcuts() :: {:ok, [String.t()]} | {:error, term()}

 run_applescript(t)

 @callback run_applescript(String.t()) :: {:ok, String.t()} | {:error, term()}

 run_applescript(t, options)

 @callback run_applescript(String.t(), options()) :: {:ok, String.t()} | {:error, term()}

 run_javascript(t)

 @callback run_javascript(String.t()) :: {:ok, String.t()} | {:error, term()}

 run_javascript(t, options)

 @callback run_javascript(String.t(), options()) :: {:ok, String.t()} | {:error, term()}

 run_script_file(t, options)

 @callback run_script_file(String.t(), options()) :: {:ok, String.t()} | {:error, term()}

 run_shortcut(t)

 @callback run_shortcut(String.t()) :: :ok | {:ok, String.t()} | {:error, term()}

 run_shortcut(t, options)

 @callback run_shortcut(String.t(), options()) ::
 :ok | {:ok, String.t()} | {:error, term()}

ExMacOSControl.Error exception

Structured error handling for macOS automation operations.
This module provides a comprehensive error handling system with:
	Structured error types for common failure scenarios
	Parsing of osascript error output
	Helpful error messages with remediation steps
	Exception behavior for seamless integration with Elixir error handling

Error Types
The following error types are supported:
	:syntax_error - Invalid AppleScript/JXA syntax
	:execution_error - Runtime error during script execution
	:timeout - Script execution exceeded the timeout limit
	:not_found - Script file or application not found
	:permission_denied - Accessibility or automation permissions required
	:unsupported_platform - Operation attempted on non-macOS platform

Examples
Create a syntax error
iex> error = ExMacOSControl.Error.syntax_error("Expected end of line", line: 5)
iex> error.type
:syntax_error

Parse osascript error output
iex> stderr = "syntax error: Expected end of line but found identifier. (-2741)"
iex> error = ExMacOSControl.Error.parse_osascript_error(stderr, 1)
iex> error.type
:syntax_error

Get remediation steps
iex> error = ExMacOSControl.Error.permission_denied("Accessibility required")
iex> steps = ExMacOSControl.Error.remediation_steps(error)
iex> Enum.count(steps) > 0
true

Raise as exception
iex> error = ExMacOSControl.Error.timeout("Script timed out", timeout: 5000)
iex> raise error
** (ExMacOSControl.Error) Script execution timed out after 5000ms

 Summary

 Types

 error_type()

 Error type indicating the category of failure.

 t()

 Structured error with type, message, and additional details.

 Functions

 exception(msg)

 Formats the error as a string for exception messages.

 execution_error(message, opts \\ [])

 Creates an execution error.

 not_found(message, opts \\ [])

 Creates a not found error.

 parse_osascript_error(stderr, exit_code)

 Parses osascript error output into a structured error.

 permission_denied(message, opts \\ [])

 Creates a permission denied error.

 remediation_steps(error)

 Provides remediation steps for an error.

 syntax_error(message, opts \\ [])

 Creates a syntax error.

 timeout(message, opts \\ [])

 Creates a timeout error.

 unsupported_platform(message, opts \\ [])

 Creates an unsupported platform error.

 Types

 error_type()

 @type error_type() ::
 :syntax_error
 | :execution_error
 | :timeout
 | :not_found
 | :permission_denied
 | :unsupported_platform

Error type indicating the category of failure.

 t()

 @type t() :: %ExMacOSControl.Error{
 __exception__: true,
 details: map(),
 message: String.t(),
 type: error_type()
}

Structured error with type, message, and additional details.

 Functions

 exception(msg)

 @spec exception(keyword()) :: t()

Formats the error as a string for exception messages.
Includes the error message and relevant details, along with
remediation steps when applicable.

 execution_error(message, opts \\ [])

 @spec execution_error(
 String.t(),
 keyword()
) :: t()

Creates an execution error.
Parameters
	message - Description of the execution error
	opts - Optional keyword list with additional details

Examples
iex> error = ExMacOSControl.Error.execution_error("Invalid index")
iex> error.type
:execution_error

 not_found(message, opts \\ [])

 @spec not_found(
 String.t(),
 keyword()
) :: t()

Creates a not found error.
Parameters
	message - Description of what was not found
	opts - Optional keyword list with additional details (e.g., :app, :file)

Examples
iex> error = ExMacOSControl.Error.not_found("Application not found", app: "Foo")
iex> error.type
:not_found
iex> error.details.app
"Foo"

 parse_osascript_error(stderr, exit_code)

 @spec parse_osascript_error(String.t(), integer()) :: t()

Parses osascript error output into a structured error.
Analyzes stderr output and exit codes from osascript to determine
the error type and extract relevant information.
Parameters
	stderr - The stderr output from osascript
	exit_code - The exit code from osascript

Examples
iex> stderr = "syntax error: Expected end of line but found identifier. (-2741)"
iex> error = ExMacOSControl.Error.parse_osascript_error(stderr, 1)
iex> error.type
:syntax_error

iex> stderr = "execution error: Finder got an error: Can't get window 1. (-1719)"
iex> error = ExMacOSControl.Error.parse_osascript_error(stderr, 1)
iex> error.type
:execution_error

 permission_denied(message, opts \\ [])

 @spec permission_denied(
 String.t(),
 keyword()
) :: t()

Creates a permission denied error.
Parameters
	message - Description of the permission issue
	opts - Optional keyword list with additional details

Examples
iex> error = ExMacOSControl.Error.permission_denied("Accessibility permissions required")
iex> error.type
:permission_denied

 remediation_steps(error)

 @spec remediation_steps(t()) :: [String.t()]

Provides remediation steps for an error.
Returns a list of actionable steps the user can take to resolve the error.
Parameters
	error - The error to provide remediation for

Examples
iex> error = ExMacOSControl.Error.permission_denied("Accessibility required")
iex> steps = ExMacOSControl.Error.remediation_steps(error)
iex> is_list(steps)
true

 syntax_error(message, opts \\ [])

 @spec syntax_error(
 String.t(),
 keyword()
) :: t()

Creates a syntax error.
Parameters
	message - Description of the syntax error
	opts - Optional keyword list with additional details (e.g., :line, :column)

Examples
iex> error = ExMacOSControl.Error.syntax_error("Expected end of line", line: 5)
iex> error.type
:syntax_error
iex> error.details.line
5

 timeout(message, opts \\ [])

 @spec timeout(
 String.t(),
 keyword()
) :: t()

Creates a timeout error.
Parameters
	message - Description of the timeout
	opts - Optional keyword list with additional details (e.g., :timeout in milliseconds)

Examples
iex> error = ExMacOSControl.Error.timeout("Script exceeded timeout", timeout: 5000)
iex> error.type
:timeout
iex> error.details.timeout
5000

 unsupported_platform(message, opts \\ [])

 @spec unsupported_platform(
 String.t(),
 keyword()
) :: t()

Creates an unsupported platform error.
Parameters
	message - Description of the platform issue
	opts - Optional keyword list with additional details (e.g., :platform)

Examples
iex> error = ExMacOSControl.Error.unsupported_platform("Not running on macOS", platform: :linux)
iex> error.type
:unsupported_platform
iex> error.details.platform
:linux

ExMacOSControl.OSAScriptAdapter

Default adapter implementation using the osascript command-line tool.
This module implements the ExMacOSControl.Adapter behaviour and provides
macOS automation functionality by executing AppleScript code, JavaScript for
Automation (JXA) code, and Shortcuts via the osascript system command.
Features
	Execute AppleScript code with timeout and argument support
	Execute JXA code with timeout and argument support
	Comprehensive error handling with ExMacOSControl.Error
	Platform-independent timeout implementation using Task
	Run macOS Shortcuts

Implementation Details
	Uses System.cmd/3 to execute osascript with the provided script
	Returns {:ok, output} on success (exit code 0)
	Returns {:error, error} on failure with detailed error information
	Trims whitespace from successful output
	Supports timeout via Task.yield/2 and Task.shutdown/1
	Supports both AppleScript (default) and JXA (-l JavaScript flag)
	Arguments are passed directly to osascript (secure, no shell interpretation)

AppleScript Examples
Basic execution
{:ok, result} = OSAScriptAdapter.run_applescript(~s(return "Hello"))
=> {:ok, "Hello"}

With timeout
{:ok, result} = OSAScriptAdapter.run_applescript("delay 1", timeout: 5000)
=> {:ok, ""}

With arguments
script = """
on run argv
 return item 1 of argv
end run
"""
{:ok, result} = OSAScriptAdapter.run_applescript(script, args: ["test"])
=> {:ok, "test"}
JXA Support
JavaScript for Automation (JXA) is Apple's JavaScript-based alternative to AppleScript.
It provides the same automation capabilities but uses JavaScript syntax and semantics.
When to use JXA vs AppleScript
Use JXA when:
	You're more comfortable with JavaScript than AppleScript
	You need to leverage JavaScript's functional programming features
	You want to use the ObjC bridge for direct Objective-C interaction
	You're building complex data transformations

Use AppleScript when:
	You're working with legacy scripts or examples
	You need maximum compatibility (AppleScript is more widely documented)
	The automation task is simple and straightforward

JXA Examples
Basic JXA
{:ok, result} = run_javascript("(function() { return 'test'; })()")

Application automation
{:ok, name} = run_javascript("Application('Finder').name()")

With arguments
script = "function run(argv) { return argv[0]; }"
{:ok, result} = run_javascript(script, args: ["hello"])

ObjC bridge
script = """
ObjC.import('Foundation');
var str = $.NSString.alloc.initWithUTF8String('test');
str.js;
"""
{:ok, result} = run_javascript(script)
Security Considerations
Arguments are passed directly to osascript without shell interpretation,
making them safe from shell injection attacks. However, the AppleScript/JXA
code itself should be from trusted sources as it executes with full
system access.

 Summary

 Functions

 list_shortcuts()

 Lists all available macOS Shortcuts.

 run_applescript(script)

 Executes an AppleScript script without options.

 run_applescript(script, opts)

 Executes an AppleScript script with options.

 run_javascript(script)

 Executes JavaScript for Automation (JXA) code using osascript.

 run_javascript(script, opts)

 Executes JavaScript for Automation (JXA) code with options.

 run_script_file(file_path, opts)

 Executes a script file from disk with automatic language detection.

 run_shortcut(name)

 Executes a macOS Shortcut by name without options.

 run_shortcut(name, opts)

 Executes a macOS Shortcut by name with input parameters.

 Functions

 list_shortcuts()

 @spec list_shortcuts() :: {:ok, [String.t()]} | {:error, term()}

Lists all available macOS Shortcuts.
Uses AppleScript to query the Shortcuts app for all shortcuts.
Returns
	{:ok, shortcuts} - Success with list of shortcut names
	{:error, error} - Failure (e.g., Shortcuts app not available)

Examples
OSAScriptAdapter.list_shortcuts()
=> {:ok, ["Shortcut 1", "Shortcut 2", "My Shortcut"]}

If Shortcuts app is not available
=> {:error, error}

 run_applescript(script)

 @spec run_applescript(String.t()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes an AppleScript script without options.
This is a convenience function that delegates to run_applescript/2
with an empty options list, maintaining backward compatibility.
Parameters
	script - The AppleScript code to execute

Returns
	{:ok, output} - On successful execution with script output
	{:error, error} - On failure with detailed error information

Examples
iex> OSAScriptAdapter.run_applescript(~s(return "Hello, World!"))
{:ok, "Hello, World!"}

iex> OSAScriptAdapter.run_applescript("invalid script")
{:error, %ExMacOSControl.Error{type: :syntax_error, ...}}

 run_applescript(script, opts)

 @spec run_applescript(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes an AppleScript script with options.
Parameters
	script - The AppleScript code to execute
	opts - Keyword list of options:	:timeout - Maximum time in milliseconds to wait for execution
	:args - List of string arguments to pass to the script

Returns
	{:ok, output} - On successful execution with script output
	{:error, error} - On failure with detailed error information

Timeout Behavior
When a timeout is specified, the script execution is monitored via a Task.
If the script doesn't complete within the timeout period, it is terminated
and a timeout error is returned.
Argument Passing
Arguments are passed to the AppleScript via the argv mechanism. Your
AppleScript must use the on run argv handler to receive arguments.
Examples
With timeout
script = "delay 2\nreturn \"done\""
OSAScriptAdapter.run_applescript(script, timeout: 5000)
=> {:ok, "done"}

With arguments
script = """
on run argv
 return (item 1 of argv) & " " & (item 2 of argv)
end run
"""
OSAScriptAdapter.run_applescript(script, args: ["Hello", "World"])
=> {:ok, "Hello World"}

Timeout exceeded
script = "delay 10"
OSAScriptAdapter.run_applescript(script, timeout: 100)
=> {:error, %ExMacOSControl.Error{type: :timeout, ...}}

Multiple options
OSAScriptAdapter.run_applescript(script, timeout: 5000, args: ["test"])
=> {:ok, "test"}

 run_javascript(script)

 @spec run_javascript(String.t()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes JavaScript for Automation (JXA) code using osascript.
This is a convenience wrapper around run_javascript/2 with no options.
Parameters
	script - The JXA code to execute

Returns
	{:ok, output} - Success with trimmed output
	{:error, error} - Failure with detailed error information

Examples
iex> run_javascript("(function() { return 'test'; })()")
{:ok, "test"}

iex> run_javascript("Application('Finder').name()")
{:ok, "Finder"}

 run_javascript(script, opts)

 @spec run_javascript(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes JavaScript for Automation (JXA) code with options.
Uses osascript -l JavaScript to execute JXA code. Supports passing arguments
to the script using the args option.
Parameters
	script - The JXA code to execute
	opts - Keyword list of options:	:args - List of string arguments to pass to the script (default: [])

Returns
	{:ok, output} - Success with trimmed output
	{:error, error} - Failure with detailed error information

Options
Arguments (:args)
Arguments are passed to the JXA script and available via the run(argv) function:
JXA script receives arguments
function run(argv) {
 return argv[0]; // Returns first argument
}
Examples
Basic execution
iex> run_javascript("(function() { return 'test'; })()", [])
{:ok, "test"}

With arguments
iex> script = "function run(argv) { return argv[0]; }"
iex> run_javascript(script, args: ["hello"])
{:ok, "hello"}

With multiple arguments
iex> script = "function run(argv) { return argv.join(' '); }"
iex> run_javascript(script, args: ["hello", "world"])
{:ok, "hello world"}

System Events automation
iex> script = """
...> var app = Application('System Events');
...> var processes = app.processes.whose({ name: 'Finder' });
...> processes.length.toString();
...> """
iex> run_javascript(script, [])
{:ok, "1"}

 run_script_file(file_path, opts)

 @spec run_script_file(String.t(), ExMacOSControl.Adapter.options()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes a script file from disk with automatic language detection.
This function executes AppleScript or JavaScript files directly using osascript,
with automatic language detection based on file extension. It supports all the
same options as run_applescript/2 and run_javascript/2, including timeout
and argument passing.
Parameters
	file_path - Absolute or relative path to the script file
	opts - Keyword list of options:	:language - Explicit language (:applescript or :javascript), overrides detection
	:timeout - Maximum time in milliseconds to wait for execution
	:args - List of string arguments to pass to the script

Language Detection
The language is automatically detected from the file extension:
	.scpt, .applescript → AppleScript
	.js, .jxa → JavaScript

You can override automatic detection using the :language option.
File Validation
The function validates that:
	The file exists
	The path points to a regular file (not a directory)

Returns
	{:ok, output} - On successful execution with script output
	{:error, error} - On failure with detailed error information

Examples
Execute AppleScript file with auto-detection
OSAScriptAdapter.run_script_file("/path/to/script.applescript")
=> {:ok, "result"}

Execute JavaScript file with auto-detection
OSAScriptAdapter.run_script_file("/path/to/script.js")
=> {:ok, "result"}

Override language detection
OSAScriptAdapter.run_script_file("/path/to/script.txt", language: :applescript)
=> {:ok, "result"}

With arguments
OSAScriptAdapter.run_script_file(
 "/path/to/script.applescript",
 args: ["arg1", "arg2"]
)
=> {:ok, "result"}

With timeout
OSAScriptAdapter.run_script_file("/path/to/script.js", timeout: 5000)
=> {:ok, "result"}

Combined options
OSAScriptAdapter.run_script_file(
 "/path/to/script.scpt",
 language: :applescript,
 args: ["test"],
 timeout: 10_000
)
=> {:ok, "result"}

File not found
OSAScriptAdapter.run_script_file("/nonexistent.scpt")
=> {:error, %ExMacOSControl.Error{type: :not_found, ...}}

 run_shortcut(name)

 @spec run_shortcut(String.t()) :: :ok | {:ok, String.t()} | {:error, term()}

Executes a macOS Shortcut by name without options.
This is a convenience function that delegates to run_shortcut/2
with an empty options list, maintaining backward compatibility.
Uses AppleScript to run the shortcut via Shortcuts Events.
Parameters
	name - The name of the Shortcut to run

Returns
	:ok - Success with no output
	{:ok, output} - Success with output from the shortcut
	{:error, error} - Failure with error reason

Examples
OSAScriptAdapter.run_shortcut("My Shortcut")
=> :ok (if shortcut exists and returns no output)
=> {:ok, "result"} (if shortcut returns output)
=> {:error, error} (if not found or error occurs)

 run_shortcut(name, opts)

 @spec run_shortcut(String.t(), ExMacOSControl.Adapter.options()) ::
 :ok | {:ok, String.t()} | {:error, term()}

Executes a macOS Shortcut by name with input parameters.
Uses AppleScript to run the shortcut via Shortcuts Events. Supports passing
input data to the shortcut, which can be a string, number, map, or list.
Parameters
	name - The name of the Shortcut to run
	opts - Keyword list of options:	:input - Input data to pass to the shortcut (string, number, map, or list)

Returns
	:ok - Success with no output
	{:ok, output} - Success with output from the shortcut
	{:error, error} - Failure with error reason

Input Types
The :input option supports various data types:
	String: Passed directly as text
	Number: Passed as a numeric value
	Map: Serialized to JSON and passed as text
	List: Serialized to JSON and passed as text

Examples
Without input
OSAScriptAdapter.run_shortcut("My Shortcut")
=> :ok

With string input
OSAScriptAdapter.run_shortcut("Process Text", input: "Hello, World!")
=> {:ok, "processed result"}

With number input
OSAScriptAdapter.run_shortcut("Calculate", input: 42)
=> {:ok, "84"}

With map input (serialized as JSON)
OSAScriptAdapter.run_shortcut("Process Data", input: %{"name" => "John", "age" => 30})
=> {:ok, "result"}

With list input (serialized as JSON)
OSAScriptAdapter.run_shortcut("Process Items", input: ["item1", "item2", "item3"])
=> {:ok, "result"}

ExMacOSControl.Platform

Platform detection and validation utilities for ExMacOSControl.
This module provides functions to detect the current operating system,
validate that the code is running on macOS, check for osascript availability,
and query macOS version information.
Platform Detection
ExMacOSControl is designed to work exclusively on macOS. This module provides
utilities to ensure clean failures with helpful error messages when used on
unsupported platforms.
Examples
Basic Platform Checking
Check if running on macOS
if ExMacOSControl.Platform.macos?() do
 # Safe to use macOS-specific features
 ExMacOSControl.run_applescript("return 'Hello'")
end
Validation with Error Handling
Validate before running scripts (returns {:ok, ...} or {:error, ...})
case ExMacOSControl.Platform.validate_macos() do
 :ok ->
 # Proceed with macOS operations
 :ok

 {:error, error} ->
 # Handle error gracefully
 Logger.error("Platform error: #{error.message}")
end
Early Validation (Raises on Error)
Use in functions that require macOS
def my_macos_function do
 ExMacOSControl.Platform.validate_macos!()
 # Rest of implementation...
end
Version Checking
Check if running on macOS 13.0 or later
if ExMacOSControl.Platform.version_at_least?({13, 0, 0}) do
 # Use features available in macOS 13+
end
osascript Availability
Check if osascript is available
if ExMacOSControl.Platform.osascript_available?() do
 # Safe to execute AppleScript
end
Error Messages
When validation fails on non-macOS platforms, helpful error messages are
provided that include:
	The detected operating system
	Suggestions for alternative approaches
	Links to documentation

 Summary

 Types

 os_type()

 version()

 version_comparison()

 Functions

 compare_version(version1, version2)

 Compares two macOS version tuples.

 macos?()

 Returns true if running on macOS, false otherwise.

 macos_version()

 Returns the current macOS version as a string.

 macos_version!()

 Returns the current macOS version as a string, raising an exception if unavailable.

 os_type()

 Returns the current operating system type.

 osascript_available?()

 Checks if the osascript command is available on the system.

 parse_macos_version(version_string)

 Parses a macOS version string into a version tuple.

 validate_macos()

 Validates that the current platform is macOS.

 validate_macos!()

 Validates that the current platform is macOS, raising an exception if not.

 validate_osascript()

 Validates that the osascript command is available.

 validate_osascript!()

 Validates that the osascript command is available, raising an exception if not.

 version_at_least?(required_version)

 Checks if the current macOS version is at least the specified version.

 Types

 os_type()

 @type os_type() :: {atom(), atom()}

 version()

 @type version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}

 version_comparison()

 @type version_comparison() :: :lt | :eq | :gt

 Functions

 compare_version(version1, version2)

 @spec compare_version(version() | tuple(), version() | tuple()) ::
 version_comparison()

Compares two macOS version tuples.
Returns:
	:gt if the first version is greater than the second
	:lt if the first version is less than the second
	:eq if the versions are equal

Versions can be provided as 1, 2, or 3-element tuples:
	{major} is treated as {major, 0, 0}
	{major, minor} is treated as {major, minor, 0}
	{major, minor, patch} is used as-is

Examples
iex> ExMacOSControl.Platform.compare_version({14, 0, 0}, {13, 5, 1})
:gt

iex> ExMacOSControl.Platform.compare_version({13, 5, 1}, {14, 0, 0})
:lt

iex> ExMacOSControl.Platform.compare_version({14, 0, 0}, {14, 0, 0})
:eq

iex> ExMacOSControl.Platform.compare_version({14, 0}, {14, 0, 0})
:eq

 macos?()

 @spec macos?() :: boolean()

Returns true if running on macOS, false otherwise.
This function checks the OS type using :os.type/0 and returns true
only when the result is {:unix, :darwin}.
Examples
iex> ExMacOSControl.Platform.macos?()
true # On macOS

iex> ExMacOSControl.Platform.macos?()
false # On Linux or other platforms

 macos_version()

 @spec macos_version() ::
 {:ok, String.t()} | {:error, ExMacOSControl.PlatformError.t()}

Returns the current macOS version as a string.
Returns {:ok, version} where version is a string like "14.0" or "13.5.1",
or {:error, PlatformError.t()} if not running on macOS or if the version
cannot be determined.
The version is obtained by executing the sw_vers -productVersion command.
Examples
iex> ExMacOSControl.Platform.macos_version()
{:ok, "14.0"}

On non-macOS
iex> ExMacOSControl.Platform.macos_version()
{:error, %ExMacOSControl.PlatformError{}}

 macos_version!()

 @spec macos_version!() :: String.t()

Returns the current macOS version as a string, raising an exception if unavailable.
Returns a version string like "14.0" or "13.5.1", or raises
ExMacOSControl.PlatformError if not running on macOS.
Examples
iex> ExMacOSControl.Platform.macos_version!()
"14.0"
Errors
Raises ExMacOSControl.PlatformError if not running on macOS or if the
version cannot be determined.

 os_type()

 @spec os_type() :: os_type()

Returns the current operating system type.
This is a wrapper around :os.type/0 that can be used for more detailed
platform detection if needed.
Examples
iex> ExMacOSControl.Platform.os_type()
{:unix, :darwin} # On macOS

iex> ExMacOSControl.Platform.os_type()
{:unix, :linux} # On Linux

 osascript_available?()

 @spec osascript_available?() :: boolean()

Checks if the osascript command is available on the system.
Returns true if osascript can be found in the system PATH and is executable,
false otherwise.
On macOS, osascript should always be available as it's part of the base system.
On other platforms, this will return false.
Examples
iex> ExMacOSControl.Platform.osascript_available?()
true # On macOS

iex> ExMacOSControl.Platform.osascript_available?()
false # On Linux or if osascript is not installed

 parse_macos_version(version_string)

 @spec parse_macos_version(String.t()) :: {:ok, version()} | {:error, String.t()}

Parses a macOS version string into a version tuple.
Accepts version strings in formats like:
	"14.0" -> {14, 0, 0}
	"13.5.1" -> {13, 5, 1}
	"ProductVersion: 14.0" -> {14, 0, 0} (from sw_vers output)

Returns {:ok, {major, minor, patch}} on success, or {:error, reason} if
the version string cannot be parsed.
Examples
iex> ExMacOSControl.Platform.parse_macos_version("14.0")
{:ok, {14, 0, 0}}

iex> ExMacOSControl.Platform.parse_macos_version("13.5.1")
{:ok, {13, 5, 1}}

iex> ExMacOSControl.Platform.parse_macos_version("ProductVersion: 14.0")
{:ok, {14, 0, 0}}

iex> ExMacOSControl.Platform.parse_macos_version("invalid")
{:error, "Invalid version format"}

 validate_macos()

 @spec validate_macos() :: :ok | {:error, ExMacOSControl.PlatformError.t()}

Validates that the current platform is macOS.
Returns :ok if running on macOS, otherwise returns {:error, PlatformError.t()}.
Use this function when you want to handle platform errors gracefully rather
than raising an exception.
Examples
case ExMacOSControl.Platform.validate_macos() do
 :ok ->
 # Safe to proceed
 :ok

 {:error, error} ->
 Logger.error("Cannot run on this platform: #{error.message}")
 {:error, :unsupported_platform}
end

 validate_macos!()

 @spec validate_macos!() :: :ok

Validates that the current platform is macOS, raising an exception if not.
Returns :ok if running on macOS, otherwise raises ExMacOSControl.PlatformError.
Use this function when you want to fail fast on unsupported platforms,
typically at the beginning of functions that absolutely require macOS.
Examples
def run_automation do
 ExMacOSControl.Platform.validate_macos!()
 # Rest of implementation - only executes on macOS
end
Errors
Raises ExMacOSControl.PlatformError if not running on macOS.

 validate_osascript()

 @spec validate_osascript() :: :ok | {:error, ExMacOSControl.PlatformError.t()}

Validates that the osascript command is available.
Returns :ok if osascript is available, otherwise returns {:error, PlatformError.t()}.
Examples
case ExMacOSControl.Platform.validate_osascript() do
 :ok ->
 # Safe to execute AppleScript
 :ok

 {:error, error} ->
 Logger.error("osascript not available: #{error.message}")
 {:error, :missing_osascript}
end

 validate_osascript!()

 @spec validate_osascript!() :: :ok

Validates that the osascript command is available, raising an exception if not.
Returns :ok if osascript is available, otherwise raises ExMacOSControl.PlatformError.
Examples
def execute_applescript(code) do
 ExMacOSControl.Platform.validate_osascript!()
 # Proceed with execution
end
Errors
Raises ExMacOSControl.PlatformError if osascript is not available.

 version_at_least?(required_version)

 @spec version_at_least?(version() | tuple()) :: boolean()

Checks if the current macOS version is at least the specified version.
Returns true if running on macOS and the current version is greater than
or equal to the specified version, false otherwise.
The version can be specified as a 1, 2, or 3-element tuple:
	{major} is treated as {major, 0, 0}
	{major, minor} is treated as {major, minor, 0}
	{major, minor, patch} is used as-is

Examples
iex> ExMacOSControl.Platform.version_at_least?({13, 0, 0})
true # If running macOS 13.0 or later

iex> ExMacOSControl.Platform.version_at_least?({99, 0, 0})
false # Future version

On non-macOS
iex> ExMacOSControl.Platform.version_at_least?({13, 0, 0})
false

ExMacOSControl.Permissions

Provides functions for checking and managing macOS automation permissions.
macOS requires explicit permissions for automation tasks. This module helps you:
	Check if permissions are granted
	Get helpful instructions for granting permissions
	Open System Preferences to the correct settings

Common Permissions
Accessibility Permission
Required for UI automation (clicking menu items, pressing keys, etc.)
Automation Permission
Required for controlling specific applications via AppleScript/JXA
Full Disk Access
Required for some operations (e.g., reading Messages database)
Examples
Check accessibility permission
case Permissions.check_accessibility() do
 {:ok, :granted} ->
 IO.puts("Accessibility permission granted!")
 {:ok, :not_granted} ->
 IO.puts("Please grant accessibility permission")
 Permissions.show_accessibility_help()
 {:error, reason} ->
 IO.puts("Error checking permission: #{inspect(reason)}")
end

Check automation permission for a specific app
case Permissions.check_automation("Safari") do
 {:ok, :granted} -> :ok
 {:ok, :not_granted} ->
 Permissions.show_automation_help("Safari")
end

Open System Preferences to the right pane
Permissions.open_accessibility_preferences()
macOS Version Differences
	Ventura (13.x): System Preferences
	Sonoma (14.x+): System Settings
	Sequoia (15.x+): System Settings with updated UI

This module handles version differences automatically.

 Summary

 Functions

 check_accessibility()

 Checks if accessibility permission is granted for the current application.

 check_all()

 Checks all common permissions and returns a status map.

 check_automation(app_name)

 Checks if automation permission is granted for controlling a specific application.

 open_accessibility_preferences()

 Opens System Settings/Preferences to the Accessibility pane.

 open_automation_preferences()

 Opens System Settings/Preferences to the Automation pane.

 show_accessibility_help()

 Displays helpful instructions for granting accessibility permission.

 show_automation_help(app_name)

 Displays helpful instructions for granting automation permission for a specific app.

 Functions

 check_accessibility()

 @spec check_accessibility() ::
 {:ok, :granted | :not_granted} | {:error, ExMacOSControl.Error.t()}

Checks if accessibility permission is granted for the current application.
Accessibility permission is required for UI automation operations like:
	Clicking menu items
	Sending keystrokes
	Reading/modifying window properties

Returns
	{:ok, :granted} - Permission is granted
	{:ok, :not_granted} - Permission is not granted
	{:error, Error.t()} - Error checking permission

Examples
case check_accessibility() do
 {:ok, :granted} ->
 IO.puts("Ready for UI automation!")

 {:ok, :not_granted} ->
 show_accessibility_help()

 {:error, reason} ->
 IO.puts("Error: #{inspect(reason)}")
end
How It Works
Attempts a simple UI automation task. If it succeeds, permission is granted.
If it fails with a permission error, permission is not granted.

 check_all()

 @spec check_all() :: map()

Checks all common permissions and returns a status map.
This is useful for getting an overview of permission status.
Returns
A map with permission statuses:
%{
 accessibility: :granted | :not_granted | :error,
 safari_automation: :granted | :not_granted | :error,
 finder_automation: :granted | :not_granted | :error,
 # etc.
}
Examples
statuses = check_all()

Enum.each(statuses, fn {perm, status} ->
 IO.puts("#{perm}: #{status}")
end)

Output:
accessibility: granted
safari_automation: not_granted
finder_automation: granted

 check_automation(app_name)

 @spec check_automation(String.t()) ::
 {:ok, :granted | :not_granted} | {:error, ExMacOSControl.Error.t()}

Checks if automation permission is granted for controlling a specific application.
Automation permission is required to control apps via AppleScript/JXA.
Parameters
	app_name - Name of the application (e.g., "Safari", "Finder")

Returns
	{:ok, :granted} - Permission is granted
	{:ok, :not_granted} - Permission is not granted
	{:error, Error.t()} - Error checking permission

Examples
case check_automation("Safari") do
 {:ok, :granted} ->
 Safari.open_url("https://example.com")

 {:ok, :not_granted} ->
 show_automation_help("Safari")
end
How It Works
Attempts to get a simple property from the target application.
If it succeeds, permission is granted. If it fails with a permission error,
permission is not granted.

 open_accessibility_preferences()

 @spec open_accessibility_preferences() :: :ok | {:error, ExMacOSControl.Error.t()}

Opens System Settings/Preferences to the Accessibility pane.
This provides a quick way to access the accessibility settings.
Examples
open_accessibility_preferences()
Opens System Settings > Privacy & Security > Accessibility
Returns
	:ok - Settings opened successfully
	{:error, Error.t()} - Error opening settings

 open_automation_preferences()

 @spec open_automation_preferences() :: :ok | {:error, ExMacOSControl.Error.t()}

Opens System Settings/Preferences to the Automation pane.
This provides a quick way to access the automation settings.
Examples
open_automation_preferences()
Opens System Settings > Privacy & Security > Automation
Returns
	:ok - Settings opened successfully
	{:error, Error.t()} - Error opening settings

 show_accessibility_help()

 @spec show_accessibility_help() :: :ok

Displays helpful instructions for granting accessibility permission.
Prints step-by-step instructions tailored to the current macOS version.
Examples
show_accessibility_help()
Prints:
#
Accessibility Permission Required
================================
#
To grant accessibility permission:
#
1. Open System Settings
2. Go to Privacy & Security
3. Click on Accessibility
4. Click the lock icon to make changes
5. Find "Terminal" (or your app name)
6. Enable the checkbox
#
Or run: Permissions.open_accessibility_preferences()
Returns
:ok - Always returns :ok after displaying help

 show_automation_help(app_name)

 @spec show_automation_help(String.t()) :: :ok

Displays helpful instructions for granting automation permission for a specific app.
Parameters
	app_name - Name of the application (e.g., "Safari")

Examples
show_automation_help("Safari")
Prints instructions specific to Safari automation
Returns
:ok - Always returns :ok after displaying help

ExMacOSControl.Retry

Retry logic for transient failures in macOS automation.
This module provides automatic retry functionality with configurable backoff
strategies to handle transient failures like timeouts. It's particularly useful
when automating macOS operations that may temporarily fail due to system state
or application responsiveness.
Supported Backoff Strategies
	:exponential - Doubles the wait time between each retry (default)
	:linear - Uses a constant wait time between retries

When to Use Retry Logic
Retry logic is appropriate for:
	Timeout errors that may succeed on subsequent attempts
	Operations that depend on application state that may change
	Network-dependent operations within scripts
	UI automation that may be affected by system responsiveness

Do NOT use retry logic for:
	Syntax errors (these won't be fixed by retrying)
	Permission errors (user intervention required)
	Not found errors (resources won't appear by retrying)

Examples
Basic retry with exponential backoff (default)
Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(script)
end)

Custom max attempts with linear backoff
Retry.with_retry(fn ->
 ExMacOSControl.run_applescript(script, timeout: 5000)
end, max_attempts: 5, backoff: :linear)

Using with application modules
Retry.with_retry(fn ->
 ExMacOSControl.Finder.list_windows()
end, max_attempts: 3)
Telemetry
This module emits telemetry events for retry operations:
	[:ex_macos_control, :retry, :start] - When retry logic begins
	[:ex_macos_control, :retry, :attempt] - On each retry attempt
	[:ex_macos_control, :retry, :stop] - When retry logic completes
	[:ex_macos_control, :retry, :error] - When all retries are exhausted

Event Metadata
	attempt - Current attempt number (1-indexed)
	max_attempts - Maximum number of attempts configured
	backoff - Backoff strategy in use
	sleep_time - Time slept before retry (in milliseconds)
	error - Error that triggered retry or final error

 Summary

 Functions

 with_retry(fun, opts \\ [])

 Executes a function with automatic retry on timeout errors.

 Functions

 with_retry(fun, opts \\ [])

 @spec with_retry(fun :: (-> {:ok, any()} | {:error, any()}), opts :: keyword()) ::
 {:ok, any()} | {:error, any()}

Executes a function with automatic retry on timeout errors.
Parameters
	fun - A zero-arity function that returns {:ok, result} or {:error, error}
	opts - Keyword list of options:	:max_attempts - Maximum number of attempts (default: 3)
	:backoff - Backoff strategy, :exponential or :linear (default: :exponential)

Returns
	{:ok, result} - If the function succeeds within max attempts
	{:error, error} - If all attempts fail or a non-retryable error occurs

Retry Behavior
Only timeout errors (errors with type: :timeout) are retried. All other errors
are returned immediately without retrying.
Examples
With default options (3 attempts, exponential backoff)
iex> Retry.with_retry(fn -> {:ok, "success"} end)
{:ok, "success"}

With timeout error that succeeds on retry
iex> state = :ets.new(:test, [:public])
iex> :ets.insert(state, {:attempts, 0})
iex> fun = fn ->
...> [{:attempts, count}] = :ets.lookup(state, :attempts)
...> :ets.insert(state, {:attempts, count + 1})
...> if count < 2 do
...> {:error, %{type: :timeout, message: "timeout"}}
...> else
...> {:ok, "success"}
...> end
...> end
iex> Retry.with_retry(fun)
{:ok, "success"}

With non-timeout error (no retry)
iex> Retry.with_retry(fn -> {:error, %{type: :syntax_error}} end)
{:error, %{type: :syntax_error}}

With custom options
iex> Retry.with_retry(fn -> {:ok, "done"} end, max_attempts: 5, backoff: :linear)
{:ok, "done"}

ExMacOSControl.Script

Simple DSL for building AppleScript programmatically.
This module provides a minimal, pragmatic DSL for constructing common
AppleScript patterns using Elixir syntax. It's designed for simple use cases
like tell blocks and basic commands.
Note: This is an optional helper. For complex scripts, use raw AppleScript
strings with ExMacOSControl.run_applescript/1.
Examples
alias ExMacOSControl.Script

Basic tell block
script = Script.tell("Finder", [
 "activate"
])

Generates:
tell application "Finder"
activate
end tell

ExMacOSControl.run_applescript(script)

Tell block with commands and arguments
script = Script.tell("Finder", [
 "activate",
 Script.cmd("open", "Macintosh HD")
])

Generates:
tell application "Finder"
activate
open "Macintosh HD"
end tell

Nested tell blocks
script = Script.tell("System Events", [
 Script.tell_obj("process", "Safari", [
 "set frontmost to true"
])
])

Generates:
tell application "System Events"
tell process "Safari"
set frontmost to true
end tell
end tell
Limitations
This DSL is intentionally minimal and does NOT support:
	Complex control flow (if/while/repeat)
	Variable assignments
	Handlers/subroutines
	Full AppleScript language coverage

For these cases, use raw AppleScript strings instead.

 Summary

 Functions

 cmd(command, arg)

 Generates a command with arguments.

 tell(app_name, commands)

 Creates a tell block for an application.

 tell_obj(object_type, object_name, commands)

 Creates a tell block for a specific object.

 Functions

 cmd(command, arg)

 @spec cmd(
 String.t(),
 String.t() | number() | boolean() | [String.t() | number() | boolean()]
) ::
 String.t()

Generates a command with arguments.
The argument will be automatically quoted if it's a string. For lists,
all-numeric lists are formatted as AppleScript lists (e.g., {0, 0, 800, 600}),
while other lists are formatted as space-separated quoted values.
Parameters
	command - The command string
	arg - The argument (string, number, boolean, or list)

Returns
A string containing the command with its argument.
Examples
alias ExMacOSControl.Script

Single string argument
Script.cmd("open", "Macintosh HD")
=> "open \"Macintosh HD\""

Single numeric argument
Script.cmd("set volume", 50)
=> "set volume 50"

Single boolean argument
Script.cmd("set muted", true)
=> "set muted true"

List of strings
Script.cmd("make", ["new", "window"])
=> "make \"new\" \"window\""

List of numbers (formatted as AppleScript list)
Script.cmd("set bounds of window 1 to", [0, 0, 800, 600])
=> "set bounds of window 1 to {0, 0, 800, 600}"

 tell(app_name, commands)

 @spec tell(String.t(), [String.t()]) :: String.t()

Creates a tell block for an application.
Generates an AppleScript tell application block with the given application
name and commands.
Parameters
	app_name - The name of the application (e.g., "Finder", "Safari")
	commands - A list of command strings to execute within the tell block

Returns
A string containing the formatted AppleScript code.
Examples
alias ExMacOSControl.Script

Simple tell block
Script.tell("Finder", ["activate"])
=> "tell application \"Finder\"\n activate\nend tell"

Multiple commands
Script.tell("Finder", [
 "activate",
 Script.cmd("open", "Macintosh HD")
])
=> "tell application \"Finder\"\n activate\n open \"Macintosh HD\"\nend tell"

 tell_obj(object_type, object_name, commands)

 @spec tell_obj(String.t(), String.t(), [String.t()]) :: String.t()

Creates a tell block for a specific object.
Generates an AppleScript tell block targeting a specific object (like a
process, window, or document) with the given commands.
Parameters
	object_type - The type of object (e.g., "process", "window", "document")
	object_name - The name of the object
	commands - A list of command strings to execute within the tell block

Returns
A string containing the formatted AppleScript code.
Examples
alias ExMacOSControl.Script

Tell a specific process
Script.tell_obj("process", "Safari", ["set frontmost to true"])
=> "tell process \"Safari\"\n set frontmost to true\nend tell"

ExMacOSControl.Finder

Automation helpers for macOS Finder.
Provides functions to control Finder windows, navigate folders, manage
selections, and configure view settings.
Examples
Get selected files
{:ok, files} = ExMacOSControl.Finder.get_selection()
=> {:ok, ["/Users/me/file.txt"]}

Open Finder at location
:ok = ExMacOSControl.Finder.open_location("/Users/me/Documents")

Create new window
:ok = ExMacOSControl.Finder.new_window("/Applications")

Get current folder
{:ok, path} = ExMacOSControl.Finder.get_current_folder()
=> {:ok, "/Users/me/Documents"}

Set view mode
:ok = ExMacOSControl.Finder.set_view(:list)
View Modes
Supported view modes:
	:icon - Icon view
	:list - List view
	:column - Column view
	:gallery - Gallery/Flow view (called "flow view" on older macOS, "gallery view" on newer)

Notes
	Finder is always running on macOS
	Some operations require Finder to be activated
	Paths should be POSIX format (e.g., "/Users/me/Documents")

Permissions
This module requires:
	Automation permissions for Finder

See the Permissions guide for setup instructions.

 Summary

 Functions

 get_current_folder()

 Get the path of the current Finder window's folder.

 get_selection()

 Get the list of currently selected files/folders in Finder.

 new_window(path)

 Open a new Finder window at specified path.

 open_location(path)

 Open Finder at a specific location.

 set_view(view)

 Set the view mode for the current Finder window.

 Functions

 get_current_folder()

 @spec get_current_folder() :: {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Get the path of the current Finder window's folder.
Returns the POSIX path of the folder shown in the frontmost Finder window.
If no Finder windows are open, returns an empty string.
Returns
	{:ok, path} - POSIX path to the current folder
	{:ok, ""} - If no Finder windows are open
	{:error, error} - If an error occurs

Examples
With a Finder window open
ExMacOSControl.Finder.get_current_folder()
=> {:ok, "/Users/me/Documents"}

With no Finder windows
ExMacOSControl.Finder.get_current_folder()
=> {:ok, ""}

 get_selection()

 @spec get_selection() :: {:ok, [String.t()]} | {:error, ExMacOSControl.Error.t()}

Get the list of currently selected files/folders in Finder.
Returns a list of POSIX paths for all currently selected items in the
frontmost Finder window. If no items are selected, returns an empty list.
Returns
	{:ok, paths} - List of POSIX paths to selected items
	{:error, error} - If Finder is not available or an error occurs

Examples
With selected files
ExMacOSControl.Finder.get_selection()
=> {:ok, ["/Users/me/file.txt", "/Users/me/file2.txt"]}

With no selection
ExMacOSControl.Finder.get_selection()
=> {:ok, []}

 new_window(path)

 @spec new_window(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Open a new Finder window at specified path.
Creates a new Finder window at the specified location and activates
Finder. This always creates a new window, even if a window at this
location already exists.
Parameters
	path - POSIX path to the folder to open (e.g., "/Applications")

Returns
	:ok - Successfully created the new window
	{:error, error} - If the path doesn't exist or is invalid

Examples
ExMacOSControl.Finder.new_window("/Applications")
=> :ok

ExMacOSControl.Finder.new_window("/invalid/path")
=> {:error, %ExMacOSControl.Error{...}}

 open_location(path)

 @spec open_location(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Open Finder at a specific location.
Opens a Finder window at the specified path and activates Finder
(brings it to the front). If a Finder window is already open at this
location, it will be brought to the front.
Parameters
	path - POSIX path to the folder to open (e.g., "/Users/me/Documents")

Returns
	:ok - Successfully opened the location
	{:error, error} - If the path doesn't exist or is invalid

Examples
ExMacOSControl.Finder.open_location("/Users/me/Documents")
=> :ok

ExMacOSControl.Finder.open_location("/nonexistent/path")
=> {:error, %ExMacOSControl.Error{...}}

 set_view(view)

 @spec set_view(:icon | :list | :column | :gallery) ::
 :ok | {:error, ExMacOSControl.Error.t()}

Set the view mode for the current Finder window.
Changes the view mode of the frontmost Finder window to the specified
view. The window must be open for this operation to succeed.
Parameters
	view - View mode atom: :icon, :list, :column, or :gallery

Returns
	:ok - Successfully changed the view mode
	{:error, error} - If no windows are open, invalid view mode, or other error

Examples
ExMacOSControl.Finder.set_view(:icon)
=> :ok

ExMacOSControl.Finder.set_view(:list)
=> :ok

ExMacOSControl.Finder.set_view(:invalid)
=> {:error, %ExMacOSControl.Error{...}}

ExMacOSControl.Mail

Automation helpers for macOS Mail app.
Provides functions to send emails, check unread counts, and search mailboxes
programmatically using AppleScript.
Requirements
	macOS Mail.app must be installed (pre-installed on macOS)
	Mail.app must be configured with at least one email account for sending
	Automation permission for Mail.app (macOS may prompt on first use)

Permissions
When using Mail automation, macOS may prompt for permission to control Mail.app.
This is a one-time prompt that should be accepted.
Examples
Send an email
:ok = ExMacOSControl.Mail.send_email(
 to: "recipient@example.com",
 subject: "Hello",
 body: "This is an automated email."
)

Check unread count
{:ok, count} = ExMacOSControl.Mail.get_unread_count()

Check unread count for specific mailbox
{:ok, count} = ExMacOSControl.Mail.get_unread_count("Work")

Search mailbox
{:ok, messages} = ExMacOSControl.Mail.search_mailbox("INBOX", "important")
Notes
	send_email/1 sends emails immediately - there is no "draft" mode
	Email addresses are validated with basic checks only
	Search is case-insensitive and searches subject lines
	All functions require Mail.app to be accessible

Safety
Be cautious when using send_email/1 in automated scripts. Consider:
	Adding confirmation prompts for production use
	Testing with safe recipient addresses first
	Implementing rate limiting if sending multiple emails

 Summary

 Functions

 get_unread_count()

 Gets the count of unread messages in the inbox.

 get_unread_count(mailbox_name)

 Gets the count of unread messages in a specific mailbox.

 search_mailbox(mailbox_name, search_term)

 Searches for messages in a mailbox.

 send_email(opts)

 Sends an email using the macOS Mail app.

 Functions

 get_unread_count()

 @spec get_unread_count() ::
 {:ok, non_neg_integer()} | {:error, ExMacOSControl.Error.t()}

Gets the count of unread messages in the inbox.
Returns the number of unread messages in the default inbox mailbox.
Returns
	{:ok, count} - Number of unread messages (integer >= 0)
	{:error, error} - If Mail is not running or accessible

Examples
ExMacOSControl.Mail.get_unread_count()
=> {:ok, 42}

When inbox is empty
ExMacOSControl.Mail.get_unread_count()
=> {:ok, 0}

 get_unread_count(mailbox_name)

 @spec get_unread_count(String.t()) ::
 {:ok, non_neg_integer()} | {:error, ExMacOSControl.Error.t()}

Gets the count of unread messages in a specific mailbox.
Returns the number of unread messages in the specified mailbox.
Parameters
	mailbox_name - Name of the mailbox to check

Returns
	{:ok, count} - Number of unread messages (integer >= 0)
	{:error, error} - If mailbox doesn't exist or Mail is not accessible

Examples
ExMacOSControl.Mail.get_unread_count("Work")
=> {:ok, 5}

ExMacOSControl.Mail.get_unread_count("Archive")
=> {:ok, 0}

 search_mailbox(mailbox_name, search_term)

 @spec search_mailbox(String.t(), String.t()) ::
 {:ok, [map()]} | {:error, ExMacOSControl.Error.t()}

Searches for messages in a mailbox.
Searches message subjects in the specified mailbox for the given search term.
The search is case-insensitive.
Parameters
	mailbox_name - Name of the mailbox to search
	search_term - Term to search for in message subjects

Returns
	{:ok, messages} - List of matching messages
	{:ok, []} - If no matches found
	{:error, error} - If mailbox doesn't exist or Mail is not accessible

Each message is a map with the following keys:
	:subject - Message subject (string)
	:from - Sender email/name (string)
	:date - Date received (string)

Examples
ExMacOSControl.Mail.search_mailbox("INBOX", "invoice")
=> {:ok, [
%{subject: "Invoice #123", from: "billing@example.com", date: "2025-01-15"},
%{subject: "Re: Invoice", from: "support@example.com", date: "2025-01-14"}
]}

No matches
ExMacOSControl.Mail.search_mailbox("INBOX", "nonexistent")
=> {:ok, []}
Notes
	Search is case-insensitive
	Only searches subject lines
	Results are ordered by date (newest first)

 send_email(opts)

 @spec send_email(keyword()) :: :ok | {:error, ExMacOSControl.Error.t()}

Sends an email using the macOS Mail app.
Creates and sends an email immediately with the specified recipients and content.
Mail.app must be configured with an email account.
Options
	:to - (required) Recipient email address (string)
	:subject - (required) Email subject (string)
	:body - (required) Email body text (string)
	:cc - (optional) CC recipients (list of strings)
	:bcc - (optional) BCC recipients (list of strings)

Returns
	:ok - Email sent successfully
	{:error, error} - Failed to send (see error types below)

Error Types
	:execution_error - Mail not configured, invalid email, or send failed
	:execution_error - Missing required fields

Examples
iex> ExMacOSControl.Mail.send_email(
...> to: "friend@example.com",
...> subject: "Hello",
...> body: "How are you?"
...>)
:ok

iex> ExMacOSControl.Mail.send_email(
...> to: "team@example.com",
...> subject: "Meeting Notes",
...> body: "Here are today's notes.",
...> cc: ["manager@example.com"]
...>)
:ok
Safety Notes
	Email is sent immediately - there is no undo
	Verify recipient addresses before sending
	Consider adding confirmation for production use

Requirements
	Mail.app must be configured with an email account
	Network connection required
	Automation permission for Mail.app

ExMacOSControl.Messages

Provides functions for automating the Messages application on macOS.
This module enables you to send iMessages and SMS, retrieve messages,
list chats, and check unread counts.
Safety Warning
⚠️ The send_message functions will actually send real messages.
Be careful when using these functions, especially in automated tests
or scripts. All integration tests are skipped by default to prevent
accidental message sending.
Examples
Send a message to a phone number
ExMacOSControl.Messages.send_message("+1234567890", "Hello!")
=> :ok

Send to a contact name
ExMacOSControl.Messages.send_message("John Doe", "Hey!")
=> :ok

Send to a group chat
ExMacOSControl.Messages.send_message(
 "John Doe & Jane Smith",
 "Hello everyone!",
 group_chat: true
)
=> :ok

Specify service (iMessage or SMS)
ExMacOSControl.Messages.send_message(
 "+1234567890",
 "Hello!",
 service: :sms
)
=> :ok

Get recent messages from a chat
{:ok, messages} = ExMacOSControl.Messages.get_recent_messages("+1234567890")
=> {:ok, [
%{from: "...", text: "...", timestamp: "..."},
...
]}

List all chats
{:ok, chats} = ExMacOSControl.Messages.list_chats()
=> {:ok, [
%{id: "...", name: "...", unread: 0},
...
]}

Get unread count
{:ok, count} = ExMacOSControl.Messages.get_unread_count()
=> {:ok, 0} # Note: Currently returns 0 as placeholder
Group Chat Support
To send messages to group chats, use the group_chat: true option:
ExMacOSControl.Messages.send_message(
 "Alice Smith & Bob Jones & Carol White",
 "Meeting at 3pm!",
 group_chat: true
)
The recipient string should be the participant full names joined by " & ".
The function will automatically find the matching group chat by calling
list_chats() and matching the participant names.
Permissions
Messages automation requires:
	Automation permission for Terminal/your app to control Messages
	Full Disk Access may be needed for reading message history

You can grant these in System Preferences > Privacy & Security.
Limitations
	The :service option (iMessage/SMS) is currently ignored due to AppleScript API limitations
	get_unread_count() returns 0 as the Messages AppleScript API doesn't expose unread counts
	For real unread counts, you would need Full Disk Access and direct SQLite database queries

 Summary

 Functions

 get_recent_messages(recipient)

 Gets recent messages from a chat with the specified recipient.

 get_unread_count()

 Gets the total number of unread messages across all chats.

 list_chats()

 Lists all active chats in the Messages app.

 send_message(recipient, text)

 Sends a message to a recipient via Messages app.

 send_message(recipient, text, opts)

 Sends a message with additional options.

 Functions

 get_recent_messages(recipient)

 @spec get_recent_messages(String.t()) ::
 {:ok, [map()]} | {:error, ExMacOSControl.Error.t()}

Gets recent messages from a chat with the specified recipient.
Returns the most recent messages (typically last 10-20) from the conversation.
Parameters
	recipient - Phone number or contact name

Returns
	{:ok, [message]} - List of message maps with :from, :text, :timestamp
	{:error, Error.t()} on failure

Examples
get_recent_messages("+1234567890")
=> {:ok, [
%{
from: "+1234567890",
text: "Hello!",
timestamp: "2024-01-15 14:30:00"
},
...
]}
Errors
	:not_found - Chat not found or Messages app not found
	:execution_error - Error retrieving messages
	:permission_denied - Full Disk Access may be required

 get_unread_count()

 @spec get_unread_count() ::
 {:ok, non_neg_integer()} | {:error, ExMacOSControl.Error.t()}

Gets the total number of unread messages across all chats.
Returns
	{:ok, count} - Number of unread messages
	{:error, Error.t()} on failure

Examples
get_unread_count()
=> {:ok, 5}
Errors
	:execution_error - Error retrieving unread count
	:not_found - Messages app not found

 list_chats()

 @spec list_chats() :: {:ok, [map()]} | {:error, ExMacOSControl.Error.t()}

Lists all active chats in the Messages app.
Returns a list of chats with their IDs, names, and unread counts.
Returns
	{:ok, [chat]} - List of chat maps with :id, :name, :unread
	{:error, Error.t()} on failure

Examples
list_chats()
=> {:ok, [
%{id: "chat1", name: "+1234567890", unread: 2},
%{id: "chat2", name: "John Doe", unread: 0},
...
]}
Errors
	:execution_error - Error retrieving chats
	:not_found - Messages app not found

 send_message(recipient, text)

 @spec send_message(String.t(), String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Sends a message to a recipient via Messages app.
The recipient can be either a phone number (with country code) or a contact name.
By default, Messages will use iMessage if available, falling back to SMS.
Parameters
	recipient - Phone number (e.g., "+1234567890") or contact name (e.g., "John Doe")
	text - The message content to send

Returns
	:ok on success
	{:error, Error.t()} on failure

Safety Warning
⚠️ This function sends real messages! Use with caution.
Examples
Send to phone number
send_message("+1234567890", "Hello from ExMacOSControl!")
=> :ok

Send to contact name
send_message("John Doe", "Meeting at 3pm?")
=> :ok
Errors
	:execution_error - Messages app error or invalid recipient
	:not_found - Messages app not found
	:permission_denied - Automation permission required

 send_message(recipient, text, opts)

 @spec send_message(String.t(), String.t(), keyword()) ::
 :ok | {:error, ExMacOSControl.Error.t()}

Sends a message with additional options.
Parameters
	recipient - Phone number, contact name, or group chat participant names
	text - The message content to send
	opts - Keyword list of options:	:service - :imessage or :sms (default: automatically determined)
	:group_chat - true if sending to a group chat (default: false)

Returns
	:ok on success
	{:error, Error.t()} on failure

Examples
Force SMS (not iMessage)
send_message("+1234567890", "Hello!", service: :sms)
=> :ok

Force iMessage
send_message("john@icloud.com", "Hello!", service: :imessage)
=> :ok

Send to a group chat (participant names joined by " & ")
send_message("John Doe & Jane Smith", "Hello everyone!", group_chat: true)
=> :ok
Group Chat Usage
When group_chat: true is specified, the function will:
	Call list_chats() to get all available chats
	Find a chat where participant names match the recipient string
	Use the chat ID to send the message

The recipient string for group chats should be participant full names
joined by " & " (e.g., "Alice Smith & Bob Jones & Carol White").
Errors
	:not_found - Group chat not found when group_chat: true
	:execution_error - Messages app error or invalid recipient

ExMacOSControl.Safari

Automation helpers for Safari browser.
Provides functions to control Safari including navigation, JavaScript execution,
and tab management. This module is a thin wrapper over AppleScript calls to Safari,
providing a convenient Elixir API for common browser automation tasks.
Examples
Open URL in new tab
:ok = ExMacOSControl.Safari.open_url("https://example.com")

Get current tab URL
{:ok, url} = ExMacOSControl.Safari.get_current_url()
=> {:ok, "https://example.com"}

Execute JavaScript in current tab
{:ok, result} = ExMacOSControl.Safari.execute_javascript("document.title")
=> {:ok, "Example Domain"}

List all tabs
{:ok, urls} = ExMacOSControl.Safari.list_tabs()
=> {:ok, ["https://example.com", "https://google.com"]}

Close a tab by index (1-based)
:ok = ExMacOSControl.Safari.close_tab(2)
Permissions
This module requires automation permission for Safari. On first use,
macOS may prompt the user to grant permission in:
System Settings → Privacy & Security → Automation
(Or System Preferences → Security & Privacy → Privacy → Automation on older macOS)
JavaScript Execution Requirement
To use execute_javascript/1, you must enable "Allow JavaScript from Apple Events"
in Safari:
	Open Safari
	Go to Safari → Settings (or Preferences)
	Click the "Advanced" tab
	Check "Show features for web developers" (if not already checked)
	Go to the "Developer" tab (newly visible)
	Check "Allow JavaScript from Apple Events"

Without this setting, execute_javascript/1 will return an error.
Notes
	Safari must be installed (standard on macOS)
	Most operations will launch Safari if it's not already running
	Tab indices are 1-based (not 0-based), following AppleScript conventions
	JavaScript execution happens in the current tab of the front window
	URL opening creates new tabs in the front window
	If no Safari windows exist, open_url/1 will create one

 Summary

 Functions

 close_tab(index)

 Closes a tab in Safari by its index.

 execute_javascript(script)

 Executes JavaScript in the current tab of Safari.

 get_current_url()

 Gets the URL of the current tab in Safari.

 list_tabs()

 Lists URLs of all tabs in all Safari windows.

 open_url(url)

 Opens a URL in a new tab in Safari.

 Functions

 close_tab(index)

 @spec close_tab(pos_integer()) :: :ok | {:error, ExMacOSControl.Error.t()}

Closes a tab in Safari by its index.
Closes the tab at the specified index (1-based) in the frontmost Safari window.
Tab indices follow AppleScript conventions where 1 is the first tab.
Parameters
	index - The 1-based index of the tab to close (1 is the first tab)

Returns
	:ok - Tab was closed successfully
	{:error, error} - If the index is out of bounds or no windows are open

Examples
ExMacOSControl.Safari.close_tab(1)
=> :ok

ExMacOSControl.Safari.close_tab(2)
=> :ok

Index out of bounds
ExMacOSControl.Safari.close_tab(999)
=> {:error, %ExMacOSControl.Error{type: :execution_error, ...}}
Notes
	Tab indices are 1-based (1 is the first tab, 2 is the second, etc.)
	Closing the last tab in a window may close the window
	If the index is out of bounds, Safari will return an error

 execute_javascript(script)

 @spec execute_javascript(String.t()) ::
 {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Executes JavaScript in the current tab of Safari.
Executes the provided JavaScript code in the current tab of the frontmost
Safari window. Returns the result of the JavaScript execution as a string.
Parameters
	script - The JavaScript code to execute

Returns
	{:ok, result} - The result of the JavaScript execution as a string
	{:error, error} - If no windows are open or execution fails

Examples
ExMacOSControl.Safari.execute_javascript("2 + 2")
=> {:ok, "4"}

ExMacOSControl.Safari.execute_javascript("document.title")
=> {:ok, "Example Domain"}

ExMacOSControl.Safari.execute_javascript("window.location.href")
=> {:ok, "https://example.com/"}
Notes
	The current tab must have a page loaded for JavaScript execution to work
	Some JavaScript operations may require the page to be fully loaded
	Results are always returned as strings

 get_current_url()

 @spec get_current_url() :: {:ok, String.t()} | {:error, ExMacOSControl.Error.t()}

Gets the URL of the current tab in Safari.
Returns the URL of the current tab in the frontmost Safari window.
If no Safari windows are open, returns an empty string.
Returns
	{:ok, url} - The URL of the current tab
	{:ok, ""} - If no Safari windows are open
	{:error, error} - If an error occurs

Examples
ExMacOSControl.Safari.get_current_url()
=> {:ok, "https://example.com"}

When no windows are open
ExMacOSControl.Safari.get_current_url()
=> {:ok, ""}

 list_tabs()

 @spec list_tabs() :: {:ok, [String.t()]} | {:error, ExMacOSControl.Error.t()}

Lists URLs of all tabs in all Safari windows.
Returns a list of URLs for all open tabs across all Safari windows.
If no tabs are open, returns an empty list.
Returns
	{:ok, urls} - List of URLs as strings
	{:ok, []} - If no tabs are open
	{:error, error} - If an error occurs

Examples
ExMacOSControl.Safari.list_tabs()
=> {:ok, ["https://example.com", "https://google.com", "https://github.com"]}

When no tabs are open
ExMacOSControl.Safari.list_tabs()
=> {:ok, []}
Notes
	Tabs are listed in order: first all tabs from window 1, then window 2, etc.
	URLs are returned as they appear in Safari (may include fragments, query params, etc.)

 open_url(url)

 @spec open_url(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Opens a URL in a new tab in Safari.
Activates Safari and opens the specified URL in a new tab. If Safari is not
running, it will be launched. If no Safari windows exist, a new window will
be created automatically.
Parameters
	url - The URL to open (should include protocol, e.g., "https://example.com")

Returns
	:ok - URL was opened successfully
	{:error, error} - If Safari is not available or another error occurs

Examples
ExMacOSControl.Safari.open_url("https://example.com")
=> :ok

ExMacOSControl.Safari.open_url("https://github.com/elixir-lang/elixir")
=> :ok

ExMacOSControl.SystemEvents

Automation helpers for macOS System Events.
Provides process management, UI automation, and file operation capabilities including listing,
launching, quitting processes, menu clicking, keystroke simulation, window management,
and Finder integration.
This module is a thin wrapper over AppleScript calls to System Events and Finder, providing
a convenient Elixir API for common automation tasks.
Permissions
Process Management: Requires automation permission for System Events. On first use,
macOS may prompt the user to grant permission in:
System Settings → Privacy & Security → Automation
(Or System Preferences → Security & Privacy → Privacy → Automation on older macOS)
UI Automation: Requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility
(Or System Preferences → Security & Privacy → Privacy → Accessibility on older macOS)
Add Terminal (or your Elixir runtime) to the list of allowed applications.
File Operations: Requires Finder access (usually granted automatically).
Examples
Process management (A1)
{:ok, processes} = ExMacOSControl.SystemEvents.list_processes()
=> {:ok, ["Safari", "Finder", "Terminal", ...]}

{:ok, true} = ExMacOSControl.SystemEvents.process_exists?("Safari")

:ok = ExMacOSControl.SystemEvents.launch_application("Safari")

:ok = ExMacOSControl.SystemEvents.quit_application("Safari")

UI automation (A2)
:ok = ExMacOSControl.SystemEvents.click_menu_item("Safari", "File", "New Tab")

:ok = ExMacOSControl.SystemEvents.press_key("Safari", "t")

:ok = ExMacOSControl.SystemEvents.press_key("Safari", "t", using: [:command])

{:ok, props} = ExMacOSControl.SystemEvents.get_window_properties("Safari")
=> {:ok, %{position: [100, 100], size: [800, 600], title: "Google"}}

:ok = ExMacOSControl.SystemEvents.set_window_bounds("Calculator",
 position: [100, 100],
 size: [400, 500]
)

File operations (A3)
:ok = ExMacOSControl.SystemEvents.reveal_in_finder("/Users/me/file.txt")

{:ok, selected} = ExMacOSControl.SystemEvents.get_selected_finder_items()
=> {:ok, ["/Users/me/file1.txt", "/Users/me/file2.txt"]}

:ok = ExMacOSControl.SystemEvents.trash_file("/Users/me/old_file.txt")
Notes
	All functions delegate to AppleScript via System Events or Finder
	Applications may prompt for quit confirmation dialogs
	Some applications (like Finder) cannot be quit via normal methods
	Application names are case-sensitive
	launch_application/1 will bring an already-running app to the front
	UI automation functions require Accessibility permissions
	File operation paths must be absolute (start with /)

 Summary

 Functions

 activate_application(app_name)

 Activates an application (alias for launch_application/1).

 click_menu_item(app_name, menu_name, menu_item_name)

 Clicks a menu item in an application's menu bar.

 get_selected_finder_items()

 Gets the list of currently selected items in Finder.

 get_window_properties(app_name)

 Gets properties of an application's front window.

 launch_application(app_name)

 Launches an application.

 list_processes()

 Lists all running application processes.

 press_key(app_name, key)

 Sends a keystroke to an application.

 press_key(app_name, key, list)

 Sends a keystroke with modifier keys to an application.

 process_exists?(app_name)

 Checks if a specific process is running.

 quit_application(app_name)

 Quits an application gracefully.

 reveal_in_finder(path)

 Reveals a file or folder in Finder.

 set_window_bounds(app_name, list)

 Sets the position and size of an application's front window.

 trash_file(path)

 Moves a file or folder to the Trash.

 Functions

 activate_application(app_name)

 @spec activate_application(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Activates an application (alias for launch_application/1).
This is an alias for launch_application/1 provided for semantic clarity.
Use this when you want to bring an already-running application to the front,
or use launch_application/1 when you're starting an application.
Both functions have identical behavior: they launch the app if it's not running,
or bring it to the front if it is.
Parameters
	app_name - The name of the application to activate (case-sensitive)

Returns
	:ok - Application was activated successfully
	{:error, error} - If the application is not found or cannot be activated

Examples
ExMacOSControl.SystemEvents.activate_application("Safari")
=> :ok

Equivalent to:
ExMacOSControl.SystemEvents.launch_application("Safari")
=> :ok

 click_menu_item(app_name, menu_name, menu_item_name)

 @spec click_menu_item(String.t(), String.t(), String.t()) ::
 :ok | {:error, ExMacOSControl.Error.t()}

Clicks a menu item in an application's menu bar.
This function requires macOS Accessibility permission. It will click the specified
menu item through System Events UI automation.
Parameters
	app_name - The name of the application (case-sensitive)
	menu_name - The name of the menu (e.g., "File", "Edit")
	menu_item_name - The name of the menu item to click

Returns
	:ok - Menu item was clicked successfully
	{:error, error} - If the application is not running, menu not found, item not found,
or Accessibility permission is denied

Examples
ExMacOSControl.SystemEvents.click_menu_item("Safari", "File", "New Tab")
=> :ok

ExMacOSControl.SystemEvents.click_menu_item("TextEdit", "Format", "Make Plain Text")
=> :ok
Permissions
Requires Accessibility permission. If not granted, the function will return:
{:error, %ExMacOSControl.Error{type: :permission_denied, ...}}
Enable in: System Settings → Privacy & Security → Accessibility

 get_selected_finder_items()

 @spec get_selected_finder_items() ::
 {:ok, [String.t()]} | {:error, ExMacOSControl.Error.t()}

Gets the list of currently selected items in Finder.
Returns the POSIX paths of all items currently selected in the frontmost
Finder window.
Returns
	{:ok, paths} - List of POSIX paths (empty list if nothing selected)
	{:error, error} - If Finder is not available or another error occurs

Examples
iex> ExMacOSControl.SystemEvents.get_selected_finder_items()
{:ok, ["/Users/me/file1.txt", "/Users/me/file2.txt"]}

iex> ExMacOSControl.SystemEvents.get_selected_finder_items()
{:ok, []}
Notes
	Returns an empty list if no items are selected
	All returned paths are absolute POSIX paths
	If Finder is not running, an error will be returned

 get_window_properties(app_name)

 @spec get_window_properties(String.t()) ::
 {:ok, %{position: [integer()], size: [integer()], title: String.t()} | nil}
 | {:error, ExMacOSControl.Error.t()}

Gets properties of an application's front window.
Returns the position, size, and title of the frontmost window of the specified
application.
Parameters
	app_name - The name of the application (case-sensitive)

Returns
	{:ok, %{position: [x, y], size: [width, height], title: title}} - Window properties
	{:ok, nil} - If the application has no windows
	{:error, error} - If application not running or permission denied

Examples
ExMacOSControl.SystemEvents.get_window_properties("Safari")
=> {:ok, %{position: [100, 100], size: [800, 600], title: "Google"}}

ExMacOSControl.SystemEvents.get_window_properties("Calculator")
=> {:ok, %{position: [500, 300], size: [250, 330], title: "Calculator"}}

Application with no windows
ExMacOSControl.SystemEvents.get_window_properties("AppWithNoWindows")
=> {:ok, nil}
Permissions
Requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility

 launch_application(app_name)

 @spec launch_application(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Launches an application.
Launches the specified application and brings it to the front.
If the application is already running, it will be brought to the front.
Parameters
	app_name - The name of the application to launch (case-sensitive)

Returns
	:ok - Application was launched successfully
	{:error, error} - If the application is not found or cannot be launched

Examples
ExMacOSControl.SystemEvents.launch_application("Safari")
=> :ok

ExMacOSControl.SystemEvents.launch_application("Calculator")
=> :ok

ExMacOSControl.SystemEvents.launch_application("NonexistentApp")
=> {:error, %ExMacOSControl.Error{type: :not_found, ...}}

 list_processes()

 @spec list_processes() :: {:ok, [String.t()]} | {:error, ExMacOSControl.Error.t()}

Lists all running application processes.
Returns a list of application names currently running on the system.
The list is obtained via System Events and includes all GUI applications.
Returns
	{:ok, processes} - List of process names as strings
	{:error, error} - If System Events is not available or another error occurs

Examples
ExMacOSControl.SystemEvents.list_processes()
=> {:ok, ["Safari", "Finder", "Terminal", "Mail"]}

Check if a specific app is in the list
{:ok, processes} = ExMacOSControl.SystemEvents.list_processes()
"Safari" in processes
=> true

 press_key(app_name, key)

 @spec press_key(String.t(), String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Sends a keystroke to an application.
This is the 2-arity version that sends a simple keystroke without modifiers.
For keystrokes with modifiers (like Command+T), use press_key/3.
Parameters
	app_name - The name of the application (case-sensitive)
	key - The key to press (single character)

Returns
	:ok - Keystroke was sent successfully
	{:error, error} - If the application is not running or permission is denied

Examples
ExMacOSControl.SystemEvents.press_key("TextEdit", "a")
=> :ok

ExMacOSControl.SystemEvents.press_key("Safari", "t")
=> :ok
Permissions
Requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility

 press_key(app_name, key, list)

 @spec press_key(String.t(), String.t(), [{:using, [atom()]}]) ::
 :ok | {:error, ExMacOSControl.Error.t()}

Sends a keystroke with modifier keys to an application.
This is the 3-arity version that allows sending keystrokes with modifiers
like Command, Control, Option, or Shift.
Parameters
	app_name - The name of the application (case-sensitive)
	key - The key to press (single character)
	using: - List of modifier atoms: :command, :control, :option, :shift

Returns
	:ok - Keystroke was sent successfully
	{:error, error} - If invalid modifier, application not running, or permission denied

Examples
Command+T for new tab in Safari
ExMacOSControl.SystemEvents.press_key("Safari", "t", using: [:command])
=> :ok

Command+Shift+Q to quit with windows
ExMacOSControl.SystemEvents.press_key("Safari", "q", using: [:command, :shift])
=> :ok

Control+Option+Space
ExMacOSControl.SystemEvents.press_key("App", " ", using: [:control, :option])
=> :ok
Permissions
Requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility

 process_exists?(app_name)

 @spec process_exists?(String.t()) ::
 {:ok, boolean()} | {:error, ExMacOSControl.Error.t()}

Checks if a specific process is running.
Parameters
	app_name - The name of the application to check (case-sensitive)

Returns
	{:ok, true} - Process exists and is running
	{:ok, false} - Process does not exist
	{:error, error} - If an error occurs checking the process

Examples
ExMacOSControl.SystemEvents.process_exists?("Safari")
=> {:ok, true}

ExMacOSControl.SystemEvents.process_exists?("NonexistentApp")
=> {:ok, false}

 quit_application(app_name)

 @spec quit_application(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Quits an application gracefully.
Sends a quit command to the specified application via System Events.
This is equivalent to selecting "Quit" from the application menu.
Note: Some applications may display a confirmation dialog before quitting.
Some system applications (like Finder) cannot be quit.
Parameters
	app_name - The name of the application to quit (case-sensitive)

Returns
	:ok - Application was quit successfully
	{:error, error} - If the application is not found or cannot be quit

Examples
ExMacOSControl.SystemEvents.quit_application("Calculator")
=> :ok

ExMacOSControl.SystemEvents.quit_application("NonexistentApp")
=> {:error, %ExMacOSControl.Error{type: :not_found, ...}}

 reveal_in_finder(path)

 @spec reveal_in_finder(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Reveals a file or folder in Finder.
Opens a Finder window at the parent directory and selects the specified item.
Finder is brought to the front.
Parameters
	path - Absolute POSIX path to file or folder (must start with /)

Returns
	:ok - File successfully revealed in Finder
	{:error, error} - Path doesn't exist, path is not absolute, or Finder error

Examples
iex> ExMacOSControl.SystemEvents.reveal_in_finder("/Users/me/Documents/file.txt")
:ok

iex> ExMacOSControl.SystemEvents.reveal_in_finder("/nonexistent/path")
{:error, %ExMacOSControl.Error{type: :not_found, ...}}

iex> ExMacOSControl.SystemEvents.reveal_in_finder("relative/path")
{:error, %ExMacOSControl.Error{type: :execution_error, message: "Path must be absolute", ...}}
Notes
	Path must be absolute (start with /)
	This will open a Finder window and bring Finder to the front
	If Finder is not running, it will be launched automatically

 set_window_bounds(app_name, list)

 @spec set_window_bounds(String.t(), position: [integer()], size: [integer()]) ::
 :ok | {:error, ExMacOSControl.Error.t()}

Sets the position and size of an application's front window.
Parameters
	app_name - The name of the application (case-sensitive)
	position: - A list with [x, y] coordinates for window position
	size: - A list with [width, height] for window size

Returns
	:ok - Window bounds were set successfully
	{:error, error} - If application not running, no windows, invalid parameters,
or permission denied

Examples
ExMacOSControl.SystemEvents.set_window_bounds("Calculator",
 position: [100, 100],
 size: [400, 500]
)
=> :ok

ExMacOSControl.SystemEvents.set_window_bounds("Safari",
 position: [0, 0],
 size: [1920, 1080]
)
=> :ok
Permissions
Requires Accessibility permission. Enable in:
System Settings → Privacy & Security → Accessibility

 trash_file(path)

 @spec trash_file(String.t()) :: :ok | {:error, ExMacOSControl.Error.t()}

Moves a file or folder to the Trash.
This operation moves the specified file or folder to the macOS Trash.
The item can be restored from the Trash if needed.
Parameters
	path - Absolute POSIX path to file or folder (must start with /)

Returns
	:ok - Item successfully moved to Trash
	{:error, error} - Path doesn't exist, path is not absolute, permission denied, or Finder error

Examples
iex> ExMacOSControl.SystemEvents.trash_file("/Users/me/old_file.txt")
:ok

iex> ExMacOSControl.SystemEvents.trash_file("/nonexistent/file")
{:error, %ExMacOSControl.Error{type: :not_found, ...}}

iex> ExMacOSControl.SystemEvents.trash_file("relative/path")
{:error, %ExMacOSControl.Error{type: :execution_error, message: "Path must be absolute", ...}}
Notes
	Path must be absolute (start with /)
	The item is moved to Trash, not permanently deleted
	Items can be restored from Trash manually
	Permission errors may occur for protected files
	If Finder is not running, it will be launched automatically

Warning
While items are moved to Trash (not permanently deleted), this operation
should still be used with caution. Always verify the path before calling.

ExMacOSControl.PlatformError exception

Exception raised when platform requirements are not met.
This exception is raised when ExMacOSControl is used on a non-macOS platform
or when required commands (like osascript) are not available.
Fields
	:message - A human-readable error message describing the problem
	:os_type - The detected OS type tuple from :os.type/0 (optional)
	:details - Additional details about the error (optional)

Examples
iex> raise ExMacOSControl.PlatformError, message: "Not on macOS"
** (ExMacOSControl.PlatformError) Not on macOS

iex> raise ExMacOSControl.PlatformError,
...> message: "Unsupported platform",
...> os_type: {:unix, :linux}
** (ExMacOSControl.PlatformError) Unsupported platform

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ExMacOSControl.PlatformError{
 __exception__: true,
 details: String.t() | nil,
 message: String.t(),
 os_type: {atom(), atom()} | nil
}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

