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Compiled Decision Trees Benchmark
    

Mix.install([
  {:scidata, "~> 0.1"},
  {:exgboost, "~> 0.4"},
  {:mockingjay, github: "acalejos/mockingjay"},
  {:nx, "~> 0.5", override: true},
  {:exla, "~> 0.5"},
  {:scholar, "~> 0.2"},
  {:benchee, "~> 1.0"}
])

  
    
  
  Setup Dataset


{x, y} = Scidata.Iris.download()
data = Enum.zip(x, y) |> Enum.shuffle()
{train, test} = Enum.split(data, ceil(length(data) * 0.8))
{x_train, y_train} = Enum.unzip(train)
{x_test, y_test} = Enum.unzip(test)

x_train = Nx.tensor(x_train)
y_train = Nx.tensor(y_train)

x_test = Nx.tensor(x_test)
y_test = Nx.tensor(y_test)

  
    
  
  Gather Model / Prediction Functions


EXGBoost.compile/1 will convert your trained Booster model into a set of tensor operations which can then be run on any of the Nx backends.
# Get Baseline Model (XGBoost C API)
model = EXGBoost.train(x_train, y_train, num_class: 3, objective: :multi_softprob)
# Get Compiled Models w/ Binary Backend
Nx.Defn.default_options(compiler: Nx.Defn.Evaluator)
Nx.default_backend(Nx.BinaryBackend)
gemm_predict = EXGBoost.compile(model, strategy: :gemm)
gemm_jit_exla = EXLA.jit(gemm_predict)
tree_trav_predict = EXGBoost.compile(model, strategy: :tree_traversal)
tree_trav_jit_exla = EXLA.jit(tree_trav_predict)
ptt_predict = EXGBoost.compile(model, strategy: :perfect_tree_traversal)
ptt_jit_exla = EXLA.jit(ptt_predict)
# Get Compiled Models w/ EXLA Backend
Nx.Defn.default_options(compiler: EXLA)
Nx.default_backend(EXLA.Backend)
gemm_exla = EXGBoost.compile(model, strategy: :gemm)
tree_trav_exla = EXGBoost.compile(model, strategy: :tree_traversal)
ptt_exla = EXGBoost.compile(model, strategy: :perfect_tree_traversal)

funcs = %{
  "Base" => fn x -> EXGBoost.predict(model, x) end,
  "Compiled -- GEMM Strategy -- Binary Backend" => fn x -> gemm_predict.(x) end,
  "Compiled -- Tree Traversal Strategy -- Binary Backend" => fn x -> tree_trav_predict.(x) end,
  "Compiled -- Perfect Tree Traversal Strategy -- Binary Backend" => fn x -> ptt_predict.(x) end,
  "Compiled -- GEMM Strategy -- EXLA Backend" => fn x -> gemm_exla.(x) end,
  "Compiled -- Tree Traversal Strategy -- EXLA Backend" => fn x -> tree_trav_exla.(x) end,
  "Compiled -- Perfect Tree Traversal Strategy -- EXLA Backend" => fn x -> ptt_exla.(x) end,
  "Compiled -- GEMM Strategy -- EXLA Backend (JIT)" => fn x -> gemm_jit_exla.(x) end,
  "Compiled -- Tree Traversal Strategy -- EXLA Backend (JIT)" => fn x ->
    tree_trav_jit_exla.(x)
  end,
  "Compiled -- Perfect Tree Traversal Strategy -- EXLA Backend (JIT)" => fn x ->
    ptt_jit_exla.(x)
  end
}

  
    
  
  Run Time Benchmarks


benches = Map.new(funcs, fn {k, v} -> {k, v.(x_train)} end)

Benchee.run(benches,
  time: 10,
  memory_time: 2,
  warmup: 5
)

  
    
  
  Compare Accuracies


Nx.Defn.default_options(compiler: Nx.Defn.Evaluator)
Nx.default_backend(Nx.BinaryBackend)

accuracies =
  Enum.reduce(funcs, %{}, fn {name, pred_fn}, acc ->
    accuracy =
      pred_fn.(x_test)
      |> Nx.argmax(axis: -1)
      |> then(&Scholar.Metrics.Classification.accuracy(y_test, &1))
      |> Nx.to_number()

    Map.put(acc, name, accuracy)
  end)



  

    
Iris Classification with Gradient Boosting
    

Mix.install([
  {:exgboost, "~> 0.4"},
  {:nx, "~> 0.5"},
  {:scidata, "~> 0.1"},
  {:scholar, "~> 0.1"}
])

  
    
  
  Data


We'll be working with the Iris flower dataset. The Iris dataset consists of features corresponding to measurements of 3 different species of the Iris flower. Overall we have 150 examples, each with 4 featurse and a numeric label mapping to 1 of the 3 species. We can download this dataset using Scidata:
{x, y} = Scidata.Iris.download()
:ok
Scidata doesn't provide train-test splits for Iris. Instead, we'll need to shuffle the original dataset and split manually. We'll save 20% of the dataset for testing:
data = Enum.zip(x, y) |> Enum.shuffle()
{train, test} = Enum.split(data, ceil(length(data) * 0.8))
:ok
EXGBoost requires inputs to be Nx tensors. The conversion for this example is rather easy as we can just wrap both features and labels in a call to Nx.tensor/1:
{x_train, y_train} = Enum.unzip(train)
{x_test, y_test} = Enum.unzip(test)

x_train = Nx.tensor(x_train)
y_train = Nx.tensor(y_train)

x_test = Nx.tensor(x_test)
y_test = Nx.tensor(y_test)

x_train
y_train
We now have both train and test sets consisting of features and labels. Time to train a booster!

  
    
  
  Training


The simplest way to train a booster is using the top-level EXGBoost.train/2 function. This function expects input features and labels, as well as some optional training configuration parameters.
This example is a multi-class classification problem with 3 output classes. We need to configure EXGBoost to train this booster as a multi-class classifier by specifying a different training objective. We also need to specify the number of output classes:
booster =
  EXGBoost.train(x_train, y_train,
    num_class: 3,
    objective: :multi_softprob,
    num_boost_rounds: 10000,
    evals: [{x_train, y_train, "training"}]
  )
And that's it! Now we can test our booster.

  
    
  
  Testing


To get predictions from a trained booster, we can just call EXGBoost.predict/2. You'll notice for this problem that the booster outputs a tensor of shape {30, 3} where the 2nd dimension represents output probabilities for each class. We can obtain a discrete prediction for use in our accuracy measurement by computing the argmax along the last dimension:
preds = EXGBoost.predict(booster, x_test) |> Nx.argmax(axis: -1)
Scholar.Metrics.Classification.accuracy(y_test, preds)
And that's it! We've successfully trained a booster on the Iris dataset with EXGBoost.



  

    
Prediction Intervals using Quantile Regression
    

Mix.install([
  {:exgboost, "~> 0.4"},
  {:explorer, "~> 0.7"},
  {:kino_explorer, "~> 0.1.8"},
  {:kino_vega_lite, "~> 0.1.8"},
  {:nx, "~> 0.6"},
  {:tucan, "~> 0.3"}
])

  
    
  
  Introduction


This livebook shows how quantile regression can be used to create prediction intervals. It was inspired by the fantastic example from scikit-learn:
https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html

  
    
  
  Synthetic data


First, let's generate some synthetic data to work with.
We'll apply the function $f(x) = x\sin(x)$ to uniformly sampled random inputs from $x \in [0, 10]$.
# Generate the data.
key = Nx.Random.key(42)
{x, key} = Nx.Random.uniform(key, 0.0, 10.0, shape: {1000})
y_expected = x |> Nx.sin() |> Nx.multiply(x)
:ok
Now let's plot the data. We'll be building a number of plots throughout this Livebook using the Tucan library.
Tucan.scatter([x: x, y_expected: y_expected], "x", "y_expected", filled: true)
|> Tucan.set_width(750)
Then we'll add some random noise to the true output.
sigma = x |> Nx.divide(10) |> Nx.add(0.5)

# Note: log-normal noise was used in the original write-up.
# Nx doesn't support log-normal yet, so we've just used normal.
{noise, _key} = Enum.map_reduce(Nx.to_list(sigma), key, &Nx.Random.normal(&2, 0.0, &1 * &1))
noise = noise |> Nx.stack() |> Nx.subtract(sigma |> Nx.pow(2) |> Nx.divide(2) |> Nx.exp())
y = Nx.add(y_expected, noise)

Tucan.layers([
  Tucan.scatter([x: x, y: y], "x", "y", filled: true, fill_opacity: 0.75),
  Tucan.lineplot([x: x, y_expected: y_expected], "x", "y_expected", line_color: "red")
])
|> Tucan.set_width(750)
Last we split the data into train and test sets.
split = 0.8
shuffle_key = key
{x_shuffled, _key} = Nx.Random.shuffle(shuffle_key, x)
{y_shuffled, _key} = Nx.Random.shuffle(shuffle_key, y)
{x_train, x_test} = Nx.split(x_shuffled, split)
{y_train, y_test} = Nx.split(y_shuffled, split)

[x_train, x_test, y_train, y_test] |> Enum.map(&Nx.size/1)

Tucan.layers([
  Tucan.scatter([x_train: x_train, y_train: y_train], "x_train", "y_train", filled: true),
  Tucan.scatter([x_test: x_test, y_test: y_test], "x_test", "y_test",
    filled: true,
    point_color: "orange"
  )
])
|> Tucan.set_width(750)

  
    
  
  Prediction intervals


Regression models generally make specific predictions.
If you give a regression model an input $x$, it will return a prediction $\hat{y}$ which it believes to be close to the real output $y$.
Something regressions models don't typically give you, however, is a sense of how confident they are in their predictions.
One way we quantify a model's confidence is with a prediction interval.
A prediction interval is an interval $[\hat{y}_{\text{lower}}, \hat{y}_{\text{upper}}]$ which a model believes the true $y$ lies in with some probability $p$.
Our goal is to construct a regression model that gives both a prediction and a prediction interval.
We'll do so by using quantile regression to train 3 separate models on the same data but with the following parameters:
	$\alpha = 0.05$ (5th percentile)
	$\alpha = 0.50$ (50th percentile -- median)
	$\alpha = 0.95$ (95th percentile)

The model trained with $\alpha = 0.50$ produces a estimate of the median.
This will be our actual prediction.
The models trained with $\alpha = 0.05$ and $\alpha = 0.95$ will act as our $\hat{y}_{\text{lower}}$ and $\hat{y}_{\text{upper}}$, resp.
Together, they'll provide a $90\%$ prediction interval ($95\% - 5\% = 90\%$).
Typically, the $\alpha = 0.50$ estimate will lie within the prediction interval.
This is not guaranteed, however.
See the discussion at the end.
opts = [
  # The default is `max_depth: 6`. It led to a complex model, so I've lowered it.
  max_depth: 4,
  # This is how you specify to EXGBoost that it should perform regression.
  objective: :reg_quantileerror,
  # This is method generally faster than `:exact`.
  tree_method: :hist,
  # The output isn't necessary for our purposes.
  verbose_eval: false
]

model = %{
  p05: EXGBoost.train(x_train, y_train, Keyword.put(opts, :quantile_alpha, 0.05)),
  p50: EXGBoost.train(x_train, y_train, Keyword.put(opts, :quantile_alpha, 0.50)),
  p95: EXGBoost.train(x_train, y_train, Keyword.put(opts, :quantile_alpha, 0.95))
}

:ok
Now we'll plot our model against a validation set (just another $1,000$ points randomly sampled from $[0, 10]$) to get a sense of its performance.
We'll also overlay the test data.
Remember, the model hasn't seen this data.
So if the model captures the test data well, we've built a reasonably general model.
{x_val, key} = Nx.Random.uniform(key, 0.0, 10.0, shape: {1000})

y_val_p05 = EXGBoost.predict(model.p05, x_val)
y_val_p50 = EXGBoost.predict(model.p50, x_val)
y_val_p95 = EXGBoost.predict(model.p95, x_val)

plot_data = [x: x_val, p05: y_val_p05, p50: y_val_p50, p95: y_val_p95]

Tucan.layers([
  Tucan.step(plot_data, "x", "p05", line_color: "black"),
  Tucan.step(plot_data, "x", "p50", line_color: "blue"),
  Tucan.step(plot_data, "x", "p95", line_color: "black"),
  Tucan.scatter([x_test: x_test, y_test: y_test], "x_test", "y_test",
    point_color: "orange",
    fill_opacity: 0.75,
    filled: true
  )
])
|> Tucan.set_width(750)
|> Tucan.set_height(375)
Not bad!
It certainly has the rough shape we want:
	The median (blue) generally lies in the "middle" of the test data.
	And the prediction interval (the space between the two black lines) contains most of the test data (orange).

But we can do better.
For example, notice how the the prediction interval tends to remain flat across the highly concave parts of the sinusoid.
That doesn't seem quite right.
However, first, we need to quantify what we mean by "better".

  
    
  
  Metrics: Interval width


An issue with our initial model is that its prediction intervals are too wide (or tall if you like, since the width of the interval appears vertically).
We generally want our prediction intervals to be as narrow as possible.
We can build a simple metric for the width of the prediction interval -- the average of all the widths:
defmodule Metric.Width do
  import Nx.Defn

  def calc(model_lo, model_hi, x) do
    y_lo = EXGBoost.predict(model_lo, x)
    y_hi = EXGBoost.predict(model_hi, x)

    mean(y_lo, y_hi)
    |> Nx.to_number()
  end

  defn(mean(y_lo, y_hi), do: Nx.mean(y_hi - y_lo))
end

[
  train: Metric.Width.calc(model.p05, model.p95, x_train),
  test: Metric.Width.calc(model.p05, model.p95, x_test)
]
These numbers aren't particularly interpretable at the moment, but we want them to be as low as possible in the improved model.
However, we don't want them too small, or we won't capture the correct percentage of the data.

  
    
  
  Metrics: Coverage


In addition to having narrow prediction intervals, another desirable property of our model is to produce what we'll refer to as "well-calibrated" prediction intervals.
We trained $5\%$ and $95\%$ sub-models to (hopefully) produce an overall 90% prediction interval.
We should expect, then, that $\approx 90\%$ of the data should lie in that interval. If that's the case, then we can call our overall model well-calibrated.
We can emprically check our model's calibration by calculating its "coverage", i.e. how much of the data lies in the prediction interval:
defmodule Metric.Coverage do
  import Nx.Defn

  def calc(model_lo, model_hi, x, y) do
    y_lo = EXGBoost.predict(model_lo, x)
    y_hi = EXGBoost.predict(model_hi, x)

    Nx.to_number(fraction(y, y_lo, y_hi))
  end

  defn fraction(y, y_lo, y_hi) do
    Nx.mean(Nx.logical_and(y >= y_lo, y <= y_hi))
  end
end

[
  train: Metric.Coverage.calc(model.p05, model.p95, x_train, y_train),
  test: Metric.Coverage.calc(model.p05, model.p95, x_test, y_test)
]
This is pretty good, though we've captured a bit too much of the both the test and training sets.
This seems to corroborate our visual observation that the prediction interval doesn't hug the sinusoid as tightly as we might hope.
Now we need to train a model that has balances both these metrics.

  
    
  
  Improved model: combining width and coverage


We want to build a model that has both narrow prediction intervals and good coverage.
Unfortunately, our lower and upper bounds are trained independently.
This is a problem because the width and coverage metrics are functions of both bounds.
To work around this, we'll perform hyper-parameter tuning.
Basically, we're gonna train many models using the same quantile regression as before, but we'll chose the best one based on a metric that EXGBoost doesn't know about directly.
For this example, since the size of the data is relatively small, we'll do a simple, brute-force search of the parameter space.
We'll be varying the following parameters:
	alpha (Default: 0)	$L_1$ regularization term on weights. Increasing this value will make model more conservative.


	eta (Default: 0.3)	Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features, and eta shrinks the feature weights to make the boosting process more conservative.


	lambda (Default: 0)	$L_2$ regularization term on weights. Increasing this value will make model more conservative.


	max_depth (Default: 6)	Maximum depth of a tree. Increasing this value will make the model more complex and more likely to overfit.



There are more parameters we could tune, but these suffice for demonstration purposes.
This brute-force approach will train hundreds of models. It runs in about 45 seconds for me.
defmodule Metric.Combined do
  def calc(model_lo, model_hi, x, y) do
    y_lo = EXGBoost.predict(model_lo, x)
    y_hi = EXGBoost.predict(model_hi, x)

    coverage = Metric.Coverage.fraction(y, y_lo, y_hi) |> Nx.to_number()
    coverage_score = abs(0.90 - coverage)

    width_score = Metric.Width.mean(y_lo, y_hi) |> Nx.to_number()

    # Combine both scores with magic weights: the "dark art" of data engineering.
    2 * coverage_score + width_score / 4
  end
end

model_opts =
  [
    alpha: 1..3,
    eta: -2..-5,
    lambda: 1..3,
    max_depth: 1..3
  ]
  |> Enum.map(fn {k, v} -> {k, Enum.map(v, &(2 ** &1))} end)

# Since we're training so many models, we'll implement early stopping.
opts =
  Keyword.merge(opts,
    early_stopping_rounds: 2,
    eval_metric: [:rmse],
    evals: [{x_test, y_test, "test"}],
    num_boost_rounds: 64
  )

best_result =
  for alpha <- model_opts[:alpha],
      eta <- model_opts[:eta],
      lambda <- model_opts[:lambda],
      max_depth <- model_opts[:max_depth],
      reduce: %{score: 1_000} do
    acc ->
      params = [
        alpha: alpha,
        eta: eta,
        lambda: lambda,
        max_depth: max_depth
      ]

      train_opts = Keyword.merge(opts, params)

      model_lo = EXGBoost.train(x_train, y_train, Keyword.put(train_opts, :quantile_alpha, 0.05))
      model_hi = EXGBoost.train(x_train, y_train, Keyword.put(train_opts, :quantile_alpha, 0.95))

      score = Metric.Combined.calc(model_lo, model_hi, x_test, y_test)

      if score < acc[:score] do
        IO.puts("Best score: #{score}")
        %{model_lo: model_lo, model_hi: model_hi, params: params, score: score}
      else
        acc
      end
  end

IO.puts("Best params: #{inspect(best_result[:params])}")

%{model_lo: best_model_lo, model_hi: best_model_hi} = best_result
Now let's plot our new model to see if it improved:
y_lo = EXGBoost.predict(best_model_lo, x_val)
y_hi = EXGBoost.predict(best_model_hi, x_val)

plot_data = [x: x_val, p05: y_lo, p50: y_val_p50, p95: y_hi]

Tucan.layers([
  Tucan.step(plot_data, "x", "p05", line_color: "black"),
  Tucan.step(plot_data, "x", "p50", line_color: "blue"),
  Tucan.step(plot_data, "x", "p95", line_color: "black"),
  Tucan.scatter([x_test: x_test, y_test: y_test], "x_test", "y_test",
    point_color: "orange",
    fill_opacity: 0.75,
    filled: true
  )
])
|> Tucan.set_width(750)
|> Tucan.set_height(375)
That seems much better!
At least visually, it looks like our new model has narrower prediction intervals.
But did the model actually improve on the metrics we specified?
Let's check.
require Explorer.DataFrame, as: DF

[
  %{
    model: "old",
    train_coverage: Metric.Coverage.calc(model.p05, model.p95, x_train, y_train),
    test_coverage: Metric.Coverage.calc(model.p05, model.p95, x_test, y_test),
    train_width: Metric.Width.calc(model.p05, model.p95, x_train),
    test_width: Metric.Width.calc(model.p05, model.p95, x_test)
  },
  %{
    model: "new",
    train_coverage: Metric.Coverage.calc(best_model_lo, best_model_hi, x_train, y_train),
    test_coverage: Metric.Coverage.calc(best_model_lo, best_model_hi, x_test, y_test),
    train_width: Metric.Width.calc(best_model_lo, best_model_hi, x_train),
    test_width: Metric.Width.calc(best_model_lo, best_model_hi, x_test)
  }
]
|> DF.new()
The train coverage and width metrics both improved. Train coverage is now closer to $0.90$, and the average width was reduced by $\frac{|5.57 - 3.50|}{5.57} = 37.2\%$.
For test, the coverage improved nearly as much.
But the coverage remained about the same distance from $0.90$ as before, though now the model under-covers instead of over-covering.
This is probably an acceptable trade-off.
Though if we wanted further improvements, we could always do more tuning.

  
    
  
  Discussion


The focus of this example was the prediction interval.
We were able to create a model that would not only predict an output, but also quantify how close it thought its prediction was.
For example:
x_comp = Nx.tensor([1.0, 8.0])

y_comp_p05 = EXGBoost.predict(best_model_lo, x_comp)
y_comp_p50 = EXGBoost.predict(model.p50, x_comp)
y_comp_p95 = EXGBoost.predict(best_model_hi, x_comp)
width = Nx.subtract(y_comp_p95, y_comp_p05)

DF.new(
  x: x_comp |> Nx.to_list() |> Enum.map(&Float.round(&1, 2)),
  y_hat: y_comp_p50 |> Nx.to_list() |> Enum.map(&Float.round(&1, 2)),
  interval_lo: y_comp_p05 |> Nx.to_list() |> Enum.map(&Float.round(&1, 2)),
  interval_hi: y_comp_p95 |> Nx.to_list() |> Enum.map(&Float.round(&1, 2)),
  width: width |> Nx.to_list() |> Enum.map(&Float.round(&1, 2))
)
In a vacuum, we might expect that the model was equally as confident in its two predictions:
	$1 \mapsto -0.59$
	$8 \mapsto 4.58$

But with the additional context of a prediction interval, we can see that our model is much more confident in the former than the latter:
	$1 \mapsto -0.59 \in [-0.89, 0.07]$ (width: $0.97$)
	$8 \mapsto  4.58 \in [ 1.89, 7.40]$ (width: $5.51$)

That additional context can be very helpful for anyone who wishes to make a decision based off a prediction.
However, it's worth discussing the limitations of this model.

  
    
  
  Discussion: Quantile crossing


The fact that the sub-parts of our model were trained independently has already caused some issues.
Because EXGBoost had no knowledge of the metrics we were interested in, we had to train multiple models to find a pair that had the properties we wanted.
Similarly, quantile regression models trained independently as we've done are subject to quantile crossing.
Briefly, there's no guarantee that the predictions from the models we've trained will have the right order.
E.g. the $\alpha = 0.05$ model may sometimes be higher than the $\alpha = 0.95$.
This ought to rare in a well-trained model.
But especially when the prediction interval is narrow, crossing can occur.
For the same reason, the actual prediction may sometimes fall outside the prediction interval.
Again, it ought to be rare if the model was trained well.
But it's a limitation worth knowing about.

  
    
  
  Discussion: Pinball error


Something else we didn't discuss is how EXGBoost trains quantile regression in the first place.
We discuss it now for completeness and to provide a warning about early stopping.
With most regression tasks, EXGBoost is optimizing for a familiar metric such as mean_absolute_error:
$$
\texttt{mean\_absolute\_error} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|
$$
But the more familiar metrics don't take into account the $\alpha$ that we want to train.
As such, when objective: reg_quantileerror is provided, EXGBoost optimizes for a metric called the mean_quantile_error / mean_pinball_error:
$$
\texttt{mean\_pinball\_error}(\alpha) =
  \frac{1}{n} \sum_{i=1}^{n} \texttt{pinball}(\hat{y}_i, y_i, \alpha)
$$
where
$$
\texttt{pinball}(\hat{y}_i, y_i, \alpha) =
\begin{cases}
|\hat{y}_i - y_i| \cdot (1 - \alpha) &\text{if ~ } \hat{y}_i \leq y_i\\
|\hat{y}_i - y_i| \cdot       \alpha &\text{if ~ } \hat{y}_i \gt  y_i
\end{cases}
$$
Essentially, the error should be $0$ if the the prediction matches the true value ($\hat{y}_i = y_i$).
But the penalty for being incorrect is now a function of the quantile $\alpha$.
Take $\alpha = 0.95$ as an example.
A model trained for $\alpha = 0.95$ should predict values that are above $95\%$ of the true values.
So we want high penalties for any prediction below $95\%$, and moderate penalties for being above.
(Sidenote: if $\alpha = 0.5$, the mean_pinball_error is equivalent to the mean_absolute_error up to a constant factor of $0.5$).
Now let's write our own mean_pinball_error:
defmodule Pinball do
  import Nx.Defn

  defn mean_error(y_pred, y_true, alpha) do
    dy = y_true - y_pred
    # if dy < 0, do: alpha, else: alpha - 1
    coeff = alpha + (dy >= 0) - 1
    error = coeff * dy
    Nx.mean(error)
  end
end
Then let's score our model on the test data using this metric:
y_pinball_p05 = EXGBoost.predict(best_model_lo, x_test)
y_pinball_p50 = EXGBoost.predict(model.p50, x_test)
y_pinball_p95 = EXGBoost.predict(best_model_hi, x_test)

y_preds = [y_pinball_p05, y_pinball_p50, y_pinball_p95]
alpha_strings = ["05", "50", "95"]

alpha_strings
|> Map.new(fn alpha_string ->
  alpha = String.to_float("0.#{alpha_string}")

  y_pred =
    y_preds
    |> Enum.map(&Pinball.mean_error(&1, y_test, alpha))
    |> Enum.map(&Nx.to_number/1)
    |> Enum.map(&Float.round(&1, 2))

  {"p_#{alpha_string} metric", y_pred}
end)
|> Map.put("model", ["q_05", "q_50", "q_95"])
|> Explorer.DataFrame.new()
Each of the 3 models performed better than the other 2 when the metric matched what quantile it was trained for.
We can see this in the table above where, for each column, the lowest score lies on the diagonal.
We discuss the pinball error because it's the metric that should be used for early stopping.
However, EXGBoost (not XGBoost under the hood) currently does not expose expose this metric through their API.
This isn't terribly surprising as quantile regression is relatively new.
However, if one wished to perform early stopping correctly, they'd need a custom metric set to the Pinball.mean_error function provided here (or equivalent).
This is left as an exercise to the reader :)



  

    
Plotting in EXGBoost
    

Mix.install([
  {:exgboost, "~> 0.5"},
  {:scidata, "~> 0.1"},
  {:kino_vega_lite, "~> 0.1"}
])

# This assumed you launch this livebook from its location in the exgboost/notebooks folder

  
    
  
  Introduction


Much of the utility from decision trees come from their intuitiveness and ability to inform dcisions outside of the confines of a black-box model. A decision tree can be easily translated to a series of actions that can be taken on behalf of the stakeholder to achieve the desired outcome. This makes them especially useful in business decisions, where people might still want to have the final say but be as informed as possible. Additionally, tabular data is still quite popular in the business domain, which conforms to the required input for decision trees.
Decision trees can be used for both regression and classification tasks, but classification tends to be what is most associated with decision trees.
This notebook will go over some of the details of the EXGBoost.Plotting module, including using preconfiged styles, custom styling, as well as customizing the entire vidualization.

  
    
  
  Plotting APIs


There are 2 main APIs exposed to control plotting in EXGBoost:
	Top-level API (EXGBoost.plot_tree/2)
	Using predefined styles
	Defining custom styles
	Mix of the first 2


	EXBoost.Plotting module API
	Use the Vega data spec defined in EXGBoost.Plotting.get_data_spec/2
	Define your own Vega spec using the data from either EXGBoost.Plotting.to_tabular/1 or some other means

We will walk through each of these in detail.


Regardless of which API you choose to use, it is helpful to understand how the plotting module works (althought the higher-level API you choose to work with the less important it becomes).

  
    
  
  Implementation Details


The plotting functionality provided in EXGBoost is powered by the Vega JavaScript library and the Elixir VegaLite library which provides the piping to interop with the JavaScript libraries. We do not actually much use the Elixir API provided by the Elixir VegaLite library. It is mainly used for the purposes of rendering.
Vega is a plotting library built on top of the very powerful D3 JavaScript library. Vega visualizations are defined according to the respective JSON Schema specification. Vega-Lite offers a reduced schema compared to the full Vega spec. EXGBoost.Plotting leverages several transforms which are not available in the reduced Vega-Lite schema, which is the reason for targeting the lower-level API.
For these reasons, unfortunately we could not just implement plotting for EXGBoost as a composable Vega-Lite pipeline. This makes working synamically with the spec a bit more unwieldly, but much care was taken to still make the high-level plotting API extensible, and if needed you can go straight to defining your own JSON spec.

  
    
  
  Setup Data


We will still be using the Iris dataset for this notebook, but if you want more details about the process of training and evaluating a model please check out the Iris Classification with Gradient Boosting notebook.
So let's proceed by setting up the Iris dataset.
{x, y} = Scidata.Iris.download()
data = Enum.zip(x, y) |> Enum.shuffle()
{train, test} = Enum.split(data, ceil(length(data) * 0.8))
{x_train, y_train} = Enum.unzip(train)
{x_test, y_test} = Enum.unzip(test)

x_train = Nx.tensor(x_train)
y_train = Nx.tensor(y_train)

x_test = Nx.tensor(x_test)
y_test = Nx.tensor(y_test)

  
    
  
  Train Your Booster


Now go ahead and train your booster. We will use early_stopping_rounds: 1 because we're not interested in the accuracy of the booster for this demonstration (Note that we need to set evals to use early stopping).
You will notice that EXGBoost also provides an implementation for Kino.Render so that EXGBoost.Boosters are rendered as a plot by default.
booster =
  EXGBoost.train(
    x_train,
    y_train,
    num_class: 3,
    objective: :multi_softprob,
    num_boost_rounds: 10,
    evals: [{x_train, y_train, "training"}],
    verbose_eval: false,
    early_stopping_rounds: 1
  )
You'll notice that the plot doesn't display any labels to the features in the splits, and instead only shows features labelled as "f2" etc. If you provide feature labels during training, your plot will show the splits using the feature labels.
booster =
  EXGBoost.train(x_train, y_train,
    num_class: 3,
    objective: :multi_softprob,
    num_boost_rounds: 10,
    evals: [{x_train, y_train, "training"}],
    verbose_eval: false,
    feature_name: ["sepal length", "sepal width", "petal length", "petal width"],
    early_stopping_rounds: 1
  )

  
    
  
  Top-Level API


EXGBoost.plot_tree/2 is the quickest way to customize the output of the plot.
This API uses Vega Marks to describe the plot. Each of the following Mark options accepts any of the valid keys from their respective Mark type as described in the Vega documentation.
Please note that these are passed as a Keyword, and as such the keys must be atoms rather than strings as the Vega docs show. Valid options for this API are camel_cased atoms as opposed to the pascalCased strings the Vega docs describe, so if you wish to pass "fontSize" as the Vega docs show, you would instead pass it as font_size: in this API.
The plot is composed of the following parts:
	Top-level keys: Options controlling parts of the plot outside of direct control of a Mark, such as :padding, :autosize, etc. Accepts any Vega top-level top-level key in addition to several specific to this API (scuh as :style and :depth).
	:leaves: Mark specifying the leaf nodes of the tree	:text: Text Mark
	:rect: Rect Mark


	:splits Mark specifying the split (or inner / decision) nodes of the tree	:text: Text Mark
	:rect: Rect Mark
	:children: Text Mark for the child count


	:yes	:path: Path Mark
	:text: Text Mark


	:no	:path: Path Mark
	:text: Text Mark



EXGBoost.plot_tree/2 defaults to outputting a VegaLite struct. If you pass the :path option it will save to a file instead.
If you want to add any marks to the underlying plot you will have to use the lower-level EXGBoost.Plotting API, as the top-level API is only capable of customizing these marks.

  
    
  
  Top-Level Keys


EXGBoost supports changing the direction of the plots through the :rankdir option. Avaiable directions are [:tb, :bt, :lr, :rl], with top-to-bottom (:tb) being the default.
EXGBoost.plot_tree(booster, rankdir: :bt)
By default, plotting only shows one (the first) tree, but seeing as a Booster is really an ensemble of trees you can choose which tree to plot through the :index option, or set to nil to have a dropdown box to select the tree.
EXGBoost.plot_tree(booster, rankdir: :lr, index: nil)
You'll also notice that the plot is interactive, with support for scrolling, zooming, and collapsing sections of the tree. If you click on a split node you will toggle the visibility of its descendents, and the rest of the tree will fill the canvas.
You can also use the :depth option to programatically set the max depth to display in the tree:
EXGBoost.plot_tree(booster, rankdir: :lr, index: 4, depth: 3)
One way to affect the canvas size is by controlling the padding.
You can add padding to all side by specifying an integer for the :padding option
EXGBoost.plot_tree(booster, rankdir: :rl, index: 4, depth: 3, padding: 50)
Or specify padding for each side:
EXGBoost.plot_tree(booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  padding: [top: 5, bottom: 25, left: 50, right: 10]
)
You can also specify the canvas size using the :width and :height options:
EXGBoost.plot_tree(booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  width: 500,
  height: 500
)
But do note that changing the padding of a canvas does change the size, even if you specify the size using :height and :width
EXGBoost.plot_tree(booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  width: 500,
  height: 500,
  padding: 10
)
You can change the dimensions of all nodes through the :node_height and :node_width options:
EXGBoost.plot_tree(booster, rankdir: :lr, index: 4, depth: 3, node_width: 60, node_height: 60)
Or change the space between nodes using the :space_between option.
Note that the size of the accompanying nodes and/or text will change to accomodate the new :space_between option while trying to maintain the canvas size.
EXGBoost.plot_tree(
  booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  space_between: [nodes: 200]
)
So if you want to add the space between while not changing the size of the nodes you might need to manually adjust the canvas size:
EXGBoost.plot_tree(
  booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  space_between: [nodes: 200],
  height: 800
)
EXGBoost.plot_tree(
  booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  space_between: [levels: 200]
)

  
    
  
  Mark Options


The options controlling the appearance of individual marks all conform to a similar API. You can refer to the options and pre-defined defaults for a subset of the allowed options, but you can also pass other options so long as they are allowed by the Vega Mark spec (as defined here)
EXGBoost.plot_tree(
  booster,
  rankdir: :bt,
  index: 4,
  depth: 3,
  space_between: [levels: 200],
  yes: [
    text: [font_size: 18, fill: :teal]
  ],
  no: [
    text: [font_size: 20]
  ],
  node_width: 100
)
Most marks accept an :opacity option that you can use to effectively hide the mark:
EXGBoost.plot_tree(
  booster,
  rankdir: :lr,
  index: 4,
  depth: 3,
  splits: [
    text: [opacity: 0],
    rect: [opacity: 0],
    children: [opacity: 1]
  ]
)
And text marks accept normal text options such as :fill, :font_size, and :font:
EXGBoost.plot_tree(
  booster,
  node_width: 250,
  splits: [
    text: [font: "Helvetica Neue", font_size: 20, fill: "orange"]
  ],
  space_between: [levels: 20]
)

  
    
  
  Styles


There are a set of provided pre-configured settings for the top-level API that you may optionally use. You can refer to the EXGBoost.Plottings.Styles docs to see a gallery of each style in action. You can specify a style with the :style option in EXGBoost.plot_tree/2.
You can still specify custom settings along with using a style. Most styles only specify a subset of the total possible settings, but you are free to specify any other allowed keys and they will be merged with the style. Any options passed explicitly to the option does take precedence over the style options.
For example, let's look at the :solarized_dark style:
EXGBoost.Plotting.solarized_dark() |> Keyword.take([:background, :height]) |> IO.inspect()
EXGBoost.plot_tree(booster, style: :solarized_dark)
You can see that it defines a background color of #002b36 but does not restrict what the height must be.
EXGBoost.plot_tree(booster, style: :solarized_dark, background: "white", height: 200)
We specified both :background and :height here, and the background specified in the option supercedes the one from the style.
You can also always get the style specification as a Keyword which can be passed to EXGBoost.plot_tree/2 manually, making any needed changes yourself, like so:
custom_style = EXGBoost.Plotting.solarized_dark() |> Keyword.put(:background, "white")
EXGBoost.plot_tree(booster, style: custom_style)
You can also programatically check which styles are available:
EXGBoost.Plotting.get_styles()

  
    
  
  Configuration


You can also set defaults for the top-level API using an Application configuration for EXGBoost under the :plotting key. Since the defaults are collected from your configuration file at compile-time, anything you set during runtime, even if you set it to the Application environment, will not be registered as defaults.
For example, if you just want to change the default pre-configured style you can do:
Mix.install([
  {:exgboost, path: Path.join(__DIR__, ".."), env: :dev},
],
  config:
  [
    exgboost: [
      plotting: [
          style: :solarized_dark,
        ]]
      ],
  lockfile: :exgboost)
You can also make one-off changes to any of the settings with this method. In effect, this turns into a default custom style. Just make sure to set style: nil to ensure that the style option doesn't supercede any of your settings. Here's an example of that:
  default_style =
  [
    style: nil,
    background: "#3f3f3f",
    leaves: [
      # Foreground
      text: [fill: "#dcdccc", font_size: 12, font_style: "normal", font_weight: "normal"],
      # Comment
      rect: [fill: "#7f9f7f", stroke: "#7f9f7f"]
    ],
    splits: [
      # Foreground
      text: [fill: "#dcdccc", font_size: 12, font_style: "normal", font_weight: "bold"],
      # Comment
      rect: [fill: "#7f9f7f", stroke: "#7f9f7f"],
      # Selection
      children: [fill: "#2b2b2b", stroke: "#2b2b2b"]
    ],
    yes: [
      # Green
      text: [fill: "#7f9f7f"],
      # Selection
      path: [stroke: "#2b2b2b"]
    ],
    no: [
      # Red
      text: [fill: "#cc9393"],
      # Selection
      path: [stroke: "#2b2b2b"]
    ]
  ]

Mix.install([
  {:exgboost, path: Path.join(__DIR__, ".."), env: :dev},
],
config:
  [
    exgboost: [
      plotting: default_style,
    ]
  ]
)
NOTE: When you specify a parameter in the configuration, it is merged with the defaults which is different from runtime behavior.
At any point, you can check what your default settings are by using EXGBoost.Plotting.get_defaults/0
EXGBoost.Plotting.get_defaults()

  
    
  
  Low-Level API


If you find yourself needing more granular control over your plots, you can reach towards the EXGBoost.Plotting module. This module houses the EXGBoost.Plotting.plot/2 function, which is what is used under the hood from the EXGBoost.plot_tree/2 top-level API. This module also has the get_data_spec/2 function, as well as the to_tabular/1 function, both of which can be used to specify your own Vega specification. Lastly, the module also houses all of the pre-configured styles, which are 0-arity functions which output the Keywords containing their respective style's options that can be passed to the plotting APIs.
Let's briefly go over the to_tabular/1 and get_data_spec/2 functions:
The to_tabular/1 function is used to convert a Booster, which is formatted as a tree structure, to a tabular format which can be ingested specifically by the Vega Stratify transform. It returns a list of "nodes", which are just Maps with info about each node in the tree.
EXGBoost.Plotting.to_tabular(booster) |> hd
You can use this function if you want to have complete control over the visualization, and just want a bit of a head start with respect to data transformation for converting the Booster into a more digestible format.
The get_data_source/2 function is used if you want to use the provided Vega data specification. This is for those who want to only focus on implementing your own Vega Marks, and want to leverage the data transformation pipeline that powers the top-level API.
The data transformation used is the following pipeline:
to_tabular/1 -> Filter (by tree index) -> Stratify -> Tree
EXGBoost.Plotting.get_data_spec(booster, rankdir: :bt)
The Vega fields which are not included with get_data_spec/2 and are included in plot/2 are:
	Marks
	Scales
	Signals

You can make a completely valid plot using only the Data from get_data_specs/2 and adding the marks you need.
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Elixir bindings for the XGBoost library. EXGBoost provides an implementation of XGBoost that works with
Nx tensors.
Xtreme Gradient Boosting (XGBoost) is an optimized distributed gradient
boosting library designed to be highly efficient, flexible and portable.
It implements machine learning algorithms under the Gradient Boosting
framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM)
that solve many data science problems in a fast and accurate way. The same code
runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond
billions of examples.

  
    
  
  Installation


def deps do
[
  {:exgboost, "~> 0.5"}
]
end

  
    
  
  API Data Structures


EXGBoost's top-level EXGBoost API works directly and only with Nx.Tensor for data
representation and with EXGBoost.Booster structs as an internal representation.
Direct manipulation of EXGBoost.Booster structs is discouraged.

  
    
  
  Basic Usage


key = Nx.Random.key(42)
{x, key} = Nx.Random.normal(key, 0, 1, shape: {10, 5})
{y, key} = Nx.Random.normal(key, 0, 1, shape: {10})
model = EXGBoost.train(x, y)
EXGBoost.predict(model, x)

  
    
  
  Training


EXGBoost is designed to feel familiar to users of the Python XGBoost library. EXGBoost.train/2 is the
primary entry point for training a model. It accepts an Nx tensor for the features and an Nx tensor for the labels.
EXGBoost.train/2 returns a trained EXGBoost.Booster struct that can be used for prediction. EXGBoost.train/2 also
accepts a keyword list of options that can be used to configure the training process. See the
XGBoost documentation for the full list of options.
EXGBoost.train/2 has the ability for the user to provide a custom training function that will be used to train the model.
This is done by passing a function to the :obj option. See EXGBoost.Booster.update/4 for more information on this.
Another feature of EXGBoost.train/2 is the ability to provide a validation set for early stopping. This is done
by passing a list of 3-tuples to the :evals option. Each 3-tuple should contain an Nx tensor for the features, an Nx tensor
for the labels, and a string label for the validation set name. The validation set will be used to calculate the validation
error at each iteration of the training process. If the validation error does not improve for :early_stopping_rounds iterations
then the training process will stop. See the XGBoost documentation
for a more detailed explanation of early stopping.
Early stopping is achieved through the use of callbacks. EXGBoost.train/2 accepts a list of callbacks that will be called
at each iteration of the training process. The callbacks can be used to implement custom logic. For example, the user could
implement a callback that will print the validation error at each iteration of the training process or to provide a custom
setup function for training. SeeEXGBoost.Training.Callback for more information on callbacks.
Please notes that callbacks are called in the order that they are provided. If you provide multiple callbacks that modify
the same parameter then the last callback will trump the previous callbacks. For example, if you provide a callback that
sets the :early_stopping_rounds parameter to 10 and then provide a callback that sets the :early_stopping_rounds parameter
to 20 then the :early_stopping_rounds parameter will be set to 20.
You are also able to pass parameters to be applied to the Booster model using the :params option. These parameters will
be applied to the Booster model before training begins. This allows you to set parameters that are not available as options
to EXGBoost.train/2. See the XGBoost documentation for a full
list of parameters.
EXGBoost.train(
  x,
  y,
  obj: :multi_softprob,
  evals: [{x_test, y_test, "test"}],
  learning_rates: fn i -> i / 10 end,
  num_boost_round: 10,
  early_stopping_rounds: 3,
  max_depth: 3,
  eval_metric: [:rmse, :logloss]
)

  
    
  
  Prediction


EXGBoost.predict/2 is the primary entry point for making predictions with a trained model.
It accepts an EXGBoost.Booster struct (which is the output of EXGBoost.train/2).
EXGBoost.predict/2 returns an Nx tensor containing the predictions and also accepts
a keyword list of options that can be used to configure the prediction process.
preds = EXGBoost.train(X, y) |> EXGBoost.predict(X)

  
    
  
  Serialization


A Booster can be serialized to a file using EXGBoost.write_* and loaded from a file
using EXGBoost.read_*. The file format can be specified using the :format option
which can be either :json or :ubj. The default is :json. If the file already exists, it will NOT
be overwritten by default.  Boosters can either be serialized to a file or to a binary string.
Boosters can be serialized in three different ways: configuration only, configuration and model, or
model only. dump functions will serialize the Booster to a binary string.
Functions named with weights will serialize the model's trained parameters only. This is best used when the model
is already trained and only inferences/predictions are going to be performed. Functions named with config will
serialize the configuration only. Functions that specify model will serialize both the model parameters
and the configuration.

  
    
  
  Output Formats


	read/write -  File.
	load/dump - Binary buffer.


  
    
  
  Output Contents


	config - Save the configuration only.
	weights - Save the model parameters only. Use this when you want to save the model to a format that can be ingested by other XGBoost APIs.
	model - Save both the model parameters and the configuration.


  
    
  
  Plotting


EXGBoost.plot_tree/2 is the primary entry point for plotting a tree from a trained model.
It accepts an EXGBoost.Booster struct (which is the output of EXGBoost.train/2).
EXGBoost.plot_tree/2 returns a VegaLite spec that can be rendered in a notebook or saved to a file.
EXGBoost.plot_tree/2 also accepts a keyword list of options that can be used to configure the plotting process.
See EXGBoost.Plotting for more detail on plotting.
You can see available styles by running EXGBoost.Plotting.get_styles() or refer to the EXGBoost.Plotting.Styles
documentation for a gallery of the styles.

  
    
  
  Kino & Livebook Integration


EXGBoost integrates with Kino and Livebook
to provide a rich interactive experience for data scientists.
EXGBoost implements the Kino.Render protocol for EXGBoost.Booster structs. This allows you to render
a Booster in a Livebook notebook.  Under the hood, EXGBoost uses Vega-Lite
and Kino Vega-Lite to render the Booster.
See the Plotting in EXGBoost Notebook for an example of how to use EXGBoost with Kino and Livebook.

  
    
  
  Examples


See the example Notebooks in the left sidebar (under the Pages tab) for more examples and tutorials
on how to use EXGBoost.
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Functions for plotting EXGBoost Booster models using Vega
Fundamentally, all this module does is convert a Booster into a format that can be
ingested by Vega, and apply some default configuations that only account for a subset of the configurations
that can be set by a Vega spec directly. The functions provided in this module are designed to have opinionated
defaults that can be used to quickly visualize a model, but the full power of Vega is available by using the
to_tabular/1 function to convert the model into a tabular format, and then using the plot/2 function
to convert the tabular format into a Vega specification.

  
    
  
  Default Vega Specification


The default Vega specification is designed to be a good starting point for visualizing a model, but it is
possible to customize the specification by passing in a map of Vega properties to the plot/2 function.
Refer to Custom Vega Specifications for more details on how to do this.
By default, the Vega specification includes the following entities to use for rendering the model:
	:width - The width of the plot in pixels
	:height - The height of the plot in pixels
	:padding - The padding in pixels to add around the visualization. If a number, specifies padding for all sides. If an object, the value should have the format [left: value, right: value, top: value, bottom: value]
	:leafs - Specifies characteristics of leaf nodes
	:inner_nodes - Specifies characteristics of inner nodes
	:links - Specifies characteristics of links between nodes


  
    
  
  Custom Vega Specifications


The default Vega specification is designed to be a good starting point for visualizing a model, but it is
possible to customize the specification by passing in a map of Vega properties to the plot/2 function.
You can find the full list of Vega properties here.
It is suggested that you use the data attributes provided by the default specification as a starting point, since they
provide the necessary data transformation to convert the model into a tree structure that can be visualized by Vega.
If you would like to customize the default specification, you can use EXGBoost.Plotting.plot/1 to get the default
specification, and then modify it as needed.
Once you have a custom specification, you can pass it to VegaLite.from_json/1 to create a new VegaLite struct, after which
you can use the functions provided by the VegaLite module to render the model.

  
    
  
  Specification Validation


You can optionally validate your specification against the Vega schema by passing the validate: true option to plot/2.
This will raise an error if the specification is invalid. This is useful if you are creating a custom specification and want
to ensure that it is valid. Note that this will only validate the specification against the Vega schema, and not against the
VegaLite schema. This requires the [ex_json_schema] package to be installed.

  
    
  
  Livebook Integration


This module also provides a Kino.Render implementation for EXGBoost.Booster which allows
models to be rendered directly in Livebook. This is done by converting the model into a Vega specification
and then using the Kino.Render implementation for Elixir's VegaLite API
to render the model.
. The Vega specification is then passed to VegaLite

  
    
  
  Plotting Parameters


This module exposes a high-level API for customizing the EXGBoost model visualization, but it is also possible to
customize the Vega specification directly. You can also choose to pass in Vega Mark specifications to customize the
appearance of the nodes and links in the visualization outside of the parameteres specified below. Refer to the
Vega documentation for more details on how to do this.
	:style - The style to use for the visualization. Refer to EXGBoost.Plotting.Styles for a list of available styles. The default value is :dracula.

	:rankdir - Determines the direction of the graph. The default value is :tb.

	:autosize - Determines if the visualization should automatically resize when the window size changes The default value is "fit".

	:background (String.t/0) - The background color of the visualization. Accepts a valid CSS color string. For example: #f304d3, #ccc, rgb(253, 12, 134), steelblue. The default value is "#f5f5f5".

	:height (pos_integer/0) - Height of the plot in pixels The default value is 400.

	:width (pos_integer/0) - Width of the plot in pixels The default value is 600.

	:padding - The padding in pixels to add around the visualization. If a number, specifies padding for all sides. If an object, the value should have the format [left: value, right: value, top: value, bottom: value] The default value is 30.

	:leaves (keyword/0) - Specifies characteristics of leaf nodes The default value is [text: [align: :center, baseline: :middle, font_size: 13, font: "Calibri"], rect: [corner_radius: 2, opacity: 1]].
	:text (keyword/0) - Accepts a keyword list of Vega text Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [align: :center, baseline: :middle, font_size: 13, font: "Calibri"].

	:rect (keyword/0) - Accepts a keyword list of Vega rect Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [corner_radius: 2, opacity: 1].



	:splits (keyword/0) - Specifies characteristics of split nodes The default value is [text: [align: :center, baseline: :middle, font_size: 13, font: "Calibri"], rect: [corner_radius: 2, opacity: 1], children: [align: :right, baseline: :middle, font: "Calibri", font_size: 13]].
	:text (keyword/0) - Accepts a keyword list of Vega text Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [align: :center, baseline: :middle, font_size: 13, font: "Calibri"].

	:rect (keyword/0) - Accepts a keyword list of Vega rect Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [corner_radius: 2, opacity: 1].

	:children (keyword/0) - Accepts a keyword list of Vega text Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [align: :right, baseline: :middle, font: "Calibri", font_size: 13].



	:node_width (pos_integer/0) - The width of each node in pixels The default value is 100.

	:node_height (pos_integer/0) - The height of each node in pixels The default value is 45.

	:space_between (keyword/0) - The space between the rectangular marks in pixels. The default value is [nodes: 10, levels: 100].
	:nodes (pos_integer/0) - Space between marks within the same depth of the tree. The default value is 10.

	:levels (pos_integer/0) - Space between each rank / depth of the tree. The default value is 100.



	:yes (keyword/0) - Specifies characteristics of links between nodes where the split condition is true The default value is [path: [], text: [align: :center, baseline: :middle, font_size: 13, font: "Calibri", text: "yes"]].
	:path (keyword/0) - Accepts a keyword list of Vega path Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [].

	:text (keyword/0) - Accepts a keyword list of Vega text Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [align: :center, baseline: :middle, font_size: 13, font: "Calibri", text: "yes"].



	:no (keyword/0) - Specifies characteristics of links between nodes where the split condition is false The default value is [path: [], text: [align: :center, baseline: :middle, font_size: 13, font: "Calibri", text: "no"]].
	:path (keyword/0) - Accepts a keyword list of Vega path Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [].

	:text (keyword/0) - Accepts a keyword list of Vega text Mark properties. Reference here for more details. Accepts either a string (expected to be valid Vega property names) or Elixir-styled atom. Note that keys are snake-cased instead of camel-case (e.g. Vega fontSize becomes font_size) The default value is [align: :center, baseline: :middle, font_size: 13, font: "Calibri", text: "no"].



	:validate (boolean/0) - Whether to validate the Vega specification against the Vega schema The default value is true.

	:index - The zero-indexed index of the tree to plot. If nil, plots all trees using a dropdown selector to switch between trees The default value is 0.

	:depth - The depth of the tree to plot. If nil, plots all levels (cick on a node to expand/collapse) The default value is nil.



  
    
  
  Styles


Styles are a keyword-map that adhere to the plotting schema as defined in EXGBoost.Plotting.
EXGBoost.Plotting.Styles provides a set of predefined styles that can be used to quickly customize the appearance of the visualization.
Refer to the EXGBoost.Plotting.Styles module for a list of available styles. You can pass a style to the :style
option as an atom or string, and it will be applied to the visualization. Styles will override any other options that are passed
for each option where the style defined a value. For example, if you pass :solarized_light as the style, and also pass
:background as an option, the :background option will be ignored since the :solarized_light style defines its own value for :background.

      


      
        Summary


  
    Types
  


    
      
        style()

      


    





  
    Functions
  


    
      
        dark()

      


        A dark theme



    


    
      
        dracula()

      


        A theme based on the Dracula color palette



    


    
      
        get_data_spec(booster, opts \\ [])

      


        Generates the necessary data transformation to convert the model into a tree structure that can be visualized by Vega.



    


    
      
        get_defaults()

      


    


    
      
        get_schema()

      


    


    
      
        get_styles()

      


    


    
      
        gruvbox()

      


        A theme based on the Gruvbox color palette



    


    
      
        high_contrast()

      


        A high contrast theme



    


    
      
        horizon_dark()

      


        A dark theme based on the Horizon color palette



    


    
      
        horizon_light()

      


        A light theme based on the Horizon color palette



    


    
      
        light()

      


        A light theme



    


    
      
        material()

      


        A theme based on the Material color palette



    


    
      
        monokai()

      


        A theme based on the Monokai color palette



    


    
      
        nord()

      


        A theme based on the Nord color palette



    


    
      
        one_dark()

      


        A theme based on the One Dark color palette



    


    
      
        playful_dark()

      


        A dark and playful theme



    


    
      
        playful_light()

      


        A light and playful theme



    


    
      
        plot(booster, opts \\ [])

      


    


    
      
        solarized_dark()

      


        A dark theme based on the Solarized color palette



    


    
      
        solarized_light()

      


        A light theme based on the Solarized color palette



    


    
      
        to_tabular(booster)

      


        Outputs details of the tree in a tabular format which can be consumed
by plotting libraries such as Vega. Outputs as a list of maps, where
each map represents a node in the tree.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    style()


      
       
       View Source
     


  


  

      

          @type style() :: Keyword.t()


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    dark()


      
       
       View Source
     


  


  

      

          @spec dark() :: style()


      


A dark theme

  



  
    
      
      Link to this function
    
    dracula()


      
       
       View Source
     


  


  

      

          @spec dracula() :: style()


      


A theme based on the Dracula color palette

  



    

  
    
      
      Link to this function
    
    get_data_spec(booster, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec get_data_spec(booster :: EXGBoost.Booster.t(), opts :: keyword()) :: map()


      


Generates the necessary data transformation to convert the model into a tree structure that can be visualized by Vega.
This function is useful if you want to create a custom Vega specification, but still want to use the data transformation
provided by the default specification.

  
    
  
  Options


	:rankdir - Determines the direction of the graph. Accepts one of :tb, :lr, :bt, or :rl. Defaults to :tb


  



  
    
      
      Link to this function
    
    get_defaults()


      
       
       View Source
     


  


  

      

          @spec get_defaults() :: Keyword.t()


      



  



  
    
      
      Link to this function
    
    get_schema()


      
       
       View Source
     


  


  

      

          @spec get_schema() :: ExJsonSchema.Schema.Root.t()


      



  



  
    
      
      Link to this function
    
    get_styles()


      
       
       View Source
     


  


  

      

          @spec get_styles() :: [{atom(), [style(), ...]}, ...]


      



  



  
    
      
      Link to this function
    
    gruvbox()


      
       
       View Source
     


  


  

      

          @spec gruvbox() :: style()


      


A theme based on the Gruvbox color palette

  



  
    
      
      Link to this function
    
    high_contrast()


      
       
       View Source
     


  


  

      

          @spec high_contrast() :: style()


      


A high contrast theme

  



  
    
      
      Link to this function
    
    horizon_dark()


      
       
       View Source
     


  


  

      

          @spec horizon_dark() :: style()


      


A dark theme based on the Horizon color palette

  



  
    
      
      Link to this function
    
    horizon_light()


      
       
       View Source
     


  


  

      

          @spec horizon_light() :: style()


      


A light theme based on the Horizon color palette

  



  
    
      
      Link to this function
    
    light()


      
       
       View Source
     


  


  

      

          @spec light() :: style()


      


A light theme

  



  
    
      
      Link to this function
    
    material()


      
       
       View Source
     


  


  

      

          @spec material() :: style()


      


A theme based on the Material color palette

  



  
    
      
      Link to this function
    
    monokai()


      
       
       View Source
     


  


  

      

          @spec monokai() :: style()


      


A theme based on the Monokai color palette

  



  
    
      
      Link to this function
    
    nord()


      
       
       View Source
     


  


  

      

          @spec nord() :: style()


      


A theme based on the Nord color palette

  



  
    
      
      Link to this function
    
    one_dark()


      
       
       View Source
     


  


  

      

          @spec one_dark() :: style()


      


A theme based on the One Dark color palette

  



  
    
      
      Link to this function
    
    playful_dark()


      
       
       View Source
     


  


  

      

          @spec playful_dark() :: style()


      


A dark and playful theme

  



  
    
      
      Link to this function
    
    playful_light()


      
       
       View Source
     


  


  

      

          @spec playful_light() :: style()


      


A light and playful theme

  



    

  
    
      
      Link to this function
    
    plot(booster, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec plot(EXGBoost.Booster.t(), Keyword.t()) :: VegaLite.t()


      



  



  
    
      
      Link to this function
    
    solarized_dark()


      
       
       View Source
     


  


  

      

          @spec solarized_dark() :: style()


      


A dark theme based on the Solarized color palette

  



  
    
      
      Link to this function
    
    solarized_light()


      
       
       View Source
     


  


  

      

          @spec solarized_light() :: style()


      


A light theme based on the Solarized color palette

  



  
    
      
      Link to this function
    
    to_tabular(booster)


      
       
       View Source
     


  


  

      

          @spec to_tabular(EXGBoost.Booster.t()) :: [map()]


      


Outputs details of the tree in a tabular format which can be consumed
by plotting libraries such as Vega. Outputs as a list of maps, where
each map represents a node in the tree.
Table columns:
	tree_id: The tree id
	nodeid: The node id
	parentid: The parent node id
	split: The split feature
	split_condition: The split condition
	yes: The node id of the left child
	no: The node id of the right child
	missing: The node id of the missing child
	depth: The depth of the node (root node is depth 1)
	leaf: The leaf value if it is a leaf node


  


        

      



  

  
    
    EXGBoost.Plotting.Styles - EXGBoost v0.5.0
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A Booster is the main object used for training and prediction. It is a wrapper around the
underlying XGBoost C API.  Booster have three main concepts for tracking associated data:
parameters, attributes, and features. Parameters are used to configure the Booster and are
from a set of valid options (such as tree_depth and eta -- refer to EXGBoost.Parameters for full list).
Attributes are user-provided key-value pairs that are assigned to a Booster (such as best_iteration and best_score).
Features are used to track the metadata associated with the features used in training (such as feature_names and feature_types).

  
    
  
  Training


When using EXGBoost.train/2, a Booster is created and trained automatically with the given parameters.
If you need more control over the training process, please refer to EXGBoost.Training.Callback for
guidance on how to inject custom logic into the training process.

  
    
  
  Creation


A Booster can be created using EXGBoost.Booster.booster from a list of DMatrices, a single DMatrix, or
another Booster. If a list of DMatrices is provided, the first DMatrix is used as the training
data and the rest are used for evaluation. If a single DMatrix is provided, it is used as the
training data. If another Booster is provided, it is copied and returned as a new Booster with
the same configuration -- if params are provided, they will override the configuration of the
copied Booster.

  
    
  
  Serialization


A Booster can be serialized to a file using EXGBoost.Booster.save and loaded from a file
using EXGBoost.Booster.load. The file format can be specified using the :format option
which can be either :json or :ubj. The default is :json. If the file already exists, it will
be overwritten by default.  Boosters can either be serialized to a file or to a binary string.
Boosters can be serialized in three different ways: configuration only, configuration and model, or
model only. Any function that uses the to and from buffer functions will serialize the Booster
to a binary string. The to and from file functions will serialize the Booster to a file.
Functions named with weights will serialize the model weights only. Functions named with config will
serialize the configuration only. Functions that specify model will serialize both the model weights
and the configuration.

  
    
  
  Output Formats


	file - Save to a file.
	buffer - Save to a binary string.


  
    
  
  Output Contents


	config - Save the configuration only.
	weights - Save the model weights only.
	model - Save both the model weights and the configuration.


      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        boost(booster, dmatrix, grad, hess)

      


        Boost the booster for one iteration, with customized gradient statistics.



    


    
      
        booster(dmats, opts \\ [])

      


        Create a new Booster.



    


    
      
        eval(booster, data, opts \\ [])

      


        Evaluate the model on the given data.



    


    
      
        eval_set(booster, evals, iteration, opts \\ [])

      


        Evaluate a set of data.



    


    
      
        get_attr(booster, attr)

      


        Get the attribute value for the given key.



    


    
      
        get_attrs(booster)

      


        Get the attribute names for the booster.



    


    
      
        get_best_iteration(booster)

      


        Get the best iteration for the booster.



    


    
      
        get_boosted_rounds(booster)

      


        Get the number of boosted rounds for the booster.



    


    
      
        get_dump(booster, opts \\ [])

      


        Get a formatted representation of the Booster's model.



    


    
      
        get_feature_names(booster)

      


        Get the names of the features for the booster.



    


    
      
        get_feature_types(booster)

      


        Get the type for each feature in the booster



    


    
      
        get_num_features(booster)

      


        Get the number of features for the booster.



    


    
      
        load(source, opts \\ [])

      


        Load a Booster from the specified source. If a Booster is provided, the model will be loaded into
that Booster. Otherwise, a new Booster will be created. If a Booster is provided, model parameters
will be merged with the existing Booster's parameters using Map.merge/2, where the parameters
of the provided Booster take precedence.



    


    
      
        predict(booster, data, opts \\ [])

      


    


    
      
        save(booster, opts \\ [])

      


        Save a Booster to the specified source.



    


    
      
        set_attr(booster, attrs \\ [])

      


        Set attributes for booster.



    


    
      
        set_params(booster, params \\ [])

      


        Set parameters for booster. The parameters are passed as a keyword list. Please refer to
EXGBoost.Parameters for a full list of parameters. Parameters can be set multiple times
by passng a list of values for a given parameter. For example, set_params(booster, eval_metric: [:rmse, :auc]).
Accepts both atoms and strings as keys. Nested keyword lists will simply be treated as more key-value pairs
to be set. Returns the booster.



    


    
      
        slice(boostr, begin_layer, end_layer, step)

      


        Slice a model using boosting index. The slice m:n indicates taking all
trees that were fit during the boosting rounds m, (m+1), (m+2), …, (n-1).



    


    
      
        update(booster, dmatrix, iteration, objective)

      


        Update for one iteration, with objective function calculated internally.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %EXGBoost.Booster{
  best_iteration: integer(),
  best_score: float(),
  ref: reference()
}


      



  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    boost(booster, dmatrix, grad, hess)


      
       
       View Source
     


  


  

Boost the booster for one iteration, with customized gradient statistics.

  



    

  
    
      
      Link to this function
    
    booster(dmats, opts \\ [])


      
       
       View Source
     


  


  

Create a new Booster.
A Booster can be created from a list of DMatrices, a single DMatrix, or
another Booster. If a list of DMatrices is provided, the first DMatrix is used as the training
data and the rest are used for evaluation. If a single DMatrix is provided, it is used as the
training data. If another Booster is provided, it is copied and returned as a new Booster with
the same configuration -- if params are provided, they will override the configuration of the
copied Booster.

  
    
  
  Options


Refer to EXGBoost.Parameters for a list of valid options.

  



    

  
    
      
      Link to this function
    
    eval(booster, data, opts \\ [])


      
       
       View Source
     


  


  

Evaluate the model on the given data.

  
    
  
  Options


	:name - The name of the dataset.

	:iteration - The current iteration number.


  Returns the evaluation result string.

  



    

  
    
      
      Link to this function
    
    eval_set(booster, evals, iteration, opts \\ [])


      
       
       View Source
     


  


  

Evaluate a set of data.

  
    
  
  Options


	iteration - Current iteration.
	feval - Custom evaluation function.

Returns the resulting metrics as a list of 2-tuples in the form of {eval_metric, value}.

  



  
    
      
      Link to this function
    
    get_attr(booster, attr)


      
       
       View Source
     


  


  

Get the attribute value for the given key.

  



  
    
      
      Link to this function
    
    get_attrs(booster)


      
       
       View Source
     


  


  

Get the attribute names for the booster.

  



  
    
      
      Link to this function
    
    get_best_iteration(booster)


      
       
       View Source
     


  


  

Get the best iteration for the booster.

  



  
    
      
      Link to this function
    
    get_boosted_rounds(booster)


      
       
       View Source
     


  


  

Get the number of boosted rounds for the booster.

  



    

  
    
      
      Link to this function
    
    get_dump(booster, opts \\ [])


      
       
       View Source
     


  


  

Get a formatted representation of the Booster's model.

  
    
  
  Options


	:fmap (String.t/0) - The path to the file containing the feature map. The default value is "".

	:with_stats (boolean/0) - Whether or not to include the statistics in the dump. The default value is false.

	:format - The format to dump to. Can be either :json or :text. The default value is :text.



  



  
    
      
      Link to this function
    
    get_feature_names(booster)


      
       
       View Source
     


  


  

Get the names of the features for the booster.

  



  
    
      
      Link to this function
    
    get_feature_types(booster)


      
       
       View Source
     


  


  

Get the type for each feature in the booster

  



  
    
      
      Link to this function
    
    get_num_features(booster)


      
       
       View Source
     


  


  

Get the number of features for the booster.

  



    

  
    
      
      Link to this function
    
    load(source, opts \\ [])


      
       
       View Source
     


  


  

Load a Booster from the specified source. If a Booster is provided, the model will be loaded into
that Booster. Otherwise, a new Booster will be created. If a Booster is provided, model parameters
will be merged with the existing Booster's parameters using Map.merge/2, where the parameters
of the provided Booster take precedence.

  
    
  
  Options


	:from - The input format. Can be either :file or :buffer. The default value is :file.

	:deserialize - The contents to deserialize. Can be either :config, :weights, or :model. The default value is :model.

	:booster (struct of type EXGBoost.Booster) - The Booster to load the model into. If not provided, a new Booster will be created.



  



    

  
    
      
      Link to this function
    
    predict(booster, data, opts \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    save(booster, opts \\ [])


      
       
       View Source
     


  


  

Save a Booster to the specified source.

  
    
  
  Options


	:to - The output format. Can be either :file or :buffer. The default value is :file.

	:path (String.t/0) - The path to the file to save to. Required if to is :file.

	:serialize - The contents to serialize. Can be either :config, :weights, or :model. The default value is :model.

	:format - The format to serialize to. Can be either :json or :ubj. The default value is :json.

	:overwrite (boolean/0) - Whether or not to overwrite the file if it already exists. The default value is false.



  



    

  
    
      
      Link to this function
    
    set_attr(booster, attrs \\ [])


      
       
       View Source
     


  


  

Set attributes for booster.
Key value pairs are passed as options. You can set an existing key to :nil to
delete the attribute. Returns the booster.

  



    

  
    
      
      Link to this function
    
    set_params(booster, params \\ [])


      
       
       View Source
     


  


  

Set parameters for booster. The parameters are passed as a keyword list. Please refer to
EXGBoost.Parameters for a full list of parameters. Parameters can be set multiple times
by passng a list of values for a given parameter. For example, set_params(booster, eval_metric: [:rmse, :auc]).
Accepts both atoms and strings as keys. Nested keyword lists will simply be treated as more key-value pairs
to be set. Returns the booster.

  



  
    
      
      Link to this function
    
    slice(boostr, begin_layer, end_layer, step)


      
       
       View Source
     


  


  

Slice a model using boosting index. The slice m:n indicates taking all
trees that were fit during the boosting rounds m, (m+1), (m+2), …, (n-1).

  



  
    
      
      Link to this function
    
    update(booster, dmatrix, iteration, objective)


      
       
       View Source
     


  


  

Update for one iteration, with objective function calculated internally.
If an objective function is provided rather than a number of iterations, this
updates for one iteration, with objective function defined by the user.
See Custom Objective for details.
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Parameters are used to configure the training process and the booster.

  
    
  
  Global Parameters


You can set the following params either using a global application config (preferred)
or using the EXGBoost.set_config/1 function. The global config is set using the :exgboost key.
Note that using the EXGBoost.set_config/1 function will override the global config for the
current instance of the application.
config :exgboost,
  verbosity: :info,
  use_rmm: true,
	:verbosity - Verbosity of printing messages. Valid values are:
:silent, :warning, :info, :debug. The default value is :silent.

	:use_rmm (boolean/0) - Whether to use RAPIDS Memory Manager for memory allocation.
This option is only applicable when XGBoost is built (compiled)
with the RMM plugin enabled. Valid values are true and false. The default value is false.



  
    
  
  General Parameters


	:booster - Which booster to use. Valid values are :gbtree, :gblinear, :dart
	:gbtree - tree-based models
	:gblinear - linear models
	:dart - tree-based models with dropouts The default value is :gbtree.


	:device - Device for XGBoost to run. User can set it to one of the following values:
	:cpu - Use a CPU.
	:cuda - Use a GPU (CUDA device).
	{:cuda, ordinal} -  ordinal is an integer that specifies the ordinal of the GPU (which GPU do you want to use if you have more than one devices).
	:gpu - Default GPU device selection from the list of available and supported devices. Only cuda devices are supported currently.
	{:gpu, ordinal} - Default GPU device selection from the list of available and supported devices. Only cuda devices are supported currently.

  For more information about GPU acceleration, see XGBoost GPU Support. In distributed environments, ordinal selection is handled by distributed frameworks instead of XGBoost. As a result, using {:cuda, ordinal} will result in an error. Use :cuda instead.
The default value is :cpu.

	:verbosity - Verbosity of printing messages. Valid values are:
:silent, :warning, :info, :debug The default value is :silent.

	:validate_parameters (boolean/0) - Whether to perform validation of parameters. If set to true, an error
will be raised if an invalid parameter is passed to the booster, and
EXGBoost will take care of formatting all parameters to the expected
input of XGBoost. If set to false, the user is responsible for ensuring
that all parameters are valid strings which is what XGBoost is expecting. The default value is true.

	:nthread (non_neg_integer/0) - Number of threads to use for training and prediction. If 0, then the
number of threads is set to the number of cores.  This can be set globally
using the :exgboost application environment variable :nthread
or on a per booster basis.  If set globally, the value will be used for
all boosters unless overridden by a specific booster.
To set the number of threads globally, add the following to your config.exs:
config :exgboost, nthread: n. The default value is 0.

	:disable_default_eval_metric (boolean/0) - Whether to disable the default metric. If set to true, then the default
metric is not used for evaluation. This is useful when using custom
evaluation metrics. The default value is false.

	:num_features (non_neg_integer/0) - Feature dimension used in boosting, set to maximum dimension of the feature



  
    
  
  Tree Booster Parameters


	:eta - Step size shrinkage used in update to prevents overfitting. After each
boosting step, we can directly get the weights of new features. and eta
actually shrinks the feature weights to make the boosting process more
conservative. Valid range is [0,1]. The default value is 0.3.

	:gamma - Minimum loss reduction required to make a further partition on a leaf node
of the tree. The larger gamma is, the more conservative the algorithm will
be. Valid range is [0, $\infty$]. The default value is 0.0.

	:max_depth (non_neg_integer/0) - Maximum depth of a tree. Increasing this value will make the model more complex
and more likely to overfit. 0 indicates no limit on depth. Beware that XGBoost
aggressively consumes memory when training a deep tree. exact tree method requires
non-zero value. The default value is 6.

	:min_child_weight - Minimum sum of instance weight (hessian) needed in a child. If the tree partition
step results in a leaf node with the sum of instance weight less than min_child_weight,
then the building process will give up further partitioning. In linear regression task,
this simply corresponds to minimum number of instances needed to be in each node.
The larger min_child_weight is, the more conservative the algorithm will be.
Valid range is [0, $\infty$]. The default value is 1.

	:max_delta_step - Maximum delta step we allow each tree's weight estimation to be. If the value is set
to 0, it means there is no constraint. If it is set to a positive value, it can help
making the update step more conservative. Usually this parameter is not needed, but it
might help in logistic regression when class is extremely imbalanced. Set it to value of
1-10 might help control the update. Valid range is [0, $\infty$]. The default value is 0.

	:subsample - Subsample ratio of the training instance. Setting it to 0.5 means that XGBoost
randomly collected half of the data instances to grow trees and this will prevent
overfitting. Subsampling will occur once in every boosting iteration. Valid range is (0, 1]. The default value is 1.0.

	:sampling_method - The method to use to sample the training instances.
	:uniform - each training instance has an equal probability of being selected.
Typically set :subsample $\ge$ 0.5 for good results. The default value is :uniform.


	:colsample_by - This is a family of parameters for subsampling of columns.
All colsample_by parameters have a range of (0, 1], the default value of 1, and specify the fraction of columns to be subsampled.
colsample_by parameters work cumulatively. For instance, the combination
col_sampleby: [tree: 0.5, level: 0.5, node: 0.5] with 64 features will leave 8.
	:tree - The subsample ratio of columns when constructing each tree. Subsampling occurs once for every tree constructed. Valid range is (0, 1]. The default value is 1.
	:level - The subsample ratio of columns for each level. Subsampling occurs once for every new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the current tree. Valid range is (0, 1]. The default value is 1.
	:node - The subsample ratio of columns for each node (split). Subsampling occurs once every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the current level. Valid range is (0, 1]. The default value is 1.


	:lambda - L2 regularization term on weights. Increasing this value will make model more conservative.
Valid range is [0, $\infty$]. The default value is 1.

	:alpha - L1 regularization term on weights. Increasing this value will make model more conservative.
Valid range is [0, $\infty$]. The default value is 0.

	:tree_method - The tree construction algorithm used in XGBoost.
This is a combination of commonly used updaters. For other updaters like
refresh, set the parameter updater directly.
	:auto - Use heuristic to choose the fastest method.	For small dataset, exact greedy (exact) will be used.
	For larger dataset, approximate algorithm (approx) will be chosen. It’s recommended to try
hist for higher performance with large dataset.
	Because old behavior is always use exact greedy in single machine, user will get a message
when approximate algorithm is chosen to notify this choice.


	:exact - Exact greedy algorithm. Enumerates all split candidates.
	:approx - Approximate greedy algorithm using sketching and histogram.
	:hist - Faster histogram optimized approximate greedy algorithm. The default value is :auto.


	:scale_pos_weight (float/0) - Control the balance of positive and negative weights, useful for unbalanced classes.
A typical value to consider: sum(negative instances) / sum(positive instances). The default value is 1.0.

	:updater - A list defining the sequence of tree updaters to run, providing a
modular way to construct and to modify the trees. This is an advanced parameter that
is usually set automatically, depending on some other parameters. However, it could be
also set explicitly by a user. The following updaters exist:
	:grow_colmaker - non-distributed column-based construction of trees.
	:grow_histmaker - distributed tree construction with row-based data splitting based on global proposal of histogram counting.
	:grow_quantile_histmaker - Grow tree using quantized histogram.
	:sync - synchronizes trees in all distributed nodes.
	:refresh - refreshes tree’s statistics and/or leaf values based on the current data. Note that no random subsampling of data rows is performed.
	:prune - prunes the splits where loss < min_split_loss (or gamma) and nodes that have depth greater than max_depth.


	:refresh_leaf - This is a parameter of the refresh updater. When this flag is 1,
tree leafs as well as tree nodes’ stats are updated. When it is 0, only node stats are updated. The default value is 1.

	:process_type - The type of boosting process to run
	:default - The normal boosting process which creates new trees.
	:update - Starts from an existing model and only updates its trees. In each boosting iteration,
  a tree from the initial model is taken, a specified sequence of updaters is run for that tree,
  and a modified tree is added to the new model. The new model would have either the same or
  smaller number of trees, depending on the number of boosting iterations performed. Currently,
  the following built-in updaters could be meaningfully used with this process type:
  refresh, prune. With process_type: update, one cannot use updaters that create new trees. The default value is :default.


	:grow_policy - Controls a way new nodes are added to the tree. Currently supported only if tree_method is set
to :hist or :approx.
	:depthwise - split at nodes closest to the root.
	:lossguide - split at nodes with highest loss change. The default value is :depthwise.


	:max_leaves (non_neg_integer/0) - Maximum number of nodes to be added. Not used by exact tree method. The default value is 0.

	:max_bin (pos_integer/0) - Maximum number of discrete bins to bucket continuous features. Used only if
tree_method is set to :hist or :approx.
Maximum number of discrete bins to bucket continuous features.
Increasing this number improves the optimality of splits at the cost of higher computation time. The default value is 256.

	:predictor - The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.
	:auto - Configure predictor based on heuristics.
	:cpu_predictor - Multicore CPU prediction algorithm. The default value is :auto.


	:num_parallel_tree (non_neg_integer/0) - Number of parallel trees constructed during each iteration. This option is used to support boosted random forest. The default value is 1.

	:monotone_constraints - Constraint of variable monotonicity. See Monotonic Constraints for more information.

	:interaction_constraints (list of list of integer/0) - Constraints for interaction representing permitted interactions. The constraints must be specified in the
form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of indices of features
that are allowed to interact with each other. See Feature Interaction Constraints for more information.

	:multi_strategy - The strategy used for training multi-target models, including multi-target regression and multi-class
classification. See Multiple Outputs for more information.
	:one_output_per_tree - One model for each target.
	:multi_output_tree - Use multi-target trees. The default value is :one_output_per_tree.


	:max_cached_hist_node (non_neg_integer/0) - Maximum number of cached nodes for CPU histogram. For most of the cases this parameter should not be set except for growing deep trees on CPU. The default value is 65536.



  
    
  
  Linear Booster Parameters


	:lambda (float/0) - L2 regularization term on weights. Increasing this value will make model more conservative. Normalised to number of training examples. The default value is 0.0.

	:alpha (float/0) - L1 regularization term on weights. Increasing this value will make model more conservative. Normalised to number of training examples. The default value is 0.0.

	:updater - Choice of algorithm to fit linear model
	:shotgun - Parallel coordinate descent algorithm based on shotgun algorithm. Uses ‘hogwild’ parallelism and therefore produces a nondeterministic solution on each run.
	:coord_descent - Ordinary coordinate descent algorithm. Also multithreaded but still produces a deterministic solution. The default value is :shotgun.


	:feature_selector - Feature selection and ordering method
	:cyclic - Deterministic selection by cycling through features one at a time. Used with the :shotgun updater.
	:shuffle - Similar to :cyclic but with random feature shuffling prior to each update. Used with the :shotgun updater.
	:random - A random (with replacement) coordinate selector. Used with the :coord_descent updater.
	:greedy - Select coordinate with the greatest gradient magnitude. It has $O(num_feature^2)$ complexity. It is fully deterministic. It allows restricting the selection to :top_k features per group with the largest magnitude of univariate weight change, by setting the :top_k parameter. Doing so would reduce the complexity to $O(num_feature^{topk})$. Used by :coord_descent updater.
	:thrifty - Thrifty, approximately-greedy feature selector. Prior to cyclic updates, reorders features in descending magnitude of their univariate weight changes. This operation is multithreaded and is a linear complexity approximation of the quadratic greedy selection. It allows restricting the selection to :top_k features per group with the largest magnitude of univariate weight change, by setting the :top_k parameter. Used by :coord_descent updater. The default value is :cyclic.


	:top_k (non_neg_integer/0) - The number of top features to select in :greedy and :thrifty feature selector. The value of 0 means using all the features. The default value is 0.



  
    
  
  Dart Booster Parameters


	:eta - Step size shrinkage used in update to prevents overfitting. After each
boosting step, we can directly get the weights of new features. and eta
actually shrinks the feature weights to make the boosting process more
conservative. Valid range is [0,1]. The default value is 0.3.

	:gamma - Minimum loss reduction required to make a further partition on a leaf node
of the tree. The larger gamma is, the more conservative the algorithm will
be. Valid range is [0, $\infty$]. The default value is 0.0.

	:max_depth (non_neg_integer/0) - Maximum depth of a tree. Increasing this value will make the model more complex
and more likely to overfit. 0 indicates no limit on depth. Beware that XGBoost
aggressively consumes memory when training a deep tree. exact tree method requires
non-zero value. The default value is 6.

	:min_child_weight - Minimum sum of instance weight (hessian) needed in a child. If the tree partition
step results in a leaf node with the sum of instance weight less than min_child_weight,
then the building process will give up further partitioning. In linear regression task,
this simply corresponds to minimum number of instances needed to be in each node.
The larger min_child_weight is, the more conservative the algorithm will be.
Valid range is [0, $\infty$]. The default value is 1.

	:max_delta_step - Maximum delta step we allow each tree's weight estimation to be. If the value is set
to 0, it means there is no constraint. If it is set to a positive value, it can help
making the update step more conservative. Usually this parameter is not needed, but it
might help in logistic regression when class is extremely imbalanced. Set it to value of
1-10 might help control the update. Valid range is [0, $\infty$]. The default value is 0.

	:subsample - Subsample ratio of the training instance. Setting it to 0.5 means that XGBoost
randomly collected half of the data instances to grow trees and this will prevent
overfitting. Subsampling will occur once in every boosting iteration. Valid range is (0, 1]. The default value is 1.0.

	:sampling_method - The method to use to sample the training instances.
	:uniform - each training instance has an equal probability of being selected.
Typically set :subsample $\ge$ 0.5 for good results. The default value is :uniform.


	:colsample_by - This is a family of parameters for subsampling of columns.
All colsample_by parameters have a range of (0, 1], the default value of 1, and specify the fraction of columns to be subsampled.
colsample_by parameters work cumulatively. For instance, the combination
col_sampleby: [tree: 0.5, level: 0.5, node: 0.5] with 64 features will leave 8.
	:tree - The subsample ratio of columns when constructing each tree. Subsampling occurs once for every tree constructed. Valid range is (0, 1]. The default value is 1.
	:level - The subsample ratio of columns for each level. Subsampling occurs once for every new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the current tree. Valid range is (0, 1]. The default value is 1.
	:node - The subsample ratio of columns for each node (split). Subsampling occurs once every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the current level. Valid range is (0, 1]. The default value is 1.


	:lambda - L2 regularization term on weights. Increasing this value will make model more conservative.
Valid range is [0, $\infty$]. The default value is 1.

	:alpha - L1 regularization term on weights. Increasing this value will make model more conservative.
Valid range is [0, $\infty$]. The default value is 0.

	:tree_method - The tree construction algorithm used in XGBoost.
This is a combination of commonly used updaters. For other updaters like
refresh, set the parameter updater directly.
	:auto - Use heuristic to choose the fastest method.	For small dataset, exact greedy (exact) will be used.
	For larger dataset, approximate algorithm (approx) will be chosen. It’s recommended to try
hist for higher performance with large dataset.
	Because old behavior is always use exact greedy in single machine, user will get a message
when approximate algorithm is chosen to notify this choice.


	:exact - Exact greedy algorithm. Enumerates all split candidates.
	:approx - Approximate greedy algorithm using sketching and histogram.
	:hist - Faster histogram optimized approximate greedy algorithm. The default value is :auto.


	:scale_pos_weight (float/0) - Control the balance of positive and negative weights, useful for unbalanced classes.
A typical value to consider: sum(negative instances) / sum(positive instances). The default value is 1.0.

	:updater - A list defining the sequence of tree updaters to run, providing a
modular way to construct and to modify the trees. This is an advanced parameter that
is usually set automatically, depending on some other parameters. However, it could be
also set explicitly by a user. The following updaters exist:
	:grow_colmaker - non-distributed column-based construction of trees.
	:grow_histmaker - distributed tree construction with row-based data splitting based on global proposal of histogram counting.
	:grow_quantile_histmaker - Grow tree using quantized histogram.
	:sync - synchronizes trees in all distributed nodes.
	:refresh - refreshes tree’s statistics and/or leaf values based on the current data. Note that no random subsampling of data rows is performed.
	:prune - prunes the splits where loss < min_split_loss (or gamma) and nodes that have depth greater than max_depth.


	:refresh_leaf - This is a parameter of the refresh updater. When this flag is 1,
tree leafs as well as tree nodes’ stats are updated. When it is 0, only node stats are updated. The default value is 1.

	:process_type - The type of boosting process to run
	:default - The normal boosting process which creates new trees.
	:update - Starts from an existing model and only updates its trees. In each boosting iteration,
  a tree from the initial model is taken, a specified sequence of updaters is run for that tree,
  and a modified tree is added to the new model. The new model would have either the same or
  smaller number of trees, depending on the number of boosting iterations performed. Currently,
  the following built-in updaters could be meaningfully used with this process type:
  refresh, prune. With process_type: update, one cannot use updaters that create new trees. The default value is :default.


	:grow_policy - Controls a way new nodes are added to the tree. Currently supported only if tree_method is set
to :hist or :approx.
	:depthwise - split at nodes closest to the root.
	:lossguide - split at nodes with highest loss change. The default value is :depthwise.


	:max_leaves (non_neg_integer/0) - Maximum number of nodes to be added. Not used by exact tree method. The default value is 0.

	:max_bin (pos_integer/0) - Maximum number of discrete bins to bucket continuous features. Used only if
tree_method is set to :hist or :approx.
Maximum number of discrete bins to bucket continuous features.
Increasing this number improves the optimality of splits at the cost of higher computation time. The default value is 256.

	:predictor - The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.
	:auto - Configure predictor based on heuristics.
	:cpu_predictor - Multicore CPU prediction algorithm. The default value is :auto.


	:num_parallel_tree (non_neg_integer/0) - Number of parallel trees constructed during each iteration. This option is used to support boosted random forest. The default value is 1.

	:monotone_constraints - Constraint of variable monotonicity. See Monotonic Constraints for more information.

	:interaction_constraints (list of list of integer/0) - Constraints for interaction representing permitted interactions. The constraints must be specified in the
form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of indices of features
that are allowed to interact with each other. See Feature Interaction Constraints for more information.

	:multi_strategy - The strategy used for training multi-target models, including multi-target regression and multi-class
classification. See Multiple Outputs for more information.
	:one_output_per_tree - One model for each target.
	:multi_output_tree - Use multi-target trees. The default value is :one_output_per_tree.


	:max_cached_hist_node (non_neg_integer/0) - Maximum number of cached nodes for CPU histogram. For most of the cases this parameter should not be set except for growing deep trees on CPU. The default value is 65536.

	:sample_type - Type of sampling algorithm.
	:uniform - Dropped trees are selected uniformly.
	:weighted - Dropped trees are selected in proportion to weight. The default value is :uniform.


	:normalize_type - Type of normalization algorithm.
	:tree - New trees have the same weight of each of dropped trees.	Weight of new trees are 1 / (k + learning_rate).
	Dropped trees are scaled by a factor of k / (k + learning_rate).


	:forest - New trees have the same weight of sum of dropped trees (forest).	Weight of new trees are 1 / (1 + learning_rate).
	Dropped trees are scaled by a factor of 1 / (1 + learning_rate). The default value is :tree.




	:rate_drop - Dropout rate (a fraction of previous trees to drop during the dropout). Valid range is [0, 1]. The default value is 0.0.

	:one_drop - When this flag is enabled, at least one tree is always dropped during the dropout (allows Binomial-plus-one or epsilon-dropout from the original DART paper). The default value is 0.

	:skip_drop - Probability of skipping the dropout procedure during a boosting iteration. Valid range is [0, 1].
	If a dropout is skipped, new trees are added in the same manner as gbtree.
	Note that non-zero skip_drop has higher priority than rate_drop or one_drop. The default value is 0.0.




  
    
  
  Learning Task Parameters


	:objective - Specify the learning task and the corresponding learning objective. The objective options are:
	:reg_squarederror - regression with squared loss.
	:reg_squaredlogerror - regression with squared log loss $\frac{1}{2}[\log (pred + 1) - \log (label + 1)]^2$. All input labels are required to be greater than -1. Also, see metric rmsle for possible issue with this objective.
	:reg_logistic - logistic regression.
	:reg_pseudohubererror - regression with Pseudo Huber loss, a twice differentiable alternative to absolute loss.
	:reg_absoluteerror - Regression with L1 error. When tree model is used, leaf value is refreshed after tree construction. If used in distributed training, the leaf value is calculated as the mean value from all workers, which is not guaranteed to be optimal.
	:reg_quantileerror - Quantile loss, also known as pinball loss. See later sections for its parameter and Quantile Regression for a worked example.
	:binary_logistic - logistic regression for binary classification, output probability
	:binary_logitraw - logistic regression for binary classification, output score before logistic transformation
	:binary_hinge - hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
	:count_poisson - Poisson regression for count data, output mean of Poisson distribution.	max_delta_step is set to 0.7 by default in Poisson regression (used to safeguard optimization)


	:survival_cox - Cox regression for right censored survival time data (negative values are considered right censored). Note that predictions are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction) in the proportional hazard function h(t) = h0(t) * HR).
	:survival_aft - Accelerated failure time model for censored survival time data. See Survival Analysis with Accelerated Failure Time for details.
	:multi_softmax - set XGBoost to do multiclass classification using the softmax objective, you also need to set num_class(number of classes)
	:multi_softprob - same as softmax, but output a vector of ndata  nclass, which can be further reshaped to ndata  nclass matrix. The result contains predicted probability of each data point belonging to each class.
	:rank_ndcg - Use LambdaMART to perform pair-wise ranking where Normalized Discounted Cumulative Gain (NDCG) is maximized. This objective supports position debiasing for click data.
	:rank_map - Use LambdaMART to perform pair-wise ranking where Mean Average Precision (MAP) is maximized
	:rank_pairwise - Use LambdaRank to perform pair-wise ranking using the ranknet objective.
	:reg_gamma - gamma regression with log-link. Output is a mean of gamma distribution. It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be gamma-distributed.
	:reg_tweedie - Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be Tweedie-distributed. The default value is :reg_squarederror.


	:base_score (float/0) - The initial prediction score of all instances, global bias
The parameter is automatically estimated for selected objectives before training. To disable the estimation, specify a real number argument.
For sufficient number of iterations, changing this value will not have too much effect.

	:eval_metric - Evaluation metrics for validation data, a default metric will be assigned according to objective (:rmse for regression, and :logloss for classification, mean average precision for :rank_map, etc.)
User can add multiple evaluation metrics.
	:rmse - root mean square error
	:rmsle - root mean square log error. Default metric of :reg_squaredlogerror objective. This metric reduces errors generated by outliers in dataset. But because log function is employed, :rmsle might output nan when prediction value is less than -1. See :reg_squaredlogerror for other requirements.
	:mae - mean absolute error
	:mape - mean absolute percentage error
	:mphe - mean Pseudo Huber error. Default metric of :reg_pseudohubererror objective.
	:logloss - negative log-likelihood
	:error - Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.
	{:error,t} - a different than 0.5 binary classification threshold value could be specified by providing a numerical value through t.
	:merror - Multiclass classification error rate. It is calculated as #(wrong cases)/#(all cases).
	:mlogloss - Multiclass logloss.
	:auc - Receiver Operating Characteristic Area under the Curve. Available for classification and learning-to-rank tasks.	When used with binary classification, the objective should be :binary_logistic or similar functions that work on probability.
	When used with multi-class classification, objective should be :multi_softprob instead of :multi_softmax, as the latter doesn’t output probability. Also the AUC is calculated by 1-vs-rest with reference class weighted by class prevalence.
	When used with LTR task, the AUC is computed by comparing pairs of documents to count correctly sorted pairs. This corresponds to pairwise learning to rank. The implementation has some issues with average AUC around groups and distributed workers not being well-defined.
	On a single machine the AUC calculation is exact. In a distributed environment the AUC is a weighted average over the AUC of training rows on each node - therefore, distributed AUC is an approximation sensitive to the distribution of data across workers. Use another metric in distributed environments if precision and reproducibility are important.
	When input dataset contains only negative or positive samples, the output is NaN. The behavior is implementation defined, for instance, scikit-learn returns  instead.


	:aucpr - Area under the PR curve. Available for classification and learning-to-rank tasks.
	:ndcg - Normalized Discounted Cumulative Gain
	:map - Mean Average Precision
	{:ndcg,n}, {:map,n} - n can be assigned as an integer to cut off the top positions in the lists for evaluation.
	:inv_ndcg, :inv_map, {:inv_ndcg, n}, {:inv_map, n} - In XGBoost, the NDCG and MAP evaluate the score of a list without any positive samples as 1. By using the :inv_ variant, we can ask XGBoost to evaluate these scores as 0 to be consistent under some conditions.
	:poisson_nloglik - negative log-likelihood for Poisson regression
	:gamma_nloglik - negative log-likelihood for gamma regression
	:cox_nloglik - negative partial log-likelihood for Cox proportional hazards regression
	:gamma_deviance - residual deviance for gamma regression
	:tweedie_nloglik - negative log-likelihood for Tweedie regression (at a specified value of the :tweedie_variance_power parameter). Must provide :tweedie_variance_power parameter.
	{:tweedie_nloglik, rho} - negative log-likelihood for Tweedie regression with rho denoting the :tweedie_variance_power parameter.
	:aft_nloglik - Negative log likelihood of Accelerated Failure Time model. See Survival Analysis with Accelerated Failure Time for details.
	:interval_regression_accuracy - Fraction of data points whose predicted labels fall in the interval-censored labels. Only applicable for interval-censored data. See Survival Analysis with Accelerated Failure Time for details.


	:seed (non_neg_integer/0) - Random number seed. The default value is 0.

	:set_seed_per_iteration (boolean/0) - Seed PRNG determnisticly via iterator number. The default value is false.



  
    
  
  Objective-Specific Parameters



  
    
  
  Tweedie Regression Parameters


	:tweedie_variance_power - Parameter that controls the variance of the Tweedie distribution var(y) ~ E(y)^tweedie_variance_power.
Valid range is (1,2).
Set closer to 2 to shift towards a gamma distribution.
Set closer to 1 to shift towards a Poisson distribution. The default value is 1.5.


  
    
  
  Pseudo-Huber Error Parameters


	:huber_slope - A parameter used for Pseudo-Huber loss. The default value is 1.0.


  
    
  
  Quantile Error Parameters


	:quantile_alpha - Targeted Quantile. The default value is 0.5.


  
    
  
  Survival Analysis Parameters


	:aft_loss_distribution - Probability Density Function, :normal, :logistic, or :extreme. The default value is :normal.


  
    
  
  Ranking Parameters


	:lambdarank_pair_method - How to construct pairs for pair-wise learning.
	:mean - Sample lambdarank_num_pair_per_sample pairs for each document in the query list.
	:topk - Focus on top-lambdarank_num_pair_per_sample documents. Construct pairs for each document at the top-lambdarank_num_pair_per_sample ranked by the model. The default value is :mean.


	:lambdarank_num_pair_per_sample - It specifies the number of pairs sampled for each document when pair method is :mean, or the truncation level for queries when the pair method is :topk. For example, to train with {:ndcg,6}, set :lambdarank_num_pair_per_sample to 6 and :lambdarank_pair_method to topk. Valid range is [1, $\infty$].

	:lambdarank_unbiased (boolean/0) - Specify whether do we need to debias input click data. The default value is false.

	:lambdarank_bias_norm - LP normalization for position debiasing, default is L2.
Only relevant when lambdarank_unbiased is set to true. The default value is 2.0.

	:ndcg_exp_gain (boolean/0) - Whether we should use exponential gain function for NDCG. There are two forms of gain function for NDCG,
  one is using relevance value directly while the other is using 2^rel -1 to emphasize on retrieving
  relevant documents. When :ndcg_exp_gain is true (the default), relevance degree cannot be greater than 31. The default value is true.



  
    
  
  Multi-Class Classification Parameters


	:num_class (pos_integer/0) - Number of classes.
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Callbacks are a mechanism to hook into the training process and perform custom actions.
Callbacks are structs with the following fields:
	event - the event that triggers the callback
	fun - the function to call when the callback is triggered
	name - the name of the callback
	init_state - the initial state of the callback

The following events are supported:
	:before_training - called before the training starts
	:after_training - called after the training ends
	:before_iteration - called before each iteration
	:after_iteration - called after each iteration

The callback function is called with the following arguments:
	state - the current training state

The callback function should return one of the following:
	{:cont, state} - continue training with the given state
	{:halt, state} - stop training with the given state

The following callbacks are provided in the EXGBoost.Training.Callback module:
	lr_scheduler - sets the learning rate for each iteration
	early_stop - performs early stopping
	eval_metrics - evaluates metrics on the training and evaluation sets
	eval_monitor - prints evaluation metrics

Callbacks can be added to the training process by passing them to EXGBoost.Training.train/2.

  
    
  
  Example


# Callback to perform setup before training
setup_fn = fn state ->
  updated_state = put_in(state, [:meta_vars,:early_stop], %{best: 1, since_last_improvement: 0, mode: :max, patience: 5})
  {:cont, updated_state}
end

setup_callback = Callback.new(:before_training, setup_fn)
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A callback function that performs early stopping.
Requires that the following exist in the state that is passed to the callback:
	target is the metric to monitor for early stopping.  It must exist in the metrics that the
state contains.
	mode is either :min or :max and indicates whether the metric should be
 minimized or maximized.
	patience is the number of iterations to wait for the metric to improve before stopping.
	since_last_improvement is the number of iterations since the metric last improved.
	best is the best value of the metric seen so far.
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A callback function that evaluates metrics on the training and evaluation sets.
Requires that the following exist in the state.meta_vars that is passed to the callback:
	eval_metrics:	evals: a list of evaluation sets to evaluate metrics on
	filter: a function that takes a metric name and value and returns
true if the metric should be included in the results
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A callback that sets the learning rate for each iteration.
Requires that learning_rates either be a list of learning rates or a function that takes the
iteration number and returns a learning rate.  learning_rates must exist in the state that
is passed to the callback.
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A callback function that prints evaluation metrics according to a period.
Requires that the following exist in the state.meta_vars that is passed to the callback:
	monitor_metrics:	period: print metrics every period iterations
	filter: a function that takes a metric name and value and returns
true if the metric should be included in the results
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  event :: event(),
  fun :: (... -> any()),
  name :: atom(),
  init_state :: any()
) :: Callback.t()


      


Factory for a new callback with an initial state.
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