

 Explorer

 v0.9.1

 [image: Logo]

 Table of contents

 	Ten Minutes to Explorer

 	Changelog

 	

 	Modules

 	Explorer

 	Explorer.DataFrame

 	Explorer.Datasets

 	Explorer.Query

 	Explorer.Remote

 	Explorer.Series

 	Custom data types

 	Explorer.Duration

 	Explorer.TensorFrame

 	Backends

 	Explorer.Backend

 	Explorer.Backend.DataFrame

 	Explorer.Backend.LazyFrame

 	Explorer.Backend.LazySeries

 	Explorer.Backend.Series

 	Explorer.PolarsBackend

Ten Minutes to Explorer

Mix.install([
 {:explorer, "~> 0.9.0"},
 {:kino, "~> 0.13.0"}
])

 Introduction

Explorer is a dataframe library for Elixir. A dataframe is a common data structure used in data analysis. It is a two-dimensional table composed of columns and rows similar to a SQL table or a spreadsheet.
Explorer's aim is to provide a simple and powerful API for manipulating dataframes. It takes influences mainly
 from the tidyverse, but if you've used other dataframe libraries like pandas you shouldn't have too much trouble working with Explorer.
This document is meant to give you a crash course in using Explorer. More in-depth documentation can be found in the relevant sections of the docs.
We strongly recommend you run this livebook locally so you can see the outputs and play with the inputs!

 Reading and writing data

Data can be read from delimited files (like CSV), NDJSON, Parquet, and the Arrow IPC (feather) format. You can also load in data from a map or keyword list of columns with Explorer.DataFrame.new/1.
For CSV, your 'usual suspects' of options are available:
	delimiter - A single character used to separate fields within a record. (default: ",")
	dtypes - A keyword list of [column_name: dtype]. If a type is not specified for a column, it is imputed from the first 1000 rows. (default: [])
	header - Does the file have a header of column names as the first row or not? (default: true)
	max_rows - Maximum number of lines to read. (default: nil)
	nil_values - A list of strings that should be interpreted as a nil values. (default: [])
	skip_rows - The number of lines to skip at the beginning of the file. (default: 0)
	skip_rows_after_header - The number of lines to skip at the after the header row. (default: 0)
	columns - A list of column names to keep. If present, only these columns are read into the dataframe. (default: nil)

Explorer also has multiple example datasets built in, which you can load from the Explorer.Datasets module like so:
df = Explorer.Datasets.fossil_fuels()
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
You'll notice that the output looks slightly different than many dataframe libraries. Explorer takes inspiration on this front from glimpse in R. A benefit to this approach is that you will rarely need to elide columns.
If you'd like to see a table with your data, take a look at Kino Explorer, that provides a rich table with filtering and sorting.
Writing files is very similar to reading them. The options are a little more limited:
	header - Should the column names be written as the first line of the file? (default: true)
	delimiter - A single character used to separate fields within a record. (default: ",")

First, let's add some useful aliases:
alias Explorer.DataFrame
alias Explorer.Series
Explorer.Series
And then write to a file of your choosing:
input = Kino.Input.text("Filename")
filename = Kino.Input.read(input)
DataFrame.to_csv(df, filename)
:ok

 Working with Series

Explorer, like Polars, works up from the concept of a Series. In many ways, you can think of a dataframe as a row-aligned map of Series. These are like vectors in R or series in Pandas.
Explorer supports the following Series dtypes:
	:null - Null
	:binary - Binaries (sequences of bytes)
	:boolean - Boolean
	:category - Strings but represented internally as integers
	:date - Date type that unwraps to Elixir.Date
	{:datetime, precision} - DateTime type with millisecond/microsecond/nanosecond precision that unwraps to Elixir.NaiveDateTime
	{:duration, precision} - Duration type with millisecond/microsecond/nanosecond precision that unwraps to Explorer.Duration
	{:f, size} - a 32-bit or 64-bit floating point number
	{:s, size} - a 8-bit or 16-bit or 32-bit or 64-bit signed integer
	{:u, size} - a 8-bit or 16-bit or 32-bit or 64-bit unsigned integer
	:string - UTF-8 encoded binary
	:time - Time type that unwraps to Elixir.Time
	:list - a nested data type like Elixir.List. It is a sequence of values having the same data type.
	:struct - a nested data type like a Elixir.Map, but with the same keys and matching data types.

Series can be constructed from Elixir basic types. For example:
s1 = Series.from_list([1, 2, 3])
#Explorer.Series<
 Polars[3]
 s64 [1, 2, 3]
>
s2 = Series.from_list(["a", "b", "c"])
#Explorer.Series<
 Polars[3]
 string ["a", "b", "c"]
>
s3 = Series.from_list([~D[2011-01-01], ~D[1965-01-21]])
#Explorer.Series<
 Polars[2]
 date [2011-01-01, 1965-01-21]
>
You'll notice that the dtype and size of the Series are at the top of the printed value. You can get those programmatically as well.
Series.dtype(s3)
:date
Series.size(s3)
2
And the printed values max out at 50:
1..100 |> Enum.to_list() |> Series.from_list()
#Explorer.Series<
 Polars[100]
 s64 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
 50, ...]
>
Series are also nullable.
s = Series.from_list([1.0, 2.0, nil, nil, 5.0])
#Explorer.Series<
 Polars[5]
 f64 [1.0, 2.0, nil, nil, 5.0]
>
And you can fill in those missing values using one of the following strategies:
	:forward - replace nil with the previous value
	:backward - replace nil with the next value
	:max - replace nil with the series maximum
	:min - replace nil with the series minimum
	:mean - replace nil with the series mean

Series.fill_missing(s, :forward)
#Explorer.Series<
 Polars[5]
 f64 [1.0, 2.0, 2.0, 2.0, 5.0]
>
In the case of mixed numeric types (i.e. integers and floats), Series will downcast to a float:
Series.from_list([1, 2.0])
#Explorer.Series<
 Polars[2]
 f64 [1.0, 2.0]
>
In all other cases, Series must all be of the same dtype or else you'll get an ArgumentError.
Series.from_list([1, 2, 3, "a"])
One of the goals of Explorer is useful error messages. If you look at the error above, you get:
the value "a" does not match the inferred dtype {:s, 64}

Hopefully this makes abundantly clear what's going on.
Series also implements the Access protocol. You can slice and dice in many ways:
s = 1..10 |> Enum.to_list() |> Series.from_list()
#Explorer.Series<
 Polars[10]
 s64 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>
s[1]
2
s[-1]
10
s[0..4]
#Explorer.Series<
 Polars[5]
 s64 [1, 2, 3, 4, 5]
>
s[[0, 4, 4]]
#Explorer.Series<
 Polars[3]
 s64 [1, 5, 5]
>
And of course, you can convert back to an Elixir list.
Series.to_list(s)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Explorer comparisons return boolean series. We will talk more
about boolean series later.
s = 1..11 |> Enum.to_list() |> Series.from_list()
#Explorer.Series<
 Polars[11]
 s64 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>
s1 = 11..1//-1 |> Enum.to_list() |> Series.from_list()
#Explorer.Series<
 Polars[11]
 s64 [11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>
Series.equal(s, s1)
#Explorer.Series<
 Polars[11]
 boolean [false, false, false, false, false, true, false, false, false, false, false]
>
Series.equal(s, 5)
#Explorer.Series<
 Polars[11]
 boolean [false, false, false, false, true, false, false, false, false, false, false]
>
Series.not_equal(s, 10)
#Explorer.Series<
 Polars[11]
 boolean [true, true, true, true, true, true, true, true, true, false, true]
>
Series.greater_equal(s, 4)
#Explorer.Series<
 Polars[11]
 boolean [false, false, false, true, true, true, true, true, true, true, true]
>
Explorer supports arithmetic.
Series.add(s, s1)
#Explorer.Series<
 Polars[11]
 s64 [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]
>
Series.subtract(s, 4)
#Explorer.Series<
 Polars[11]
 s64 [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
>
Series.multiply(s, s1)
#Explorer.Series<
 Polars[11]
 s64 [11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11]
>
Remember those helpful errors? We've tried to add those throughout. So if you try to do arithmetic with mismatching dtypes:
s = Series.from_list([1, 2, 3])
s1 = Series.from_list([1.0, 2.0, 3.0])
Series.add(s, s1)
#Explorer.Series<
 Polars[3]
 f64 [2.0, 4.0, 6.0]
>
Just kidding! Integers and floats will downcast to floats. Let's try again:
s = Series.from_list([1, 2, 3])
s1 = Series.from_list(["a", "b", "c"])
Series.add(s, s1)
You can flip them around.
s = Series.from_list([1, 2, 3, 4])
Series.reverse(s)
#Explorer.Series<
 Polars[4]
 s64 [4, 3, 2, 1]
>
And sort.
1..100 |> Enum.to_list() |> Enum.shuffle() |> Series.from_list() |> Series.sort()
#Explorer.Series<
 Polars[100]
 s64 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
 50, ...]
>
Or argsort.
s = 1..100 |> Enum.to_list() |> Enum.shuffle() |> Series.from_list()
ids = Series.argsort(s) |> Series.to_list()
[84, 8, 3, 96, 76, 91, 36, 87, 42, 94, 69, 27, 52, 80, 34, 13, 28, 38, 89, 61, 21, 56, 55, 82, 22,
 31, 4, 45, 49, 12, 30, 41, 92, 70, 83, 77, 79, 1, 26, 50, 75, 97, 71, 64, 68, 47, 44, 95, 2, 51,
 ...]
Which you can pass to Explorer.Series.slice/2 if you want the sorted values.
Series.slice(s, ids)
#Explorer.Series<
 Polars[100]
 s64 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
 50, ...]
>
You can calculate cumulative values.
s = 1..100 |> Enum.to_list() |> Series.from_list()
Series.cumulative_sum(s)
#Explorer.Series<
 Polars[100]
 s64 [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253,
 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861,
 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, ...]
>
Or rolling ones.
Series.window_sum(s, 4)
#Explorer.Series<
 Polars[100]
 s64 [1, 3, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90,
 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170,
 174, 178, 182, 186, 190, 194, ...]
>
You can count and list unique values.
s = Series.from_list(["a", "b", "b", "c", "c", "c"])
Series.distinct(s)
#Explorer.Series<
 Polars[3]
 string ["a", "b", "c"]
>
Series.n_distinct(s)
3
And you can even get a dataframe showing the frequencies for each distinct value.
Series.frequencies(s)
#Explorer.DataFrame<
 Polars[3 x 2]
 values string ["c", "b", "a"]
 counts u32 [3, 2, 1]
>
Back to those boolean series returned by comparison functions like equal and not_equal.
These boolean series can be combined with other functions to perform conditional operations.
s1 = Series.from_list(["It", "was", "the", "best", "of", "times"])
s1 |> Series.equal("best") |> Series.select("worst", s1)
#Explorer.Series<
 Polars[6]
 string ["It", "was", "the", "worst", "of", "times"]
>

 Working with DataFrames

A DataFrame is really just a collection of Series of the same size. Which is why you can create a DataFrame from a Keyword list.
DataFrame.new(a: [1, 2, 3], b: ["a", "b", "c"])
#Explorer.DataFrame<
 Polars[3 x 2]
 a s64 [1, 2, 3]
 b string ["a", "b", "c"]
>
Similarly to Series, the Inspect implementation prints some info at the top and to the left. At the top we see the shape of the dataframe (rows and columns) and then for each column we see the name, dtype, and first five values. We can see a bit more from that built-in dataset we loaded in earlier.
df
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
You will also see grouping information there, but we'll get to that later. You can get the info yourself directly:
DataFrame.names(df)
["year", "country", "total", "solid_fuel", "liquid_fuel", "gas_fuel", "cement", "gas_flaring",
 "per_capita", "bunker_fuels"]
DataFrame.dtypes(df)
%{
 "bunker_fuels" => {:s, 64},
 "cement" => {:s, 64},
 "country" => :string,
 "gas_flaring" => {:s, 64},
 "gas_fuel" => {:s, 64},
 "liquid_fuel" => {:s, 64},
 "per_capita" => {:f, 64},
 "solid_fuel" => {:s, 64},
 "total" => {:s, 64},
 "year" => {:s, 64}
}
DataFrame.shape(df)
{1094, 10}
{DataFrame.n_rows(df), DataFrame.n_columns(df)}
{1094, 10}
We can grab the head.
DataFrame.head(df)
#Explorer.DataFrame<
 Polars[5 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA"]
 total s64 [2308, 1254, 32500, 141, 7924]
 solid_fuel s64 [627, 117, 332, 0, 0]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649]
 gas_fuel s64 [74, 7, 14565, 0, 374]
 cement s64 [5, 177, 2598, 0, 204]
 gas_flaring s64 [0, 0, 2623, 0, 3697]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37]
 bunker_fuels s64 [9, 7, 663, 0, 321]
>
Or the tail. Let's get a few more values from the tail.
DataFrame.tail(df, 10)
#Explorer.DataFrame<
 Polars[10 x 10]
 year s64 [2014, 2014, 2014, 2014, 2014, ...]
 country string ["UNITED STATES OF AMERICA", "URUGUAY", "UZBEKISTAN", "VANUATU", "VENEZUELA", ...]
 total s64 [1432855, 1840, 28692, 42, 50510, ...]
 solid_fuel s64 [450047, 2, 1677, 0, 204, ...]
 liquid_fuel s64 [576531, 1700, 2086, 42, 28445, ...]
 gas_fuel s64 [390719, 25, 23929, 0, 12731, ...]
 cement s64 [11314, 112, 1000, 0, 1088, ...]
 gas_flaring s64 [4244, 0, 0, 0, 8042, ...]
 per_capita f64 [4.43, 0.54, 0.97, 0.16, 1.65, ...]
 bunker_fuels s64 [30722, 251, 0, 10, 1256, ...]
>

 Verbs and macros

In Explorer, like in dplyr, we have five main verbs to work with dataframes:
	select
	filter
	mutate
	sort
	summarise

We are going to explore then in this notebook, but first we need to "require"
the Explorer.DataFrame module in order to load the macros needed for these verbs.
I want to take the opportunity to create a shorter alias for the DataFrame module,
called DF:
require DataFrame, as: DF
Explorer.DataFrame
From now on we are using the shorter version, DF, to refer to the required Explorer.DataFrame
module.

 Select

Let's jump right into it. We can select columns pretty simply.
DF.select(df, ["year", "country"])
#Explorer.DataFrame<
 Polars[1094 x 2]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
>
But Elixir gives us some superpowers. In R there's tidy-select. I don't think we need that in Elixir. Anywhere in Explorer where you need to pass a list of column names, you can also execute a filtering callback on the column names. It's just an anonymous function passed to df |> DataFrame.names() |> Enum.filter(callback_here).
DF.select(df, &String.ends_with?(&1, "fuel"))
#Explorer.DataFrame<
 Polars[1094 x 3]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
>
Want all but some columns? discard/2 performs the opposite of select/2.
DF.discard(df, &String.ends_with?(&1, "fuel"))
#Explorer.DataFrame<
 Polars[1094 x 7]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>

 Filter

The next verb we'll look at is filter.
This is implemented using a macro, so it's possible to use expressions
like you would if comparing variables in Elixir:
DF.filter(df, country == "BRAZIL")
#Explorer.DataFrame<
 Polars[5 x 10]
 year s64 [2010, 2011, 2012, 2013, 2014]
 country string ["BRAZIL", "BRAZIL", "BRAZIL", "BRAZIL", "BRAZIL"]
 total s64 [114468, 119829, 128178, 137354, 144480]
 solid_fuel s64 [15965, 17498, 17165, 18773, 20089]
 liquid_fuel s64 [74689, 78849, 84409, 88898, 92454]
 gas_fuel s64 [14372, 13778, 16328, 19399, 21297]
 cement s64 [8040, 8717, 9428, 9517, 9691]
 gas_flaring s64 [1402, 987, 848, 767, 949]
 per_capita f64 [0.58, 0.6, 0.63, 0.67, 0.7]
 bunker_fuels s64 [5101, 5516, 5168, 4895, 4895]
>
Using complex filters is also possible:
DF.filter(df, country == "ALGERIA" and year > 2012)
#Explorer.DataFrame<
 Polars[2 x 10]
 year s64 [2013, 2014]
 country string ["ALGERIA", "ALGERIA"]
 total s64 [36669, 39651]
 solid_fuel s64 [198, 149]
 liquid_fuel s64 [14170, 14422]
 gas_fuel s64 [17863, 20151]
 cement s64 [2516, 2856]
 gas_flaring s64 [1922, 2073]
 per_capita f64 [0.96, 1.02]
 bunker_fuels s64 [687, 581]
>
You can also write the same filter without the macro, by using the callback version function which is filter_with/2:
DF.filter_with(df, fn ldf ->
 ldf["country"]
 |> Series.equal("ALGERIA")
 |> Series.and(Series.greater(ldf["year"], 2012))
end)
#Explorer.DataFrame<
 Polars[2 x 10]
 year s64 [2013, 2014]
 country string ["ALGERIA", "ALGERIA"]
 total s64 [36669, 39651]
 solid_fuel s64 [198, 149]
 liquid_fuel s64 [14170, 14422]
 gas_fuel s64 [17863, 20151]
 cement s64 [2516, 2856]
 gas_flaring s64 [1922, 2073]
 per_capita f64 [0.96, 1.02]
 bunker_fuels s64 [687, 581]
>
By the way, all the Explorer.DataFrame macros have a correspondent function that accepts a callback.
In fact, our macros are implemented using those functions.
The filter_with/2 function is going to use a virtual representation of the dataframe
that we call a "lazy frame". With lazy frames you can´t access the
series contents, but every operation will be optimized and run only once.
Remember those helpful error messages?
DF.filter(df, cuontry == "BRAZIL")

 Mutate

A common task in data analysis is to add columns or change existing ones. Mutate is a handy verb.
DF.mutate(df, new_column: solid_fuel + cement)
#Explorer.DataFrame<
 Polars[1094 x 11]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
 new_column s64 [632, 294, 2930, 0, 204, ...]
>
Did you catch that? You can pass in new columns as keyword arguments. It also works to transform existing columns.
DF.mutate(df,
 gas_fuel: Series.cast(gas_fuel, :float),
 gas_and_liquid_fuel: gas_fuel + liquid_fuel
)
#Explorer.DataFrame<
 Polars[1094 x 11]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel f64 [74.0, 7.0, 14565.0, 0.0, 374.0, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
 gas_and_liquid_fuel s64 [1675, 960, 26946, 141, 4023, ...]
>
DataFrame.mutate/2 is flexible though. You may not always want to use keyword arguments. Given that column names are String.t(), it may make more sense to use a map.
DF.mutate(df, %{"gas_fuel" => gas_fuel - 10})
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [64, -3, 14555, -10, 364, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
DF.transmute/2, which is DF.mutate/2 that only retains the specified columns, is forthcoming.

 Sort

Sorting the dataframe is pretty straightforward.
DF.sort_by(df, year)
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
But it comes with some tricks up its sleeve.
DF.sort_by(df, asc: total, desc: year)
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2013, 2012, 2011, 2011, ...]
 country string ["NIUE", "NIUE", "NIUE", "NIUE", "TUVALU", ...]
 total s64 [1, 2, 2, 2, 2, ...]
 solid_fuel s64 [0, 0, 0, 0, 0, ...]
 liquid_fuel s64 [1, 2, 2, 2, 2, ...]
 gas_fuel s64 [0, 0, 0, 0, 0, ...]
 cement s64 [0, 0, 0, 0, 0, ...]
 gas_flaring s64 [0, 0, 0, 0, 0, ...]
 per_capita f64 [0.52, 1.04, 1.04, 1.04, 0.0, ...]
 bunker_fuels s64 [0, 0, 0, 0, 0, ...]
>
As the examples show, sort_by/2 is a macro, and therefore you can use some Series functions to sort your dataframe:
DF.sort_by(df, asc: window_sum(total, 2))
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2011, 2012, 2010, 2011, ...]
 country string ["FEDERATED STATES OF MICRONESIA", "FEDERATED STATES OF MICRONESIA",
 "FEDERATED STATES OF MICRONESIA", "TUVALU", "TUVALU", ...]
 total s64 [31, 33, 37, 2, 2, ...]
 solid_fuel s64 [0, 0, 0, 0, 0, ...]
 liquid_fuel s64 [31, 33, 37, 2, 2, ...]
 gas_fuel s64 [0, 0, 0, 0, 0, ...]
 cement s64 [0, 0, 0, 0, 0, ...]
 gas_flaring s64 [0, 0, 0, 0, 0, ...]
 per_capita f64 [0.3, 0.32, 0.36, 0.0, 0.0, ...]
 bunker_fuels s64 [1, 1, 1, 0, 0, ...]
>
Sort operations happen left to right. And keyword list args permit specifying the direction.

 Distinct

Okay, as expected here too. Very straightforward.
DF.distinct(df, ["year", "country"])
#Explorer.DataFrame<
 Polars[1094 x 2]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
>
You can specify whether to keep the other columns as well, so the first row of each distinct value is kept:
DF.distinct(df, ["country"], keep_all: true)
#Explorer.DataFrame<
 Polars[222 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>

 Rename

Rename can take either a list of new names or a callback that is passed to Enum.map/2 against the names. You can also use a map or keyword args to rename specific columns.
DF.rename(df, year: "year_test")
#Explorer.DataFrame<
 Polars[1094 x 10]
 year_test s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
DF.rename_with(df, &(&1 <> "_test"))
#Explorer.DataFrame<
 Polars[1094 x 10]
 year_test s64 [2010, 2010, 2010, 2010, 2010, ...]
 country_test string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total_test s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel_test s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel_test s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel_test s64 [74, 7, 14565, 0, 374, ...]
 cement_test s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring_test s64 [0, 0, 2623, 0, 3697, ...]
 per_capita_test f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels_test s64 [9, 7, 663, 0, 321, ...]
>

 Dummies

This is fun! We can get dummy variables for unique values.
DF.dummies(df, ["year"])
#Explorer.DataFrame<
 Polars[1094 x 5]
 year_2010 u8 [1, 1, 1, 1, 1, ...]
 year_2011 u8 [0, 0, 0, 0, 0, ...]
 year_2012 u8 [0, 0, 0, 0, 0, ...]
 year_2013 u8 [0, 0, 0, 0, 0, ...]
 year_2014 u8 [0, 0, 0, 0, 0, ...]
>
DF.dummies(df, ["country"])
#Explorer.DataFrame<
 Polars[1094 x 222]
 country_AFGHANISTAN u8 [1, 0, 0, 0, 0, ...]
 country_ALBANIA u8 [0, 1, 0, 0, 0, ...]
 country_ALGERIA u8 [0, 0, 1, 0, 0, ...]
 country_ANDORRA u8 [0, 0, 0, 1, 0, ...]
 country_ANGOLA u8 [0, 0, 0, 0, 1, ...]
 country_ANGUILLA u8 [0, 0, 0, 0, 0, ...]
 country_ANTIGUA & BARBUDA u8 [0, 0, 0, 0, 0, ...]
 country_ARGENTINA u8 [0, 0, 0, 0, 0, ...]
 country_ARMENIA u8 [0, 0, 0, 0, 0, ...]
 country_ARUBA u8 [0, 0, 0, 0, 0, ...]
 country_AUSTRALIA u8 [0, 0, 0, 0, 0, ...]
 country_AUSTRIA u8 [0, 0, 0, 0, 0, ...]
 country_AZERBAIJAN u8 [0, 0, 0, 0, 0, ...]
 country_BAHAMAS u8 [0, 0, 0, 0, 0, ...]
 country_BAHRAIN u8 [0, 0, 0, 0, 0, ...]
 country_BANGLADESH u8 [0, 0, 0, 0, 0, ...]
 country_BARBADOS u8 [0, 0, 0, 0, 0, ...]
 country_BELARUS u8 [0, 0, 0, 0, 0, ...]
 country_BELGIUM u8 [0, 0, 0, 0, 0, ...]
 country_BELIZE u8 [0, 0, 0, 0, 0, ...]
 country_BENIN u8 [0, 0, 0, 0, 0, ...]
 country_BERMUDA u8 [0, 0, 0, 0, 0, ...]
 country_BHUTAN u8 [0, 0, 0, 0, 0, ...]
 country_BOSNIA & HERZEGOVINA u8 [0, 0, 0, 0, 0, ...]
 country_BOTSWANA u8 [0, 0, 0, 0, 0, ...]
 country_BRAZIL u8 [0, 0, 0, 0, 0, ...]
 country_BRITISH VIRGIN ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_BRUNEI (DARUSSALAM) u8 [0, 0, 0, 0, 0, ...]
 country_BULGARIA u8 [0, 0, 0, 0, 0, ...]
 country_BURKINA FASO u8 [0, 0, 0, 0, 0, ...]
 country_BURUNDI u8 [0, 0, 0, 0, 0, ...]
 country_CAMBODIA u8 [0, 0, 0, 0, 0, ...]
 country_CANADA u8 [0, 0, 0, 0, 0, ...]
 country_CAPE VERDE u8 [0, 0, 0, 0, 0, ...]
 country_CAYMAN ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_CENTRAL AFRICAN REPUBLIC u8 [0, 0, 0, 0, 0, ...]
 country_CHAD u8 [0, 0, 0, 0, 0, ...]
 country_CHILE u8 [0, 0, 0, 0, 0, ...]
 country_CHINA (MAINLAND) u8 [0, 0, 0, 0, 0, ...]
 country_COLOMBIA u8 [0, 0, 0, 0, 0, ...]
 country_COMOROS u8 [0, 0, 0, 0, 0, ...]
 country_CONGO u8 [0, 0, 0, 0, 0, ...]
 country_COOK ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_COSTA RICA u8 [0, 0, 0, 0, 0, ...]
 country_COTE D IVOIRE u8 [0, 0, 0, 0, 0, ...]
 country_CROATIA u8 [0, 0, 0, 0, 0, ...]
 country_CUBA u8 [0, 0, 0, 0, 0, ...]
 country_CYPRUS u8 [0, 0, 0, 0, 0, ...]
 country_CZECH REPUBLIC u8 [0, 0, 0, 0, 0, ...]
 country_DEMOCRATIC PEOPLE S REPUBLIC OF KOREA u8 [0, 0, 0, 0, 0, ...]
 country_DEMOCRATIC REPUBLIC OF THE CONGO (FORMERLY ZAIRE) u8 [0, 0, 0, 0, 0, ...]
 country_DENMARK u8 [0, 0, 0, 0, 0, ...]
 country_DJIBOUTI u8 [0, 0, 0, 0, 0, ...]
 country_DOMINICA u8 [0, 0, 0, 0, 0, ...]
 country_DOMINICAN REPUBLIC u8 [0, 0, 0, 0, 0, ...]
 country_ECUADOR u8 [0, 0, 0, 0, 0, ...]
 country_EGYPT u8 [0, 0, 0, 0, 0, ...]
 country_EL SALVADOR u8 [0, 0, 0, 0, 0, ...]
 country_EQUATORIAL GUINEA u8 [0, 0, 0, 0, 0, ...]
 country_ERITREA u8 [0, 0, 0, 0, 0, ...]
 country_ESTONIA u8 [0, 0, 0, 0, 0, ...]
 country_ETHIOPIA u8 [0, 0, 0, 0, 0, ...]
 country_FAEROE ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_FALKLAND ISLANDS (MALVINAS) u8 [0, 0, 0, 0, 0, ...]
 country_FEDERATED STATES OF MICRONESIA u8 [0, 0, 0, 0, 0, ...]
 country_FIJI u8 [0, 0, 0, 0, 0, ...]
 country_FINLAND u8 [0, 0, 0, 0, 0, ...]
 country_FRANCE (INCLUDING MONACO) u8 [0, 0, 0, 0, 0, ...]
 country_FRENCH GUIANA u8 [0, 0, 0, 0, 0, ...]
 country_FRENCH POLYNESIA u8 [0, 0, 0, 0, 0, ...]
 country_GABON u8 [0, 0, 0, 0, 0, ...]
 country_GAMBIA u8 [0, 0, 0, 0, 0, ...]
 country_GEORGIA u8 [0, 0, 0, 0, 0, ...]
 country_GERMANY u8 [0, 0, 0, 0, 0, ...]
 country_GHANA u8 [0, 0, 0, 0, 0, ...]
 country_GIBRALTAR u8 [0, 0, 0, 0, 0, ...]
 country_GREECE u8 [0, 0, 0, 0, 0, ...]
 country_GREENLAND u8 [0, 0, 0, 0, 0, ...]
 country_GRENADA u8 [0, 0, 0, 0, 0, ...]
 country_GUADELOUPE u8 [0, 0, 0, 0, 0, ...]
 country_GUATEMALA u8 [0, 0, 0, 0, 0, ...]
 country_GUINEA u8 [0, 0, 0, 0, 0, ...]
 country_GUINEA BISSAU u8 [0, 0, 0, 0, 0, ...]
 country_GUYANA u8 [0, 0, 0, 0, 0, ...]
 country_HAITI u8 [0, 0, 0, 0, 0, ...]
 country_HONDURAS u8 [0, 0, 0, 0, 0, ...]
 country_HONG KONG SPECIAL ADMINSTRATIVE REGION OF CHINA u8 [0, 0, 0, 0, 0, ...]
 country_HUNGARY u8 [0, 0, 0, 0, 0, ...]
 country_ICELAND u8 [0, 0, 0, 0, 0, ...]
 country_INDIA u8 [0, 0, 0, 0, 0, ...]
 country_INDONESIA u8 [0, 0, 0, 0, 0, ...]
 country_IRAQ u8 [0, 0, 0, 0, 0, ...]
 country_IRELAND u8 [0, 0, 0, 0, 0, ...]
 country_ISLAMIC REPUBLIC OF IRAN u8 [0, 0, 0, 0, 0, ...]
 country_ISRAEL u8 [0, 0, 0, 0, 0, ...]
 country_ITALY (INCLUDING SAN MARINO) u8 [0, 0, 0, 0, 0, ...]
 country_JAMAICA u8 [0, 0, 0, 0, 0, ...]
 country_JAPAN u8 [0, 0, 0, 0, 0, ...]
 country_JORDAN u8 [0, 0, 0, 0, 0, ...]
 country_KAZAKHSTAN u8 [0, 0, 0, 0, 0, ...]
 country_KENYA u8 [0, 0, 0, 0, 0, ...]
 country_KIRIBATI u8 [0, 0, 0, 0, 0, ...]
 country_KUWAIT u8 [0, 0, 0, 0, 0, ...]
 country_KYRGYZSTAN u8 [0, 0, 0, 0, 0, ...]
 country_LAO PEOPLE S DEMOCRATIC REPUBLIC u8 [0, 0, 0, 0, 0, ...]
 country_LATVIA u8 [0, 0, 0, 0, 0, ...]
 country_LEBANON u8 [0, 0, 0, 0, 0, ...]
 country_LESOTHO u8 [0, 0, 0, 0, 0, ...]
 country_LIBERIA u8 [0, 0, 0, 0, 0, ...]
 country_LIBYAN ARAB JAMAHIRIYAH u8 [0, 0, 0, 0, 0, ...]
 country_LIECHTENSTEIN u8 [0, 0, 0, 0, 0, ...]
 country_LITHUANIA u8 [0, 0, 0, 0, 0, ...]
 country_LUXEMBOURG u8 [0, 0, 0, 0, 0, ...]
 country_MACAU SPECIAL ADMINSTRATIVE REGION OF CHINA u8 [0, 0, 0, 0, 0, ...]
 country_MACEDONIA u8 [0, 0, 0, 0, 0, ...]
 country_MADAGASCAR u8 [0, 0, 0, 0, 0, ...]
 country_MALAWI u8 [0, 0, 0, 0, 0, ...]
 country_MALAYSIA u8 [0, 0, 0, 0, 0, ...]
 country_MALDIVES u8 [0, 0, 0, 0, 0, ...]
 country_MALI u8 [0, 0, 0, 0, 0, ...]
 country_MALTA u8 [0, 0, 0, 0, 0, ...]
 country_MARSHALL ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_MARTINIQUE u8 [0, 0, 0, 0, 0, ...]
 country_MAURITANIA u8 [0, 0, 0, 0, 0, ...]
 country_MAURITIUS u8 [0, 0, 0, 0, 0, ...]
 country_MEXICO u8 [0, 0, 0, 0, 0, ...]
 country_MONGOLIA u8 [0, 0, 0, 0, 0, ...]
 country_MONTENEGRO u8 [0, 0, 0, 0, 0, ...]
 country_MONTSERRAT u8 [0, 0, 0, 0, 0, ...]
 country_MOROCCO u8 [0, 0, 0, 0, 0, ...]
 country_MOZAMBIQUE u8 [0, 0, 0, 0, 0, ...]
 country_MYANMAR (FORMERLY BURMA) u8 [0, 0, 0, 0, 0, ...]
 country_NAMIBIA u8 [0, 0, 0, 0, 0, ...]
 country_NAURU u8 [0, 0, 0, 0, 0, ...]
 country_NEPAL u8 [0, 0, 0, 0, 0, ...]
 country_NETHERLAND ANTILLES u8 [0, 0, 0, 0, 0, ...]
 country_NETHERLANDS u8 [0, 0, 0, 0, 0, ...]
 country_NEW CALEDONIA u8 [0, 0, 0, 0, 0, ...]
 country_NEW ZEALAND u8 [0, 0, 0, 0, 0, ...]
 country_NICARAGUA u8 [0, 0, 0, 0, 0, ...]
 country_NIGER u8 [0, 0, 0, 0, 0, ...]
 country_NIGERIA u8 [0, 0, 0, 0, 0, ...]
 country_NIUE u8 [0, 0, 0, 0, 0, ...]
 country_NORWAY u8 [0, 0, 0, 0, 0, ...]
 country_OCCUPIED PALESTINIAN TERRITORY u8 [0, 0, 0, 0, 0, ...]
 country_OMAN u8 [0, 0, 0, 0, 0, ...]
 country_PAKISTAN u8 [0, 0, 0, 0, 0, ...]
 country_PALAU u8 [0, 0, 0, 0, 0, ...]
 country_PANAMA u8 [0, 0, 0, 0, 0, ...]
 country_PAPUA NEW GUINEA u8 [0, 0, 0, 0, 0, ...]
 country_PARAGUAY u8 [0, 0, 0, 0, 0, ...]
 country_PERU u8 [0, 0, 0, 0, 0, ...]
 country_PHILIPPINES u8 [0, 0, 0, 0, 0, ...]
 country_PLURINATIONAL STATE OF BOLIVIA u8 [0, 0, 0, 0, 0, ...]
 country_POLAND u8 [0, 0, 0, 0, 0, ...]
 country_PORTUGAL u8 [0, 0, 0, 0, 0, ...]
 country_QATAR u8 [0, 0, 0, 0, 0, ...]
 country_REPUBLIC OF CAMEROON u8 [0, 0, 0, 0, 0, ...]
 country_REPUBLIC OF KOREA u8 [0, 0, 0, 0, 0, ...]
 country_REPUBLIC OF MOLDOVA u8 [0, 0, 0, 0, 0, ...]
 country_REUNION u8 [0, 0, 0, 0, 0, ...]
 country_ROMANIA u8 [0, 0, 0, 0, 0, ...]
 country_RUSSIAN FEDERATION u8 [0, 0, 0, 0, 0, ...]
 country_RWANDA u8 [0, 0, 0, 0, 0, ...]
 country_SAINT HELENA u8 [0, 0, 0, 0, 0, ...]
 country_SAINT LUCIA u8 [0, 0, 0, 0, 0, ...]
 country_SAMOA u8 [0, 0, 0, 0, 0, ...]
 country_SAO TOME & PRINCIPE u8 [0, 0, 0, 0, 0, ...]
 country_SAUDI ARABIA u8 [0, 0, 0, 0, 0, ...]
 country_SENEGAL u8 [0, 0, 0, 0, 0, ...]
 country_SERBIA u8 [0, 0, 0, 0, 0, ...]
 country_SEYCHELLES u8 [0, 0, 0, 0, 0, ...]
 country_SIERRA LEONE u8 [0, 0, 0, 0, 0, ...]
 country_SINGAPORE u8 [0, 0, 0, 0, 0, ...]
 country_SLOVAKIA u8 [0, 0, 0, 0, 0, ...]
 country_SLOVENIA u8 [0, 0, 0, 0, 0, ...]
 country_SOLOMON ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_SOMALIA u8 [0, 0, 0, 0, 0, ...]
 country_SOUTH AFRICA u8 [0, 0, 0, 0, 0, ...]
 country_SPAIN u8 [0, 0, 0, 0, 0, ...]
 country_SRI LANKA u8 [0, 0, 0, 0, 0, ...]
 country_ST. KITTS-NEVIS u8 [0, 0, 0, 0, 0, ...]
 country_ST. PIERRE & MIQUELON u8 [0, 0, 0, 0, 0, ...]
 country_ST. VINCENT & THE GRENADINES u8 [0, 0, 0, 0, 0, ...]
 country_SUDAN u8 [0, 0, 0, 0, 0, ...]
 country_SURINAME u8 [0, 0, 0, 0, 0, ...]
 country_SWAZILAND u8 [0, 0, 0, 0, 0, ...]
 country_SWEDEN u8 [0, 0, 0, 0, 0, ...]
 country_SWITZERLAND u8 [0, 0, 0, 0, 0, ...]
 country_SYRIAN ARAB REPUBLIC u8 [0, 0, 0, 0, 0, ...]
 country_TAIWAN u8 [0, 0, 0, 0, 0, ...]
 country_TAJIKISTAN u8 [0, 0, 0, 0, 0, ...]
 country_THAILAND u8 [0, 0, 0, 0, 0, ...]
 country_TIMOR-LESTE (FORMERLY EAST TIMOR) u8 [0, 0, 0, 0, 0, ...]
 country_TOGO u8 [0, 0, 0, 0, 0, ...]
 country_TONGA u8 [0, 0, 0, 0, 0, ...]
 country_TRINIDAD AND TOBAGO u8 [0, 0, 0, 0, 0, ...]
 country_TUNISIA u8 [0, 0, 0, 0, 0, ...]
 country_TURKEY u8 [0, 0, 0, 0, 0, ...]
 country_TURKMENISTAN u8 [0, 0, 0, 0, 0, ...]
 country_TURKS AND CAICOS ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_TUVALU u8 [0, 0, 0, 0, 0, ...]
 country_UGANDA u8 [0, 0, 0, 0, 0, ...]
 country_UKRAINE u8 [0, 0, 0, 0, 0, ...]
 country_UNITED ARAB EMIRATES u8 [0, 0, 0, 0, 0, ...]
 country_UNITED KINGDOM u8 [0, 0, 0, 0, 0, ...]
 country_UNITED REPUBLIC OF TANZANIA u8 [0, 0, 0, 0, 0, ...]
 country_UNITED STATES OF AMERICA u8 [0, 0, 0, 0, 0, ...]
 country_URUGUAY u8 [0, 0, 0, 0, 0, ...]
 country_UZBEKISTAN u8 [0, 0, 0, 0, 0, ...]
 country_VANUATU u8 [0, 0, 0, 0, 0, ...]
 country_VENEZUELA u8 [0, 0, 0, 0, 0, ...]
 country_VIET NAM u8 [0, 0, 0, 0, 0, ...]
 country_WALLIS AND FUTUNA ISLANDS u8 [0, 0, 0, 0, 0, ...]
 country_YEMEN u8 [0, 0, 0, 0, 0, ...]
 country_ZAMBIA u8 [0, 0, 0, 0, 0, ...]
 country_ZIMBABWE u8 [0, 0, 0, 0, 0, ...]
 country_BONAIRE, SAINT EUSTATIUS, AND SABA u8 [0, 0, 0, 0, 0, ...]
 country_CURACAO u8 [0, 0, 0, 0, 0, ...]
 country_REPUBLIC OF SOUTH SUDAN u8 [0, 0, 0, 0, 0, ...]
 country_REPUBLIC OF SUDAN u8 [0, 0, 0, 0, 0, ...]
 country_SAINT MARTIN (DUTCH PORTION) u8 [0, 0, 0, 0, 0, ...]
>

 Sampling

Random samples can give us a percent or a specific number of samples, with or without replacement, and the function is seedable.
DF.sample(df, 10)
#Explorer.DataFrame<
 Polars[10 x 10]
 year s64 [2011, 2012, 2012, 2010, 2012, ...]
 country string ["JAPAN", "FAEROE ISLANDS", "MALAWI", "LAO PEOPLE S DEMOCRATIC REPUBLIC",
 "LIBYAN ARAB JAMAHIRIYAH", ...]
 total s64 [324809, 161, 299, 447, 14367, ...]
 solid_fuel s64 [111852, 0, 59, 181, 0, ...]
 liquid_fuel s64 [143467, 161, 217, 104, 9113, ...]
 gas_fuel s64 [62514, 0, 0, 0, 2923, ...]
 cement s64 [6976, 0, 23, 163, 272, ...]
 gas_flaring s64 [0, 0, 0, 0, 2059, ...]
 per_capita f64 [2.55, 3.32, 0.02, 0.07, 2.29, ...]
 bunker_fuels s64 [8406, 27, 6, 9, 484, ...]
>
DF.sample(df, 0.4)
#Explorer.DataFrame<
 Polars[437 x 10]
 year s64 [2011, 2013, 2012, 2012, 2011, ...]
 country string ["GHANA", "GIBRALTAR", "KAZAKHSTAN", "LIBYAN ARAB JAMAHIRIYAH", "CONGO", ...]
 total s64 [2681, 134, 66259, 14367, 616, ...]
 solid_fuel s64 [0, 0, 39243, 0, 0, ...]
 liquid_fuel s64 [1909, 134, 8834, 9113, 529, ...]
 gas_fuel s64 [432, 0, 17223, 2923, 77, ...]
 cement s64 [340, 0, 959, 272, 10, ...]
 gas_flaring s64 [0, 0, 0, 2059, 0, ...]
 per_capita f64 [0.11, 4.22, 3.94, 2.29, 0.15, ...]
 bunker_fuels s64 [178, 3370, 168, 484, 42, ...]
>
Trying for those helpful error messages again.
DF.sample(df, 10000)
DF.sample(df, 10000, replace: true)
#Explorer.DataFrame<
 Polars[10000 x 10]
 year s64 [2012, 2011, 2010, 2011, 2012, ...]
 country string ["PARAGUAY", "REUNION", "KUWAIT", "SOUTH AFRICA", "SEYCHELLES", ...]
 total s64 [1441, 1165, 24441, 128329, 120, ...]
 solid_fuel s64 [1, 495, 0, 109120, 0, ...]
 liquid_fuel s64 [1330, 636, 16377, 15279, 120, ...]
 gas_fuel s64 [0, 0, 7678, 2402, 0, ...]
 cement s64 [109, 34, 272, 1528, 0, ...]
 gas_flaring s64 [0, 0, 114, 0, 0, ...]
 per_capita f64 [0.23, 1.39, 7.99, 2.46, 1.27, ...]
 bunker_fuels s64 [23, 61, 1072, 3458, 162, ...]
>

 Pull and slice

Slicing and dicing can be done with the Access protocol or with explicit pull/slice/take functions.
df["year"]
#Explorer.Series<
 Polars[1094]
 s64 [2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, ...]
>
DF.pull(df, "year")
#Explorer.Series<
 Polars[1094]
 s64 [2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,
 2010, 2010, 2010, ...]
>
df[["year", "country"]]
#Explorer.DataFrame<
 Polars[1094 x 2]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
>
DF.slice(df, [1, 20, 50])
#Explorer.DataFrame<
 Polars[3 x 10]
 year s64 [2010, 2010, 2010]
 country string ["ALBANIA", "BENIN", "DEMOCRATIC REPUBLIC OF THE CONGO (FORMERLY ZAIRE)"]
 total s64 [1254, 1388, 551]
 solid_fuel s64 [117, 0, 0]
 liquid_fuel s64 [953, 1211, 471]
 gas_fuel s64 [7, 0, 12]
 cement s64 [177, 177, 67]
 gas_flaring s64 [0, 0, 0]
 per_capita f64 [0.43, 0.15, 0.01]
 bunker_fuels s64 [7, 127, 126]
>
Negative offsets work for slice!
DF.slice(df, -10, 5)
#Explorer.DataFrame<
 Polars[5 x 10]
 year s64 [2014, 2014, 2014, 2014, 2014]
 country string ["UNITED STATES OF AMERICA", "URUGUAY", "UZBEKISTAN", "VANUATU", "VENEZUELA"]
 total s64 [1432855, 1840, 28692, 42, 50510]
 solid_fuel s64 [450047, 2, 1677, 0, 204]
 liquid_fuel s64 [576531, 1700, 2086, 42, 28445]
 gas_fuel s64 [390719, 25, 23929, 0, 12731]
 cement s64 [11314, 112, 1000, 0, 1088]
 gas_flaring s64 [4244, 0, 0, 0, 8042]
 per_capita f64 [4.43, 0.54, 0.97, 0.16, 1.65]
 bunker_fuels s64 [30722, 251, 0, 10, 1256]
>
DF.slice(df, 10, 5)
#Explorer.DataFrame<
 Polars[5 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010]
 country string ["AUSTRALIA", "AUSTRIA", "AZERBAIJAN", "BAHAMAS", "BAHRAIN"]
 total s64 [106589, 18408, 8366, 451, 7981]
 solid_fuel s64 [56257, 3537, 6, 1, 0]
 liquid_fuel s64 [31308, 9218, 2373, 450, 1123]
 gas_fuel s64 [17763, 5073, 4904, 0, 6696]
 cement s64 [1129, 579, 174, 0, 163]
 gas_flaring s64 [132, 0, 909, 0, 0]
 per_capita f64 [4.81, 2.19, 0.92, 1.25, 6.33]
 bunker_fuels s64 [3307, 575, 398, 179, 545]
>
Slice also works with ranges:
DF.slice(df, 12..42)
#Explorer.DataFrame<
 Polars[31 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AZERBAIJAN", "BAHAMAS", "BAHRAIN", "BANGLADESH", "BARBADOS", ...]
 total s64 [8366, 451, 7981, 16345, 403, ...]
 solid_fuel s64 [6, 1, 0, 839, 0, ...]
 liquid_fuel s64 [2373, 450, 1123, 2881, 363, ...]
 gas_fuel s64 [4904, 0, 6696, 10753, 8, ...]
 cement s64 [174, 0, 163, 1873, 31, ...]
 gas_flaring s64 [909, 0, 0, 0, 1, ...]
 per_capita f64 [0.92, 1.25, 6.33, 0.11, 1.44, ...]
 bunker_fuels s64 [398, 179, 545, 313, 108, ...]
>

 Pivot

We can pivot_longer/3 and pivot_wider/4. These are inspired by tidyr.
There are some shortcomings in pivot_wider/4 related to polars. The select option must select only columns of numeric type.
DF.pivot_longer(df, ["year", "country"], select: &String.ends_with?(&1, "fuel"))
DF.pivot_wider(df, "country", "total", id_columns: ["year"])
#Explorer.DataFrame<
 Polars[5 x 223]
 year s64 [2010, 2011, 2012, 2013, 2014]
 AFGHANISTAN s64 [2308, 3338, 2933, 2731, 2675]
 ALBANIA s64 [1254, 1429, 1339, 1381, 1559]
 ALGERIA s64 [32500, 33048, 35448, 36669, 39651]
 ANDORRA s64 [141, 134, 133, 130, 126]
 ANGOLA s64 [7924, 8274, 9108, 8895, 9480]
 ANGUILLA s64 [41, 39, 39, 37, 39]
 ANTIGUA & BARBUDA s64 [143, 140, 143, 143, 145]
 ARGENTINA s64 [51246, 52259, 52456, 51773, 55638]
 ARMENIA s64 [1150, 1341, 1553, 1499, 1508]
 ARUBA s64 [684, 682, 368, 235, 238]
 AUSTRALIA s64 [106589, 106850, 105843, 101518, 98517]
 AUSTRIA s64 [18408, 17731, 16982, 17040, 16011]
 AZERBAIJAN s64 [8366, 9121, 9696, 9720, 10223]
 BAHAMAS s64 [451, 509, 537, 764, 659]
 BAHRAIN s64 [7981, 7813, 7274, 8539, 8546]
 BANGLADESH s64 [16345, 17293, 18409, 19010, 19959]
 BARBADOS s64 [403, 417, 401, 395, 347]
 BELARUS s64 [17192, 17470, 17241, 17390, 17316]
 BELGIUM s64 [30222, 27255, 25936, 26444, 25457]
 BELIZE s64 [147, 164, 130, 140, 135]
 BENIN s64 [1388, 1444, 1492, 1585, 1723]
 BERMUDA s64 [166, 121, 130, 125, 157]
 BHUTAN s64 [133, 200, 223, 251, 273]
 BOSNIA & HERZEGOVINA s64 [5802, 6514, 6070, 5978, 6063]
 BOTSWANA s64 [1278, 1139, 1154, 1426, 1918]
 BRAZIL s64 [114468, 119829, 128178, 137354, 144480]
 BRITISH VIRGIN ISLANDS s64 [47, 48, 48, 48, 49]
 BRUNEI (DARUSSALAM) s64 [2237, 2644, 2636, 2128, 2484]
 BULGARIA s64 [12030, 13457, 12192, 10799, 11567]
 BURKINA FASO s64 [535, 603, 717, 834, 777]
 BURUNDI s64 [58, 66, 77, 79, 120]
 CAMBODIA s64 [1367, 1420, 1488, 1528, 1823]
 CANADA s64 [145806, 146472, 141112, 141031, 146494]
 CAPE VERDE s64 [152, 168, 138, 136, 134]
 CAYMAN ISLANDS s64 [152, 160, 146, 146, 148]
 CENTRAL AFRICAN REPUBLIC s64 [72, 76, 80, 81, 82]
 CHAD s64 [141, 147, 167, 191, 199]
 CHILE s64 [19703, 21610, 22082, 22696, 22515]
 CHINA (MAINLAND) s64 [2393248, 2654360, 2734817, 2797384, 2806634]
 COLOMBIA s64 [20773, 20870, 21803, 24441, 22932]
 COMOROS s64 [44, 37, 39, 48, 42]
 CONGO s64 [540, 616, 810, 842, 844]
 COOK ISLANDS s64 [19, 19, 19, 19, 19]
 COSTA RICA s64 [2064, 2111, 2118, 2072, 2116]
 COTE D IVOIRE s64 [1900, 1977, 2535, 2914, 3012]
 CROATIA s64 [5501, 5402, 4907, 4786, 4593]
 CUBA s64 [10465, 9814, 9860, 9490, 9500]
 CYPRUS s64 [2102, 2025, 1887, 1622, 1653]
 CZECH REPUBLIC s64 [30428, 29154, 27551, 26909, 26309]
 DEMOCRATIC PEOPLE S REPUBLIC OF KOREA s64 [18122, 13099, 13378, 9820, 11052]
 DEMOCRATIC REPUBLIC OF THE CONGO (FORMERLY ZAIRE) s64 [551, 680, 655, 979, 1274]
 DENMARK s64 [12719, 11084, 9934, 10508, 9135]
 DJIBOUTI s64 [141, 129, 141, 166, 197]
 DOMINICA s64 [38, 35, 37, 36, 37]
 DOMINICAN REPUBLIC s64 [5733, 5789, 6033, 5847, 5874]
 ECUADOR s64 [9943, 10529, 10401, 11180, 11977]
 EGYPT s64 [55281, 59221, 59195, 58198, 55057]
 EL SALVADOR s64 [1761, 1813, 1817, 1699, 1714]
 EQUATORIAL GUINEA s64 [1276, 1671, 1395, 1408, 1458]
 ERITREA s64 [140, 162, 180, 182, 190]
 ESTONIA s64 [4938, 5074, 4806, 5425, 5323]
 ETHIOPIA s64 [1796, 2107, 2335, 2900, 3163]
 FAEROE ISLANDS s64 [172, 155, 161, 185, 163]
 FALKLAND ISLANDS (MALVINAS) s64 [15, 15, 15, 15, 15]
 FEDERATED STATES OF MICRONESIA s64 [31, 33, 37, 39, 41]
 FIJI s64 [333, 297, 289, 314, 319]
 FINLAND s64 [16930, 15494, 13399, 12877, 12899]
 FRANCE (INCLUDING MONACO) s64 [96273, 90484, 90872, 91109, 82704]
 FRENCH GUIANA s64 [174, 175, 161, 172, 200]
 FRENCH POLYNESIA s64 [234, 227, 222, 224, 219]
 GABON s64 [1312, 1356, 1392, 1440, 1416]
 GAMBIA s64 [118, 122, 124, 118, 140]
 GEORGIA s64 [1722, 2174, 2302, 2143, 2451]
 GERMANY s64 [206943, 199754, 201762, 206521, 196314]
 GHANA s64 [2715, 2681, 3239, 3987, 3945]
 GIBRALTAR s64 [127, 123, 126, 134, 144]
 GREECE s64 [22868, 21773, 21828, 18948, 18358]
 GREENLAND s64 [181, 193, 155, 151, 138]
 GRENADA s64 [71, 69, 74, 83, 66]
 GUADELOUPE s64 [627, 663, 694, 697, 700]
 GUATEMALA s64 [3181, 3228, 3265, 3718, 4998]
 GUINEA s64 [710, 758, 704, 627, 668]
 GUINEA BISSAU s64 [65, 67, 69, 70, 74]
 GUYANA s64 [469, 486, 544, 528, 548]
 HAITI s64 [580, 605, 631, 656, 780]
 HONDURAS s64 [2175, 2442, 2450, 2472, 2583]
 HONG KONG SPECIAL ADMINSTRATIVE REGION OF CHINA s64 [11093, 11943, 11842, 12273, 12605]
 HUNGARY s64 [13696, 13047, 12158, 11492, 11477]
 ICELAND s64 [535, 513, 491, 518, 541]
 INDIA s64 [468964, 502257, 550451, 554882, 610411]
 INDONESIA s64 [116924, 164621, 173733, 133686, 126582]
 IRAQ s64 [30596, 36647, 41648, 45134, 45935]
 IRELAND s64 [10923, 9717, 9706, 9505, 9290]
 ISLAMIC REPUBLIC OF IRAN s64 [156267, 160637, 166828, 169015, 177115]
 ISRAEL s64 [18784, 18852, 20597, 18290, 17617]
 ITALY (INCLUDING SAN MARINO) s64 [110543, 108534, 100755, 94169, 87377]
 JAMAICA s64 [1990, 2143, 2035, 2207, 2024]
 JAPAN s64 [319505, 324809, 335470, 339928, 331074]
 JORDAN s64 [5776, 5909, 6666, 6651, 7213]
 KAZAKHSTAN s64 [67780, 70646, 66259, 71679, 67716]
 KENYA s64 [3320, 3670, 3413, 3636, 3896]
 KIRIBATI s64 [17, 17, 17, 17, 17]
 KUWAIT s64 [24441, 24824, 27907, 26819, 26018]
 KYRGYZSTAN s64 [1741, 2088, 2763, 2684, 2620]
 LAO PEOPLE S DEMOCRATIC REPUBLIC s64 [447, 443, 463, 430, 533]
 LATVIA s64 [2202, 1989, 1926, 1931, 1902]
 LEBANON s64 [5467, 5575, 6172, 6158, 6564]
 LESOTHO s64 [621, 636, 656, 664, 673]
 LIBERIA s64 [216, 243, 280, 261, 255]
 LIBYAN ARAB JAMAHIRIYAH s64 [16897, 10827, 14367, 15344, 15543]
 LIECHTENSTEIN s64 [15, 13, 13, 14, 12]
 LITHUANIA s64 [3673, 3760, 3772, 3447, 3501]
 LUXEMBOURG s64 [2991, 2983, 2908, 2741, 2634]
 MACAU SPECIAL ADMINSTRATIVE REGION OF CHINA s64 [384, 395, 358, 322, 350]
 MACEDONIA s64 [2346, 2563, 2445, 2140, 2048]
 MADAGASCAR s64 [534, 638, 738, 850, 839]
 MALAWI s64 [312, 322, 299, 334, 348]
 MALAYSIA s64 [59579, 60105, 59642, 64497, 66218]
 MALDIVES s64 [255, 269, 303, 298, 364]
 MALI s64 [263, 285, 271, 280, 385]
 MALTA s64 [698, 693, 731, 638, 640]
 MARSHALL ISLANDS s64 [28, 28, 28, 28, 28]
 MARTINIQUE s64 [548, 605, 604, 603, 627]
 MAURITANIA s64 [610, 653, 724, 728, 739]
 MAURITIUS s64 [1068, 1069, 1082, 1110, 1153]
 MEXICO s64 [126618, 132105, 135349, 133717, 130971]
 MONGOLIA s64 [3769, 5863, 7152, 10568, 5683]
 MONTENEGRO s64 [704, 701, 637, 613, 603]
 MONTSERRAT s64 [18, 11, 12, 14, 13]
 MOROCCO s64 [15260, 15731, 17107, 16112, 16325]
 MOZAMBIQUE s64 [746, 879, 851, 1096, 2298]
 MYANMAR (FORMERLY BURMA) s64 [3413, 3899, 3019, 3507, 5899]
 NAMIBIA s64 [846, 772, 923, 717, 1024]
 NAURU s64 [12, 11, 11, 12, 13]
 NEPAL s64 [1379, 1509, 1597, 1810, 2190]
 NETHERLAND ANTILLES s64 [1244, 1587, nil, nil, nil]
 NETHERLANDS s64 [49919, 47496, 46444, 47247, 45624]
 NEW CALEDONIA s64 [966, 995, 990, 1157, 1170]
 NEW ZEALAND s64 [8667, 8591, 9313, 9124, 9453]
 NICARAGUA s64 [1237, 1331, 1260, 1241, 1326]
 NIGER s64 [320, 362, 509, 529, 580]
 NIGERIA s64 [24957, 26096, 26862, 26762, 26256]
 NIUE s64 [1, 2, 2, 2, 3]
 NORWAY s64 [16391, 12325, 13605, 15861, 12988]
 OCCUPIED PALESTINIAN TERRITORY s64 [555, 613, 600, 665, 774]
 OMAN s64 [12931, 14734, 16133, 16738, 16681]
 PAKISTAN s64 [44013, 44166, 44586, 44812, 45350]
 PALAU s64 [69, 69, 69, 70, 71]
 PANAMA s64 [2499, 2754, 2758, 2923, 2400]
 PAPUA NEW GUINEA s64 [1299, 1453, 1385, 1687, 1723]
 PARAGUAY s64 [1390, 1451, 1441, 1482, 1555]
 PERU s64 [15706, 13535, 15018, 15586, 16838]
 PHILIPPINES s64 [23144, 23315, 24872, 26760, 28812]
 PLURINATIONAL STATE OF BOLIVIA s64 [4146, 4403, 5125, 5159, 5566]
 POLAND s64 [86246, 86446, 81792, 82432, 77922]
 PORTUGAL s64 [13127, 12987, 12548, 12388, 12286]
 QATAR s64 [19773, 21935, 25668, 23186, 29412]
 REPUBLIC OF CAMEROON s64 [1849, 1573, 1671, 1847, 1910]
 REPUBLIC OF KOREA s64 [154545, 160731, 159249, 161576, 160119]
 REPUBLIC OF MOLDOVA s64 [1345, 1374, 1343, 1363, 1345]
 REUNION s64 [1137, 1165, 1159, 1118, 1138]
 ROMANIA s64 [21656, 23147, 22286, 19347, 19090]
 RUSSIAN FEDERATION s64 [455558, 480885, 499272, 485018, 465052]
 RWANDA s64 [161, 181, 201, 219, 229]
 SAINT HELENA s64 [3, 3, 3, 3, 3]
 SAINT LUCIA s64 [110, 111, 111, 111, 111]
 SAMOA s64 [51, 55, 54, 54, 54]
 SAO TOME & PRINCIPE s64 [27, 28, 31, 31, 31]
 SAUDI ARABIA s64 [141394, 136318, 154034, 147545, 163907]
 SENEGAL s64 [2112, 2282, 2158, 2297, 2415]
 SERBIA s64 [12532, 13422, 12016, 12240, 10272]
 SEYCHELLES s64 [121, 93, 120, 110, 135]
 SIERRA LEONE s64 [198, 245, 281, 325, 357]
 SINGAPORE s64 [15174, 12332, 9919, 15183, 15373]
 SLOVAKIA s64 [9883, 9415, 8935, 9024, 8366]
 SLOVENIA s64 [4182, 4115, 4031, 3859, 3494]
 SOLOMON ISLANDS s64 [54, 54, 54, 55, 55]
 SOMALIA s64 [167, 165, 166, 166, 166]
 SOUTH AFRICA s64 [129288, 128329, 127835, 127182, 133562]
 SPAIN s64 [73878, 73779, 72206, 64640, 63806]
 SRI LANKA s64 [3617, 4128, 4372, 4224, 5016]
 ST. KITTS-NEVIS s64 [60, 63, 60, 61, 63]
 ST. PIERRE & MIQUELON s64 [19, 19, 19, 20, 21]
 ST. VINCENT & THE GRENADINES s64 [60, 54, 69, 57, 57]
 SUDAN s64 [4347, 4270, nil, nil, nil]
 SURINAME s64 [655, 537, 616, 523, 543]
 SWAZILAND s64 [283, 286, 329, 297, 328]
 SWEDEN s64 [14187, 14108, 12830, 12230, 11841]
 SWITZERLAND s64 [10634, 10081, 10301, 10970, 9628]
 SYRIAN ARAB REPUBLIC s64 [16800, 15519, 12198, 9937, 8373]
 TAIWAN s64 [73629, 73406, 70393, 71022, 72013]
 TAJIKISTAN s64 [694, 641, 800, 949, 1415]
 THAILAND s64 [76882, 75898, 80883, 81835, 86232]
 TIMOR-LESTE (FORMERLY EAST TIMOR) s64 [64, 67, 80, 120, 128]
 TOGO s64 [720, 672, 678, 725, 715]
 TONGA s64 [32, 28, 29, 31, 33]
 TRINIDAD AND TOBAGO s64 [13072, 12799, 12386, 12692, 12619]
 TUNISIA s64 [7543, 7096, 7364, 7545, 7862]
 TURKEY s64 [81266, 87494, 89872, 88566, 94350]
 TURKMENISTAN s64 [15623, 17035, 17691, 18199, 18659]
 TURKS AND CAICOS ISLANDS s64 [52, 52, 54, 54, 56]
 TUVALU s64 [2, 2, 3, 3, 3]
 UGANDA s64 [1069, 1163, 1110, 1328, 1426]
 UKRAINE s64 [83077, 78100, 80663, 74141, 61985]
 UNITED ARAB EMIRATES s64 [43854, 45116, 48101, 46552, 57641]
 UNITED KINGDOM s64 [134499, 122124, 127781, 124966, 114486]
 UNITED REPUBLIC OF TANZANIA s64 [1938, 2207, 2603, 3048, 3153]
 UNITED STATES OF AMERICA s64 [1471375, 1442509, 1396083, 1406916, 1432855]
 URUGUAY s64 [1742, 2117, 2371, 2069, 1840]
 UZBEKISTAN s64 [28407, 31002, 31583, 28185, 28692]
 VANUATU s64 [33, 36, 31, 29, 42]
 VENEZUELA s64 [51560, 48220, 54204, 50156, 50510]
 VIET NAM s64 [38925, 41497, 38784, 40150, 45517]
 WALLIS AND FUTUNA ISLANDS s64 [8, 7, 7, 6, 6]
 YEMEN s64 [6390, 5363, 5091, 6953, 6190]
 ZAMBIA s64 [734, 801, 1000, 1079, 1228]
 ZIMBABWE s64 [2121, 2608, 2125, 3184, 3278]
 BONAIRE, SAINT EUSTATIUS, AND SABA s64 [nil, nil, 85, 88, 88]
 CURACAO s64 [nil, nil, 1636, 1422, 1604]
 REPUBLIC OF SOUTH SUDAN s64 [nil, nil, 363, 395, 408]
 REPUBLIC OF SUDAN s64 [nil, nil, 3993, 4220, 4190]
 SAINT MARTIN (DUTCH PORTION) s64 [nil, nil, 190, 195, 200]
>
Let's make those names look nicer!
tidy_names = fn name ->
 name
 |> String.downcase()
 |> String.replace(~r/\s/, " ")
 |> String.replace(~r/[^A-Za-z\s]/, "")
 |> String.replace(" ", "_")
end

df
|> DF.pivot_wider("country", "total", id_columns: ["year"])
|> DF.rename_with(tidy_names)
#Explorer.DataFrame<
 Polars[5 x 223]
 year s64 [2010, 2011, 2012, 2013, 2014]
 afghanistan s64 [2308, 3338, 2933, 2731, 2675]
 albania s64 [1254, 1429, 1339, 1381, 1559]
 algeria s64 [32500, 33048, 35448, 36669, 39651]
 andorra s64 [141, 134, 133, 130, 126]
 angola s64 [7924, 8274, 9108, 8895, 9480]
 anguilla s64 [41, 39, 39, 37, 39]
 antigua__barbuda s64 [143, 140, 143, 143, 145]
 argentina s64 [51246, 52259, 52456, 51773, 55638]
 armenia s64 [1150, 1341, 1553, 1499, 1508]
 aruba s64 [684, 682, 368, 235, 238]
 australia s64 [106589, 106850, 105843, 101518, 98517]
 austria s64 [18408, 17731, 16982, 17040, 16011]
 azerbaijan s64 [8366, 9121, 9696, 9720, 10223]
 bahamas s64 [451, 509, 537, 764, 659]
 bahrain s64 [7981, 7813, 7274, 8539, 8546]
 bangladesh s64 [16345, 17293, 18409, 19010, 19959]
 barbados s64 [403, 417, 401, 395, 347]
 belarus s64 [17192, 17470, 17241, 17390, 17316]
 belgium s64 [30222, 27255, 25936, 26444, 25457]
 belize s64 [147, 164, 130, 140, 135]
 benin s64 [1388, 1444, 1492, 1585, 1723]
 bermuda s64 [166, 121, 130, 125, 157]
 bhutan s64 [133, 200, 223, 251, 273]
 bosnia__herzegovina s64 [5802, 6514, 6070, 5978, 6063]
 botswana s64 [1278, 1139, 1154, 1426, 1918]
 brazil s64 [114468, 119829, 128178, 137354, 144480]
 british_virgin_islands s64 [47, 48, 48, 48, 49]
 brunei_darussalam s64 [2237, 2644, 2636, 2128, 2484]
 bulgaria s64 [12030, 13457, 12192, 10799, 11567]
 burkina_faso s64 [535, 603, 717, 834, 777]
 burundi s64 [58, 66, 77, 79, 120]
 cambodia s64 [1367, 1420, 1488, 1528, 1823]
 canada s64 [145806, 146472, 141112, 141031, 146494]
 cape_verde s64 [152, 168, 138, 136, 134]
 cayman_islands s64 [152, 160, 146, 146, 148]
 central_african_republic s64 [72, 76, 80, 81, 82]
 chad s64 [141, 147, 167, 191, 199]
 chile s64 [19703, 21610, 22082, 22696, 22515]
 china_mainland s64 [2393248, 2654360, 2734817, 2797384, 2806634]
 colombia s64 [20773, 20870, 21803, 24441, 22932]
 comoros s64 [44, 37, 39, 48, 42]
 congo s64 [540, 616, 810, 842, 844]
 cook_islands s64 [19, 19, 19, 19, 19]
 costa_rica s64 [2064, 2111, 2118, 2072, 2116]
 cote_d_ivoire s64 [1900, 1977, 2535, 2914, 3012]
 croatia s64 [5501, 5402, 4907, 4786, 4593]
 cuba s64 [10465, 9814, 9860, 9490, 9500]
 cyprus s64 [2102, 2025, 1887, 1622, 1653]
 czech_republic s64 [30428, 29154, 27551, 26909, 26309]
 democratic_people_s_republic_of_korea s64 [18122, 13099, 13378, 9820, 11052]
 democratic_republic_of_the_congo_formerly_zaire s64 [551, 680, 655, 979, 1274]
 denmark s64 [12719, 11084, 9934, 10508, 9135]
 djibouti s64 [141, 129, 141, 166, 197]
 dominica s64 [38, 35, 37, 36, 37]
 dominican_republic s64 [5733, 5789, 6033, 5847, 5874]
 ecuador s64 [9943, 10529, 10401, 11180, 11977]
 egypt s64 [55281, 59221, 59195, 58198, 55057]
 el_salvador s64 [1761, 1813, 1817, 1699, 1714]
 equatorial_guinea s64 [1276, 1671, 1395, 1408, 1458]
 eritrea s64 [140, 162, 180, 182, 190]
 estonia s64 [4938, 5074, 4806, 5425, 5323]
 ethiopia s64 [1796, 2107, 2335, 2900, 3163]
 faeroe_islands s64 [172, 155, 161, 185, 163]
 falkland_islands_malvinas s64 [15, 15, 15, 15, 15]
 federated_states_of_micronesia s64 [31, 33, 37, 39, 41]
 fiji s64 [333, 297, 289, 314, 319]
 finland s64 [16930, 15494, 13399, 12877, 12899]
 france_including_monaco s64 [96273, 90484, 90872, 91109, 82704]
 french_guiana s64 [174, 175, 161, 172, 200]
 french_polynesia s64 [234, 227, 222, 224, 219]
 gabon s64 [1312, 1356, 1392, 1440, 1416]
 gambia s64 [118, 122, 124, 118, 140]
 georgia s64 [1722, 2174, 2302, 2143, 2451]
 germany s64 [206943, 199754, 201762, 206521, 196314]
 ghana s64 [2715, 2681, 3239, 3987, 3945]
 gibraltar s64 [127, 123, 126, 134, 144]
 greece s64 [22868, 21773, 21828, 18948, 18358]
 greenland s64 [181, 193, 155, 151, 138]
 grenada s64 [71, 69, 74, 83, 66]
 guadeloupe s64 [627, 663, 694, 697, 700]
 guatemala s64 [3181, 3228, 3265, 3718, 4998]
 guinea s64 [710, 758, 704, 627, 668]
 guinea_bissau s64 [65, 67, 69, 70, 74]
 guyana s64 [469, 486, 544, 528, 548]
 haiti s64 [580, 605, 631, 656, 780]
 honduras s64 [2175, 2442, 2450, 2472, 2583]
 hong_kong_special_adminstrative_region_of_china s64 [11093, 11943, 11842, 12273, 12605]
 hungary s64 [13696, 13047, 12158, 11492, 11477]
 iceland s64 [535, 513, 491, 518, 541]
 india s64 [468964, 502257, 550451, 554882, 610411]
 indonesia s64 [116924, 164621, 173733, 133686, 126582]
 iraq s64 [30596, 36647, 41648, 45134, 45935]
 ireland s64 [10923, 9717, 9706, 9505, 9290]
 islamic_republic_of_iran s64 [156267, 160637, 166828, 169015, 177115]
 israel s64 [18784, 18852, 20597, 18290, 17617]
 italy_including_san_marino s64 [110543, 108534, 100755, 94169, 87377]
 jamaica s64 [1990, 2143, 2035, 2207, 2024]
 japan s64 [319505, 324809, 335470, 339928, 331074]
 jordan s64 [5776, 5909, 6666, 6651, 7213]
 kazakhstan s64 [67780, 70646, 66259, 71679, 67716]
 kenya s64 [3320, 3670, 3413, 3636, 3896]
 kiribati s64 [17, 17, 17, 17, 17]
 kuwait s64 [24441, 24824, 27907, 26819, 26018]
 kyrgyzstan s64 [1741, 2088, 2763, 2684, 2620]
 lao_people_s_democratic_republic s64 [447, 443, 463, 430, 533]
 latvia s64 [2202, 1989, 1926, 1931, 1902]
 lebanon s64 [5467, 5575, 6172, 6158, 6564]
 lesotho s64 [621, 636, 656, 664, 673]
 liberia s64 [216, 243, 280, 261, 255]
 libyan_arab_jamahiriyah s64 [16897, 10827, 14367, 15344, 15543]
 liechtenstein s64 [15, 13, 13, 14, 12]
 lithuania s64 [3673, 3760, 3772, 3447, 3501]
 luxembourg s64 [2991, 2983, 2908, 2741, 2634]
 macau_special_adminstrative_region_of_china s64 [384, 395, 358, 322, 350]
 macedonia s64 [2346, 2563, 2445, 2140, 2048]
 madagascar s64 [534, 638, 738, 850, 839]
 malawi s64 [312, 322, 299, 334, 348]
 malaysia s64 [59579, 60105, 59642, 64497, 66218]
 maldives s64 [255, 269, 303, 298, 364]
 mali s64 [263, 285, 271, 280, 385]
 malta s64 [698, 693, 731, 638, 640]
 marshall_islands s64 [28, 28, 28, 28, 28]
 martinique s64 [548, 605, 604, 603, 627]
 mauritania s64 [610, 653, 724, 728, 739]
 mauritius s64 [1068, 1069, 1082, 1110, 1153]
 mexico s64 [126618, 132105, 135349, 133717, 130971]
 mongolia s64 [3769, 5863, 7152, 10568, 5683]
 montenegro s64 [704, 701, 637, 613, 603]
 montserrat s64 [18, 11, 12, 14, 13]
 morocco s64 [15260, 15731, 17107, 16112, 16325]
 mozambique s64 [746, 879, 851, 1096, 2298]
 myanmar_formerly_burma s64 [3413, 3899, 3019, 3507, 5899]
 namibia s64 [846, 772, 923, 717, 1024]
 nauru s64 [12, 11, 11, 12, 13]
 nepal s64 [1379, 1509, 1597, 1810, 2190]
 netherland_antilles s64 [1244, 1587, nil, nil, nil]
 netherlands s64 [49919, 47496, 46444, 47247, 45624]
 new_caledonia s64 [966, 995, 990, 1157, 1170]
 new_zealand s64 [8667, 8591, 9313, 9124, 9453]
 nicaragua s64 [1237, 1331, 1260, 1241, 1326]
 niger s64 [320, 362, 509, 529, 580]
 nigeria s64 [24957, 26096, 26862, 26762, 26256]
 niue s64 [1, 2, 2, 2, 3]
 norway s64 [16391, 12325, 13605, 15861, 12988]
 occupied_palestinian_territory s64 [555, 613, 600, 665, 774]
 oman s64 [12931, 14734, 16133, 16738, 16681]
 pakistan s64 [44013, 44166, 44586, 44812, 45350]
 palau s64 [69, 69, 69, 70, 71]
 panama s64 [2499, 2754, 2758, 2923, 2400]
 papua_new_guinea s64 [1299, 1453, 1385, 1687, 1723]
 paraguay s64 [1390, 1451, 1441, 1482, 1555]
 peru s64 [15706, 13535, 15018, 15586, 16838]
 philippines s64 [23144, 23315, 24872, 26760, 28812]
 plurinational_state_of_bolivia s64 [4146, 4403, 5125, 5159, 5566]
 poland s64 [86246, 86446, 81792, 82432, 77922]
 portugal s64 [13127, 12987, 12548, 12388, 12286]
 qatar s64 [19773, 21935, 25668, 23186, 29412]
 republic_of_cameroon s64 [1849, 1573, 1671, 1847, 1910]
 republic_of_korea s64 [154545, 160731, 159249, 161576, 160119]
 republic_of_moldova s64 [1345, 1374, 1343, 1363, 1345]
 reunion s64 [1137, 1165, 1159, 1118, 1138]
 romania s64 [21656, 23147, 22286, 19347, 19090]
 russian_federation s64 [455558, 480885, 499272, 485018, 465052]
 rwanda s64 [161, 181, 201, 219, 229]
 saint_helena s64 [3, 3, 3, 3, 3]
 saint_lucia s64 [110, 111, 111, 111, 111]
 samoa s64 [51, 55, 54, 54, 54]
 sao_tome__principe s64 [27, 28, 31, 31, 31]
 saudi_arabia s64 [141394, 136318, 154034, 147545, 163907]
 senegal s64 [2112, 2282, 2158, 2297, 2415]
 serbia s64 [12532, 13422, 12016, 12240, 10272]
 seychelles s64 [121, 93, 120, 110, 135]
 sierra_leone s64 [198, 245, 281, 325, 357]
 singapore s64 [15174, 12332, 9919, 15183, 15373]
 slovakia s64 [9883, 9415, 8935, 9024, 8366]
 slovenia s64 [4182, 4115, 4031, 3859, 3494]
 solomon_islands s64 [54, 54, 54, 55, 55]
 somalia s64 [167, 165, 166, 166, 166]
 south_africa s64 [129288, 128329, 127835, 127182, 133562]
 spain s64 [73878, 73779, 72206, 64640, 63806]
 sri_lanka s64 [3617, 4128, 4372, 4224, 5016]
 st_kittsnevis s64 [60, 63, 60, 61, 63]
 st_pierre__miquelon s64 [19, 19, 19, 20, 21]
 st_vincent__the_grenadines s64 [60, 54, 69, 57, 57]
 sudan s64 [4347, 4270, nil, nil, nil]
 suriname s64 [655, 537, 616, 523, 543]
 swaziland s64 [283, 286, 329, 297, 328]
 sweden s64 [14187, 14108, 12830, 12230, 11841]
 switzerland s64 [10634, 10081, 10301, 10970, 9628]
 syrian_arab_republic s64 [16800, 15519, 12198, 9937, 8373]
 taiwan s64 [73629, 73406, 70393, 71022, 72013]
 tajikistan s64 [694, 641, 800, 949, 1415]
 thailand s64 [76882, 75898, 80883, 81835, 86232]
 timorleste_formerly_east_timor s64 [64, 67, 80, 120, 128]
 togo s64 [720, 672, 678, 725, 715]
 tonga s64 [32, 28, 29, 31, 33]
 trinidad_and_tobago s64 [13072, 12799, 12386, 12692, 12619]
 tunisia s64 [7543, 7096, 7364, 7545, 7862]
 turkey s64 [81266, 87494, 89872, 88566, 94350]
 turkmenistan s64 [15623, 17035, 17691, 18199, 18659]
 turks_and_caicos_islands s64 [52, 52, 54, 54, 56]
 tuvalu s64 [2, 2, 3, 3, 3]
 uganda s64 [1069, 1163, 1110, 1328, 1426]
 ukraine s64 [83077, 78100, 80663, 74141, 61985]
 united_arab_emirates s64 [43854, 45116, 48101, 46552, 57641]
 united_kingdom s64 [134499, 122124, 127781, 124966, 114486]
 united_republic_of_tanzania s64 [1938, 2207, 2603, 3048, 3153]
 united_states_of_america s64 [1471375, 1442509, 1396083, 1406916, 1432855]
 uruguay s64 [1742, 2117, 2371, 2069, 1840]
 uzbekistan s64 [28407, 31002, 31583, 28185, 28692]
 vanuatu s64 [33, 36, 31, 29, 42]
 venezuela s64 [51560, 48220, 54204, 50156, 50510]
 viet_nam s64 [38925, 41497, 38784, 40150, 45517]
 wallis_and_futuna_islands s64 [8, 7, 7, 6, 6]
 yemen s64 [6390, 5363, 5091, 6953, 6190]
 zambia s64 [734, 801, 1000, 1079, 1228]
 zimbabwe s64 [2121, 2608, 2125, 3184, 3278]
 bonaire_saint_eustatius_and_saba s64 [nil, nil, 85, 88, 88]
 curacao s64 [nil, nil, 1636, 1422, 1604]
 republic_of_south_sudan s64 [nil, nil, 363, 395, 408]
 republic_of_sudan s64 [nil, nil, 3993, 4220, 4190]
 saint_martin_dutch_portion s64 [nil, nil, 190, 195, 200]
>

 Joins

Joining is fast and easy. You can specify the columns to join on and how to join. Polars even supports cartesian (cross) joins, so Explorer does too.
df1 = DF.select(df, ["year", "country", "total"])
df2 = DF.select(df, ["year", "country", "cement"])

DF.join(df1, df2)
#Explorer.DataFrame<
 Polars[1094 x 4]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
>
df3 = df |> DF.select(["year", "cement"]) |> DF.slice(0, 500)

DF.join(df1, df3, how: :left)
#Explorer.DataFrame<
 Polars[109138 x 4]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", ...]
 total s64 [2308, 2308, 2308, 2308, 2308, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
>

 Grouping

Explorer supports groupby operations. They're limited based on what's possible in Polars, but they do most of what you need to do.
grouped = DF.group_by(df, ["country"])
#Explorer.DataFrame<
 Polars[1094 x 10]
 Groups: ["country"]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
Notice that the Inspect call now shows groups as well as rows and columns. You can, of course, get them explicitly.
DF.groups(grouped)
["country"]
And you can ungroup explicitly.
DF.ungroup(grouped)
#Explorer.DataFrame<
 Polars[1094 x 10]
 year s64 [2010, 2010, 2010, 2010, 2010, ...]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 total s64 [2308, 1254, 32500, 141, 7924, ...]
 solid_fuel s64 [627, 117, 332, 0, 0, ...]
 liquid_fuel s64 [1601, 953, 12381, 141, 3649, ...]
 gas_fuel s64 [74, 7, 14565, 0, 374, ...]
 cement s64 [5, 177, 2598, 0, 204, ...]
 gas_flaring s64 [0, 0, 2623, 0, 3697, ...]
 per_capita f64 [0.08, 0.43, 0.9, 1.68, 0.37, ...]
 bunker_fuels s64 [9, 7, 663, 0, 321, ...]
>
But what we care about the most is aggregating! Let's see which country has the max per_capita value.
grouped
|> DF.summarise(max_per_capita: max(per_capita))
|> DF.sort_by(desc: max_per_capita)
#Explorer.DataFrame<
 Polars[222 x 2]
 country string ["QATAR", "CURACAO", "TRINIDAD AND TOBAGO", "KUWAIT", "NETHERLAND ANTILLES", ...]
 max_per_capita f64 [13.54, 10.72, 9.84, 8.16, 7.45, ...]
>
Qatar it is.
You may noticed that we are using max/1 inside the summarise macro. This is possible because we expose all functions from the Series module. You can use the following aggregations inside summarise:
	min/1 - Take the minimum value within the group. See Explorer.Series.min/1.
	max/1 - Take the maximum value within the group. See Explorer.Series.max/1.
	sum/1 - Take the sum of the series within the group. See Explorer.Series.sum/1.
	mean/1 - Take the mean of the series within the group. See Explorer.Series.mean/1.
	median/1 - Take the median of the series within the group. See Explorer.Series.median/1.
	first/1 - Take the first value within the group. See Explorer.Series.first/1.
	last/1 - Take the last value within the group. See Explorer.Series.last/1.
	count/1 - Count the number of rows per group.
	n_unique/1 - Count the number of unique rows per group.

The API is similar to mutate: you can use keyword args or a map and specify aggregations to use.
DF.summarise(grouped, min_per_capita: min(per_capita), min_total: min(total))
#Explorer.DataFrame<
 Polars[222 x 3]
 country string ["AFGHANISTAN", "ALBANIA", "ALGERIA", "ANDORRA", "ANGOLA", ...]
 min_per_capita f64 [0.08, 0.43, 0.9, 1.63, 0.37, ...]
 min_total s64 [2308, 1254, 32500, 126, 7924, ...]
>
Speaking of mutate, it's 'group-aware'. As are sort_by, distinct, and n_rows.
DF.mutate(grouped, total_window_sum: window_sum(total, 3), rows_in_group: count(country))
#Explorer.DataFrame<
 Polars[1094 x 12]
 Groups: ["country"]
 year s64 [2010, 2011, 2012, 2013, 2014, ...]
 country string ["AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", "AFGHANISTAN", ...]
 total s64 [2308, 3338, 2933, 2731, 2675, ...]
 solid_fuel s64 [627, 1174, 1000, 1075, 1194, ...]
 liquid_fuel s64 [1601, 2075, 1844, 1568, 1393, ...]
 gas_fuel s64 [74, 84, 84, 81, 74, ...]
 cement s64 [5, 5, 5, 7, 14, ...]
 gas_flaring s64 [0, 0, 0, 0, 0, ...]
 per_capita f64 [0.08, 0.12, 0.1, 0.09, 0.08, ...]
 bunker_fuels s64 [9, 9, 9, 9, 9, ...]
 total_window_sum s64 [2308, 5646, 8579, 9002, 8339, ...]
 rows_in_group u32 [5, 5, 5, 5, 5, ...]
>
It's also possible to use aggregations inside other functions:
grouped
|> DF.summarise(greater_than_9: greater(max(per_capita), 9.0), per_capita_max: max(per_capita))
|> DataFrame.sort_by(desc: per_capita_max)
#Explorer.DataFrame<
 Polars[222 x 3]
 country string ["QATAR", "CURACAO", "TRINIDAD AND TOBAGO", "KUWAIT", "NETHERLAND ANTILLES", ...]
 greater_than_9 boolean [true, true, true, false, false, ...]
 per_capita_max f64 [13.54, 10.72, 9.84, 8.16, 7.45, ...]
>

 That's it!

And not. This is certainly not exhaustive, but I hope it gives you a good idea of what can be done and what the 'flavour' of the API is like. I'd love contributions and issues raised where you find them!

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 Unreleased

 v0.9.1 - 2024-08-15

 Added

	Add support for saving to the cloud using streaming and the IPC format.
This will enable saving a lazy frame to the cloud without loading it
entirely in memory. It only supports saves to S3-compatible storage services.

 Changed

	Force garbage collection on remote gc.

 Fixed

	Re-enable support for saving to the cloud using streaming and the Parquet format.
It's a fix from the release of v0.9.0 that disabled this feature.

	Fix overwrite of dtypes for Explorer.DataFrame.load_csv/2.
This was a regression introduced in v0.9.0.

 v0.9.0 - 2024-07-26

 Added

	Add initial support for SQL queries.
The Explorer.DataFrame.sql/3 is a function that accepts a dataframe and
a SQL query. The SQL is not validated by Explorer, so the queries will be
backend dependent. Right now we have only Polars as the backend.

	Add support for remote series and dataframes.
Automatically transfer data between nodes for remote series
and dataframes and perform distributed garbage collection.
The functions in Explorer.DataFrame and Explorer.Series
will automatically move operations on remote dataframes to
the nodes they belong to. The Explorer.Remote module provides
additional conveniences for manual placement.

	Add FLAME integration, so we automatically track remote series and
dataframes returned from FLAME calls when the :track_resources
option is enabled.
See FLAME for more.

	Add Explorer.DataFrame.transform/3 that applies an Elixir function to
each row. This function is similar to Explorer.Series.transform/2, and
as such, it's considered an expensive operation. So it's recommended only if
there is no similar dataframe or series operation available.

	Improve performance of Explorer.Series.from_list/2 for most of the cases
where the :dtype option is given. This is specially true for when the
dtype is :binary.

 Changed

	Stop inference of dtypes if the :dtype option is given by the user.
The main goal of this change is to improve performance. We are now delegating
the job of decoding the terms as the given :dtype to the backend.

	Explorer.Series.pow/2 no longer casts to float when the exponent is a signed
integer. We are following the way Polars works now, which is to try to execute
the operation or raise an exception in case the exponent is negative.

	Explorer.Series.pivot_wider/4 no longer includes the names_from column
name in the new columns when values_from is a list of columns. This is more
consistent with its behaviour when values_from is a single column.

	Explorer.Series.substring/3 no longer cycles to the end of the string if the
negative offset surpasses the beginning of that string. In that case, an empty
string is returned.

	The Explorer.Series.ewm_* functions no longer replace nil values with the
value at the previous index. They now propogate nil values through to the
result series.

	Saving a dataframe as a Parquet file to S3 services no longer works when
streaming is enabled. This is temporary due to a bug in Polars. An exception
should be raised instead.

 v0.8.3 - 2024-06-10

 Added

	Add new data type for datetimes with timezones: {:datetime, precision, time_zone}
The old dtype is now {:naive_datetime, precision}.

	Add option to rechunk the dataframes when using Explorer.DataFrame.from_parquet/3

 Changed

	Change the {:datetime, precision} dtype to {:naive_datetime, precision}.
The idea is to mirror Elixir's datetime, and introduce support for time zones.
Please note: {:datetime, precision} will work as an alias for {:naive_datetime, precision} for now but will raise a warning.
The alias will be removed in a future release.

	Literal %NaiveDateTime{} structs used in expressions will now have :microsecond precision.
Previously they defaulted to :nanosecond precision.
This was incorrect because %NaiveDateTime{} structs only have :microsecond precision.

 Fixed

	Fix regression in Explorer.DataFrame.concat_rows/2.
It's possible to concat dataframes that are not aligned again.

	Fix "is_finite" and "is_infinite" from Series to work in the context of a Explorer.Query.

 v0.8.2 - 2024-04-22

 Added

	Add functions to work with strings and regexes.
Some of the functions have the prefix "re_", because they accept a string that
represents a regular expression.
There is an important detail: we do not accept Elixir regexes, because we cannot
guarantee that the backend supports it. Instead we accept a plain string that
is "escaped". This means that you can use the ~S sigil to build that string.
Example: ~S/(a|b)/.
The added functions are the following:
	Explorer.Series.split_into/3 - split a string series into a struct
of string fields. This function accepts a string as a separator.

	Explorer.Series.re_contains/2 - check is the string series matches the regex
pattern. Like the "non regex" counterpart, it returns a boolean series.

	Explorer.Series.re_replace/3 - replaces all occurences of a pattern with
replacement in string series. The replacement can refer to groups captures
by using the ${x}, where x is the group index (starts with 1) or name.

	Explorer.Series.count_matches/2 - count how many times a substring appears
in a string series.

	Explorer.Series.re_count_matches/2 - count how many times a pattern matches
in a string series.

	Explorer.Series.re_scan/2 - scan for all matches for the given regex pattern.
This is going to result in a series of lists of strings - {:list, :string}.

	Explorer.Series.re_named_captures/2 - extract all capture groups as a struct
for the given regex pattern. In case the groups are not named, their positions
are used as names.

	Enable the usage of system certificates if OTP version 25 or above.

	Add support for the :streaming option in Explorer.DataFrame.to_csv/3.

	Support operations with groups in the Lazy Polars backend. This change makes
the lazy frame implementation more useful, by supporting the usage of groups in
following functions:
	Explorer.DataFrame.slice/3

	Explorer.DataFrame.head/2

	Explorer.DataFrame.tail/2

	Explorer.DataFrame.filter_with/2 and the macro version of it, filter/2.

	Explorer.DataFrame.sort_with/3, although it ignores "maintain order"
and "nulls last" options when used with groups.

	Explorer.DataFrame.mutate_with/2 and its macro version, mutate/2.

 Changed

	We now avoid raising an exception if a non existent column is used in
Explorer.DataFrame.discard/2.

	Make the dependency of cacerts optional. This is because people using
Erlang/OTP 25 or above can use the certificates provided by the system.
So you may need to add the dependency of cacerts if your OTP version
is older than that.

	Some precision differences in float operations may appear. This is due to
an update in the Polars version to "v0.38.1". Polars is our default backend.

 Fixed

	Fix Explorer.Series.split/2 inside the context of Explorer.Query.

	Add optional X-Amz-Security-Token header to S3 request. This is needed
in case the user is passing down a token for authentication.

	Fix Explorer.DataFrame.sort_by/3 with groups to respect :nils option.
This is considering only the eager implementation.

	Fix inspection of lazy frames in remote nodes.

 v0.8.1 - 2024-02-24

 Added

	Add Explorer.Series.field/2 to extract a field from a struct series.
It returns a new series with the field's dtype.

	Add Explorer.Series.json_decode/2 that can decode a string series containing
valid JSON objects according to dtype.

	Add eager count/1 and lazy size/1 to Explorer.Series.

	Add support for maps as expressions inside Explorer.Query. They are "converted"
to structs.

	Add json_path_match/2 to extract a string series from a string containing valid
JSON objects. See the article JSONPath - XPath for JSON
for details about JSON paths.

	Add Explorer.Series.row_index/1 to retrieve the index of rows starting from 0.

	Add support for passing the :on column directly (instead of inside a list)
in Explorer.DataFrame.join/3.

 Changed

	Remove some deprecated functions from documentation.

	Change internal representation of the :struct dtype to use list of tuples instead of a map
to represent the dtypes of each field. This shouldn't break because we normalise maps to lists
when a struct dtype is passed in from_list/2 or cast/2.

	Update Rustler minimum version to ~> 0.31. Since Rustler is optional, this shouldn't affect
most of the users.

 Fixed

	Fix float overflow error to avoid crashing the VM, and instead it returns an argument error.

	Fix Explorer.DataFrame.print/2 for when the DF contains structs.

 v0.8.0 - 2024-01-20

 Added

	Add explode/2 to Explorer.DataFrame. This function is useful to expand
the contents of a {:list, inner_dtype} series into a "inner_dtype" series.

	Add the new series functions all?/1 and any?/1, to work with boolean series.

	Add support for the "struct" dtype. This new dtype represents the struct
dtype from Polars/Arrow.

	Add map/2 and map_with/2 to the Explorer.Series module.
This change enables the usage of the Explore.Query features in a series.

	Add sort_by/2 and sort_with/2 to the Explorer.Series module.
This change enables the usage of the lazy computations and the Explorer.Query
module.

	Add unnest/2 to Explorer.DataFrame. It works by taking the fields of a "struct" -
the new dtype - and transform them into columns.

	Add pairwise correlation - Explorer.DataFrame.correlation/2 - to calculate the
correlation between numeric columns inside a data frame.

	Add pairwise covariance - Explorer.DataFrame.covariance/2 - to calculate the
covariance between numeric columns inside a data frame.

	Add support for more integer dtypes. This change introduces new signed and
unsigned integer dtypes:
	{:s, 8}, {:s, 16}, {:s, 32}
	{:u, 8}, {:u, 16}, {:u, 32}, {:u, 64}.

The existing :integer dtype is now represented as {:s, 64}, and it's still
the default dtype for integers. But series and data frames can now work with the
new dtypes. Short names for these new dtypes can be used in functions like
Explorer.Series.from_list/2. For example, {:u, 32} can be represented with
the atom :u32.
This may bring more interoperability with Nx, and with Arrow related things, like
ADBC and Parquet.

	Add ewm_standard_deviation/2 and ewm_variance/2 to Explorer.Series.
They calculate the "exponentially weighted moving" variance and standard deviation.

	Add support for :skip_rows_after_header option for the CSV reader functions.

	Support {:list, numeric_dtype} for Explorer.Series.frequencies/1.

	Support pins in cond, inside the context of Explorer.Query.

	Introduce the :null dtype. This is a special dtype from Polars and Apache Arrow
to represent "all null" series.

	Add Explorer.DataFrame.transpose/2 to transpose a data frame.

 Changed

	Rename the functions related to sorting/arranging of the Explorer.DataFrame.
Now arrange_with is named sort_with, and arrange is sort_by.
The sort_by/3 is a macro and it is going to work using the Explorer.Query
module. On the other side, the sort_with/2 uses a callback function.

	Remove unnecessary casts to {:s, 64} now that we support more integer dtypes.
It affects some functions, like the following in the Explorer.Series module:
	argsort
	count
	rank
	day_of_week, day_of_year, week_of_year, month, year, hour, minute, second
	abs
	clip
	lengths
	slice
	n_distinct
	frequencies

And also some functions from the Explorer.DataFrame module:
	mutate - mostly because of series changes
	summarise - mostly because of series changes
	slice

 Fixed

	Fix inspection of series and data frames between nodes.

	Fix cast of :string series to {:datetime, any()}

	Fix mismatched types in Explorer.Series.pow/2, making it more consistent.

	Normalize sorting options.

	Fix functions with dtype mismatching the result from Polars.
This fix is affecting the following functions:
	quantile/2 in the context of a lazy series
	mode/1 inside a summarisation
	strftime/2 in the context of a lazy series
	mutate_with/2 when creating a column from a NaiveDateTime or Explorer.Duration.

 v0.7.2 - 2023-11-30

 Added

	Add the functions day_of_year/1 and week_of_year/1 to Explorer.Series.

	Add filter/2 - a macro -, and filter_with/2 to Explorer.Series.
This change enables the usage of queries - using Explorer.Query - when
filtering a series. The main difference is that series does not have a
name when used outside a dataframe. So to refer to itself inside the
query, we can use the special _ variable.
 iex> s = Explorer.Series.from_list([1, 2, 3])
 iex> Explorer.Series.filter(s, _ > 2)
 #Explorer.Series<
 Polars[1]
 integer [3]
 >

	Add support for the {:list, any()} dtype, where any() can be any other
valid dtype. This is a recursive dtype, that can represent nested lists.
It's useful to group data together in the same series.

	Add Explorer.Series.mode/2 to get the most common value(s) of the series.

	Add split/2 and join/2 to the Explorer.Series module.
These functions are useful to split string series into {:list, :string},
or to join parts of a {:list, :string} and return a :string series.

	Expose ddof option for variance, covariance and standard deviation.

	Add a new {:f, 32} dtype to represent 32 bits float series.
It's also possible to use the atom :f32 to create this type of series.
The atom :f64 can be used as an alias for {:f, 64}, just like the
:float atom.

	Add lengths/1 and member?/2 to Explorer.Series.
These functions work with {:list, any()}, where any() is any valid dtype.
The idea is to count the members of a "list" series, and check if a given
value is member of a list series, respectively.

	Add support for streaming parquet files from a lazy dataframe to AWS S3
compatible services.

 Changed

	Remove restriction on pivot_wider dtypes.
In the early days, Polars only supported numeric dtypes for the "first"
aggregation. This is not true anymore, and we can lift this restriction.

	Change :float dtype to be represented as {:f, 64}. It's still possible
to use the atom :float to create float series, but now Explorer.Series.dtype/1
returns {:f, 64} for float 64 bits series.

 Fixed

	Add missing implementation of Explorer.Series.replace/3 for lazy series.

	Fix inspection of DFs and series when limit: :infinity is used.

 Removed

	Drop support for the riscv64gc-unknown-linux-gnu target.
We decided to stop precompiling to this target because it's been hard to maintain it.
Ideally we should support it again in the future.

 v0.7.1 - 2023-09-25

 Added

	Add more temporal arithmetic operations. This change makes possible
to mix some datatypes, like date, duration and scalar types like
integers and floats.
The following operations are possible now:
	date - date
	date + duration
	date - duration
	duration + date
	duration * integer
	duration * float
	duration / integer
	duration / float
	integer * duration
	float * duration

	Support lazy dataframes on Explorer.DataFrame.print/2.

	Add support for strings as the "indexes" of Explorer.Series.categorise/2.
This makes possible to categorise a string series with a categories series.

	Introduce cond/1 support in queries, which enables multi-clause conditions.
Example of usage:
 iex> df = DF.new(a: [10, 4, 6])
 iex> DF.mutate(df,
 ...> b:
 ...> cond do
 ...> a > 9 -> "Exceptional"
 ...> a > 5 -> "Passed"
 ...> true -> "Failed"
 ...> end
 ...>)
 #Explorer.DataFrame<
 Polars[3 x 2]
 a integer [10, 4, 6]
 b string ["Exceptional", "Failed", "Passed"]
 >

	Similar to cond/1, this version also introduces support for the if/2
and unless/2 macros inside queries.

	Allow the usage of scalar booleans inside queries.

	Add Explorer.Series.replace/3 for string series.
This enables the replacement of patterns inside string series.

 Deprecated

	Deprecate Explorer.DataFrame.to_lazy/1 in favor of just lazy/1.

 Fixed

	Fix the Explorer.Series.in/2 function to work with series of the
:category dtype.
Now, if both series shares the same categories, we can compare them.
To make sure that a categorical series shares the same categories from
another series, you must create that series using the
Explorer.Series.categorise/2 function.

	Display the dtype of duration series correctly in Explorer.DataFrame.print/2.

 v0.7.0 - 2023-08-28

 Added

	Enable reads and writes of dataframes from/to external file systems.
It supports HTTP(s) URLs or AWS S3 locations.
This feature introduces the FSS abstraction,
which is also going to be present in newer versions of Kino. This is going to make the integration
of Livebook files with Explorer much easier.
The implementation is done differently, depending on which file format is used, and if
it's a read or write. All the writes to AWS S3 are done in the Rust side - using an abstraction
called CloudWriter -, and most of the readers are implemented in Elixir, by doing a download
of the files, and then loading the dataframe from it. The only exception is the reads of
parquet files, which are done in Rust, using Polars' scan_parquet with streaming.
We want to give a special thanks to Qqwy / Marten for the
CloudWriter implementation!

	Add ADBC: Arrow Database Connectivity.
Continuing with improvements in the IO area, we added support for reading dataframes from
databases using ADBC, which is similar in idea to ODBC, but integrates much better with
Apache Arrow, that is the backbone of Polars - our backend today.
The function Explorer.DataFrame.from_query/1 is the entrypoint for this feature, and it
allows quering databases like PostgreSQL, SQLite and Snowflake.
Check the Elixir ADBC bindings docs for more information.
For the this feature, we had a fundamental contribution from Cocoa
in the ADBC bindings, so we want to say a special thanks to her!
We want to thank the people that joined José in his live streamings on Twitch,
and helped to build this feature!

	Add the following functions to Explorer.Series:
	window_median/3
	substring/3

	Add duration dtypes. This is adds the following dtypes:
	{:duration, :nanosecond}
	{:duration, :microsecond}
	{:duration, :millisecond}

This feature was a great contribution from Billy Lanchantin,
and we want to thank him for this!

 Changed

	Return exception structs instead of strings for all IO operation errors, and for anything
that returns an error from the NIF integration.
This change makes easier to define which type of error we want to raise.

	Update Polars to v0.32.
With that we made some minor API changes, like changing some options for cut/qcut operations
in the Explorer.Series module.

	Use nil_values instead of null_character for IO operations.

	Never expect nil for CSV IO dtypes.

	Rename Explorer.DataFrame.table/2 to Explorer.DataFrame.print/2.

	Change :datetime dtype to be {:datetime, time_unit}, where time unit can be
the following:
	:millisecond
	:microsecond
	:nanosecond

	Rename the following Series functions:
	trim/1 to strip/2
	trim_leading/1 to lstrip/2
	trim_trailing/1 to rstrip/2

These functions now support a string argument.

 Fixed

	Fix warnings for the upcoming Elixir v1.16.

	Fix Explorer.Series.abs/1 type specs.

	Allow comparison of strings with categories.

	Fix Explorer.Series.is_nan/1 inside the context of Explorer.Query.
The NIF function was not being exported.

 v0.6.1 - 2023-07-06

 Fixed

	Fix summarise without groups for lazy frames.

 v0.6.0 - 2023-07-05

 Added

	Add support for OTP 26 and Elixir 1.15.

	Allow Explorer.DataFrame.summarise/2 to work without groups.
The aggregations can work considering the entire dataframe.

	Add the following series functions: product/1, cummulative_product/1, abs/1,
skew/2, window_standard_deviation/3, rank/2, year/1, mounth/1, day/1,
hour/1, minute/1, second/1, strptime/2, strftime/2, argmin/1, argmax/1,
cut/3, qcut/3, correlation/3, covariance/2 and clip/3.
They cover a lot in terms of functionality, so please check the Explorer.Series
docs for further details.

	Add Explorer.DataFrame.nil_count/1 that counts the number of nil elements in each
column.

	Add Explorer.DataFrame.frequencies/2 that creates a new dataframe with unique rows
and the frequencies of each.

	Add Explorer.DataFrame.relocate/3 that enables changing order of columns from a df.

	Add precompiled NIFs for FreeBSD.

	Support scalar values in the on_true and on_false arguments of Explore.Series.select/3.

 Fixed

	Fix Series.day_of_week/1 and Series.round/2 for operations using a lazy frame.

	Fix upcasted date to datetime for literal expressions. It allows to use scalar dates
in expressions like this: DF.mutate(a: ~D[2023-01-01]). This also fixes the support
for naive datetimes.

	Improve error messages returned from the NIF to be always strings. Now we add more
context to the string returned, instead of having {:context, error_message}.

	Fix the :infer_schema_length option of Explorer.DataFrame.from_csv/2 when passing nil.
Now it's possible to take into account the entire file to infer the schema.

 Deprecated

	Deprecate Explorer.Series.to_date/1 and Explorer.Series.to_time/1 in favor of
using Explorer.Series.cast(s, :date) and Explorer.Series.cast(s, :time) respectively.

 v0.5.7 - 2023-05-10

 Added

	Allow Explorer.Series.select/3 to receive series of size 1 in both sides.

	Add trigonometric functions sin/1, cos/1, tan/1, asin/1, acos/1 and
atan/1 to Explorer.Series.

	Add Explorer.DataFrame.to_rows_stream/2 function. This is useful to traverse
dataframes with large series, but is not recommended since it can be an expensive
operation.

	Add LazyFrame version of Explorer.DataFrame.to_ipc/3.

	Add options to control streaming when writing lazy dataframes. Now users can
toggle streaming for the to_ipc/3 and to_parquet/3 functions.

	Add Explorer.DataFrame.from_ipc_stream/2 lazy, but using the eager implementation
underneath.

	Add option to control the end of line (EOF) char when reading CSV files.
We call this new option :eol_delimiter, and it's available for the from_csv/2
and load_csv/2 functions in the Explorer.DataFrame module.

	Allow Explorer.DataFrame.pivot_wider/4 to use category fields.

 Fixed

	Fix nif_not_loaded error when Explorer.Series.ewm_mean/2 is called from query.

	Type check arguments for boolean series operations, only allowing series of
the boolean dtype.

	Do not use ../0 in order to keep compatible with Elixir 1.13

 Removed

	Temporarely remove support for ARM 32 bits computers in the precompilation
workflow.

 v0.5.6 - 2023-03-24

 Added

	Add the following functions to the Explorer.Series module: log/1, log/2
and exp/1. They compute the logarithm and exponential of a series.

 Fixed

	Allow Explorer.Series.select/3 to receive series of size 1 for both the
on_true and on_false arguments.

	Fix the encoding of special float values that may return from some series
functions. This is going to encode the atoms for NaN and infinity values.

 v0.5.5 - 2023-03-13

 Added

	Add support for multiple value columns in pivot wider.
The resultant dataframe that is created from this type of pivoting is going
to have columns with the names prefixed by the original value column, followed
by an underscore and the name of the variable.

	Add Explorer.Series.ewm_mean/2 for calculating exponentially weighted moving
average.

 Changed

	Change the Explorer.Backend.DataFrame's pivot_wider callback to work with
multiple columns instead of only one.

	Change the Explorer.Backend.DataFrame's window_* callbacks to work with
variables instead of keyword args. This is needed to make explicit when a backend
is not implementing an option.

	Change the Explorer.Backend.DataFrame's describe callback and remove the
need for an "out df", since we won't have a lazy version of that funcion.

	This shouldn't affect the API, but we had an update in Polars.
It is now using v0.27.2. For further details, see:
Rust Polars 0.27.0.

 Fixed

	Provide hints when converting string/binary series to tensors.

	Add libatomic as a link to the generated NIF. This is needed to fix the load
of the Explorer NIF when running on ARM 32 bits machines like the Pi 3.
See the original issue

 v0.5.4 - 2023-03-09

 Fixed

	Fix missing "README.md" file in the list of package files.
Our readme is now required in compilation, because it contains the moduledoc for
the main Explorer module.

 v0.5.3 - 2023-03-08

 Added

	Add the Explorer.Series.format/1 function that concatenates multiple series together,
always returning a string series.

	With the addition of format/1, we also have a new operator for string concatenation
inside Explorer.Query. It is the <> operator, that is similar to what the Kernel.<>/2
operator does, but instead of concatenating strings, it concatenates two series, returning
a string series - it is using format/1 underneath.

	Add support for slicing by series in dataframes and other series.

	Add support for 2D tensors in Explorer.DataFrame.new/2.

 Fixed

	Fix Explorer.DataFrame.new/2 to respect the selected dtype when an entire series is nil.

	Improve error message for mismatched dtypes in series operations.

	Fix lazy series operations of binary series and binary values. This is going to wrap binary
values in the correct dtype, in order to pass down to Polars.

	Fix two bugs in Explorer.DataFrame.pivot_wider/3: nil values in the series that is
used for new column names is now correctly creating a nil column. We also fixed the problem
of a duplicated column created after pivoting, and possibly conflicting with an existing
ID column. We add a suffix for these columns.

 v0.5.2 - 2023-02-28

 Added

	Add across and comprehensions to Explorer.Query. These features allow a
more flexible and elegant way to work with multiple columns at once. Example:
iris = Explorer.Datasets.iris()
Explorer.DataFrame.mutate(iris,
 for col <- across(["sepal_width", "sepal_length", "petal_length", "petal_width"]) do
 {col.name, (col - mean(col)) / variance(col)}
 end
)
See the Explorer.Query documentation for further details.

	Add support for regexes to select columns of a dataframe. Example:
df = Explorer.Datasets.wine()
df[~r/(class|hue)/]

	Add the :max_rows and :columns options to Explorer.DataFrame.from_parquet/2. This mirrors
the from_csv/2 function.

	Allow Explorer.Series functions that accept floats to work with :nan, :infinity
and :neg_infinity values.

	Add Explorer.DataFrame.shuffle/2 and Explorer.Series.shuffle/2.

	Add support for a list of filters in Explorer.DataFrame.filter/2. These filters are
joined as and expressions.

 Fixed

	Add is_integer/1 guard to Explorer.Series.shift/2.
	Raise if series sizes do not match for binary operations.

 Changed

	Rename the option :replacement to :replace for Explorer.DataFrame.sample/3 and
Explorer.Series.sample/3.

	Change the default behaviour of sampling to not shuffle by default. A new option
named :shuffle was added to control that.

 v0.5.1 - 2023-02-17

 Added

	Add boolean dtype to Series.in/2.

	Add binary dtype to Series.in/2.

	Add Series.day_of_week/1.

	Allow Series.fill_missing/2 to:
	receive :infinity and :neg_infinity values.
	receive date and datetime values.
	receive binary values.

	Add support for time dtype.

	Add version of Series.pow/2 that accepts series on both sides.

	Allow Series.from_list/2 to receive :nan, :infinity and :neg_infinity atoms.

	Add Series.to_date/1 and Series.to_time/1 for datetime series.

	Allow casting of string series to category.

	Accept tensors when creating a new dataframe.

	Add compatibility with Nx v0.5.

	Add support for Nx's serialize and deserialize.

	Add the following function implementations for the Polars' Lazy dataframe backend:
	arrange_with
	concat_columns
	concat_rows
	distinct
	drop_nil
	filter_with
	join
	mutate_with
	pivot_longer
	rename
	summarise_with
	to_parquet

Only summarise_with supports groups for this version.

 Changed

	Require version of Rustler to be ~> 0.27.0, which mirrors the NIF requirement.

 Fixed

	Casting to an unknown dtype returns a better error message.

 v0.5.0 - 2023-01-12

 Added

	Add DataFrame.describe/2 to gather some statistics from a dataframe.

	Add Series.nil_count/1 to count nil values.

	Add Series.in/2 to check if a given value is inside a series.

	Add Series float predicates: is_finite/1, is_infinite/1 and is_nan/1.

	Add Series string functions: contains/2, trim/1, trim_leading/1, trim_trailing/1,
upcase/1 and downcase/1.

	Enable slicing of lazy frames (LazyFrame).

	Add IO operations "from/load" to the lazy frame implementation.

	Add support for the :lazy option in the DataFrame.new/2 function.

	Add Series float rounding methods: round/2, floor/1 and ceil/1.

	Add support for precompiling to Linux running on RISCV CPUs.

	Add support for precompiling to Linux - with musl - running on AARCH64 computers.

	Allow DataFrame.new/1 to receive the :dtypes option.

	Accept :nan as an option for Series.fill_missing/2 with float series.

	Add basic support for the categorical dtype - the :category dtype.

	Add Series.categories/1 to return categories from a categorical series.

	Add Series.categorise/2 to categorise a series of integers using predefined categories.

	Add Series.replace/2 to replace the contents of a series.

	Support selecting columns with unusual names (like with spaces) inside Explorer.Query
with col/1.
The usage is like this:
Explorer.DataFrame.filter(df, col("my col") > 42)

 Fixed

	Fix DataFrame.mutate/2 using a boolean scalar value.
	Stop leaking UInt32 series to Elixir.
	Cast numeric columns to our supported dtypes after IO read.
This fix is only applied for the eager implementation for now.

 Changed

	Rename Series.bintype/1 to Series.iotype/1.

 v0.4.0 - 2022-11-29

 Added

	Add Series.quotient/2 and Series.remainder/2 to work with integer division.

	Add Series.iotype/1 to return the underlying representation type.

	Allow series on both sides of binary operations, like: add(series, 1)
and add(1, series).

	Allow comparison, concat and coalesce operations on "(series, lazy series)".

	Add lazy version of Series.sample/3 and Series.size/1.

	Add support for Arrow IPC Stream files.

	Add Explorer.Query and the macros that allow a simplified query API.
This is a huge improvement to some of the main functions, and allow refering to
columns as they were variables.
Before this change we would need to write a filter like this:
Explorer.DataFrame.filter_with(df, &Explorer.Series.greater(&1["col1"], 42))
But now it's also possible to write this operation like this:
Explorer.DataFrame.filter(df, col1 > 42)
This operation is going to use filter_with/2 underneath, which means that
is going to use lazy series and compute the results at once.
Notice that is mandatory to "require" the DataFrame module, since these operations
are implemented as macros.
The following new macros were added:
	filter/2
	mutate/2
	summarise/2
	arrange/2

They substitute older versions that did not accept the new query syntax.

	Add DataFrame.put/3 to enable adding or replacing columns in a eager manner.
This works similar to the previous version of mutate/2.

	Add Series.select/3 operation that enables selecting a value
from two series based on a predicate.

	Add "dump" and "load" functions to IO operations. They are useful to load
or dump dataframes from/to memory.

	Add Series.to_iovec/2 and Series.to_binary/1. They return the underlying
representation of series as binary. The first one returns a list of binaries,
possibly with one element if the series is contiguous in memory. The second one
returns a single binary representing the series.

	Add Series.shift/2 that shifts the series by an offset with nil values.

	Rename Series.fetch!/2 and Series.take_every/2 to Series.at/2
and Series.at_every/2.

	Add DataFrame.discard/2 to drop columns. This is the opposite of select/2.

	Implement Nx.LazyContainer for Explorer.DataFrame and Explorer.Series
so data can be passed into Nx.

	Add Series.not/1 that negates values in a boolean series.

	Add the :binary dtype for Series. This enables the usage of arbitrary binaries.

 Changed

	Change DataFrame's to_* functions to return only :ok.
	Change series inspect to resamble the dataframe inspect with the backend name.
	Rename Series.var/1 to Series.variance/1
	Rename Series.std/1 to Series.standard_deviation/1
	Rename Series.count/2 to Series.frequencies/1 and add a new Series.count/1
that returns the size of an "eager" series, or the count of members in a group
for a lazy series.
In case there is no groups, it calculates the size of the dataframe.
	Change the option to control direction in Series.sort/2 and Series.argsort/2.
Instead of a boolean, now we have a new option called :direction that accepts
:asc or :desc.

 Fixed

	Fix the following DataFrame functions to work with groups:	filter_with/2
	head/2
	tail/2
	slice/2
	slice/3
	pivot_longer/3
	pivot_wider/4
	concat_rows/1
	concat_columns/1

	Improve the documentation of functions that behave differently with groups.
	Fix arrange_with/2 to use "group by" stable, making results more predictable.
	Add nil as a possible return value of aggregations.
	Fix the behaviour of Series.sort/2 and Series.argsort/2 to add nils at the
front when direction is descending, or at the back when the direction is ascending.
This also adds an option to control this behaviour.

 Removed

	Remove support for NDJSON read and write for ARM 32 bits targets.
This is due to a limitation of a dependency of Polars.

 v0.3.1 - 2022-09-09

 Fixed

	Define multiply inside *_with operations.
	Fix column types in several operations, such as n_distinct.

 v0.3.0 - 2022-09-01

 Added

	Add DataFrame.concat_columns/1 and DataFrame.concat_columns/2 for horizontally stacking
dataframes.

	Add compression as an option to write parquet files.

	Add count metadata to DataFrame table reader.

	Add DataFrame.filter_with/2, DataFrame.summarise_with/2, DataFrame.mutate_with/2 and
DataFrame.arrange_with/2. They all accept a DataFrame and a function, and they all work with
a new concept called "lazy series".
Lazy Series is an opaque representation of a series that can be
used to perform complex operations without pulling data from the series. This is faster than
using masks. There is no big difference from the API perspective compared to the functions that were
accepting callbacks before (eg. filter/2 and the new filter_with/2), with the exception being
DataFrame.summarise_with/2 that now accepts a lot more operations.

 Changed

	Bump version requirement of the table dependency to ~> 0.1.2, and raise for non-tabular values.
	Normalize how columns are handled. This changes some functions to accept one column or
a list of columns, ranges, indexes and callbacks selecting columns.
	Rename DataFrame.filter/2 to DataFrame.mask/2.
	Rename Series.filter/2 to Series.mask/2.
	Rename take/2 from both Series and DataFrame to slice/2. slice/2 now they accept ranges as well.
	Raise an error if DataFrame.pivot_wider/4 has float columns as IDs. This is because we can´t
properly compare floats.
	Change DataFrame.distinct/2 to accept columns as argument instead of receiving it as option.

 Fixed

	Ensure that we can compare boolean series in functions like Series.equal/2.
	Fix rename of columns after summarise.
	Fix inspect of float series containing NaN or Infinity values. They are represented as atoms.

 Deprecated

	Deprecate DataFrame.filter/2 with a callback in favor of DataFrame.filter_with/2.

 v0.2.0 - 2022-06-22

 Added

	Consistently support ranges throughout the columns API
	Support negative indexes throughout the columns API
	Integrate with the table package
	Add Series.to_enum/1 for lazily traversing the series
	Add Series.coalesce/1 and Series.coalesce/2 for finding the first non-null value in a list of series

 Changed

	Series.length/1 is now Series.size/1 in keeping with Elixir idioms
	Nx is now an optional dependency
	Minimum Elixir version is now 1.13
	DataFrame.to_map/2 is now DataFrame.to_columns/2 and DataFrame.to_series/2
	Rustler is now an optional dependency
	read_ and write_ IO functions are now from_ and to_
	to_binary is now dump_csv
	Now uses polars's "simd" feature
	Now uses polars's "performant" feature
	Explorer.default_backend/0 is now Explorer.Backend.get/0
	Explorer.default_backend/1 is now Explorer.Backend.put/1
	Series.cum_* functions are now Series.cumulative_* to mirror Nx
	Series.rolling_* functions are now Series.window_* to mirror Nx
	reverse? is now an option instead of an argument in Series.cumulative_* functions
	DataFrame.from_columns/2 and DataFrame.from_rows/2 is now DataFrame.new/2
	Rename "col" to "column" throughout the API
	Remove "with_" prefix in options throughout the API
	DataFrame.table/2 accepts options with :limit instead of single integer
	rename/2 no longer accepts a function, use rename_with/2 instead
	rename_with/3 now expects the function as the last argument

 Fixed

	Explorer now works on Linux with musl

 v0.1.1 - 2022-04-27

 Security

	Updated Rust dependencies to address Dependabot security alerts: 1, 2, 3

 v0.1.0 - 2022-04-26

First release.

Explorer

Explorer brings series (one-dimensional) and dataframes (two-dimensional) for fast
data exploration to Elixir.

 Features and design

Explorer high-level features are:
	Simply typed series: :binary, :boolean, :category, :date, :datetime,
:duration, floats of 32 and 64 bits ({:f, size}), integers of 8, 16, 32
and 64 bits ({:s, size}, {:u, size}), :null, :string, :time, :list,
and :struct.

	A powerful but constrained and opinionated API, so you spend less time looking
for the right function and more time doing data manipulation.

	Support for CSV, Parquet, NDJSON, and Arrow IPC formats

	Integration with external databases via ADBC
and direct connection to file storages such as S3

	Pluggable backends, providing a uniform API whether you're working in-memory
or (forthcoming) on remote databases or even Spark dataframes.

	The first (and default) backend is based on NIF bindings to the blazing-fast
polars library.

The API is heavily influenced by Tidy Data
and borrows much of its design from dplyr. The philosophy
is heavily influenced by this passage from dplyr's documentation:
	By constraining your options, it helps you think about your data manipulation
challenges.

	It provides simple “verbs”, functions that correspond to the most common data
manipulation tasks, to help you translate your thoughts into code.

	It uses efficient backends, so you spend less time waiting for the computer.

The aim here isn't to have the fastest dataframe library around (though it certainly
helps that we're building on Polars, one of the fastest).
Instead, we're aiming to bridge the best of many worlds:
	the elegance of dplyr
	the speed of polars
	the joy of Elixir

That means you can expect the guiding principles to be 'Elixir-ish'. For example,
you won't see the underlying data mutated, even if that's the most efficient implementation.
Explorer functions will always return a new dataframe or series.

 Getting started

Inside an Elixir script or Livebook:
Mix.install([
 {:explorer, "~> 0.9.0"}
])
Or in the mix.exs file of your application:
def deps do
 [
 {:explorer, "~> 0.9.0"}
]
end
Explorer will download a precompiled version of its native code upon installation. You can force a local build by setting the environment variable EXPLORER_BUILD=1 and including :rustler as a dependency:
 {:explorer, "~> 0.9.0", system_env: %{"EXPLORER_BUILD" => "1"}},
 {:rustler, ">= 0.0.0"}
If necessary, clean up before rebuilding with mix deps.clean explorer.

 A glimpse of the API

We have two ways to represent data with Explorer:
	using a series, that is similar to a list, but is guaranteed to contain items
of one data type only - or one dtype for short. Notice that nil values are
permitted in series of any dtype.

	using a dataframe, that is just a way to represent one or more series together,
and work with them as a whole. The only restriction is that all the series shares
the same size.

A series can be created from a list:
fruits = Explorer.Series.from_list(["apple", "mango", "banana", "orange"])
Your newly created series is going to look like:
#Explorer.Series<
 Polars[4]
 string ["apple", "mango", "banana", "orange"]
>
And you can, for example, sort that series:
Explorer.Series.sort(fruits)
Resulting in the following:
#Explorer.Series<
 Polars[4]
 string ["apple", "banana", "mango", "orange"]
>

 Dataframes

Dataframes can be created in two ways:
	by reading from files or memory using the
IO functions.
This is by far the most common way to load dataframes in Explorer.
We accept Parquet, IPC, CSV, and NDJSON files.

	by using the Explorer.DataFrame.new/2 function, that is neat for small experiments.
We are going to use this function here.

You can pass either series or lists to it:
mountains = Explorer.DataFrame.new(name: ["Everest", "K2", "Aconcagua"], elevation: [8848, 8611, 6962])
Your dataframe is going to look like this:
#Explorer.DataFrame<
 Polars[3 x 2]
 name string ["Everest", "K2", "Aconcagua"]
 elevation s64 [8848, 8611, 6962]
>
It's also possible to see a dataframe like a table, using the Explorer.DataFrame.print/2
function:
Explorer.DataFrame.print(mountains)
Prints:
+---+
| Explorer DataFrame: [rows: 3, columns: 2] |
+---------------------+---------------------+
| name | elevation |
| <string> | <s64> |
+=====================+=====================+
| Everest | 8848 |
+---------------------+---------------------+
| K2 | 8611 |
+---------------------+---------------------+
| Aconcagua | 6962 |
+---------------------+---------------------+
And now I want to show you how to filter our dataframe. But first, let's require
the Explorer.DataFrame module and give a short name to it:
require Explorer.DataFrame, as: DF
The "require" is needed to load the macro features of that module.
We give it a shorter name to simplify our examples.
Now let's go to the filter. I want to filter the mountains that are above
the mean elevation in our dataframe:
DF.filter(mountains, elevation > mean(elevation))
You can see that we can refer to the columns using their names, and use functions
without define them. This is possible due the powerful Explorer.Query features,
and it's the main reason we need to "require" the Explorer.DataFrame module.
The result is going to look like this:
#Explorer.DataFrame<
 Polars[2 x 2]
 name string ["Everest", "K2"]
 elevation s64 [8848, 8611]
>
There is an extensive guide that you can play with Livebook:
Ten Minutes to Explorer
You can also check the Explorer.DataFrame and Explorer.Series docs for further
details.

Explorer.DataFrame

The DataFrame struct and API.
Dataframes are two-dimensional tabular data structures similar to a spreadsheet.
For example, the Iris dataset:
iex> Explorer.Datasets.iris()
#Explorer.DataFrame<
 Polars[150 x 5]
 sepal_length f64 [5.1, 4.9, 4.7, 4.6, 5.0, ...]
 sepal_width f64 [3.5, 3.0, 3.2, 3.1, 3.6, ...]
 petal_length f64 [1.4, 1.4, 1.3, 1.5, 1.4, ...]
 petal_width f64 [0.2, 0.2, 0.2, 0.2, 0.2, ...]
 species string ["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", ...]
>
This dataframe has 150 rows and five columns. Each column is an Explorer.Series
of the same size (150):
iex> df = Explorer.Datasets.iris()
iex> df["sepal_length"]
#Explorer.Series<
 Polars[150]
 f64 [5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, ...]
>

 Creating dataframes

Dataframes can be created from normal Elixir terms. The main way you might do this is
with the new/1 function. For example:
iex> Explorer.DataFrame.new(a: ["a", "b"], b: [1, 2])
#Explorer.DataFrame<
 Polars[2 x 2]
 a string ["a", "b"]
 b s64 [1, 2]
>
Or with a list of maps:
iex> Explorer.DataFrame.new([%{"col1" => "a", "col2" => 1}, %{"col1" => "b", "col2" => 2}])
#Explorer.DataFrame<
 Polars[2 x 2]
 col1 string ["a", "b"]
 col2 s64 [1, 2]
>

 Verbs

Explorer uses the idea of a consistent set of SQL-like verbs like
dplyr which can help solve common
data manipulation challenges. These are split into single table verbs,
multiple table verbs, and row-based verbs:

 Single table verbs

Single table verbs are (unsurprisingly) used for manipulating a single dataframe.
Those operations typically driven by column names. These are:
	select/2 for picking columns and discard/2 to discard them
	filter/2 for picking rows based on predicates
	mutate/2 for adding or replacing columns that are functions of existing columns
	sort_by/2 for changing the ordering of rows
	distinct/2 for picking unique rows
	summarise/2 for reducing multiple rows down to a single summary
	pivot_longer/3 and pivot_wider/4 for massaging dataframes into longer or
wider forms, respectively

Each of these combine with Explorer.DataFrame.group_by/2 for operating by group.

 Multiple table verbs

Multiple table verbs are used for combining tables. These are:
	join/3 for performing SQL-like joins
	concat_columns/1 for horizontally "stacking" dataframes
	concat_rows/1 for vertically "stacking" dataframes

 Row-based verbs

Those operations are driven by the row index. These are:
	head/2 for picking the first rows
	tail/2 for picking the last rows
	slice/2 for slicing the dataframe by row indexes or a range
	slice/3 for slicing a section by an offset
	sample/2 for sampling the data-frame by row

 IO operations

Explorer supports reading and writing of:
	delimited files (such as CSV or TSV)
	Parquet
	Arrow IPC
	Arrow Streaming IPC
	Newline Delimited JSON
	Databases via Adbc in from_query/3

The convention Explorer uses is to have from_* and to_* functions to read and write
to files in the formats above. load_* and dump_* versions are also available to read
and write those formats directly in memory.
Files can be fetched from local or remote file system, such as S3, using the following formats:
path to a file in disk
Explorer.DataFrame.from_parquet("/path/to/file.parquet")

path to a URL schema (with optional configuration)
Explorer.DataFrame.from_parquet("s3://bucket/file.parquet", config: FSS.S3.config_from_system_env())

it's possible to configure using keyword lists
Explorer.DataFrame.from_parquet("s3://bucket/file.parquet", config: [access_key_id: "my-key", secret_access_key: "my-secret"])

a FSS entry (it already includes its config)
Explorer.DataFrame.from_parquet(FSS.S3.parse("s3://bucket/file.parquet"))
The :config option of from_* functions is only required if the filename is a path
to a remote resource. In case it's a FSS entry, the requirement is that the config is passed
inside the entry struct.
For more details about the options, see the FSS docs.

 Selecting columns and access

Several functions in this module, such as select/2, discard/2, drop_nil/2, and so
forth accept a single or multiple columns as arguments. The columns can be specified in
a variety of formats, which we describe below.
Explorer.DataFrame also implements the Access behaviour (also known as the brackets
syntax). This should be familiar for users coming from other language with dataframes
such as R or Python. For example:
iex> df = Explorer.Datasets.wine()
iex> df["class"]
#Explorer.Series<
 Polars[178]
 s64 [1, ...]
>
Accessing the dataframe with a column name either as a string or an atom, will return
the column. You can also pass an integer representing the column order:
iex> df = Explorer.Datasets.wine()
iex> df[0]
#Explorer.Series<
 Polars[178]
 s64 [1, ...]
>
You can also pass a list, a range, or a regex to return a dataframe matching
the given data type. For example, by passing a list:
iex> df = Explorer.Datasets.wine()
iex> df[["class", "hue"]]
#Explorer.DataFrame<
 Polars[178 x 2]
 class s64 [1, 1, 1, 1, 1, ...]
 hue f64 [1.04, 1.05, 1.03, 0.86, 1.04, ...]
>
Or a range for the given positions:
iex> df = Explorer.Datasets.wine()
iex> df[0..2]
#Explorer.DataFrame<
 Polars[178 x 3]
 class s64 [1, 1, 1, 1, 1, ...]
 alcohol f64 [14.23, 13.2, 13.16, 14.37, 13.24, ...]
 malic_acid f64 [1.71, 1.78, 2.36, 1.95, 2.59, ...]
>
Or a regex to keep only columns matching a given pattern:
iex> df = Explorer.Datasets.wine()
iex> df[~r/(class|hue)/]
#Explorer.DataFrame<
 Polars[178 x 2]
 class s64 [1, 1, 1, 1, 1, ...]
 hue f64 [1.04, 1.05, 1.03, 0.86, 1.04, ...]
>
Given you can also access a series using its index, you can use
multiple accesses to select a column and row at the same time:
iex> df = Explorer.Datasets.wine()
iex> df["class"][3]
1

 Summary

 Functions: Conversion

 Explorer.Datasets - Explorer v0.9.1

Explorer.Datasets

Datasets used in examples and exploration.
Note those datasets are not available inside Elixir releases
(see mix release), which is the usual way to deploy Elixir
in production. Therefore, if you need one of those datasets
in production, you must download the source files to your
own application priv directory and load them yourself.
For example:
Explorer.DataFrame.from_csv!(Application.app_dir(:my_app, "priv/iris.csv"))

 Summary

 Functions

 Explorer.Query - Explorer v0.9.1

Explorer.Query

High-level query for Explorer.
Explorer.DataFrame vs DF
All examples below assume you have defined aliased
Explorer.DataFrame to DF as shown below:
require Explorer.DataFrame, as: DF

Queries convert regular Elixir code which compile to efficient
dataframes operations. Inside a query, only the limited set of
Series operations are available and identifiers, such as strs
and nums, represent dataframe column names:
iex> df = DF.new(strs: ["a", "b", "c"], nums: [1, 2, 3])
iex> DF.filter(df, nums > 2)
#Explorer.DataFrame<
 Polars[1 x 2]
 strs string ["c"]
 nums s64 [3]
>
If a column has unusual format, you can either rename it before-hand,
or use col/1 inside queries:
iex> df = DF.new("unusual nums": [1, 2, 3])
iex> DF.filter(df, col("unusual nums") > 2)
#Explorer.DataFrame<
 Polars[1 x 1]
 unusual nums s64 [3]
>
All operations from Explorer.Series are imported inside queries.
This module also provides operators to use in queries, which are
also imported into queries.

 Supported operations

Queries are supported in the following operations:
	Explorer.DataFrame.sort_by/2
	Explorer.DataFrame.filter/2
	Explorer.DataFrame.mutate/2
	Explorer.DataFrame.summarise/2

 Interpolation

If you want to access variables defined outside of the query
or get access to all Elixir constructs, you must use ^:
iex> min = 2
iex> df = DF.new(strs: ["a", "b", "c"], nums: [1, 2, 3])
iex> DF.filter(df, nums > ^min)
#Explorer.DataFrame<
 Polars[1 x 2]
 strs string ["c"]
 nums s64 [3]
>

iex> min = 2
iex> df = DF.new(strs: ["a", "b", "c"], nums: [1, 2, 3])
iex> DF.filter(df, nums < ^if(min > 0, do: 10, else: -10))
#Explorer.DataFrame<
 Polars[3 x 2]
 strs string ["a", "b", "c"]
 nums s64 [1, 2, 3]
>
^ can be used with col to access columns dynamically:
iex> df = DF.new("unusual nums": [1, 2, 3])
iex> name = "unusual nums"
iex> DF.filter(df, col(^name) > 2)
#Explorer.DataFrame<
 Polars[1 x 1]
 unusual nums s64 [3]
>

 Conditionals

Queries support both if/2 and unless/2 operations inside queries.
cond/1 can be used to write multi-clause conditions:
iex> df = DF.new(a: [10, 4, 6])
iex> DF.mutate(df,
...> b:
...> cond do
...> a > 9 -> "Exceptional"
...> a > 5 -> "Passed"
...> true -> "Failed"
...> end
...>)
#Explorer.DataFrame<
 Polars[3 x 2]
 a s64 [10, 4, 6]
 b string ["Exceptional", "Failed", "Passed"]
>

 Across and comprehensions

Explorer.Query leverages the power behind Elixir for-comprehensions
to provide a powerful syntax for traversing several columns in a dataframe
at once. For example, imagine you want to standardize the data on the
iris dataset, you could write this:
iex> iris = Explorer.Datasets.iris()
iex> DF.mutate(iris,
...> sepal_width: (sepal_width - mean(sepal_width)) / variance(sepal_width),
...> sepal_length: (sepal_length - mean(sepal_length)) / variance(sepal_length),
...> petal_length: (petal_length - mean(petal_length)) / variance(petal_length),
...> petal_width: (petal_width - mean(petal_width)) / variance(petal_width)
...>)
#Explorer.DataFrame<
 Polars[150 x 5]
 sepal_length f64 [-1.0840606189132322, -1.3757361217598405, -1.66741162460645, -1.8132493760297554, -1.2298983703365363, ...]
 sepal_width f64 [2.3722896125315045, -0.28722789030650403, 0.7765791108287005, 0.2446756102610982, 2.9041931130991068, ...]
 petal_length f64 [-0.7576391687443839, -0.7576391687443839, -0.7897606710936369, -0.7255176663951307, -0.7576391687443839, ...]
 petal_width f64 [-1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, ...]
 species string ["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", ...]
>
While the code above does its job, it is quite repetitive. With across and for-comprehensions,
we could instead write:
iex> iris = Explorer.Datasets.iris()
iex> DF.mutate(iris,
...> for col <- across(["sepal_width", "sepal_length", "petal_length", "petal_width"]) do
...> {col.name, (col - mean(col)) / variance(col)}
...> end
...>)
#Explorer.DataFrame<
 Polars[150 x 5]
 sepal_length f64 [-1.0840606189132322, -1.3757361217598405, -1.66741162460645, -1.8132493760297554, -1.2298983703365363, ...]
 sepal_width f64 [2.3722896125315045, -0.28722789030650403, 0.7765791108287005, 0.2446756102610982, 2.9041931130991068, ...]
 petal_length f64 [-0.7576391687443839, -0.7576391687443839, -0.7897606710936369, -0.7255176663951307, -0.7576391687443839, ...]
 petal_width f64 [-1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, ...]
 species string ["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", ...]
>
Which achieves the same result in a more concise and maintainable way.
across/1 may receive any of the following input as arguments:
	a list of columns indexes or names as atoms and strings

	a range

	a regex that keeps only the names matching the regex

For example, since we know the width and length columns are the first four,
we could also have written (remember ranges in Elixir are inclusive):
DF.mutate(iris,
 for col <- across(0..3) do
 {col.name, (col - mean(col)) / variance(col)}
 end
)
Or using a regex:
DF.mutate(iris,
 for col <- across(~r/(sepal|petal)_(length|width)/) do
 {col.name, (col - mean(col)) / variance(col)}
 end
)
For those new to Elixir, for-comprehensions have the following format:
for PATTERN <- GENERATOR, FILTER do
 EXPR
end
A comprehension filter is a mechanism that allows us to keep only columns
based on additional properties, such as its dtype. A for-comprehension can
have multiple generators and filters. For instance, if you want to apply
standardization to all float columns, we can use across/0 to access all
columns and then use a filter to keep only the float ones:
iex> iris = Explorer.Datasets.iris()
iex> DF.mutate(iris,
...> for col <- across(), col.dtype == {:f, 64} do
...> {col.name, (col - mean(col)) / variance(col)}
...> end
...>)
#Explorer.DataFrame<
 Polars[150 x 5]
 sepal_length f64 [-1.0840606189132322, -1.3757361217598405, -1.66741162460645, -1.8132493760297554, -1.2298983703365363, ...]
 sepal_width f64 [2.3722896125315045, -0.28722789030650403, 0.7765791108287005, 0.2446756102610982, 2.9041931130991068, ...]
 petal_length f64 [-0.7576391687443839, -0.7576391687443839, -0.7897606710936369, -0.7255176663951307, -0.7576391687443839, ...]
 petal_width f64 [-1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, -1.7147014356654708, ...]
 species string ["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", ...]
>
For-comprehensions works with all dataframe verbs. As we have seen
above, for mutations we must return tuples as pair with the mutation
name and its value. summarise works similarly. Note in both cases
the name could also be generated dynamically. For example, to compute
the mean per species, you could write:
iex> Explorer.Datasets.iris()
...> |> DF.group_by("species")
...> |> DF.summarise(
...> for col <- across(), col.dtype == {:f, 64} do
...> {"#{col.name}_mean", round(mean(col), 3)}
...> end
...>)
#Explorer.DataFrame<
 Polars[3 x 5]
 species string ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
 sepal_length_mean f64 [5.006, 5.936, 6.588]
 sepal_width_mean f64 [3.418, 2.77, 2.974]
 petal_length_mean f64 [1.464, 4.26, 5.552]
 petal_width_mean f64 [0.244, 1.326, 2.026]
>
sort_by expects a list of columns to sort by, while for-comprehensions
in filter generate a list of conditions, which are joined using and.
For example, to filter all entries have both sepal and petal length above
average, using a filter on the column name, one could write:
iex> iris = Explorer.Datasets.iris()
iex> DF.filter(iris,
...> for col <- across(), String.ends_with?(col.name, "_length") do
...> col > mean(col)
...> end
...>)
#Explorer.DataFrame<
 Polars[70 x 5]
 sepal_length f64 [7.0, 6.4, 6.9, 6.5, 6.3, ...]
 sepal_width f64 [3.2, 3.2, 3.1, 2.8, 3.3, ...]
 petal_length f64 [4.7, 4.5, 4.9, 4.6, 4.7, ...]
 petal_width f64 [1.4, 1.5, 1.5, 1.5, 1.6, ...]
 species string ["Iris-versicolor", "Iris-versicolor", "Iris-versicolor", "Iris-versicolor", "Iris-versicolor", ...]
>
Do not mix comprehension and queries
The filter inside a for-comprehension works at the meta level:
it can only filter columns based on their names and dtypes, but
not on their values. For example, this code does not make any
sense and it will fail to compile:
|> DF.filter(
 for col <- across(), col > mean(col) do
 col
 end
end)
Another way to think about it, the comprehensions traverse on the
columns themselves, the contents inside the comprehension do-block
traverse on the values inside the columns.

 Implementation details

Queries simply become lazy dataframe operations at runtime.
For example, the following query
Explorer.DataFrame.filter(df, nums > 2)
is equivalent to
Explorer.DataFrame.filter_with(df, fn df -> Explorer.Series.greater(df["nums"], 2) end)
This means that, whenever you want to generate queries programatically,
you can fallback to the regular _with APIs.

 Summary

 Functions

 Explorer.Remote - Explorer v0.9.1

Explorer.Remote

A module responsible for placing remote dataframes and
garbage collect them.
The functions in Explorer.DataFrame and Explorer.Series
will automatically move operations on remote dataframes to
the nodes they belong to. Explorer also integrates with
FLAME and automatically tracks remote dataframes and
series returned from FLAME calls when the :track_resources
option is enabled.
This module provides additional conveniences for manual placement.

 Implementation details

In order to understand what this module does, we need
to understand the challenges in working with remote series
and dataframes.
Series and dataframes are actually NIF resources: they are
pointers to blobs of memory operated by low-level libraries.
Those are represented in Erlang/Elixir as references (the
same as the one returned by make_ref/0). Once the reference
is garbage collected (based on refcounting), those NIF
resources are garbage collected and the memory is reclaimed.
When using Distributed Erlang, you may write this code:
remote_series = :erpc.call(node, Explorer.Series, :from_list, [[1, 2, 3]])
However, the code above will not work, because the series
will be allocated in the remote node and the remote node
won't hold a reference to said series! This means the series
is garbage collected and if we attempt to read it later on,
from the caller node, it will no longer exist. Therefore,
we must explicitly place these resources in remote nodes
by spawning processes to hold these refernces. That's what
the place/2 function in this module does.
We also need to guarantee these resources are not kept
forever by these remote nodes, so place/2 creates a
local NIF resource that notifies the remote resources
they have been GCed, effectively implementing a remote
garbage collector.

 Summary

 Functions

 Explorer.Series - Explorer v0.9.1

Explorer.Series

The Series struct and API.
A series can be of the following data types:
	:binary - Binaries (sequences of bytes)
	:boolean - Boolean
	:category - Strings but represented internally as integers
	:date - Date type that unwraps to Elixir.Date
	{:naive_datetime, precision} - Naive DateTime type with millisecond/microsecond/nanosecond
precision that unwraps to Elixir.NaiveDateTime
	{:datetime, precision, time_zone} - DateTime type with millisecond/microsecond/nanosecond
precision that unwraps to Elixir.DateTime
	{:duration, precision} - Duration type with millisecond/microsecond/nanosecond
precision that unwraps to Explorer.Duration
	{:f, size} - a 64-bit or 32-bit floating point number
	{:s, size} - a 8-bit or 16-bit or 32-bit or 64-bit signed integer number.
	{:u, size} - a 8-bit or 16-bit or 32-bit or 64-bit unsigned integer number.
	:null - nils exclusively
	:string - UTF-8 encoded binary
	:time - Time type that unwraps to Elixir.Time
	{:list, dtype} - A recursive dtype that can store lists. Examples: {:list, :boolean} or
a nested list dtype like {:list, {:list, :boolean}}.
	{:struct, [{key, dtype}]} - A recursive dtype that can store Arrow/Polars structs (not to be
confused with Elixir's struct). This type unwraps to Elixir maps with string keys. Examples:
{:struct, [{"a", :string}]} or a nested struct dtype like {:struct, [{"a", {:struct, [{"b", :string}]}}]}.

When passing a dtype as argument, aliases are supported for convenience
and compatibility with the Elixir ecosystem:
	All numeric dtypes (signed integer, unsigned integer, and floats) can
be specified as an atom in the form of :s32, :u8, :f32 and so on
	The atom :float as an alias for {:f, 64} to mirror Elixir's floats
	The atom :integer as an alias for {:s, 64} to mirror Elixir's integers

A series must consist of a single data type only. Series may have nil values in them.
The series dtype can be retrieved via the dtype/1 function or directly accessed as
series.dtype. A series.name field is also available, but it is always nil unless
the series is retrieved from a dataframe.
Many functions only apply to certain dtypes. These functions may appear on distinct
categories on the sidebar. Other functions may work on several datatypes, such as
comparison functions. In such cases, a "Supported dtypes" section will be available
in the function documentation.

 Creating series

Series can be created using from_list/2, from_binary/3, and friends:
Series can be made of numbers:
iex> Explorer.Series.from_list([1, 2, 3])
#Explorer.Series<
 Polars[3]
 s64 [1, 2, 3]
>
Series are nullable, so you may also include nils:
iex> Explorer.Series.from_list([1.0, nil, 2.5, 3.1])
#Explorer.Series<
 Polars[4]
 f64 [1.0, nil, 2.5, 3.1]
>
Any of the dtypes above are supported, such as strings:
iex> Explorer.Series.from_list(["foo", "bar", "baz"])
#Explorer.Series<
 Polars[3]
 string ["foo", "bar", "baz"]
>

 Casting numeric series (type promotion)

Series of integers and floats are automatically cast when executing certain
operations. For example, adding a series of s64 with f64 will return a list
of f64.
Numeric casting works like this:
	when working with the same numeric type but of different precisions,
the higher precision wins

	when working with unsigned integers and signed integers, unsigned integers
are cast to signed integers using double of its precision (maximum of 64 bits)

	when working with integers and floats, integers are always cast floats,
keep the floating number precision

 Series queries

DataFrames have named columns, so their queries use column names as variables:
iex> require Explorer.DataFrame
iex> df = Explorer.DataFrame.new(col_name: [1, 2, 3])
iex> Explorer.DataFrame.filter(df, col_name > 2)
#Explorer.DataFrame<
 Polars[1 x 1]
 col_name s64 [3]
>
Series have no named columns (a series constitutes a single column,
so no name is required). This means their queries can't use column
names as variables. Instead, series queries use the special _ variable like so:
iex> s = Explorer.Series.from_list([1, 2, 3])
iex> Explorer.Series.filter(s, _ > 2)
#Explorer.Series<
 Polars[1]
 s64 [3]
>

 Summary

 Functions: Conversion

 Explorer.Duration - Explorer v0.9.1

Explorer.Duration

Represents a duration of time.
The value is represented by an integer, and the precision can be one
of the following:
	:millisecond
	:microsecond
	:nanosecond

 Summary

 Types

 Explorer.TensorFrame - Explorer v0.9.1

Explorer.TensorFrame

TensorFrame is a representation of Explorer.DataFrame
that is designed to work inside Nx's defn expressions.
For example, imagine the following defn:
defn add_columns(tf) do
 tf[:a] + tf[:b]
end
We can now pass a DataFrame as argument:
iex> add_columns(Explorer.DataFrame.new(a: [11, 12], b: [21, 22]))
#Nx.Tensor<
 s64[2]
 [32, 34]
>
Passing an Explorer.DataFrame to a defn will automatically
convert it to a TensorFrame. The TensorFrame will lazily
build tensors out of the used dataframe fields.

 Stack and concatenating

Due to the integration with Nx, you can also pass dataframes
into Nx.stack/2 and Nx.concatenate and they will be automatically
converted to tensors. This makes it easy to pass dataframes into
neural networks and other computationally intensive algorithms:
iex> Nx.concatenate(Explorer.DataFrame.new(a: [11, 12], b: [21, 22]))
#Nx.Tensor<
 s64[4]
 [11, 12, 21, 22]
>

iex> Nx.stack(Explorer.DataFrame.new(a: [11, 12], b: [21, 22]))
#Nx.Tensor<
 s64[2][2]
 [
 [11, 12],
 [21, 22]
]
>

iex> Nx.stack(Explorer.DataFrame.new(a: [11, 12], b: [21, 22]), axis: -1)
#Nx.Tensor<
 s64[2][2]
 [
 [11, 21],
 [12, 22]
]
>

 Warning: returning TensorFrames

It is not recommended to return a TensorFrame from a defn,
as that would force all columns to be sent to the CPU/GPU
and then copied back. Return only the columns that have been
modified during the computation. For example, in the example
above we used Nx to add two columns, if you want to
put the result of the computation back into a DataFrame,
you can use Explorer.DataFrame.put/4, which also accepts
tensors:
iex> df = Explorer.DataFrame.new(a: [11, 12], b: [21, 22])
iex> Explorer.DataFrame.put(df, "result", add_columns(df))
#Explorer.DataFrame<
 Polars[2 x 3]
 a s64 [11, 12]
 b s64 [21, 22]
 result s64 [32, 34]
>
One benefit of using Explorer.DataFrame.put/4 is that it will
preserve the type of the column if one already exists. Alternatively,
use Explorer.Series.from_tensor/1 to explicitly convert a tensor
back to a series.

 Supported dtypes

The following dtypes can be converted to tensors:
	:integer
	{:f, 32}
	{:f, 64}
	:boolean
	:date
	{:naive_datetime, :millisecond}
	{:naive_datetime, :microsecond}
	{:naive_datetime, :nanosecond}

See Explorer.Series.to_iovec/1 and Explorer.Series.to_tensor/1
to learn more about their internal representation.

 Summary

 Types

 Explorer.Backend - Explorer v0.9.1

Explorer.Backend

The behaviour for Explorer backends and associated functions.
Each backend is a module with DataFrame and Series submodules that match the
respective behaviours for each.
The default backend is read from the application environment. Currently, the only
backend is an in-memory, eager one based on
Polars. When alternatives are
available, you can use them by configuring your runtime:
config/runtime.exs
import Config
config :explorer, default_backend: Lib.CustomBackend

 Summary

 Functions

 Explorer.Backend.DataFrame - Explorer v0.9.1

Explorer.Backend.DataFrame behaviour

The behaviour for DataFrame backends.

 Summary

 Types

 Explorer.Backend.LazyFrame - Explorer v0.9.1

Explorer.Backend.LazyFrame

Represents a lazy dataframe for building query expressions.
The LazyFrame is available inside filter_with, mutate_with, and
similar. You cannot perform any operation on them except accessing
its underlying series.

 Summary

 Types

 Explorer.Backend.LazySeries - Explorer v0.9.1

Explorer.Backend.LazySeries

This is an opaque implementation of a Series.
It represents an operation with its arguments.

 Summary

 Types

 Explorer.Backend.Series - Explorer v0.9.1

Explorer.Backend.Series behaviour

The behaviour for series backends.

 Summary

 Types

 Explorer.PolarsBackend - Explorer v0.9.1

Explorer.PolarsBackend

The Explorer backend for Polars.

OEBPS/dist/epub-CB7BJMUW.js
