

 exos

 v2.1.0

 Table of contents

 	Overview

 	Changelog

 	
 Modules

 	Exos.Proc

 Exos

Exos is a simple Port Wrapper : a GenServer which forwards cast and call to a
linked Port. Requests and responses are converted using binary erlang term
external representation.
You can use it to create a GenServer for Python, Clojure, NodeJS with :
	clojure-erlastic
	python-erlastic
	node-erlastic

Launching a Clojure/Python/NodeJS GenServer and use it in Elixir
Usage : Exos.Proc.start_link (see function documentation), then the resulting
process is a GenServer where cast and call are binary encoded through stdio to
the underlying process. If the GenServer receive messages outside of a call, an
anonymous function can be attached to be called on each message.
See test/port_example.exs for a reference implementation of a server that can
be launched in a port with Exos.Proc, and test/exos_test.exs for its use.
clojure/python/node_erlastic projects can be used to launch a
java/python/javascript GenServer.
See above an example of an account manager server developped in
python/nodejs/clojure.
defmodule Account do
 def cmd do
 case Application.get_env(:account_impl) do
 :python-> "venv/bin/python -u account.py"
 :node-> "node account.js"
 :clojure-> "java -cp 'target/*' clojure.main account.clj"
 end
 end
 def start_link(ini), do: Exos.Proc.start_link(cmd,ini,[cd: "#{:code.priv_dir(:myproj)}/account"],name: __MODULE__)
 def add(v), do: GenServer.cast(__MODULE__,{:add,v})
 def rem(v), do: GenServer.cast(__MODULE__,{:rem,v})
 def get, do: GenServer.call(__MODULE__,:get,:infinity)
end

defmodule MyProj.App do
 use Application
 def start(_,_), do: MyProj.App.Sup.start_link

 defmodule Sup do
 use Supervisor
 def start_link, do: Supervisor.start_link(__MODULE__,[])
 def init([]), do: supervise([
 worker(Account,[0])
], strategy: :one_for_one)
 end
end
vim mix.exs

def application do
 [mod: { MyProj.App, [] }]
end
Finally just implement your account server in any language as describe below,
and use it as a standard GenServer.
iex -S mix

Account.add(5)
Account.rem(1)
4 == Account.get
Account Server Implementation in clojure
mix new myproj
cd myproj ; mkdir -p priv/account; cd priv/account
vim project.clj

(defproject account "0.0.1"
 :dependencies [[clojure-erlastic "0.2.3"]
 [org.clojure/core.match "0.2.1"]])
lein uberjar
vim account.clj

(require '[clojure-erlastic.core :refer [run-server]])
(use '[clojure.core.match :only (match)])
(run-server
 (fn [term count] (match term
 [:add n] [:noreply (+ count n)]
 [:rem n] [:noreply (- count n)]
 :get [:reply count count])))
Account Server Implementation in Python >3.4
mix new myproj
cd myproj ; mkdir -p priv/account; cd priv/account
echo "git://github.com/awetzel/python-erlastic.git#egg=erlastic" > requirements.txt
pyvenv venv
./venv/bin/pip install -r requirements.txt
vim account.py

mailbox,port = port_connection()
account = next(mailbox) #first msg is initial state
for req in mailbox:
 if req == "get": port.send(account)
 else:
 (op,amount) = req
 account = (account+amount) if op=="add" else (account-amount)
Account Server Implementation in NodeJS
mix new myproj
cd myproj ; mkdir -p priv/account; cd priv/account
npm init
npm install node_erlastic --save
vim account.js

require('node_erlastic').server(function(term,from,current_amount,done){
 if (term == "get") return done("reply",current_amount);
 if (term[0] == "add") return done("noreply",current_amount+term[1]);
 if (term[0] == "rem") return done("noreply",current_amount-term[1]);
 throw new Error("unexpected request")
});
CONTRIBUTING
Hi, and thank you for wanting to contribute.
Please refer to the centralized informations available at: https://github.com/kbrw#contributing

 CHANGELOG

2.1.0
Changed
	Soft deprectated passing options with multiple arguments, prefer using named options
now.
	Added configuration option for ETF encoding.
You can now communicate with an outdated program by passing etf_opts: [version: 1]
for example.

Exos.Proc

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(arg)

 Callback implementation for GenServer.init/1.

 start_link(cmd, init, opts \\ [])

 start_link(cmd, init, port_opts, gen_server_opts)

 deprecated

 start_link(cmd, init, port_opts, gen_server_opts, event_fun)

 deprecated

 Launch a GenServer which starts a port and proxify cast and call to
it using a port protocol with packet: 4, (32bits-length+data)
messages are transmitted throught stdin/out. Input terms are
encoded using binary_to_term and received terms are decoded using
term_to_binary.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init(arg)

Callback implementation for GenServer.init/1.

 start_link(cmd, init, opts \\ [])

 start_link(cmd, init, port_opts, gen_server_opts)

 This function is deprecated. Use Elixir.Exos.Proc.start_link/3 instead.

 start_link(cmd, init, port_opts, gen_server_opts, event_fun)

 This function is deprecated. Use Elixir.Exos.Proc.start_link/3 instead.

Launch a GenServer which starts a port and proxify cast and call to
it using a port protocol with packet: 4, (32bits-length+data)
messages are transmitted throught stdin/out. Input terms are
encoded using binary_to_term and received terms are decoded using
term_to_binary.
	cmd is the shell command to launch the port
	when the port starts, it automatically receives as first message the init
term if init !== :no_init
	port_opts are options for Port.open (for instance [cd: "/path/"])
	gen_server_opts are options for GenServer.start_link (for instance [name: :servername])
	messages received from the port outside of a GenServer.call
context trigger a event_fun.(event) call if event_fun is not nil (default)
	etf_opts are options for :erlang.term_to_binary and :erlang.binary_to_term
	to allow easy supervision, if the port die with a return code == 0, then
the GenServer die with the reason :normal, else with the reason :port_terminated

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

