

 Money

 v5.18.0

 [image: Logo]

 Table of contents

 	Introduction to Money

 	Changelog

 	LICENSE

 	

 	Modules

 	Money

 	Money.Application

 	Money.Currency

 	Money.Financial

 	Money.Sigil

 	Exchange Rates

 	Money.ExchangeRates

 	Money.ExchangeRates.Cache

 	Money.ExchangeRates.Cache.Dets

 	Money.ExchangeRates.Cache.Ets

 	Money.ExchangeRates.Cache.EtsDets

 	Money.ExchangeRates.Callback

 	Money.ExchangeRates.Config

 	Money.ExchangeRates.OpenExchangeRates

 	Money.ExchangeRates.Retriever

 	Money.ExchangeRates.Supervisor

 	Subscriptions

 	Money.Subscription

 	Money.Subscription.Change

 	Money.Subscription.DateError

 	Money.Subscription.NoCurrentPlan

 	Money.Subscription.Plan

 	Money.Subscription.PlanError

 	Money.Subscription.PlanPending

 	Exceptions

 	Money.ExchangeRateError

 	Money.Invalid

 	Money.InvalidAmountError

 	Money.InvalidDigitsError

 	Money.ParseError

 	Money.UnknownCurrencyError

Introduction to Money

[image: Build status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
Money implements a set of functions to store, retrieve, convert and perform arithmetic
on a Money.t/0 type that is composed of an ISO 4217 currency code or an ISO 24165 Digital Token Identifier (crypto currency) with a currency amount.
Money is opinionated in the interests of serving as a dependable library that can underpin accounting and financial applications.
How is this opinion expressed?
	Money must always have both a amount and a currency code or digital token identifier.

	The currency code must always be a valid ISO 4217 code or a valid ISO 24165 digital token idenfier. Current and historical currency codes can be used. See the ISO Currency for more information. You can also identify the relevant codes by:
	Money.known_currencies/0 returns all the ISO 4217 currency codes known to Money
	Money.known_current_currencies/0 returns the ISO 4217 currency codes currently in use
	Money.known_historic_currencies/0 returns the list of historic ISO 4217 currency codes
	Money.known_tender_currencies/0 returns the list of ISO 4217 currencies known to be legal tender
	DigitalToken.tokens/0 returns a map of the known ISO 24165 digital tokens.

	Money arithmetic can only be performed when both operands are of the same currency.

	Money amounts are represented as a Decimal.

	Money can be serialised to the database as a composite Postgres type that includes both the amount and the currency. For MySQL, money is serialized into a json column with the amount converted to a string to preserve precision since json does not have a decimal type. Serialization is entirely optional.

	All arithmetic functions work on a Decimal. No rounding occurs automatically (unless expressly called out for a function, as is the case for Money.split/2).

	Explicit rounding obeys the rounding rules for a given currency. The rounding rules are defined by the Unicode consortium in its CLDR repository as implemented by the hex package ex_cldr. These rules define the number of fractional digits for a currency and the rounding increment where appropriate.

	Money output string formatting output using the hex package ex_cldr that correctly rounds to the appropriate number of fractional digits and to the correct rounding increment for currencies that have minimum cash increments (like the Swiss Franc and Australian Dollar)

 Prerequisities

	Money is supported on Elixir 1.11 and later only.

 Supervisor configuration and operation

Money starts a supervisor Money.Supervisor by default unless the dependency is configured as runtime: false in mix.exs. If configured as runtime: false then the application can be started later via Money.Application.start(:normal, supervisor_options) where supervisor_options is a keyword list of options that is given the Supervisor.start_link/2. The default options are [strategy: :one_for_one, name: Money.Supervisor].
The application supervisor is used by default to start the exchange rates service when required. The exchange rate service can be configured to run in a user defined supervision tree as explained in the next section.

 Private Use Currencies

As of ex_cldr_currencies version 2.6.0 it is possible to define private use currencies. These are currencies that are ISO 4217 compliant but guaranteed never to be allocated by the ISO committee and therefore safe to be used by developers.

 Defining private use currencies

See Cldr.Currency.new/2

 Starting the private use currency store

In order to define private use currencies, a special :ets table is required to hold their definitions. The is implemented by a supervisor and two workers that together aim to preserve the availability of the :ets table as resiliently as possible. The implementation is an embedded and updated version of eternal.
The basic requirement is to add a the private use currency supervisor to your applications supervision tree. For example:
defmodule MyApp do
 use Application

 def start(_type, _args) do

 # Start the service which maintains the
 # :ets table that holds the private use currencies
 children = [
 Cldr.Currency
 ...
]

 opts = [strategy: :one_for_one, name: MoneyTest.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
It is also possible to define a callback that is called when the Cldr.Currency supervisor is started so that private use currencies can be defined. For further information see Defining Private Use Currencies.

 Exchange rates and currency conversion

Money includes a process to retrieve exchange rates on a periodic basis. These exchange rates can then be used to support currency conversion. This service is not started by default. If started it will attempt to retrieve exchange rates every 5 minutes by default.
By default, exchange rates are retrieved from Open Exchange Rates however any module that conforms to the Money.ExchangeRates behaviour can be configured.
An optional callback module can also be defined. This module defines a rates_retrieved/2 function that is invoked upon every successful retrieval of exchange rates. This might be used to serialize exchange rate to a data store or to stream rates to other applications or systems.

 Configuration

Money provides a set of configuration keys to customize behaviour. The default configuration is:
config :ex_money,
 exchange_rates_retrieve_every: 300_000,
 api_module: Money.ExchangeRates.OpenExchangeRates,
 callback_module: Money.ExchangeRates.Callback,
 exchange_rates_cache_module: Money.ExchangeRates.Cache.Ets,
 preload_historic_rates: nil,
 retriever_options: nil,
 log_failure: :warning,
 log_info: :info,
 log_success: nil,
 json_library: Jason,
 default_cldr_backend: MyApp.Cldr,
 exclude_protocol_implementations: []

 Configuration key definitions

	:default_cldr_backend defines the Cldr backend module that is default for Money. See the ex_cldr documentation for further information on how to define this module. This is a required option.

	:exchange_rates_retrieve_every defines how often the exchange rates are retrieved in milliseconds. The default is :never. An atom value is interpreted to mean that there should be no periodic retrieval.

	:api_module identifies the module that does the retrieval of exchange rates. This is any module that implements the Money.ExchangeRates behaviour. The default is Money.ExchangeRates.OpenExchangeRates.

	:exchange_rates_cache_module defines the module that provides an exchange rates cache. Any module that implements the Money.ExchangeRates.Cache behaviour. Two alternative strategies are provided:
	Money.ExchangeRates.Cache.Ets which is also the default.
	Money.ExchangeRates.Cache.Dets

	:preload_historic_rates defines a date or a date range that will be requested when the exchange rate service starts up. The date or date range should be specified as either a Date.t or a Date.Range.t or a tuple of {Date.t, Date.t} representing the from and to dates for the rates to be retrieved. The default is nil meaning no historic rates are preloaded. See Preloading historic rates for more information.

	callback_module defines a module that follows the Money.ExchangeRates.Callback behaviour whereby the function rates_retrieved/2 is invoked after every successful retrieval of exchange rates. The default is Money.ExchangeRates.Callback.

	log_failure defines the log level at which api retrieval errors are logged. The default is :warning.

	log_success defines the log level at which successful api retrieval notifications are logged. The default is nil which means no logging.

	log_info defines the log level at which service startup messages are logged. The default is info.

	:retriever_options is available for exchange rate retriever module developers as a place to add retriever-specific configuration information. This information should be added in the init/1 callback in the retriever module. See Money.ExchangeRates.OpenExchangeRates.init/1 for an example.

	:json_library determines which json library to be used for decoding. Two common options are Poison and Jason. The default is Cldr.Config.json_library/0 which is currently configured by default as Jason.

	:exclude_protocol_implementations is a protocol module, or list of protocol modules, that will not be defined by ex_money. The default is []. The protocol implementations influenced by this option at Json.Encoder, Phoenix.HTML.Safe and Gringotts.Money.

 JSON library configuration

Note that ex_money does not define a json library dependency and therefore it is the users responsibility to configure the required json library as a dependency in the application's mix.exs.
The recommended library is jason which would be configured as:
 defp deps do
 [
 {:jason, "~> 1.0"},
 ...
]
 end
ex_money depends on ex_cldr which provides currency and localisation data. The default configuration of ex_money uses the default json_library from ex_cldr. This can be configured as follows in config.exs:
config :ex_cldr,
 json_library: Jason
In most cases this is not required since the presence of Jason (or Poison) is automatic.

 Configuring locales to support localised formatting

Money uses ex_cldr and ex_cldr_numbers to support configuring locales and providing locale formatting. These packages are also the source of currency definitions, names, formats and so on.
To use Cldr and therefore Money, a backend module must be defined. This module will host the Cldr data and public API used by Money. A simple example would be:
defmodule MyApp.Cldr do
 use Cldr,
 locales: ["en", "fr", "zh"],
 default_locale: "en",
 providers: [Cldr.Number, Money]
end

 Preloading historic rates

The current implementation will call the api_module to retrieve the historic rates once for each date in the :preload_historic_rates range. Some exchange rate services, like Open Exchange Rates, provides a bulk retrieval api that can retrieve multiple dates in a single call. However this endpoint is only available for premium subscribers and it is still charged on a "per date retrieved" basis. So while there is a network/performance/efficiency benefit there is no economic benefit. Please file an issue on github if implementing a bulk api is important to you.
Some examples of configuring the :preload_historic_rates key follow:
	preload_historic_rates: ~D[2017-01-01]
	preload_historic_rates: Date.range(~D[2017-01-01], ~D[2017-10-01])
	preload_historic_rates: {~D[2017-01-01], ~D[2017-10-01]}

 Open Exchange Rates configuration

If you plan to use the provided Open Exchange Rates module to retrieve exchange rates then you should also provide the addition configuration key for app_id:
 config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
 or configure it via environment variable, for example:
 config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
The default exchange rate retrieval module is provided in Money.ExchangeRates.OpenExchangeRates which can be used as a example to implement your own retrieval module for other services.

 Managing the configuration at runtime

During exchange rate service startup, the function init/1 is called on the configured exchange rate retrieval module. This module is expected to return an updated configuration allowing a developer to customise how the configuration is to be managed. See the implementation at Money.ExchangeRates.OpenExchangeRates.init/1 for an example.
To support runtime (re-)configuration the following functions are provided:
	Money.ExchangeRates.Retriever.config/0 returns the current configuration of the exchange rates retrieval service.

	Money.ExchangeRates.Retriever.stop/0 and Money.ExchangeRates.Retriever.start/0 stop and start the exchange rates retrieval service respectively.

	Money.ExchangeRates.Retriever.reconfigure/1 reconfigures the exchange rates retrieval service. It does not restart the service, the service remains active during the recongiguration.

 Using Environment Variables in the configuration

Keys can also be configured to retrieve values from environment variables. This lookup is done at runtime to facilitate deployment strategies. If the value of a configuration key is {:system, "some_string"} then "some_string" is interpreted as an environment variable name which is passed to System.get_env/2. An example configuration might be:
config :ex_money,
 auto_start_exchange_rate_service: {:system, "RATE_SERVICE"},
 exchange_rates_retrieve_every: {:system, "RETRIEVE_EVERY"},
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
Note that the {:system, "ENV KEY"} approach is not currently supported for the :preload_historic_rates configuration key.

 The Exchange rates service process supervision and startup

If the exchange rate service is configured to automatically start up (because the config key auto_start_exchange_rate_service is set to true) then a supervisor process named Money.ExchangeRates.Supervisor is started which in turns starts a child GenServer called Money.ExchangeRates.Retriever. It is Money.ExchangeRates.Retriever which will call the configured api_module to retrieve the rates. It is also responsible for calling the configured callback_module after a successfull retrieval.
 +-----------------+
 | |
+-------------+ +-----------+ | api_module |-> External Service
| | | |---> | |
| Supervisor |--->| Retriever | +-----------------+
| | | |---> +-----------------+
+-------------+ +-----------+ | |
 | callback_module |
 | |
 +-----------------+
On application start (or manual start if :auto_start_exchange_rate_service is set to false), Money.ExchangeRates.Retriever will schedule the first retrieval to be executed after immediately and then each :exchange_rates_retrieve_every milliseconds thereafter.

 Using Ecto or other applications from within the callback module

If you provide your own callback module and that module depends on some other applications, like Ecto, already being started then automatically starting Money.ExchangeRates.Supervisor may not work since your Ecto.Repo is unlikely to have already been started.
In this situation the appropriate way to configure the exchange rates retrieval service is the following:
	Set the configuration key auto_start_exchange_rate_service to false to prevent automatic startup of the service.

	Configure your api_module, callback_module and any other required configuration as appropriate

	In your client application code, add the Money.ExchangeRates.Supervisor to the children configuration of your application. For example, in an application that uses Ecto and where your callback_module is designed to save exchange rates to a database, your application may would look something like:

defmodule Application do
 use Application

 def start(_type, _args) do
 import Supervisor.Spec

 children = [

 # Start your repo first so that it is running before your
 # exchange rates callback module is called
 supervisor(MoneyTest.Repo, []),

 # Include the Money.ExchangeRates.Supervisor in your application's
 # supervision tree. This supervisor will start the child process
 # Money.ExchangeRates.Retriever.

 # Note the use of double `[]` around
 # the parameters which are required to ensure that the supervisor
 # is stopped before including in your supervisor tree.
 # The `start_retriever: true` is optional. The default value is `false`.
 supervisor(Money.ExchangeRates.Supervisor, [[restart: true, start_retriever: true]])
]

 opts = [strategy: :one_for_one, name: Application.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 API Usage Examples

 Creating a %Money{} struct

iex> Money.new(:USD, 100)
#Money<:USD, 100>

iex> Money.new(100, :USD)
#Money<:USD, 100>

iex> Money.new("CHF", "130.02")
#Money<:CHF, 130.02>

iex> Money.new("thb", 11)
#Money<:THB, 11>

iex> Money.new("1.000,99", :EUR, locale: "de")
#Money<:EUR, 1000.99>

iex> Money.parse("USD 100")
#Money<:USD, 100>

iex> Money.parse("USD 100,00", locale: "de")
#Money<:USD, 100.00>
The canonical representation of a currency code is an atom that is a valid
ISO4217 currency code or a String.t/0 representation of an ISO 24165 digital token identifier. The amount of a %Money{} is represented by a Decimal.
Note that the amount and currency code arguments to Money.new/3 can be supplied in either order.

 Parsing money strings

Money provides an ability to parse strings that contain a currency and an amount. The currency can be represented in different ways depending on the locale. See Money.parse/2 for further information. Some examples are:
 # These are the strings available for a given currency
 # and locale that are recognised during parsing
 iex> Cldr.Currency.strings_for_currency :AUD, "de"
 ["aud", "au$", "australischer dollar", "australische dollar"]

 iex> Money.parse "$au 12 346", locale: "fr"
 #Money<:AUD, 12346>

 iex> Money.parse "12 346 dollar australien", locale: "fr"
 #Money<:AUD, 12346>

 iex> Money.parse "A$ 12346", locale: "en"
 #Money<:AUD, 12346>

 iex> Money.parse "australian dollar 12346.45", locale: "en"
 #Money<:AUD, 12346.45>

 # Parse using a default currency
 iex> Money.parse("100", default_currency: :EUR)
 #Money<:EUR, 100>

 # Parse using the default currency of the locale
	# If no `:locale` option is provided then
	# the locale associated with `Money.default_backend/0`
	# is used.
 iex> Money.parse("100", locale: "en")
 #Money<:EUR, 100>

 # Parse with a default currency for the current locale
 iex> Money.parse("100", default_currency: Money.default_currency_for_locale())
 #Money<:USD, 100>

 # Note that the decimal separator in the "de" locale
 # is a `.`
 iex> Money.parse "AU$ 12346,45", locale: "de"
 #Money<:AUD, 12346.45>

 # Round trip formatting is supported
 iex> {:ok, string} = Cldr.Number.to_string 1234, Money.Cldr, currency: :AUD
 {:ok, "A$1,234.00"}
 iex> Money.parse string
 #Money<:AUD, 1234.00>

 # Fuzzy matching is possible
 iex> Money.parse("100 eurosports", fuzzy: 0.8)
 #Money<:EUR, 100>

 iex> Money.parse("100 eurosports", fuzzy: 0.9)
 {:error,
 {Money.Invalid, "Unable to create money from \"eurosports\" and \"100\""}}

 # Eligible currencies can be filtered
 iex> Money.parse("100 eurosports", fuzzy: 0.8, only: [:current])
 #Money<:EUR, 100>

 iex> Money.parse("100 euro", only: [:EUR, :USD, :COP])
 #Money<:EUR, 100>

 iex> Money.parse("100 euro", except: [:EUR, :USD, :COP])
 {:error,
 {Money.UnknownCurrencyError,
 "The currency \"euro\" is unknown or not supported"}}

 iex> Money.parse "100 afghan afghanis"
 #Money<:AFN, 100>

 iex> Money.parse "100 afa", only: [:current]
 {:error,
 {Money.UnknownCurrencyError,
 "The currency \"afa\" is unknown or not supported"}}

 Casting a money type (basic support for HTML forms)

Money supports form field inputs that are a single string combining both a currency code and an amount. When a form field (or other data) is cast then Money will attempt to parse a string field into a Money.t using Money.parse/2. Therefore simple money form input can be supported with a single input field of type=text.
Note that when parsing the input text, the amount is interpreted in the context of the current locale set on the default backend configured for ex_money. This affects how separator characters are interpreted in exactly the same way as is done for Money.new/3.

 Float amounts cannot be provided to Money.new/2

Float have well-known issues in computing due to issues of rounding and potential precision loss. Internally Money uses Decimal to store the amount which allows arbitrary precision arithmetic. Money also uses the numeric type in Postgres to preserve precision and even goes to far as to store the amount as a string in MySQL for the same reason.
Therefore an error is returned if an attempt is made to use Money.new/2 with a float amount:
{:error,
 {Money.InvalidAmountError,
 "Float amounts are not supported in new/2 due to potenial rounding " <>
 "and precision issues. If absolutely required, use Money.from_float/2"}}
If the use of floats is require then the function Money.from_float/2 is provided with the same arguments as those for Money.new/2. Money.from_float/2 provides an addition check and will return an error if the precision (number of digits) of the provided float is more than 15 (the number of digits guaranteed to round-trip between a 64-bit float and a string).

 Comparison functions

Money values can be compared as long as they have the same currency. The recommended function is Money.compare/2 which, given two compatible money amounts, will return :lt, :eq or :gt depending on the relationship. For example:
iex> Money.compare Money.new(:USD, 100), Money.new(:USD, 200)
:lt

iex> Money.compare Money.new(:USD, 100), Money.new(:AUD, 200)
{:error,
 {ArgumentError,
 "Cannot compare monies with different currencies. Received :USD and :AUD."}}
From Elixir verison 1.10.0 onwards, several functions in the Enum module can use the Money.compare/2 function to simplify sorting. For example:
iex> list = [Money.new(:USD, 100), Money.new(:USD, 200)]
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, Money
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:asc, Money}
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:desc, Money}
[#Money<:USD, 200>, #Money<:USD, 100>]
Note that Enum.sort/2 will sort money amounts even when the currencies are incompatible. In this case the order of the result is not predictable. It is the developers responsibility to filter the list to compatible currencies prior to sorting. This is a limitation of the Enum.sort/2 implementation.

 Optional ~M sigil

An optional sigil module is available to aid in creating %Money{} structs. It needs to be imported before use:
import Money.Sigil

~M[100]USD
#> #Money<:USD, 100>

 Localised Money formatting

Money provides locale-specific formatted output that is controlled be either the locale that has been set for this process or by the :locale parameter supplied to Money.to_string/2. Configuring your localised environment requires configuring ex_cldr which is a dependency to Money. See the Configuration section of the ex_cldr readme for more information.
The main API for formatting Money is Money.to_string/2. Additionally formatting options are passed to Cldr.Number.to_string/2. Those options are described in the readme for ex_cldr_numbers which is also a dependency to Money.
iex> Money.to_string Money.new("thb", 11)
{:ok, "THB11.00"}

The default locale is "en-001" which is
"global english"
iex> Money.to_string Money.new("USD", "234.467")
{:ok, "$US234.47"}

The locale "en" is "American English". For
UK English use the locale "en-GB". Australian
English is "en-AU" and so on.
iex> Money.to_string Money.new("USD", "234.467"), locale: "en"
{:ok, "$234.47"}

iex> Money.to_string Money.new("USD", "234.467"), format: :long
{:ok, "234.47 US dollars"}

iex> Money.to_string Money.new("USD", "234.467"), locale: "fr"
{:ok, "234,47 $US"}

iex> Money.to_string Money.new("USD", "234.467"), locale: "de"
{:ok, "234,47 $"}

iex> Money.to_string Money.new("EUR", "234.467"), locale: "de"
{:ok, "234,47 €"}

iex> Money.to_string Money.new("EUR", "234.467"), locale: "fr"
{:ok, "234,47 €"}
Note that the output is influenced by the locale in effect. By default the locale used is that returned by Cldr.get_locale/0. Its default value is :en-001. Additional locales can be configured, see Cldr. The formatting options are defined in Cldr.Number.to_string/2.

 Arithmetic Functions

See also the module Money.Arithmetic:
iex> m1 = Money.new(:USD, 100)
#Money<:USD, 100>}

iex> m2 = Money.new(:USD, 200)
#Money<:USD, 200>}

iex> Money.add(m1, m2)
{:ok, #Money<:USD, 300>}

iex> Money.add!(m1, m2)
#Money<:USD, 300>

iex> m3 = Money.new(:AUD, 300)
#Money<:AUD, 300>

iex> Money.add Money.new(:USD, 200), Money.new(:AUD, 100)
{:error, {ArgumentError, "Cannot add monies with different currencies. Received :USD and :AUD."}}

Split a %Money{} returning the a dividend and a remainder. All
operations respect the number of fractional digits defined for a currency
iex> m1 = Money.new(:USD, 100)
#Money<:USD, 100>

iex> Money.split(m1, 3)
{#Money<:USD, 33.33>, #Money<:USD, 0.01>}

Rounding applies the currency definitions of CLDR as implemented in
the hex package [ex_cldr](https://hex.pm/packages/ex_cldr)
iex> Money.round Money.new(:USD, "100.678")
#Money<:USD, 100.68>

iex> Money.round Money.new(:JPY, "100.678")
#Money<:JPY, 101>

 Currency Conversion

A %Money{} struct can be converted to another currency using Money.to_currency/3 or Money.to_currency!/3. For example:
iex> Money.to_currency Money.new(:USD, 100), :AUD
{:ok, #Money<:AUD, 136.43>}

iex> Money.to_currency Money.new(:USD, 100), :AUD, ExchangeRates.historic_rates(~D[2017-01-01])
{:ok, #Money<:AUD, 128.76>}

iex> Money.to_currency Money.new(:USD, 100) , :AUDD, %{USD: Decimal.new(1), AUD: Decimal.new(0.7345)}
{:error, {Cldr.UnknownCurrencyError, "Currency :AUDD is not known"}}

iex> Money.to_currency! Money.new(:USD, 100), :XXX
** (Money.ExchangeRateError) No exchange rate is available for currency :XXX
A user-defined map of exchange rates can also be supplied:
iex> Money.to_currency Money.new(:USD, 100), :AUD, %{USD: Decimal.new(1.0), AUD: Decimal.new(1.3)}
#Money<:AUD, 130>

 Historic Conversion Rates

As noted in the configuration section, ex_money can preload historic exchange rates when the exchange rates service starts up. It can be anticipated that additional historic rates may be required subsequently.
	Money.ExchangeRates.Retriever.historic_rates/1 can be called to request retrieval of historic rates at any time. This call will send a message to the retrieval service to request retrieval. It does not return the rates.

	Money.ExchangeRates.historic_rates/1 is the partner function to Money.ExchangeRates.latest_rates/0. It returns the exchange rates for a given date, and will return an error if no rates are available.

 Financial Functions

A set of basic financial functions are available in the module Money.Financial. These functions are:
	Present value: Money.Financial.present_value/3
	Future value: Money.Financial.future_value/3
	Interest rate: Money.Financial.interest_rate/3
	Number of periods: Money.Financial.periods/3
	Payment amount: Money.Financial.payment/3
	Net Present Value of a set of cash flows: Money.Financial.net_present_value/2
	Internal rate of return: Money.Financial.internal_rate_of_return/1

For more detail see Money.Financial.

 Subscriptions

Subscriptions, especially in the context of a SaaS, can involve changing plans - either from a smaller plan to a larger or a larger plan to smaller. In either situation a credit amount needs to be calculated based upon the current plan which is then applied to the new plan. Money.Subscription is a module that provides functions to support this subscription pricing, credit calculations and payment dates.
The primary functions supporting subscriptions are:
	Create a new subscription: Money.Subscription.new/3
	Create a subscription plan: Money.Subscription.Plan.new/3
	Change a from one plan to another: Money.Subscription.change_plan/3
	Calculate the start date for the next interval of a plan: Money.Subscription.next_interval_starts/3
	Calculate the number of days in a plan interval: Money.Subscription.plan_days/3
	Calculate the number of days left in a plan interval: Money.Subscription.days_remaining/4

 Examples

Create the current plan
iex> current_plan = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 1)
%Money.Subscription.Plan{
 interval: :month,
 interval_count: 1,
 price: #Money<:USD, 10>
}

How many days in a billing period?
iex> Money.Subscription.plan_days current_plan, ~D[2018-03-01]
31

iex> Money.Subscription.plan_days current_plan, ~D[2018-02-01]
28

How many days remaining in the current billing period
iex> Money.Subscription.days_remaining current_plan, ~D[2018-03-01], ~D[2018-03-10]
22

When is the next billing date
iex> Money.Subscription.next_interval_starts current_plan, ~D[2018-03-01]
~D[2018-04-01]

Create a new plan
iex> new_plan = Money.Subscription.Plan.new!(Money.new(:USD, 10), :month, 3)
%Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 10>
}

Change plans at the end of the current billing period
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01]
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 10>,
 first_interval_starts: ~D[2018-04-01],
 next_interval_starts: ~D[2018-07-01]
}

Change plans in the middle of the current plan period
and credit the balance of the current plan to the new plan
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01], effective: ~D[2018-03-15]
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 5.49>,
 credit_amount_applied: #Money<:USD, 5.49>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 4.51>,
 first_interval_starts: ~D[2018-03-15],
 next_interval_starts: ~D[2018-06-15]
}

Change plans in the middle of the current plan period
but instead of a monetary credit, apply the credit as
extra days on the new plan in the first billing period
iex> Money.Subscription.change_plan current_plan, new_plan, current_interval_started: ~D[2018-03-01], effective: ~D[2018-03-15], prorate: :period
%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 5.49>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 51,
 credit_period_ends: ~D[2018-05-04],
 first_billing_amount: #Money<:USD, 10>,
 first_interval_starts: ~D[2018-03-15],
 next_interval_starts: ~D[2018-08-05]
}

Create a subscription
iex> plan = Money.Subscription.Plan.new!(Money.new(:USD, 200), :month, 3)
iex> subscription = Money.Subscription.new! plan, ~D[2018-01-01]
%Money.Subscription{
 created_at: #DateTime<2018-03-23 07:45:44.418916Z>,
 id: nil,
 plans: [
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 200>,
 first_interval_starts: ~D[2018-01-01],
 next_interval_starts: ~D[2018-04-01]
 },
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 200>
 }}
]
}

Change a subscription's plan
iex> new_plan = Money.Subscription.Plan.new!(Money.new(:USD, 150), :day, 30)
iex> Money.Subscription.change_plan! subscription, new_plan
%Money.Subscription{
 created_at: #DateTime<2018-03-23 07:47:48.593973Z>,
 id: nil,
 plans: [
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 150>,
 first_interval_starts: ~D[2018-04-01],
 next_interval_starts: ~D[2018-05-01]
 },
 %Money.Subscription.Plan{
 interval: :day,
 interval_count: 30,
 price: #Money<:USD, 150>
 }},
 {%Money.Subscription.Change{
 carry_forward: #Money<:USD, 0>,
 credit_amount: #Money<:USD, 0>,
 credit_amount_applied: #Money<:USD, 0>,
 credit_days_applied: 0,
 credit_period_ends: nil,
 first_billing_amount: #Money<:USD, 200>,
 first_interval_starts: ~D[2018-01-01],
 next_interval_starts: ~D[2018-04-01]
 },
 %Money.Subscription.Plan{
 interval: :month,
 interval_count: 3,
 price: #Money<:USD, 200>
 }}
]
}

 Serializing to a database with Ecto

The companion package ex_money_sql provides functions for the serialization of Money data. See the README for further information.

 Installation

Money can be installed by adding ex_money to your list of dependencies in mix.exs and then executing mix deps.get
def deps do
 [
 {:ex_money, "~> 5.0"},
 ...
]
end

 Why yet another Money package?

	Fully localized formatting and rounding using ex_cldr

	Provides serialization to Postgres using a composite type and MySQL using a JSON type that keeps both the currency code and the amount together removing a source of potential error

	Uses the Decimal type in Elixir and the Postgres numeric type to preserve precision. For MySQL the amount is serialised as a string to preserve precision that might otherwise be lost if stored as a JSON numeric type (which is either an integer or a float)

	Includes a set of financial calculations (arithmetic and cash flow calculations) that follow solid rounding rules

 Falsehoods programmers believe about prices

The github gist gives a good summary of the challenges of managing money in an application. The following described how Money handles each of these assertions.
1. You can store a price in a floating point variable.
Money operates and serialises in a arbitrary precision Decimal value.
2. All currencies are subdivided in 1/100th units (like US dollar/cents, euro/eurocents etc.).
Money leverages CLDR which defines the appropriate number of decimal places of a currency. As of CLDR version 32 there are:
	52 currencies with zero decimal digits
	241 currencies with two decimal digits
	6 currencies with three decimal digits
	and 1 currency with four decimal digits

3. All currencies are subdivided in decimal units (like dinar/fils)
4. All currencies currently in circulation are subdivided in decimal units. (to exclude shillings, pennies) (counter-example: MGA)
5. All currencies are subdivided. (counter-examples: KRW, COP, JPY... Or subdivisions can be deprecated.)
Money correctly manages the appropriate number of decimal places for a currency. It also round correctly when formatting a currency for output (different currencies have different rounding levels for cash or transactions).
6. Prices can't have more precision than the smaller sub-unit of the currency. (e.g. gas prices)
All Money calculations are done with decimal arithmetic to the maxium precision of 28 decimal digits.
7. For any currency you can have a price of 1. (ZWL)
Money makes no assumption about the value assigned as long as its a real number.
8. Every country has its own currency. (EUR is the best example, but also Franc CFA, etc.)
Money makes no assumptions about the linkage of currencies to territories.
9. No country uses another's country official currency as its official currency. (many countries use USD: Ecuador, Micronesia...)
10. Countries have only one currency.
Money doesn't link territories (countries) to a currency - it focuses only on the Money domain. The addon package cldr_territories does have knowledge of what curriencies are in effect throughout history for a given territory. See Cldr.Territory.info/1.
11. Countries have only one currency currently in circulation. (Panama officially uses both PAB and USD)
Money makes no assumptions about currencies in circulation.
12. I'll only deal with currencies currently in circulation anyway.
Money makes no assumptions about currencies in circulation.
13. All currencies have an ISO 4217 3-letter code. (The Transnistrian ruble has none, for example)
Money does validate currency codes against the ISO 4217 list. Custom currencies can be created in accordance with ISO 4217 using Cldr.Currency.new/2.
14. All currencies have a different name. (French franc, "nouveau franc")
Money has localised names for all ISO 4217 currencies in each of the over 500 locales defined by CLDR.
15. You always put the currency symbol after the price.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
16. You always put the currency symbol before the price.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
17. You always put the currency symbol either after, or before the price, never in the middle.
Money formats currency strings according to a format mask that is either defined by CLDR or user supplied.
18. There's only one currency symbol for any currency. (元, 角, 分 are increasing units of the Chinese renminbi.)
Money uses format masks defined by CLDR which, for the Chinese renminbi uses the "￥" symbol.
19. For a given currency, you always, but always, put the symbol in the same place.
Money makes no assumpions about symbol placement. The symbol can be places anywhere in a formatted string but is typically, for CLDR format masks, placed either before or after the formatted number.
20. OK. But if you only use the ISO 4217 currency codes, you always put it before the price. (Hint: it depends on the language.)
Same as for the answer to 19 above.
21. Before the price means on the left. (ILS)
Money formats according to a locale and correctly places symbols for languages written right-to-left.
22. You can always use a dot (or a comma, etc.) as a decimal separator.
The decimal separator is defined per locale according to the CLDR definitions.
23. You can always use a space (or a dot, or a comma, etc.) as a thousands separator.
The thousands (acutally grouping since not all locales format in thousands) separator is defined per locale according to the CLDR definitions.
24. You separate big prices by grouping numbers in triplets (thousands). (One writes ¥1 0000)
Grouping is done according the CLDR definitions. For many languages the grouping is in thousands. Some format other ways. For example in India numbers are formatted with the first group as a triplet and subsequent groups as doublets.
25. Prices at a single company will never range from five digits before the decimal to five digits after.
Money's default precision is 28 decimal digits. All arithmetic is done using arbitrary precision decimal arithemetic. No round is performed unless either explicitly requested or a money value is formatted for output. When formatting rounding is applied according the locale-specific rules.
26. Prices contains only digits and punctuation. (Germans can write 12,- €)
Money format masks can contain very flexible formatting masks. A set of formats is defined for each locale and a user-defined masks can also be defined.
27. A price can be at most 10^N for some value of N.
See the answer to 25.
28. Given two currencies, there is only one exchange rate between them at any given point in time.
Money supports an exchange rate mechansim, currency conversions and retrieval from external exchange rate services. It does not impose any constraint on underlying conversion tables.
29. Given two currencies, there is at least one exchange rate between them at any given point in time. (restriction on export of MAD, ARS, CNY, for example)
See the answer to 28.
30. And the final one: a standalone $ character is always pronounced dollar. (It's also the peso sign.)
This is outside the domain of Money.

Changelog

Note ex_money 5.17.0 and later is supported on Elixir 1.12 and later versions only.

 Money v5.18.0

This is the changelog for Money v5.18.0 released on September 18th, 2024. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds min/2, max/2, min!/2, max!/2, clamp/3, clamp!/3, negate/1, negate!/1 and within?/3.

 Money v5.17.2

This is the changelog for Money v5.17.2 released on September 18th, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix implementation of Money.exclude_protocol_implementation/1 for Jason.Encoder. Thanks to @wkirschbaum for the PR. Closes #171.

 Enhancements

	Add Money.exclude_protocol_implementation/1 for String.Chars. Thanks to @wkirschbaum for the PR. Closes #172.

 Money v5.17.1

This is the changelog for Money v5.17.1 released on September 6th, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Update poison optional dependency to allow ~> 6.0.

	Update stream_data test dependency to ~> 1.0.

 Enhancements

	Improve specs and broaden dialyzer configuration.

 Money v5.17.0

This is the changelog for Money v5.17.0 released on May 28th, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes warnings on Elixir 1.17.

 Money v5.16.1

This is the changelog for Money v5.16.1 released on April 23rd, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Money.sum/2 default exchange rates is always %{} even if the exchange rate server is not running. Thanks to @haste for the report. Closes #168.

 Money v5.16.0

This is the changelog for Money v5.16.0 released on April 21st, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	When parsing numbers, use the localized number system separators where they exist. Thanks to @pshoukry for the report. Closes #167.

	Surface errors when starting the exchange rates retriever. Thanks to @danschultzer for the PR. Closes #165.

 Enhancements

	Update to CLDR 45.0 data.

	Return structured errors for Money.ExchangeRates.latest_rates/0, Money.ExchangeRates.historic_rates/1, Money.ExchangeRates.last_updated/0 and Money.ExchangeRates.latest_rates_available?/0 when the exchange rates retrieval process is not running.

 Money v5.15.4

This is the changelog for Money v5.15.4 released on March 1st, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix exchange rate conversions for digital tokens. Thanks much to @ddanschultzer for the PR. Closes 164.

 Enhancements

	Format the exchange rate retrieval interval used in the init message using the default cldr backend configured for :ex_money.

 Money v5.15.3

This is the changelog for Money v5.15.3 released on January 4th, 2024. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Add or ~> 4.0 for :phoenix_html dependency. Thanks to @wkirschbaum for the PR. Closes #161.

 Money v5.15.2

This is the changelog for Money v5.15.2 released on November 3rd, 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix compilation warnings on doctests on Elixir 1.16.

 Money v5.15.1

This is the changelog for Money v5.15.1 released on October 10th, 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes the exchange rate retriever, removing the double retrieval loop. Thanks to @dbernheisel for the report. Closes #152.

 Money v5.15.0

This is the changelog for Money v5.15.0 released on July 24th, 2023. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds an option :no_fraction_if_integer to Money.to_string/2. If truthy this option will set fractional_digits: 0 if money is an integer value. This may be helpful in cases where integer money amounts such as Money.new(:USD, 1234) should be formatted as $1,234 rather than $1,234.00.

 Money v5.14.1

This is the changelog for Money v5.14.1 released on July 23rd, 2023. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix Logger.warn/1 warnings by moving to Logger.warning/1.

	Fix failing test case.

 Money v5.14.0

This is the changelog for Money v5.14.0 released on April 29th, 2023. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds Money.integer?/1 to return a boolean indicatng if a money amount is an integer value (ie has no significant fractional digits).

 Money v5.13.0

This is the changelog for Money v5.13.0 released on April 28th, 2023. For older changelogs please consult the release tag on GitHub

 Enhancements

	Updates to ex_cldr version 2.37.0 which includes data from CLDR release 43

	Tests now assume Decimal ~> 2.0 since the Inspect protocol implementation now emits executable code examples.

 Money v5.12.4

This is the changelog for Money v5.12.4 released on March 30th, 2023. For older changelogs please consult the release tag on GitHub
Note ex_money 5.12.4 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Bug Fixes

	Delegates http requests (used in exchange rates retrieval) to Cldr.Http.get_with_headers/2. This centralizes all HTTP get requests for all ex_cldr_* libraries to this one function which can then be reviewed and managed for security concerns.

 Money v5.12.3

This is the changelog for Money v5.12.3 released on October 13th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.12.3 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Bug Fixes

	Fix NaN and Inf amount detection to be compatible with Decimal 1.x and 2.x. Thanks to @Lostkobrakai for the PR. Closes #144.

 Money v5.12.2

This is the changelog for Money v5.12.2 released on October 13th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.12.2 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Bug Fixes

	Don't create "NaN" or "Inf" valued Money structs. Thanks for @coladarci for the report. Closes #143.

 Money v5.12.1

This is the changelog for Money v5.12.1 released on August 27th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.12.1 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Bug Fixes

	Removes compile-time warnings for Elixir 1.14 (use Application.compile_env/2, not Application.get_env/2)

 Money v5.12.0

This is the changelog for Money v5.12.0 released on June 8th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.12.0 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Enhancements

	Add Money.localize/2 to convert a money amount into the currency in affect for the given locale.

 Money v5.11.0

This is the changelog for Money v5.11.0 released on May 14th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.11.0 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Enhancements

	Adds support for ISO 24165 Digital Tokens (crypto currency). Digital Token-based money behaves the same as currency-based money with the following exceptions due to limited data availability:	Digital token names are not localized (there is no localised data available in CLDR)
	Digital token names are not pluralized (also because there is no localised data available)
	Digital token amounts are never rounded (there is no data available to standardise on rounding rules or the number of fractional digits to round to)

 Money v5.10.0

This is the changelog for Money v5.10.0 released on April 6th, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.10.0 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Enhancements

	Add Money.zero?/1, Money.positive?/1 and Money.negative?/1. Thanks to @emaiax for the PR.

	Update CLDR to release 41 in ex_cldr version 2.28.0 and ex_cldr_numbers 2.26.0.

 Money v5.9.0

This is the changelog for Money v5.9.0 released on February 21st, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.9.0 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.25 or later.

 Enhancements

	Updates to ex_cldr version 2.26.0 and ex_cldr_numbers version 2.25.0 which use atoms for locale names and rbnf locale names. This is consistent with other elements of t:Cldr.LanguageTag where atoms are used when the cardinality of the data is fixed and relatively small and strings where the data is free format.

	Adjusts the output of Money.inspect/2 to be executable code. Instead of #Money<:USD, 100> the output will be Money.new(:USD, "100"). This improved developer experience by allowing for copy/paste of inspect/2 results into iex. It is also in line with similar changes being made in elixir, Decimal and others.

	Add documentation for :currency_symbol option for Money.to_string/2. Although its an option that is passed through to Cldr.Number.to_string/3, its very relevant to t:Money formatting.

 Money v5.8.0

This is the changelog for Money v5.8.0 released on January 31st, 2022. For older changelogs please consult the release tag on GitHub
Note ex_money 5.8.0 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.23 or later.

 Enhancements

	Adds configuration option :exclude_protocol_implementations to omit generating implementations for one or more protocols from the list Json.Encoder, Phoneix.HTML.Safe and Gringotts.Money. Thanks to @jgough-playoxygen for the suggestion.

 Money v5.7.4

This is the changelog for Money v5.7.4 released on December 23rd, 2021. For older changelogs please consult the release tag on GitHub
Note ex_money 5.7.4 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.23 or later.

 Bug Fixes

	Fix Money.to_integer_exp/1 when t:Money has a negative amount. Thanks to @hamptokr for the report and the PR.

 Money v5.7.3

This is the changelog for Money v5.7.3 released on December 19th, 2021. For older changelogs please consult the release tag on GitHub
Note ex_money 5.7.3 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.23 or later.

 Bug Fixes

	Fixes retrieving exchange rates on OTP releases before OTP 22. Thanks to @fbettag for the report, collaboration and patience.

 Money v5.7.2

This is the changelog for Money v5.7.2 released on December 17th, 2021. For older changelogs please consult the release tag on GitHub
Note ex_money 5.7.2 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.23 or later.

 Bug Fixes

	Fix spec for Money.from_integer/3. Thanks to @jdewar for the report.

 Enhancements

	Support a :fractional_digits option for Money.from_integer/3 and improve the documentation.

 Money v5.7.1

This is the changelog for Money v5.7.1 released on December 8th, 2021. For older changelogs please consult the release tag on GitHub
Note ex_money 5.7.1 is supported on Elixir 1.10 and later versions only. It also requires ex_cldr_numbers 2.23 or later.

 Bug Fixes

	Fix dialyzer warnings on Elixir 1.12 and 1.13

	Replace use Mix.Config with import Config in configuration files since the former is deprecated.

 Money v5.7.0

This is the changelog for Money v5.7.0 released on October 28th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Updates to support CLDR release 40 via ex_cldr version 2.24

 Deprecations

	Don't call deprecated Cldr.Config.get_locale/2, use Cldr.Locale.Loader.get_locale/2 instead.

 Money v5.6.0

This is the changelog for Money v5.6.0 released on August 31st, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds Money.to_currency_code/1 to return the currency code part of a t:Money. Thanks to @Adzz for the proposal. Closes #130.

 Money v5.5.5

This is the changelog for Money v5.5.5 released on August 15th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Allow either phoenix_html version 2.x or 3.x. Thanks to @seantanly for the PR. Closes #129.

 Money v5.5.4

This is the changelog for Money v5.5.4 released on June 17th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Support t:Cldr.Number.Format.Options as an argument to Money.to_string/2. Thanks to @jeroenvisser101 for the PR. Closes #127.

 Money v5.5.3

This is the changelog for Money v5.5.3 released on May 7th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes parsing money when a currency string has a "." in it such as "kr.". Thanks for the report to @Doerge. Closes #125.

 Money v5.5.2

This is the changelog for Money v5.5.2 released on April 14th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix exception message when describing the requirement for a default backend configuration. Thanks to @holandes22 for the report. Closes #124.

 Money v5.5.1

This is the changelog for Money v5.5.1 released on February 18th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix formatting a t:Money that has no :format_options key. That can happen if re-hydrating a t:Money using :erlang.binary_to_term/1 from an older version of ex_money that doesn't have the :format_options key in the struct. Thanks to @coladarci. Fixes #123.

 Money v5.5.0

This is the changelog for Money v5.5.0 released on February 10th, 2021. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds format options to t:Money to allow per-money formatting options to be applied with the String.Chars protocol. Thanks to @morinap for the feature request.

	Adds Money.put_format_options/2

 Money v5.4.1

This is the changelog for Money v5.4.1 released on January 7th, 2021. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Update stream_data to remove stacktrace warning

	Use Cldr.default_backend!/0 instead of deprecated Cldr.default_backend/0 in tests. Closes #120. Thanks to @darwintantuco.

 Money v5.4.0

This is the changelog for Money v5.4.0 released on November 1st, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Add support for CLDR 38

 Money v5.3.2

This is the changelog for Money v5.3.2 released on September 30th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix docs for Money.div!/2

	Update cldr_utils which implements a shim for Decimal to support both version 1.9 and 2.0.

 Money v5.3.1

This is the changelog for Money v5.3.1 released on September 26th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Support nimble_parsec versions that match ~> 0.5 or ~> 1.0

 Money v5.3.0

This is the changelog for Money v5.3.0 released on September 5th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix parsing money amounts to use Unicode definition of whitespace (set [:Zs:]). Thanks to @Sanjibukai for the report.

 Enhancements

	Add Money.sum/2 to sum a list of Money, converting them if required.

 Money v5.2.1

This is the changelog for Money v5.2.1 released on June 23rd, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Configure the Money.Application supervisor via the arguments to Money.Application.start/2 and configure defaults in mix.exs. This permits different restart strategies and names.

	Add Money.ExchangeRates.Supervisor.default_supervisor/0 to return the name of the default supervisor which is Money.Supervisor

	Change Money.ExchangeRates.Supervisor.stop/0 to become Money.ExchangeRates.Supervisor.stop/{0, 1} allowing the supervisor name to be passed in. The default is Money.ExchangeRates.Supervisor.default_supervisor/0

 Bug Fixes

	Add back the name of the Application supervisor, Money.Supervisor. Thanks for the report of the regression to @jeroenvisser101. Fixes #117.

 Money v5.2.0

This is the changelog for Money v5.2.0 released on May 30th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds a configuration option :verify_peer which is a boolean that determines whether to verify the client certificate for any exchange rate service API call. The default is true. This option should not be changed without a very clear understanding of the security implications. This option will remain undocumented but supported for now.

 Bug fixes

	Handle expired certificate errors on the exchange rates API service and log them. Thanks to @coladarci. Fixes #116

 Money v5.1.0

This is the changelog for Money v5.1.0 released on May 26th, 2020. For older changelogs please consult the release tag on GitHub

 Enhancements

	Extract default currency from locale when calling Money.parse/2 on a money string. The updated docs now say:
	:default_currency is any valid currency code or false
that will used if no currency code, symbol or description is
indentified in the parsed string. The default is nil
which means that the default currency associated with
the :locale option will be used. If false then the
currency assocated with the :locale option will not be
used and an error will be returned if there is no currency
in the string being parsed.

	Add certificate verification for exchange rate retrieval

 Money v5.0.2

This is the changelog for Money v5.0.2 released on April 29th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Update the application supervisor spec

 Money v5.0.1

This is the changelog for Money v5.0.1 released on January 28th, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Make nimble_parsec a required dependency since it is required for parsing money amounts. Thanks to @jonnystoten for the report.

 Money v5.0.0

This is the changelog for Money v5.0.0 released on January 21st, 2020. For older changelogs please consult the release tag on GitHub

 Breaking changes

	Elixir 1.10 introduces semantic sorting for stucts that depends on the availability of a compare/2 function that returns :lt, :eq or :gt. Therefore in this release of ex_money the functions compare/2 and compare!/2 are swapped with cmp/2 and cmp!/2 in order to conform with this expectation. Now compare/2 will return :eq, :lt or :gt. And cmp/2 return -1, 0 or 1.

	Deprecate Money.reduce/1 in favour of Money.normalize/1 to be consistent with Decimal versions 1.9 and later.

It is believed and tested that Money version 5.0.0 is compatible with all versions of Decimal from 1.6 up to the as-yet-unreleased 2.0.

 Support of Elixir 1.10 Enum sorting

From Elixir verison 1.10.0, several functions in the Enum module can use the Money.compare/2 function to simplify sorting. For example:
iex> list = [Money.new(:USD, 100), Money.new(:USD, 200)]
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, Money
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:asc, Money}
[#Money<:USD, 100>, #Money<:USD, 200>]
iex> Enum.sort list, {:desc, Money}
[#Money<:USD, 200>, #Money<:USD, 100>]
Note that Enum.sort/2 will sort money amounts even when the currencies are incompatible. In this case the order of the result is not predictable. It is the developers responsibility to filter the list to compatible currencies prior to sorting. This is a limitation of the Enum.sort/2 implementation.

 Notes on Decimal version support

	ex_money version 5.0.0 is compatible with Decimal versions from 1.6 onwards. In Decimal version 2.0 the same changes to compare/2 and cmp/2 will occur and in Decimal version 1.9, Decimal.cmp/2 is deprecated. ex_money version 5.0.0 detects these different versions of Decimal and therefore remains compatability with Decimal back to version 1.6.

 Money v4.4.2

This is the changelog for Money v4.4.2 released on January 2nd, 2020. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Remove calls to Code.ensure_compiled?/1 since it is deprecated in Elixir 1.10. Use instead Cldr.Config.ensure_compiled?/1 which is added as a private API in Cldr version 2.12.0. This version of Cldr now becomes the minimum version required.

	Remove spurious entries in .dialyzer_ignore_warnings - no entries are required and dialyzer is happy.

 Money v4.4.1

This is the changelog for Money v4.4.1 released on November 10th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes money parsing error. Thanks to @Doerge. Closes #112.

 Money v4.4.0

This is the changelog for Money v4.4.0 released on November 6th, 2019. For older changelogs please consult the release tag on GitHub

 Breaking Change

	Money.parse/2 until this release supported the :currency_filter option. It allowed for currencies to be filtered based upon their attributes (:all, :current, :historic, :tender, :annotated). When multiple attributes were passed in a list, a currency had to meet all of these attributes. From this release onwards, multiple attributes items are ored, not anded. It is expected this option is used extremely rarely and therefore of limited impact.

 Enhancements

	Money.parse/2 now includes the option :default_currency which allows for parsing a number only (without a currency code) and it will be tagged with the :default_currency.
iex> Money.parse("100")
{:error,
 {Money.Invalid,
 "A currency code, symbol or description must be specified but was not found in \"100\""}}
iex> Money.parse("100", default_currency: :USD)
#Money<:USD, 100>

	Add :only and :except options to Money.parse/2 to specify which currency codes or currency attributes are permitted. :only and :except replace the option :currency_filter which is now deprecated. If provided, :currency_filter is interpreted as :only. An example:
iex> Money.parse("100 usd", only: :current, except: :USD)
{:error,
 {Money.UnknownCurrencyError,
 "The currency \"usd\" is unknown or not supported"}}

	Money.parse/2 now supports negative money amounts.
iex> Money.parse("chf -100")
#Money<:CHF, -100>

iex> Money.parse("(chf 100)")
#Money<:CHF, -100>

	The money parser has been rewritten using nimble_parsec

 Money v4.3.0

This is the changelog for Money v4.3.0 released on September 8th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds a Money backend in the same spirit as other libraries that leverge ex_cldr. Thanks to @Lostkobrakai. Closes #108. All of the functions in the Money module may also be called on a backend module <backend>.Money.fun without having to specify a backend module since this is implicit.

 Bug Fixes

	Money.new!/3 replaces Money.new!/2 to accept options. Thanks to @Lostkobrakai. Closes #109.

 Money v4.2.2

This is the changelog for Money v4.2.2 released on September 7th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Use Keyword.get_lazy when the default is Cldr.default_backend/0 to avoid exceptions when no default backend is configured. Thanks to @Lostkobrakai. Closes #108.

 Money v4.2.1

This is the changelog for Money v4.2.1 released on September 2nd, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fixes parsing of money amount that have a single digit amount. Closes #107. Thanks to @njwest

 Money v4.2.0

This is the changelog for Money v4.2.0 released on 21 August, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Move the Money.Migration module to ex_money_ecto where it belongs

 Enhancements

	Money.default_backend/0 will now either use the backend configured under the :default_cldr_backend key of ex_money or Cldr.default_backend/0. In either case an exeption will be raised if no default backend is configured.

 Money v4.1.0

This is the changelog for Money v4.1.0 released on July 13th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds Money.abs/1. Thanks to @jeremyjh.

	Improve @doc consistency using ## Arguments not ## Options.

 Money v4.0.0

This is the changelog for Money v4.0.0 released on July 8th, 2019. For older changelogs please consult the release tag on GitHub

 Breaking Changes

	Functions related to the serialization of money types have been extracted to the library ex_money_sql. For applications using the dependency ex_money that do not require serialization no changes are required. For applications using serialization, the dependency should be changed to ex_money_sql (which in turn depends on ex_money).

	Supports Elixir 1.6 and later only

 Money v3.4.4

This is the changelog for Money v3.4.4 released on June 2nd, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Supports passing an Cldr.Number.Formation.Options.t as alternative to a Keyword.t for options to Money.to_string/2. Performance is doubled when using pre-validated options which is useful if formatting is being executed in a tight loop.

An example of this usage is:
 iex> money = Money.new(:USD, 100)

 # Apply any options required as a keyword list
 # Money will take care of managing the `:currency` option
 iex> options = []

 iex> {:ok, options} = Cldr.Number.Format.Options.validate_options(0, backend, options)
 iex> Money.to_string(money, options)
The 0 in validate_options is used to determine the sign of the amount because that can influence formatting - for example the accounting format often uses (1234) as its format. If you know your amounts are always positive, just use 0.
If the use case may have both positive and negative amounts, generate two option sets (one with the positive number and one with the negative). Then use the appropriate option set. For example:
 iex> money = Money.new(:USD, 1234)

 # Add options as required
 # Money will take care of managing the `:currency` option
 iex> options = []

 iex> {:ok, positive_options} = Cldr.Number.Format.Options.validate_options(0, backend, options)
 iex> {:ok, negative_options} = Cldr.Number.Format.Options.validate_options(-1, backend, options)

 iex> if Money.cmp(money, Money.zero(:USD)) == :gt do
 ...> Money.to_string(money, positive_options)
 ...> else
 ...> Money.to_string(money, negative_options)
 ...> end

 Money v3.4.3

This is the changelog for Money v3.4.3 released on June 2nd, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Ensure Money.to_string!/2 properly raises

	Add specs for Money.to_string/2 and Money.to_string!/2

Thanks to @rodrigues for the report and PR.

 Money v3.4.2

This is the changelog for Money v3.4.2 released on April 16th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Money.put_fraction/2 now correctly allows setting the fraction to 0.

 Enhancements

	Money.round/2 allows setting :currency_digits to an integer number of digits in addition to the options :iso, :cash and :accounting. The default remains :iso.

	Improves the documentation for Money.to_string/2.

 Money v3.4.1

This is the changelog for Money v3.4.1 released on April 5th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix README.md markdown formatting error. Thanks to @fireproofsocks for the report and @lostkobrakai for the fix. Closes #99.

 Money v3.4.0

This is the changelog for Money v3.4.0 released on March 28th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Updates to CLDR version 35.0.0 released on March 27th 2019 through ex_cldr version 2.6.0.

 Money v3.3.1

This is the changelog for Money v3.3.1 released on March 8th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix or silence dialyzer warnings

 Money v3.3.0

This is the changelog for Money v3.3.0 released on February 24th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Adds Money.put_fraction/2. This will set the fractional part of a money to the specified integer amount. Examples:iex> Money.put_fraction Money.new(:USD, "2.49"), 99
#Money<:USD, 2.99>

iex> Money.put_fraction Money.new(:USD, "2.49"), 999
{:error,
 {Money.InvalidAmountError, "Rounding up to 999 is invalid for currency :USD"}}

 Bug Fixes

	Parsing money strings now uses a more complete set of character definitions for decimal and grouping separators based upon the characters.json file of the "en" locale.

 Money v3.2.4

This is the changelog for Money v3.2.4 released on February 13th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Updates to ex_cldr_currencies version 2.1.2 which correctly removes duplicate currency strings when the same string referred to different currency codes. See the changelog for further detail.

 Enhancements

	Adds a :fuzzy option to Money.parse/2 that uses String.jaro_distance/2 to help determine if the provided currency text can be resolved as a currency code. For example:iex> Money.parse("100 eurosports", fuzzy: 0.8)
#Money<:EUR, 100>

iex> Money.parse("100 eurosports", fuzzy: 0.9)
{:error,
 {Money.Invalid, "Unable to create money from \\"eurosports\\" and \\"100\\""}}

 Money v3.2.3

This is the changelog for Money v3.2.3 released on February 12th, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Correctly parse money strings with unicode currency symbols like "€". Closes #95. Thanks to @crbelaus.

 Money v3.2.2

This is the changelog for Money v3.2.2 released on February 10th, 2019. For older changelogs please consult the release tag on GitHub

 Enhancements

	Improves parsing of money strings. Parsing now uses various strings that CLDR knows about. Some examples:

 iex> Money.parse "$au 12 346", locale: "fr"
 #Money<:AUD, 12346>
 iex> Money.parse "12 346 dollar australien", locale: "fr"
 #Money<:AUD, 12346>
 iex> Money.parse "A$ 12346", locale: "en"
 #Money<:AUD, 12346>
 iex> Money.parse "australian dollar 12346.45", locale: "en"
 #Money<:AUD, 12346.45>
 iex> Money.parse "AU$ 12346,45", locale: "de"
 #Money<:AUD, 12346.45>

 # Can also return the strings available for a given currency
 # and locale
 iex> Cldr.Currency.strings_for_currency :AUD, "de"
 ["aud", "au$", "australischer dollar", "australische dollar"]

 # Round trip formatting also seems to be ok
 iex> {:ok, string} = Cldr.Number.to_string 1234, Money.Cldr, currency: :AUD
 iex> Money.parse string
 #Money<:AUD, 1234.00>

 Money v3.2.1

This is the changelog for Money v3.2.1 released on February 2nd, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Added Money.Ecto.Composite.Type.cast/1 and Money.Ecto.Map.Type.cast/1 for a String.t parameter. When a String.t is provided, cast/1 will call Money.parse/2 to create the Money.t.

	Money.new/3 now uses the current locale on the default backend if no locale or backend is specified. This means that Money.Ecto.Composite.Type.cast/1 and Money.Ecto.Map.Type.cast/1 will be parsed using the locale that has been set for the current process in the default backend. As a result, a simple type=text form field can be used to input a money type (currency code and amount in a single string) that can then be cast to a Money.t.

 Money v3.2.0

This is the changelog for Money v3.2.0 released on February 1st, 2019. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Correctly generate migrations_path/1 function based upon whether Ecto is configured and which version

 Enhancements

	Adds Money.parse/2 which will parse a string comprising a currency code and an amount. It will return a Money.t or an error. This function may be helpful in supporting money input in HTML forms.

 Money v3.1.0

This is the changelog for Money v3.1.0 released on December 30th, 2018. For older changelogs please consult the release tag on GitHub

 Bug Fixes

	Fix typo in exchange_rates_retriever.ex. Thanks to @lostkobrakai. Closes #91.

	Remove obsolete cldr compiler

	Changes the sum aggregate function for money_with_currency to be STRICT which means it handles NULL columns in the same way as the standard SUM function. Thanks to @lostkobrakai. Closes #88.

	Fixes documentation link errors

	Fix unhandled terminate typo error in exchange rates server. Thanks to @xavier. Closes #90.

 Money v3.0.0

This is the changelog for Money v3.0.0 released on November 23rd, 2018. For older changelogs please consult the release tag on GitHub
The primary purpose of this release is to support ex_cldr version 2.0

 Breaking changes

	Money.from_tuple/1 has been removed
	Uses ex_cldr version 2. Please see the changelog for configuration changes that are required.
	Requires a default_cldr_backend to be configured in config.exs. For example:config :ex_money,
 ...
 default_cldr_backend: MyApp.Cldr
end

LICENSE

 License

Copyright 2017-2021 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Money

Money implements a set of functions to store, retrieve, convert and perform
arithmetic on a Money.t/0 type that is composed of a currency code and
a decimal currency amount.
Money is very opinionated in the interests of serving as a dependable library
that can underpin accounting and financial applications.
This opinion expressed by ensuring that:
	Money must always have both a amount and a currency code.

	The currency code must always be valid.

	Money arithmetic can only be performed when both operands are of the
same currency.

	Money amounts are represented as a Decimal.

	Money is serialised to the database as a custom Postgres composite type
that includes both the amount and the currency. Therefore for Ecto
serialization Postgres is assumed as the data store. Serialization is
entirely optional and Ecto is not a package dependency.

	All arithmetic functions work in fixed point decimal. No rounding
occurs automatically (unless expressly called out for a function).

	Explicit rounding obeys the rounding rules for a given currency. The
rounding rules are defined by the Unicode consortium in its CLDR
repository as implemented by the hex package ex_cldr. These rules
define the number of fractional digits for a currency and the rounding
increment where appropriate.

 Summary

 Types

 Money.Application - Money v5.18.0

Money.Application

 Summary

 Functions

 Money.Currency - Money v5.18.0

Money.Currency

Functions to return lists of known, historic and
legal tender currencies.

 Summary

 Functions

 Money.Financial - Money v5.18.0

Money.Financial

A set of financial functions, primarily related to discounted cash flows.
Some of the algorithms are from finance formulas

 Summary

 Functions

 Money.Sigil - Money v5.18.0

Money.Sigil

 Summary

 Functions

 Money.ExchangeRates - Money v5.18.0

Money.ExchangeRates behaviour

Implements a behaviour and functions to retrieve exchange rates
from an exchange rate service.
Configuration for the exchange rate service is defined
in a Money.ExchangeRates.Config struct. A default
configuration is returned by Money.ExchangeRates.default_config/0.
The default configuration is:
config :ex_money,
 exchange_rate_service: false,
 exchange_rates_retrieve_every: 300_000,
 api_module: Money.ExchangeRates.OpenExchangeRates,
 callback_module: Money.ExchangeRates.Callback,
 preload_historic_rates: nil
 log_failure: :warn,
 log_info: :info,
 log_success: nil
These keys are are defined as follows:
	:exchange_rate_service is a boolean that determines whether to
automatically start the exchange rate retrieval service.
The default it false.

	:exchange_rates_retrieve_every defines how often the exchange
rates are retrieved in milliseconds. The default is 5 minutes
(300,000 milliseconds)

	:api_module identifies the module that does the retrieval of
exchange rates. This is any module that implements the
Money.ExchangeRates behaviour. The default is
Money.ExchangeRates.OpenExchangeRates

	:callback_module defines a module that follows the
Money.ExchangeRates.Callback behaviour whereby the function
rates_retrieved/2 is invoked after every successful retrieval
of exchange rates. The default is Money.ExchangeRates.Callback.

	:preload_historic_rates defines a date or a date range,
that will be requested when the exchange rate service starts up.
The date or date range should be specified as either a Date.t
or a Date.Range.t or a tuple of {Date.t, Date.t} representing
the from and to dates for the rates to be retrieved. The
default is nil meaning no historic rates are preloaded.

	:log_failure defines the log level at which api retrieval
errors are logged. The default is :warn

	:log_success defines the log level at which successful api
retrieval notifications are logged. The default is nil which
means no logging.

	:log_info defines the log level at which service startup messages
are logged. The default is :info.

	:retriever_options is available for exchange rate retriever
module developers as a place to add retriever-specific configuration
information. This information should be added in the init/1
callback in the retriever module. See Money.ExchangeRates.OpenExchangeRates.init/1
for an example.

Keys can also be configured to retrieve values from environment
variables. This lookup is done at runtime to facilitate deployment
strategies. If the value of a configuration key is
{:system, "some_string"} then "some_string" is interpreted as
an environment variable name which is passed to System.get_env/2.
An example configuration might be:
config :ex_money,
 exchange_rate_service: {:system, "RATE_SERVICE"},
 exchange_rates_retrieve_every: {:system, "RETRIEVE_EVERY"},

 Open Exchange Rates

If you plan to use the provided Open Exchange Rates module
to retrieve exchange rates then you should also provide the additional
configuration key for app_id:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
or configure it via environment variable:
config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
The default exchange rate retrieval module is provided in
Money.ExchangeRates.OpenExchangeRates which can be used
as a example to implement your own retrieval module for
other services.

 Managing the configuration at runtime

During exchange rate service startup, the function init/1 is called
on the configuration exchange rate retrieval module. This module is
expected to return an updated configuration allowing a developer to
customise how the configuration is to be managed. See the implementation
at Money.ExchangeRates.OpenExchangeRates.init/1 for an example.

 Summary

 Types

 Money.ExchangeRates.Cache - Money v5.18.0

Money.ExchangeRates.Cache behaviour

Defines a cache behaviour and default inplementation
of a cache for exchange rates

 Summary

 Callbacks

 Money.ExchangeRates.Cache.Dets - Money v5.18.0

Money.ExchangeRates.Cache.Dets

Money.ExchangeRates.Cache implementation for
:dets

 Summary

 Functions

 Money.ExchangeRates.Cache.Ets - Money v5.18.0

Money.ExchangeRates.Cache.Ets

Money.ExchangeRates.Cache implementation for
:ets and :dets

 Summary

 Functions

 Money.ExchangeRates.Cache.EtsDets - Money v5.18.0

Money.ExchangeRates.Cache.EtsDets

 Summary

 Functions

 Money.ExchangeRates.Callback - Money v5.18.0

Money.ExchangeRates.Callback behaviour

Default exchange rates retrieval callback module.
When exchange rates are successfully retrieved, the function
latest_rates_retrieved/2 or historic_rates_retrieved/2 is
called to perform any desired serialization or proocessing.

 Summary

 Callbacks

 Money.ExchangeRates.Config - Money v5.18.0

Money.ExchangeRates.Config

 Summary

 Types

 Money.ExchangeRates.OpenExchangeRates - Money v5.18.0

Money.ExchangeRates.OpenExchangeRates

Implements the Money.ExchangeRates for the Open Exchange
Rates service.

 Required configuration:

The configuration key :open_exchange_rates_app_id should be
set to your app_id. for example:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
or configure it via environment variable:
config :ex_money,
 open_exchange_rates_app_id: {:system, "OPEN_EXCHANGE_RATES_APP_ID"}
It is also possible to configure an alternative base url for this
service in case it changes in the future. For example:
config :ex_money,
 open_exchange_rates_app_id: "your_app_id"
 open_exchange_rates_url: "https://openexchangerates.org/alternative_api"

 Summary

 Functions

 Money.ExchangeRates.Retriever - Money v5.18.0

Money.ExchangeRates.Retriever

Implements a GenServer to retrieve exchange rates from
a configured retrieveal module on a periodic or on demand basis.
By default exchange rates are retrieved from Open Exchange Rates.
The default period of execution is 5 minutes (300_000 milliseconds). The
period of retrieval is configured in config.exs or the appropriate
environment configuration. For example:
config :ex_money,
 retrieve_every: 300_000

 Summary

 Functions

 Money.ExchangeRates.Supervisor - Money v5.18.0

Money.ExchangeRates.Supervisor

Functions to manage the starting, stopping,
deleting and restarting of the Exchange
Rates Retriever.

 Summary

 Functions

 Money.Subscription - Money v5.18.0

Money.Subscription

Provides functions to create, upgrade and downgrade subscriptions
from one plan to another.
Since moving from one plan to another may require
prorating the payment stream at the point of transition,
this module is introduced to provide a single point of
calculation of the proration in order to give clear focus
to the issues of calculating the carry-over amount or
the carry-over period at the point of plan change.

 Defining a subscription

A subscription records this current state and history of
all plans assigned over time to a subscriber. The definition
is deliberately minimal to simplify integration into applications
that have a specific implementation of a subscription.
A new subscription is created with Money.Subscription.new/3
which has the following attributes:
	plan which defines the initial plan for the subscription.
This option is required.

	effective_date which determines the effective date of
the inital plan. This option is required.

	options which include :created_at and :id with which
a subscription may be annotated

 Changing a subscription plan

Changing a subscription plan requires the following
information be provided:
	A Subscription or the definition of the current plan

	The definition of the new plan

	The strategy for changing the plan which is either:
	to have the effective date of the new plan be after
the current interval of the current plan

	To change the plan immediately in which case there will
be a credit on the current plan which needs to be applied
to the new plan.

See Money.Subscription.change_plan/3

 When the new plan is effective at the end of the current billing period

The first strategy simply finishes the current billing period before
the new plan is introduced and therefore no proration is required.
This is the default strategy.

 When the new plan is effective immediately

If the new plan is to be effective immediately then any credit
balance remaining on the old plan needs to be applied to the
new plan. There are two options of applying the credit:
	Reduce the billing amount of the first period of the new plan
be the amount of the credit left on the old plan. This means
that the billing amount for the first period of the new plan
will be different (less) than the billing amount for subsequent
periods on the new plan.

	Extend the first period of the new plan by the interval amount
that can be funded by the credit amount left on the old plan. In
the situation where the credit amount does not fully fund an integral
interval the additional interval can be truncated or rounded up to the next
integral period.

 Plan definition

This module, and Money in general, does not provide a full
billing or subscription solution - its focus is to support a reliable
means of calcuating the accounting outcome of a plan change only.
Therefore the plan definition required by Money.Subscription can be
any Map.t that includes the following fields:
	interval which defines the time interval for a plan. The value
can be one of day, week, month or year.

	interval_count which defines the number of intervals for the
current plan interval. This must be a positive integer.

	price which is a Money.t representing the price of the plan
to be paid each interval count.

 Billing in advance

This module calculates all subscription changes on the basis
that billing is done in advance. This primarily affects